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it has no loops and no sharing | no memoization is needed. We therefore discardthe partial evaluator, modify the instrumented matcher, and obtain a conceptu-ally simple and fairly e�cient ML match compiler.In Section 2 we describe ML-style tree pattern matching, and in Section 3 wepresent a na��ve pattern matcher, taking two inputs: a sequence of match rules tobe tested, and an object term to match against the rules. In Section 4 we showhow to represent positive and negative information about terms, and in Sec-tion 5 we instrument the na��ve matcher to collect such information. In Section 6we partially evaluate the instrumented matcher with respect to static match rules,and obtain a specialized matcher which performs no repeated tests. In Section 7we construct the �nal match compiler by replacing dynamic variables and ex-pressions of the instrumented matcher with symbolic terms. Section 8 discussesrelated work, and Section 9 contains the conclusion.2 ML pattern matchingWe assume that the object language is statically typed, so that the set of con-structors that may appear at some point in a pattern or term is known at compile-time. This description �ts e.g. Standard ML and Haskell, but not Scheme.2.1 Constructors, patterns, terms, and matchingFor the theoretical development, we use slightly generalized notions of constructorand pattern. A constructor is characterized by{ its name; in implementations this is typically a numerical tag;{ its arity , which is the number of arguments it takes (and is assured to get,by the type system);{ its span, which is the total number of constructors in its type.A pattern is either a variable, or a constructor applied to a possibly empty se-quence of patterns. Patterns must be linear : no variable may occur more thanonce in a pattern. A (proper) term is a pattern not containing variables. Con-structors and patterns can be modelled as follows:type con = f name : string, arity : int, span : int gdatatype pat = PVar of string | PCon of con * pat listExample 1. For instance, the three constructors Null, Leaf, and Node declaredby the Standard ML declarationdatatype 'a tree =Null | Leaf of 'a | Node of 'a tree * 'a * 'a treecan be represented as follows:val Nullc = fname = "Null", arity = 0, span = 3gval Leafc = fname = "Leaf", arity = 1, span = 3gval Nodec = fname = "Node", arity = 3, span = 3g



Then the SML term Node(Leaf 9, 12, Node(Leaf 4, 7, Null)) would beencoded by the following term:PCon(Nodec, [PCon(Leafc, [9]), 12,PCon(Nodec, [PCon(Leafc,[4]),7,PCon(Nullc,[])])])A match rule or mrule is a pair of a pattern and an (unspeci�ed) right-handside, and a match is a sequence of match rules:type 'rhs match = (pat * 'rhs) listA match object is the term to be matched against a pattern. A term matchesa pattern if there is a substitution of terms for variables in the pattern whichmakes the term and the pattern equal. The problem of pattern matching, givenan object and a match, is to �nd the �rst match rule (pat, rhs) for which theobject matches the pattern pat, or to decide that the no such rule exists in thematch.2.2 Representing ML dataWe assume the reader is familiar with Standard ML pattern matching [14].In an ML datatype, such as 'a tree above, a constructor Null, Leaf, orNode is encoded by taking its arity to be the declared number of arguments2,and its span to be the number of constructors belonging to the datatype.An ML tuple, such as (1, Null, true, "abc"), is represented by a singleconstructor with span 1 and arity equal to the number of components, e.g. thearity is 4 in this example, and 2 for the pair constructor.The components of an ML record can be sorted by their labels, so recordscan be handled as tuples in an implementation.The ML special constants of type int, real, and string are encoded byconstructors with arity 0 and in�nite span. Character constants of type char areencoded with arity 0 and span 256 (for the ASCII character set).A vector3 constructor #[ , : : : , ] has arity equal to the number of listedarguments, and span 1. Its name must reect the arity, so that vector constructorsof di�erent arities are distinct. The ML exception constructors, such as Div orIo, have arity 0 or 1 and have in�nite span. The ML ref constructor has arity1 and span 1.Hence all matchable ML data can be represented by our notions of con-structor, pattern, and term.2 In principle, an ML value constructor takes either zero or one argument, which maybe a tuple. It is immaterial for the present development whether one follows this modelstrictly, or allows a constructor to take multiple arguments. For purposes of matching,there is no di�erence between the pattern C(v) and the pattern C(v1; : : : ; va) wherea = arity(C) and v; v1; : : : ; va are variables.3 Character and vector constructors are extensions to Standard ML, implemented byStandard ML of New Jersey, Moscow ML, and other systems.



Example 2. ML booleans and tuple, pair, and list constructors, can be encodedas follows:val tt = PCon(fname="true", arity=0, span=2g, [])val ff = PCon(fname="false", arity=0, span=2g, [])fun tup args = PCon(fname="", span=1, arity=length argsg, args)fun pair(x, y) = tup[x, y]val nil = PCon(fname="nil", arity=0, span=2g, [])fun cons(a,b) = PCon(fname="cons", arity=2, span=2g, [a,b])3 A na��ve ML pattern matcherThe general pattern matcher takes as input a match object (a term) and a match(a sequence of mrules), and produces as output the right-hand side of the �rstmatching mrule, or fails.It works by sequentially matching the object against the mrule patterns (theleft-hand sides); if a pattern fails, then the next one is tried, etc., until the objectmatches some pattern, or there are no more patterns. As in a na��ve string matcher,this is potentially ine�cient, because tests of the same subterm may be performedrepeatedly. The worst-case complexity is the product of the number of mrulesand the size of the object term.The naive matcher shown below takes two inputs: an object term origobj,and a match allmrules. It is implemented by three mutually recursive functions,with the following speci�cations:{ fail(rules)will attempt to match the original object term origobj againsteach pattern pat from a rule (pat, rhs) in rules; it succeeds with the rhsif the rule matches; it fails otherwise.{ succeed(work, rhs, rules) succeeds, returning the rhs, if for every pair(pat, obj) in work, the object obj matches the pattern pat; or succeeds ifthe original object origobj matches some rule from rules; fails otherwise.Actually, work is a stack of lists of (pattern, object) pairs; this saves someappend operations.{ match(pat1,obj1,work,rhs,rules) succeeds, returning the rhs if obj1matches pat1, and for every pair (pat, obj) in work, obj matches pat; orsucceeds if origobj matches some rule in rules; fails otherwise.That is, fail expresses disjunction of matches, succeed expresses conjunctionof matches, and match does the actual matching work. The rules parameter isa list of alternatives to backtrack to; and the work parameter is a stack of matchhypotheses still to be checked. These parameters are �rst-order representationsof the failure and success continuations, respectively. This is useful in connectionwith our representation of positive and negative information in the instrumentedmatcher; see Section 4.3. J�rgensen's matcher represented the continuations byfunctions [9]. The function main implements the matcher:



fun main (origobj, allmrules) =let fun fail [] = NONE| fail ((pat1, rhs1) :: rulerest) =match(pat1, origobj, [], rhs1, rulerest)and succeed([], rhs, rules) = SOME rhs| succeed(work1 :: workr, rhs, rules) =case work1 of([], []) => succeed(workr, rhs, rules)| (pat1::patr, obj1::objr) =>match(pat1, obj1, (patr,objr)::workr, rhs, rules)and match(PVar _, _, work, rhs, rules) =succeed(work, rhs, rules)| match(PCon(pcon,pargs),PCon(ocon,oargs),work,rhs,rules) =if ocon = pcon thensucceed((pargs, oargs) :: work, rhs, rules)elsefail rulesin fail allmrules endNote that there are no arity tests; static typing ensures that if two constructornames are equal, then they are applied to the same number of arguments, whetheroccurring in a pattern or a term.4 Positive and negative information about termsWe now instrument the naive matcher to record and exploit information aboutthe match object. The only source of such information is the test ocon = pcon inthe match function above. We shall record positive information from tests whichsucceed, and negative information from tests which fail.4.1 Term descriptionsThis information will be recorded in the form of a term description. A positiveterm description is a skeletal term, consisting of a constructor together witha tuple of argument term descriptions. A negative term description is a set ofimpossible constructors:datatype termd = Pos of con * termd list | Neg of con listThe positive term description Pos(c; [t1; : : : ; ta]) describes any term whose top-most constructor is c, and whose components are described by t1 through ta.The negative term description Negfc1; : : : ; cng describes any term whose top-most constructor is none of c1; : : : ; cn. In a negative term description Neg(S),the cardinality of S must be strictly less than the span of any constructor in S.Otherwise the term description is contradictory, and describes the empty set ofterms. Due to static typing, all constructors in S must belong to the same typeand hence have the same span.



Example 3. For terms of type 'a tree, the term description Neg[Node] describesterms which are either Null or Leaf(a) for some a. The positive term descrip-tion Pos(Node,[Neg [Node], Neg [], Pos(Null,[])]) describes terms of theform Node(t, a, Null) where t does not have form Node( , , ), and a is someterm.The set of term descriptions isTermD = f Neg(S) j 8c 2 S:card(S) < span(c) g[ f Pos(c; [t1; : : : ; ta]) j a = arity(c); ti 2 TermD gThere is a natural information preordering v on the set TermD of term descrip-tions, de�ned as follows, where ? = Negfg:Neg(S1) v Neg(S2) i� S1 � S2Neg(S) v Pos(c; [t1; : : : ; ta]) i� c =2 SPos(c; [?; : : : ;?]) v Neg(S) i� card(S [ fcg) = span(c)Pos(c; [t1; : : : ; ta]) v Pos(c; [u1; : : : ; ua]) i� ti v ui for all i = 1; : : : ; aThe relation v is a preordering because Neg(S) provides the same informationas Pos(c; [?; : : : ;?]) when card(S [ fcg) = span(c); taking the quotient over thecongruence induced by this equivalence gives a partial order. The least element is? = Negfg, which describes any term, and represents the absence of information.A maximal element is an encoding of a proper term, describing just that term.In the instrumented matcher, the information about the match object is ? ini-tially, and grows monotonically during the execution of the instrumented matcher.The work stack of (pat, obj) pairs must be extended to a stack of (pat, obj,dsc) triples, which records a subterm description dsc along with every subtermobj of the object.The auxiliary function addneg: termd * con -> termd adds negative in-formation to a partial term:fun addneg(Neg nonset, con) = Neg(con :: nonset)It has two preconditions: con =2 nonset, and card(nonset[fcong) < span(con).4.2 Static matchingStatic matching attempts to match a constructor ocon from the object against aconstructor pcon from the pattern, using only the object term description whichhas been constructed by those matching steps already performed. Static matchingproduces one of three answers: Yes, No, or Maybe, as follows:a. If the object constructor is (positively) known to be c, and pcon = c, thenthe answer is Yes.b. If the object constructor is (positively) known to be c, and pcon 6= c, thenthe answer is No.



c. If the object constructor is (negatively) known not to be any of c1; : : : ; cn,and pcon = ci for some 1 � i � n, then the answer is No.d. If the object constructor is (negatively) known not to be any of c1; : : : ; cn(all distinct), and pcon 6= ci for all 1 � i � n, and span(pcon) = 1 + n, thenthe answer is Yes.e. Otherwise the answer is Maybe.For constructors with span 1, such as tuples and pairs, rule (d) ensures thatmatching succeeds unconditionally. Since inequality of SML exception construct-ors cannot be safely decided at compile-time, rule (b) never applies for exceptionconstructors. This is easily ensured in an implementation, and we shall disregardexception constructors for the remainder of the paper. Constructors of type int,real, and string, and exception constructors, have in�nite span, so rule (d)never applies for those.Using the span to optimize matches is well-known in match compilers fortyped languages, and was suggested also by J�rgensen [9, page 191].Static matching of the object term description against a pattern constructorpcon is implemented by a function staticmatch:con * termd-> matchresult.4.3 Context descriptionsDuring the matching of a composite object against a composite pattern, we needto manage partial term descriptions, describing the part of the term which isalready matched at a given point. Since we match top-down and left-right, thepart of the description already computed is above and to the left of the currentsubterm. Hence a left context description must describe the constructors on thepath from the root to the current subterm, and those of their arguments whichare to the left of the current subterm.For example, assume we are matching the objectNode(Node(Null, 1, Leaf 2), 3, Null)against the patternNode(Node(x, 1, Leaf y), z, Null)and assume the current subterm is the rightmost occurrence of Null. Then thecurrent context description should beNode(Node(?, 1, Leaf ?), ?, [ ])where ? denotes the absence of information, and [ ] is the `hole' containing thecurrent subterm.This context is represented by the path of constructors from the current sub-term up to the root, together with descriptions of those of their arguments whichare to the left of the hole. Hence a context description is a list of constructorsand argument descriptions:type context = (con * termd list) list



In particular, the example context shown above is described by[(Node, [?, Pos(Node,[?, 1, Pos(Leaf,[?])])])]This represents the partial application of constructor Node to two arguments,described by Pos(Node, : : :) and ?. The general form of a context descriptionis [(cn; [tnkn ; : : : ; tn1]); : : : ; (c1; [t1k1 ; : : : ; t11])]where the tij are term descriptions, ki < arity(ci) for i < n, and kn � arity(cn).If kn < arity(cn), then it represents the contextc1(t11; : : : ; t1k1 ; c2(: : : cn(tn1; : : : ; tnkn ; [ ];?; : : : ;?) : : :?);?; : : : ;?)where information-less descriptions ? are added on the right to saturate theconstructor applications. If kn = arity(cn), then it represents a context of formc1(t11; : : : ; t1k1 ; c2(: : : cn(tn1; : : : ; tnkn); [ ]; : : :?);?; : : : ;?)In particular, the empty list [] of partially applied constructors (with n = 0)represents the top-level context [ ].When the matching of a subterm succeeds, it produces a term descriptiondsc which is an argument to the local-most constructor cn. Hence we partially�ll the hole with dsc, by adding dsc to the list of argument descriptions for thelocal-most constructor cn. Function augment: context * termd -> contextaccomplishes this:fun augment([], dsc) = []| augment((con, args)::rest, dsc) = (con, dsc :: args) :: restWhen argument descriptions [tna; : : : ; tn1] for all arguments of the local-most con-structor cn have been found, a positive term description Pos(cn; [tn1; : : : ; tna]) isconstructed, and the remainder of the context is augmented with this description.This is done by function norm:fun norm ((con, args) :: rest) =augment(rest, Pos(con, rev args))When the matching of a subterm fails, the current match rule must be abandonedand the next one tried, but �rst the object term description must be reconstruc-ted. There are three components:(1) the context description ctx, which describes the part of the object term tothe left of the current subterm;(2) the current subterm description dsc; and(3) the term descriptions on the work stack, which together describe the part ofthe object term to the right of the current subterm.



These three components are reassembled to a term description as follows. If thecontext and the work stack are empty, then the current subterm description isthe desired result. Otherwise both are non-empty, and the local-most partialconstructor application (in the context) is further applied to the current subtermdescription, plus the top-most list of argument descriptions from the work stack,to obtain a term description. Then the rest of the context is recursively appliedto this description and to the rest of the work stack.This procedure is implemented by the builddsc function:fun builddsc([], dsc, []) = dsc| builddsc((con, args)::rest, dsc, (_, _, dargs) :: work) =builddsc(rest, Pos(con, rev args @ (dsc :: dargs)), work)J�rgensen used an occurrence environment, mapping occurrences (also calledpositions, or paths) of a term to term descriptions, to represent the knowledgeacquired through partial matching of a term [9]. Hence he did not need a notionof context.5 The instrumented ML pattern matcherThe instrumented matcher improves on the na��ve one by (1) recording positiveand negative information about the object term, also in the work list, and (2)attempting static matching using this information, resorting to actual tests onthe object only when the static matching produces the result Maybe. The func-tion main: pat * 'rhs match -> 'rhs option implements the instrumentedmatcher:



fun main(origobj, allmrules) =let fun fail(dsc, []) = NONE| fail(dsc, (pat1, rhs1) :: rulerest) =match(pat1, origobj, dsc, [], [], rhs1, rulerest)and succeed(ctx, [], rhs, rules) = SOME rhs| succeed(ctx, work1::workr, rhs, rules) =case work1 of([], [], []) => succeed(norm ctx, workr, rhs, rules)| (pat1::patr, obj1::objr, dsc1::dscr) =>match(pat1, obj1, dsc1, ctx,(patr,objr,dscr)::workr, rhs, rules)and match(PVar _, obj, dsc, ctx, work, rhs, rules) =succeed(augment(ctx, dsc), work, rhs, rules)| match(PCon(pcon, pargs), PCon(ocon, oargs),dsc, ctx, work, rhs, rules) =let fun args f = List.tabulate(#arity pcon, f)fun getdargs (Neg _) = args (fn _ => Neg [])| getdargs (Pos(con, dargs)) = dargsfun succeed' () =succeed((pcon, []) :: ctx,(pargs,oargs,getdargs dsc)::work,rhs, rules)fun fail' newdsc =fail(builddsc(ctx, newdsc, work), rules)in case staticmatch(pcon, dsc) ofYes => succeed' ()| No => fail' dsc| Maybe => if ocon = pcon then succeed' ()else fail' (addneg(dsc, pcon))endin fail(Neg [], allmrules) endIf allmrules is static and origobj dynamic, only the underlined parameters andtest will be dynamic. In addition, work is a partially static list of triples (pats,objs, dscs) where the patterns pats and the term descriptions dscs are static,and the objs are dynamic. Hence all tests can be eliminated by the partialevaluator, except the test ocon = pcon, performed when the static matchingreturns Maybe. This is also the only place new information is born, by recordingthe outcome of the dynamic test.Two new auxiliary functions are used. Function getdargs returns the list ofargument descriptions from a term description: if it is positive, then the argumentdescriptions dargs are explicitly provided; if it is negative, then all argumentdescriptions are implicitly ?.Function success' is called after a successful match of a constructor; itextends the context with positive information about the matched constructor.Function fail' is called after an unsuccessful match of a constructor; if the matchis dynamic, then new negative information is added to the subterm descriptionbefore builddsc reconstructs the object term description.



6 Experiments with a simple partial evaluatorWe rewrote the above instrumented ML program in a subset of Scheme, separat-ing binding times by splitting the work list into three parallel lists. It was partiallyevaluated using the Scheme0 partial evaluator, a prototypical polyvariant pro-gram specializer for a �rst-order Scheme subset [8, Chapter 5]. The results are asexpected, although clumsy, since the partial evaluator performs no postunfold-ing etc. Indeed, the simplicity of the Scheme0 partial evaluator ensures that theresult is due to the recording and exploitation of static information, rather thanpowerful optimizations and transformations performed by the partial evaluator.This is important, as the ultimate goal is to write the match compiler without apartial evaluator.Consider the following example datatype:datatype lam =Var of int| Lam of int * lam| App of lam * lam| Let of int * lam * lamand the following example match on this type:Var x => 111| Lam(x, Var y) => 222| Lam(x, Lam(y, z)) => 333| Lam(x, App(y, z)) => 444| App(Lam(x, y), z) => 555| App(App(x, y), z) => 666| Let(x, Let(y, z, v), w) => 777| Lam(x, Let(y, z, v)) => 888| Let(x, y, App(z, v)) => 999| App(App(Lam(x, Lam(y, z)), v), w) => 1010The residual program contains 66 functions with a total of 10 conditionals, testingsome subterm for equality with a constructor. The control structure is shownbelow, after unfolding of trivial function calls and removal of unused variables,and (ab)using the notation #con for extraction of the topmost term constructor.Observe that test is performed twice. The occurrences of FAIL show that thematch was inexhaustive. The non-occurrence of the right-hand side 1010 showsthat the last match rule is redundant (it is covered by the sixth rule):



fun f1 obj = if #con obj = Var then 111else if #con obj = Lam then f2 objelse if #con obj = App then f3 objelse f4 objand f2 obj = if #con(#2 obj) = Var then 222else if #con(#2 obj) = Lam then 333else if #con(#2 obj) = App then 444else 888and f3 obj = if #con(#1 obj) = Lam then 555else if #con(#1 obj) = App then 666else FAILand f4 obj = if #con(#2 obj) = Let then 777else if #con(#3 obj) = App then 999else FAIL7 ML match compilation without partial evaluation7.1 Decision trees and access pathsInspection shows that match will not be specialized twice with the same valuesof pat, work and rules | its �rst, �fth, and seventh parameters. Hence the callgraph of a specialized matcher is a tree.Thus memoization in the partial evaluator serves no purpose, and we cangenerate decision trees directly. We then obtain a match compiler which, given amatch, generates a decision tree. The decision tree performs tests on subterms ofthe object term; such subterms are denoted by symbolic access paths . An accesspath is either Obj, meaning the entire object term, or Sel(i, acc), meaning thei'th component of the subterm pointed out by acc:datatype access = Obj | Sel of int * accessA decision is either Failure, which immediately fails; or Success(rhs) whichimmediately succeeds, returning rhs; or IfEq(acc, con, dt, df) which testswhether con equals the constructor at subterm acc of the object term, and thenevaluates decision dt or decision df according as the outcome was true or false:datatype 'rhs decision =Failure| Success of 'rhs| IfEq of access * con * 'rhs decision * 'rhs decision7.2 The match compilerNow the match compiler itself is obtained from the instrumented matcher justby replacing the dynamic data and computations by symbolic data and compu-tations. Namely,



{ the value NONE returned by fail is replaced by the decision tree Failure;{ the value SOME rhs returned by succeed is replaced by Success rhs;{ a new function getoargs produces access paths into the object term;{ the dynamic parameter PCon(ocon, oargs) is replaced by access path obj;{ the dynamic test if ocon = pcon then e1 else e2 is replaced by the gen-eration of a node IfEq(obj, pcon, e1, e2) in the decision tree.The resulting match compiler compile: 'rhs match -> 'rhs decision isstrikingly similar to the instrumented matcher shown in Section 5. The di�erencesare underlined:fun compile allmrules =let fun fail(dsc, []) = Failure| fail(dsc, (pat1, rhs1) :: rulerest) =match(pat1, Obj, dsc, [], [], rhs1, rulerest)and succeed(ctx, [], rhs, rules) = Success rhs| succeed(ctx, work1::workr, rhs, rules) =case work1 of([], [], []) => succeed(norm ctx, workr, rhs, rules)| (pat1::patr, obj1::objr, dsc1::dscr) =>match(pat1, obj1, dsc1, ctx,(patr, objr, dscr) :: workr, rhs, rules)and match(PVar _, obj, dsc, ctx, work, rhs, rules) =succeed(augment(ctx, dsc), work, rhs, rules)| match(PCon(pcon, pargs),obj,dsc,ctx,work,rhs,rules) =let fun args f = List.tabulate(#arity pcon, f)fun getdargs (Neg _) = args (fn _ => Neg [])| getdargs (Pos(con, dargs)) = dargsfun getoargs () = args (fn i => Sel(i+1, obj))fun succeed' () =succeed((pcon, []) :: ctx,(pargs,getoargs (),getdargs dsc)::work,rhs, rules)fun fail' newdsc =fail(builddsc(ctx, newdsc, work), rules)in case staticmatch(pcon, dsc) ofYes => succeed' ()| No => fail' dsc| Maybe => IfEq(obj, pcon,succeed' (),fail' (addneg(dsc, pcon)))endin fail(Neg [], allmrules) end7.3 Properties of the match compilerThe above match compiler produces a decision tree, the size of which is at mostlinear in the sum of the pattern sizes. However, the tree is not optimal, because we



perform the matching in strict top-down, left-right order. The decision tree maybe larger than necessary, and may perform more tests at runtime than necessary.Example 4. This example from Baudinet and MacQueen shows that their al-gorithm may create more compact trees than ours:datatype color = red | blue | green;case : : : of(true, green) => 111| (false, green) => 222Our match compiler produces the following code which tests the �rst componentbefore the second one, thus duplicating the test on the green constructor:IfEq(Sel(1, Obj), true,IfEq(Sel(2, Obj), green,Success 111,Failure),IfEq(Sel(2, Obj), green,Success 222,Failure))Baudinet and MacQueen's algorithm would produce a decision tree which teststhe second component �rst, leading to a smaller decision tree.Example 5. Our match compiler will compile the followingcase : : : of(large_pattern, true) => 111| ( _, false) => 222into a decision tree which attempts to match the �rst component to the largepattern, before it checks whether the second component is true. It seems moresensible to perform the latter simple test �rst: if the simple test fails, there is noneed to check the large pattern.We have not yet tested the match compiler on real programs, so it is unclearwhether the non-optimal behaviour above is problematic in practice.Example 6. The time and space consumption of the match compiler itself is ex-ponential in n on matches with n + 1 rules, each a 2n-tuple, of the followingform:datatype t = A | Bfun f x = case x of(A,A,_,_,_,_,_,_,_,_) => 0| (_,_,A,A,_,_,_,_,_,_) => 1| (_,_,_,_,A,A,_,_,_,_) => 2| (_,_,_,_,_,_,A,A,_,_) => 3| (_,_,_,_,_,_,_,_,A,A) => 4| (A,B,A,B,A,B,A,B,A,B) => ~1



Simple practical experiments show that the match compilers used in StandardML of New Jersey, Edinburgh ML, and the ML Kit take exponential time, andsometimes space, too.The exponential space consumption can be avoided by using memoizationwhile constructing the decision tree, as discussed in Section 7.5 below.7.4 Inexhaustive matches and redundant casesFor every path through the generated decision tree, there is an object term whichtakes that path: all paths are feasible. Conversely, the decision tree is complete:for every object term there is a path through the decision tree, leading to aleaf (Failure or Success). This permits detection of inexhaustive matches andredundant cases, as required by e.g. the De�nition of Standard ML [14].Namely, a match can fail if and only if a Failure decision appears in thedecision tree. Hence an inexhaustive match can be detected just by setting aglobal variable to true if a Failure decision is generated by the match compiler.For the same reasons, the right-hand side of a match rule can be exercised ifand only if it appears as a Success leaf in the decision tree. Hence the redundantmatch rules can be found by keeping a global set of match rules, initially con-taining all match rules. Whenever a Success(rhs) decision is being generated,remove rhs from the set. At the end of the match compilation, the set containsjust the redundant rules.7.5 Other re�nementsA simple memoization scheme can be applied during the construction of the de-cision tree, turning the tree into a dag (directed acyclic graph), which will con-tain no two isomorphic subdags. An approach similar to hash-consing su�ces.Whenever a branching node IfEq(acc, con, t1, t2) is about to be construc-ted, it is checked whether there is already a node with the same components, andif so, this node is used instead. An experimental implementation of this memo-ization works well and produces compact decision dags. It avoids the exponen-tial space consumption problem on pathological matches discussed in Example 6above.The decision dag as constructed contains only binary equality tests. In prac-tice, one wants to replace sequences of binary equality tests by more e�cientswitches, or indexed jumps through tables, whenever possible. A switch has theform Switch(acc, rules, default)where acc is a dynamic access path; rulesis a list [(c1; dec1); : : : ; (cn; decn)] of pairs of constructors and decisions, whereall constructors are distinct; and default is the decision to be evaluated if theconstructor at acc does not occur in rules. The decision dag can be `switchi�ed'by a simple linear-time postprocessing.Common subexpression elimination can be applied to the decision dag toavoid repeated extraction of the same object subterm.



7.6 ExamplesExample 7. The match(x, nil) => 111| (nil, x) => 222is compiled into the optimal decision treeIfEq(Sel(2, Obj), nil,Success 111,IfEq(Sel(1, Obj), nil,Success 222,Failure))Example 8. The example from Section 6 is compiled into the decision tree shownbelow. The match compiler detects that the match is inexhaustive and that rule10 (the last one) is redundant. In the decision tree, sequences of binary equalitytests have been replaced by switches, as proposed above. Its structure is identicalto that of the residual matcher generated by partial evaluation in Section 6.Switch(Obj,[(Var, Success 111),(Lam, Switch(Sel(2, Obj),[(varc, Success 222),(lamc, Success 333),(appc, Success 444)],Success 888)),(App, Switch(Sel(1, Obj),[(Lam, Success 555),(App, Success 666)],Failure))],IfEq(Sel(2, Obj), Let,Success 777,IfEq(Sel(3, Obj), App,Success 999,Failure)))8 Related workPartial evaluation: Futamura and Nogi [4] showed that in principle, e�cientstring matchers �a la Knuth-Morris-Pratt can be generated from a general na��vematcher. This required a generalized partial evaluator which would record theoutcome of previous tests and use a theorem prover to decide subsequent tests.Apparently it was not implemented.Consel and Danvy [3] demonstrated that even a simple partial evaluator couldgenerate KMP-style string matchers from an instrumented na��ve matcher.J�rgensen [9, 10] applied the instrumentation approach to tree pattern match-ing, and showed that e�cient compiled matches were generated; his work is a



close precursor of the present work. J�rgensen also discussed several of the tech-niques presented here, but did not obtain a stand-alone match compiler by dis-carding the partial evaluator.Gl�uck and J�rgensen [5] achieved the programme outlined by Futamura andNogi, generating a KMP-style string matcher from a general na��ve matcher, us-ing a specializer with positive and negative information, but without a theoremprover.Match compilation: Augustsson described a top-down, left-right compilation al-gorithm for ML-style pattern matching in lazy functional languages [1]; see alsoWadler's exposition in [16, Chapter 5]. It does not naturally discover inexhaustivematches and redundant cases.In a lazy language, the order of testing of subterms a�ects evaluation order andhence termination, so terms are usually tested from top-down and left-right forsimplicity and transparency. Our na��ve matcher, and hence our match compiler,implements pattern matching as required by the Haskell report [6]. Our compiledmatchers, like J�rgensen's, are more e�cient than Augustsson's and Wadler's onnon-uniform matches.J�rgensen showed that some ine�ciencies in matchers generated by Augusts-son's and Wadler's method can be removed by a simple postprocessing, recordingand using information from previous matches. The resulting compiled matchesare always compact and usually e�cient; however, the approach does not natur-ally detect inexhaustive matches and redundant rules.Petterson [15] presented an improvement of the techniques of Augustsson andWadler, based on �nite automata, but retaining the top-down, left-right matchingorder. His match compiler has many similarities to that derived here; in partic-ular, it naturally detects inexhaustive matches and redundant rules. Pettersoncompares the use of memoization (Section 7.5) to minimization of automata.The top-down, left-right matching order does not produce optimal compiledmatchers. Huet and L�evy [7] studied optimality for unambiguous matches (non-overlapping patterns only). However, programming languages usually allow pat-terns to overlap, but impose an order on them, and make the match deterministicby selecting the �rst matching one.To adapt Huet and L�evy's work to programming practice, Laville [12] studiedoptimal compilation of ordered ambiguous pattern matches for lazy languages,relaxing the left-right matching order. As far as we know, his algorithms havenot been used in a practical compiler.Puel and Su�arez [17] used constrained terms, similar to our term descriptions,instead of Laville's ordered patterns. An ordered collection of ambiguous patternscan be compiled into an unordered collection of unambiguous constrained pat-terns, from which one can construct a decision tree.Augustsson's top-down, left-right match compilation technique is not optimalfor strict languages, in which subterms may be tested in any order without com-promising termination. Even so, the technique is being used successfully in e.g.the Caml Light system [13], which shows that the generated matchers are e�cientenough in practice.



Baudinet and MacQueen [2] studied match compilation for Standard ML.Their goal was to construct as compact a decision tree as possible; according tothe paper, this also generally minimizes the number of tests performed at runtime.Example 4 above shows that their method indeed may produce a more compactand e�cient decision tree than ours. Since constructing a minimal decision tree isan NP-complete problem, heuristics are used to decide the order of subterm tests.The match compiler currently used in the Standard ML of New Jersey systemwas written by Bill Aitken and seems to incorporate the heuristics proposed byBaudinet and MacQueen [19].Ramesh, Ramakrishnan, andWarren [18] studied automata-basedmatch com-pilation for Prolog. Their results show that large procedures with complicatedarguments bene�t from the automata-based match compilation, whereas the usualsimple `indexing' on the �rst argument is preferable for small procedures withshallow argument terms.9 ConclusionWe have developed a simple technique for compiling ML-style pattern matches,recording, as positive and negative information about the term being matched,the outcome of all tests previously considered in the match. Inexhaustive matchesand redundant cases are discovered as a natural by-product of this approach. Thematch compiler is likely to be correct, since it was derived in a step-wise mannerfrom a na��ve general matcher. The compiled matchers are compact and as e�cientas possible, given the �xed top-down, left-right matching order.For strict languages, the match compiler is not optimal, but neither is it worsethan some match compilers already in use. We expect to use it in the MoscowML compiler [20, 21].It may seem ironic that we �rst discard the partial evaluator because nomemoization is needed, and then reintroduce memoization explicitly to obtainsharing of isomorphic subtrees in the decision tree. However, the memoizationperformed by existing partial evaluators is based on identity of available data(function arguments), not on the use made of these data (the correspondingfunction results), and would not lead to sharing of subtrees.The present work can be considered a case study in program derivation.Although the resulting match compiler makes no explicit use of partial evaluation,it owes its existence to inspiration from that �eld.Acknowledgement: Thanks to Stephan Diehl, Jesper J�rgensen, Jacques Noy�e,Alberto Pettorossi, Sergei Romanenko, and the anonymous referees for helpfulcomments and pointers.References1. L. Augustsson. Compiling pattern matching. In Jean-Pierre Jouannaud, editor,Functional Programming Languages and Computer Architecture, Nancy, France,
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