
-

Vectorized Garbage Collection

Andrew W. Appel*

Aage Bendiksen†

CS-TR-169-88

Princeton University

July 1988

Revised September 1988

Revised February 1989

Appeared in The Journal of Supercomputing 3, 151-160 (1989).

* Supported in part by NSF Grants DCR-8603543 and CCR-8806121, and by a Digital Equipment Corp.

Faculty Incentive Grant.

† Supported by the NSF Research Experiences for Undergraduates program.

- 2 -

ABSTRACT

Garbage collection can be done in vector mode on supercomputers like the Cray-2 and the Cyber

205. Both copying collection and mark-and-sweep can be expressed as breadth-first searches in

which the ‘‘queue’’ can be processed in parallel. We have designed a copying garbage collector

whose inner loop works entirely in vector mode. We give performance measurements of the algo-

rithm as implemented for Lisp CONS cells on the Cyber 205. Vector-mode garbage collection per-

forms up to 9 times faster than scalar-mode collection — a worthwhile improvement.

- 3 -

1. Automatic garbage collection on vector supercomputers

Languages like Lisp with dynamic storage allocation and automatic garbage collection are increasingly

being used on vector supercomputers. Implementations of Lisp have been done for Cray supercomput-

ers[1], and fully supported supercomputer Lisp environments will soon be available (e.g. Common Lisp

provided by Cray Research and Franz, Inc.)[2].

This is a natural development. Languages with automatic garbage collection allow faster program develop-

ment and a more elegant programming style by letting the computer do more of the work and letting the

programmer do less. On extremely powerful supercomputers, it seems only fitting that the complexity of

storage management should be handled more by the machine than by the user.

A system (like Lisp) with garbage collection assumes that there is a set of variables (including the global

variables, registers, and the program stack) that hold useful data, and that these variables may point to

records on the heap. These heap records may hold characters, numbers, etc., and they may point to other

heap records. In the course of computation, some records on the heap may become inaccessible from pro-

gram variables; that is, there is no chain of pointers reaching these records. Such records are said to be

garbage, and the garbage collector is periodically invoked to reclaim the memory they occupy for re-use.

The garbage collector may be expensive to run; typical modern systems may spend 5 to 20% of their time

doing garbage collection. By speeding up the garbage collector, we can significantly improve the overall

system performance.

- 4 -

2. Breadth-first garbage collection algorithms

Most garbage collection algorithms operate by traversing the graph of reachable nodes. Copying algo-

rithms move the reachable nodes to a new area of memory during this traversal, whereas mark-and-sweep

algorithms leave the traversed nodes where they are and (in a separate pass) put all the untraversed nodes

onto a free list.

Any traversal that reaches all the reachable nodes can be used. Two common algorithms for traversing

graphs are depth-first search and breadth-first search. The former uses a stack (last-in first-out data struc-

ture) to store nodes that have been seen but not examined, and the latter uses a queue (first-in first out) for

the same purpose. Either kind of search can be used for garbage collection.

Some computers have highly pipelined vector instructions, in which the same instruction is applied to a

series of inputs. The advantage of the vector instructions is that they can compute N results much more

quickly than a sequence of N scalar instructions. Their disadvantage is that they are more difficult to make

use of, since there is limited opportunity for control flow or special-case handling in the midst of a vector

instruction. Traditional vector machines have instructions like vector-add, which can perform N additions

in series, etc. Some of the more modern machines (e.g. the Cray-2 or the Cyber-205) have gather and

scatter instructions, which can do random-access fetches (and stores, respectively) in vector mode. It is

these machines that have the ability to do garbage collection in vector mode.

Processing the queue in a breadth-first search algorithm is a natural application of parallel processing[3],

and the gather and scatter instructions can be used for this purpose. A large batch of queue entries can be

- 5 -

removed at once from the head of the queue, processed in parallel, and a new batch of entries can be

appended to the tail. This is the principal idea behind our algorithm.

Since copying collection is much more efficient (in large enough memories) than mark-and-sweep collec-

tion[45], we present an algorithm for vectorized copying collection, though the same idea easily applies to

mark-and-sweep collectors.

3. Cheney’s algorithm

The ‘‘standard’’ breadth-first copying garbage collection algorithm is due to Cheney[6]. We use two

equal-size regions of memory. The mutator (the program making use of dynamic memory allocation) allo-

cates new records contiguously in region 1; when it is full, the garbage collector is invoked. The collector

copies the live data from region 1 (‘‘from-space’’) into region 2 (‘‘to-space’’); then the roles of the regions

are swapped, and the mutator can allocate records from the rest of the region 2 until it fills up and the gar-

bage collector is invoked again.

The copying can be done without any auxilary data structure by incorporating the breadth-first search

queue into to-space. We start with a set of ‘‘root pointers.’’ Any record in from-space that is reachable

from a root pointer will be copied. There are two pointers into to-space, scan and next that are initially at

the beginning of the space. For simplicity, assume that each record contains two fields, R[1] and R[2],

each of which may be a pointer or a non-pointer.

For each root pointer R, we perform the following procedure, replacing R by forward(R):

- 6 -

forward(R) =

if R points into from-space

then if R[1] points into to-space

then return R[1]

else copy R[1] to location NEXT

copy R[2] to location NEXT+1

assign NEXT into R[1]

increment NEXT by 2

return R[1]

else return R

The forward procedure copies the from-space record to to-space, and returns a pointer to the new copy;

unless the record has been previously copied, in which case R[1] points to the copy, and R[1] is returned

without making a new copy.

After the procedure forward is applied to each root, it is then applied to each word in to-space. The scan

pointer is successively incremented through to-space, and forward is applied to each word it points to. Of

course, this may cause more records to be copied, so that next will also be incremented in this phase.

When scan catches up with next, the algorithm is finished.

The ‘‘queue’’ is simply the area between scan and next; when the ‘‘head’’ (scan) catches up with the

‘‘tail’’ (next), the queue is empty. Note that the scanning procedure can ignore record boundaries in

- 7 -

forwarding each of the pointers between scan and next.

Figure 1 shows an example of a linked data structure. There is a single ‘‘root’’ register that points to a

cyclic structure of three cells, ab, cd, and ij. The structure ef, gh is not reachable from the root—it is gar-

bage. Figure 2 shows the action of Cheney’s (scalar) algorithm on this data structure; first the root is for-

warded, then the copying algorithm is run until scan catches up with next. Note that the cells ef and gh are

never touched by the algorithm.

4. Processing the queue in parallel chunks

To vectorize Cheney’s algorithm, we can grab k elements from the head of the queue (at scan) and scan

them in parallel. This will result in a batch of up to k records (or sk pointers, where s is the number of

fields in a record) being added to the tail of the queue.

Here is the inner loop of the algorithm in detail, with each item corresponding roughly to one vector

instruction on the Cray or Cyber:

1. Let the k words starting at scan be called original.

2. Determine ptrs and nonptrs, the elements of original that are pointers into from-space, and the non-

pointer elements, respectively.

3. Gather, by the addresses in ptrs, into first. These are the first words of each cell referred to by the k

words after scan. (The gather instruction is given a vector of addresses and fetches each one,

- 8 -

producing a corresponding vector of data from memory.)

4. Determine forwarded, the elements of first that point into to-space, and non-forwarded, the other

elements of first. Then determine copy, the elements of ptrs that correspond to non-forwarded.

These are pointers to the cells in from-space space that must be copied, as they don’t contain for-

warding pointers.

5. Make an iota vector with base of next and a stride of 2, called new (i.e., new is a vector of addresses

next ,next +2,next +4, . . .). These are the addresses that the cells copy must be moved to.

6. Add 1 to each address in copy, and gather into second. This grabs the second word of each cell to be

copied.

7. Store non − forwarded starting at next with a stride of 2. Store second starting at next +1 with a

stride of 2. This copies the cells from from-space to to-space.

8. Scatter new by the addresses copy. This installs forwarding pointers in the from-space cells that have

been copied. (The scatter instruction is the opposite of gather: given a vector of data and a vector of

addresses, each datum is stored into memory at the corresponding address.)

9. Then gather by the addresses copy into new 1. This is necessary in case there were several references

to the same cell; in this case case the same address appears more than once in copy. There will be

more than one copy of the cell after next. However, we require that all references to this cell point to

the same copy. During step 8, any address that appears more than once in copy will have been writ-

ten to more than once; but just one value will end up in the memory location. This will provide a

unique address for the copied cell, and the gather will put that address into all the appropriate posi-

tions of new 1. The unused copies (after next) won’t affect the correctness of the algorithm, as long

- 9 -

as all the references to the copied cell point to the same copy.

10. Merge new 1 (pointers to cells just copied) with forwarded (pointers to cells copied in previous

phases), and merge the result with nonptrs (words of scan that weren’t pointers); write back into the

k words after scan. (A merge instruction takes a vector of booleans, and a vector of data whose

length is equal to the number of true elements of the boolean vector. The data is written to sequential

addresses, except that wherever a false value appears in the boolean vector, an address is skipped.)

11. Increment scan by k, and next by twice the length of copy. This completes one iteration of the algo-

rithm, which may be continued while scan > next.

Figure 4 shows this inner loop as implemented in Vector-C[7], a language supported on the Cyber 205

supercomputer. The line numbers in figure 4 correspond to the steps in the description above. In Vector C,

the notation a[0#s] represents a vector a of length s, indexed by 0 through s −1. The expression

a[b[0#r]] as an r-value represents a gather, and as an l-value represents a scatter, assuming that b is a

vector of integer indexes. If b is a vector of booleans, then a[b[0#r]] as an r-value is a compress,

selecting only those elements of a corresponding to true elements of b; as an l-value it is an expand, revers-

ing this operation. The @|| operator counts the true elements of a vector of booleans. The division by 64

in step 2 is (unfortunately) necessary to convert between word addressing and bit addressing.

Figure 3 shows the vector algorithm running on the data structure of figure 1. In this tiny data structure,

only a limited amount of parallelism is available, but it serves to illustrate the algorithm. Note that, as in

the scalar algorithm, the cells ef and gh are never touched. Also, in step 3d, two copies of the cell ij are

made, of which the first is ‘‘wasted.’’ The wasted cell immediately becomes garbage, and is ignored by the

next garbage collection (at which point its space is reclaimed, just like any other garbage).

- 10 -

/* Forward copies in to-space */
while (scan < next) {

1. K = ((next - scan) > maxK) ? maxK : next - scan;
2. is_ptr[0#K] = (scan[0#K] >= (int)from_bottom) && (scan[0#K] < from_top);

L = @|| is_ptr[0#K];
if (L > 0) {
ptrs[0#L] = scan[is_ptr[0#K]]/64;

3. first[0#L] = virt_addr[ptrs[0#L]];
4. is_frwed[0#L] = (first[0#L] >= (int)to_bottom) && (first[0#L] < to_top);
10. if (is_frwed[0#L]) write[0#L] = first[0#L];
4. non_frwed[0#L] = (first[0#L] < (int)to_bottom) || (first[0#L] >= to_top);

L2 = @|| non_frwed[0#L];
if (L2 > 0) {
non_forwarded[0#L2] = first[non_frwed[0#L]];
copy[0#L2] = ptrs[non_frwed[0#L]];

5. new[0#L2] = iota[0#L2] + (int) next;
6. secondnf[0#L2] = virt_addr[copy[0#L2] + 1];
7. next[0#L2:2] = non_forwarded[0#L2];

next[1#L2:2] = secondnf[0#L2];
8. virt_addr[copy[0#L2]] = new[0#L2];
9. newnf[0#L2] = virt_addr[copy[0#L2]];
10. write[non_frwed[0#L]] = newnf[0#L2];
11. next += RECSIZE * L2;

}
10. scan[is_ptr[0#K]] = write[0#L];

}
11. scan += K;

}

Figure 4: A Vector-C implementation of our algorithm.

5. Benchmarks and analysis

We implemented our vector-mode garbage collector on the Cyber 205. For comparison, we implemented a

conventional (scalar) version of Cheney’s algorithm; this is a ‘‘state of the art’’ garbage collector.

We have no programming environment on that machine that requires a garbage collector, but that is not

necessary to get useful measurements of performance; Cheney’s algorithm takes time proportional to the

number of copied cells, and we just wish to measure the constant of proportionality.

- 11 -

We ran the collectors on two different inputs: one was a large Fibonacci tree structure with no sharing of

nodes, the other was a set of 128 linear lists.

iii

Algorithm Input Vector Length Words copied CPU time Million Words/Second

iii

Scalar Tree - 408,576 1.07 sec 0.382

Scalar Lists - 255,488 0.683 0.374

Vector Tree 16 408,576 1.151 0.355

Vector Lists 16 255,488 0.728 0.351

Vector Tree 64 408,576 0.363 1.127

Vector Lists 64 255,488 0.219 1.167

Vector Tree 2048 408,576 0.114 3.584

Vector Lists 2048 255,488 0.102 2.504

iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1.

Table 1 shows the benchmark data. When the maximum vector length, was limited to 16, the vector algo-

rithm gave performance comparable to the scalar algorithm. With longer vectors, however, the vector

algorithm ran up to 9 times faster than the scalar algorithm. This is a very significant speedup indeed; in

particular, it’s about the best ratio one could expect between vector-mode and scalar-mode algorithms on

this kind of supercomputer. The vector computation units are just pipelined versions of the scalar units,

and they run at most one order of magnitude faster, no matter how much parallelism there is in the problem

to be solved.

- 12 -

The last two lines of the table show the performance of the vector algorithm with (practically) unlimited

vector length. On the ‘‘tree’’ input the algorithm performs significantly faster than on the ‘‘lists’’ input.

This is undoubtedly because the lists are ‘‘narrower’’ than the tree; the queue of the breadth-first search

(the difference between scan and next) never grows to more than 256, limiting the effective vector size to

256. This limits the performance of the vector algorithm, though it still outperforms the scalar algorithm

by an order of magnitude.

On a machine like the Cray-2, which has 64-word vector registers, our algorithm can process only 64

words at a time. Table 1 shows that the speedup for 64-word vectors (in our Cyber implementation) is

approximately a factor of 3, which is still very significant. On the ETA-10 (which is otherwise like the

Cyber), vectors of length 256 can be kept in a vector register, which might speed up the algorithm for vec-

tors of that size.

Another quantity of interest is the number of ‘‘wasted’’ words; those allocated by step 5 of the algorithm

but then discarded in step 9. Unfortunately, this seems to be very input-dependent, and it’s hard to provide

realistic estimates of it without running a real programming environment. We constructed an input similar

to our ‘‘tree’’ but with one fifth of the pointers sharing common subexpressions; we ran the algorithm on

this input with different vector lengths, counting the number of wasted words (Table 2). (On vectors of

length 1, our algorithm is just a slower version of the scalar algorithm.) Clearly, the wasted cells pose no

great concern.

It is important to realize that there is no ‘‘cascading’’ of wasted cells. A wasted cell may point to other

- 13 -

iii

Vector Length Words Copied Wasted Words Wasted %

iii

1 215,602 0 0%

16 217,960 2,358 1.1%

32 218,282 2,680 1.2%

64 218,448 2,846 1.3%

128 218,520 2,918 1.3%

65535 218,604 3,002 1.4%

iiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2.

cells which get copied in later iterations of the algorithm, but since the wasted cell is a copy of some useful

cell, those other cells need to be copied anyway. Furthermore, no useful cell ever points to a wasted cell,

so that subsequent garbage collections will never examine the contents of a wasted cell.

6. Variable-sized records

The algorithm is easy to describe and easy to implement for fixed-size records. It is not too difficult to

adapt vectorized collection to variable-sized records.

Let us examine the distribution of record sizes in a system with records of varying size. Table 3 shows the

distribution of record sizes observed as the Standard ML of New Jersey compiler[8] compiles itself. A

total of 30,838,749 records were created, most of size two or three; in addition, 4,675 arrays of average

- 14 -

size 74 were created.

ii

Size of Record Frequency Cumulative total

ii

1 2.8% 2.8%

2 74.1 76.9

3 12.4 89.3

4 1.5 90.9

5 1.3 92.2

6 3.6 95.9

7 1.0 96.9

8 0.0 96.9

9 0.1 97.0

10 0.3 97.4

11 0.2 97.7

12 2.0 99.7

>12 0.2 100.0

iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3.

Almost all records are less than 13 words long. This suggests that a collector could handle records of up to

12 words in vector mode, use special-case code for longer records, and still achieve high performance.

- 15 -

Let S maximum size of commonly-occurring records (i.e. S =12). By using vector compression, the collec-

tor can quickly sort the vector ptrs into S different subvectors, and handle each subvector as the original

algorithm handles the ptrs vector.

What remains is a short subvector of large, odd-sized records. A loop can traverse this subvector; each of

the large records can be copied using sequential vector-reads and vector-writes.

7. Conclusion and remarks

As implementations of Lisp and similar languages become more common on vector supercomputers, the

performance of garbage collectors will become ever more important. Our algorithm takes full advantage of

the high-speed vector operations on such machines, and is relatively easy to implement.

For fixed-size records, vector-mode garbage collection performs very well, providing an order-of-

magnitude speedup over scalar-mode collection. The algorithm is adaptable to environments with records

of varying size, and should still yield high performance.

This algorithm is compatible with generational garbage collection schemes[4] in which many fewer cells

are copied because the effort is concentrated on the most volatile areas.

We have also illustrated the power of gather and scatter instructions. While vector supercomputers have

usually been considered just as number-crunchers, modern machines with these random-access addressing

instructions can be used for non-trivial graph algorithms as well.

- 16 -

References

1. Wayne Anderson, William Galway, Robert Kessler, Herbert Melenk, and Winfried Neun, ‘‘The

implementation and optimization of Portable Standard Lisp for the Cray,’’ Proc. 20th Annual Hawaii

Int’l Conf. on Science Systems, January 1987.

2. John Stephens, personal communication, Cray Research, February 1989.

3. D. M. Eckstein, ‘‘Parallel processing using depth-first and breadth-first search,’’ Ph.D. thesis,

University of Iowa, July 1977.

4. David Ungar, ‘‘Generation scavenging: a non-disruptive high performance storage reclamation algo-

rithm,’’ SIGPLAN Notices (Proc. ACM SIGSOFT/SIGPLAN Software Eng. Symp. on Practical

Software Development Environments), vol. 19, no. 5, pp. 157-167, ACM, 1984.

5. A. W. Appel, ‘‘Garbage collection can be faster than stack allocation,’’ Information Processing

Letters, vol. 25, no. 4, pp. 275-279, 1987.

6. C. J. Cheney, ‘‘A nonrecursive list compacting algorithm,’’ Comm. ACM, vol. 13, no. 11, pp. 677-

678, 1970.

7. ‘‘CDC Cyber 200 Vector C,’’ Publication #60000018, Control Data Corp., 1986.

8. Andrew W. Appel and David B. MacQueen, ‘‘A Standard ML compiler,’’ in Functional Program-

ming Languages and Computer Architecture (LNCS 274), pp. 301-324, Springer-Verlag, 1987.

