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Traditionally, operational semantics is contrastedwith the mathematical interpretation of programscalled denotational semantics, where programs aremapped into a suitable semantic domain endowed withan operation for each construct of the language. Bothoperational and denotational semantics are necessaryfor a complete description of a programming language:the former for specifying the execution of the programsand the latter for reasoning about them in terms ofabstract, mathematical entities. It is therefore funda-mental that a denotational semantics be adequate, iethat it determines the operational behaviour of pro-grams [24].For languages without variable binding, but possiblymulti-sorted, a denotational model can be seen as a�-algebra, where � is the signature of the languagecorresponding to the basic constructs. The programsthemselves form the initial such �-algebra and the cor-responding unique homomorphism from the programsto the denotational model is called initial algebra se-mantics [12].The semantic domain, ie the carrier of the denota-tional model, can often be regarded as the �nal solu-tion of a domain equation X �= B(X), for a suitable`behaviour' functorB. In other words, the semantic do-main is the �nal B-coalgebra. The transition relationsmay also be seen as B-coalgebras and, therefore, socan the intended operational model of a language. Thecorresponding unique coalgebra homomorphism, givenby �nality, from the intended operational model tothe semantic domain is called �nal coalgebra semantics[2, 23]; under suitable assumptions on B, it is fully ab-stract with respect to behavioural equivalence. Wheninitial algebra and �nal coalgebra semantics coincide,1



one has an adequate denotational semantics [23].Adequacy proofs can be quite demanding, hencegeneral criteria ensuring adequacy are of interest.For process algebras, as used for specifying non-deterministic and concurrent programs [17, 5], thereexist syntactic restrictions on the format of the oper-ational rules which ensure that bisimulation [17] is acongruence. Among the rules in these formats, GSOSrules [8] are the best known and (negative) tree rules[11] are the most general. In [22], the `processes asterms' method, based on such a congruence result, ispresented which allows for the systematic derivation ofadequate denotational models from `tyft rules' [13], aclass of rules equivalent to tree rules.We present here a categorical reformulation and gen-eralisation of the above adequacy meta-results. First,we show that certain sets R of GSOS rules can bemodelled as natural transformations [[R]] depending onthe functorial notions of signature � and behaviourB. Next, it is shown that the mapping R 7! [[R]] isan essentially 1-1 correspondence. The naturality of[[R]] accounts for the syntactic restrictions on the oc-currences of meta-variables in GSOS rules and providesa categorical explanation of their good behaviour.The �rst advantage of the above approach is thatthe GSOS rules can be modelled not only in Set, butalso in every category with enough structure such asthe category of cpos and continuous functions used indenotational semantics. This is a step towards bridgingthe gap between operational and domain theory.A second advantage is that the mathematical mod-elling of the rules is a useful semantic tool in the in-vestigation of syntactic formats. For instance, in Setthe `dual' of the type of natural transformation cor-responding to GSOS also corresponds to an interestingformat, namely the safe tree rules: these form a naturalsubclass of (negative) tree rules which always possess asatisfying transition relation. Interestingly, the failureto �t the class of (simple negative) tree rules in thepresent approach brought to light a slight inaccuracyin the literature and, eventually, led to the discoveryof the safe tree rules.A third advantage is that by varying � and B a widevariety of notions of program constructs and behaviourcan be accommodated. (See also [30].) Further, onecan study abstract notions of operational rules �, suchas `abstract GSOS' and `abstract tree rules', applicableto languages other than process algebras and whoseproperties can be studied in general.In this theory we assume that � freely generatesa monad T which is thought of as corresponding tothe syntax of the language. The �rst result is thatsuch abstract operational rules � induce an operational

monad T� lifting the monad T to the B-coalgebras, ieto the operational models, in the sense that its actionon the carriers is the same as the monad T .If � is of abstract tree rules form rather than ab-stract GSOS, then, by duality, one �rst coinductivelyderives a denotational comonad D�. The assumptionhere is that the functor B cofreely generates a comonadD which should correspond to the global behavioursof the language. The comonad D� is a lifting of thiscomonad D to the �-algebras, ie to the denotationalmodels. However, one can still speak of the opera-tional monad de�ned by some abstract tree rules be-cause a general theorem shows that liftings of D to the�-algebras and liftings of T to the B-coalgebras are in1-1 correspondence.In fact, these liftings are also in 1-1 correspondencewith the distributive laws � of the monad T over thecomonadD., which generalise both abstract GSOS andabstract tree rules. One is led now to consider the bial-gebras of such distributive laws. When � correspondsto some abstract operational rules �, the �-bialgebrascan be seen as combinations of operational and denota-tional models which satisfy the rules. Henceforth theyare called �-models ; they specialise to the GSOS mod-els of [25] and to models of tree rules (with an appro-priate de�nition).The primary fact about �-models is that, from res-ults in [15], it easily follows that the forgetful functorsto each of the categories of denotational and opera-tional models have adjoints. One adjunction impliesthat there exists an initial �-model { the intended oper-ational model T�(0) for the initial algebra of programs.By the de�nition of morphism of �-models, this alsoimplies that every �-model is adequate with respect tothe intended operational model in the sense that thebehaviour of the programs can be determined from any�-model up to a generalised, coalgebraic notion [4, 16]of bisimulation.The other adjunction implies that there exists a �nal�-model { the canonical denotational model D�(1) overthe �nal coalgebra of abstract, global behaviours. Itis necessarily adequate; further, it is internally fullyabstract with respect to coalgebraic bisimulation. Thederivation of this �nal model specialises to the abovementioned processes-as-terms method.The unique homomorphism from the initial to the�nal �-model is both the initial algebra and �nal coal-gebra semantics for the abstract rules �. It is calledhere universal semantics ; it is the most abstract com-positional interpretation of programs preserving beha-vioural distinctions. Moreover, if the behaviour functorB satis�es a certain mild condition, every �-model hasa greatest (generalised) bisimulation which, moreover,2



is a (generalised) congruence. This specialises to thefact that bisimulation is a congruence for GSOS andfor tree rules.The generalised, coalgebraic notion of bisimulationconsidered here is to be understood as the behaviouralequivalence corresponding to the functor B under con-sideration. It might take forms quite di�erent fromordinary (strong) bisimulation. For instance, for thebehaviour functor in [14] it specialises to the muchcoarser (complete) trace equivalence. As a corollary,one has an abstract format of rules ensuring that traceequivalence is a congruence [30].To some extent, one can also deal with weak bisimu-lation in this setting. As shown, eg in [13], weak bisim-ulation for a given set of rules can be reduced to strongbisimulation by adding three special rules for the � -action. (See also [3].) These rules are in the tyft/tyxtformat, but they can be compiled into safe tree rules,hence the present theory can be applied. This way ofdealing with weak bisimulation is quite indirect, butthat just re
ects the absence of an established denota-tional model for it. A more direct treatment of weakbisimulation might arise following [9].1 The Motivating Example: GSOSConsider the language with signature � consisting ofa constant symbol `nil', a set of unary action pre�xingoperators indexed by a �nite set A of actions rangedover by a, and a binary parallel composition operator`k'. This signature freely generates, for every set X ofvariables x, the set TX of terms t given by the abstractgrammar t ::= x j nil j a.t j t k tThis set TX is the carrier of the free �-algebra over X ,where, in general, a �-algebra is given by a (carrier) setY and a function h mapping each operator � of arity nin the signature to a function of type Y n ! Y . Moreconcisely, the function h can be written ash : a�2� Y arity(�) ! Y (1)using the disjoint union functor ``' (coproduct in Set)to glue the interpretation of the various operators to-gether.Next, let the operational rules R inductively de�n-ing the (labelled) transitions performable by the pro-grams of the above language bea.x a�! x x a�! x0x k y a�! x0 k y y a�! y0x k y a�! x k y0

For instance, the simple program (a.nil) k (a.nil) caneither perform the action a becoming nil k (a0.nil) orperform a becoming (a.nil) k nil. The (local) beha-viour of this program can be modelled as the functionfrom A to �nite subsets of terms mapping a to the setf(a.nil) k nil; (a.nil) k nilg and all other actions to theempty set. In general, the type B of the behaviour ofthe above language isBX = (P�X)A (2)the (covariant) functor mapping a set X to the set offunctions from A to �nite subsets of X .Let x and y range overX , � range over (P�X)A, andlet us write a; fx1; : : : ; xng for the function from A toP�X mapping a to fx1; : : : ; xng and all other elementsof A to the empty set. Then, for each operator � of thesignature, the corresponding rules can be modelled asa function[[�]] : (X � (P�X)A)arity(�) ! (P�TX)Aas follows.[[nil]] = a 7! ;[[a.]](x; �) = a; fxg(x; �)[[ k ]](y; �0) = a 7! fx0 k y j x0 2 �(a)g[fx k y0 j y0 2 �0(a)gUsing the universal property of coproducts, these func-tions can then be glued into a single function, say[[R]]X : 1q (`A(X �BX))q (X �BX)2 ! BTXNote one has a function [[R]]X for each set X of vari-ables. In fact, one should think of the variables in therules as being `meta-variables'. Most importantly, theabove de�nition of [[R]]X is natural in X : for everyrenaming of the variables (possibly involving equatingsome of the variables), �rst renaming and then apply-ing the rules is the same as �rst applying the rules andthen renaming. As shown in x5 and x7 the naturalityof [[R]] explains the good behaviour of R.More generally, let Ai and Bi range over subsets ofA and let R be a set of rules of the formfxi a�! yaijg1�i�n; a2Ai1�j�mai fxi 6b�!g1�i�nb2Bi�(x1; : : : ; xn) c�! t (3)which is image �nite in the sense that there are �nitelymany rules for each operator � in � and action c in A.For every set X , one can associate to R a function[[R]]X : a�2�(X � (P�X)A)arity(�) ! (P�TX)A (4)3



as follows. For all t in TX , c in A, xi in X , and �i in(P�X)A, putt 2 [[R]]X (�((x1; �1); : : : ; (xn; �n)))(c)if and only if the following condition holds.Condition 1.1 There exists a (possibly renamed) rule(3) in R such that fyai1; : : : ; yaimai g is a subset of �i(a),for a in Ai, and �i(b) is empty, for b in Bi. 2Note the function [[R]]X does not need to be natural inthe set X .De�nition 1.1 (GSOS [8]) A GSOS rule is a rule oftype (3) such that the xi and yaij are all distinct and,moreover, these are the only variables which can occurin the term t. 2Two sets of rules are called equivalent if they provethe same rules in the sense of [11, Def. 2.5].Theorem 1.1 (GSOS is natural) There is a corres-pondence between natural transformations of typea�2�(X � (P�X)A)arity(�) ! (P�TX)A (5)and image �nite sets of GSOS rules for a signature �(over a �xed denumerably in�nite set of variables V ).Moreover, this correspondence is 1-1 up to equivalenceof sets of rules.Proof. We just describe the correspondence. Onedirection is given by the above mapping R 7! [[R]].As for naturality, let us introduce some usefulabbreviation �rst: for every function f : X ! X 0,write f� for the function (P�f)A, � for the set[[R]]X (�((x1; �1); : : : ; (xn; �n)))(c), and �0 for the set[[R]]X0(�((fx1; f��1); : : : ; (fxn; f��n)))(c). Then theclaim is that1: 8t 2 �; 9t0 2 �0; t0 = (Tf)(t)and, conversely,2: 8t0 2 �0; 9t 2 �; t0 = (Tf)(t)Consider the �rst clause. If t is in � then Con-dition 1.1 holds. Clearly, �i(b) = ; if and onlyif (f��i)(b) = ;, and fyai1; : : : ; yaimai g � �i(a) impliesffyai1; : : : ; fyaimai g � (f��i)(a), therefore (Tf)(t) is in�0, because the xi and yaimai are the only variables oc-curring in the rule. For the second clause, one also usesthe fact that the xi and the yaimai in a GSOS rule are alldistinct, hence the value of �0 does not depend on any

of the possible identi�cations made by the renamingfunction f .In the converse direction, given a natural transform-ation � of type (5), one can de�ne a set of rules asfollows. Let V be x1; x2; : : : and let x a�! fy1; : : : ; ykgbe an abbreviation for x a�! y1; : : : ; x a�! yk. Choose�i(a) = fyaij j j = 1; : : : ;mai g so that the xi and yaij areall distinct. Then write a rulefxi a�! �i(a)g1�i�na2Ai�A fxi 6b�!g1�i�nb2AnAi�(x1; : : : ; xn) c�! t (6)whenever t 2 �V (�((x1; �1); : : : ; (xn; �n)))(c) andAi = fa 2 A j �i(a) 6= ;g. Naturality ensures this is aGSOS rule. It can be further shown that naturalityand the �niteness of A ensure that the resulting set ofrules is equivalent to an image �nite set. 2We do not understand this situation for in�nite A,although the above de�nition of [[R]] still works.2 GSOS is CategoricalIn this section, let C be a distributive category within�nite coproducts and a commutative free semi-latticemonad Pf . The claim is that GSOS rules can be mod-elled in every such category.Note, �rst, that to every signature � one can asso-ciate an endofunctor on Set with the same name:�X = a�2�Xarity(�)Clearly, this de�nition also makes sense in C.Next, rewrite BX = (P�X)A as BX = (1 + PfX)A,which, again, makes sense in C: the power Y A is theproduct QA Y , Pf is the free semi-lattice monad whichin Set is the relevant part of the endofunctor P� ob-tained by removing the empty set, and `+' is just an-other notation for the binary coproduct.It remains to generalise T . For this, let � bean arbitrary endofunctor on C and let �-Alg be thecorresponding category of �-algebras : objects arepairs hX;hi, where the `carrier' X is an object andthe `structure' h : �X ! X is a morphism ofC; the `homomorphisms' f : hX;hi ! hX 0; h0i are themorphisms f : X ! X 0 between the carriers such thatf � h = h0 � (�f). If the forgetful functorU� : �-Alg! C hX;hi 7! Xmapping �-algebras to their carriers, has a left adjointF�, then the corresponding monadT = U�F� (7)4



is the monad freely generated by �.For �nitary endofunctors � as the one above, it suf-�ces that C has !-colimits for the adjunction F�aU�to hold and T to be de�ned. Thus one can take Tto be the monad freely generated by the endofunctor�X =`�2�Xarity(�). In Set, its value TX at a setX is the set of terms corresponding to the operators� of the signature and with variables x in X ; the unit�X : X ! TX is the insertion-of-variables functionwhich maps a variable x in X to the same variable butseen as a term; and the multiplication �X : T 2X ! TXis the operation which allows one to plug terms intocontexts.Theorem 2.1 For any image �nite set R of GSOSrules, a natural transformation[[R]] : a�2�(X � (1 + PfX)A)arity(�) ! (1 + PfTX)Acan be de�ned in the internal language of distributivecategories with in�nite coproducts and a commutativefree semi-lattice monad Pf . In the case of Set it spe-cialises to the transformation (4).Proof. The transformation [[R]] in (4) can be de�nedcategorically using: projections and injections, pairingand copairing, and the associativity, symmetry, unit,and distributive laws for products and coproducts; theunique map to the �nal object 1; the unit and the freestructure of the monad T ; the join of free semi-lattices;the unit and the strength of the commutative monadPf . (The use of the strength depends on the assumptionthat, because R is image �nite and A is �nite, for eachoperator the set of rules is �nite.) 2The characterisation of GSOS given by the abovetheorem allows one, for instance, to realise GSOS rulesin the category of cpos and continuous functions asused in domain theory, rather than in Set.3 Abstract GSOSIn general, given a cartesian category C and arbit-rary functorial notions of program constructs � andbehaviour B on C, with � freely generating the syntaxT , one can de�ne a corresponding abstract notion ofoperational rules as the natural transformations � oftype �(Id �B)) BT (8)We shall need the following characterisation.Proposition 3.1 There is a 1-1 correspond-ence between natural transformations of type�(Id �B)) BT and those of type �(T �BT )) BT .

Proof. One direction of the correspondence is given bythe mapping � 7! % = B� � �T : �(T �BT )) BT , for� : �(Id �B)) BT . In the converse direction, simplyprecompose % : �(T �BT )) BT with �(� �B�). 2Several examples illustrating the use of the general-ity of (8) are given in [30]. Here is a brief summarythereof. Firstly, the operational rules of deterministicprograms with exceptions and side-e�ects can be mod-elled instantiating (8) with the behaviour endofunctorBX = (S � (1 +X))S , where S �Y is the copower`S Y .As shown below, the behavioural equivalence cor-responding to BX = (P�X)A is bisimulation; a coarserequivalence, namely trace equivalence, can be obtainedby considering the endofunctor BX = 1 +A �X on thecategory SL(C) of semi-lattices in a category C. (Thisis a simpli�ed version of the behaviour in [14].) Theprogram construct endofunctor to be considered then is�
 : SL(C)! SL(C), a monoidal generalisation of theendofunctor � on cartesian categories. For instance,for the language of x1, �
X = 1 +`AX + (X 
X),where `
' is the tensor product of semi-lattices.Note that (8) can be instantiated to rules not onlyfor single-sorted languages but also for multi-sortedones; it su�ces to work with signatures (and beha-viours) over `power categories'.Finally, we brie
y consider recursion. GSOS standsfor `SOS for non-deterministic programs with guardedrecursion', because the full de�nition also allows forde�nitions of programs by guarded recursion. In [30],a functorial notion of guard is given which allows oneto generalise the de�nitions by guarded recursion toabstract rules of type (8). Moreover, one can also treatunguarded recursion by realising the abstract rules, forinstance, in the category of cpos and partial continuousfunctions and exploiting algebraic compactness. Thisinvolves precomposing the endofunctor � with the lift-ing endofunctor, so that one freely generates not only�nite but also partial and in�nite terms, the latter be-ing used to unfold recursive de�nitions of programs.4 CoalgebrasThe intended operational model of a set of con-crete GSOS rules is the least relation R � T; �A� T;which satis�es the rules, where x a�! x0 stands forhx; a; x0i 2 R. In general, a relation of type X �A�Xis called a labelled transition system [21] with set ofstates X and set of labels A.For image �nite sets of GSOS rules it su�ces to con-sider image �nite transition systems, where, for eachstate and each action, the image of the transition re-lation is a �nite set. These are in 1-1 correspondence5



with functions k : X ! (P�X)A as follows.x a�! x0 () x0 2 k(x)(a) (9)If, as considered here, the set A is �nite, then image�nite transition systems cut down to �nitely branch-ing transition systems, where for each state, the set ofoutgoing transitions is �nite.A function k : X ! (P�X)A is a coalgebra of theendofunctor BX = (P�X)A on Set. Formally, given anendofunctor B : C ! C, a B-coalgebra is a pair hX; ki,where the carrier X is an object and the structurek : X ! BX is a morphism of C. One often identi�esa coalgebra hX; ki with its structure k.The B-coalgebras form a category B-Coalg, with ho-momorphisms f : hX; ki ! hX 0; k0i the morphismsX 0X BX 0BXk f
Bf k0f : X ! X 0 between the carriers such thatk0 � f = (Bf) � k. Note the forgetful functorUB : B-Coalg! C hX; ki 7! Xmapping coalgebras to their carriers.For BX = (P�X)A, the coalgebra homomorphismsare, up to the correspondence (9), the same as the P-open morphisms of [16], where P is a suitable categoryof �nite sequences of actions. (Thus, for this choiceof B, B-Coalg is a proper subcategory of the standardcategory of transition systems [31].) As a consequence,two transition systems are (strongly) bisimilar [17] ifand only if there is a span of coalgebra homomorphismsbetween them. This leads to the following coalgebraicnotion of bisimulation, a mild generalisation of the onein [4].De�nition 4.1 (Coalgebraic Bisimulation) A B-bisimulation between two coalgebras hX1; k1i andhX2; k2i of an endofunctor B is a triple hX; f1; f2isuch that such that there exists a coalgebra structurek : X ! BX making hhX; ki; f1; f2i a spanhX2; k2ihX1; k2i hX; ki f2f1of coalgebra homomorphisms f1,f2. 2

One can form the category of B-bisimulationsbetween two coalgebras hX1; k1i and hX2; k2i of anendofunctor B on a category C: the morphismsg : hX; f1; f2i ! hX 0; f 01; f 02i are those g : X ! X 0 in C(thus not necessarily coalgebra homomorphisms) suchthat fi = f 0i � g, for i = 1; 2.Let B be an endofunctor on a category C with kernelpairs and let the internal equality of a coalgebra hX; kibe the kernel pair (in the underlying category C) of theidentity on its carrier X . One can easily prove that:Proposition 4.1 (Strong Extensionality)Internal equality is the �nal B-bisimulation ofthe �nal B-coalgebra. 2In general, �nal coalgebras need not exist, but if Chas a �nal object 1, and the forgetful functor UB has aright adjoint GB : C ! B-Coalg, then GB1 is the �nalB-coalgebra. For the endofunctor BX = (P�X)A onSet, such a right adjoint GB exists [6]. It follows [29,x13] that the �nal coalgebra GB1 is the set of rooted,image �nite trees, with branches labelled by a 2 A,quotiented by (ordinary) bisimulation. This is the setof `abstract global behaviours', ie the (abstract) non-deterministic processes.Semantically, the above strong extensionality resultspecialises then to the fact that such a �nal coalgebrais internally fully-abstract [1] with respect to bisimu-lation, ie its largest bisimulation is the equality, hencebisimilar elements are indistinguishable.5 Operational MonadsDe�nition 5.1 Let T and B be endofunctors on thesame category C. An endofunctor eT on the categoryof B-coalgebras lifts the endofunctor T to the B-coalgebras if UB eT = TUB, ie the diagram
CC TUB UBeTB-Coalg B-Coalg

commutes. (Cf [15].)When both T and eT are monads, eT lifts themonad T to the B-coalgebras if the forgetful functorUB : B-Coalg! C (together with the identity naturaltransformation) is a monad morphism [27] from eT toT . 26



Remark 5.1 A monad eT lifts a monad T = hT; �; �ito the B-coalgebras if and only if UB eT = TUB and, forevery B-coalgebra k : X ! BX , the diagramTXX T 2XBTX BT 2XBX eT 2(k)eT (k)k �X �X
B�XB�Xcommutes. 2Consider now T to be the monad freely generatedby an endofunctor �. The adjunction F�aU� gives awell-known structural recursion theorem which special-ises to the ordinary recursion (or iteration) theorem fornatural numbers, covering the simplest form of prim-itive recursive functions, but not others such addition,multiplication, exponentiation, etc, which need para-meters and `accumulators'. (By structural recursionwe mean de�nition by structural induction.) Here weshall need the following `folklore' structural recursiontheorem [20] with accumulators, ie with terms as para-meters of the recursive de�nition.Theorem 5.1 (Structural Recursion) Let T be amonad freely generated by an endofunctor � on acartesian category C and let  X : �TX ! TX be thestructure of the free �-algebra over an object X of C.For all morphisms f : X ! Y and h : �(TX�Y )! Yin C there exists a unique morphism f ] : TX ! Y inC such thatX TXY hf f ] �TX�hid ; f ]i�(TX � Y )

�X  X
commutes.Proof. Turn h into the �-algebra structureh X ���1; hi : �(TX � Y )! TX � Y over theproduct TX�Y and then apply the ordinary structuralrecursion theorem to it and h�X ; fi : X ! TX � Y . 2Recall Proposition 3.1. For every map%X : �(TX �BTX)! BTX (10)and every coalgebra k : X ! BX , de�ne the coalgebra

T%(k) : TX ! BTX to be the unique map
�(TX �BTX)�TXX TX�X

BTXBXk B�X T%(k) �hid ; T%(k)i%X
 X

given by the above theorem.Proposition 5.1 If the morphism %X is natural in X ,then the above construction k 7! T%(k) extends to amonad T% lifting T to the B-coalgebras.Proof. First one needs to prove that, for every coal-gebra homomorphism f : hX; ki ! hX 0; k0i, Tf is acoalgebra homomorphism, ieT%(k0) � Tf = BTf � T%(k)so that one can de�ne T%f to be Tf . For this,simply note that both composites TR(k0) � Tf andBTf � TR(k) �t as the unique morphism
�hTf; idi�(TX �BTX 0)�hid ; !i�TXX 0 BTX 0BX 0k0 B�X0

X !f �X TX
%X0
 X

�(TX 0 �BTX 0)given by Theorem 5.1, hence they must be equal. (Thenaturality of % is essential here!)Next, one has to verify that the endofunctor T%lifts the operations of the monad T . From Re-mark 5.1, it su�ces to show that, for every coal-gebra structure k : X ! BX , T%(k) � �X = B�X � kand T%(k) � �X = B�X � T 2% (k), ie the unit and themultiplication of T are coalgebra homomorphisms. Forthe unit, this is immediate by de�nition of the func-tor T%, while for the multiplication one also needs touse the naturality of � and the fact that � is de�nedby (ordinary) structural recursion on the free algebrastructure. 2De�nition 5.2 The operational monad induced bysome abstract operational rules � : �(Id �B)) BT ,is the monad T% corresponding to the composite nat-ural transformation % = B� � �T : �(T �BT )) BT .We write T� for this monad. 27



Let us try and understand the operational monadT� when � = [[R]], for R a set of concrete GSOS rules.Firstly, applying � to TX amounts to instantiatingthe meta-variables of the rules with the terms in TX .Formally, in this way the term t in a GSOS rule (3)might contain terms as variables: one needs to applyto it the multiplication of the term monad T in orderto `unbracket' it and obtain an elementary term. Thisis achieved here by composing �TX with B�X .Next, recall the correspondence (9) between coal-gebras k : X ! BX = (P�X)A and image �nite trans-ition systems. By regarding X as a set of constantsrather than as a set of states, the correspondence (9)can also be seen as being between coalgebras and setsof �-rules [8], ie axiom rules. Up to these two corres-pondences, one can then check that k 7! T�(k) is theusual construction of a transition system for a �niteset of GSOS rules R and a possibly in�nite (but image�nite) set k of �-rules. In particular, if X is the emptyset, hence k is the trivial coalgebra 0 : ; ! B; andTX = T; is the set of closed terms, this constructiongives the intended operational model for the rules.These remarks hold for arbitrary rules of type (3)and, correspondingly, to possibly non-natural functions[[R]]X . The naturality of GSOS ensures that T� is anoperational monad, which is essential for applying thetheory in x7.6 `Dualising' GSOS: Tree RulesThe duality between algebras and coalgebras can beexploited to �nd a format of rules `dual' to abstractGSOS as follows.Let � and B be two endofunctors on a cocartesiancategory C and let D = hD; "; �i be the cofree comonadgenerated by B, that is, the forgetful functor UB has aright adjoint GB : C ! B-Coalg andD = UBGB (11)By the dual of Theorem 5.1 and De�nition 5.1, everynatural transformation% : �D ) B(D +�D)coinductively de�nes a lifting D� of the comonad D tothe �-algebras:
CC DU� U��-AlgD%�-Alg

In particular, such a lifting can be obtained from nat-ural transformations� : �D ) B(Id +�) (12)by dualising Proposition 3.1 and putting% = �D ��� : �D ) B(D +�D). This is the de-notational comonad D� coinduced by �.Let � freely generate a monad T . In the next sec-tion, Theorem 7.1 shows that liftings of the comonadD to the �-algebras are in 1-1 correspondence with lift-ings of the monad T to the B-coalgebras. Therefore,if � corresponds to some program constructs and B tosome behaviour, every natural transformation � as in(12) de�nes also an operational monad, say T� (with aslight abuse of notation).As mentioned in x4, for the endofunctorBX = (P�X)A on Set the adjunction UBaGBexists. The value of the corresponding cofree comonadD = UBGB at a set X is the set of `global behaviourswith states x in X '. Formally, it is a quotient of theset of rooted, image �nite trees, with branches labelledby a 2 A, and nodes labelled by x 2 X ; the quotientis taken with respect to a form of bisimulation takinginto account the name of the nodes [29, x13]. Thecounit " : D ) Id is the operation which extracts theroot from a tree and the comultiplication � : D ) D2is the operation which replaces the name of every nodein a tree by the subtree starting at that node.Next, consider rules of typefzi ai�! yigi2I fvj 6bj�!gj2J�(x1; : : : ; xn) c�! t (13)where the xk, yi, zi, and vj are all variables, and I andJ are countable, possibly in�nite index sets. It is con-venient to consider the dependency graph [13] of sucha rule, namely the directed graph having the variablesof the rule as nodes, zi ai�! yi, for i in I as `positive'edges, and vj 6bj�! as `negative', targetless edges. A ruleof type (13) is well-founded if all backwards chains ofedges in its dependency graph are �nite [13].De�nition 6.1 (Tree rules [10, 11]) A (simplenegative) tree rule is a well-founded rule of type (13)such that the xk and the yi are all distinct variablesand are the only variables occurring in the rule (ie thezi and vj are all occurrences of the xk and yi).A tree rule is safe if the term t either is a variablex or is of the form �0(x01; : : : ; x0m) for some operator�0 of the signature and some (not necessarily distinct)variables x01; : : : ; x0m. 2Tree rules are more general than GSOS: they allowfor `lookahead', in that one can look not only at the8



local behaviour (a single transition x a�! y) of thestates like in GSOS, but also at the global one, as inx a�! y b�! y0. (See [13] for some examples.) Thesafety restriction does not a�ect the expressive powerof the rules, provided one is allowed to add su�cientlymany auxiliary operators to the signature.A tree rule (13) has the property that its depend-ency graph is equal to the graph reachable from thenodes x1; : : : ; xn. Moreover, the subgraph reachablefrom a node xk is a tree { the dependency tree withroot xk . Let us call a set of tree rules allowed if it is animage �nite set (in the sense of x1) of tree rules whosedependency trees are image �nite. Then, an allowedset R of tree rules de�nes, for every X , a function[[R]]X : �DX ! (P�TX)A (14)as follows.For all t in TX , c in A, and dk in DX , putt 2 [[R]]X (�(d1; : : : ; dn))(c)if and only if there exists a (possibly renamed) rule(13) in R such that the root of dk is xk, for 1 � k � n,and the dependency trees of the rule can be embeddedin the dk (where the convention is that a tree with anegative edge vj 6bj�! can be embedded into dk only ifthe variable in dk corresponding to vj does not have anoutgoing edge labelled by bj).Theorem 6.1 (Tree rules are natural) Let D bethe comonad cofreely generated by the endofunctorBX = (P�X)A on Set.For every allowed set R of tree rules the function[[R]]X in (14) is natural in X .Proof. Similar to the proof of naturality in Theorem1.1. Note the well-foundedness of tree rules is needed.For instance, the non-well-founded rule with premisex a�! x and conclusion a.x a�! nil is not natural be-cause: �rst applying [[a.]] to (x a�! y) and then renam-ing y as x yields a; fxg, while the same operationsbut in the reverse order yield a; fx; nilg, which factviolates naturality. 2In particular, if the rules in R are safe, the naturaltransformation [[R]] is of type�D ) (P�(Id +�))ATherefore, for every allowed set R of safe tree rulesthere exists a transition system which satis�es therules, namely T�(0), where � = [[R]] and T� is the cor-responding operational monad. Contrarily to what isstated in [11], this fails for (simple negative) tree rules,

as the failure to �t these latter rules in the present the-ory brought to light. In fact, the safe tree rules them-selves have been suggested to us by Rob van Glabbeekas a natural subclass of (negative) tree rules possessinga satisfying transition system.7 Combining Operational and Denota-tional ModelsWhen T is the monad freely generated by an en-dofunctor � on a category C, then one can easily seethat the category �-Alg of algebras of the endofunc-tor � is isomorphic to the category T -Alg of algebrasof the monad T = hT; �; �i, with objects those morph-isms h : TX ! X in C such that h � �X = id andh � Th = h � �X . Dually, the category B-Coalg of B-coalgebras is isomorphic to the category D-Coalg ofcoalgebras of the comonad D cofreely generated by B[29, x7]. The results in this section should be read upto these two isomorphisms of categories�-Alg �= T -Alg B-Coalg �= D-Coalg7.1 Distributive LawsGiven a monad T = hT; �; �i and a comonadD = hD; "; �i on a category C, a distributive law [7] ofthe monad T over the comonad D is a natural trans-formation � : TD) DT satisfying the laws� � �D = D� � � �D = D� � �T � T�and their dualT" = "T � � D� � �D � T� = �T � �The following theorem may well be folklore.Theorem 7.1 For a monad T and a comonad D onthe same category, the following notions are mutuallyequivalent.� Distributive laws � of T over D.� Liftings eT of T to the D-coalgebras.� Liftings eD of D to the T -algebras.Proof. Given a distributive law �, one can de�ne thecorresponding liftings as follows.T�(k) = �X � Tk D�(h) = Dh � �XConversely, consider a lifting eT of the comonadD to the T -algebras, hence UD eT = TUD. ByLemma 1 in [15], this determines a distributive9



law � of the monad T over the endofunctorD as follows: �rst take the natural transforma-tion T" : UD eTGD = TUDGD = TD) T , then trans-pose it across the adjunction UDaGD obtain-ing � : eTGD ) GDT , and �nally de�ne � to beUD� : UD eTGD = TD) DT . It is easy to provethat � actually is a distributive law over thewhole comonad D. Dually, given a lifting eD,take �D : D ) DT = DUTF T = UT eDF T , transpose itacross F TaUT obtaining � : F TD ) eDF T , and de�ne� to be UT� : UTF TD = TD) DT = UT eDF T . Theconstructions are easily seen to be mutually inverse. 2When T is syntax and D is (global) behaviour, thetype of the distributive law � might thought of as `themost general type of well-behaved rules'. Note one canalso consider monads T corresponding to algebraic the-ories, with equations between the derived operators.(See [29, x10] for an elementary example.)7.2 Bialgebras as ModelsGiven a distributive law � : TD) DT , one can con-sider the category �-Bialg of �-bialgebras. Its objectsare pairs TX h�! X k�! DX of T -algebras and D-coalgebras with a common carrier X which satisfy thefollowing `pentagonal law':k � h = Dh � �X � Tk(Cf [28].) This law makes h a coalgebra homomorph-ism and k an algebra homomorphism. The morphismsf : hX;h; ki ! hX 0; h0; k0i of �-Bialg are those morph-isms f : X ! X 0 between the carriers which are bothT -algebra and D-coalgebra homomorphisms.Remark 7.1 The �-bialgebras are the same as the al-gebras of the monad T� of Theorem 7.1, and, dually,the same as the coalgebras of the comonad D�:T�-Alg �= �-Bialg �= D�-CoalgRemark 7.2 When � is the distributive law inducedby a �nite set of concrete GSOS rules, the �-bialgebrasare the GSOS-models of [25]. 2Given a �-algebra h : �X ! X , let h� : TX ! Xbe its inductive extension to a T -algebra. When � isinduced by some abstract operational rules �, no mat-ter whether of type (8) or the dual (12), �-bialgebrasare equivalent to pairs �X h�! X k�! BX such thatk � h = B(h�) � �X ��hid ; ki (15)The algebra structure can be thought of as a denota-tional model, the coalgebra structure as an operational

model, and the pentagonal law (15) says that the com-bination of the two models satis�es the rules �. Hence-forth such bialgebras are called �-models.7.3 Adequacy Meta-ResultsConsider the forgetful functorU� : �-Bialg! D-Coalg hX;h; ki 7! hX; kiwhich forgets the algebra structure of a �-bialgebra.Theorem 7.2 U� has a left adjoint, namely:(X k�! DX) F�7�! (T 2X �X�! TX T�(k)�! DTX)Proof. Dualise Theorem 4 of [15] and apply it to
T -AlgUD�CUDD-Coalg D�-CoalgU�

UTwhere �-Bialg �= D�-Coalg by Remark 7.1. 2Corollary 7.1 The category of �-bialgebras has aninitial object, namely F �0, where 0 is the trivial initialD-coalgebra. 2In particular, there exists an initial �-model, whichcan be regarded as the intended operational model overthe initial algebra of programs T0. This implies thatevery �-modelM is adequate with respect to the inten-ded operational model of �. Indeed, the unique �-modelhomomorphism to M given by initiality is a denota-tional interpretation which preserves the behaviouraldistinctions of the intended operational model. Thismakes M adequate.Now, consider the `dual' of U�, namely the functorU� : �-Bialg! T -Alg hX;h; ki 7! hX;hiwhich forgets the D-coalgebra structure of a �-bialgebra. Correspondingly, the following is dual toTheorem 7.2.Theorem 7.3 U� has a right adjoint, namely:(TX h�! X) G�7�! (TDX D�(h)�! DX �X�! D2X)Corollary 7.2 The category of �-bialgebras has a �-nal object, namely G�1, where 1 is the trivial �nalT -algebra. 210



In particular, there exists a �nal �-model which isthe canonical denotational model for �; it has the �nalD-coalgebra as carrier which, as mentioned in x4, is in-ternally fully abstract with respect to B-bisimulation.The construction 1 7! G%1 = hD1; D%(1); �1i general-ises the `processes as terms' construction of [22], whichis a systematic method for deriving adequate denota-tional models from `tyft rules' [13] (a class of rules equi-valent to the tree rules without negative premises [10]).For more details, see [30].Corollary 7.3 The unique (both by initiality and �-nality) homomorphism from the initial to the �nal �-model is both the initial algebra semantics and the �nalcoalgebra semantics for �. 2The above, say, universal semantics for � is thusa compositional interpretation of the programs whichpreserves their behavioural distinctions. In Set, thelatter means that two programs with the same univer-sal semantics are B-bisimilar. One can easily see that,under the additional hypothesis that B preserves weakpullbacks, the converse also holds: two programs havethe same universal semantics if and only if they areB-bisimilar. In other words:Corollary 7.4 If B preserves weak pullbacks, the uni-versal semantics associated to some abstract rules � isfully abstract with respect to B-bisimulation. 2Next, recall De�nition 4.1: by replacing spans ofcoalgebra homomorphisms with spans of T -algebra ho-momorphisms, one has a corresponding notion of T -congruence which specialises to the ordinary notionof congruence. Similarly, by considering spans of �-bialgebra homomorphisms one has a notion of, say, �-bicongruence and a corresponding category. We canask then whether there exists a �nal bicongruence fora �-bialgebra. Now, if pullbacks of cospans of carri-ers of B-coalgebras are B-bisimulations, then, by theuniversal property of pullbacks, a �nal B-bisimulationbetween two coalgebras exists: it is the pullback of therespective unique coalgebra homomorphisms to the �-nal coalgebra. This is a T -congruence as well, becausethe forgetful functor UT : T -Alg ! C creates limits.Therefore, by de�nition of �nal bialgebra:Corollary 7.5 If B preserves weak pullbacks, thenevery �-bialgebra has a �nal bicongruence. 2In particular, the behavioural endofunctor B in (2) pre-serves weak pullbacks, hence the above corollary spe-cialises to the well-known fact that (strong) bisimula-tion is a congruence for GSOS and tree rules.
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