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AbstractLow-dimensional probability models for local distribution functions in a Bayesian net-work include decision trees, decision graphs, and causal independence models. Wedescribe a new probability model for discrete Bayesian networks, which we call an em-bedded Bayesian network classi�er or EBNC. The model for a node Y given parents X isobtained from a (usually di�erent) Bayesian network for Y and X in which X need notbe the parents of Y . We show that an EBNC is a special case of a softmax polynomialregression model. Also, we show how to identify a non-redundant set of parametersfor an EBNC, and describe an asymptotic approximation for learning the structure ofBayesian networks that contain EBNCs. Unlike the decision tree, decision graph, andcausal independence models, we are unaware of a semantic justi�cation for the use ofthese models. Experiments are needed to determine whether the models presented inthis paper are useful in practice.Keywords: Bayesian networks, model dimension, Laplace approximation, softmax polyno-mial regression1 IntroductionSeveral researchers have demonstrated that Bayesian networks provide better predictionswhen local distribution functions (also known as conditional probability tables for domainsin which all variables have a �nite number of states) are modeled with a small numberof parameters. Such parsimonious models include decision trees, decision graphs, andcausal-independence models (e.g., Friedman and Goldszmidt, 1996; Chickering et al., 1997;Meek and Heckerman, 1997). In this paper, we introduce another parsimonious model forBayesian networks in which each variable has a �nite number of states, known as an em-bedded Bayesian network classi�er or EBNC. The model for a node Y given parents X isobtained from a (usually di�erent) Bayesian network for Y and X in which X need not bethe parents of Y .In Section 2 we introduce the model. In Section 3, we describe a simple Bayesian-network inference algorithm that can be used to compute the probability distribution for Ygiven X as determined by an EBNC. In Section 4, we show how to identify a non-redundantset of parameters for an EBNC and consequently its dimension. In Section 5, we describean approximation method for learning the structure of a Bayesian network that containsEBNCs. In particular, we show that a Laplace approximation can be used to approximatethe marginal likelihood of a Bayesian network that contains EBNCs. The method can beused to select both models and input features for classi�cation. In Section 6, we present a1



more e�cient procedure for �nding a set of non-redundant parameters for an EBNC. As aresult, we show that an EBNC is a special case of a softmax polynomial regression model.One word of caution is warranted. Unlike the decision tree, decision graph, and causalindependence models, we are unaware of a semantic justi�cation for the use of these models.In fact, there are theoretical reasons that suggest the use of EBNCs may be unreasonable(Heckerman and Meek, 1997). Experiments are needed to determine whether the modelspresented in this paper are useful in practice.The terminology and notation we need is as follows. We denote a variable by an upper-case letter (e.g.,X; Y;Xi;�), and the state or value of a corresponding variable by that sameletter in lower case (e.g., x; y; xi; �). We denote a set of variables by a bold-face upper-caseletter (e.g., X;Y;Xi). We use a corresponding bold-face lower-case letter (e.g., x;y;xi)to denote an assignment of state or value to each variable in a given set. We say thatvariable set X is in con�guration x. We use p(X = xjY = y) (or p(xjy) as a shorthand) todenote the probability or probability density that X = x given Y = y. We also use p(xjy)to denote the probability distribution (both mass functions and density functions) for Xgiven Y = y. Whether p(xjy) refers to a probability, a probability density, or a probabilitydistribution will be clear from context.We use m and �m to denote the structure and parameters of a model, respectively.When (m; �m) is a Bayesian network for variables Z, we write the usual factorization asp(z1; : : : ; zN j�m;m) = NYi=1 p(zijpai; �m;m) (1)wherePai are the variables corresponding to the parents of Zi inm. We refer to p(zijpai; �m;m)as the local distribution function for Zi. Also, when m appears in an expression p(�j�), itrefers to a hypothesis corresponding to the structure m. The hypothesis m correspondingto Bayesian-network structure m is the assertion that the structure m is a perfect map ofthe joint distribution.2 Embedded Bayesian Network Classi�ersThe basic idea behind EBNCs comes from the following observations. Suppose a �nite-statenode Y has parents X1; : : : ; Xn as shown in Figure 1a. If each node Xi is binary, there are2n con�gurations of X. If Y is also binary, then the traditional local distribution functionfor Y containing a multinomial distribution for each con�guration ofX will contain 2n non-redundant parameters. In contrast, consider the Bayesian network for Y and X shown inFigure 1b, in which the variables X are mutually independent given Y (sometimes referredto as a naive-Bayes model). This model contains only 2n+1 parameters with the traditional2
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(a) (b)Figure 1: An embedded Bayesian network classi�er. The conditional distributionp(yjx; �m0 ;m0) from the Bayesian network (m0; �m0) (b) is embedded in the local distri-bution function p(yjx; �y ;m) for node Y in the Bayesian network (m; �m) (a).encoding of local distribution functions. In addition, as we shall see in Section 4, the localdistribution function p(yjx; �m;m) has a simple form. Therefore, we can imagine using thisconditional distribution as a low-dimensional encoding of the conditional distribution forthe model in Figure 1a. In general, we have the following de�nition.De�nition Let Y be a node in some Bayesian network (m; �m), and X be the parentsof Y in (m; �m). Let (�m0 ;m0) be another Bayesian network for precisely the variables Yand X. Then, the local distribution function for Y , denoted p(yjx; �y ;m), is said to be anembedded Bayesian network classi�er for Y given X obtained from (m; �m), ifp(yjx; �y ;m) = p(yjx; �m0 ;m0)and the parameters �y and the parameters associated with other local distribution functionsin (m; �m) are variationally independent.1 The local distribution function is sometimesdenoted EBNC(m; �y) or EBNC(m0; �m0).By this de�nition, the traditional local distribution function for a �nite-state variablehaving �nite-state parents (where each p(yjxj; �y ;m) is a distinct multinomial distribution)is a special instance of an EBNC. We sometimes refer to the traditional local distributionfunction as a trivial EBNC.1Variable A is said to be variationally dependent on variable B if knowing the state of A restricts thepossible states of B. 3



Although an EBNC can o�er a low-dimension encoding of a local distribution function,there are theoretical reasons that make this encoding suspect. Consider again our examplewhere an EBNC is obtained from a naive-Bayes example. In this case, the variables X aredependent. This dependency is not encoded in the Bayesian network containing the EBNC.In addition, in the naive-Bayes model, the parameters associated with p(x) and p(yjx)are likely to be variationally dependent (Heckerman and Meek, 1997). This dependencyis thrown away in the construction of the EBNC. Nonetheless, as we mentioned in theintroduction, the use of EBNCs may yield good predictions in practice. In the remainderof this paper, we examine some of the technical details needed to use and learn modelscontaining EBNCs.3 Inference in an EBNCAn EBNC de�nes a local distribution function p(yjx; �y ;m), which can be computed byperforming probabilistic inference in the Bayesian network (m0; �m0). In this section, weprovide a simple formula for computing this function for a given EBNC, assuming all vari-ables in X are observed. As we shall see, this formula will be useful for demonstrating otheruseful properties of an EBNC.Our inference method works in log-odds space. That is, rather than compute p(ykjx; �y ;m)for all states yk of Y and all con�gurations x, we compute�kx � log p(ykjx; �y;m)p(y1jx; �y ;m) (2)for k = 2; : : : ; ry and all x. This quantity is known as the posterior log odds of yk in favorof y1 given x. Once we compute the �s, we transform back to probability space using thesoftmax function: p(ykjx; �y;m) = e�kx1 +Pryj=2 e�jx (3)Let X1; : : : ; Xnh; Y;Xnh+1; : : : ; Xn be a total ordering on the variables that is consistentwith m, such that Y appears as late as possible in the ordering. The latter condition saysthat the node corresponding to Y is an ancestor of each of the nodes corresponding toXnh+1; : : : ; Xn. Given this ordering, we can factor the joint distribution for Y;X1; : : : ; Xnas follows:p(y;xj�y;m) =  nhYi=1 p(xijpai; �y ;m)! p(yjpay ; �y ;m) 0@ nYi=nh+1 p(xijpai; �y ;m)1A4



where Y does not appear in any parent set Pai in the �rst product. Normalizing to obtainp(yjx; �y ;m), taking a ratio, and canceling like terms, we obtain�kx = log p(ykjx; �y;m)p(y1jx; �y ;m) = log �(ykjpay)�(y1jpay) + nXi=nh+1 log �(xijpaki )�(xijpa1i ) (4)where paki is a con�guration of Pai in which y = yk , k = 1; : : : ; ry. (Depending onm, someof the terms in the sum may cancel as well.) Equation 4 says that we can determine theposterior log odds simply by summing terms that depend on the con�guration of Y and X.We note that the �s can be thought of as parameters for the local distribution functionde�ned by the EBNC. That is, let�x � (�2x; : : : ; �ryx) x = x1; : : : ;xqy�y � (�x1 ; : : : ; �xqy )Then, we can write p(yjx; �y ;m) = p(yjx;�y ;m)It is important to note, however, that �y is not necessarily a set of free parameters, becausethese parameters are derived from the Bayesian network (m0; �m0). That is, a parameter in�y may be a (deterministic) function of other parameters in �y.4 The Dimension of an EBNCIn Section 2, we noted that a non-trivial EBNC can be encoded with fewer parametersthan the traditional local distribution function, because an EBNC can be encoded with theparameters �m0 . In fact, an EBNC often can be encoded with even fewer parameters. Toillustrate this fact, let us consider an EBNC obtained from a the naive Bayesian classi�erfor Y and X = fX1; : : : ; Xng where all variables are binary. (We use y1 and y2 to denotethe states of Y , and x1i and x2i to denote the states of each Xi.) Using Equation 4, weobtain log p(y2jx; �y;m)p(y1jx; �y;m) = log �(y2)�(y1) + nXi=1 log �(xijy2)�(xijy1) (5)After some algebra, Equation 5 becomeslog p(y2jx; �y ;m)p(y1jx; �y ;m) =  log �(y2)�(y1) + nXi=1 log �(x1i jy2)�(x1i jy1)!| {z }��0 + nXi=1 I(x2i ) �(x2i jy2)�(x2i jy1) � �(x1i jy2)�(x1i jy1)!| {z }��i (6)5



where I(x2i ) is the indicator function that is equal to 1 if and only if xi = x2i . Equation 6demonstrates that we can encode the naive EBNC using the parameters (�0; : : : ; �n), whichare less in number than the 2n+ 1 parameters in �y .This observations raises the question: What is the minimum number of parameters thatcan be used to encode an EBNC? In the remainder of this section, we provide a procedurefor answering this question.We address this question using the mathematics of di�erential geometry. A good intro-duction can be found in Spivak (1979). One way to view our question is to think of thevalues of �y and �y as points in Euclidean spaces Rt and Rl, respectively. Thus, Equation 2de�nes a mapping (i.e., a function) from Rt to Rl, which we write as �y ! �y. The set ofpoints in �y encoded by the EBNC is the image of this function.Now consider an arbitrary set of pointsM in Rl. The setM is said to be a d-dimensionalmanifold in Rl if every point in M possesses a neighborhood that resembles Rd|that is,if there is a smooth one-to-one function that maps this neighborhood to an open set in Rdand a smooth inverse mapping. The axes in Rd are often referred to as the local coordinatesor local non-redundant parameters of M in that neighborhood. Sometimes, a single setof coordinates conveniently describe all of M|for example, when the mapping from Rdto M is linear. In this case the coordinates are said to form a global non-redundant setof parameters. When the mapping is linear, M is said to be a linear manifold. In othersituations, no one set of coordinates may conveniently represent the image, in which casethe manifold is said to be curved.Returning to our problem, we have the following theorem.Theorem 1 Let EBNC(m; �y) be an embedded Bayesian network classi�er for Y and Xobtained from (m0; �m0). Let �y ! �y be the mapping de�ned by this EBNC (Equation 4).Then, the image of this mapping is a linear manifold.Proof: We can rewrite Equation 4 as follows:�kx = log p(ykjx; �y ;m)p(y1jx; �y ;m) = log �(yk jpay)�(y1jpay)| {z }�(yk jpay) + nXi=nh+1 log �(xijpaki )�(xijpa1i )| {z }�(xijpaki ) (7)where we have introduced another set of parameters �(�j�) that we collectively refer to as�y . Equation 7 decomposes the mapping �y ! �y into the mappings �y ! �y ! �y wherethe �rst mapping is smooth and many-to-one and the second mapping is linear and many-to-one. Let �y = (�; : : : ; �dy) be a basis for the image of �y ! �y. We can �nd this basisusing (e.g.) Gaussian elimination. Now, the image of the mapping �y ! �y is an open set6



(c)  d=6

2

2 2 2

y

(d)  d=28

2

4 4 4

y

2

2

2

2

2 2
x1 x2

x5

x4

x3
y

(a)  d=15 (b)  d=8

2

2 2 2

y

Figure 2: Some Bayesian networks and their EBNC dimensions. The number in the nodeindicates the number of states of that node.in �y because, by de�nition of hypothesis m, we exclude values of �y that correspond toindependencies not encoded in m. Consequently, for every point in the image of the EBNC,there is a smooth one-to-one mapping between the neighborhood of that point and an opensubset of �y. 2The proof of Theorem 1 includes a method for �nding a set of non-redundant parameters�y for the manifold; and we sometimes denote the model by EBNC(m;�y). Figure 2contains several EBNCs and their corresponding dimensions that we computed using thisapproach. Unfortunately, the approach is ine�cient, because it requires that we applyGaussian elimination to a matrix that can have up to 2n rows (for Y and X binary). InSection 6, we consider an alternative construction that is more e�cient. First, however, weconsider an important rami�cation of Theorem 1 for learning.5 An Approximation for the Marginal LikelihoodAn important quantity for Bayesian learning is the marginal likelihood p(Djm). We do notknow of a method for computing the marginal likelihood of a Bayesian network that containsnon-trivial EBNCs. Nonetheless, an important consequence of Theorem 1 is that we can7



apply the work of Haughton (1988) to derive an e�cient approximation for the marginallikelihood of a Bayesian network where each local distribution function is an EBNC. Namely,we have the following theorem.Theorem 2 Let (m;�m) be a Bayesian network for variables Z = fZ1; : : : ; Zsg such thatthe local distribution function for each node Zi is given by EBNC(mi; �i) = EBNC(mi;�i),where (mi; �i) is a Bayesian network for Zi and the parents of Zi inm. Denote the likelihoodof the data associated with the ith variable and its parents byLi(�i) = NXl=1 p(ziljpail;�i;m)where l refers to a case in D. Furthermore, assume that the parameter prior p(�mjm) isa probability density function that is non-zero almost everywhere. Then given a completedata set D with N cases,log p(Djm) � log p( ~�mjm) + sXi=1�Li( ~�i) + di2 log(2�)� 12 log jAij� (8)where ~�m is the maximum a posteriori (MAP) value for �m given D, di is the dimensionof EBNC(mi;�i), and Ai is the negative Hessian of Li(�i) with respect to �i evaluated atthe MAP value for �i. The relative error of this approximation is Op(N�1)2.Proof: Let �m = (�1; : : : ;�s) be the parameters de�ned by the mappings �i ! �i. Thelocal distribution function for each variable Zi is a set of multinomial distributions with(not necessarily free) parameters �i. Therefore, if we view the set of variables Z as a single�nite-state variable, then Z will have a multinomial distribution with (not necessarily free)parameters 
m(�m) = (
2; : : : ; 
t); t = Qsi=1 ri, wherelog p(zkj
m;m)p(z1j
m;m) = 
kand the mapping �m ! 
m is one-to-one. 
m is sometimes called the natural parameterspace for the multinomial distribution. Because the parameter sets �1; : : : ;�s are mutuallydistinct (i.e., variationally independent), it follows from Theorem 1 that the set of values in�m that are allowed by the local distribution functions EBNC(mi;�i) is a linear manifold of�m with dimension d =Psi=1 di. Furthermore, because the mapping �m ! 
m is one to one(albeit non-linear), the set of values in 
m that are allowed form a (curved) d-dimensional2Haughton (1988) derives a relative error of Op(N�1=2). The bound we report comes from a personalcommunication with her. 8



manifold in 
m parameterized globally by �m. Consequently, the conditions of Haughton(1988) are satis�ed, and we havelog p(Djm) � log p( ~�mjm) + log p(Dj ~�m;m) +  sXi=1 di log(2�)!� 12 log jAjwhere jAj is the negative Hessian of the likelihood with respect to �m. Finally, because�1; : : : ;�s are mutually distinct, the likelihood p(Dj�m;m) factors and the Hessian is blockdiagonal (one block for each Zi) yielding Equation 8. 2A more e�cient but less accurate approximation is obtained by retaining only thoseterms in Equation 8 that increase with N : Psi=1 logLi( ~�i), which increases linearly with N ,and Psi=1 log jAij, which increases as dm logN . Also, for large N , ~�m can be approximatedby the maximum likelihood (ML) value of �m, �̂m, the value of �m for which p(Dj�m;m)is a maximum. Thus, we obtainlog p(Djm) � + sXi=1�Li(�̂i)� di2 logN� (9)which, under the conditions of Theorem 2, has a relative accuracy of Op(1).3 This approxi-mation is called the Bayesian information criterion (BIC), and was �rst derived by Schwarz(1978) for a limited class of models.The BIC approximation is interesting in several respects. First, it does not dependon the parameter prior, except for the condition that p(�mjm) be non-zero for almost allvalues of �m. Consequently, we can approximate the marginal likelihood without a prior,which is di�cult to assess for our models. Second, the approximation is quite intuitive.Namely, it contains a term measuring how well the model with parameters set to an MLvalue predicts the data (log p(Dj�̂m;m)) and a term that punishes the complexity of themodel (dm=2 logN). Third, the BIC approximation is exactly the additive inverse of theMinimum Description Length (MDL) criterion described by Rissanen (1987).When using the Laplace or BIC approximation, we must compute ~�m or �̂m, respec-tively. Although it may be di�cult to determine a global maximum, gradient-based meth-ods such as those described in Gill et al. (1981), Press et al. (1992), and Buntine andWeigand (1994) can be used to locate local maxima. In practice, a good approximation forthe marginal likelihood is often obtained by �nding many local maxima and then summingtheir contributions to p(Djm) given by Equation 8 or 9. Note that the ML values �̂1; : : : ; �̂scan be identi�ed separately. Similarly, if the parameter prior factors according top(�mjm) = sYi=1 p(�ijm)3For some priors p(�mjm), the BIC is accurate to O(N�1=2) (Kass and Wasserman, 1995).9



then the MAP values ~�1; : : : ; ~�s can be identi�ed separately. Buntine and Weigand (1994)and Bishop (1995) survey methods for computing the Hessian terms needed for the Laplaceapproximation.An important application of these approximations is the selection of models for classi�-cation. In particular, given a class variable Y and input variablesX, consider a set of modelswhere the variables in X are mutually independent, Y is conditioned by each variable inX, and the local distribution functions for Y are obtained from various EBNCs. If we areusing the Laplace approximation, assume that �x and �y , the parameters associated withthe local distribution functions for X and Y , respectively, are independent, and that theprior distribution for �x is the same for every model that we consider. If we are using theBIC approximation, assume only that the parameter sets �x and �y be mutually distinct.Then, the marginal likelihoods for two models will di�er only as a result of di�erent localdistribution functions for Y given X and (in the case of the Laplace approximation) thepriors p(�y jm).We note that this procedure provides a method for deciding what subset of the inputvariables should be used for classi�cation|a task known as feature selection. In particular,our procedure may select an EBNC obtained from a Bayesian network that contains a propersubset of the variables X. The corresponding model that we learn for classi�cation will havearcs only from this subset of variables to Y . In e�ect, this subset of inputs (features) hasbeen selected for classi�cation.6 A More E�cient Method for Computing DimensionIn this section, we examine a more e�cient method for determining the dimension and anon-redundant parameterization for an EBNC. In so doing, we concentrate on some �xedBayesian network (m; �m) from which we obtain the local likelihood. Consequently, weno longer mention m explicitly in the notation. Furthermore, to avoid di�cult notation,we do not give a general construction. Instead, we illustrate our procedure using a speci�cBayesian network that is complex enough to capture the essence of the general construction.Consider the Bayes-net classi�er whose structure is shown in Figure 2a. Note that allvariables are binary. Given this model structure, the mapping � ! � is given bylog p(y2jx; �)p(y1jx; �) = log �(y2jx1; x2)�(y1jx1; x2) + log �(x4jx1; x3; y2)�(x4jx1; x3; y1) + log �(x5jx2; x3; y2)�(x5jx2; x3; y1) (10)The overall plan of our construction is to decompose this mapping into a series of mappings� ! � !  ! � ! �. In so doing, we will show that � is a non-redundant set of10



parameters for the EBNC. We note that this parameterization may not be the same as theone discussed in Section 4.Our �rst step is to decompose � ! � into the mappings � ! � !  ! �. We do so bytransforming Equation 10 in a manner that generalizes the transformation from Equation 5to Equation 6. The transformation derives from the observation that if input con�gurationsx1 and x2 di�er in the state of only one Xi, then the di�erence between the corresponding�s will have a simple form. For example, if x1 = (x11; x12; x13; x14; x15) and x2 di�ers only inX1, then we havelog p(y2jx21; x12; x13; x14; x15; �)p(y1jx21; x12; x13; x14; x15; �) � log p(y2jx11; x12; x13; x14; x15; �)p(y1jx11; x12; x13; x14; x15; �) (11)=  log �(y2jx21; x12)�(y1jx21; x12) � log �(y2jx11; x12)�(y1jx11; x12)!+  log �(x14jx21; x13; y2)�(x14jx21; x13; y1) � log �(x14jx11; x13; y2)�(x14jx11; x13; y1)!Therefore, we compute p(y2jx;�)p(y1jx;�) for a given x by �rst computing p(y2jx1 ;�)p(y1jx1 ;�) for the con�gu-ration x1 where each Xi in state x1i . Then, we sequentially \turn on" each variable Xi thathas state x2i in x, keeping a running total of di�erence terms such as the one in Equation 11.For example, if x = (x21; x12; x13; x24; x15), then we getlog p(y2jx21; x12; x13; x24; x15; �)p(y1jx11; x12; x13; x14; x15; �)= log p(y2jx11; x12; x13; x14; x15; �)p(y1jx11; x12; x13; x14; x15; �)+(log p(y2jx21; x12; x13; x14; x15; �)p(y1jx21; x12; x13; x14; x15; �) � log p(y2jx11; x12; x13; x14; x15; �)p(y1jx11; x12; x13; x14; x15; �))+(log p(y2jx21; x12; x13; x24; x15; �)p(y1jx21; x12; x13; x24; x15; �) � log p(y2jx21; x12; x13; x14; x15; �)p(y1jx21; x12; x13; x14; x15; �))= log p(y2jx11; x12; x13; x14; x15; �)p(y1jx11; x12; x13; x14; x15; �)+( log �(y2jx21; x12)�(y1jx21; x12) � log �(y2jx11; x12)�(y1jx11; x12)!+  log �(x14jx21; x13; y2)�(x14jx21; x13; y1) � log �(x14jx11; x13; y2)�(x14jx11; x13; y1)!)+(log �(x24jx21; x13; y2)�(x24jx21; x13; y1) � log �(x14jx21; x13; y2)�(x14jx21; x13; y1))For an arbirary input con�guration x, we obtainlog p(y2jx1; x2; x3; x4; x5; �)p(y1jx1; x2; x3; x4; x5; �) =�0|{z}� 0 11
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+I(x22) I(x13) �5(x5jx22; x13; y)| {z }� 5(x22;x13)+I(x12) I(x23) �5(x5jx12; x23; y)| {z }� 5(x12;x23)+ I(x22) I(x23) �5(x5jx22; x23; y)| {z }� 5(x22;x23) 9>>=>>; (12)where I(xji) is the indicator function that is equal to 1 if xi = xji and 0 otherwise. InEquation 12 we have introduced the parameters � de�ned by�0 � log p(y2jx11; x12; x13; x14; x15; �)p(y1jx11; x12; x13; x14; x15; �) (13)�i(yjxi; a) � log �(y2jx2i ; a)�(y1jx2i ; a) � log �(y2jx1i ; a)�(y1jx1i ; a) (14)�i(xija; y) � log �(x2i ja; y2)�(x2i ja; y1) � log �(x1i ja; y2)�(x1i ja; y1) (15)�i(xkj jxi; a; y) � log �(xkj jx2i ; a; y2)�(xkj jx2i ; a; y1) � log �(xkj jx1i ; a; y2)�(xkj jx1i ; a; y1) k = 1; 2 (16)where a is any (possibly empty) con�guration of variables excluding Xi and Y . In addition,we have introduced the parameters , where  i(a) is the coe�cient of the product I(x2i )I(a).We use �i and  i to denote the collection of parameters �i(�j�) and  i(�), respectively.Equation 12 de�nes a series of mappings �! � !  ! � that we can use to determinethe dimension of the model as follows. First, note that the mappings � !  ! � arelinear. Therefore, if the image of the mapping � ! � is open in �, then the dimension ofthe EBNC will be d = rank �@�@� � (17)where @�@� is the Jacobian matrix of the linear mapping � ! �.Given the form of the mappings � !  ! �, we can perform row reductions on theJacobian in Equation 17 to obtain a block diagonal matrix, where block i corresponds to@ i@�i , the Jacobian matrix for the mapping �i to parameters  i. Consequently, we haved = nXi=1 rank �@ i@�i � (18)For the model in Figure 2d, we obtain d = 1+ 1+ 2+ 3+ 4+ 4 = 15, which we also obtainusing the method described in Section 4. 13



Using the form of the mappings � !  ! �, we also can obtain a non-redundant setof parameters for the EBNC in a straightforward manner. Namely, let basis(�i !  i) be abasis for the image of the mapping �i !  i. Then, because the parameter sets  1; : : : ;  ndo not overlap, � = [ni=1 basis(�i !  i) (19)is a set of non-redundant parameters for the EBNC.Finally, we need to show that the image of the mapping � ! � is open in �. To do so,we decompose this mapping into two mappings � ! ! ! �, where!0 � �0 (20)!(yjxki ; a) � log �(y2jxki ; a)�(y1jxki ; a) (21)!(xki ja; y) � log �(xki ja; y2)�(xki ja; y1) (22)!(xlj jxki ; a; y) � log �(xlj jxki ; a; y2)�(xlj jxki ; a; y1) (23)for k = 1; 2 and l = 1; 2. The image of the mapping � ! ! is open in !, because any twoparameters in ! are either functions of di�erent parameters in �, or are of the form!(w1i ja; y) = log �(x1i ja; y2)�(x1i ja; y1)!(w2i ja; y) = log 1� �(x1i ja; y2)1� �(x1i ja; y1)where !(w1i ja; y) can be varied independently of !(w2i ja; y) and vice versa. Furthermore,the Jacobian matrix of the linear mapping ! ! � can be made triangular. Consequently,the imagine of the combined mapping �! � is open in �.The generalization of Equations 18 and 19 to an arbitrary Bayes-net classi�er with bi-nary variables is straightforward. First, we write down the mapping � ! � analogous toEquation 10. We then use the factorization in this mapping to sequentially decomposep(y2jx;�)p(y1jx;�) as in Equation 12. (We can use any variable order to build the decomposition,although we have found that the computations are most e�cient when we use the order-ing consistent with the Bayesian-network structure.) This decomposition yields mappingsanalogous to � !  ! � in our example. Finally, we compute a basis for the image ofeach mapping �i !  i using (e.g.) Gaussian elimination. The generalization to non-binaryvariables involves additional book keeping, but the form of the basic construction remainsthe same. 14



The worst-case computational complexity of this procedure is exponential in n. In par-ticular, some sets  i may contain O(2n) parameters (assuming variables are binary). Conse-quently, a computation of the basis will have computational complexity O(23n). Nonethelessour construction is tractable in practice.We can use our procedure to determine the dimension and a non-redundant set ofparameters for an EBNC having various canonical forms. For example, consider the EBNCobtained from a Bayesian classi�er where Y is a root node and the inputs X1; : : : ; Xn forma Markov chain conditioned on Y . Using our method, we obtainlog p(y2jx; �)p(y1jx; �)= �0|{z}��i +I(x2i ) �1(x1jy)| {z }� 1 + nXi=2 I(x2i )8>><>>:I(x1i�1) �i(xijx1i�1; y)| {z }� i(x1i�1) + I(x2i�1) �i(xijx2i�1; y)| {z }� i(x2i�1) 9>>=>>;Consequently, d = 1 + 1 + 2(n� 1) = 2n.Also, we can use the mapping �y ! �y as an alternative inference method to determinethe local distribution function p(yjx;�y ;m). In addition, we note that Equation 3 andthe generalization of Equation 12 demonstrate that an EBNC is a special case of a soft-max polynomial regression. Finally, we note that our work can be generalized to includesituations where some of the domain variables are continuous.AcknowledgmentsWe thank Steve Altschuler, Max Chickering, Robert Gutschera, and Lani Wu for usefuldiscussions.ReferencesBishop, C. (1995). Neural networks for pattern recognition. Clarendon Press, Oxford.Buntine, W. (1994). Computing second derivatives in feed-forward networks: A review.IEEE Transactions on Neural Networks, 5:480{488.Chickering, D., Heckerman, D., and Meek, C. (1997). A Bayesian approach to learningBayesian networks with local structure. In Proceedings of Thirteenth Conference onUncertainty in Arti�cial Intelligence, Providence, RI. Morgan Kaufmann.15
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