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Abstract

We present a categorical theory of ‘well-behaved’
operational semantics which aims at complementing
the established theory of domains and denotational se-
mantics to form a coherent whole. It is shown that, if
the operational rules of a programming language can be
modelled as a natural transformation of a suitable gen-
eral form, depending on functorial notions of syntax
and behaviour, then one gets both an operational model
and a canonical, internally fully abstract denotational
model for free; moreover, both models satisfy the oper-
ational rules. The theory is based on distributive laws
and bialgebras; it specialises to the known classes of
well-behaved rules for structural operational semantics,
such as GSOS.

Introduction

Operational semantics, a fundamental tool in lan-
guage design and verification, provides a formal de-
scription of the behaviour of programs. It is often
defined in terms of atomic, elementary transitions, de-
scribing local behaviour. Mathematically, these trans-
itions can be modelled as the elements of a relation, the
intended operational model of the language. A con-
venient, way of specifying such a transition relation is
by induction on the structure of the programs, starting
from suitable operational rules for the basic constructs
of the language [21].
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Traditionally, operational semantics is contrasted
with the mathematical interpretation of programs
called denotational semantics, where programs are
mapped into a suitable semantic domain endowed with
an operation for each construct of the language. Both
operational and denotational semantics are necessary
for a complete description of a programming language:
the former for specifying the execution of the programs
and the latter for reasoning about them in terms of
abstract, mathematical entities. It is therefore funda-
mental that a denotational semantics be adequate, ie
that it determines the operational behaviour of pro-
grams [24].

For languages without variable binding, but possibly
multi-sorted, a denotational model can be seen as a
Y-algebra, where ¥ is the signature of the language
corresponding to the basic constructs. The programs
themselves form the initial such ¥-algebra and the cor-
responding unique homomorphism from the programs
to the denotational model is called initial algebra se-
mantics [12].

The semantic domain, ie the carrier of the denota-
tional model, can often be regarded as the final solu-
tion of a domain equation X = B(X), for a suitable
‘behaviour’ functor B. In other words, the semantic do-
main is the final B-coalgebra. The transition relations
may also be seen as B-coalgebras and, therefore, so
can the intended operational model of a language. The
corresponding unique coalgebra homomorphism, given
by finality, from the intended operational model to
the semantic domain is called final coalgebra semantics
[2, 23]; under suitable assumptions on B, it is fully ab-
stract with respect to behavioural equivalence. When
initial algebra and final coalgebra semantics coincide,



one has an adequate denotational semantics [23].

Adequacy proofs can be quite demanding, hence
general criteria ensuring adequacy are of interest.
For process algebras, as used for specifying non-
deterministic and concurrent programs [17, 5], there
exist syntactic restrictions on the format of the oper-
ational rules which ensure that bisimulation [17] is a
congruence. Among the rules in these formats, GSOS
rules [8] are the best known and (negative) tree rules
[11] are the most general. In [22], the ‘processes as
terms’ method, based on such a congruence result, is
presented which allows for the systematic derivation of
adequate denotational models from ‘tyft rules’ [13], a
class of rules equivalent to tree rules.

We present here a categorical reformulation and gen-
eralisation of the above adequacy meta-results. First,
we show that certain sets R of GSOS rules can be
modelled as natural transformations [R] depending on
the functorial notions of signature ¥ and behaviour
B. Next, it is shown that the mapping R — [R] is
an essentially 1-1 correspondence. The naturality of
[R] accounts for the syntactic restrictions on the oc-
currences of meta-variables in GSOS rules and provides
a categorical explanation of their good behaviour.

The first advantage of the above approach is that
the GSOS rules can be modelled not only in Set, but
also in every category with enough structure such as
the category of cpos and continuous functions used in
denotational semantics. This is a step towards bridging
the gap between operational and domain theory.

A second advantage is that the mathematical mod-
elling of the rules is a useful semantic tool in the in-
vestigation of syntactic formats. For instance, in Set
the ‘dual’ of the type of natural transformation cor-
responding to GSOS also corresponds to an interesting
format, namely the safe tree rules: these form a natural
subclass of (negative) tree rules which always possess a
satisfying transition relation. Interestingly, the failure
to fit the class of (simple negative) tree rules in the
present approach brought to light a slight inaccuracy
in the literature and, eventually, led to the discovery
of the safe tree rules.

A third advantage is that by varying ¥ and B a wide
variety of notions of program constructs and behaviour
can be accommodated. (See also [30].) Further, one
can study abstract notions of operational rules p, such
as ‘abstract GSOS’ and ‘abstract tree rules’, applicable
to languages other than process algebras and whose
properties can be studied in general.

In this theory we assume that X freely generates
a monad T which is thought of as corresponding to
the syntax of the language. The first result is that
such abstract operational rules p induce an operational

monad T), lifting the monad T' to the B-coalgebras, ie
to the operational models, in the sense that its action
on the carriers is the same as the monad 7.

If p is of abstract tree rules form rather than ab-
stract GSOS, then, by duality, one first coinductively
derives a denotational comonad D,. The assumption
here is that the functor B cofreely generates a comonad
D which should correspond to the global behaviours
of the language. The comonad D, is a lifting of this
comonad D to the X-algebras, ie to the denotational
models. However, one can still speak of the opera-
tional monad defined by some abstract tree rules be-
cause a general theorem shows that liftings of D to the
Y-algebras and liftings of T to the B-coalgebras are in
1-1 correspondence.

In fact, these liftings are also in 1-1 correspondence
with the distributive laws X of the monad T over the
comonad D., which generalise both abstract GSOS and
abstract tree rules. One is led now to consider the bial-
gebras of such distributive laws. When XA corresponds
to some abstract operational rules p, the A-bialgebras
can be seen as combinations of operational and denota-
tional models which satisfy the rules. Henceforth they
are called p-models; they specialise to the GSOS mod-
els of [25] and to models of tree rules (with an appro-
priate definition).

The primary fact about p-models is that, from res-
ults in [15], it easily follows that the forgetful functors
to each of the categories of denotational and opera-
tional models have adjoints. One adjunction implies
that there exists an initial p-model — the intended oper-
ational model T, (0) for the initial algebra of programs.
By the definition of morphism of p-models, this also
implies that every p-model is adequate with respect to
the intended operational model in the sense that the
behaviour of the programs can be determined from any
p-model up to a generalised, coalgebraic notion [4, 16]
of bisimulation.

The other adjunction implies that there exists a final
p-model the canonical denotational model D, (1) over
the final coalgebra of abstract, global behaviours. It
is necessarily adequate; further, it is internally fully
abstract with respect to coalgebraic bisimulation. The
derivation of this final model specialises to the above
mentioned processes-as-terms method.

The unique homomorphism from the initial to the
final p-model is both the initial algebra and final coal-
gebra semantics for the abstract rules p. It is called
here universal semantics; it is the most abstract com-
positional interpretation of programs preserving beha-
vioural distinctions. Moreover, if the behaviour functor
B satisfies a certain mild condition, every p-model has
a greatest (generalised) bisimulation which, moreover,



is a (generalised) congruence. This specialises to the
fact that bisimulation is a congruence for GSOS and
for tree rules.

The generalised, coalgebraic notion of bisimulation
considered here is to be understood as the behavioural
equivalence corresponding to the functor B under con-
sideration. It might take forms quite different from
ordinary (strong) bisimulation. For instance, for the
behaviour functor in [14] it specialises to the much
coarser (complete) trace equivalence. As a corollary,
one has an abstract format of rules ensuring that trace
equivalence is a congruence [30].

To some extent, one can also deal with weak bisimu-
lation in this setting. As shown, eg in [13], weak bisim-
ulation for a given set of rules can be reduced to strong
bisimulation by adding three special rules for the 7-
action. (See also [3].) These rules are in the tyft/tyxt
format, but they can be compiled into safe tree rules,
hence the present theory can be applied. This way of
dealing with weak bisimulation is quite indirect, but
that just reflects the absence of an established denota-
tional model for it. A more direct treatment of weak
bisimulation might arise following [9].

1 The Motivating Example: GSOS

Consider the language with signature ¥ consisting of
a constant symbol ‘nil’; a set of unary action prefixing
operators indexed by a finite set A of actions ranged
over by a, and a binary parallel composition operator
‘||’. This signature freely generates, for every set X of
variables z, the set T X of terms ¢ given by the abstract
grammar

te=z|nil|a.t|t|t

This set T'X is the carrier of the free ¥-algebra over X,
where, in general, a ¥-algebra is given by a (carrier) set
Y and a function h mapping each operator o of arity n
in the signature to a function of type Y — Y. More
concisely, the function h can be written as

h: [Jye) sy (1)

oceX

using the disjoint union functor ‘[’ (coproduct in Set)
to glue the interpretation of the various operators to-
gether.

Next, let the operational rules R inductively defin-
ing the (labelled) transitions performable by the pro-
grams of the above language be

a i a !

a
a.r — T

vlly =2y zlly->azly

For instance, the simple program (a.nil) || (a.nil) can
either perform the action a becoming nil || (a’.nil) or
perform a becoming (a.nil) || nil. The (local) beha-
viour of this program can be modelled as the function
from A to finite subsets of terms mapping a to the set
{(a.nil) || nil, (a.nil) || nil} and all other actions to the
empty set. In general, the type B of the behaviour of
the above language is

BX = (P X)* (2)

the (covariant) functor mapping a set X to the set of
functions from A to finite subsets of X.

Let = and y range over X, 3 range over (P;X )4, and
let us write a ~ {z1,...,x,} for the function from A to
PsX mapping a to {z1,...,z,} and all other elements
of A to the empty set. Then, for each operator o of the
signature, the corresponding rules can be modelled as
a function

[o] : (X x (PaX)™)eritv(o) o (BT X)A

as follows.
[nil] = a—10
la-1(z, B) — o~ {2}
(o | y| 2’ € Bla))
@B I1]y.6) = a— U

{zlly' |y €p(a)}

Using the universal property of coproducts, these func-
tions can then be glued into a single function, say

[Rlx : 111 (J[4,(X x BX))1I (X x BX)* - BTX

Note one has a function [R] x for each set X of vari-
ables. In fact, one should think of the variables in the
rules as being ‘meta-variables’. Most importantly, the
above definition of [R]x is natural in X: for every
renaming of the variables (possibly involving equating
some of the variables), first renaming and then apply-
ing the rules is the same as first applying the rules and
then renaming. As shown in §5 and §7 the naturality
of [R] explains the good behaviour of R.

More generally, let A; and B; range over subsets of
A and let R be a set of rules of the form

1<i<n, a€A; b 1<i<
{zi == yfhieme {zi —#}Yen "
: (3)
o(x1,. .., Tp) —>t

which is #mage finite in the sense that there are finitely
many rules for each operator ¢ in ¥ and action ¢ in A.
For every set X, one can associate to R a function

[Rlx : J[T(X x (PaX) ")) — (BTX)* (4)
ocEX



as follows. For all tin TX, cin A, z; in X, and (; in
(PﬁX)A: put

t € [[R]]X((T((ml;ﬁl)a tey (Tn,ﬂn)))((i)

if and only if the following condition holds.

Condition 1.1 There exists a (possibly renamed) rule
(3) in R such that {yf;,...,ys,a} is a subset of 3;(a),
for a in A;, and 3;(b) is empty, for b in B;. O

Note the function [R]x does not need to be natural in
the set X.

Definition 1.1 (GSOS [8]) A GSOS rule is a rule of
type (3) such that the z; and yj; are all distinct and,
moreover, these are the only variables which can occur
in the term t. g

Two sets of rules are called equivalent if they prove
the same rules in the sense of [11, Def. 2.5].

Theorem 1.1 (GSOS is natural) There is a corres-
pondence between natural transformations of type

TT (X x (Pax))yeritvte) — (PT X)) (5)

ceX

and image finite sets of GSOS rules for a signature ¥
(over a fixed denumerably infinite set of variables V).
Moreover, this correspondence is 1-1 up to equivalence
of sets of rules.

Proof. We just describe the correspondence. One
direction is given by the above mapping R — [R].
As for naturality, let us introduce some useful
abbreviation first: for every function f:X — X',
write f* for the function (Pzf)4, T for the set
[Rlx(o((x1,51)s -, (Tn,Bn)))(c), and T' for the set
[RIx: (#((fa1, F*B1), - (Fom, F*Ba)))(c). Then the

claim is that

1. Vtel, #H el t'=(TFHI()
and, conversely,

2. Wtel', Ftel, t =(Tf)H)

Consider the first clause. If ¢ is in ' then Con-
dition 1.1 holds.  Clearly, B;(b) =@ if and only

it (f*B:;)(b) =0, and {y&,...,y%,.} C Bi(a) implies

I, because the z; and y? . are the only variables oc-

curring in the rule. For the second clause, one also uses
the fact that the z; and the y{, . in a GSOS rule are all

distinct, hence the value of I does not depend on any

of the possible identifications made by the renaming
function f.

In the converse direction, given a natural transform-
ation p of type (5), one can define a set of rules as
and let z % {y1,...,yr}
be an abbreviation for £ — y1, ...,z — yx. Choose
Bi(a) = {yj; |7 =1,...,m{} so that the z; and yf; are
all distinct. Then write a rule

follows. Let V be z1,xo,. ..

1<i<n b 11<i<n
{zi = Bi(@)}aeiica {2 —Ahia,

o(xy, ..., xp) —=>t

whenever t € py(o((z1,61),--.,(Tn,Bn)))(c) and
A;={a € A Bi(a) # 0}. Naturality ensures this is a
GSOS rule. It can be further shown that naturality
and the finiteness of A ensure that the resulting set of
rules is equivalent to an image finite set. O
We do not understand this situation for infinite A,
although the above definition of [R] still works.

(6)

2 GSOS is Categorical

In this section, let C be a distributive category with
infinite coproducts and a commutative free semi-lattice
monad P:. The claim is that GSOS rules can be mod-
elled in every such category.

Note, first, that to every signature ¥ one can asso-
ciate an endofunctor on Set with the same name:

X = H X(Lrif,y(o')
oEX

Clearly, this definition also makes sense in C.

Next, rewrite BX = (P;X)? as BX = (1 + P X)4,
which, again, makes sense in C: the power Y4 is the
product [, Y, Pr is the free semi-lattice monad which
in Set is the relevant part of the endofunctor P; ob-
tained by removing the empty set, and ‘+’ is just an-
other notation for the binary coproduct.

It remains to generalise 7. For this, let ¥ be
an arbitrary endofunctor on C and let ¥-Alg be the
corresponding category of X-algebras: objects are
pairs (X, h), where the ‘carrier’ X is an object and
the ‘structure’ h ¥X — X is a morphism of
C; the ‘homomorphisms’ f: (X, h) — (X', h') are the
morphisms f : X — X' between the carriers such that
foh="ho(Xf). If the forgetful functor

U”:S-Alg—>C  (X,h)— X
mapping Y-algebras to their carriers, has a left adjoint
F* | then the corresponding monad

T =U*F> (7)



is the monad freely generated by X.

For finitary endofunctors ¥ as the one above, it suf-
fices that C has w-colimits for the adjunction F*4U>
to hold and T to be defined. Thus one can take T'
to be the monad freely generated by the endofunctor
SX =[], cx X In Set, its value TX at a set
X is the set of terms corresponding to the operators
o of the signature and with variables = in X; the unit
nx : X — TX is the insertion-of-variables function
which maps a variable z in X to the same variable but
seen as a term; and the multiplication px : T?X — TX
is the operation which allows one to plug terms into
contexts.

Theorem 2.1 For any image finite set R of GSOS
rules, a natural transformation

[R]: JT(X x (14+Px)*)* () 5 (14 PTX)A

ceY

can be defined in the internal language of distributive
categories with infinite coproducts and a commutative
free semi-lattice monad Pr. In the case of Set it spe-
cialises to the transformation (4).

Proof. The transformation [R] in (4) can be defined
categorically using: projections and injections, pairing
and copairing, and the associativity, symmetry, unit,
and distributive laws for products and coproducts; the
unique map to the final object 1; the unit and the free
structure of the monad T'; the join of free semi-lattices;
the unit and the strength of the commutative monad
Pr. (The use of the strength depends on the assumption
that, because R is image finite and A is finite, for each
operator the set of rules is finite.) O

The characterisation of GSOS given by the above
theorem allows one, for instance, to realise GSOS rules
in the category of cpos and continuous functions as
used in domain theory, rather than in Set.

3 Abstract GSOS

In general, given a cartesian category C and arbit-
rary functorial notions of program constructs ¥ and
behaviour B on C, with X freely generating the syntax
T, one can define a corresponding abstract notion of
operational rules as the natural transformations p of
type

Y(Id x B) = BT (8)

We shall need the following characterisation.
Proposition 3.1 There is a 1-1 correspond-

ence between natural transformations of type
¥(Id x B) = BT and those of type (T x BT) = BT.

Proof. One direction of the correspondence is given by
the mapping p — 9 = Buo pr : (T x BT) = BT, for
p: X(Id x B) = BT. In the converse direction, simply
precompose ¢ : X(T' x BT) = BT with ¥(n x By). O

Several examples illustrating the use of the general-
ity of (8) are given in [30]. Here is a brief summary
thereof. Firstly, the operational rules of deterministic
programs with exceptions and side-effects can be mod-
elled instantiating (8) with the behaviour endofunctor
BX = (S (14 X))®, where S-Y is the copower [[4 Y.

As shown below, the behavioural equivalence cor-
responding to BX = (P;X)* is bisimulation; a coarser
equivalence, namely trace equivalence, can be obtained
by considering the endofunctor BX =1+ A - X on the
category SL(C) of semi-lattices in a category C. (This
is a simplified version of the behaviour in [14].) The
program construct endofunctor to be considered then is
»® : SL(C) — SL(C), a monoidal generalisation of the
endofunctor ¥ on cartesian categories. For instance,
for the language of §1, °X =1+ ][, X + (X ® X)
where ‘®’ is the tensor product of semi-lattices.

Note that (8) can be instantiated to rules not only
for single-sorted languages but also for multi-sorted
ones; it suffices to work with signatures (and beha-
viours) over ‘power categories’.

Finally, we briefly consider recursion. GSOS stands
for ‘SOS for non-deterministic programs with guarded
recursion’, because the full definition also allows for
definitions of programs by guarded recursion. In [30],
a functorial notion of guard is given which allows one
to generalise the definitions by guarded recursion to
abstract rules of type (8). Moreover, one can also treat
unguarded recursion by realising the abstract rules, for
instance, in the category of cpos and partial continuous
functions and exploiting algebraic compactness. This
involves precomposing the endofunctor ¥ with the lift-
ing endofunctor, so that one freely generates not only
finite but also partial and infinite terms, the latter be-
ing used to unfold recursive definitions of programs.

3

4 Coalgebras

The intended operational model of a set of con-
crete GSOS rules is the least relation R C TO x A x T}
which satisfies the rules, where z —= 2’ stands for
(z,a,2") € R. In general, a relation of type X x A x X
is called a labelled transition system [21] with set of
states X and set of labels A.

For image finite sets of GSOS rules it suffices to con-
sider image finite transition systems, where, for each
state and each action, the image of the transition re-
lation is a finite set. These are in 1-1 correspondence



with functions k : X — (P3X)4 as follows.
r 1 = 2 €k(z)(a) (9)

If, as considered here, the set A is finite, then image
finite transition systems cut down to finitely branch-
ing transition systems, where for each state, the set of
outgoing transitions is finite.

A function k: X — (P;X)? is a coalgebra of the
endofunctor BX = (P;X)” on Set. Formally, given an
endofunctor B : C — C, a B-coalgebra is a pair (X, k),
where the carrier X is an object and the structure
k: X — BX is a morphism of C. One often identifies
a coalgebra (X, k) with its structure k.

The B-coalgebras form a category B-Coalg, with ho-
momorphisms f : (X, k) — (X', k') the morphisms

X—— =X

BX — = BX'
Bf

f: X — X' between the carriers such that
k'o f = (Bf) o k. Note the forgetful functor

Up : B-Coalg — C (X, k) —» X
mapping coalgebras to their carriers.

For BX = (P;X)*, the coalgebra homomorphisms
are, up to the correspondence (9), the same as the P-
open morphisms of [16], where P is a suitable category
of finite sequences of actions. (Thus, for this choice
of B, B-Coalg is a proper subcategory of the standard
category of transition systems [31].) As a consequence,
two transition systems are (strongly) bisimilar [17] if
and only if there is a span of coalgebra homomorphisms
between them. This leads to the following coalgebraic

notion of bisimulation, a mild generalisation of the one
in [4].

Definition 4.1 (Coalgebraic Bisimulation) A B-
bisimulation between two coalgebras (X, k;) and
(Xa,ks) of an endofunctor B is a triple (X, fi, f2)
such that such that there exists a coalgebra structure
k: X — BX making ((X, k), f1, f2) a span

(X, k)
f1 f2

(X1, k2) (X2, k2)

of coalgebra homomorphisms fi,fs. O

One can form the category of B-bisimulations
between two coalgebras (Xi,k1) and (Xa, ko) of an
endofunctor B on a category C: the morphisms
9 : (X, f1, f2) = (X', fi, f4) are those g : X — X' in C
(thus not necessarily coalgebra homomorphisms) such
that f; = flog, fori=1,2.

Let B be an endofunctor on a category C with kernel
pairs and let the internal equality of a coalgebra (X, k)
be the kernel pair (in the underlying category C) of the
identity on its carrier X. One can easily prove that:

Proposition 4.1 (Strong Extensionality)
Internal equality is the final B-bisimulation of
the final B-coalgebra. |

In general, final coalgebras need not exist, but if C
has a final object 1, and the forgetful functor Up has a
right adjoint Gg : C — B-Coalg, then Gp1 is the final
B-coalgebra. For the endofunctor BX = (P;X)* on
Set, such a right adjoint G g exists [6]. It follows [29,
§13] that the final coalgebra G g1 is the set of rooted,
image finite trees, with branches labelled by a € A,
quotiented by (ordinary) bisimulation. This is the set
of ‘abstract global behaviours’, ie the (abstract) non-
deterministic processes.

Semantically, the above strong extensionality result
specialises then to the fact that such a final coalgebra
is internally fully-abstract [1] with respect to bisimu-
lation, ie its largest bisimulation is the equality, hence
bisimilar elements are indistinguishable.

5 Operational Monads

Definition 5.1 Let T and B be endofunctors on the
same category C. An endofunctor 7" on the category
of B-coalgebras lifts the endofunctor T to the B-
coalgebras if UgT = TUp, ie the diagram

T
B-Coalg ————= B-Coalg
Ug Us

C—=~C

T

commutes. (Cf [15].)

When both 7 and T are monads, T lifts the
monad T to the B-coalgebras if the forgetful functor
Ug : B-Coalg — C (together with the identity natural

transformation) is a monad morphism [27] from T to
T. |



Remark 5.1 A monad 7T lifts a monad T = (T, n, j1)
to the B-coalgebras if and only if UgT = TUpg and, for
every B-coalgebra k: X — BX, the diagram

nx nx
X TX T?°X
k l T(k) l l T? (k)
BX BTX BT*X
Bnx Bux
commutes. a

Consider now T to be the monad freely generated
by an endofunctor ¥. The adjunction F*-HU> gives a
well-known structural recursion theorem which special-
ises to the ordinary recursion (or iteration) theorem for
natural numbers, covering the simplest form of prim-
itive recursive functions, but not others such addition,
multiplication, exponentiation, etc, which need para-
meters and ‘accumulators’. (By structural recursion
we mean definition by structural induction.) Here we
shall need the following ‘folklore’ structural recursion
theorem [20] with accumulators, ie with terms as para-
meters of the recursive definition.

Theorem 5.1 (Structural Recursion) Let T be a
monad freely generated by an endofunctor ¥ on a
cartesian category C and let ¢x : ¥T'X — TX be the
structure of the free Y-algebra over an object X of C.
For all morphisms f: X > Yand h: ¥(TX xY) > Y
in C there exists a unique morphism f#: 7X — Y in
C such that

nx x
X TX XTX
S S(id, f*)
f l
v
Y <=——¥X(TX xY)
h
comimutes.
Proof. Turn h into the X-algebra structure

(Yx oXmy, hYy : Z(TX xY)—>TX xY over the

product T X xY and then apply the ordinary structural

recursion theorem to it and (nx, f): X = TX x Y. O
Recall Proposition 3.1. For every map

ox : X(TX x BTX) - BTX (10)

and every coalgebra k : X — BX, define the coalgebra

T,(k) : TX — BT X to be the unique map

nx Yx
X TX YTX
k |
\BX | T (k) E(id, T, (k))

BTX <— %(TX x BTX)
ox

given by the above theorem.

Proposition 5.1 If the morphism px is natural in X,
then the above construction k — T,(k) extends to a
monad T, lifting T to the B-coalgebras.

Proof. First one needs to prove that, for every coal-
gebra homomorphism f : (X, k) — (X', k'), Tf is a
coalgebra homomorphism, ie

T,(k') o Tf = BT f o T,(k)

so that one can define T,f to be T'f. For this,
simply note that both composites Tr(k') o Tf and
BT f o Tr (k) fit as the unique morphism

nx Px
X TX YTX
! i : s(id, !
X' !
N Y(TX x BTX")
k’\ |
BX S(T§, id)
Bnx: V
BTX'=— S(TX' x BTX)

Ox!

given by Theorem 5.1, hence they must be equal. (The
naturality of g is essential here!)

Next, one has to verify that the endofunctor T,
lifts the operations of the monad 7. From Re-
mark 5.1, it suffices to show that, for every coal-
gebra structure k: X — BX, T,(k)onx = Bnx ok
and Ty(k)opux = Bux oT;(k), ie the unit and the
multiplication of T are coalgebra homomorphisms. For
the unit, this is immediate by definition of the func-
tor T,, while for the multiplication one also needs to
use the naturality of p and the fact that u is defined
by (ordinary) structural recursion on the free algebra
structure. a

Definition 5.2 The operational monad induced by
some abstract operational rules p: X(Id x B) = BT,
is the monad T, corresponding to the composite nat-
ural transformation ¢ = Buo pr : (T x BT) = BT.
We write T, for this monad. |



Let us try and understand the operational monad
T, when p = [R], for R a set of concrete GSOS rules.
Firstly, applying p to TX amounts to instantiating
the meta-variables of the rules with the terms in T'X.
Formally, in this way the term ¢ in a GSOS rule (3)
might contain terms as variables: one needs to apply
to it the multiplication of the term monad T in order
to ‘unbracket’ it and obtain an elementary term. This
is achieved here by composing prx with Bux.

Next, recall the correspondence (9) between coal-
gebras k: X — BX = (P;X)* and image finite trans-
ition systems. By regarding X as a set of constants
rather than as a set of states, the correspondence (9)
can also be seen as being between coalgebras and sets
of §-rules [8], ie axiom rules. Up to these two corres-
pondences, one can then check that k +— T,(k) is the
usual construction of a transition system for a finite
set of GSOS rules R and a possibly infinite (but image
finite) set k of §-rules. In particular, if X is the empty
set, hence k is the trivial coalgebra 0 : ) — B@ and
TX = T0 is the set of closed terms, this construction
gives the intended operational model for the rules.

These remarks hold for arbitrary rules of type (3)
and, correspondingly, to possibly non-natural functions
[R]x. The naturality of GSOS ensures that T, is an
operational monad, which is essential for applying the
theory in §7.

6 ‘Dualising’ GSOS: Tree Rules

The duality between algebras and coalgebras can be
exploited to find a format of rules ‘dual’ to abstract
GSOS as follows.

Let ¥ and B be two endofunctors on a cocartesian
category C and let D = (D, ¢,6) be the cofree comonad
generated by B, that is, the forgetful functor Up has a
right adjoint Gp : C — B-Coalg and

D =UgpGp (11)

By the dual of Theorem 5.1 and Definition 5.1, every
natural transformation

0:%D = B(D +%D)

coinductively defines a lifting D, of the comonad D to
the X-algebras:

DQ
3¥-Alg ———= 3-Alg
U* U*

C ——=2¢C

In particular, such a lifting can be obtained from nat-
ural transformations

p: YD = B(Id + %) (12)

by  dualising Proposition 3.1 and putting
0=ppoXd:XD = B(D+XD). This is the de-
notational comonad D, coinduced by p.

Let ¥ freely generate a monad T'. In the next sec-
tion, Theorem 7.1 shows that liftings of the comonad
D to the X-algebras are in 1-1 correspondence with lift-
ings of the monad T to the B-coalgebras. Therefore,
if ¥ corresponds to some program constructs and B to
some behaviour, every natural transformation p as in
(12) defines also an operational monad, say T, (with a
slight abuse of notation).

As mentioned in §4, for the endofunctor
BX = (P;X)* on Set the adjunction Up-4Gp
exists. The value of the corresponding cofree comonad
D =UgGpg at a set X is the set of ‘global behaviours
with states z in X’. Formally, it is a quotient of the
set of rooted, image finite trees, with branches labelled
by a € A, and nodes labelled by z € X; the quotient
is taken with respect to a form of bisimulation taking
into account the name of the nodes [29, §13]. The
counit € : D = Id is the operation which extracts the
root from a tree and the comultiplication § : D = D?
is the operation which replaces the name of every node
in a tree by the subtree starting at that node.

Next, consider rules of type

{v; Y e

Tp) ——t

{Zi i) yi}ie[

o(xy,. ..,

(13)

where the zy, y;, 2;, and v; are all variables, and I and
J are countable, possibly infinite index sets. It is con-
venient to consider the dependency graph [13] of such
a rule, namely the directed graph having the variables
of the rule as nodes, z; — y;, for i in I as ‘positive’

edges, and v; %4 as ‘negative’, targetless edges. A rule
of type (13) is well-founded if all backwards chains of
edges in its dependency graph are finite [13].

Definition 6.1 (Tree rules [10, 11]) A (simple
negative) tree rule is a well-founded rule of type (13)
such that the x; and the y; are all distinct variables
and are the only variables occurring in the rule (ie the
z; and v; are all occurrences of the z and y;).

A tree rule is safe if the term ¢ either is a variable

z or is of the form o'(z},...,x],) for some operator
o' of the signature and some (not necessarily distinct)
variables z},... 2/ . O

Tree rules are more general than GSOS: they allow
for ‘lookahead’, in that one can look not only at the



local behaviour (a single transition z —= y) of the
states like in GSOS, but also at the global one, as in

-5y N y'. (See [13] for some examples.) The
safety restriction does not affect the expressive power
of the rules, provided one is allowed to add sufficiently
many auxiliary operators to the signature.

A tree rule (13) has the property that its depend-
ency graph is equal to the graph reachable from the
nodes z1,...,T,. Moreover, the subgraph reachable
from a node zj, is a tree the dependency tree with
root x;. Let us call a set of tree rules allowed if it is an
image finite set (in the sense of §1) of tree rules whose
dependency trees are image finite. Then, an allowed
set R of tree rules defines, for every X, a function

[Rlx : TDX — (BT X)A (14)

as follows.
For all t in TX, ¢ in A, and dj in DX, put

»dn))(c)

if and only if there exists a (possibly renamed) rule
(13) in R such that the root of dy, is zy, for 1 < k < n,
and the dependency trees of the rule can be embedded
in the di (where the convention is that a tree with a

t € [R]x(o(ds,. ..

negative edge v; gé can be embedded into dy only if
the variable in dj corresponding to v; does not have an
outgoing edge labelled by b;).

Theorem 6.1 (Tree rules are natural) Let D be
the comonad cofreely generated by the endofunctor
BX = (P3X)4 on Set.

For every allowed set R of tree rules the function
[R]x in (14) is natural in X.

Proof. Similar to the proof of naturality in Theorem
1.1. Note the well-foundedness of tree rules is needed.
For instance, the non-well-founded rule with premise
z % 2 and conclusion a.z —% nil is not natural be-
cause: first applying [a.] to (z —% y) and then renam-
ing y as x yields a ~ {z}, while the same operations
but in the reverse order yield a ~ {z,nil}, which fact
violates naturality. |

In particular, if the rules in R are safe, the natural
transformation [R] is of type

YD = (Pa(Id + %))4

Therefore, for every allowed set R of safe tree rules
there exists a transition system which satisfies the
rules, namely T,(0), where p = [R] and T, is the cor-
responding operational monad. Contrarily to what is
stated in [11], this fails for (simple negative) tree rules,

as the failure to fit these latter rules in the present the-
ory brought to light. In fact, the safe tree rules them-
selves have been suggested to us by Rob van Glabbeek
as a natural subclass of (negative) tree rules possessing
a satisfying transition system:.

7 Combining Operational and Denota-
tional Models

When T is the monad freely generated by an en-
dofunctor ¥ on a category C, then one can easily see
that the category X-Alg of algebras of the endofunc-
tor ¥ is isomorphic to the category T-Alg of algebras
of the monad T = (T, n, u), with objects those morph-
isms h : TX — X in C such that honyx = id and
hoTh = hopux. Dually, the category B-Coalg of B-
coalgebras is isomorphic to the category D-Coalg of
coalgebras of the comonad D cofreely generated by B
[29, §7]. The results in this section should be read up
to these two isomorphisms of categories

Y-Alg = T-Alg B-Coalg = D-Coalg

7.1 Distributive Laws

Given a monad T =(T,n,u) and a comonad
D = (D,e,d) on a category C, a distributive law [7] of
the monad T over the comonad D is a natural trans-
formation A : TD = DT satisfying the laws

Xonp = Dn Xoup = Do Ar o TA
and their dual

Te =ecro0o)\ DNoApoTd=0dro)
The following theorem may well be folklore.

Theorem 7.1 For a monad T and a comonad D on
the same category, the following notions are mutually
equivalent.

e Distributive laws A of T" over D.
e Liftings T of T to the D-coalgebras.
e Liftings D of D to the T-algebras.

Proof. Given a distributive law A, one can define the
corresponding liftings as follows.

T)\(k) :AXOT]{’, D)\(h) :Dho)\X

Conversely, consider a lifting TNOf the comonad
D to the T-algebras, hence UpT = TUp. By
Lemma 1 in [15], this determines a distributive



law A of the monad T over the endofunctor
D as follows: first take the natural transforma-
tion Te : UpTGp =TUpGp =TD = T, then trans-
pose it across the adjunction Up-Gp obtain-
ing \: TGp = GpT, and finally define A to be
Up\:UpTGp =TD = DT. It is easy to prove
that A actually is a distributive law over the
whole comonad D. Dually, given a lifting D,
takenp : D = DT = DUTFT = UTDNFT, transpose it
across FT4UT obtaining X : FTD = DFT,gnd define
Atobe U\:UTF"D =TD = DT =U"DF". The
constructions are easily seen to be mutually inverse. O

When T is syntax and D is (global) behaviour, the
type of the distributive law A might thought of as ‘the
most general type of well-behaved rules’. Note one can
also consider monads T' corresponding to algebraic the-
ories, with equations between the derived operators.
(See [29, §10] for an elementary example.)

7.2 Bialgebras as Models

Given a distributive law A : TD = DT, one can con-
sider the category A-Bialg of A-bialgebras. Its objects

are pairs T'X X S px oof T-algebras and D-
coalgebras with a common carrier X which satisfy the
following ‘pentagonal law’:

koh=DholxoTk

(Cf [28].) This law makes h a coalgebra homomorph-
ism and k an algebra homomorphism. The morphisms
(X, h k) = (X', B, k') of \-Bialg are those morph-
isms f: X — X' between the carriers which are both
T-algebra and D-coalgebra homomorphisms.

Remark 7.1 The A-bialgebras are the same as the al-
gebras of the monad T of Theorem 7.1, and, dually,
the same as the coalgebras of the comonad Dy:

T\-Alg = \-Bialg = D,-Coalg

Remark 7.2 When X is the distributive law induced
by a finite set of concrete GSOS rules, the A-bialgebras
are the GSOS-models of [25]. O

Given a Y-algebra h: XX — X, let h*: TX - X
be its inductive extension to a T-algebra. When A is
induced by some abstract operational rules p, no mat-
ter whether of type (8) or the dual (12), A-bialgebras

are equivalent to pairs XX Iy X %5 BX such that
koh= B(h*)opx o X(id, k) (15)

The algebra structure can be thought of as a denota-
tional model, the coalgebra structure as an operational
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model, and the pentagonal law (15) says that the com-
bination of the two models satisfies the rules p. Hence-
forth such bialgebras are called p-models.

7.3 Adequacy Meta-Results

Consider the forgetful functor

U* : \-Bialg — D-Coalg (X, h, k) = (X, k)

which forgets the algebra structure of a A-bialgebra.

Theorem 7.2 U has a left adjoint, namely:

(k)

A
x 2 px) S (r2x 25 rx W prx)

Proof. Dualise Theorem 4 of [15] and apply it to

U)\
D-Coalg <——— Dy-Coalg

Up Up,

C=——— T-Alg

where A-Bialg = D,-Coalg by Remark 7.1. |

Corollary 7.1 The category of A-bialgebras has an
initial object, namely F*0, where 0 is the trivial initial
D-coalgebra. O

In particular, there exists an initial p-model, which
can be regarded as the intended operational model over
the initial algebra of programs 7'0. This implies that
every p-model M is adequate with respect to the inten-
ded operational model of p. Indeed, the unique p-model
homomorphism to M given by initiality is a denota-
tional interpretation which preserves the behavioural
distinctions of the intended operational model. This
makes M adequate.

Now, consider the ‘dual’ of U*, namely the functor

Uy : A-Bialg = T-Alg (X, h, k) — (X, h)

which forgets the D-coalgebra structure of a A-
bialgebra. Correspondingly, the following is dual to
Theorem 7.2.

Theorem 7.3 U, has a right adjoint, namely:

rx " x) & rpx Y

DX % D2X)

Corollary 7.2 The category of A-bialgebras has a fi-
nal object, namely G1, where 1 is the trivial final
T-algebra. O



In particular, there exists a final p-model which is
the canonical denotational model for p; it has the final
D-coalgebra as carrier which, as mentioned in §4, is in-
ternally fully abstract with respect to B-bisimulation.
The construction 1+ G,1 = (D1,D,(1),d;1) general-
ises the ‘processes as terms’ construction of [22], which
is a systematic method for deriving adequate denota-
tional models from ‘tyft rules’ [13] (a class of rules equi-
valent to the tree rules without negative premises [10]).

For more details, see [30].

Corollary 7.3 The unique (both by initiality and fi-
nality) homomorphism from the initial to the final p-
model is both the initial algebra semantics and the final
coalgebra semantics for p. O

The above, say, universal semantics for p is thus
a compositional interpretation of the programs which
preserves their behavioural distinctions. In Set, the
latter means that two programs with the same univer-
sal semantics are B-bisimilar. One can easily see that,
under the additional hypothesis that B preserves weak
pullbacks, the converse also holds: two programs have
the same universal semantics if and only if they are
B-bisimilar. In other words:

Corollary 7.4 If B preserves weak pullbacks, the uni-
versal semantics associated to some abstract rules p is
fully abstract with respect to B-bisimulation. |

Next, recall Definition 4.1: by replacing spans of
coalgebra homomorphisms with spans of T-algebra ho-
momorphisms, one has a corresponding notion of 7T'-
congruence which specialises to the ordinary notion
of congruence. Similarly, by considering spans of A-
bialgebra homomorphisms one has a notion of, say, A-
bicongruence and a corresponding category. We can
ask then whether there exists a final bicongruence for
a A-bialgebra. Now, if pullbacks of cospans of carri-
ers of B-coalgebras are B-bisimulations, then, by the
universal property of pullbacks, a final B-bisimulation
between two coalgebras exists: it is the pullback of the
respective unique coalgebra homomorphisms to the fi-
nal coalgebra. This is a T-congruence as well, because
the forgetful functor UT : T-Alg — C creates limits.
Therefore, by definition of final bialgebra:

Corollary 7.5 If B preserves weak pullbacks, then
every A-bialgebra has a final bicongruence. O

In particular, the behavioural endofunctor B in (2) pre-
serves weak pullbacks, hence the above corollary spe-
cialises to the well-known fact that (strong) bisimula-
tion is a congruence for GSOS and tree rules.
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Future Work

The major challenge ahead is the operational se-
mantics of the languages with variable binders, such
as the m-calculus and the A-calculus. (At the moment,
by working in a suitable functor category, we are able
to give a functorial description of syntax with variable
binders, but it is not yet clear whether this fits our pur-
poses.) We would also like to obtain adequacy results
when working in categories of partial maps.

There is an obvious question about Moggi’s compu-
tational monads [19] and our behaviour functors which
remains to be investigated. In a different direction, we
would like to understand the relationship between the
transitional approach considered here and others, such
as the the reductional one arising in the A-calculus and
term-rewriting in general.

Further developments of the present theory could
lead to applications in modular compiler development
technology. Perhaps there will be a useful theory of
the combination of operational semantics of different
languages (cf [18]). Again, perhaps one can relate the
operational semantics of a language with that of its
translation into another target language (cf [26]).
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