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Abstract

This paper addresses the problem of determining a dynamic berth assignment to ships in the public berth
system. While the public berth system may not be suitable for most container ports in major countries, it is
desired for higher cost-e�ectiveness in Japan's ports. The berth allocation to calling ships is a key factor for
e�cient public berthing. However, it is not calculated in polynomially-bounded time. To obtain a good
solution with considerably small computational e�ort, we developed a heuristic procedure based on the
Lagrangian relaxation of the original problem. We conducted a large amount of computational experi-
ments which showed that the proposed algorithm is adaptable to real world applications. Ó 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Most container berths in major ports are leased by ship operators in order for them to be
directly involved and responsible for the processing of containers and thus achieve higher pro-
ductivity. Whereas this is justi®ed in the case of a ®rm handling a large volume of containers with
a large number of ship calls, it may not result in cost savings if these quantities are not su�cient.
Charges in Japan's ports have been consistently higher than those in other major hubs over
several years. Part of the increased cost is the result of overcapitalization of the port for the
relatively small cargo volume.
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In the above context, it is of interest to limit the number of berths by introducing a public berth
system. The berth allocation in this system, i.e., the assignment of berths to incoming ships for
their cargo handling, plays an important role in minimizing the turnaround time; this is because
the handling time for a speci®c ship is not necessarily the same at every berth.

The goal of this paper is to propose an algorithm for solving the berth allocation problem
(BAP). A solution technique for the so-called static berth allocation problem (SBAP), that, given
a collection of ships, ®nds a set of assignments to minimize the sum of the time they spend waiting
for berths and handling cargo, has already been proposed (Imai et al., 1997). We consider in this
paper the dynamic version of the problem (DBAP), which is similar to the SBAP but with the
di�erence that ships arrive while work is in progress.

The SBAP may be formulated as a three dimensional assignment problem and can be reduced
to a two-dimensional (or classical) assignment problem that is easily solved with the Hungarian
method (Papadimitriou and Steiglitz, 1982). However, the DBAP is represented by a three di-
mensional assignment problem with some additional constraints, and it is not solved in poly-
nomially-bounded time. Consequently we present a Lagrangian relaxation-based heuristic
algorithm for the DBAP.

The paper is organized as follows. The next section gives the motivation for introducing a
public berth system in major container ports of Japan and further provides a literature review on
public berthing systems. A mixed integer programming formulation of the DBAP and Lagrangian
relaxation of that formulation are presented in Section 3. In Section 4 we discuss a solution
procedure employing the subgradient method based on the Lagrangian relaxation. Section 5
shows a large number of computational experiments and the ®nal section discusses conclusions.

2. Importance of public berth allocation

We propose the public berth system for container port management. We here discuss issues in
port management to show the motivation for the proposed public berthing. Further we describe
existing ®elds of study relating to the public berthing.

2.1. Desired public berthing

By its geographical nature Japan's ports have been recognized as hubs connecting deepsea
vessel tra�c and local feeders for Asian countries. However, as the volume of container tra�c to
and from eastern Asia increases, most of the deepsea vessels have begun to call directly at some
ports in that area. As a result, facilities and equipment in Japan's ports became redundant due to
the decreasing cargo demand, thus making the cost of the private berthing system relatively high.

Table 1 shows the length of time each berth was occupied in port of Kobe during the month of
February in 1996. The time is categorized for the number of container berths occupied at same
time. It is noteworthy that in only nine hours out of twenty nine days were all the berth occupied
simultaneously. The low usage of berths coupled with small amount of cargo handled results in
relatively high port charges per container. The public berthing system proposed in this paper aims
at reducing the number of required berths by appropriate ship-berth assignments, while main-
taining at least the same level of service.
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Generally, ships are serviced in a port on a First-Come-First-Served (FCFS) basis, which
however, does not necessarily minimize the total staying time of ships. If the ship arrival order is
ignored, the total cumulative staying time for all ships can be reduced. This, however, may yield
longer waiting time for some ships.

In a previous research (Nishimura, 1998), a simple simulation for the public berthing system
was carried out in order to examine the average time a ship spends for service, with the number of
berths ranging from three to seven. Table 2 reports the average waiting time, showing that even if
four berths are available then average waiting time is half an hour. The result strongly supports
the public berthing system.

The public berth system may yield inequitable waiting time for each ship. This may not make
the port attractive for carriers even if the port charges are low. However, the issue of equity is less
important than port charges as ships had inequitable waiting times at every private berth in Kobe
(Nishimura, 1998).

2.2. Related literature

Most port studies focus their attention to the strategic and tactical problems. As many con-
tainer berths are privately operated by speci®c shipping companies, very few studies have been
conducted on berth allocation in the public berth system.

Lai and Shih (1992) proposed some heuristic algorithms for a BAP which is motivated by more
e�cient berth usage in the HIT terminal of Hong Kong. Their problem assumes the FCFS al-
location strategy, while our problem does not. Therefore, their solution may not be as good as
ours.

Brown et al. (1994, 1997) treat ship berthing in naval ports. They identify the optimal set of
ship-to-berth assignments that maximizes the sum of bene®ts for ships while in port. Berth
planning in naval ports has important di�erences from berth planning in commercial ports. In the
former, a berth shift occurs when for proper services, a newly arriving ship must be assigned to a
berth where another ship is already moored. This treatment is unlikely in commercial ports. Berth
shifting as well as other factors less relevant to commercial ports are taken into account in Brown
et al., thus making their problem inappropriate for commercial ports.

Table 2

Waiting time for berthing

Number of berths 3 4 5 6 7

Time (minutes) 221 36 10 2 0

Table 1

Time lengths of berth occupation

Number of berths 0 1 2 3 4 5 6 7 Total

Time (hours) 19 76 138 159 136 90 62 9 689

% 3 11 20 23 20 13 9 1 100
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Imai et al. (1997) consider a BAP for commercial ports. Most service queues are in general
processed on a FCFS basis. They conclude that for high port throughput, optimal ship-to-berth
assignments should be found without considering the FCFS basis. However, this may result in
some ships' dissatisfaction regarding order of service. In order to deal with the two criteria to
evaluate, i.e., berth performance and dissatisfaction on order of service, they developed a heuristic
algorithm to ®nd a set of non-inferior solutions while maximizing the former and minimizing the
latter. Their berthing principle, however, cannot treat the dynamic allocation.

The BAP is one of the parallel machine scheduling problems. A job and a machine can be
treated as a ship and a berth, respectively. The SBAP reduces to a classical assignment problem
(or a weighted bipartite matching problem) that is known to be polynomially-solvable (Pinedo,
1995). Bean et al. (1991) and Norman and Bean (1999) deal with the machine scheduling problems
where each job has a release time that corresponds to a ship arrival time in the DBAP. The
problem in Bean et al. is di�erent from our problem because theirs is a scheduling problem in the
job shop environment. Norman and Bean treat the parallel machine scheduling; however they
assume identical machines in parallel whereas ours deals with unrelated machines in parallel.

3. Problem formulation and Lagrangian relaxation

In this section, a mixed integer programming formulation of the DBAP and Lagrangian re-
laxation of that formulation are presented. First the formulation for the simple version of berth
allocation, the SBAP, is discussed and then extended to the DBAP.

3.1. Formulation of the static berth allocation

In the SBAP, all the ships are already in port when the berthing plan is determined. This
guarantees every potential ship-berth-order assignment is feasible in the berth allocation.

We assume that each berth can service one ship at a time and that there are no physical or
technical restrictions such as a relationship between ship draft and water depth. Further, for
generalizing the berth allocation, the ship handling time is assumed dependent on the berth where
it is assigned. The second assumption is justi®ed by the following reasoning: at a private container
berth, loaded containers are stored in appropriate locations in a terminal alongside the berth
where the ship is moored. For public berthing, ship-to-berth assignments should be, in general,
determined in advance of ship arrivals; however containers for the ships may arrive at the terminal
for loading after the berthing decision. Therefore, the distance between a ship and its container
location depends on the berth assignment. Although examination of the handling systems in
terminals is beyond the scope of this paper, it is obvious that the handling time may be also
dependent on the geographical relationship between the ship and the container location. Note that
the handling time is assumed deterministic in this study, although a berthing plan may be de-
termined before all the containers arrive at the port.

The objective is to minimize the sum of waiting time for the availability of the berth assigned to
each ship, plus the handling time it spends at the berth.

In formulating the BAP we de®ne binary variables xijk to specify if ship j is to be serviced as the
kth ship at berth i. Other related studies (i.e., berth assignment in naval ports as discussed in the
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previous section) use actual unit time for decision variables to index assignment sequences. In the
berth allocation planning, it is considered that a ship spends up to 24 hours for cargo handling.
Considering the prospective planning horizon of our model (say, at least a few days), we will have
an explosively large number of decision variables by describing them with actual time. Further,
this model guarantees consecutive service for all ships without disruptions such as berth shifting.
A model using decision variables indexed by actual time must become considerably complicated
to ensure this constraint.

As the xijk variable is restricted to 0±1 values, the SBAP may be formulated as an integer three-
dimensional assignment problem as follows:

�PS� Minimize
X
i2B

X
j2V

X
k2O

�T� ÿ k � 1�Cij � Si ÿ Aj

	
xijk �1�

Subject toX
i2B

X
k2O

xijk � 1 8j 2 V ; �2�

X
j2V

xijk 6 1 8i 2 B; k 2 O; �3�

xijk 2 f0; 1g 8i 2 B; j 2 V ; k 2 O; �4�
where

Notice that both sets of ships and service orders have the same number of elements T because a
feasible solution may have all the ships serviced at a particular berth.

The objective (1) minimizes the sum of waiting and handling times for every ship. Note that
Si P Aj for all i, j from the problem de®nition. Constraint set (2) ensures that every ship must be
serviced at some berth in any order of service. Constraint set (3) enforces that every berth services
up to one ship at any time. Since this is the static problem, we assume Si P Aj.

In the objective function, a handling time Cij is weighted by �T ÿ k � 1�. This results from the
observation that the handling time Cij of a speci®c ship serviced at berth i contributes waiting time
to the ships to be serviced at the same berth after it. In other words, the waiting time of a par-
ticular ship is represented by the cumulative handling time of its predecessors.

According to the formulation, it is possible that ship berthing is not necessarily scheduled in
consecutive order; for example, given three ships with two berths, xijk may be assigned as
x111 � 0; x121 � 1; x131 � 0; x112 � 0; x122 � 0; x132 � 0; x113 � 1; x123 � 0, and x133 � 0 for
berth 1. The objective value of this solution is not correctly computed. The handling time of ship 2

i �� 1; . . . ; I� 2 B set of berths
j �� 1; . . . ; T � 2 V set of ships
k �� 1; . . . ; T � 2 O set of service orders
Si time when berth i becomes idle for the berth allocation planning
Aj arrival time of ship j
Cij handling time spent by ship j at berth i
xijk 1 if ship j is serviced as the kth ship at berth i

0 otherwise
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is added to the waiting time of ships berthed as both the second and third ships to be serviced,
while correctly only for the third. However, in an optimal solution this never happens due to the
following lemma:

Lemma 1. At optimality, N ships assigned to a specific berth are scheduled to be serviced consec-
utively as the (T ÿ N � 1)th to the Tth ships.

Proof. Assume that a solution where ships are not serviced consecutively is optimal. Suppose ship
j and another ship are serviced as the kth and k � 2th ships, respectively, while no ship is serviced
as the k � 1th ship. In the objective function, the handling time of ship j is added T ÿ k � 1 times
for the potential ships serviced after it. If the k � 2th ship is changed to be serviced as the k � 1th
ship, then its handling time is added T ÿ k times, resulting in smaller objective function value.
This contradicts the assumption. �

Problem [PS] can be reformulated as follows by substituting indices i 2 B and k 2 O by n 2 N ,
where letting jN j be the cardinality of set N ; jN j � jBj � jOj.
�PS0� Minimize

X
j2V

X
n2N

Djnxjn �5�

Subject toX
n2N

xjn � 1 8j 2 V ; �6�X
j2V

xjn6 1 8n 2 N ; �7�

xjn 2 f0; 1g 8j 2 V ; n 2 N ; �8�
where Djn is an equivalent of parameter �T ÿ k � 1�Cij � Si ÿ Aj. This is the classical two-
dimensional assignment problem which is e�ciently solved by the Hungarian method.

Without loss of generality, the ®rst ship assigned to a speci®c berth in a solution of [PS] starts to
be serviced immediately after the departure of the last ship in the previous planning.

3.2. Formulation of the dynamic berth allocation

The SBAP is restrictive in its use as some ships may arrive at the port during the planning
horizon. If they are considered for the next horizon, overall berth performance might be worse.
Thus, we consider the generalization of berth arrangement, i.e., the dynamic berth allocation
problem (DBAP).

We assume in the DBAP that all the ships, while their arrival time is known in advance, do not
arrive at the port before Si of the assigned berth. Except for that all the assumptions for the SBAP
hold.

The DBAP may be formulated as follows:

�PD� Minimize
X
i2B

X
j2V

X
k2O

�T� ÿ k � 1�Cij � Si ÿ Aj

	
xijk �

X
i2B

X
j2Wi

X
k2O

�T ÿ k � 1�yijk

�9�
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Subject toX
i2B

X
k2O

xijk � 1 8j 2 V ; �10�

X
j2V

xijk 6 1 8i 2 B; k 2 O; �11�

X
i2V

X
m2Pk

�Cilxilm � yilm� � yijk ÿ �Aj ÿ Si�xijk P 0 8i 2 B; j 2 Wi ; k 2 O; �12�

xijk 2 f0; 1g 8i 2 B; j 2 V ; k 2 O; �13�
yijk P 0 8i 2 B; j 2 V ; k 2 O; �14�

where

The objective function (9) minimizes the total of waiting and handling times for every ship.
Constraints (12) assure that ships must be serviced after their arrival. We will discuss the deri-
vation of (9) and (12) in the next section.

As will be stated in Section 4.1, integrality of the objective function saves computational time
when the problem ®nds the optimal solution using the subgradient method. Therefore, we assume
Cij, Si and Aj all have integer values. For this, the yijk variables can technically have integer values
to indicate precedence relationship between a ship arrival at port and the service for it. To account
for service after arrival, yijk is simply de®ned as a time di�erence between the start of service for
ship j and the departure of its immediate predecessor, both of which are integer. This naturally
induces the integrality restriction when combined with the objective function. Thus, yijk is stated
and implemented as a continuous variable.

3.3. Derivation of the objective function and constraints (12)

Given an example of ship assignment to order of service at a particular berth, we derive the
objective function of the DBAP.

Fig. 1 shows a set of ship assignments to berth i. Thin lines represent ships' wait while thick
lines imply the service for them. Dotted lines reveal berths in idle status. Ship 1 arriving at the port
before Si is the ®rst ship to be serviced while ships 2 and 3 arriving after Si are the fourth and ®fth
ships, respectively. Berth i is already idle for ships 4 and 5; therefore they are serviced as the
second and third ships as soon as they arrive.

In general the handling time Cij of each ship contributes to the waiting times for all of its
successors. For instance, the handling time of ship 4 being serviced as the second ship may be part
of the waiting time for ships 5, 2, and 3 (without consideration of the scheduled service sequence

Pk subset of O such that Pk � fpjp < k 2 Og
Wi subset of ships with Aj P Si

yijk idle time of berth i between the departure of the k ÿ 1th ship and the arrival of the kth
ship when ship j is serviced as the kth ship
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in Fig. 1). Similarly, the idle time of a berth prior to service for a ship, yijk, must be summed up for
the time its successors spend waiting for service. If a ship arrives before its immediate predeces-
sor's departure, by de®nition yijk � 0 for it. For those ships that arrive before Si, the time they
spend waiting before Si, i.e., Si ÿ Aj, is added. Oppositely, if ship j arrives after Si (i.e., Si ÿ Aj is
negative) regardless of their yijk > 0 or � 0, then waiting times summed by Cijs and yijks of their
predecessors are subtracted by time duration of Aj ÿ Si. Notice that the objective function con-
tains �T ÿ k � 1�yijk, i.e., yijk is computed for ship j as the kth ship as well as its successors, al-
though it should not be for itself. As stated above, the waiting time of a certain ship given as the
sum of Cij and yijk for its predecessors is subtracted by Aj ÿ Si if yijk > 0 for it; therefore its yijk

must be added for its own waiting time.
Constraint (12) for ship j as the kth ship at berth i yields the following inequality by moving the

third term of the left-hand side to the right:X
l2V

X
m2Pk

�Cijxilm � yilm� � yijk P Aj

ÿ ÿ Si

�
xijk: �15�

The ®rst term in the left-hand side is the time duration between Si and the time when the last of its
predecessors leaves the port. Thus, the left-hand side, i.e., the time duration between Si and the
start of the service for ship j, must be no less than Aj ÿ Si if xijk � 1.

3.4. Lagrangian relaxation of the DBAP

The formulation of the DBAP is a mixed integer program which is not known to be solved in
polynomially-bounded time. This may be solved by a branch and bound algorithm but that would
be time-consuming for problems of practical size. The DBAP may be solved frequently to obtain a
new berth allocation due to the changes of estimated ship arrival times. Consequently the branch
and bound algorithm does not seem suitable for the DBAP. This encourages us to develop a
heuristic for the problem. This heuristic procedure employs the subgradient optimization pro-
cedure based on the following Lagrangian relaxation of the original problem [PD]:

�P1� Minimize
X
i2B

X
j2V

X
k2O

�T� ÿ k � 1�Cij � Si ÿ Aj

	
xijk �

X
i2B

X
j2Wi

X
k2O

�T ÿ k � 1�yijk

ÿ
X
i2B

X
j2Wi

X
k2O

kijk

X
j2V

X
m2Pk

�Cilxilm

(
� yilm� � yijk ÿ �Aj ÿ Si�xijk

)
�16�

Fig. 1. Ship assignments to berth i.
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Subject toX
i2B

X
k2O

xijk � 1 8j 2 V ; �17�

X
j2V

xijk 6 1 8i 2 B; k 2 O; �18�

xijk 2 f0; 1g 8i 2 B; j 2 V ; k 2 O; �19�
yijk P 0 8i 2 B; j 2 V ; k 2 O; �20�

where kijk is a Lagrangian multiplier for berth i, ship j, and the kth position of the service sequence
and has non-negative value.

This formulation can be rewritten as follows, because yijks are redundant as they are not in any
constraints.

�P2� Minimize
X
i2B

X
j2Wi

X
k2O

�T� ÿ k � 1�Cij � Si ÿ Aj

	
xijk ÿ

X
i2B

X
j2Wi

X
k2O

kijk Si

ÿ ÿ Aj

�
xijk

ÿ
X
i2B

X
j2Wi

X
k2O

kijk

X
l2V

X
m2Pk

Cilxilm �21�

subject to (17)±(19).
Problem [P2], is further reformulated by introducing representative cost Eijk in the objective

function.

�P3� Minimize
X
i2B

X
j2V

X
k2O

Eijkxijk �22�

subject to (17)±(19).
With relaxing constraint set (12), formulation [PD] becomes a three-dimensional assignment

problem that is reduced to the classical two-dimensional assignment problem and is therefore easy
to solve.

4. Solution procedure

4.1. Subgradient method

The quality of the feasible solution obtained using the above procedure is strongly dependent
on one's ability to determine good Lagrangian multipliers kijks. Essentially, with a zero multiplier
in [P3] for each combination of �i; j; k�, we assume that ships can be allocated to berths in order
while minimizing the total of waiting and handling times. This may lead to an infeasible solution
to [PD] as some ships may be serviced before their arrivals. As the multipliers corresponding to
the ships with infeasible berthing (i.e., the scheduled services are performed while they are not yet
in port) are increased, the ``cost'' of these ships are increased in the Lagrangian problem, [P3],
probably resulting in later service for them. In other words, the solution to [P3] gets closer to a
feasible solution to [PD].
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Good multipliers are also important as the quality of the lower bound, i.e., the objective
function value of [P3], is a function of these multipliers. The best lower bound corresponding to
the optimal multiplier vector k� is determined as

ZP3�k�� �Max�ZP3�k��; �23�
where (ZP3(k)) is the value of the Lagrangian function with a multiplier set (vector) k. There are a
number of di�erent approaches to ®nding a good, if not optimal, set of Lagrangian multipliers
(Fisher, 1981). We have selected to use the subgradient optimization procedure. The subgradient
method is an adaptation of the gradient method in which the subgradients replace the gradients
(Bazaara and Goode, 1979; Held et al., 1974). Since the approach has been widely utilized and
well understood we will not repeat details here. It su�ces to note that as a termination criterion
we ®xed the maximum number of iterations at 200. The procedure is also terminated if the gap
between the feasible solution value and the Lagrangian bound becomes less than 1. Given integer
objective function coe�cients, this condition is su�cient to detect an optimal solution.

During each iteration of the procedure, [P3] is solved to obtain a lower bound for [PD]. Note
that the objective function value of [P1] is equal to the objective function value of [P3] plus the
value related to yijk. As the objective function of [P1] is a lower bound, yijk values are ®xed to zero.
One of SIMPLE, INDIVIDUAL, or INTERACT processes (discussed in Section 4.2) is per-
formed at each iteration of the heuristic to determine a feasible solution to [PD]. At the time of
termination, the subgradient optimization procedure reports the best feasible solution and the
best lower bound generated in all of the iterations. The procedure is detailed as follows:

In the subgradient optimization procedure, given a set of starting multipliers k0, a sequence of
multipliers is generated using the following rule:

kk�1 � kk � tk�Axk ÿ b�; �24�
where xk is an optimal solution to the Lagrangian problem P3�kk� and tk is a positive scalar step
size and �Ax6 b� is the set of constraints being relaxed (i.e., constraint set 12). We use the fol-
lowing step size that has been used frequently in the past:

tk � dk��Z ÿ ZP3�kk��=kAxk ÿ bk2; �25�
where �Z is the best known feasible solution value, kAxk ÿ bk is the Euclidean norm of Axk ÿ b, and
dk is a scalar satisfying the relation 06 dk 6 2. This scalar is set to 2 at the start of the procedure
and is halved whenever the bound does not improve in 20 consecutive iterations. The following is
a formal statement of the procedure:

Step 1. Maxiter � 200; d � 2; �Z � 1� 108; Iter � 1; k � 1; BestLB � 0; k � k� � f0g.
Step 2. Solve problem [P1], and calculate the objective function of [P3]. Let ZP3 be the solution

value of [P3]. If ZP3 > BestLB; let BestLB � ZP3; Iter � 1; k � k�; otherwise Iter � Iter� 1.
Step 3. Perform one of SIMPLE, INDIVIDUAL, and INTERACT processes. Let FEAS be the

objective function value of the feasible solution. If FEAS < �Z; let �Z � FEAS. If �Z-BestLB < 1,
STOP.

Step 4. Let k � k � 1. If k > Maxiter, STOP; otherwise continue.
Step 5. If Iter > 20 let Iter � 1; k � k�; d � d=2, otherwise calculate step size tk and update

multipliers kijk.
Step 6. If kijk < 0, then set kijk � 0. Go to Step 2.
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4.2. Obtaining a feasible solution

We propose the following three di�erent processes to ®nd the feasible solution: SIMPLE,
INDIVIDUAL, and INTERACT.
· SIMPLE process makes a straightforward modi®cation to the solution of problem [P3], result-

ing in no changes in ship-to-berth assignments as well as ship-to-order assignments at each
berth. It attempts to ®nd the ®rst ``unsatis®ed ship'' in ascending order of service, that is ser-
viced before its arrival in the solution to [P3]. If an unsatis®ed ship is found, then the service is
postponed until its arrival time, thereby resulting in the corresponding delay in service of its
successors. This process is repeated until all the ships at each berth satisfy the relaxed con-
straints. In essence, this process ®nds a feasible solution but without any changes in order of
service in the solution to problem [P3].

· INDIVIDUAL process ®rst constructs a feasible assignment for each berth by changing the
starting time of service for unsatis®ed ships as done in SIMPLE process. Then, if there is an
idle time of the berth between two adjacent services of ships, a ship being scheduled for later
service is shifted in the idle time as long as it is serviced after its arrival. In this process no ships
are swapped between berths.
For the above procedure, we select a ship (ship j) with the minimum value of Wj, where Wj

given by Eq. (26) is potential time of wait for ship j. We will discuss this selection principle later.

Wj �
X
j02LU

�Dj ÿ Aj0 �; �26�

where LU is a set of ships consisting of unsatis®ed ship U and its successors except for ship j,
and Dj is the scheduled departure time of ship j.
A formal process is as follows:
Step 1. Select a berth (berth i). If all berths were examined, STOP.
Step 2. Select in ascending order of position in the service sequence a ship (ship U) being

serviced at berth i earlier than its arrival. If the previous ship U is the last ship serviced at berth i,
go to Step 1.

Step 3. Change the start time of service for ship U such that its service begins no earlier than its
arrival.

Step 4. Select a ship (ship j) among a set (set R) consisting of the successors of ship U in as-
cending order of position in the sequence of service. If the previous ship j is the last ship serviced
at berth i or there exists no idle time between services of ship U and its immediate predecessor, go
to Step 10.

Step 5. Compute Wj �
P

j02LU �Dj ÿ Aj0 �.
Step 6. Select the next ship j among set R. If the previous ship j is the last ship serviced at the

berth, then go to Step 7, otherwise go to Step 5.
Step 7. Identify a ship (2 LU ) with minimum Wj that can be shifted immediately before ship U

while its service begins after arrival. If no such a ship exists, go to Step 10.
Step 8. Shift the ship just before ship U.
Step 9. Go to Step 4.
Step 10. Compute new start times of service for all the successors of ship U. Go to Step 2.
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When changing the position of the service sequence for ship j, the ®nal assignments for the suc-
cessors of ship U are unknown. However, maintaining their present position is desirable. This is
because the present position is part of the optimal solution to [P3] and good assignment if the
successors arrive before their scheduled service. If their arrivals are later than the departure of
ship j in the revised sequence of service, its Wj is small. The selection of ship j with minimum Wj

likely yields another idle time of the berth in the new sequence of service. We could lower the
objective function value by shifting as many ships as possible in the idle time of the berth. If the
successors of ship U arrive before the departure of ship j, Wj should be large. This situation will
likely make them wait rather long for service. The above reasoning justi®es choosing a ship with
minimum Wj.
We examine the unsatis®ed ships in ascending order of position in the service sequence. If we do
this in reverse order, after processing one unsatis®ed ship all preceding unsatis®ed ships still re-
main unsatis®ed. However, in our process every time we process an unsatis®ed ship, we recal-
culate the start times of service for all of its successors. This may make unsatis®ed ships among
them become ``satis®ed ships''.

· INTERACT process is the same as INDIVIDUAL but with an additional process. If there
are still some idle times of a berth after the INDIVIDUAL process, they are retried, by
the additional process, to be used for the service of ships scheduled at other berths. The
way to ®nd a candidate for berth shifting is di�erent from INDIVIDUAL for signi®cant
savings in computational time. That is, selecting ships from the set V (the set of ships) in
their arrival order, a candidate is the ship ®rst encountered in the selecting process while it
is satis®ed with the following condition: the total of its staying time in port and the re-
sulting waiting time of its successors at the new berth is less than that at the originally
assigned berth. A more formal statement is as follows where E is the set of periods when
the berth is idle:
Step 1. Select a berth (berth i). If all the berth were examined, STOP.
Step 2. Select in ascending order of position in the service sequence a ship (ship U) being

serviced at berth i earlier than its arrival. If the previous ship U is the last ship serviced at berth i,
go to Step 1.

Step 3. Perform same as Steps 3±8 in INDIVIDUAL.
Step 4. Make a set E with a period when berth i is idle between the services for ship U and its

immediate predecessor in the sequence of service before shifting the ship in Step 8 of INDI-
VIDUAL.

Step 5. Select a ship from V in ascending order of arrival time. If all the ships are examined, go
to Step 10.

Step 6. If it is a satis®ed ship and assigned to berth i, go to Step 5.
Step 7. Find an idle time in E when it can be serviced after its arrival. If there exists no such an

idle time, go to Step 5.
Step 8. Calculate the total of staying time for it and its successors at berth i when it is moved to

berth i, and the total time at the berth where it is currently scheduled to be serviced. If the latter is
no larger than the former, go to Step 5.

Step 9. Shift it to berth i and go to Step 5.
Step 10. Compute new start times of service for all the successors of ship U. Replace the idle

time in E examined in Step 7 by the resulting periods split in idle condition. Go to Step 2.
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5. Computational experiments

The solution procedure was coded in FORTRAN 77 on a Sun S-4/2000E workstation. Com-
putation times reported here are in CPU seconds on this computer. Problems used in these ex-
periments were generated randomly, but systematically. We solve problems of 5, 7, and 10 berths,
each of which contains data on 25 and 50 ships, yielding 6 prototype problems. For each of these
prototypes, 10 problems were generated with di�erent seed sets for random numbers from an
exponential interval of ship arrivals and those from a 2-Erlangian handling time (these distri-
butions were obtained in our survey in the port of Kobe). Note here that the distribution of arrival
time is independent from that of handling time.

The objective function of the relaxed problem [P3] is the total of waiting and handling times
spent by incoming ships. Thus, in an optimal solution of [P3], ships are serviced in ascending order
of their handling times at each berth. This implies that if ship handling time increases with the
order of their arrivals, the feasible solution to [PD] likely gets close to optimal. From this insight,
we examined two additional variations from each of the 10 problems. We hereafter call these three

Table 3

Computational results for problems A

Problem size

(berths ´ ships)

Si SIMPLE INDIVIDUAL INTERACT

Gapa

(%)

CPU

(s)

Iterationb Gap

(%)

CPU

(s)

Iteration Gap

(%)

CPU

(s)

Iteration

5� 25 1 37.9 82.2 200.0 27.1 50.2 200.0 34.5 51.0 200.0

2 12.3 38.4 200.0 7.9 41.3 200.0 8.5 39.0 200.0

3 3.4 27.5 200.0 1.7 28.3 200.0 1.7 27.1 200.0

4 0.7 18.0 160.3 0.4 18.7 160.3 0.4 17.7 160.3

7� 25 1 49.2 115.0 200.0 43.1 67.1 200.0 54.2 62.2 200.0

2 13.6 56.9 200.0 11.7 50.6 200.0 14.4 64.1 200.0

3 3.3 38.9 200.0 2.8 35.6 200.0 3.4 37.3 200.0

4 0.5 26.7 200.0 0.3 24.2 168.1 0.3 24.4 168.1

10� 25 1 60.3 80.1 200.0 48.3 80.0 200.0 65.5 80.0 200.0

2 14.6 65.4 200.0 11.4 66.1 200.0 18.5 67.8 200.0

3 3.6 45.6 200.0 3.3 45.9 200.0 5.6 46.1 200.0

4 0.7 32.6 200.0 0.4 32.0 184.0 0.6 35.0 200.0

5� 50 1 117.8 718.1 200.0 65.1 733.7 200.0 96.7 755.9 200.0

2 38.5 593.4 200.0 15.1 591.4 200.0 24.4 617.7 200.0

3 12.4 470.9 200.0 3.5 470.9 200.0 5.5 491.0 200.0

4 2.4 291.8 200.0 0.6 292.7 200.0 0.8 306.4 200.0

7� 50 1 139.6 979.5 200.0 99.0 981.7 200.0 141.6 1019.1 200.0

2 33.4 798.9 200.0 21.1 804.2 200.0 30.1 841.6 200.0

3 9.9 636.2 200.0 5.0 641.1 200.0 7.1 659.8 200.0

4 2.0 388.4 200.0 0.8 392.5 200.0 0.9 402.1 200.0

10� 50 1 166.3 1357.4 200.0 145.5 1373.7 200.0 219.7 1428.7 200.0

2 32.7 1105.9 200.0 27.5 1109.3 200.0 41.6 1153.7 200.0

3 7.9 877.1 200.0 6.5 909.0 200.0 10.3 911.3 200.0

4 1.5 525.5 200.0 1.0 539.0 200.0 1.7 547.3 200.0
a Gap� (feasible solution value ) lower bound) ´ 100/lower bound.
b Iteration number at which the process terminates.
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variations problems A, B, and C. In problem B, the generated handling time for a particular ship
in problem A is reassigned to another ship such that it increases with ship arrival time. On the
other hand, it decreases in problem C. The former may be easy to solve in a sense that a ``good''
solution is likely obtained while the latter is di�cult.

Over all, 180 problems were tested for the experiments. The DBAP with all the ships arriving
before Si reduces to the SBAP; a solution of [P3] corresponds to an optimal solution to [PD]. This
suggests that better solutions are likely obtained, when all Sis get closer to the arrival time of the
last ship. Assuming Si for each i has a unique value in the experiments, we performed four
computations for each of the 180 problems with di�ering values of Si.

Tables 3±5 report average gap, CPU time, and iteration number when the computation ter-
minates for problems A, B, and C with di�erent seed sets. In the experiments Si was set to 1/2, 5/8,
3/4, and 7/8 of time duration between the ®rst and last arriving ships that are indexed by 1, 2, 3,
and 4 in the tables. Problems reported in Table 3 are generated with exponential ship arrival times
and Erlangian handling times. Those in Table 4 are the same as ones in Table 3 but with the

Table 4

Computational results for problems B

Problem size

(berths ´ ships)

Si SIMPLE INDIVIDUAL INTERACT

Gapa

(%)

CPU

(s)

Iterationb Gap

(%)

CPU

(s)

Iteration Gap

(%)

CPU

(s)

Iteration

5� 25 1 7.1 46.2 200.0 7.1 45.7 200.0 10.8 44.8 200.0

2 0.7 34.4 180.1 0.7 35.3 180.1 1.3 34.0 180.1

3 0.1 9.7 53.8 0.1 8.2 50.7 0.1 8.0 50.7

4 0.0c 0.1 1.0 0.0c 0.1 1.0 0.0c 0.1 1.0

7� 25 1 19.4 59.8 200.0 19.2 62.4 200.0 27.8 74.8 200.0

2 4.2 51.4 200.0 4.2 52.4 200.0 6.6 50.5 200.0

3 0.5 34.3 160.3 0.5 32.1 160.3 0.9 31.9 160.3

4 0.0c 0.1 1.1 0.0c 0.1 1.1 0.0c 0.1 1.1

10� 25 1 32.0 81.4 200.0 32.0 81.9 200.0 39.9 85.2 200.0

2 9.2 68.0 200.0 9.2 67.7 200.0 13.1 70.6 200.0

3 2.1 48.6 200.0 2.1 48.9 200.0 4.2 51.3 200.0

4 0.1 30.0 140.8 0.1 30.2 140.8 0.2 31.1 140.5

5� 50 1 8.1 718.2 200.0 8.0 719.1 200.0 12.3 748.4 200.0

2 0.2 188.6 60.7 0.2 190.5 60.7 0.2 196.1 60.7

3 0.0c 1.9 1.0 0.0c 1.9 1.0 0.0c 2.0 1.0

4 0.0c 1.4 1.0 0.0c 1.4 1.0 0.0c 1.5 1.0

7� 50 1 25.6 983.0 200.0 25.4 983.3 200.0 46.4 1024.1 200.0

2 2.9 807.2 200.0 2.9 800.9 200.0 7.5 834.9 200.0

3 0.0 67.5 20.9 0.0 67.1 20.9 0.0 69.6 20.9

4 0.0c 1.8 1.0 0.0c 1.8 1.0 0.0c 1.9 1.0

10� 50 1 53.1 1380.2 200.0 53.0 1438.3 200.0 76.1 1500.5 200.0

2 10.9 1146.8 200.0 10.9 1139.7 200.0 19.9 1209.1 200.0

3 1.2 1113.3 200.0 1.1 947.5 200.0 4.4 1059.0 200.0

4 0.0 122.4 40.8 0.0 123.3 40.8 0.0 130.2 40.8
a Gap� (feasible solution value ) lower bound) ´ 100/lower bound.
b Iteration number at which the process terminates.
c 10 solutions are all optimal.
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generated handling times reassigned to other ships. Problems in Table 5 have handling times
reassigned in reverse order.

The ®rst column in Tables 3±5 indicates the problem size (i.e., numbers of berths and ships).
Column 2 presents the start of the planning horizon, that is also the time when the last ship at
each berth leaves in the previous planning horizon (we assume Si for each i has the same value in
the experiments). In the subsequent columns shown are the gap between the best feasible solution
value (i.e., �Z) and the lower bound, computation time, and iteration number obtained by solution
procedures using SIMPLE, INDIVIDUAL, and INTERACT processes.

First, some problems were solved with the limit of 200 iterations; however no signi®cant
solution improvement was observed through the last 100 iterations. Hence we use the limit of
200 iterations for the computational experiments. Most problems reported in these tables re-
quired the maximum 200 iterations of the subgradient optimization algorithm. This was due to
the fact that objective function values for the test problems were always in millions and the
subgradient optimization procedure was terminated early only if the gap between the lower
bound and feasible solution value was less than 1 (i.e., the optimal solution was found).

Table 5

Computational results for problems C

Problem size

(berths ´ ships)

Si SIMPLE INDIVIDUAL INTERACT

Gapa

(%)

CPU

(s)

Iterationb Gap

(%)

CPU

(s)

Iteration Gap

(%)

CPU

(s)

Iteration

5� 25 1 51.3 52.6 200.0 28.0 48.8 200.0 27.2 50.6 200.0

2 23.5 43.4 200.0 12.0 43.1 200.0 11.4 44.1 200.0

3 8.9 32.7 200.0 4.5 33.2 200.0 4.3 32.4 200.0

4 2.2 24.1 200.0 1.6 22.9 200.0 1.6 23.4 200.0

7� 25 1 53.7 79.1 200.0 28.4 67.4 200.0 28.7 65.5 200.0

2 21.4 56.1 200.0 11.6 57.2 200.0 12.0 56.4 200.0

3 7.5 42.1 200.0 5.3 43.2 200.0 4.9 42.8 200.0

4 2.0 32.9 200.0 1.9 33.5 200.0 1.9 33.4 200.0

10� 25 1 54.3 87.7 200.0 30.5 88.5 200.0 33.7 88.1 200.0

2 21.6 75.3 200.0 11.6 76.5 200.0 13.5 76.0 200.0

3 7.7 55.1 200.0 4.1 56.4 200.0 4.4 56.5 200.0

4 1.7 42.5 200.0 2.1 43.1 200.0 1.8 43.8 200.0

5� 50 1 120.2 767.5 200.0 61.1 772.4 200.0 66.5 796.4 200.0

2 52.2 646.8 200.0 25.9 650.9 200.0 30.3 668.2 200.0

3 21.5 536.4 200.0 10.5 537.1 200.0 11.4 553.6 200.0

4 6.2 362.1 200.0 2.9 359.7 200.0 3.2 372.5 200.0

7� 50 1 142.5 1049.8 200.0 58.0 1050.5 200.0 73.5 1081.2 200.0

2 57.5 874.2 200.0 27.1 884.1 200.0 31.2 897.1 200.0

3 21.2 715.4 200.0 11.7 720.8 200.0 12.5 738.0 200.0

4 5.4 473.1 200.0 3.1 477.7 200.0 3.4 494.7 200.0

10� 50 1 171.2 1570.3 200.0 67.5 1508.5 200.0 88.1 1544.3 200.0

2 57.8 1221.8 200.0 25.8 1246.4 200.0 33.6 1320.0 200.0

3 19.1 999.2 200.0 11.7 1031.7 200.0 13.2 1091.5 200.0

4 4.6 698.3 200.0 3.4 675.9 200.0 3.5 669.2 200.0
a Gap� (feasible solution value ) lower bound) ´ 100/lower bound.
b Iteration number at which the process terminates.
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For all three problems, INDIVIDUAL yields the smallest gaps among the three procedures,
probably identifying better solutions. Although the three procedures are di�erent in complexity,
there is no signi®cant di�erence in overall CPU time. The gaps obtained by INDIVIDUAL are
almost less than 10% and 20%, respectively for the 25 and 50 ship problems A with Si > 1, and
better for problems B.

As expected, good solutions are likely identi®ed in problems B because their gaps are smaller
than those for the corresponding problems A. For all problems with Si � 4 each of the three
procedures identi®es the optimal solutions. Further, in the 5 and 7 berth problems with Si � 4 all of
the procedures yield the optimal solutions. The optimal solution were mostly found at iteration 1,
i.e., the ®rst relaxed problems found it.

Problems C do not necessarily seem di�cult to obtain good solutions, since some gaps are
smaller than those for problems A while the others are larger. INDIVIDUAL and INTERACT
yield the gap less than 30% with 25 ships.

For each size of the problem in these tables, every procedure computes a smaller gap with
increasing Si. This is because large Sis are more likely the relaxed solutions satisfying arrival
restrictions. The gap is generally increasing with problem size. Noticing that the gap refers to the
worst case quality of the solution, the procedure we developed seems practical.

6. Conclusions

In this paper we present a heuristic procedure for obtaining near optimal ship-berth-order
assignments for the dynamic berthing plan. As stated in Section 2, the public berthing system
employing the dynamic berth allocation is desired for most of Japan's container ports. The
throughput for these ports highly depends on ``good'' berth allocation plans. It is found from the
experiments conducted that the proposed algorithm is adaptable for the practical size of prob-
lems.

This paper present, given the number of berths to operate, an algorithm for planning of the
ship-berth-order assignment. However, it can also be useful for decision-making on how many
berths to operate. For this, given observed statistics of ship calling, one computes the DBAP with
several numbers of berths and then ®nds, as the optimal solution, the least number of berths with
its objective function value no more than the deserved value.
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