Multi-Threaded Microprocessors - Evolution or
Revolution

Chris ,Jesshope'

! Department of Computer Science, University of Hull, HU6 7RX, UK
{c.r.Jesshope@dec.hull.ac.uk}

Abstract. Threading in microprocessors is not new, the earliest threaded
processor design was implemented in the late 1970s and yet only now is it
being used in mainstream microprocessor architecture. This paper reviews
threaded microprocessors and explains why the more popular option of out-
of-order execution has a poor future and is not likely to provide a pathway
for future microprocessor scalability. The first mainstream threaded architec-
tures are beginning to emerge but unfortunately based on out-of-order execu-
tion. This paper will review the relevant trends in multi-threaded microproc-
essor design and look at one approach in detail, showing how wide instruc-
tion issue can be achieved and how it can provide excellent performance, la-
tency tolerance and above all scalability with issue width. This model ex-
ploits ILP and loop level parallelism using a vector-like instruction set in a
chip multiprocessor.

1 The Forces at Play in ISA Design

There are two forces that determine the form and function of microprocessor architec-
ture today. The first is the technology and the second is the market. These forces are
quite at odds with each other. On the one hand, technology is all about change. In
1965, Intel’s founder Gordon Moore predicted that the number of transistors on a chip
would double every 2 years. His prediction of exponential growth has not only been
achieved but in some cases exceeded. On the other hand, the market is all about inertia
or lack of change. At ACAC 2000, the invited speaker Rumi Zahir, who led the team
responsible for the instruction set architecture of IA-64, told us an anecdotal story
about the briefing his team had been given by Andy Grove. They were given a clean
sheet to do whatever they wanted, but with one exception... the resulting microproces-
sor should be able to boot up a binary of DOS from floppy disc! In the event,
Moore’s law solved their problem and the Itanium core processor is not binary com-
patible with X86 processors, instead it has a separate compatibility unit in hardware to
provide IA32 compatibility.

There are two routes to ISA development, evolutionary or revolutionary and it ap-
pears that the evolutionary route always relies on technological improvements and
results in ever increasing complexity in design. We have good examples of this in
current out-of-order issue superscalar microprocessors. Intel has demonstrated this



approach, requiring each new ISA to be backward compatible with the previous one.
On the other hand revolutionary change has been made, for example Motorola and
IBM moved away from their respective CISC ISAs to the RISC-based Power PC
architecture, first introduced in 1993. Such a major divergence in machine code forced
Apple, a major user of the 68000 processor, to emulate the 68000 ISA on the Power
PC for backward compatibility. Emulation has been used by a number of other micro-
processor designs, including the Transmeta Crusoe, which was targeted at high per-
formance but low-power applications. The benefits of speed and power savings made
software emulation a practical alternative to hardware compatibility.

Perhaps we should first ask what the issues are that require changes to an ISA de-
sign as we follow the inevitable trends of Moore’s law? In fact there is just one issue
and that is in providing support for concurrency within the ISA. More and more gates
mean increased on-chip concurrency, first in word width, now in instruction issue
width. The move to a RISC ISA was revolutionary, it did not introduce concurrency
explicitly, rather it introduced a simple, regular instruction set that facilitated efficient
instruction execution using pipelines. In fact many people forget that the simplicity
of RISC was first adopted in order to squeeze a full 32-bit microprocessor onto a sin-
gle chip for the first time. RISC has also been introduced as an evolutionary develop-
ment, for example, Intel’s IA32 CISC ISA, which has a very small set of addressable
registers, is implemented by a RISC engine with a much larger actual register file.
This is achieved by dynamically translating its externally visible CISC ISA into a
lower-level RISC ISA. Of course this is only possible due to the inexorable results of
Moore’s law. Intel was able to maintain backward compatibility in the IA32 from the
8086 in 1978 through to the Pentium 4 first introduced in 2000 but have now moved
to a new ISA, which introduces a regular and explicit concurrent instruction set.

2 Concurrency in ISAs

Concurrency can be introduced into a computer’s operation via the data that one in-
struction processes or by issuing instructions concurrently. In this paper we do not
consider the data parallelism found in SIMD or vector computers, although we do look
at a vector model of programming that is supported by wide instruction issue. Neither
do we consider the data flow approach. This leaves just two ways in which
concurrency can be introduced explicitly into conventional ISAs, through VLIW or
through multi-threading. There is a third way, which is that currently used by most
commercial microprocessors. This is to extract the concurrency from a sequential
instruction stream dynamically in hardware. We will look at each of these in turn
beginning with the excesses of the latter in terms of consuming silicon real-estate.

2.1 Out-of-order Instruction Execution

Out-of-order instruction execution can be seen as a theoretically optimal solution for
exploiting ILP concurrency, because instructions are interleaved in the wide-issue



pipelines in close to programmed order, whilst honouring any data and control depend-
encies or indeed any storage conflicts introduced by the out-of-order instruction execu-
tion. The major benefit is that it is achieved using the existing sequential instruction
stream and therefore maintains code-base compatibility. In effect, the instruction
stream is dynamically decomposed into micro-threads, which are scheduled and syn-
chronised at no cost in terms of executing additional instructions. Although this may
be desirable, speedups using out-of-order execution on superscalar pipelines not so
impressive and it is difficult to obtain a speedup of greater than 2, even on regular
code and using 4- or 8-way superscalar issue, e.g.[1]. Moreover, they scale rather badly
as issue widths are increased.

To understand why this is, let us first look at how a typical superscalar pipeline
works. Instructions are prefetched, sometimes along more than one potential execution
path. Instructions are then partially decoded and issued to an instruction window,
which holds instruction waiting to be executed. Instructions can be issued from this
window in any order, providing resource constraints can be met by register renaming.
Instructions are then issued to reservation stations, which are buffers associated with
each of the execution units. Here a combination of register reads and bypassing, using
tagged data, matches each instruction to its data. When all data dependencies have been
satisfied, the instructions can be executed. Eventually an instruction will be retired in
program order by writing data into the ISA visible registers to ensure sequential execu-
tion machine state.

The first and most significant problem with this approach is that execution must
proceed speculatively and even though there is a high probability of control hazards
being correctly predicted[2], this must but put into context. As a rule of thumb, a
basic blocks is often no longer than 6 instructions[3] and if we assume a 6-way in-
struction issue superscalar microprocessor with 6 pipeline stages before the branch
condition is resolved[4], we are likely to have of the order of 6 branches unresolved at
any time. Even with a 95% successful prediction rate for each branch, there is a 1 in
4 chance of failure in any cycle. With unpredictable branching, the situation is much
worse and branch prediction failure is almost guaranteed in any cycle (98% chance of
failure). These parameters will also limit multi-path prefetching, as instruction fetch
and decode bandwidth is exponential in the number of unresolved brunches. In other
words we could be fetching and decoding up to 64 different instruction paths in a multi
path approach. A second problem is that of sequential-order or deterministic machine
state, which lags significantly behind instruction fetch due to the many pipeline stages
used in out-of-order execution. This means there are significant delays on non-
deterministic events, such as on an interrupt or an error, caused by the miss prediction
of a branch condition for example. Recovery for miss prediction therefore can have a
very high latency. The final problem is one of diminishing returns for available re-
sources[5], which we will look at in more detail below.

Out-of-order executions requires large register files, large instruction issue windows
and large caches. As the issue width increases, both the number of register ports and
hence the size of the register file must both increase. The physical size of the register
file increases more than quadratically with instruction issue width[1] and this is largely
due to the size of the register cell, which requires both horizontal and vertical busses



for each port. The proposed Alpha 21464 illustrates this problem very well[6], its
register file comprises 512 64 bit registers and occupies an area over four times the
size of the L1 D-caches of 64KB. The area of the instruction window also grows with
issue width. It can be thought of as a sliding window over the code stream within
which concurrency can be extracted, it grows with the square of the number of entries
due to the scoreboard logic that that controls instruction issue. The 21464 has 128
entries. It must be large so as to not unduly limit the potential ILP that may be ex-
ploited in an out-of-order issue. The problem is compounded because out-of-order
execution introduces additional dependencies (WAR and WAW), which are resolved by
register renaming and drive up the size of the register file. These are not real dependen-
cies but simply resource conflicts. Again the proposed 21464 illustrates the problem
well, the 128 entry out-of-order issue queue + renaming logic is approximately ten
times the size of the L1 I-cache, also 64KB. Finally, out-of-order issue increases the
complexity of the memory hierarchy, both in levels of cache implemented and in
prefetching and cache management techniques. It is well known that caching produces
only diminishing returns in terms of performance for chip area occupied and current L2
cache arrays will typically occupy between 1/3 and 1/2 of the total chip area[6].

Clearly something is very wrong with the out-of-order approach to concurrency if
this extravagant consumption of on-chip resources is only providing a practical limit
on IPC of about 2. Having said that further improvements in IPC have been observed
in Simultaneous Multi-Threaded (SMT) architectures, which are based on the supersca-
lar approach. However we have to consider whether this is the most appropriate solu-
tion, adding yet further hardware resources to an already non-scalable approach to in-
crease instruction issue width still further. Note that the 21464 [6] is an SMT sup-
ported out-of-order issue architecture.

2.2 VLIW ISAs

Let us now consider explicit concurrency in an ISA using VLIW, which is both syn-
chronous and static. VLIW encodes a number of operations into one long instruction
word and these operations are executed in lock step on parallel functional units. The
approach was originally called horizontal microcode as early designs used microcoded
pipelines to execute the operations simultaneously. Later the name very long instruc-
tion word (VLIW) was coined. The origins of this approach can be traced back to
signal processing solutions of the late 1970s and the Floating-point systems
API120B[7] is a good early example. Although called an array processor the instruction
set is wide and it executes several operations simultaneously. Array processing applies
to the mode of programming, which used libraries of array-based operations. True
VLIW computers were built without cache and exploited loop-intensive code. A fixed
memory latency and branch behaviour that was predictable at compile-time enabled
these devices to function effectively in their domain. They were not however general
purpose computers. Moreover the limitation of cacheless architecture is a significant
problem with modern technology, where processor speeds are significantly higher than
memory speeds.



The most notable recent adoption of VLIW is Intel’s new [A-64 ISA[8], renamed
again to EPIC. This is a generalisation of VLIW and differs from it in a number of
ways. Firstly the instruction set is designed to be future compatible. It does not de-
scribe explicit hardware resources but the extent of software concurrency. Thus each
instruction packet can contain an arbitrary number of operations that are executed
concurrently or sequentially depending on the extent of the instruction issue width.
Secondly it provides greater flexibility than earlier VLIW ISAs by providing support
for the two key problems in VLIW, namely, keeping the processor running in the
presence of non-determinism in both data and control. The use of predicated instruction
execution overcomes many control hazards and an explicit prefetch instruction, fol-
lowed by a check when the data is required is used to avoid non-deterministic latency
in memory loads.

These problems are universal but the adverse results are particularly severe in
VLIW architectures, as any failure in these mechanisms can kill the schedule and force
all units to wait for one hazard to be resolved. This is as a result of the lockstep nature
of the ISA. This solution also comes at a cost, which is redundant computation.
Predication is a form of multiple-path execution, where the compiler determines the
extent of redundant computation in order to maintain the static schedule in the pres-
ence of what would normally be considered branches. Clearly any form of multi-path
execution is a form of speculation, which consumes hardware resources and perhaps
more importantly, energy. There are also limitations on what Intel calls data specula-
tion, i.e. hoisting speculative loads high enough in the instruction stream to over-
come potential memory latency problems, which include memory aliasing problems.
Prefetches can be hoisted above conditional branches but if each branch path requires
different data, speculative memory bandwidth requirements would increase exponen-
tially with the number of branches over which the prefetch was hoisted.

2.3 Multi-threaded ISAs

We have seen that both VLIW and out-of-order issue require some form of speculation
in order to operate effectively. Multi-threading on the other hand makes any form of
speculation unnecessary, although some multi-threaded approaches do rely on specula-
tion[9]. Multi-threaded instruction execution need not suffer from the problems en-
countered using speculative execution, with one exception and that is fundamental, it
is synchronising across many concurrently issued instructions and requires a large
register file. In a threaded microprocessor, it is not necessary to issue instructions in a
thread out-of-order and hence we need only deal with true data dependencies. This can
simplify processor design considerably, see [11], which considers a range of processor
designs in developing chip multi-processors, it suggests a packing density difference
of a factor of 8 between in-order issue and out-of-order issue processors. However a
chip multiprocessor based on a threaded scheduling will also require additional hard-
ware to support context stores and mechanisms for scheduling and synchronising inter-
thread dependencies.



The major benefit of multi-threading is tolerance to latency in memory accesses,
true concurrency and other non-deterministic events. It can even be used to avoid
speculation on conditional branches[12], thus making branch prediction unnecessary,
in all but single-threaded code.

In Multi-threaded code, even if a compiler decides where context switches occur, the
instruction schedule is dynamic, as ready threads depend on non-deterministic events
and then can be scheduled in any order. High-latency memory events, such as cache
misses, true data dependencies and conditional branches are triggers which can be used
to determine when to context switch, which provides a new source of instructions to
be executed while the event is resolved and data produced. There is some cost for this
but the cost can be made small. The result is, that instructions from more than one
thread can be executed in one or more pipelines. But what impact will this have on the
ISA design?

The most flexible approach is to have dynamic thread management, where instruc-
tions are added to some base ISA to provide for some or all of the following actions:
¢ thread creation
¢ thread termination
¢ thread synchronisation and related initialisation
Initially, this approach seem to have only an incremental impact on the ISA, leaving
it backward compatible with the base ISA on single-threaded application code. We will
see later however, that this is not necessarily true and in the example below we see
that instruction tagging for context switches and register specifiers are also likely to
change in the Multi-threaded ISA.

Multi-threading has been applied in a variety of different ways and for a variety of
applications and programming paradigms. These include multiprocessor supercomput-
ers, such as the HEP[12], Horizon[13] and Cray MTA[14], an alternative approach to
the implementation of data flow computers (see [10] for the rationale) and more re-
cently for Java byte-code engines in micro controllers[15] and streaming applica-
tions[16]. One of the more interesting recent developments is the use of threading in
order to develop so called network processors[17]. This approach has been adopted by
both Intel[18] and IBM[19]. It is clearly a well suited application as the low context-
switching overhead of a thread microprocessor can be used meet the real-time demands
of network switching.

The extent of any taxonomy in multi-threaded architecture is also dependent on the

base micro architecture, instruction issue, e.g. out-of-order issue or in-order, number
of instructions issued simultaneously, the extent of sharing of various resources, e.g.
superscalar or multi-processor approaches, programming model, etc. Suffice it to say
that most combinations have been explored. An excellent survey of processors with
explicit multi-threading can be found in [20], which covers most, if not all, different
approaches to multi-threading. This survey provides a number of taxonomic distinc-
tions in Multi-threaded architectures:
Blocking and non-blocking - typically non-blocking threads are used in data flow
architectures (but not exclusively so), a non-blocking thread will resolve all dependen-
cies prior to launching the thread by decoupling the memory accesses from the compu-
tation, e.g. [21].



Explicit and implicit - implicit approaches attempt to increase performance of sequen-
tial code by thread-level speculation, e.g. [22]

Block-threading, interleaved multi-threading and simultaneous multi-threading - in
block multi-threading instructions are executed until some event causes a context
switch. Typically there will be support for a small, usually fixed number of threads,
each of which has its own register set and stack pointers to maintain its context with-
out spilling to memory. Interleaved threading is where a context switch takes place on
every cycle, as instructions are interleaved from multiple threads into a pipeline that
assumes no structural hazards. Finally when instructions are issued simultaneously
from multiple threads to a superscalar pipeline, this is called simultaneous multi-
threading. This should not be confused with multi-thread support for chip multiproc-
essing, where many processors without shared resources may use multiple threads to
support concurrency. For many examples of each approach see [20].

3 Micro-threaded Execution Model

In this section we take a look at one particular model in detail, that based on [12].
This approach uses a block-threaded approach with a blocking model for threads. Un-
usually however for a block-threaded approach, it is possible to interleave threads on a
cycle-by-cycle basis, as its context switching overhead is zero cycles. It is based on a
simple in-order issue pipeline and is designed to support wide instruction issue using a
chip-multiprocessor approach. Before we look at the model in detail and evaluate its
costs, we give some results of recent simulations. More detail of simulation condi-
tions are given in previous papers presented at this conference[24, 25].

3.1 Simulation Results

The first results show vertical threading, on one single-issue pipeline and illustrate the
tolerance to latency that can be achieved. The comparisons are between the base archi-
tecture and the same architecture augmented with a micro-threaded scheduler. This
simulations use a level-1, cache-miss latency of 5 processor cycles and a level-2 cache-
miss latency of between 10 and 1000 processor cycles, representing a range of mem-
ory architectures from tightly coupled through to distributed. First we show the per-
formance of micro-threading on the K3 Livermore loop, which is an inner product
calculation. The thread is a loop body comprising just 4 instruction, i.e. not much
opportunity for parallelism, as each thread is dependent on the previous one. The 4
instructions are two load words, which will usually miss cache as no prefetching is
assumed, a multiply requiring both loads which are independent in each thread and an
add instruction which is dependent on the result of the multiply and the result of the
add from the previous iteration. This is in executed with a thread-based vector instruc-
tion, which generates a family of threads for the entire recurrence loop. The conven-
tional code would have two more instructions to control the loop, one to increment
the index and a conditional branch to terminate the loop. These functions are per-



formed in hardware in the micro-threaded pipeline using its vector thread create instruc-
tion.
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Figure 1. Relative performance of micro-threaded (solid lines) vs conventional pipeline
(dashed lines) on Livermore K3 loop. Each line shows a different cache delay e.g. L1/L2.

Figure 1 shows the performance of the micro-threaded pipeline for the Livermore K3
loop kernel. This shows that a micro-threaded pipeline achieves the same asymptotic
performance (IPC = 0.7) regardless of the cache delay but requires more iterations to
achieve it. For a 1000 cycle L2 cache miss penalty, the half performance vector length
is 120 iterations. What is significant is that for 240 plus iterations, the micro-threaded
pipeline has a better performance with a 1000 cycle penalty, than the conventional
pipeline has with a miss penalty that is 2 orders of magnitude smaller!

This result assumes unlimited registers, which is an unreasonable assumption, the
simulation was repeated with a fixed number of registers (128) and the results are
shown in figure 2. For the 1000 cycle L2 miss penalty, performance is register lim-
ited and it is only marginally better than the conventional pipeline. Less than 32
iterations can run in parallel in this configuration, which is insufficient to tolerate
cache misses of 1000 cycles and also has an impact on the 100 cycle L2 miss per-
formance as well.

The final simulation we present here shows the scalability of the model as a chip
multi-processor (CMP) with multiple instruction issue per cycle, based on a 1- 2- and
16-way CMP, each with a cache delay of 5 and 10 cycles respectively for L1 and L2
cache. This is shown in figure 3. In these results, 1 and 2-pipe simulations use 128
registers and the 16 pipe simulation uses 4096. The results show normalised perform-
ance, which is the IPC per pipe and this is plotted against iterations per pipeline,
giving a normal form for each result. Ideally, with perfect scaling, all results should
be coincident, which is just about what is observed. Admittedly the results are based
on the K7 Livermoore loop, which is a parallel loop with no dependencies. However,
peak performance has an IPC of just below 1 instruction per cycle per pipeline and the



half performance vector length is about 5 iterations per pipeline, showing that at least
a 95% utilisation can be achieved with this model even on issue widths of 16.
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3.2 Micro-threaded Model

Now let us look at the model these results are based on in more detail in order to
understand how and why these results are possible. Figure 4 shows a modified pipe-
line, with shared and duplicated parts indicated by shading. This is a very conventional
in-order issue pipeline with micro-threading components added. These will be described
as we outline the micro-threaded abstract model and its implementation.

The model supports a number of concurrent threads all drawn from the same context,
these were called micro-threads to distinguish them from other multi-threaded tech-
niques. The term micro-thread captures the notion of this approach, that of creating,
interleaving and terminating very many small sequences of instructions efficiently,
perhaps just a few machine instructions each. One disadvantage of micro-threading as
proposed in [12] and shared in nano-threading[23] is that they both require the alloca-
tion of registers to threads at compile time. This is a major disadvantage for micro-
threading where the aim is for general computation using ILP and data parallelism.
Dansoft’s nano-threaded approach has just two nano threads and allocation of registers
is trivial, a subordinate thread would typically be used to preload values from memory
into a registers for later use by the main thread.

The solution to this problem in micro-threading was reported in [24 and 25], which
describe a dynamic register allocation scheme combined with a thread creation mecha-
nism that produces families of threads, based on the same fragment of code. Without
this solution, threading a number of iterations from a loop would require different
instances of code with unique registers allocated to each instance. Using this approach,
one thread-create instruction generates a family of threads across a loop-like triple that
defines the start step and limit of the index value for each thread created. This is very
similar to a vector instruction set. Each family of threads can iterate a loop concur-
rently to the maximum extent of resources available. Thread creation thus becomes a
two-stage process:

* stage one creates a descriptor for a family threads, which waits until resources are
available, and

¢ stage two allocates each thread in the family to a set of resources as they become
available. The thread is now able to execute.

The resources required are a continuation queue slot and a contiguous set of registers

defined by the thread header.

A major benefit of this dynamic allocation is that it supports a model that can trivi-

ally schedule work on multiple processors in a CMP. A potential problem is that the

compiler must be aware of resource deadlock issues, for example an inter-thread de-

pendency that spans more than the available chip resources.

A secondary problem introduced by dynamic allocation of registers is that of bind-
ing between allocated registers in dependent threads. In an inter-thread synchronisation,
one thread will produce a value and another will consume it. In the micro-threading
micro-archtecture, synchronisation is performed using full/empty bits on registers and
the problem of binding between dynamically allocated registers is solved by allocating
threads in strict sequence and by providing an offset in the thread header between pro-
ducer and consumer within that sequence. This allows runtime structures to be main-



tained that allow the sharing of registers between threads, even if allocated to different
processors. More detail on this is given in section 4.3.
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3.3 Micro-threaded Model

In [20], our micro-threaded model is classified as static, block-threaded and with ex-
plicit switching. This is because the compiler explicitly tags instruction where a
context switch should take place. The context switching overhead is zero cycles, as the
tagged instructions trigger an exchange of PC at the instruction fetch stage of the
pipeline and then continue to execute. The next cycle sees the first instruction exe-
cuted from the new context. Context switching can occur on every cycle if so tagged.
Tagged instructions include conditional branches and any instruction that reads a regis-
ter, where the compiler cannot guarantee that the data will be available. Deterministic
delays can be compiled into sequences of instructions in the normal manner but for
non-deterministic delays a context switch is signaled. There are two kinds of synchro-
nisations, where a context switch is required. The first is intra-thread synchronisations
where the result of an earlier load word is required and where there is no guarantee that
the load hit the cache. The second is an explicit synchronisation between instructions
in different threads, where one thread produces data and another consumes it.



A context switch will only occur when there is at least one other thread ready to
run. In the case of single threaded code, or where all other threads are suspended or
otherwise unable to run, the current thread will continue to issue instructions as there
is a chance that the synchronisation will succeed. If it does, then we avoid a bubble in
the pipeline while the thread is suspended passed down the pipeline and cycled back to
the continuation queue on a successful synchronisation. If it does not succeed, the
thread will suspend on the empty register and await its data and any subsequent in-
structions issued will be aborted. In this case, the instruction issue stage will have to
wait for a thread to be made active before continuing. In the case of a branch instruc-
tion, it is possible to add branch predictors but on such on such a simple pipeline,
this is probably not an optimal solution and we use branch delay slots in single
threaded code.

Instructions are also terminated for thread termination by the compiler. This means
that any instruction can be tagged as being the last in its thread. Both context switch
and kill therefore are implemented at zero overhead as both overload otherwise useful
instructions. A thread kill tag is similar to a context switch in that it forces a context
switch as well as signaling the LCQ that this is the end of the current thread.

3.4 Synchronisation Model

Synchronisation between threads occurs on registers using a three-state model
(full/empty/waiting). In the waiting state, the thread reference is stored in a previously
empty register and awaits data before being rescheduled. Synchronisation between
registers and memory can be added using full/empty states and this may be required in
a massively parallel system. Memory synchronisation will cause the consumer thread
to wait in the register while the memory system awaits synchronisation with another
context. Of course higher levels of concurrency may require software scheduling
mechanisms and the full state of the registers must be saved in this situation. The
LCQ state can also be used to trigger software context switches, instead of having the
pipeline idle.

The justification for using registers as synchronisers for micro threads is to provide
a very low-latency synchronisation mechanism within a single context and this model
requires that all registers in the micro-architecture implement a modified i-structure
[26]. A successful synchronisation incurs zero overhead and recycles the suspended
thread to a runnable state within just a few cycles (e.g. the number of cycles to the
register read stage in the pipeline + 1, assuming an I-cache hit on rescheduling).
Thread suspension occurs at the register read stage when a read is attempted on an
empty register. In this case the instruction reading the register is transformed into an
instruction that writes the thread reference into the empty register. To do this, the
thread’s reference travels down the pipeline with each instruction executed. A subse-
quent write to that register will extract and reschedule the thread whose reference is
waiting there. In this way, neither suspend or wakeup require any additional pipeline
stages and only a failed synchronisation will require an additional cycle to re-launch
the incomplete instruction. The instruction that writes to a waiting register first reads



and reschedules the waiting thread before writing to the register. An extra cycle is also
required when a deferred memory access is made, as this must insert a new write back
instruction into the pipeline, or when all both read ports are used in the instruction
that writes the waiting register (e.g. and R op R -> R instruction). In this case a one
cycle stall is required to extract the waiting thread reference or an additional register
port is required.

Each register implements a modified i-structure that is allocated in the empty state
on resource allocation. It has two operations i-store and i-read. I-store updates a speci-
fied register with a value and sets the register to the full state. Normally only a single
i-store operation is allowed on a given i-structure but this single write is not enforced,
to allow the registers to be used in a conventional manner if required. The i-read op-
eration either suspends the thread containing it, if the register is empty, or it returns
the value stored. Note that no further i-read instructions can take place on a register
that contains a suspended thread. The compiler must therefore enforce binary synchro-
nisations. If there is a requirement for multi-way synchronisation, i.e. many threads
suspended on one event, the solution is to create a single guard thread that performs
the synchronisation and then creates any number of other continuations. Note that the
guard thread’s only actions are to await synchronisation, to create a number of other
threads and to terminate. This could require just two instructions with a vector create.

3.5 Subroutine Linkages

Micro-threading draws its concurrency only from within a single context and it relies
on this fact to provide low-overhead concurrency controls for threads. Thus there must
only be a single thread of control when performing subroutine linkages. The single
persistent thread is called the main thread for identification purposes only. There are
two general solutions to achieving this restriction in multiplicity of threads across
subroutine linkages. The first is to make the concurrency user controlled, i.e. the
compiler must generate instructions to synchronise to the main thread and to kill all
other threads prior to a subroutine call or return. This can lead to large overheads in
some programming paradigms, such as “winner-takes-all.” Many synchronisations
may be required to determine the winner and to signal this to all the other threads. The
alternative solution, which is the one we prefer, is to provide a hardware imposed
sequentiality across subroutine boundaries. This allows any thread to call or return and
hardware cleans up any active threads and allocated resources as a part of the linkage.
As an illustration, assume that we link to a subroutine and the main thread creates a
number of threads to search some space, each exploring a small part of that space. In
our model any thread on gaining a solution can execute a return, which would kill all
other active threads, relinquishing their resources in the process. It does not matter that
we have redefined the main thread in this process, as a thread will use global state to
communicate results.



3.6 Summary of ISA Requirements

In order to implement a micro-threaded ISA we have to add only four instructions to

the base ISA. However, in order to make code more readable, we also add a number of

pseudo instructions. The instructions added are:

* Creref-create a thread unconditionally where the long literal “ref” is a pointer or
handle to the thread code;

* Creq 3a $b ref - create a thread if the registers $a and $b are equal “ref” here is short
and PC relative literal,

* Crne $a $b - create a thread if the registers $a and $b are not equal;

* BSync - suspends the current thread and awaits termination of all other threads
before this thread continues.

In addition to the instructions above, three pseudo instructions are defined, which

translate into executable instructions.

* Wait $a - waits for data in register $a and continues;

* Setf $a - signals register as full (n.b. the value in $a is undefined);

+ Sete $a - signals register as empty.

Finally the compiler tagging of instructions for context switching is translated into

pseudo instructions. Three distinct actions are encoded on any instruction requiring a

two-bit extension field.

i. the next instruction comes from the same thread (normal execution);
ii. the next instruction comes from another thread, if one exists, otherwise from
the same thread (context switch);
iii. the current thread is killed and the next instruction comes from another thread
(kill thread).

In the original micro-threading paper these were called horizontal transfer, vertical
transfer and kill respectively. Here we define them by pseudo instructions, which
follow the instruction that they encode:
* Swch - switch context if any threads are waiting execution;
* Kill - kills the current thread.
Note that these instructions are not translated into executable instructions but simply
encode the previous instruction with the additional action. For example:

add $a $b $c

kill
Generates one instruction, which performs a add operation and which is tagged to
signal the IF stage to terminate this thread. The next instruction comes from another
thread. Similarly:

mul $a $b $c

swch
Generates one instruction in the pipeline, which performs a multiply operation and is
tagged to signal the IF stage to context switch. The next instruction comes from
another thread but only if one is available.



4 Implementation Issues and Chip-area Overheads

In this section we look at more details of implementation and compare the overheads
of this model to the Alpha 21464 described in Section 2.1. Clearly the simulation
results given above look very promising but what are the consequences on silicon
real-estate and scalability in the micro-threaded model. In this comparison, we have
adopted a MIPs-like ISA as a base architecture, implemented with a simple 5-stage
pipeline, namely {Instruction fetch, Register read, ALU, Memory, Writeback}. A 5
stage pipeline is very simple by current microprocessor implementations. However, it
illustrates the fact that much of the complexity of current microprocessors derives
from the out-of-order issue and are simply not required by a micro-threaded pipeline,
thus reducing its latency.

It is difficult to compare a micro-threaded pipeline to current practice in detail as
that requires a detailed implementation of both. In this paper we look only at the
instruction issue and register files and compare these to the out-of-order issue pipeline.
Note that execution may not be optimal on the micro-threaded pipeline but optimisa-
tions, such as allowing 2-way (integer and floating point) in-order VLIW issue, would
resolve any redundancy in execution units at a small additional cost. In both supersca-
lar and micro-threaded architecture we are comparing wide instruction issue. In the case
of the micro-threaded pipeline this is as an §-way CMP. In the case of the 21464 it is
an 8-way issue superscalar SMT extracting instructions from up to 4 threads.

4.1 Thread state and register allocation

In order to understand the implementation issues we must look at the state model of
micro threads in some more detail. Table 1 shows the various states, events and repre-
sentation of threads in the micro-threaded model.

The literal in the create instructions provides a pointer to the thread description
block, which contains all of the parameters that define a family of micro threads.
Figure 5 shows this data structure and also a schematic representation of the three
major state changes from executing a create instruction to running the thread. The
parameters are:

* the number of local and shared registers required by each instance of the thread {lo-
cal, shared}

* atriple {start, step, limit}, which defines the number of instances of the thread and
an index value for each

* the dependency distance {dep}, which links the consumer to the producer thread in
the sequence of threads

a pointer to the code for the body of the thread {#p}.

When a thread is created, the parameter block is copied into the GCQ, which is shared
between all processors on a chip, see figure 4. The GCQ holds the abstract descrip-
tions of all families of threads that have been created but not yet allocated to a proces-
sor. In each machine cycle an allocation will be attempted on each processor from one
family of threads. Allocation requires a free LCQ slot on that processor and the re-



quired number of locals registers. In addition, for P processors, P times the number of
globals must be allocated from the global register file. The result of the allocation is a
set of base addresses, detailed below, the initialisation of the registers to empty, with
the exception of the first local register, which is initialised to the loop count for that
thread. Each allocated thread is uniquely identified during its lifetime by the tuple
comprising its processor number and LCQ slot number.

Table 1. State transition table showing detailed state changes in the micro-threaded mo-

del.
Old statel Event causing transition New Thread state stored
state in
Not-defined |[Execution of: Cre | Creq | Crne Created  |Global continuation
queue (GCQ)

Created Resource availability on any proces-|Active Local continuation queue
sor (LCQ)

Active Thread is at head of LCQ and IF Running [LCQ + PC + LCQ slot
signals a context switch or kill no. in pipeline

Running  [[F signals context switch Suspended [LCQ + LCQ slot number

in pipeline

Running  [IF signals kill Killed LCQ

Suspended |[Register read succeeds and instruc-  |Active LCQ
tion isn’t a conditional branch

Suspended [[nstruction at ALU stage is a condi- |Active LCQ
tional branch

Suspended |Register read finds one or more Waiting [LCQ + LCQ slot no. in
operands empty register

Waiting Register written Active LCQ

Killed [Dependent thread is killed not defined|All state is relinquished
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Figure 5 Data structures that define a micro-thread in its various states.

4.2 Registers and register addressing

Register addressing uses a simple base + offset mechanism, where the base address is a
part of a micro-thread’s state and the offset is defined by the register specifier in the
instruction executed. The ISA identifies four different types of register and a base
address is required for each. Two bits of each register specifier define the register type,

the remaining bits the offset. The register types are:

* Global registers - are allocated statically, stored in the global register file and read

by any processor;

* Shared registers - allocated dynamically for each thread and stored in the global

register file;



* Dependent registers - not allocated but refer to the shared registers of the thread this
one is dependent on;

* Local registers - allocated dynamically for each thread in a processor’s local register
file.

The four different kinds of register in the ISA are identified in the assembly language

by adopting a register specifier that uses $ followed by the first letter of the register

type {G,S,D or L}, followed by the register number, e.g. $L0, is local register 0 and

this is always initialised to the loop number.

We can immediately see some benefits of the micro-threaded approach over anout-
of-order issue architecture. The micro-threaded ISA separates local and global registers.
Each processor has its own local register file and these will only require 3 register
ports in the implementation and hence the chip area required for local register files will
be negligible compared to that the 21464 described in Section 2.1. Remember the
21464 has a single 512 register register file with 24 ports in total. It occupies an area
some 5 times the size of the L1 D-cache, which is 64KB [6], a packing density hit of
two orders of magnitude over the cache memory cell!

If we assume the same number of registers in the micro-threaded CMP as in the
21464, we would have 8 local register files of 32 registers each and a global register
file of 256 registers. The issue we must resolve in order to compare the two is how
many ports we require for the CMP’s global register file. In our simulations [24, 25]
we observed that on average, only two instructions in three read the global register file
and only one in three write to it, even in threads which have a loop dependencies.
Thus we can assume that the register file will require 9 ports, which more than
matches the average number of hits required per cycle from 8 processors. We use this
figure but note that it may result in some stalls due to conflict due to uneven load
distribution and this is an issue we have yet to quantify in our simulation and one of
the tradeoffs in any design.

If we assume the area of the 21464 is 1 and we assume a square law increase in reg-
ister file area with number of ports and a linear increase one in number of registers,
then the combined local register files of the CMP would require an area of only 0.8%
of the 21464’s register file and the CMP global register file would requires an area of
7% of the 21464’s register file. There would also be a linear reduction in the area
required for bussing data to and from the register files based on number of ports. So in
the CMP we can reduce the area required for register file size by an order of magnitude
in an 8-way issue processor but what of overheads for dynamic allocation of the regis-
ters.

4.3 Dynamic register allocation

The register allocation cycle is shown in figure 6. The Register Allocation Units
(RAUs) maintain the allocation state of all register files. In each cycle registers are
allocated on each processor’s local register file and for each processor in the global
register file. This is equivalent to 2 allocation units per processor, each maintaining



32 registers, where one allocates locals and one globals. In practice the global alloca-
tor will share some resources, so this is an upper bound.

Thread pointer

success

LCQ slot no no of locals
|1_08Q < - II_ROACSI < success » Gca
h L base 4 1.8
S & D bases no of globals &| |SUCCess
+ processor ids dep
& LCQ slot ‘ »| Global
numbers RAU

Base addresses and loop indices to register files for initialisation

Figure 6 Register allocation cycle showing the major components and interactions between
them.

Registers must be allocated in a contiguous block as we are using base + displace-
ment addressing. If we assume a 3-bit displacement field, giving a 5 bit register speci-
fier (i.e. 2 bits to select register type), then the maximum number of registers of one
type that could be allocated to a thread is 8. The logic to implement an allocator is not
complex. Even allocating to an arbitrary boundary in the register file would require
little more than 1 bit of storage as an allocated flag, a 3-bit counter and a 3-bit com-
parator for each register. However, the area cost of the RAUs is linear in the number
of registers with the constant being proportional to the displacement field, and moreo-
ver, it is small compared to the register file itself. There is an added complication, as
we have to keep track of dependencies.

Synchronisation between two threads uses a shared register on which i-read and i-
store operations can take place. If we call the thread performing the i-store the producer
and that performing the i-read the consumer, then the shared register is allocated to the
producer from the global register file and it is accessed using the shared base address,
e.g. $S1. The consumer references the same register using the same offset but with
the dependent base address, e.g. register specifier $D1, i.e. register $D1 in the con-
sumer thread is the same register as $S1 in the producer thread. To achieve this de-
pendency tracking we use the dep field from the thread header, which specifies the
dependency distance between producer and consumer in terms of the thread issue se-
quence. The D-base of the consumer thread must be set to the same value as the S-
base of the consumer thread. In order to locate and bind the producer and consumer
threads in this way on a multi-processor chip, a number of rules must be followed in
creating threads.

i. all thread families in the GCQ must be iterated in order of creation to various
processors;
ii. the loop iterator must be defined such that the producer thread is allocated be-

fore the consumer thread;



iii. shared registers are allocated to all threads and a table of S-base, LCQ slot
number and processor id are stored against the thread’s sequence number
modulo the maximum number of threads in the global RAU;

iv. the S-base, LCQ slot number and processor id of the producer thread are then
determined from this table for each consumer thread using its sequence num-
ber minus dep, and the producer’s S-base is copied and becomes the con-
sumer’s D-base.

Note that the processor id and LCQ slot number of the producer thread are required by
the consumer thread’s LCQ to signal the producer’s LCQ when it has been killed, as
only then can the producer thread’s shared resources be released. If we assume that each
LCQ has 64 slots, enough to have one thread waiting in each of the CMP’s 512 regis-
ters, then keeping track of dependencies requires another 13 bits of storage per register
and again is linear in the number registers in the CMP.

We have seen therefore that register allocation, including keeping track of depend-
encies has a chip area, which is linear in the number of registers in the CMP and
which has a small constant. The area of this is negligible compared to global register
file, which is dependent on both number of registers and number of ports squared.

4.4 LCQ, thread state and I-cache prefetching

The LCQ is perhaps the major overhead associated with the micro-threading model in
terms of chip area. We have already assumed that the number of threads in the CMP is
equal to the total number of registers available. It cannot reasonably be more, as
blocked threads wait in registers but it might be less. So we are looking at an upper
bound here.

The LCQ is a linked memory structure and associated logic that implements a
given thread priority, probably a FIFO, as our simulations have shown that schedul-
ing priority has little bearing on the efficiency of execution[25]. This is hardly sur-
prising due to the fine-grain nature of the threads involved. The LCQ is implemented
as a store addressed by thread reference or slot number, which has two 6-bit fields for
creating various priority queues. It requires a 3-bit field for thread state and a field,
which points to the producer thread of any dependency, which may be on any proces-
sor and hence requires 9 bits. Finally it requires a thread pointer (PC), which we as-
sume is 40 bits, giving a total of 64 bits per register in the CMP. The memory is
likely to be multi ported but with a small number of ports, we estimate 4 read and 4
write ports as the LCQ interacts with RAU, pipeline, I-cache. This would mean the
combined LCQ structures in the CMP are approximately equal to its global register
file size, which we know is approximately 7% of the area required by the 21464’s
register file,. What is important however is that it scales linearly with the issue width.
The number of ports required is a structural and implementation issue and is independ-
ent of the issue width.

We estimate therefore, that the combined LCQs in an 8-way issue micro-threaded
CMP would be about 3% of the size of the 21464’s instruction issue logic.



There are more benefits and area savings in a micro-threaded model if we consider
the LCQ’s interaction with the I-cache in more detail. This can be used to avoid stalls
in the pipeline due to I-cache misses. The state of a micro thread can be used to deter-
mine a prefetch and replacement strategy and conversely the state of I-cache lines can
be used to set the thread state so that pipeline stalls on I-cache fetch can be avoided
completely. The prefetch/replacement strategy is deterministic and very simple, each I-
cache line only requires a counter of the number of active threads using that cache line.
When a thread is allocated to a processor, a prefetch will be made to its thread pointer.
If the prefetch hits, the line counter is incremented and the thread becomes active. If it
misses, the memory block will eventually be fetched into any line with a zero
counter. Until this happens the thread remains in a suspended state. When a thread
enters the running state additional blocks may also be fetched to avoid I-cache stalls.
Remember however, that any conditional branch will normally suspend the thread and
we can ensure that the thread is not made active until the I-cache block along the new
path has been fetched. A running thread either runs until it is killed or is suspended
and in either case its code is no longer required in the I-cache and the I-cache line
counter is decremented. Cache replacement therefore, is based on thread counters. Any
line with a counter of O can safely be swapped and the cache will wait until this condi-
tion is eventually reached, as earlier threads suspend or are killed. When a thread is
rescheduled after being suspended, the same process is followed as when it was created,
i.e. it remains in the suspended state until the code in in the cache. The overhead for
this strategy is trivial, just a 6-bit counter and some associated logic per cache line.

S Programming Model

Before we draw conclusions from the above analysis let us consider the programming
model that might be used with a micro-threaded microprocessor. There are three issues
here, binary code compatibility, sequential language compilation techniques and fi-
nally a concurrent programming models. These are each briefly discussed.

Concerning binary code compatibility, we have already said that only a small num-
ber of additions need be made to a base ISA in order to support the micro-threading
model. We have also said that register specifiers and instruction tagging must be sup-
ported. It would be possible to use binary code translation to support backward com-
patibility by not using any of the additional instruction and by tagging everything to
not context switch. This would leave us with single threaded code, which would not
exploit the wide issue of a CMP. It is possible to develop techniques to do binary
code analysis and create threaded code from sequential code by analysing dependencies
in the instruction stream. This approach has not yet been studied in any depth.

If binary code compatibility is discarded it is possible to compile existing sequen-
tial source code to generate very efficient micro-threaded code. This is because the
compilation can extract concurrency across loops, even in the presence of inter-loop
dependencies. These techniques have been used in order to hand compile the code used
in our simulations [24,25]. There are limitations on the complexity of loops that can
be supported by a family of micro threads, because the synchronisation in this model



requires a single constant dependency distance between loop iterations. For example,
the two code fragments below could both be compiled in a single family of threads
(vector instruction):
Fori=1tondo
x[i] = x[i] + x[i+j]
Fori=1tondo
x[i] = x[i] + x[i+j]
ylil = y[i] + y[i+j]
If j is a constant then the thread header is static, if j is a variable, the thread header
would need to be constructed dynamically.

The following fragments however, could not be compiled to a single family of

threads (unless k = j).
Fori=1tondo
x[i] = x[i] + x[i+j]
ylil = ylil + yli+k]
It could however be translated into two families of threads, with a global synchronisa-
tion before the creation of the second family, where each family performs just one
assignment from all loop iterations. The overhead for this would not be large, just a
few cycles amortised across n iterations.

New techniques need to be developed to fully understand the code generation issues
but the basic code analysis is well understood and it comes from dependency analysis
found in standard optimising compilers and vectorisation techniques used in compilers
for vector supercomputers.

The final method of programming we consider is that for which this execution
model was originally designed for [27], namely an explicit data-parallel model[28].
Such languages provide a simpler analysis and more information for optimisation in
terms of the symmetries that they possess[29] and hence give us an easier route to
generating efficient code, than in compiling sequential languages.

Note that loop parallelism other than indexed loops can be compiled with the mi-
cro-threaded model, including speculative techniques but these techniques tend to be
marginally less efficient as they typically require one create instruction for every thread
created rather than one instruction per family. Obviously the extent of the inefficiency
is smaller for longer micro threads. These are all issues that are being considered in
our current work but we have already simulated a pointer chasing loop based on a
while loop and even with sequential order termination it provides better performance
than a conventional single-issue pipeline.

6 Conclusions

It appears that Moore’s law is a two-edged sword. The exponential growth of on-chip
resources for storage and processing has tended to mask creeping inefficiencies in
current microprocessor designs, such as out-of-order issue microprocessors, including
those with multi-threaded instruction issue units. An exponential increase in gates
with a short time constant can easily hide the underlying lack of scalability in any



given approach. The problem is, that there are strong commercial pressures for an
evolutionary development in microprocessor design. However, the fundamental scaling
issues that have been highlighted are always going to be an issue at some stage, un-
less no other approach can be found with better scaling properties, and then a revolu-
tionary change will be required. This has already happened with both radical and con-
servative microprocessor vendors but on different time scales (note for conservative
read market leader).

The fundamental issues in out-of-order issue microprocessors are in the complexity
of two main components in this design, namely the instruction issue logic, which
grows as the square of the instruction window size (proportional to the issue width)
and the register file, which is used for global communication and synchronisation
between the concurrently issued instructions, and which grows with the square of the
number of register ports (proportional to issue width). What is required to alleviate
these problems is an instruction issue strategy that is linear in the issue width and a
register file that is partitioned between local and remote synchronisations. Note that
the global nature of communications is always going to grow with a square law if we
want constant delay, as this is a connectivity problem. Thus the only option we have
open to us here is to partition the register file into local and global parts, thus miti-
gating the square law scaling. Micro-threading does exactly this in a CMP.

This paper has therefore looked at multi-threading as an alternative approach to out-
of-order issue. It investigates the diversity of multi-threaded design in achieving large
instruction issue widths. Among these options we have shown micro-threading to be a
particularly efficient form of multi-threading. We show this technique to be very effec-
tive in tolerating latency and in the avoidance of speculative execution. Moreover, it
can extract concurrency from both ILP and loop-level parallelism by supporting a
vector like instruction to generate families of threads for executing loops. Thus micro-
threading can be used as the basis for wide instruction issue in a chip multi-processor.

The instruction issue mechanism distributes work between processors in the form
of micro-threads that execute just a few instructions. This fine grain distribution en-
ables a very even distribution of load, one of the factors, which determines the effi-
ciency of a parallel system. The example simulated here on a micro-threaded CMP
uses the Livermoore K7 loop and our compilation generates a family of threads, each
of which comprises just a few instructions, all of them performing useful, rather than
bookkeeping work. The second factor, which determines the efficiency of a parallel
system is the overhead incurred in scheduling and synchronisation the threads. It is
clear from this simulation that the multi-issue, micro-threaded CMP has negligible
overheads. It achieves an asymptotic IPC of between 95 and 100 percent per pipeline,
for up to 16 pipelines, demonstrating what has been said in previous pa-
pers[12,24,25], namely that the model has very small overheads for scheduling threads
both on single and multiple issue pipelines. The half-performance vector length for
achieving this is also just 3 iterations per pipeline but that would be expected for a
highly parallel loop with no dependencies.

Finally we have considered the overheads of implementing the instruction issue
logic and register files for a CMP, both are components that we know in an out-of-
order issue pipelines are not scalable. In the CMP, we have shown that instruction



issue scales linearly with the number of pipelines and we compared this with out-of-
order instruction issue, which is responsible for the single largest component on the
21464 (with the exception of the L2 cache). We have also shown that the register file
can be partially distributed to individual pipelines, again giving linear scaling, for the
local parts. However, micro-threading also requires low-latency, inter-processor syn-
chronisation and this is achieved in the model using a global register file. In the CMP
however, many register references will be routed to the local register files and the
number of concurrent accesses to the global register file will reduced. Hence we can
reduce the number of ports in the global register file, which is the root cause of the
bad scaling. This component is not scalable in the CMP but it is more scalable than
in an out-of-order issue microprocessor. We estimate that a reduction in chip area for
the global register file in a micro-threaded, 8-way CMP of 93% compared to an out-of-
order issue pipeline of the same width. This is based on one micro-threaded instruction
in three writing a word to the global register file and two in three reading a word from
it.
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