
A New Bayesian Framework for Object RecognitionYuri Boykov Daniel HuttenlocherComputer Science DepartmentCornell UniversityIthaca, NY 14853fyura,dphg @ cs.cornell.eduAbstractWe describe a new approach to feature-based objectrecognition, using maximum a posteriori (MAP) esti-mation under a Markov random �eld (MRF) model.The main advantage of this approach is that it allowsexplicit modeling of dependencies between individualfeatures of an object model. For instance, it can cap-ture the fact that unmatched features due to partialocclusion are generally spatially coherent rather thanindependent. E�cient computation of the MAP esti-mate in our framework can be accomplished by �ndinga minimum cut on an appropriately de�ned graph. Aspecial case of our framework yields even more e�-cient method, that does not use graph cuts. We callthis technique spatially coherent matching. Our frame-work can also be seen as providing a probabilistic un-derstanding of Hausdor� matching. We present ROCcurves from Monte Carlo experiments that illustratethe improvement of the new spatially coherent match-ing technique over Hausdor� matching.1 IntroductionIn this paper we present a new Bayesian approachto object recognition using Markov random �elds(MRF's). As with many approaches to recognition weassume that an object is modeled as a set of features.The recognition task is then to determine whetherthere is a match between some subset of these ob-ject features and features extracted from an observedimage. The central idea underlying our approach isto explicitly capture dependencies between individualfeatures of the object model. Markov random �eldsprovide a good theoretical framework for represent-ing dependencies between features. Moreover, recentalgorithmic developments make it quite practical tocompute the maximum a posteriori (MAP) estimatefor the MRF model that we employ (e.g., [1], [3]).Our approach contrasts with most feature-basedobject recognition techniques, as they do not explic-

itly account for dependencies between features of theobject. It is desirable to be able to account for suchdependencies, because they occur in real imaging situ-ations. For example, a common case occurs with par-tial occlusion of objects, where features that are nearone another in the image are likely to be occluded to-gether. In our model, we assume that the process ofmatching individual object features is described a pri-ori by a Gibbs distribution associated with a certainMarkov random �eld. This model captures pairwisedependencies between features of the object. We thenuse maximum a posteriori (MAP) estimation to �ndthe match between the object and the scene or to showthat there is no such match. While a number of prob-abilistic approaches to recognition have been reportedin the literature (e.g., [8], [7],[10]) these methods donot provide an explicit model of dependencies betweenfeatures.We show that �nding the best match using theHausdor� fraction [4], [9] is a special case of our tech-nique, where features in the object model are indepen-dent. Therefore, our Bayesian framework can be seenas providing a probabilistic understanding of Haus-dor� matching. With this view of Hausdor� matching,it becomes apparent that one of the main limitationsof the Hausdor� approach is its failure to take into ac-count the continuity of matches between neighboringfeatures. That is, the Hausdor� approach does not ac-count for the fact that features in a local neighborhoodtend to be correlated. From our framework we derive amodi�cation to Hausdor� approach which we call spa-tially coherent matching (SCM). This method requiresmatching features to be coherent in a given neighbor-hood system of the model. We present some MonteCarlo experiments demonstrating that this spatiallycoherent matching measure is a substantial improve-ment over Hausdor� matching in the case that imagesare cluttered with many irrelevant features and havesubstantial occlusion of the object to be recognized.



2 The General MAP-MRF Recogni-tion FrameworkIn this section we describe our object matchingframework in more detail. We represent an objectby a set of features, indexed by integers in the setM = f1; 2; : : : ;mg. Each feature corresponds to somevectorMi in a feature space of the model. Commonlythe vectors Mi will simply specify a feature location(x; y) in a �xed coordinate system of the model, al-though more complex feature spaces �t within theframework.A given image I is a set of observed features fromsome underlying true scene. Each feature i 2 I corre-sponds to a vector Ii in a feature space of the image.The true scene can be thought of as some unknown setof features IT in the same feature space. Similarly, ITiis a vector describing the feature i 2 IT in the fea-ture space of the image. We are interested in �ndinga match between the modelM and the true scene IT ,using the observed features I.A match of the model M to the true scene IT isdescribed by a pair fS;Lg where S = fS1; S2; : : : ; Smgis a collection of boolean variables and L is a locationparameter. If Si = 1 then the ith feature of the modelhas a matching feature in IT and if Si = 0 then itdoes not. In this case we say it is mismatched. Forexample, the event fS1 = : : : = Sk = 1; Sk+1 =: : : = Sm = 0; L = lg implies that for 1 � i � k,feature i of M has a matching feature j 2 IT , suchthat ITj =Mi�L. Moreover, the last (m�k) featuresare mismatched, meaning they have no such matchingfeatures. The operation � depends on the type ofmapping from the model to the image feature space,which varies for the particular recognition task. In thispaper we will use translation (vector summation), butother transformations are possible.To determine the values of fS;Lg we use the max-imum a posteriori (MAP) estimatefS�; L�g = argmaxS;L Pr(S;LjI):Bayes rule then impliesfS�; L�g = argmaxS;L Pr(IjS;L)Pr(S)Pr(L) (1)assuming that S and L are a priori independent. Theprior distributions Pr(S) and Pr(L) are discussed insection 2.1. We assume that the prior distributionof con�guration S is described by a certain Markovrandom �eld, thus allowing for spatial dependenciesamong the Si. The likelihood function Pr(IjS;L) isdiscussed in section 2.2.

Let L denote a set of possible locations of the modelin the true scene. Then the range of the location pa-rameter L is L[; where the extra value ; implies thatthe model is not in the scene. The basic idea of ourrecognition framework is to report a match betweenthe model and the observed scene if and only ifS� 6= �0 and L� 6= ;: (2)In section 2.3 we develop the test in (2) for the modelspeci�ed in 2.1 and 2.2.2.1 Prior KnowledgeWe assume that the prior distribution of the loca-tion parameter L can be described asPr(L) = (1� �) � f(L) + � � �(L = ;) (3)where f(L) = Pr(LjL 2 L), the parameter � is theprior probability that the model is not present in thescene, and �(�) equals 1 or 0 depending on whethercondition \�" is true or false. Generally the distribu-tion function f(L) is uniform over L. However in someapplications f(L) can reect additional informationabout the model's location. For example, such infor-mation might be available in object tracking since thecurrent location of the model can be estimated fromprevious iterations. The value of the constant � maybe anywhere in the range [0; 1). In section 2.3 we willsee that � appears in our recognition technique onlyas a threshold for deciding whether or not the modelis present given the image.We assume that the collection of boolean variables,S, indicating the presence or absence of each feature,forms a Markov random �eld independent of L. Morespeci�cally, the prior distribution of S is described bythe Gibbs1 distributionPrfSg / exp(�Xi2M � � (1� Si)� Xfi;jg �fi;jg � �(Si 6= Sj)9=; (4)where the second summation is over all distinct un-ordered pairs of model features.The motivation for this model is that Pr(S) cap-tures the probability that features will not be matchedeven though they are present in the true scene, givensome �xed location, L. Such non-matches could bedue to occlusion, feature extraction error, or othercauses. The parameter� � 0 is a penalty for such non-matching features. The coe�cient �fi;jg � 0 speci-�es a strength of interaction between model features1See [6] for more details on Gibbs distribution.



i and j. For tractability, we consider only pairwiseinteraction between features. Nevertheless, the pair-wise interaction model provided by this form of Gibbsdistribution is rich enough to capture one importantintuitive property: a priori it is less likely that a fea-ture will be un-matched if other features of the modelhave a match. Note that if all �fi;jg = 0 then thereis no interaction between the features and the Si's be-come independent Bernoulli variables with probabilityof success Pr(Si = 1) = e�=(1 + e�) � 0:5.2.2 Likelihood FunctionThe features of the observed image I may appeardi�erently from the features of the unknown true sceneIT due to a number of factors. This includes sen-sor noise, errors of feature extraction algorithms (e.g.edge detection), and others. It is the purpose ofthe likelihood function to describe these di�erences inprobabilistic terms.We assume that the likelihood function is given byPr(IjS;L) / Yi2M gi(IjSi; L) (5)where gi(�) is a likelihood function corresponding tothe ith feature of the model. If Si = 0 or L = ; thengi(IjSi; L) is the likelihood of I given that the truescene does not contain the ith feature of the model.We assume that all cases of mismatching feature havethe same likelihood. That is, for any i 2M and L 2 Lgi(Ij1; ;) = gi(Ij0; ;) = gi(Ij0; L) = C0 (6)where C0 is a positive constant.If L 2 L then gi(Ij1; L) is the likelihood of observ-ing image I given that the i-th feature of the modelis at location (L � Mi) in the feature space of thetrue scene IT . The choice of gi(Ij1; L) for L 2 L willdepend on the particular application.Example 1. (Recognition based on edges)Consider an edge-based object matching problem,where all features of the model are edge pixels. Weobserve a set of image features I obtained by an inten-sity edge detection algorithm. One reasonable choiceof gi(Ij1; L) for L 2 L isgi(Ij1; L) = C1 � g(dI(L�Mi)) (7)where dI(�) is a distance transform of the image fea-tures I. That is, the value of dI(p) is the distancefrom p to the nearest feature in I. The function g(�)is some probability distribution that is a function ofthe distance to the nearest feature. Normally, g is adistribution concentrated around zero. The underly-ing intuition is that if the true scene IT has an edge

feature located at (L �Mi) then the observed imageI should contain an edge nearby. Thus the distancetransform dI(L�Mi) will be small with large proba-bility. A number of existing feature based recognitionschemes use functions of this form, including Haus-dor� matching [4].2.3 MAP EstimationBy substituting (3), (4), (5) into (1) and then tak-ing the negative logarithm of the obtained equationwe can show that MAP estimates fS�; L�g minimizethe value of the posterior energy functionE(S;L) = ( HL(S)� ln f(L)� ln(1� �) if L 2 LHL(S) � ln � if L = ;whereHL(S) = Xfi;jg�fi;jg � �(Si 6= Sj) (8)+ Xi2M (� � (1� Si)� ln gi(IjSi; L)) :Our goal is to �nd fS�; L�g. The main techni-cal di�culty is to determine fŜ; L̂g that minimizeHL(S) � ln f(L) for L 2 L. In general this can bedone using graph cut techniques2 developed in [1] and[3]. In section 3 we consider some special cases whereno sophisticated algorithmic scheme is needed. Forthe moment assume that fŜ; L̂g are given.Consider HL(S) for L = ;. Equation (6) impliesthat H;(S) is minimized by the con�guration S = �1where all Si = 1. If E(Ŝ; L̂) > E(�1; ;) then fS�; L�g =f�1; ;g. According to (2), in this case we report thatthe model is not recognized in the scene. If E(Ŝ; L̂) �E(�1; ;) then fS�; L�g = fŜ; L̂g. In this case L� 2 L.Nevertheless, if Ŝ = �0 we would still report the absenceof the model in the scene.Finally, our recognition framework can be summa-rized as follows. The match between the model andthe observed scene is reported if and only if Ŝ 6= �0 andHL̂(Ŝ)� ln f(L̂) � m � ln 1C0 + ln 1� �� (9)where (9) is derived from the inequality E(Ŝ; L̂) �E(�1; ;). The right hand side in (9) is a constant thatrepresents a certain decision threshold. Note that thisdecision threshold depends on two things: �rst, theprior probability of occlusion, �; and second, the prod-uct of the number of model features, m, with the log-likelihood of a mismatch, C0.2More details about computing fŜ; L̂g in the general casecan be found in [2].



3 Spatially Coherent MatchingIn this section we consider models where certainpairs of features can be viewed as local neighbors. Onesimple kind of model with a natural local neighbor-hood system is successive points in an edge chain, asillustrated in Figure 1. In Section 3.1 we introduce asimple matching technique that captures dependenciesbetween features in a local neighborhood. We call thismethod spatially coherent matching (SCM) because ittakes into account the fact that feature mismatchesgenerally occur in coherent groups (e.g., due to par-tial occlusion of an object).In fact, SCM is a special case of our general resultin Section 2. The reduction is shown in Section 3.2.SCM technique identi�es some interesting propertiesof our general recognition framework. SCM techniquecan also be seen as a natural generalization of theHausdor� matching. Section 3.3 shows how Hausdor�matching relates both to SCM technique and to ourgeneral framework.3.1 SCM AlgorithmBoth Hausdor� matching and SCM consider modelfeatures that are within some distance r of the nearestimage feature. Let ML = fi 2 M : dI(L �Mi) � rgdenote the subset of model features lying within dis-tance r of image features, when the model is posi-tioned at L. We think of ML as a set of match-able model features for a given location L. In addi-tion, we de�ne a subset of unmatchable model featuresUL = fi 2M j dI(L�Mi) > rg that also correspondsto a �xed locationL. The set UL consists of model fea-tures that are greater than distance r from any imagefeatures. Note that UL =M �ML.The main idea of the SCM scheme is to require thatmatching features should form large connected groups.There should be no isolated matches. Let BL � MLdenote the subset of features in ML that are \near"features of UL. That is, BL = fi 2 ML j uL(i) � Rg,where R is a �xed integer parameter and uL(i) is adistance3 from i to the set UL. We will refer to BLas a boundary of the set of matchable featuresML. Inthe example of Figure 1 the boundary features BL areshown in gray color.The locally coherent matching technique works asfollows. The main task is to �ndLscm = argmaxL2L �jMLj � jBLj+ ln f(L)� �3In Section 3.2 we assume that uL(i) is the number of chainsin the shortest sequence fi; i1g, fi1; i2g, : : : ;fik�1; ug of neigh-boring features that connect i 2ML to some unmatchable fea-ture u 2 UL. In practice, L1 or L2 distances may be used.

Figure 1: The pairs of neighboring features are con-nected by edges. The features of ML (for some �xedL) are highlighted by shading. The unmatchable fea-tures UL are white. The boundary features BL forR = 2 are shown in gray. The non-boundary features,that is the elements of the set ML �BL, are black.where � � 0 is some constant. Note that jMLj � jBLjis the number of non-boundary features in ML. Thus,SCM seeks a location in the image where matchablefeatures form large coherent groups. As illustrated inFigure 1, isolated matches are disregarded since theylie completely inside the boundary. The prior distribu-tion f(L) is also taken into consideration. The SCMtechnique matches the model to the image at the lo-cation Lscm ifjMLscm j � jBLscm j + ln f(Lscm)� > K (10)where K is a decision threshold. E�cient implemen-tation of SCM algorithm is discussed in Section 4.1.3.2 Derivation of SCMThe SCM technique can be derived analyticallyfrom the results of Section 2. In fact, SCM is anoptimal solution for a certain class of models wherefeatures interact only in a local neighborhood. In thissection we discuss the corresponding special case ofour general framework. The method of section 2 re-quires minimization of the function HL(S) � ln f(L)where f(L) is a prior distribution of possible locationsand HL(S) is de�ned in (8). The following assump-tions specify our particular choice of HL(S).Let NM denote a set of all pairs of neighboring fea-tures for a given objectM . We assume that �fi;jg = �if the features fi; jg 2 NM are neighbors and �fi;jg =0 if the features fi; jg 62 NM are not neighbors. Thenonnegative constant � describes dependency betweenthe neighboring features. Intuitively, it is reasonableto expect that neighboring features of the model aremore likely to interact than a pair of features isolatedfrom each other.



As in Example 1 we assume that gi(Ij1; L) = C1 �g(dI(L � Mi)), and moreover we use the particularfunction, g(d) = ( 1r if d � r0 if d > rwhere r is the distance to the nearest model fea-ture used in the de�nition of matchable features ML.In fact, this likelihood function prohibits assigningmatches to features not in ML.Now all terms in (8) are speci�ed. The next step isto minimize HL(S) for a �xed location L. Theorem 1provides the necessary technical result. It works un-der the assumptions stated above. In addition, weconsider � = � + ln C1rC0 .Theorem 1 If the neighborhood system NM forms achain and the level of interaction between the neigh-boring features is � = R � � thenminS HL(S) = m � (�� lnC0)� � � (jMLj � jBLj)and the optimal S 6= �0 i� jMLj > jBLj.Due to space limitations we do not give the proofof this theorem here. Recall that our �nal goal is tominimize HL(S)� ln f(L) for L 2 L. As follows fromTheorem 1, the optimum is achieved at the locationL̂ = argminL2L ��� � (jMLj � jBLj)� ln f(L)� :Obviously, L̂ = Lscm. The corresponding optimalvalue HL̂(Ŝ)� ln f(L̂) equalsm � (�� lnC0)� � � (jMLscm j � jBLscm j)� ln f(Lscm):Substituting this into (9) gives (10) withK = 1� � �m�� ln 1� �� � :3.3 Relation to Hausdor� MatchingThe classical Hausdor� distance is a max-min mea-sure for comparing two sets for which there is someunderlying distance function on pairs of elements, onefrom each set. The application of Hausdor� matchingin computer vision has used a generalization of thisclassical measure [4], based on computing a quantilerather than maximum of distances.One form of the generalized Hausdor� measurecounts the number of matchable features, jMLj, whenthe model is positioned at L. The model is matchedat the location Lh = argmaxL2L jMLj if and only if

the number of matched features, jMLh j, is larger thansome critical fraction of the total number of modelfeatures, m.SCM reduces to Hausdor� matching if R = 0 andf(L) = const. In fact, R = 0 implies that the bound-ary BL of the set of matchable features is alwaysempty. ThenLscm = argmaxL2L �jMLj � 0 + const� � = Lhand the test in (10) reduces to jMLh j � K 0 which isexactly the Hausdor� test described above. As fol-lows from Theorem 1, R = 0 corresponds to � = 0.Therefore, Hausdor� matching is a special case of ourgeneral framework when the features are independent.SCM technique generalizes Hausdor� matching inan interesting way. Note that the size of the boundaryjBLj is small if the features inML are grouped in largeconnected blobs and jBLj is large if the matchablefeatures are isolated from each other. Therefore, SCMtechnique is reluctant to match if the features in MLare scattered in small groups even if the size of MLis large. In contrast, the Hausdor� matching caresonly about the size of ML and ignores connectedness.Besides, SCM technique naturally incorporates priorknowledge represented by the distribution f(L).4 Experimental ResultsIn order to evaluate the recognition measures de-veloped in this paper, we have run a series of ex-periments using Monte Carlo techniques to estimateReceiver Operating Characteristic (ROC) curves foreach measure. A ROC curve plots the probability ofdetection along the y-axis and the probability of falsealarm along the x-axis. Thus, the ideal recognitionalgorithms would produce results near the top left ofthe graph (low false alarm and high detection proba-bilities).We use the experimental procedure reported in[5], where it was shown that Hausdor� matchingworks better than a number of previous binary imagematching methods including correlation and Chamfermatching. For that reason we are mainly interested incomparing the algorithms developed here with Haus-dor� matching, because it has already been shown tohave better performance than these other techniques.Thus we contrast Hausdor� matching with the SCMtechnique. In Section 4.1 we explain some extra de-tails about implementing SCM technique. In 4.2 wediscuss the Monte Carlo technique used to estimatethe ROC curves and present the results.



a) An object b) A simulated imageFigure 2: The simulated image above contains 4% ofclutter. The perturbed and partly occluded (30% oc-clusion) instance of the object is located in the center.4.1 Implementation of SCMIn this section we provide some details of our im-plementation of the SCM technique from Section 3.1.The SCM technique is simple to implement using im-age morphology. Given the set of model features, M ,and location, L, the set of matchable featuresML arethose within distance r of image features. This canbe computed by dilating the set of image features Iby radius r (replacing each feature point with a discof radius r). Now the set ML is simply the intersec-tion of M with this dilated image. The next step isto compute the boundary BL which is the subset offeatures in ML that are within distance R of somefeature in UL, the set of unmatchable features. Recallthat UL =M�ML. Again, we can �nd features in oneset near the features in some other set using dilation.Dilating the set UL by R, and taking the intersectionwith ML yields BL, the points of ML within distanceR of points in UL.The quality of the match produced by the SCMtechnique at each location L is determined by thenumber of non-boundary matchable features, that is,by jMLj � jBLj. Note that the search for the bestmatch over all values of L 2 L can be acceleratedusing the same pruning techniques that were devel-oped for the Hausdor� measure [9]. This follows froma simple fact that if the Hausdor� measure gives nomatch at L then the spatially coherent matching tech-nique can not match at L either. It is easy to see thatjMLj < K implies that the test in (10) is necessarilyfalse.4.2 ROC CurvesWe have estimated ROC curves by performingmatching in synthetic images and using the matchesfound in these images to estimate the curve over a

clut=3% occl=20% clut=5% occl=20%
clut=3% occl=40% clut=5% occl=40%Figure 3: ROC curves.range of possible parameter settings. 1000 test imageswere used in the experiments, and were generated ac-cording to the following procedure. Random chains ofedge pixels with a uniform distribution of lengths be-tween 20 and 60 pixels were generated in a 150� 150image until a predetermined fraction of the image wascovered with such chains. Curved chains were gener-ated by changing the orientation of the chain at eachpixel by a value selected from a uniform distributionbetween ��8 and +�8 . An instance of the object wasthen placed in the image, after rotating, scaling, andtranslating the object by random values. The scalechange was limited to �10% and the rotation changewas limited to � �18 . Occlusion was simulated by eras-ing the pixels corresponding to a connected chain ofthe model image pixels. Gaussian noise was addedto the locations of the model image pixels (� = 0:25).The pixel coordinates were �nally rounded to the clos-est integer. This procedure was also used in [5].For the experiments reported here, we performedrecognition using the 56 � 34 object shown in Fig-ure 2(a). This object contains 126 edge features. Anexample of a synthetic image generated using this ob-ject and the procedure described above is shown inFigure 2(b). In each trial, a given matching measurewith a given parameter value was used to �nd all thematches of the object to the image. A trial was said



to �nd the correct object if the position (consideringonly translation) of one of the matches was withinthree pixels of the correct location of the object inthe image. A trial was said to �nd a false positive ifany match was found outside of this range (and thatmatch was not contiguous with a correct match posi-tion). Thus note that the test images were formed byslight rotation and scaling of the object model, but thesearched was only done under translation. Any non-translational change to the object was not modeled bythe matching process.Figure 3 shows the ROC curves corresponding toexperiments with di�erent levels of occlusion and im-age clutter. For these tests we assumed that all lo-cations in the image are a priori equaly likely, thatis, f(L) = const. The black curve shows the bestresults we could obtain from the general method ofSection 2 where we applied the graph-cut techniquesexplained in [2]. The gray curves correspond to theSCM technique for various values of R 2 [0; 25]. AsR gets larger, up to 20 or 21, the results improve, sothe curves closer to the top left are for larger values ofR. For even larger values of R, which we do not show,the ROC curves rapidly deteriorate. It is interestingto note that given this particular object, a distanceof R = 25 corresponds approximately to the height ofthe object. Thus the performance does not deteriorateuntil the coherence region begins connecting togetherdisconnected pieces of the object.The case of R = 0 corresponds to Hausdor� match-ing. Thus the spatial coherence approach plays a largerole in improving the quality of the match, becauseR = 0 has the worst matching performance. Note thatin [5], using the same Monte Carlo framework, it wasshown that Hausdor� matching works better than anumber of other methods including binary correlationand Chamfer matching. Thus these results indicatethat SCM is a substantial improvement over severalcommonly used binary image matching techniques.It should be noted that the value of R does notmake a big di�erence for lower clutter or occlusioncases (top row of the �gure), but makes a very largedi�erence when these are larger (bottom row of the�gure). Thus we see that for \easy" recognition prob-lems, the spatial coherence of the matches is lessimportant (though still o�ers a slight improvement).However as the object becomes more occluded and asthere are more distractors, it becomes quite impor-tant to consider the spatial coherence of the matches.It should also be noted that in real imaging situationsthere would likely be small gaps in the instance of anobject for which it would be undesirable that the SCM

technique penalize such gaps. Recall that the parame-ter r can be used to cause features of the object modelto match across small gaps in the image. Any largergaps would then be subject to penalty based on thevalue of R.References[1] Y. Boykov, O. Veksler, and R. Zabih. Markovrandom �elds with e�cient approximations. InIEEE Conference on Computer Vision and Pat-tern Recognition, pages 648{655, 1998.[2] Yuri Boykov and Daniel P. Huttenlocher. A newbayesian framework for object recognition. Tech-nical Report, ncstrl.cornell/TR98-1713, 1998.[3] D. Greig, B. Porteous, and A. Seheult. Exactmaximum a posteriori estimation for binary im-ages. Journal of the Royal Statistical Society, Se-ries B, 51(2):271{279, 1989.[4] D. P. Huttenlocher, G. A. Klanderman, and W. J.Rucklidge. Comparing images using the Haus-dorf distance. IEEE Transactions on PatternAnalysis and Machine Intelligence, 15(9):850{863, September 1993.[5] Daniel P. Huttenlocher. Monte carlo compari-son of distance transform based matching mea-sures. In DARPA Image Understanding Work-shop, 1997.[6] S. Z. Li. Markov Random Field Modeling in Com-puter Vision. Springer-Verlag, 1995.[7] Clark F. Olson. A probabilistic formulation forHausdor� matching. In IEEE Conference onComputer Vision and Pattern Recognition, pages150{156, 1998.[8] Arthur Pope and David G. Lowe. Learning proba-bilistic appearance models for object recognition.In Shree K. Nayar and Tomaso Poggio, editors,Early Visual Learning, pages 67{98. Oxford Uni-versity Press, 1996.[9] William Rucklidge. E�cient Visual RecognitionUsing the Hausdor� Distance. Number 1173in Lecture Notes in Computer Vision. Springer-Verlag, 1996.[10] Jayashree Subrahmonia, David B. Cooper, andDaniel Keren. Practical reliable bayesian recog-nition of 2D and 3D objects using implicit poly-nomials and algebraic invariants. IEEE Trans-actions on Pattern Analysis and Machine Intelli-gence, 18(5):505{519, May 1996.


