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H I S T O R I C A L  P E R S P E C T I V E S  H I S T O R I C A L  P E R S P E C T I V E S   «

Applications of Kalman Filtering in Aerospace 1960 to the Present 

Nothing speaks more eloquently of the impact of 

 Kalman fi ltering on society than the 2008 Draper Prize 

awarded by the National Academy of Engineering to 

Rudolf Emil Kalman “for the development and dissemina-

tion of the optimal digital technique (known as the Kal-

man fi lter) that is pervasively used to control a vast array 

of consumer, health, commercial, and defense products.” 

To quote further from the announcement of the Awards 

 Committee, “The Kalman fi lter revolutionized the fi eld of 

control  theory and has become pervasive in engineering 

systems.” The latter statement is especially pertinent with-

in the aerospace community.

In the 1960s, the Kalman filter was applied to naviga-

tion for the Apollo Project, which required estimates of the 

trajectories of manned spacecraft going to the Moon and 

back. With the lives of the astronauts at stake, it was essen-

tial that the Kalman filter be proven effective and reliable 

before it could be used. This article is about the lead up 

to Kalman’s work, key discoveries in the development and 

maturation of the filter, a sampling of its many applications 

in aerospace, and recognition of some who played key roles 

in that history.

KALMAN FILTER DEVELOPMENT

The development and early applications of the Kalman 

filter occurred during the Cold War between the Soviet 

Block and the North American Treaty Organization. Early 

Soviet triumphs in aerospace technology leading to the 

1957 launch of the first artificial satellite and manned space 

launches starting in 1959 convinced U.S. leadership of the 

need for improving aerospace technology in the United 

States. The federal government increased funding for re-

search and encouraged aerospace companies to devote 

more of their efforts to advanced research.

The Research Institute for Advanced Studies

In 1955, Glen L. Martin Company Vice President George 

Trimble sought to establish a center for advanced research 

comparable to what was then being done in the Soviet 

Union [1]. G. Trimble appointed electronics and propulsion 

control engineer Welcome Bender as director [2]. In the next 

few years, W. Bender established the Research Institute for 

Advanced Studies (RIAS) in a Baltimore suburb and re-

cruited its senior management and staff. He recruited Lou 

Whitten from Johns Hopkins University, who hired Robert 

W. Bass in June of 1956 to help in selecting and recruiting 

technical staff. R.W. Bass had completed the Ph.D. at John 

Hopkins in 1955 under Fields Medalist Solomon Lefschetz 

and published seminal contributions in control theory in 

1956 [2]. R.W. Bass first met R.E. Kalman in March of 1956 at 

an ASME meeting hosted by Johns Hopkins University [1].

S. Lefschetz came to the United States after graduating 

from École Centrale in Paris in 1905. He taught mathemat-

ics to junior staff at Westinghouse Electric Company after 

he had lost both hands and forearms in a transformer ex-

plosion in the laboratory in 1907. In 1910 he enrolled in the 

graduate mathematics program at Clark University, where 

he was a classmate of rocket pioneer Robert H. Goddard. 

S. Lefschetz was a visiting professor at Princeton in 1924 

and became a professor of mathematics there in 1925. He 

was thesis advisor to Richard E. Bellman, among others. 

L. Whitten approached S. Lefschetz to join RIAS in 1956, 

but S. Lefschetz declined. In 1957, when S. Lefschetz was 

a Princeton emeritus professor, R.W. Bass and L. Whitten 

finally persuaded him to head up the mathematics and 

control groups at RIAS.

The Work of R.E. Kalman and R.S. Bucy

On the recommendation of R.W. Bass, S. Lefschetz hired 

R.E. Kalman in 1957 [1]. R.E. Kalman in turn recommended 

Richard S. Bucy, who joined him at RIAS in 1958 [1]. Soon 

after that, they were funded by the Air Force Office of Sci-

entific Research (AFOSR) to perform basic research for esti-

mation and control of aerospace systems [3].

In November of 1958 R.E. Kalman conceived the idea of 

recasting in state-space form the optimal estimation meth-

ods developed by Norbert Wiener and Andrei N. Kolmogo-

rov in the 1940s. These earlier methods had been derived 

in the frequency domain, using power spectral densities 

to characterize statistical properties of the random pro-

cesses involved. R.E. Kalman and R.S. Bucy reformulated 

the problem in the time domain, using a generalized state-

space form of a linear differential equation introduced in 

1908 by Paul Langevin to model Brownian motion, the er-

ratic motion of minute particles in fluids reported by Robert 

Brown in 1827. Mathematical models for Brownian motion 
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had been studied by many, including Louis Bachelier in 

1900, Albert Einstein in 1905, and Norbert Wiener between 

1920 and 1924. P. Langevin’s differential equation included 

as a nonhomogeneous term a zero-mean random process 

uncorrelated in time. A compatible integral for white noise 

processes would not emerge until Kiyoshi Itô presented a 

version of the stochastic calculus in 1961, but R.S. Bucy and 

R.E. Kalman were able to proceed without it.

The Riccati Equation

According to R.W. Bass, who was at RIAS at the time, it was 

R.S. Bucy who recognized that the Wiener-Hopf equation 

used to derive the Wiener filter is equivalent, under the as-

sumption that the state-space model is finite dimensional, 

to a nonlinear ordinary differential equation studied by 

Italian mathematician Jacopo F. Riccati around 1720. J.F. 

Riccati had shown how a certain nonlinear differential 

equation (now called the Riccati equation) could be trans-

formed into a system of linear equations.

The dependent variable in the Riccati differential equa-

tion of the Kalman-Bucy filter is the covariance matrix of 

the estimation error, defined as the difference between the 

estimated state vector x̂  and the true state vector x.

R.E. Kalman had studied the behavior of linear dynamic 

systems in discrete time for his 1954 master’s thesis at MIT. 

In 1959 he recast the linear stochastic dynamic model of the 

Riccati equation from continuous time to discrete time and 

derived the optimal linear feedback gain for an estimator. 

The derivation requires only the vector mean and covari-

ance matrix of the underlying probability distribution, and 

the optimal gain computation requires only the solution to 

the matrix Riccati equation. The resulting estimator is now 

called the Kalman filter. The analogous filter in continuous 

time is called the Kalman-Bucy filter.
R.E. Kalman published the discrete-time filter in a me-

chanical engineering journal in 1960 [5] and (with R.S. 

Bucy) the continuous-time filter in 1961 [6]. In the mean-

time, physicist Peter Swerling had derived an equivalent 

formulation of the Kalman filter and applied it to the 

problem of estimating the trajectories of satellites using 

ground-based sensors [7]. His results were published in an 

astronomy journal the year before [5] appeared. P. Swer-

ling had derived the equivalent Riccati equation from the 

model for a recursive least-mean-squares estimator. The 

main differences are that R.E. Kalman’s approach makes 

fewer  assumptions about the underlying stochastic process 

model, and the resulting formula for the observational up-

date of the Riccati equation has better numerical stability in 

computer implementations.

APPLICATION TO THE APOLLO MOON PROJECT

The Role of Stanley F. Schmidt

When [5] was published, S.F. Schmidt, who was chief of 

the Dynamic Analysis Branch at the National Aeronautics 

and Space Administration (NASA) Ames Research Cen-

ter (ARC) in Mountain View, California [8], invited R.E. 

 Kalman to present his results at ARC and subsequently vis-

ited R.E. Kalman at RIAS. S.F. Schmidt felt that the Kalman 

filter might provide the solution to a problem his organiza-

tion was tasked to solve, namely, the trajectory estimation 

and control problem for sending astronauts to the Moon 

and back. The effort at ARC became part of the Apollo Proj-

ect after its announcement by President John F. Kennedy 

on May 25, 1961.

By early 1961, S.F. Schmidt’s group had implemented the 

Kalman filter in digital computer simulations of the circum-

lunar navigation problem. S.F. Schmidt realized that the fil-

ter could be divided into two distinct parts, with one part 

for time periods between sensor outputs and another part 

for incorporating measurements. This partitioning of the 

estimation problem was advantageous for the  Apollo mis-

sion because hours could elapse between sensor  outputs.

The effort at ARC accomplished several key steps in the 

development of the Kalman filter as a practical method 

for real-time onboard navigation in the Apollo mission. 

It proved that the Kalman filter worked as predicted and 

that it was capable of solving the Apollo guidance and 

navigation problem on a mainframe computer with 36-

bit  floating-point arithmetic. The ARC group used Monte 

Carlo analysis of the problem to prove that estimation 

uncertainty was modeled with sufficient accuracy by the 

matrix Riccati equation. Additional key steps were the de-

velopment of what is now called the extended Kalman filter 

(EKF, described below) and the use of Monte  Carlo analy-

sis to show that nonlinearities of the trajectory model did 

not compromise the accuracy of the EKF for the ranges of 

errors expected during the Apollo missions.

The solution of the matrix Riccati equation was found to 

provide a quantitative measure of how well the state vari-

ables can be estimated in terms of mean-squared estima-

tion errors. This result proved to be much more practical 

and useful than the concept of observability from least-

squares methods, which provided only a qualitative indica-

tion of whether or not the unknown variables are uniquely 

 determinable from the data. As a consequence, the matrix 

Riccati equation from the Kalman filter was soon recog-

nized as a practical model for predicting the performance 

of sensor systems, and it became the standard model for 

designing aerospace sensor systems to meet specified per-

formance requirements.

The work at ARC uncovered numerical stability prob-

lems in solving the matrix Riccati equation in finite pre-

cision arithmetic and showed that this behavior could be 

influenced by changing the order of computing associa-

tive matrix products such as A (BC ) 5 (AB )C.  This insight 

eventually led to major improvements in solution methods 

for matrix Riccati equations.

S.F. Schmidt was quick to share his results with oth-

ers, including contacts at Lockheed Missiles and Space 
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 Company in nearby Sunnyvale, California, and Richard H. 

Battin at the Instrumentation Laboratory (now the Charles 

Stark Draper Laboratory) of MIT. In 1961, MIT won the 

NASA contract for developing an onboard guidance and 

navigation system for the Apollo spacecraft. Kalman filter-

ing became an integral part of the Apollo navigation sys-

tem from that point forward [9].

Extended Kalman Filter

Much of the earlier work on the estimation and control 

of space trajectories used linearized approximations for 

small perturbations from nominal trajectories to linearize 

the guidance and navigation problem, an approach that 

worked well in most applications. In S.F. Schmidt’s early 

evaluations of the Kalman filter, his group evaluated the 

effects of nonlinearities by using Monte Carlo simulations 

of the true trajectory, which is not precisely known dur-

ing the actual missions, as well as the estimated trajectory. 

These studies demonstrated that the filter could achieve 

excellent performance by linearizing the problem about 

the estimated trajectory, an approach now called extended 
Kalman filtering. Using extended Kalman filtering, the esti-

mated trajectories could be shown to converge to the true 

trajectories, even with unusually large initial trajectory 

 estimation errors.

Apollo Onboard Trajectory Estimation

The navigation and guidance system developed at MIT 

included an onboard inertial navigator for measuring 

 accelerations during thrusting periods as well as an on-

board optical space sextant for measuring angles between 

stars and points on the Earth and Moon.

Trajectory estimation and control was critical for the 

Apollo Project. As illustrated in Figure 1, the outbound 

 trajectory to the Moon must have its closest approach on 

the far side of the Moon at a height of about 97 km (60 mi) 

above the surface so that the spacecraft can  efficiently 

transfer to a circular orbit about the Moon at that alti-

tude. However, the Moon is a moving target, traveling at 

about 1 km/s.

The return trajectory back to Earth is even more criti-

cal. The Apollo Command Module with its crew of three 

must enter the atmosphere at a carefully controlled descent 

angle for atmospheric braking. If the descent angle were 

too steep, the Command Module would burn up; too shal-

low, and it would skip back out into space.

The EKF was used at ARC and MIT in ground-based 

simulations to determine the required accuracies of the 

Apollo space sextant and inertial navigator and to design 

observation schedules for using the onboard space sextant 

to satisfy mission navigation requirements without over-

taxing the three-man crew. Meanwhile,  Joseph P. O’Malley 

at the Space and Information Systems Division of North 

American Aviation, the prime contractor for the Apollo 

Command and Service Modules containing the astronauts 

and supporting systems, had independently derived and 

used the Riccati equation implementation of P. Swerling 

[7] for estimating propellant requirements for midcourse 

trajectory corrections on the Apollo missions.

James E. Potter and Square Root Filtering

Apollo trajectory simulations at ARC and MIT were most-

ly done on IBM 704 mainframe computers and later mod-

els with similar arithmetic processing. These simulations 

used 36-bit floating point arithmetic, which was adequate 

for trajectory simulations but marginal for implementing 

the Riccati equation solution for the measurement up-

dates in the Kalman filter. Performance was not reliable 

in 36-bit floating point arithmetic, and the Apollo flight 

computer would have to implement the Kalman filter in 

15-bit fixed-point arithmetic. Microprocessors were still a 

long way off.

J.E. Potter was at that time a graduate student in math-

ematics at MIT, working part time at the Instrumentation 

Laboratory on the Apollo Project. He took the problem 

home with him one Friday afternoon and arrived back on 

Monday with a solution. The trick was to use a Cholesky 

factor of the covariance matrix as the dependent variable 

in an equivalent Riccati equation. The solution was bril-

liant, and the improvement was profound. The approach 

came to be called square-root filtering, and alternative 

implementations of square-root filters with better nu-

merical stability were soon discovered. The more compu-

tationally efficient implementations by Neil A. Carlson, 

 Gerald J. Bierman, and Catherine Thornton use tri angular 

Cholesky factors of the covariance matrix of estimation 

uncertainty [4]. G.J.  Bierman once suggested a rule of 

thumb for the improvement of square root filtering over 

conventional Kalman filtering as “the same accuracy with 

half as many bits” of precision.

J.E. Potter’s implementation of the Kalman filter was 

programmed into the Apollo Guidance Computer, de-

signed by an MIT team led by Eldon Hall, and executed in 

15-bit arithmetic to navigate to the Moon and back [10].

J.E. Potter’s method solves only one part of the Riccati 

equation, namely, modeling the effects of measurements 

on trajectory estimation uncertainty. The rest of the Riccati 

equation models the effect of random disturbances, which 

were insignificant for the Apollo navigation  problem. 

FIGURE 1 Nominal Apollo trajectories, drawn approximately to 

scale in nonrotating coordinates. The trajectory control problem is 

further complicated by the orbital velocity of the Moon around the 

Earth at about 1 km/s. The Moon completes nearly a quarter of its 

orbit around the Earth during the mission to the Moon and back.

Earth Moon
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FIGURE 2 Inertial navigation error Schuler oscillations in (a) position and (b) velocity caused 

by 1025 g output offset error from the north-pointing accelerometer. During automatic at-

titude alignment of the inertial navigation systems (INSs), the underlying linear dynamic 

model is used in a  Kalman filter to detect and correct for such errors. To illustrate the Schul-

er oscillation patterns, the simulated data represent about 10 h of INS operation without any 

other error sources. The time required for alignment is typically on the order of 10 min.

 Extensions of the square-root solution to the Riccati equa-

tion to account for the effects of disturbances evolved in the 

1960s and 1970s [4].

Kalman Filter Tuning

Applications of the Kalman filter for the Apollo Project 

required initial values for the covariance matrix of esti-

mation uncertainty and the estimated system state vector. 

These implementations also required covariance ma-

trices for sensor output noise and for random dynamic 

disturbances of the system state vector. In many of these 

applications, the values for these parameters had to be de-

termined from test results, error analysis, and engineer-

ing judgment. The process of adjusting these parameter 

values, based on analysis of filter performance, is called 
filter tuning. Engineering judgment, for example, often as-

signs conservative values to the initial covariance matrix 

of estimation uncertainty, with variances somewhat larger 

than those derived from analysis. This tuning has been 

shown to improve the filter response time [11]. Although 

sensor noise covariance matrices are often provided by 

the sensor manufacturers, obtaining suitable values for 

the covariance matrix of dynamic disturbance noise gen-

erally requires some iterative tuning based on observed 

filter performance.

APPLICATIONS TO INERTIAL NAVIGATION SYSTEMS 

Inertial Navigation

Although rocket pioneer R.H. Goddard and the Peen-

emunde rocket scientists used inertial sensors for naviga-

tion and control of missiles, a complete navigation system 

using inertial sensors did not emerge until the 1940s  under 

Charles Stark Draper, considered to be “the  father of inertial 

navigation.” C.S. Draper established the  Instrumentation 

Laboratory at MIT as a major player in the early develop-

ment of inertial navigation. In the 1960s, engineers at MIT 

designed the inertial navigation system (INS) for sensing 

and controlling rocket thrusting during trajectory changes 

of the Apollo spacecraft [12]. The dominant inertial sensor 

errors for the Moon missions were unpredictable shifts in 

output biases of the  gyroscopes and  accelerometers. These 

shifts could be corrected by observing  accelerometer 

 outputs during 0-g coasting periods and observing the 

buildup of attitude  errors using the space sextant, which 

was mounted to a common base with INS, to observe the 

known directions to reference stars. These corrections did 

not require a Kalman filter. However, once the Kalman 

filter was introduced in the Instrumentation Laboratory, 

it was used to calibrate inertial sensors (gyroscopes and 

accelerometers) for all applications of inertial navigation, 

and thus the Riccati equation became a standard model for 

relating inertial sensor performance to inertial navigation 

performance. In the 1960s, Thomas L. Gunckel II brought 

Kalman filtering from Stanford University to Autonetics, 

another major developer of high-precision inertial naviga-

tion. The Kalman filter soon became the dominant tool for 

the design and implementation of inertial navigation sys-

tems throughout the industry and for the integration of in-

ertial navigation systems with other sensors. S.F. Schmidt 

played a major role in the integration of an INS and radar 

system on the C-5A aircraft [8], the first airborne imple-

mentation of a Kalman filter for sensor integration.

Modeling INS Error Dynamics

INS errors behave differently when navigation is imple-

mented in Earth-fixed coordinates, due principally to the 

curvature and vertical gradient of the gravitational field 

in the near-Earth environment. Vertical navigation errors 

in position and velocity tend to grow exponentially, and 

horizontal errors tend to induce oscil-

lations with a period equal to that of a 

satellite in a circular orbit at the same 

altitude as the INS. When coupled with 

Earth rotation, the horizontal naviga-

tion errors behave like a Foucault pen-

dulum with that period, as illustrated 

in Figure 2. These error dynamics can 

be represented by a linear state-space 

model. The pendulum period, which is 

about 84.4 min at sea level, was discov-

ered in 1923 by Maximilian Schuler in 

his analysis of gyrocompassing errors 

[13]. This period is called the Schuler 
period [12].

Some sort of barometric or radar 

altimeter is needed to stabilize ver-

tical errors. The accuracy of inertial 

 navigation can also be improved sig-

nificantly if the Schuler  oscillations 
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can be detected and corrected us-

ing auxiliary position, velocity, or 

acceleration sensors. For this pur-

pose, early inertial systems used star 

trackers to measure tilt  errors and 

velocity sensors to detect Schuler 

oscillations. Velocity sensors include 

water speed sensors for ships, and 

airspeed sensors or Doppler radar 

for aircraft. Except for applications 

where Global Navigation Satellite 

System (GNSS) signals are inacces-

sible (underground or in submarines, 

for example), most present-day INS 

applications use GNSS receivers as 

low-cost auxiliary sensors.

Applications of Kalman filtering 

in inertial navigation include sensor 

calibration, INS alignment, and the 

detection and compensation of INS 

navigation errors.

In sensor calibration, inertial sensor errors are esti-

mated and compensated prior to navigation. This task 

requires control of the sensor inputs, such as rotation 

rates or  acceleration components, while the sensor 

outputs are measured [14].

In INS alignment, attitude is estimated from auxiliary 

information. INS alignment aboard parked aircraft or 

docked ships, for example, uses stochastic models for the 

random dynamic disturbances of the host vehicle. In simi-

lar fashion, alignment of an INS in a carrier-based aircraft 

or airborne missile can use the outputs from the INS in the 

host vehicle during maneuvers prior to launch in a process 

called transfer alignment.

Detection and compensation of INS navigation errors 

uses auxiliary sensors such as INS-based star trackers 

for attitude estimation or radio-navigation aids for posi-

tion  estimation.

Integrated Calibration Implementations

The simultaneous calibration, alignment, and error correc-

tion of complex inertial navigation systems has been im-

plemented using Kalman filters. By augmenting the state 

vector of the navigation error model with the unknown 

calibration parameters of the gyroscopes and accelerome-

ters, the  parameter estimation problem becomes part of the 

state-estimation problem. A schematic of this implementa-

tion for a gimbaled INS is shown in Figure 3. To reduce the 

computational load, prefiltering in the form of data com-

pression by measurement averaging can be implemented 

with minimal degradation in the performance of the filter 

[14]. This approach can be made to work with fairly complex 

models for the gyroscope and accelerometer errors, pro-

vided that the system excitation trajectories of attitude and 

acceleration during calibration can be designed to provide 

observability of the sensor parameters [14]. This approach 

was used for INS calibration on the F-111, Minuteman (I, II 

and III), and Peacekeeper (Missile X) programs.

RADAR TRACKING

Funding for the development of the Wiener filter in the 

1940s was directed toward radar tracking of aircraft for 

automatic control of antiaircraft guns. These tracking fil-

ters were used when computers were integrated with ra-

dar systems in the 1950s, but more sophisticated Kalman 

filter models for aircraft tracking came into use in the 

1960s. As computer technology matured, EKFs for radar 

tracking would migrate from ground-based radars, to air-

borne radars, and eventually to radar tracking systems on 

missiles.

NASA was formed in 1958, the same year the United 

States launched its first satellite, Explorer I. This satellite 

was designed by the U.S. Army’s Jet Propulsion Labora-

tory (JPL), managed by the California Institute of Technol-

ogy. The army had contracted with JPL to set up portable 

radar installations around the world to track Explorer I. 

JPL and the radar project were transferred to NASA when 

it was formed later in 1958. The radar tracking network 

would evolve into the NASA Deep Space Network, which 

was used to track the Apollo spacecraft and many gen-

erations of space exploration missions. Extended Kalman 

filtering became an integral part of this spacecraft tracking 

system, as well as most radar tracking systems in aero-

space  applications.

Real-time, online applications in missile defense include 

estimating and predicting reentry vehicle (RV) position 

from ground-based radar data. Early testing at White Sands 

Missile Test Range led to better methods for detection and 

tracking of RVs designed with low observability to deter 

acquisition and tracking. Similar radar tracking methods 
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in 6 min.
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were developed for Shuttle Orbiter Operations to estimate 

vehicle trajectories as an aid to ground-based personnel in 

 establishing and maintaining mission control.

Offline applications include estimation and correction 

of  radar errors such as azimuth bias, elevation bias, and 

survey (base location) errors. This approach is used in the 

United States on the Eastern Test Range, White Sands Mis-

sile Range, and Western Test Range. These techniques have 

also been used to estimate the trajectories of thousands 

of Earth satellites and space debris as well as for verify-

ing the accuracy of onboard aircraft navigation systems 

by comparison with Kalman filtered data from ground-

based sensors.

GLOBAL NAVIGATION SATELLITE SYSTEMS

The first operational GNSS, the Global Positioning System 

(GPS), was put into service in 1993 by the U.S. Depart-

ment of Defense. Kalman filtering played a critical role 

in the development of the GPS, which has been described 

as “one enormous Kalman filter” [15]. This Kalman filter 

has a large system state vector, including the trajectories 

of the 24+ satellites, the drift rates and phases of all system 

clocks, and hundreds of parameters related to atmospheric 

propagation delay as a function of time and location. The 

GPS  uses precision receivers all over the world as sensors 

for estimating these variables. In addition, every GNSS re-

ceiver uses an EKF to estimate its own position and veloc-

ity, and to synchronize the receiver clock with GPS time.

GNSS/INS Integration

There are several methods for integrating GNSS receivers 

with INS. Some of the simplest are called loosely coupled in-

tegration methods, which use GNSSs as an auxiliary posi-

tion sensor to detect and correct INS navigation errors, the 

same way an altimeter is used to stabilize vertical errors. 

On the other end of the spectrum, some of the more tightly 

coupled implementations use the GNSS-determined pseu-
doranges from the satellite antennas to receiver antennas as 

sensor measurements to estimate receiver clock errors and 

time-varying parameters of the inertial sensors.

GNSS Augmentation

Currently, four space-based GNSS augmentation systems 

are under development worldwide. These systems include 

the Wide Area Augmentation System (WAAS) in the Unit-

ed States, the European Geostationary Navigation Overlay 

System (EGNOS) in the European Union, the Multifunc-

tional Transport Satellite (MTSAT) Based Augmentation 

System (MSAS) in Japan, and Geostationary (GEO) and 

GPS Augmented Navigation (GAGAN) in India. These aug-

mentation systems are intended to eventually replace cur-

rent ground-based air traffic control by providing seamless 

navigation of civil aviation using signals from satellites for 

departure, en route, arrival, and approach operations. All 

of these systems depend heavily on Kalman filtering.

WAAS is also used to support Federal Aviation Admin-

istration (FAA) safety, capacity, and efficiency initiatives. 

These initiatives are designed to provide more efficient 

use of airspace, improved flight operation procedures, 

and  better situational awareness during aircraft ground 

 operations. Augmented GPS is the primary radio naviga-

tion system for the foreseeable future. Phase 1 of WAAS, 

approved by the FAA, has been used since 2003.

Differential corrections for improving the accuracy and 

integrity of GNSS signals are being developed for use in 

correction and verification (C&V) processors, which imple-

ment nonlinear Kalman filters. Some of these processors 

track GNSS and geostationary satellite orbits and clock es-

timation errors using the carrier phase smoothed pseudor-

anges. These Kalman filters use 11 state variables [15].

Another set of C&V Kalman filters uses data from the 

1575.42 MHz L1 signal carrier and 1227.6 MHz L2 signal 

carrier from the GPS satellites to estimate the global distri-

bution of ionospheric propagation delays and differential 

phase biases of the L1 and L2 carriers in receivers and sat-

ellites. The state variables in these Kalman filters include 

delays at ionospheric grid points on a 5 3 50 partitioning 

of the northern and southern hemisphere, estimated using 

pseudoranges to satellites visible at the wide reference sta-

tion (WRS) ground receivers. Two independent Kalman fil-

ters are used to estimate the ionospheric delay at the grid 

points and to estimate the receiver and satellite differential 

biases. Each of these filters uses 250 state variables.

The resulting corrections and integrity estimates are 

uplinked through GEO satellites to the user receivers. 

This system, called the GEO Communication and Com-

mand Subsystem (GCCS), contains two Kalman filters, 

one for GEO ionospheric delay and delay rate estimation 

and one for GEO range, range rate, and range acceleration 

estimation. The onboard GNSS receivers may also be in-

tegrated with inertial navigation systems, using another 

Kalman filter [15].

PUSHING THE ENVELOPE FOR 

NONLINEAR APPLICATIONS

Limits of Extended Kalman Filtering

Extended Kalman filtering has been successful for many 

applications in which the errors introduced by linear ap-

proximations are insignificant compared to the modeled 

errors due to measurement noise and dynamic disturbance 

noise, a condition called quasi-linearity. The Apollo naviga-

tion problem and the GPS receiver filtering problem are 

quasi-linear in this sense. The following are some addition-

al nonlinear problems that have been found to be quasi-lin-

ear for the expected ranges of linear approximation errors.

Trilateration

Trilateration is the problem of determining the relative geo-

metric locations of objects, given only the distances measured 
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between them, including cases where only the distances to 

the nearest few objects are measurable. A pre-GPS appli-

cation called relative navigation [16] used the Joint Tactical 

Information Distribution System (JTIDS), a secure communi-

cations system developed for the U.S. military. JTIDS imple-

mentation requires tight synchronization of the transceiver 

clocks, the relative phasings of which are used to determine 

the relative ranges between all pairs of transceivers. The so-

lution, using extended Kalman filtering, requires additional 

information to orient the network relative to Earth.

Magnetic Detection and Location

A nonlinear detection and estimation problem arises in 

antisubmarine warfare using airborne magnetometers or 

magnetic gradiometers to measure detectable disturbances 

of the background magnetic field caused by the presence 

of a submarine. The objective in this case is to detect and 

locate submarines using the magnetic sensor signals on-

board low-flying aircraft. A single sample of magnetic field 

components at a fixed location has insufficient information 

for locating the dipole, but three components of dipole loca-

tion as well as the three components of its dipole moment 

are observable from a sequence of sensor measurements 

made along a search trajectory past the magnetic source, 

as illustrated in Figure 4. This signal filtering and detection 

problem was solved in the frequency domain by John E. 

Anderson in 1949 [17]. A time-domain solution to the de-

tection and tracking problem [18] uses a signal detection 

method developed by Fred. C. Schweppe in 1965 [19], based 

on the Kalman filter model.

Essentially the same dipole detection and tracking prob-

lem was solved in an approach to automatic steering of ve-

hicles developed by Robert Parsons and Wei-Bin Zhang at 

the University of California at Berkeley in the late 1980s [20]. 

In this application, magnetic “nails” (dipoles) are inserted 

in the intended vehicle pathway several meters apart along 

a line down the middle of the pathway. Three-axis magnetic 

sensors mounted near the front and bottom of the vehicle 

body are used to measure the magnetic field disturbances 

caused by the magnetic nails, and the sensor signals are used 

in an EKF to estimate the instantaneous location of the ve-

hicle relative to the magnetic nails. The automated steering 

control implementation uses the estimated relative location 

to calculate lateral steering error. This EKF  implementation 

is capable of estimating the lateral location of the vehicle 

relative to the dipoles within an RMS uncertainty of about 1 

mm [18]. The associated Schweppe likelihood ratio detector 

[19] can be used to determine the orientations of the indi-

vidual dipole moments so that dipole orientations can be 

used to encode information for enhancing steering control, 

such as curvature of the path ahead.

Adaptive Kalman Filtering

In some applications of Kalman filtering, parameters 

of the Kalman filter model are either unknown or time 

 varying. For example, the variance of a noise source in 

flight can vary from the value measured in the laboratory. 

In some cases, the variation is large enough to degrade 

performance but small enough that the variance can be 

included as a state variable in an EKF. This approach is 

called adaptive Kalman filtering, because the resulting filter 

adapts to small changes in model parameters, so long as 

the nonlinearities do not significantly corrupt filter per-

formance [21], [22].

Sample-Based Methods for Nonlinear Applications

Failures of Extended Kalman Filtering

The original derivation of the Kalman filter [5] does not 

require that the underlying error distributions be Gauss-

ian, even though linearity of the Kalman model preserves 

Gaussianity of distributions. There was some concern 

when Monte Carlo simulations of the more nonlinear 

 applications using extended Kalman filtering produced 

 severe distortions of initially Gaussian distributions. More 

importantly, however, it was found that the EKF did not 

always accurately propagate the true mean and covari-

ance of the distributions of state variables and measure-

ment variables.

When the measurement variables are nonlinear func-

tions of the state variables, errors can arise in the predicted 

measurement and in the calculated covariance of its uncer-

tainty. When the differential equation for propagating the 

state variables is nonlinear, errors can arise in the  predicted 

FIGURE 4 Geometry of the airborne magnetic detection and lo-

cation problem. Three-axis magnetic-field sensors are housed 

in the aircraft tail extension to isolate them from aircraft noise. 

The magnetic field vector (red) is sampled at intervals, and an 

extended Kalman filter is used to detect field perturbations due 

to any submerged magnetic dipole (green) in the presence of the 

background geomagnetic field and harmonic noise due to sea-

surface wave motion. The relative location and magnetic moment 

components of the submerged dipole are part of the state vec-

tor. The magnitude of the estimated dipole moment vector can be 

used as a threshold for detection.
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state vector as well as in the covariance matrix of state-

 estimation errors prior to using the measurement.

Sample-Based Methods

More recently, significant estimator performance improve-

ment for nonlinear applications has been realized by non-

linear propagation of a finite number of representative 

samples from the modeled probability distributions of state 

variables and measurement variables. The samples are cho-

sen to represent the means and variances before the nonlin-

ear transformations, and the resulting transformed samples 

represent the means and covariances after the nonlinear 

transformations.

The parts of the Kalman filter that can be implemented 

using these methods include the propagation over time of 

the estimated state variable and its associated covariance 

of uncertainty and computation of the expected measure-

ment and its associated covariance matrix of uncertain-

ty, all the variables needed for computing and applying 

the Kalman gain. As a result, sample-based methods 

eliminate the need for a Riccati equation to calculate the 

 Kalman gain.

Sampling Strategies

Unlike the original Monte Carlo methods, which used 

large numbers of pseudorandom samples to approximate a 

probability distribution, newer methods use much smaller 

sample sizes for representing only the means and covari-

ances of the distribution. As a consequence, some sam-

ple-based methods have about the same computational 

complexity as the EKF but perform significantly better on 

nonlinear problems.

Various sampling strategies have been developed for 

nonlinear filtering. The resulting filter implementations 

include sigma-point filters [24], unscented Kalman filters 

[25], and particle filters [23]. The naming of sigma-point 

filters refers to the distribution standard deviation (rep-

resented by the symbol s) used to calculate sample val-

ues. Unscented filters use similar strategies depending 

on Cholesky factors of covariance matrices. The nam-

ing of particle filtering refers to the sampled values as 

 “particles,” which are propagated and used to compute 

the means and variances.

Distributed Implementations

Particle filtering can also be used as part of ensemble Kal-
man filtering, a distributed implementation of a nonlinear 

 estimator for applications with large numbers of state vari-

ables [26]. In distributed computing, the computational 

load is partitioned across several computers, with the parti-

tioning designed to keep the interprocess communications 

requirements within acceptable levels. Ensemble Kalman 

filters have been developed for weather forecasting [27], in 

which the dynamics are nonlinear and the number of state 

variables may be too large for filter implementation on a 

single computer. These nonlinear filtering techniques rely 

to some extent on earlier distributed implementations of the 

Kalman filter [28], including prefiltering [14].

CONTROLLERS, OBSERVERS, AND 

THE SEPARATION PRINCIPLE

The work of R.E. Kalman and R.S. Bucy also had a sig-

nificant impact on the implementation cost and efficacy 

of control. Their results on observability and controllabil-

ity allowed system designers more flexibility in deciding 

which dynamic state variables to measure directly, and 

this flexibility could be used to address other system-level 

issues such as cost, performance, stealth, and tolerance of 

sensor failure or jamming.

The Kalman filter allowed control engineers to estimate 

and control some dynamic variables without measuring 

them directly, as illustrated in Figure 5. The optimal con-

trol u( t )  can be calculated from the estimated state x̂ ( t )  

generated by the Kalman filter. The ability to minimize the 

number of sensors required for estimation and control was 

especially important for aerospace applications in which 

system weight and power must be minimized.

In [5], R.E. Kalman proved that a certain class of es-

timation and control problems are duals of one another, 

in that one problem can be transformed into the other by 

an appropriate exchange of model variables. These dual 

techniques constitute the linear quadratic Gaussian (LQG) 

control. Peter D. Joseph and Julius T. Tou [29] proved that 

the LQG estimation and control problems can be solved 

independently, by invoking the separation principle. Later 

proofs of the separation principle require less restrictive 

assumptions about the models [30], [31]. Separation of the 

estimation and control problems often simplifies system 

design by allowing independent development of a system 

observer for the estimation problem and a controller for the 

system control problem.

CONCLUSIONS

The Kalman filter found early acceptance in the aerospace 

industry as the basis for modern estimation and control 

theory, not only for the theoretically optimal solution but 

FIGURE 5 Observer-based controller. This block diagram shows 

the Kalman filter as an observer for the state vector x ( t ) ,  including 

the unmeasured state variables needed to generate the control 

u ( t ) .  The measurement vector is z ( t ) .

u (t ) x (t ) z (t )
Dynamics Sensors

Controller Kalman Filter

Stochastic Control System

x (t )ˆ
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as a practical and reliable solution method for LQG prob-

lems. For modern estimation and control problems, the ma-

trix Riccati equation and its sample-based equivalents have 

become almost universal tools for the design of the sensor 

and control system to meet specified statistical performance 

requirements, a benefit often overlooked in assessments of 

the impact of Kalman filtering on technology.

The problems that most bedeviled early aerospace ap-

plications of Kalman filtering were computer size, weight, 

and power requirements; numerical stability; computa-

tional load; and computer costs. Subsequent developments 

in hardware and implementation methods have overcome 

most of those problems, and evolving improvements are 

even now extending the range of applications to which 

 Kalman filtering can be applied successfully.
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Despite this improvement in precision over 24 hours, 

the rate variation due to tilt angle remains over timescales 

that are shorter than the time it takes for the tourbillon to 

complete a full rotation. In this case, the term cos(h )  in (13) 

does not average to zero, and thus the gravity dependence 

remains. Therefore, the tourbillon merely masks the rate 

variation over long observation periods. 

Historically, accurate timepieces have been associated 

with astronomical observatories. Indeed, astronomers such 

as Airy have contributed to horology [7]. During the first 

half of the twentieth century, a series of different rate tests 

was conducted by many observatories using many types of 

timepieces, with and without tourbillons. Results are shown 

in Figure 5, and they display mixed results for the tourbillon. 

These calculations show explicitly why this is the case. Tests 

of tourbillon accuracy and precision produce different results 

depending on the test details; specifically, on how much the 

timepiece is moved. Test results are different because tourbil-

lons do not correct the variation in rate that arises from time-

piece orientation. Instead, they average the source of variation 

[9], which may or may not improve precision depending on 

how frequently the orientation of the watch changes.

Another reason for the disappointing performance of tour-

billons is that they can remove only part of the gravitational 

error. It is possible that the frictional torque acting on bearings 

depends on timepiece spatial orientation. Thus, for example, 

the friction parameter b may vary with tilt angle w; if so, this 

variation is not eliminated by the tourbillon. Bearings in high-

quality timepieces are usually made of jewels, such as rubies, 

which are hard and durable with low-friction coefficients.

CONCLUSIONS

Given the patchy performance of tourbillons, it is reasonable 

to ask why they are much sought after. Tourbillon wrist-

watches command astonishing prices; see “Two Centuries 

of Tourbillons.” The answer lies outside the technical realm 

of physics and engineering. Tourbillons are fascinating to 

observe, and the skill of the watchmaker is clearly on dis-

play. The elegance of tourbillon timepieces, combined with 

their expense and exclusivity due to the extreme difficulties 

of construction, have made these intriguing mechanical de-

vices desirable since their invention 200 years ago.
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