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ABSTRACT

A neural network-based engine performance, fuel effi-
ciency and emissions prediction system has been devel-
oped for both spark-ignited and compression ignition
engines. Through limited training on an engine dyna-
mometer, the neural network system is able to predict
accurately real-time engine power output, fuel consump-
tion and regulated exhaust emissions using readily mea-
sured engine parameters, across highly transient engine
operating cycles. Applications for the models developed
using this process include engine diagnostics, virtual
sensing of unmeasured or unmeasurable engine emis-
sions, engine control, and engine and vehicle modeling.
Results from the prediction of the performance and emis-
sions from a 300 hp CIDI engine and a 120 hp SI engine
are presented, showing the potential of this newly devel-
oped approach.

INTRODUCTION

A neural network-based engine performance, fuel effi-
ciency and emissions prediction system has been devel-
oped for both spark-ignited (SI) and compression ignition
(CI) engines. The neural network (NN) system is able to
predict real-time engine power output, fuel consumption
and emissions using readily measured engine parame-
ters. The system consists of a predictive engine model
that is designed to run on a microprocessor in parallel
with the engine in real time, taking input signals from the
same sensors as the engine itself. The NN model of the
engine is able to make highly complex, time-variant, non-
linear and multi-dimensional associations between pre-
selected engine input parameters and outputs in real-
time. This allows the accurate prediction of engine perfor-
mance (real-time torque output), engine emissions (HC,
CO, NOx, CO2 and PM in diesel engines) and fuel con-

sumption across the full range of engine operation. Dur-
ing limited dynamometer testing, the NN model learns in
real-time and on the fly the precise relationship between
all designated inputs and outputs. Once in the field or
when operating in a vehicle, the model is able over time
to update those relationships and to adapt to allow for
engine or component wear, subtle changes in fuel com-
position or extreme combinations of operating or environ-
mental variables.

This system, which allows for virtual emissions sensing,
is equally well applicable to SI or CI engines, and has
been demonstrated in both engine applications. Uses of
this system include emissions prediction for engine con-
trol, on-board diagnostics and virtual emissions mea-
surement for light and heavy-duty vehicles, stationary
engines and marine, off-highway and locomotive diesels.
Further applications include engine modeling, both for
reducing the time required to develop engine control
algorithms, and for light and heavy-duty vehicle emis-
sions inventory prediction. 

MOTIVATION

Ever increasingly stringent emissions requirements and
rising fuel costs place an important premium on close
control of combustion in internal combustion engines for
all applications. Future technological advances such as
infinitely variable valve timing (through camless opera-
tion) and direct injection of both gaseous and liquid fuels
will probably allow the spark-ignited (SI) piston engine to
be used successfully into the next century in automotive
applications, possibly as hybrid vehicle power plants.
These engines will have the potential to satisfy ever
increasing fuel efficiency and environmental require-
ments, while meeting consumer expectations of power
density, reliability, NVH and total life-cycle cost. The SI
engines of the future will incorporate significant advances
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for improved performance, economy and emissions.
These engines will certainly require the use of more
sophisticated and adaptive control systems than those
used today. For example, the engine of the future will cer-
tainly be camless, use drive-by-wire throttle actuation,
and will implement load control through exhaust gas
recirculation, and both intake and exhaust valve actuation
with infinitely variable valve timing control. Fuel injection
(gaseous or liquid) may occur in the intake ports or
directly in-cylinder but it is certain that primary engine
control will be effected through fuel delivery control, valve
actuation (for load control, reducing throttling losses and
increasing rates of exhaust gas recirculation), super-
charger or turbocharger boost (for varying the effective
compression ratio and load control) and ignition timing
control. 

For the foreseeable future, CI engines will continue to be
used in fuel cost-sensitive applications such as in heavy-
duty buses and trucks, power generation, locomotives
and off-highway applications, as well as having applica-
tion in light trucks and hybrid electric vehicles. Close con-
trol of combustion in these engines will be essential to
achieve ever-increasing efficiency improvements while
meeting increasingly stringent NOx and PM standards.
Future direct injection CI engines will utilize increasingly
higher combustion and injection pressures with exhaust
gas recirculation (to offset the higher NOx levels pro-
duced by the elevated combustion pressures), variable
geometry turbocharging and possibly infinitely variable
valve timing, while being truly low emissions and fuel-
flexible.

Close control of combustion in future SI and CI engines
will be of overriding concern for both efficiency and emis-
sions. As an example, in an ultra low emissions vehicle or
ULEV, operation through one day with a failed engine
sensor or control system may well produce a higher con-
tribution to the emissions inventory than operation for a
year with a fully functional system. Advanced on board
diagnostic capability (OBD) and the ability to reconfigure
control  "on the fly" following fault detection will be an
indisputable requisite in the future. These engines of the
future will require significantly more complex control, hav-
ing very many more degrees of freedom than those of
today. 

Standard classical "one-dimensional" or map-based con-
trol, in which fueling, ignition and EGR (in today's SI
engines) are controlled somewhat independently, will
prove woefully inadequate in dealing with the multiple
independent degrees of freedom presented by wide
range fuel, EGR, ignition, boost and valve control in
future SI engines. Likewise the multiple degrees of free-
dom offered by injection rate shaping, EGR, boost and
valve control in future CIDI engines will require truly
simultaneously optimized, multidimensional control.
Moreover, the costs, time required and complexity asso-
ciated with engine development, performance mapping,
and control system development and calibration, are
increasing significantly. 

What is required is a truly multidimensional, adaptive,
learning control system that does not require the labori-
ous development of an engine model, while having excel-
lent performance and emissions prediction capabilities
across the full life of the engine, for all engine operating
conditions. Neural network-based engine modeling offers
all of these capabilities. The excellent generalization
capabilities achieved through on-line learning means that
the engine control system designer need make no
assumptions about the governing equations dictating the
engine performance and combustion characteristics. The
virtual sensing system automatically develops the engine
control laws by learning the engine behavior over time.
This allows a truly optimized and adaptive engine predic-
tion and control system to be developed with the mini-
mum of effort.

OPERATION OF THE VIRTUAL SENSING 
SYSTEM

The virtual sensing system developed here consists of a
predictive engine model that is designed to run on a
microprocessor in parallel with the engine in real time,
taking input signals from the same sensors as the engine
itself. The neural network (NN) model of the engine is
able to learn the highly complex, non-linear and multi-
dimensional associations between the pre-selected input
parameters and outputs in real-time.  Once the system
has been trained to mimic the performance and emis-
sions of the engine, it permits the accurate prediction of
engine performance (real-time torque output), engine
emissions (unburned hydrocarbons, carbon monoxide
and oxides of nitrogen) and fuel consumption across the
full range of engine operation. 

LEARNING

During limited dynamometer testing, the NN model
learns in real-time and on the fly the precise relationship
between all designated inputs and outputs. The NN
model assigns global or general weights between all des-
ignated inputs (engine operating parameters) and corre-
sponding outputs (torque, fuel consumption and
regulated emissions) on the basis of results learned dur-
ing engine dynamometer testing. A further (local) set of
weights is allowed to vary in time across the life of the
engine in the field, thereby providing a true learning,
adaptive prediction system. (The addition of the local
weights allows for the long-term analysis of integral
engine component degradation). As a result the NN
model is able to provide to the driver, to a smart diagnos-
tic system or to an engine controller, the apparent results
from a virtual suite of sensors. These virtual sensor
results may either be unmeasured or unmeasurable
engine parameters, or duplicate estimation of already
measured variables. One immediate application is in the
virtual measurement of engine-out NOx emissions for on-
board diagnostics (OBD) in both spark-ignited and com-
pression ignition engines. Virtual sensing can also offer
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an added level of protection against existing engine sen-
sor failure, as in the case of exhaust oxygen sensing in
stoichiometric or lean-burn SI engines, for example.  

VIRTUAL SENSOR ARCHITECTURE

The neural network architecture used is that of a partially
recurrent net, which is found to have more accurate map-
ping than a multi-hidden layer net [1]. Figure 1 shows the
schematic of the neural network architecture, and the
online learning or training configuration. The input vector
includes instantaneous engine parameter values as well
as a receding history window of 5-10 seconds of the
same data (depending on engine type). Including this
sliding window has been found to be necessary to cap-
ture the full dynamics of transient engine operation,
including turbocharger spool-up in diesel engines and the
emissions arising from transient fueling variations in both
SI and CI engines. All raw engine measurements, either
obtained from a fully instrumented engine on a dyna-
mometer during training or obtained from an engine in
the field during normal operation, are captured at a regu-
lar 20 Hz data-sampling rate. This rate can be increased
or decreased depending on the balance between desired
accuracy and computational effort required. The data are
filtered on-line through an infinite impulse response filter
to provide smoothing while retaining their integrity. The
transport delays and finite response times inherent in the
existing engine sensors are taken into account in the vir-
tual sensor modeling.

APPLICATION TO DIESEL ENGINES

Virtual sensing has been applied to the prediction of
engine-out emissions, fuel efficiency and power output of
three engines, including a 300 hp heavy-duty diesel
engine, certified to 1994 US EPA heavy-duty emissions
standards.  In predicting the real-time performance of this
compression ignition heavy-duty diesel engine
(described in Table 1), the NN-based prediction model
uses the real-time values of: 

• intake manifold air temperature,

• intake manifold boost pressure,

• fuel rack position,

• engine coolant temperature,

• exhaust gas temperature,

• engine speed, and

• fuel rail temperature and pressure.

     Using instantaneous values of these input parameters
as well as a sliding, weighted window of their most recent
values (extending 10 seconds back in time to capture tur-
bocharger dynamics), the NN model is able to predict:

• instantaneous engine torque or power output, 

• fuel consumption (and carbon dioxide emissions),

• exhaust gas temperature, and 

• engine exhaust emissions (carbon monoxide,
unburned hydrocarbons, oxides of nitrogen and
smoke, as measured by whole exhaust opacity).

PROOF OF CONCEPT VIRTUAL SENSOR
DEMONSTRATION - I –

A limited set of emissions data was obtained from the
engine described in Table 1, to conduct a proof of con-
cept study (the data had previously been de-skewed to
remove the effect of variable response and delay times in
the measurement of each of the emissions). The first 250
seconds of the data set were included in the engine train-
ing data, due to the limited total amount of data available,
while the last 50 seconds of each data set shows the NN
predictions on data on which the net was not trained on-
line. In either case, the predictions are "open-loop",
implying no on-line learning or reinforcement. Figure 2 to
7 show the predicted versus measured engine torque,
HC, CO, NOx, CO2 and smoke emissions. All emissions
have been non-dimensionalized with respect to the maxi-
mum value of that constituent found in the complete data
set. These figures show the results of a blind prediction,
although in this CI engine study alone, the difference
between the measured and predicted exhaust gas tem-
perature gives the local NN weights limited authority in
modifying the prediction in an on-line adaptive fashion.  

VIRTUAL SENSING PREDICTION ACCURACY

     In the case of CI engine prediction, the virtual sensor
prediction model is able to predict these engine perfor-
mance and emissions parameters to within 5-10% of
their instantaneous values, given approximately 30 min-
utes of highly transient hot engine dynamometer training,
and to well within 5% on an integrated basis. It should be
borne in mind that this is achieved within 30 minutes of
training, and that more training will reduce the instanta-
neous and integrated error significantly. Moreover, it
should also be remembered that the virtual sensing sys-
tem is calibrated (through training) to predict emissions in
real, measurable units, as opposed to merely providing
emissions trends. Finally, it should also be noted that a
significant further benefit of the system is the fact that it
provides relatively high accuracy predictions of all regu-
lated emissions and CO2, simultaneously. In the case of
engine emissions, further testing of the system on a SI
engine has shown that the accuracy of the prediction can
be improved to the point that it is of the same order as the
accuracy of the measurements provided by the emis-

Table 1. CI Demonstration Engine Parameters

Engine Type 10 liter, in-line 6cylinder DI
Fuel diesel (D2)
Compression Ratio 15:1
Turbocharger 150 kPa gauge maximum boost
Fuel Injection System mechanical cam-driven jerk-type
Maximum Power 300 hpk (224 kW) (at 2200 rpm)
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sions analyzers used to provide the training data, inte-
grated across a transient engine cycle. 

VIRTUAL SENSING SYSTEM TRAINING

For the diesel engine described above, it was not neces-
sary to vary all input parameters individually in a multi-
dimensional test matrix, but rather to exercise the engine
(as a system) through a wide cross-section of its
expected performance envelope. By this is meant that it
is not required to vary manifold air temperature, manifold
boost pressure, commanded fuel rack position, engine
coolant temperature, exhaust gas temperature, engine
speed and load, and fuel rail pressure individually and
independently, but rather to provide the NN with as wide
a range of engine performance data as is feasible. The
NN-based system has excellent generalization capabili-
ties, provided that a wide range of representative engine
performance has been used in generating the training
data. Modeling of cold-start engine performance and
emissions is quite feasible and could be accomplished
through obtaining data from several cold starts at various
initial engine and ambient air temperatures. 

APPLICATION TO SPARK-IGNITED ENGINES

Virtual sensing has been also been applied to the predic-
tion of emissions, fuel efficiency and power output of a
120 hp, DOHC 16 valve gasoline engine. In predicting the
real-time performance of this SI engine (described in
Table 2), the NN-based prediction model uses the real-
time values of:

• engine speed

• manifold air pressure 

• manifold air  temperature

• throttle position

• ignition timing

• fuel injection pulsewidth

• engine coolant temperature

• exhaust gas oxygen concentration, and

• EGR valve position.

As in the case of the CI engine, using instantaneous val-
ues of these input parameters as well as a sliding,
weighted window of their most recent values (extending
approximately 5 seconds back in time for this normally-
aspirated engine), the NN model is able to predict:

• instantaneous engine torque, 

• fuel consumption (and carbon dioxide emissions),
and

• engine exhaust emissions (carbon monoxide,
unburned hydrocarbons, and oxides of nitrogen).

PROOF OF CONCEPT VIRTUAL SENSOR
DEMONSTRATION - II

Figure 8 shows the measured speed and power  charac-
teristics of an arbitrary transient engine test cycle used to
validate the NN model accuracy. The resultant engine
cycle is one on which the NN model was not trained, but
merely represents a somewhat arbitrarily chosen highly
dynamic dynamometer cycle. Figures 9 to 12 show the
predicted versus actual measured engine exhaust emis-
sions for HC, CO, NOx and CO2 for the SI engine demon-
stration (in units of grams per second), showing the blind
prediction capability of the NN method. These particular
results show the predictive capability of the NN method
after approximately 180 minutes of hot, stabilized engine
training. Due to the fact that exhaust emissions from SI
engines vary significantly around their nominally stoichio-
metric fueling set-point, these engines require somewhat
more training time than CI engines, which tend to emit far
more consistently.   

REAL-TIME COMPUTATIONAL REQUIREMENTS

Typical virtual sensing computational power requirements
for running the NN model described above in real-time
with data rates of 20 Hz are easily met by an Intel Pen-
tium 100 MHz microprocessor-based personal computer.
Running the NN on a dedicated RISC processor would
reduce its computational requirements significantly,
allowing for the use of a far cheaper dedicated computa-
tional processor, for on-board vehicle use. Efforts in
reducing computational overhead and effort are continu-
ing.

APPLICATIONS OF VIRTUAL SENSING

The virtual sensing system described here has immedi-
ate application in 

• engine diagnostics, 

• engine control, and 

• engine or vehicle modeling.

Table 2. SI Engine Parameters

Engine Type 1.9 liter, 4 cylinder DOHC
Fuel gasoline
Compression Ratio 9.7:1
Induction naturally aspirated
Fuel Injection System pulse-width modulated, O2 feedback
Maximum Power 120 hp (89.5 kW) at 5000 rpm
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ENGINE DIAGNOSTICS

In terms of engine diagnostics, a virtual sensing system
may be integrated into a smart OBD system to give
immediate warning of emissions exceedances. Moreover,
the NN system can provide real-time values of unmea-
sured or difficult to measure parameters (such as NOx
emissions or PM emissions for diesel engines), from
which the engine can be controlled. Virtual sensing can
form the basis of a diagnostic information system, and
can provide significantly more information on engine or
vehicle performance and emissions than is presently
available, while still using an existing sensor suite. Virtual
sensing also allows the development of virtual O2, NOx,
HC, CO and PM sensors, from which the engine can be
controlled in real time [2,3]. Real time fuel consumption
and torque measurement for on and off-highway CI
engines is also made feasible through this approach, as
is the real-time prediction of emissions from stationary or
marine engines for continuous emissions measurement
(CEM) purposes. 

By developing multiple NN performance prediction sys-
tems, each employing a sub-set of the full suite of avail-
able engine sensors, failure in a single sensor can be
detected by comparing the results generated by each
NN. Redundant prediction of the same engine output
variable in this fashion could aid in the identification and
isolation of both sensor and integral engine component
failure. Virtual sensor prediction also provides a high level
of redundancy albeit without additional sensor cost or
hardware complexity. As an example, the instantaneous
fuel consumption of the diesel engine is calculated by the
NN based on the engine speed, rack position, manifold
boost pressure and temperature, engine temperature and
(perhaps) measured air flowrate into the engine. The fact
that several of these input parameters are interrelated
and dependent on each other, provides a significant level
of in-built redundancy in the event of the failure of one of
the engine sensors in that set. 

The additional input to the NN system of output from fur-
ther exhaust emissions sensing devices (such as a viable
NOx sensor, when developed) would serve to strengthen
the prediction capabilities of the virtual sensing method.
The virtual sensor suite provides a true learning capabil-
ity, and could allow for reconfigurable control to be used
in the event of the failure of such a sensor or an integral
engine component.

ENGINE CONTROL

SI engines enjoy the benefit of a remarkably powerful
fueling feedback control parameter in exhaust gas oxy-
gen sensing. CI engines on the other hand, suffer from
the lack of readily available feedback parameters. This
research seeks to redress that. The real-time NN predic-
tion of engine performance and emissions allows for
effectively "closed loop" control on the basis of virtual
sensing of NOx, CO, HC, or PM emissions, without
requiring any additional engine sensors [2,3]. It can be

used to control specific actuators or devices, such as
EGR valves, fuel injection, ignition, boost control, or can
be used for the full multidimensional control of fueling,
ignition, EGR and variable valve timing (VVT) in SI
engines, or fueling, boost, EGR and variable geometry
turbocharger (VGT) devices in DI engines. Moreover,
using the NN system in a predictive fashion will allow an
engine to be operated at any pre-selected optimum, such
as the lowest emissions level or the best power or best
efficiency limit.

The addition of measured in-cylinder pressure as an
extra input into a CI engine emissions prediction model,
will, it is believed, allow the prediction of NOx emissions
(specifically) on a cycle-to-cycle basis. In addition,
exhaust gas temperature (chosen for its robustness and
ease of measurement) has been explored as a surrogate
feedback parameter for CI engines, with some success. 

ENGINE MODELING

Once developed on an existing or prototype engine, NN
engine predictive models can be used to provide engine
mapping data to reduce the time required for controller
development. Instead of requiring extensive dynamome-
ter time to establish full transient engine performance and
emissions, the fully trained NN model of an engine can
be used as a computational surrogate of the engine itself.
In this way, engine control laws can be developed and
optimized computationally, rather than requiring large
amounts of dynamometer time. 

While the work presented here describes the develop-
ment of NN-based engine models, this technique can be
used to develop combined SI engine-catalyst models, in
which catalyst-out (as opposed to engine-out) emissions
are predicted. Additional sensor input, probably from
wide-range oxygen sensors upstream and downstream
of the catalyst, and the temperature of the catalyst (as a
measure of catalyst activity or efficiency), could be used
to train the model to mimic the engine-catalyst combina-
tion. Likewise, a vehicle model can be developed, either
for light or heavy duty vehicles, that includes transmission
and drive-line efficiency effects, using both chassis dyna-
mometer measurements of vehicle performance and
emissions, and engine dynamometer measurements of
engine-only performance. 

A fully predictive engine model can also be used in a
strategy-based vehicle control algorithm, such as in
determining how to merge and combine energy from two
sources in a hybrid electric vehicle. The model can also
be used in a forward-looking strategy, limited only by the
computational capability resident on the vehicle. 



6

FUTURE APPLICATIONS

Further applications, such as engine and vehicle model-
ing for emissions inventory gathering are also feasible [4].
For example, once a NN model of the emissions charac-
teristics of a vehicle has been established through limited
testing on a chassis dynamometer, a computational
model of the vehicle can be derived. This computational
emissions model of the vehicle can then be "driven"
across any driving cycle, or given topographic data,
across any road. Integrating the fully predictive emissions
model with a traffic simulation model or with real-time
data from a GPS-equipped vehicle, could allow the pre-
diction of emissions from the vehicle under a wide range
of vehicle operating conditions, driver behavior and traffic
conditions.

Many such applications of virtual sensing and this
method of neural network-based engine performance
and emissions modeling remain to be explored.
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Figure 1.   Partially Recurrent Neural Network Architecture, Showing Dynamometer-based Training Used to Develop Full 
Input-Output Parameter Associations and Weights.

Figure 2.   Measured versus Predicted Engine Torque for CI Engine NN Model Validation
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Figure 3.   Measured versus Predicted Hydrocarbon Emissions for CI Engine NN Model Validaton

Figure 4.   Measured versus Predicted Carbon Monoxide Emissions for CI Engine NN Model Validation
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Figure 5.   Measured versus Predicted Oxides of Nitrogen Emissions for CI Engine NN Model Validation

Figure 6.   Measured versus Predicted Carbon Dioxide Emissions for CI Engine NN Model Validation
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Figure 7.   Measured versus Predicted Smoke Emissions for CI Engine Model Validation

Figure 8.   Commanded SI Engine Torque and Speed for  NN Model Validation
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Figure 9.   Measured versus Predicted Hydrocarbon Emissions for SI Engine NN Model Validation

Figure 10.   Measured versus Predicted CO Emissions for SI Engine NN Model Validation
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Figure 11.   Measured versus Predicted NOx Emissions for SI Engine NN Model Validation

Figure 12.   Measured versus Predicted CO2 Emissions for SI Engine NN Model Validation


