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Abstract

W e presen t an approac h for the reconstruction and

appro ximation of 3D CAD mo dels from an unorga-

nized collection of p oin ts. Applications include rapid

rev erse engineering of existing ob jects for use in a

syn thetic computer en vironmen t, including computer

aided design and man ufacturing. Our reconstruction

approac h is 
exible enough to p ermit in terp olation of

b oth smo oth surfaces and sharp features, while plac-

ing few restrictions on the geometry or top ology of

the ob ject.

Our algorithm is based on alpha-shap es to compute

an initial triangle mesh appro ximating the ob ject's

surface. A mesh reduction tec hnique is applied to

the dense triangle mesh to build a simpli�ed appro x-

imation, while retaining imp ortan t top ological and

geometric c haracteristics of the mo del. The reduced

mesh is in terp olated with piecewise algebraic surface

patc hes whic h appro ximate the original p oin ts.

The pro cess is fully automatic, and the reconstruc-

tion is guaran teed to b e homeomorphic and error

b ounded with resp ect to the original mo del when cer-

tain sampling requiremen ts are satis�ed. The result-

ing mo del is suitable for t ypical CAD mo deling and

analysis applications.
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1 In tro duction

The design, engineering and man ufacturing planning

of new pro ducts is more and more often carried out b y

computer sim ulation. A common need in this pro cess

is incorp orating existing ob jects in to this ele ctr onic

pr ototyping en vironmen t, to reuse them as part of a

new pro duct, or to adapt and impro v e their design to

meet new requiremen ts.

The a v ailabil it y of fast and accurate geometric data

acquisition devices, suc h as the laser r ange sc anner ,

has made it relativ ely simple to acquire the spatial

co ordinates of a large set of p oin ts from the surface of

a 3D ob ject. Applications that w ould b ene�t from an

e�cien t and reliable metho d for building a geometric

mo del from this collection of measuremen ts include:

Rev erse engineering: Starting from an existing

ob ject, reconstruct a computer mo del of it, and

then analyze and mo dify its design. Rev erse en-

gineering has relev an t applications in the man u-

facture industry .

Shap e analysis: Analyze the deformation of a me-

c hanical part after a collision.

Authoring 3D virtual w orlds:

Quic kly build mo dels of c haracters, actors, and

spaceships from their real coun terparts or from

cla y mo c k-ups.

3D fax: Scan an ob ject, and transmit the digitized

data on a phone line. The receiving station

will reconstruct the mo del and man ufacture a

cop y using a rapid protot yping tec hnique suc h

as stereo-lithograph y .
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T ailor-�t mo deling: Man ufacture customized

fashion apparels, helmets or prosthesis from a

b o dy scan.

Automatically reconstructing a CAD mo del of the

ob ject from a dense and uniform sampling of its sur-

face is the sub ject of this pap er. Among the qualities

w e w ould exp ect from suc h a mo del are the follo wing:

� It matc hes the top ological c haracteristics of the

ob ject;

� It is geometrically accurate;

� It can represen t smo oth, curv ature con tin uous

surfaces as w ell as sharp features suc h as corners

and edges, common in man ufactured parts;

� It is suitable to b e used in successiv e phases of

the design and sim ulation pro cess.

W e are in terested in b oth the theoretical c hallenges

that suc h a problem raises, and in practical metho d-

ologies whic h can b e used in real-w orld applications.

Previous researc h on this problem has mainly fo cused

on reconstructing ob jects whose top ology is kno wn

a priori. More recen tly , sev eral metho ds ha v e b een

prop osed for the case of unkno wn top ology . Man y of

these metho ds rely on heuristics to reconstruct spa-

tial relationships b et w een p oin ts. While these ap-

proac hes ha v e b een sho wn to giv e go o d results on

practical examples, there is no guaran tee that they

will not fail in pro ducing a v alid output. W e giv e a

formal c haracterization of su�cien t conditions for the

sampling.

Our study fo cuses on dense , unorganized data sam-

plings. Last-generation devices are capable of mea-

suring 10

4

to 10

5

p oin ts p er second, with a resolution

of 10

� 2

mm. The problem is therefore not that of

inferring a \reasonable" shap e from a set of sparse

p oin ts on the ob ject's surface, but rather that of pro-

viding a compact, usable, accurate and top ologically

consisten t represen tation of the ob ject from a dense

sampling of its surface. W e will assume that the data

comes in the form of an unorganized collection of

x; y ; z triples, and that no other geometric or top o-

logical information is a v ailable. This allo ws a uni�ed

treatmen t of di�eren t instances of the problem.

W e are mainly in terested in ob jects whose geom-

etry is not easily sp eci�ed as a com bination of ba-

sic shap es. F or example, man y mec hanical parts can

b e \disassem bled" in a set of simple geometric en-

tities (sa y parallelepip eds, cylinders, spheres etc.),

com bined via set op erations (a represen tation called

Constructiv e Solid Geometry , or CSG). F or ob jects

lik e these, it mak es sense to �t parts form this prede-

�ned small set so that their com bination matc hes the

sampled p oin ts. This problem in v olv es shap e r e c o gni-

tion and se gmentation . W e will instead mainly deal

with ob jects whose b oundary is a \free form" sur-

face, or a piecewise com bination of smo oth surfaces

adjoining along sharp edges.

In summary , our con tributions are the follo wing:

1. W e devise an e�cien t algorithm, based on alpha-

shap es, capable of \connecting the dots", b y in-

ferring spatial relationships b et w een the sam-

pled p oin ts. The algorithm automatically builds

a triangle-mesh in terp olating the data p oin ts.

F or an ob ject whose \feature-size" is larger than

some � , a � -dense sampling su�ces to recon-

struct a homeomorphic, distance-b ounded mo del

from the sampled p oin ts only .

2. W e dev elop a �tting sc heme for mo dels with

smo oth faces and sharp features, based on a

mesh reduction step follo w ed b y least-squares �t-

ting of algebraic patc hes.

There are asp ects of the rev erse engineering prob-

lem that w e ha v e not in v estigated in this w ork. F or

example, data is sub ject to noise, esp ecially in the

vicinit y of sharp features, and a reliable reco v ery of

these features for segmen tation purp oses can b e dif-

�cult using only \lo cal" information. Also, when a

complex, smo oth surface is partitioned in to patc hes,

it w ould b e helpful if the reconstruction algorithm

could pro vide a \natural" partitioning, one for ex-

ample that tak es in to accoun t symmetries and other

prop erties of the shap e. A discussion of these and

other related issues can b e found in the recen t re-

view [53 ]. W e pro vide further discussion of op en

problems and future w ork in Section 9.

2 3D Scanning T ec hnologies

T ypical 3D digitizers are based on touc h prob es, opti-

cal or range laser scanners, and acoustic or magnetic

sensors.

T ouc h prob es can b e moun ted on a 3D pan tograph

(see Figure 1a), and op erated man ually . Join t an-

gles are measured b y electronic or optical sensors,

and these measures are com bined and transformed

in to x; y ; z co ordinates. Automatic measuremen t ma-

c hines are also widely used in the mec hanical man u-

facturing industry , for example for qualit y con trol. In

this con�guration (Figure 1b), the mec hanical prob e

is attac hed to a rob ot arm, and mo v ed in con tact with

the ob ject's surface b y sp ecialized con trol soft w are.
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(a) (b) (c)

Figure 1 : Sev eral t yp es of 3D digitizers. (a) Mec hanical touc h prob es. (b) A com-

puter-con trolled Co ordinate Measuremen t Mac hine. (c) A laser-range scanner, and the

asso ciated motion platform.

F or some applications the ob ject to b e measured is

moun ted in a lathe stand, and the measuring prob e

scans its surface at p oin ts arranged in a cylindrical

pattern.

Optical laser scanners shine a p oin t or strip e of

laser ligh t on the ob ject's surface. One or more video

sensors capture the p oin t (or pro�le) from v arious

viewp oin ts. The video image is digitized, and the

p osition of eac h p oin t is computed via triangulation.

Ob jects are usually �xed to a platform whose p osition

is con trolled b y precision serv o motors. The accuracy

of this motion is crucial in ac hieving lo w measuremen t

errors. F or a linearly translating platform one obtains

a regular arra y of x; y ; z measuremen ts, or r ange im-

age . Other t ypical platforms allo w a rotating motion,

yielding a cylindrical scan of the ob ject. A picture of

a commercial laser-strip e, t w o-sensor scanner is visi-

ble in Figure 1c. T ypical spatial resolutions of suc h

t yp es of scanners range b et w een 100 �m and 500 �m ,

with a sampling sp eed of 15,000 p oin ts/sec.

The w orkspace of a �xed-head laser scanners is lim-

ited b y the range of motion of the platform. Re-

cen t mo dels are trying to o v ercome this limitatio n b y

moun ting the laser scanning head on a precise pan to-

graph. This allo ws to scan, with relativ e freedom of

mo v emen ts, ob jects of relativ ely large scale and with

complex geometry , v ery m uc h lik e one w ould spra y-

pain t the ob ject.

It is imp ortan t to notice that, dep ending on the

scanning tec hnology used, the acquired data can

ha v e di�eren t c haracteristics. Mec hanical, hand held

prob es are often used to get precise measuremen ts of

a relativ ely small n um b er of p oin ts on imp ortan t geo-

metric features of the ob ject. This set of data p oin ts

are later connected together man ually to form a wire-

frame of curv es, whic h can then b e lofted. This pro-

cess is v ery time-consuming, and is not suitable for

capturing the shap e of free-form surfaces. Another

mo de of use is to simply \scribble" with the prob e

the ob ject's surface, and then use an automatic re-

construction algorithm to �t a surface to the sampled

p oin ts.

With laser range scanners, when digitizing ob jects

with a simple (sa y roughly cylindrical) geometry , a

single scan migh t su�ce to capture a regular grid

of p oin ts on the whole ob ject's surface. These p oin ts

can then b e connected to form a triangle mesh. Since

the triangle mesh can con tain millions of triangles, it

is usually simpli�ed or appro ximated with parametric

surface patc hes b efore b eing used as a mo del. Ob jects

with a complex geometry , for example when holes and

ca vities are presen t, require more than one scan to

allo w the scanning head to \see" all of their surface.

These di�eren t scans m ust then b e co-registered, and

con v erted in to a single triangle-mesh. While metho d-

ologies for doing this ha v e b een prop osed and sho wn

to w ork w ell for some applications (see Section 3),

they are not completely robust, in that they m ust

deal with o v erlapping measuremen ts that not alw a ys

matc h completely , due to the limited accuracy of the

scanning device.

Finally , it m ust b e noted that additional geometric

and top ological information migh t b e a v ailable. F or

example, one could record for eac h p oin t the p osition

of the scanning head, whic h can b e used to compute

a global, coheren t orien tation for the reconstructed

surface. Often a measure of the con�dence asso ciated

with eac h measuremen ts can also b e estimated, based

on the angle of incidence that the sensor viewing di-

rection forms with the surface normal (measuremen ts

are not v ery reliable when the camera sees the sur-

face pro�le at a grazing angle). Also, man y recen t
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laser scanners are coupled with an additional video-

camera, whic h can capture surface color information.

3 Related Prior W ork

Researc h on the 3D reconstruction problem has b een

done mainly in three areas: (a) n umerical analysis

and appro ximation; (b) geometric mo deling and com-

puter graphics; (c) computer vision.

When reconstructing a mo del represen tation from

unorganized p oin ts, a ma jor problem is that of infer-

ring the top ological gen us of the ob ject. Some of the

approac hes describ ed in the follo wing assume that the

top ological gen us of the ob ject is kno wn a priori , and

often restrict themselv es to gen us-zero ob jects.

W ork in the �eld can b e group ed in to three broad

categories: In pie c ewise-line ar r e c onstruction the goal

is constructing a p olygonized (often triangulated)

surface that in terp olates or appro ximates the giv en

p oin ts. Computational Geometry pro vides a ric h

framew ork of concepts and tec hniques to attac k this

problem.

Surfac e �tting is based on tec hniques from Com-

puter Aided Geometric Design (CA GD) and Numer-

ical Analysis. The reconstructed ob ject is represen ted

as a collection of surface patc hes (algebraic, NURBS,

etc.).

A set of metho ds based on physic al ly-b ase d mo del-

ing ha v e b een dev elop ed and used, esp ecially b y the

Computer Vision comm unit y . In these metho ds a sur-

face is \deformed", under the action of applied forces

and in ternal reactions, un til it appro ximates the data

p oin ts.

In the rest of this c hapter w e giv e a short o v erview

of earlier w ork in the �eld. The exp osition is not

mean t to b e exhaustiv e, but should giv e a clear idea of

the range of tec hniques that ha v e b een used. Another

review of the �eld can b e found in [13 ].

3.1 Piecewise-Linear Reconstruction

O'Rourk e [39 ] explored the use of p olyhedra to rep-

resen t the \most reasonable" reconstruction of an

ob ject from a set of p oin ts. In particular, he pro-

p osed p olyhedra of minim al surface area as a \natu-

ral" mo del for a giv en set of p oin ts, and describ ed an

algorithm for the computation of an appro ximation

of suc h p olyhedra.

The problem of reconstructing a p olygon of minim al

p erimeter ha ving a giv en set of p oin ts as v ertices is

equiv alen t to the Euclidean T ra v eling Salesman prob-

lem, whic h is kno wn to b e NP-hard. The problem

of computing a p olyhedron of minimal surface area

is the 3D v ersion of the minim al p erimeter p olygon,

and is conjectured to b e NP-hard as w ell.

O'Rourk e prop osed the follo wing algorithm to com-

pute an appro ximation of the minim al area p olyhe-

dron. The general strategy consists in starting with

the con v ex h ull of the giv en set of p oin ts, and then

shrinking this surface to accommo date p oin ts that lie

in its in terior. A t eac h step, he selects one in terior

p oin t to b e inserted in the curren t triangulated sur-

face based on the distance to the closest face and

other heuristics. Then he replaces the closest (tri-

angular) face with a set of triangles that accommo-

date the new p oin t and the b oundary of the old face.

Subsequen tly , he restores minim ali t y of surface area

in the neigh b orho o d of the newly inserted v ertex b y


ipping edges across adjacen t faces. Con trary to TSP

heuristics, this appro ximate algorithm is not guaran-

teed to yield a surface area within a �xed p ercen tage

of the minim al. This metho d is restricted to the re-

construction of ob jects of top ological gen us zero.

Boissonnat [12] prop osed t w o metho ds to build a

triangulation ha ving the giv en p oin ts as v ertices. The

�rst metho d is \lo cal" and surface-based, whereas the

second one is \global" and v olume-based.

F ollo wing his �rst approac h, one starts with creat-

ing an edge b et w een the t w o closest p oin ts. A third

p oin t is then c hosen and added, so that a triangle

is formed. Other p oin ts are successiv ely added and

new triangles are created, and joined to an edge of

the curren t triangulation b oundary , un til all p oin ts

ha v e b een included. F or eac h edge E on the curren t

b oundary the new p oin t p to b e joined to E is selected

among k closest neigh b ors according to a heuristic.

The second metho d is based on the idea of �rst

computing a Delauna y triangulation of the con v ex

h ull of the set of p oin ts, and then sculpturing the v ol-

ume b y remo ving tetrahedra, un til all p oin ts are on its

b oundary , or no tetrahedra can b e further remo v ed.

Candidate tetrahedra are k ept in a priorit y queue

according to some geometric criterion, and remo v ed

only if the resulting p olyhedron main tains manifold

prop erties. It can b e pro v ed that an y p olyhedron

of gen us zero inside the Delauna y triangulation can

b e obtained b y suc h a pro cedure [12 ]. Ho w ev er, de-

p ending on the sequence of tetrahedra remo v ed b y

the algorithm, the sculpturing migh t get to a p oin t

in whic h no other tetrahedron can b e remo v ed, and

y et some of the data p oin ts are still in ternal to the

sculpted surface. Sev eral geometric measures can b e

used to decide whic h tetrahedra are to b e remo v ed

�rst. Boissonnat suggests using the maxim um dis-

tance b et w een the b oundary faces of a tetrahedron

and the asso ciated parts of its circumscribing sphere.

T etrahedra with the largest v alue of this distance are
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remo v ed �rst.

Choi et al. [15 ], describ ed a metho d to incremen-

tally form a triangulation, starting from an initial

triangle, based on the assumption that there exists

a p oin t from whic h all the p oin ts of the surface are

visible. After a triangulation is built, it is impro v ed

b y edge sw apping based on a smo othness criterion.

V eltk amp [54 ] in tro duced a new geometric struc-

ture, called the 
 -graph, whic h con tains as a sp e-

cial case man y w ell kno wn geometric graphs, suc h as

the Euclidean Minim um Spanning T ree, the Delau-

na y T riangulation, the Con v ex Hull and the Gabriel

Graph. The 
 -graph coincides initially with the con-

v ex h ull, and is progressiv ely c onstricte d (i.e. tetra-

hedra ha ving b oundary faces are deleted) un til the

b oundary of the 
 -graph is a closed surface, passing

through all the giv en p oin ts.

Hopp e et al. [32 ] compute a signed-distance func-

tion from the data p oin ts, and then use its zero-

con tour as an appro ximation of the ob ject. First,

for eac h data p oin t p

i

2 P , they compute a \tan-

gen t" plane, and the asso ciated normal ^ n

i

, based on

b est-�t of k neigh b or p oin ts (the k -neighb orho o d of

p

i

). The problem is no w assigning a consisten t ori-

en tation to these planes. They build the R ieman-

nian Gr aph , RG ( P ) o v er P (t w o p oin ts p

i

; p

j

2 P

are connected b y an edge in RG ( P ) i� either p

i

is in the k -neigh b orho o d of p

j

or p

j

is in the k -

neigh b orho o d of p

i

). Eac h edge ( i; j ) is assigned the

w eigh t 1 � j ^n

i

� ^n

j

j , and a minim um spanning tree is

computed. In tuitiv ely , this tree connects p oin ts that

ha v e close-to-parallel asso ciated planes. They then

orien t the plane asso ciated with the p oin t with the

largest z-v alue so that its normal p oin ts to w ard the

p ositiv e z -direction, and propagate this orien tation to

other p oin ts tra v ersing the minim um spanning tree.

While there is no guaran tee that the algorithm will

�nd a coheren t orien tation, the tra v ersing order im-

plicit in the MST fa v ors propagation across relativ ely

smo oth p ortions of the manifold, dela ying more di�-

cult areas of high curv ature. Their pap er sho ws, with

sev eral examples, that their heuristic yields go o d re-

sults in practice. Subsequen tly , the v alue of a signed-

distance function � is computed at all v ertices of a

grid of v o xels as the distance of the v ertex from the

orien ted plane asso ciated with the closest p oin t in

P , with a sign dep ending on whic h side of the plane

the p oin t lies in. A mar ching cub es algorithm is then

used to extract a piecewise-linear appro ximation of

the zero con tour of � . In t w o subsequen t steps, de-

scrib ed in [33 , 31], the constructed mesh is optimized

(i.e., the n um b er of triangles is reduced while the dis-

tance of the mesh from the data p oin ts is k ept small)

and then a piecewise smo oth sub division surface is

built on it (see also Section 3.2, page 6).

T urk and Lev o y [52 ] prop osed to \zipp er" together

sev eral meshes obtained from separate 3D-scans of

an ob ject. In this w a y they can reconstruct a p olyg-

onal mesh appro ximating the surface of an ob ject,

ev en when a single scan do es not su�ce to capture

its shap e.

More recen tly , Curless and Lev o y [17 ] presen ted

an approac h to merge sev eral range images b y scan-

con v erting eac h image to a w eigh ted signed-distance

function, represen ted in a regular 3D grid. The range

images are �rst co-registered, and a triangle mesh is

built for eac h of them b y connecting neigh b or sam-

ples. Then for eac h image the con tribution to a global

signed-distance function is computed, b y ev aluating

the distance of eac h v o xel to the triangle-mesh along

the direction of view of the sensor, and computing a

w eigh t based on the angle formed b y the viewing di-

rection and the surface normal (t ypically , range scan-

ners are prone to larger measuremen t errors when the

surface is view ed at a grazing angle). These v alues

are incremen tally added to previously accum ulated

results.

When all the range images ha v e b en in tegrated,

a marc hing-cub e algorithm is used to extract the

zero-con tour surface from the v olume. The authors

pro vide some details on ho w to �ll holes (areas not

scanned b y the sensor) and on some implemen tation

issues for time and space e�ciency . This metho d is

claimed to b e \robust", b ecause the �nal surface is

extracted from a globally de�ned function. The time

required to merge 48 scans in a 407x957x407 grid

is rep ortedly ab o v e three hours on a 250MHz MIPS

R4400 pro cessor.

Alpha-shap es w ere in tro duced in the plane b y

Edelsbrunner et al. in [23 ] and then extended to

higher dimensions [22 , 24 ], as a geometric to ol for

reasoning ab out the \shap e" of a set of p oin ts. An

� -complex of a set of p oin ts P , for a giv en v alue of

the parameter � , is a subset of the 3D Delauna y tri-

angulation of P , and the corresp onding � -shap e is

its underlying space. In tuitiv ely , an � -shap e can b e

obtained as follo ws: Consider a ball-shap ed er aser ,

of radius � , and think of P as a set of p oin ts in

space that the eraser cannot in ter-p enetrate. The 3D

Delauna y triangulation of P is a simplicial complex

formed b y tetrahedra, triangles, edges and v ertices

(3-, 2-, 1- and 0-simplices, resp ectiv ely). Imagine

mo ving the eraser ev erywhere in space, remo ving all

simplices that the eraser can pass through (remem b er

that the eraser is constrained b y the data p oin ts). All

that is left after the erasing constitutes the � -shap e

of P .

Ob viously , as � v aries, one obtains di�eren t � -
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shap es. F or example, for � = 0 the � -shap e is P

itself. F or � = 1 one obtains the con v ex h ull of

P . V arying � from 0 to 1 , a �nite collection of � -

shap es is obtained. Notice that in general an � -shap e

is a non-connected, non-regular (i.e., ha ving solid as

w ell as 2-, 1- and 0-dimensional parts) p olytop e, and

therefore is not directly suitable for our purp oses.

An extension of the � -shap es, called weighte d � -

shap es (see [22 ]), allo ws one to asso ciate a w eigh t to

eac h data p oin t. The w eigh ts can b e used to cap-

ture di�eren t lev els of detail in the sampling. Large

w eigh ts can b e assigned to p oin ts in areas of lo w sam-

pling densit y , and small w eigh ts can b e used in dense

regions to comp ensate for a non uniform sampling

and for di�eren t feature sizes. More details will b e

giv en in Section 4.

An approac h based on alpha-shap es to de�ne an

appro ximate signed-distance function, follo w ed b y a

piecewise-algebraic surface �tting, is describ ed in [3]

(see also Section 3.2, page 7).

3.2 Surface Fitting

W e ha v e group ed in this Section metho ds based on

appr oximating the set of p oin ts with a piecewise p oly-

nomial, parametric or implicit surface.

An application of this metho d is describ ed b y

Shmitt et al. [45 ]. The input p oin ts are assumed orga-

nized in a rectangular grid, and are adaptiv ely �tted

using Bernstein-B � ezier parametric bi-cubic patc hes,

joined to form a G

1

con tin uous surface. The appro x-

imation pro cess b egins with a rough appro ximating

surface and uses sub division to ac hiev e the needed

lev el of accuracy .

Mo ore and W arren [38 ] describ e a metho d for �t-

ting algebr aic surfaces to scattered dense data. Their

metho d is adaptiv e and able in principle to deal with

complex geometry and top ology .

The �tting b egins with a uniform mesh of tetra-

hedral elemen ts that �ll a region con taining the data

p oin ts. Then for eac h elemen t in the mesh that con-

tains p oin ts, a surface patc h that appro ximates the

p oin ts is computed based on least squares �t of the

data p oin ts and of auxiliary data. An elemen t can

b e split in to smaller elemen ts if the appro ximation

error is to o large, and the pro cess rep eated for eac h

sub-elemen t. Finally , function v alues and the �rst

k deriv ativ es of eac h �tting surface are computed at

eac h v ertex of the �nal mesh, and a v eraged. A C

k

in terp olan t is de�ned on eac h elemen t, based on the

a v eraged v alues (this pro cess is called fr e e-form blend-

ing b y the authors).

It is kno wn that least squares appro ximation of

data p oin ts with algebraic patc hes migh t pro duce sur-

faces ha ving extraneous parts. The auxiliary data

men tioned ab o v e serv es the purp ose of a v oiding ex-

traneous surface sheets. This data is an appro ximate

sampling of the signe d-distanc e function � ( x; y ; z ).

Ob viously , since the surface is unkno wn, the signed

distance can only b e estimated. They compute the

absolute v alue of � ( p ) as the distance of p from the

closest data p oin t, and assign a sign to it based on

the follo wing sc heme. A tetrahedron is regularly sub-

divided in to a mesh of smaller sub-tetrahedra. If the

data p oin ts are dense enough, then sub-tetrahedra

con taining data p oin ts form a \la y er" that divides

the tetrahedron in t w o connected comp onen ts. V er-

tices of the mesh in these t w o regions are assigned,

arbitrarily , opp osite signs. The auxiliary data is con-

stituted b y the appro ximate v alue of � computed at

v ertices of this mesh of sub-tetrahedra. They pro v e

that if the data in a tetrahedron can b e appro ximated

within a su�cien tly small " b y a plane, then �tting

with the auxiliary data pro duces a smo oth, single-

sheeted surface.

They giv e examples of C

0

reconstruction of sur-

faces and brie
y discuss a C

1

metho d (non adap-

tiv e) based on biquadratic, tensor-pro duct implicit

patc hes.

The tec hnique of Hopp e et al. [31 ] (see Section 3.1,

page 5) starts with a triangulated surface mesh and

pro duces a smo oth surface based on the sub division

surface sc heme of Lo op [36 ]. Their metho d is based

on minim izing an energy function that trades o� con-

ciseness and accuracy of �t to the data, and is capa-

ble of represen ting surfaces con taining sharp features,

suc h as creases and corners. The surface is repre-

sen ted as the limit of an in�nite re�nemen t pro cess.

While this approac h app ears promising for some ap-

plications, a non closed-form represen tation mak es it

di�cult to apply standard tec hniques in later stages

of analysis and design.

More recen tly , Ec k and Hopp e [21 ] prop osed an

alternativ e surface �tting approac h based on tensor-

pro duct B-spline patc hes. They start b y using the

signed-distance zero-surface extraction metho d of [32 ]

(see also Section 3.1, page 5). An initial parameter-

ization is built b y pro jecting eac h data p oin t on to

the closest face. The metho d con tin ues with building

from the initial mesh a b ase c omplex (a quadrilateral-

domain complex, with the same top ology of the ini-

tial mesh) and a con tin uous parameterization from

the base complex to the initial mesh, lev eraging on

the w ork of Ec k et al. [20 ]. A G

1

net w ork of tensor-

pro duct B-spline patc hes, ha ving the base complex

as parametric domain, is then �t to the data p oin ts,

based on the sc heme of P eters [41 ]. The �tting pro-

cess is cast as an iterativ e minim ization of a func-
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tional, whic h is a w eigh ted sum of the distance func-

tional (the sum of square Euclidean distances of the

data p oin ts from the surface) and a fairness functional

(thin plate energy functional).

Ba ja j et al. [3 ] used alpha-shap es to build an initial,

piecewise-linear appro ximation of the shap e. They

then de�ne an signed distance function based on the

initial appro ximation, and �t C

1

-smo oth implicit al-

gebraic patc hes to the data p oin ts and samplings of

the signed distance function. The �tting is done in-

cremen tally and adaptiv ely , and can b e extended to

capture m ultiple scalar �elds whose v alues are asso-

ciated to the sampled p oin ts. Their metho d can b e

applied to ob jects of general gen us.

Another in teresting tec hnique, based on region

gro wing and restricted to functional surfaces, is de-

scrib ed in [44 ].

3.3 Ph ysically Based Mo deling

Another class of algorithms is based on the idea of

deforming an initial appro ximation of a shap e, under

the e�ect of external forces and in ternal reactions and

constrain ts.

T erzop oulos et al. [50 ] used an elastically-

deformable mo del with in trinsic forces that induce

a preference for symmetric shap es, and apply them

to the reconstruction of shap es from images. The al-

gorithm is also capable of inferring non-rigid motion

of an ob ject from a sequence of images.

P en tland and Sclaro� [40] adopted an approac h

based on the �nite elemen t metho d and parametric

surfaces. They start with a simple solid mo del (lik e a

sphere or cylinder) and attac h virtual \springs" b e-

t w een eac h data p oin t and a p oin t on the surface.

The equilibrium condition of this dynamic system is

the reconstructed shap e. They sho w ed ho w the set of

parameters that describ e the reco v ered shap e can b e

used in ob ject recognition.

Other ph ysically based approac hes are describ ed

in [43 , 42, 34 ].

4 Prelimi naries

4.1 T op ological spaces, homeomor-

phisms, and manifolds

A top olo gic al sp ac e is a set S together with a collec-

tion U of subsets of S (that is, U is a subset of 2

S

)

satisfying the follo wing conditions:

1. ; 2 U , S 2 U .

2. If U

1

; : : : ; U

n

2 U then \

n

i =1

U

i

2 U .

3. Arbitrary unions of elemen ts in U lie in U ; that

is, if

~

U � U , then [

U 2

~

U

2 U .

The elemen ts of U are called op en sets in S . The col-

lection U is called a top olo gy on S . W e often suppress

the U and simply refer to S as a top ological space.

A map f from a top ological space X to another

top ological space Y is continuous if ev ery neigh b or-

ho o d of f ( p ) in Y is mapp ed b y f

� 1

to a neigh-

b orho o d of p in X . If f is bijectiv e, and if b oth f

and f

� 1

are con tin uous, then f is a home omorphism .

Tw o top ological spaces X and Y are home omorphic

if there exists a homeomorphism f : X ! Y .

In the follo wing, w e will restrict ourselv es to sub-

sets of the n -dimensional Euclidean space, S � R

n

.

Let us de�ne the follo wing subspaces of R

n

, with ori-

gin o :

H

n

= f x 2 R

n

j x

n

� 0 g

B

n

= f x 2 R

n

j jj x � o jj � 1 g

S

n � 1

= f x 2 R

n

j jj x � o jj = 1 g

Op en , half-op en , and close d n -balls are homeomorphic

to R

n

, H

n

and B

n

, resp ectiv ely . An ( n � 1)-sphere

is homeomorphic to S

n � 1

.

A set in R

n

is b ounde d if it is con tained in an op en

ball. An op en c overing of a top ological space S is a

collection V � U suc h that [

V 2V

V = S . A space

S is c omp act if ev ery op en co v ering has a �nite sub-

co v ering. A subspace of R

n

that is b oth closed and

b ounded is compact.

A k -manifol d in R

n

( n � k ) is a subspace that

is lo cally homeomorphic to R

k

. A k -manifold with

b oundary is a subspace that is lo cally homeomor-

phic to either R

k

or the half-op en k -ball H

k

. P oin ts

with a neigh b orho o d homeomorphic to H

k

form the

b oundary of the manifold X , denoted b d( X ). The

b oundary of a k -manifold with b oundary is a ( k � 1)-

manifold without b oundary .

4.2 Simplicial complexes

A k -simplex �

T

= con v( T ) is the con v ex com bination

of an a�nely indep enden t p oin t set T � R

n

, j T j =

k + 1. k is the dimension of simplex �

T

. A (geometric)

simplicial c omplex K is a �nite collection of simplices

with the follo wing t w o prop erties:

1. if �

T

2 K then �

U

2 K , 8 U � T

2. if �

U

; �

V

2 K , then �

U \ V

= �

U

\ �

V

(1 and 2

imply that �

U \ V

2 K ).

The underlying space of K is [ K ] = [

� 2 K

� . A

sub complex of K is a simplicial complex L � K .
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4.3 Alpha-shap es

Alpha-shap es [23 , 24 ] asso ciate a mathematically de-

�ned meaning to the v ague concept of shap e of

an unorganized set of p oin ts. W eigh ted alpha-

shap es [22 ] are a generalization of alpha-shap es to

sets of w eigh ted p oin ts. In the follo wing, w e will

shortly review de�nitions and prop erties of alpha-

shap es. The presen tation is adapted from [22 ]. No-

tice that although the exp osition is for unweighte d

alpha-shap es, w e will use the notation used in the

more general w eigh ted case. A w eigh ted alpha-shap e

coincides with an un w eigh ted alpha-shap e when all

w eigh ts are equal to zero. W e restrict our presen-

tation to the three-dimensional case. n -dimensional

w eigh ted alpha-shap es are describ ed in the cited ref-

erence [22 ].

In the follo wing w e will sometimes regard a sphere

of radius � cen tered in p as a w eigh ted p oin t p of

w eigh t w

p

= �

2

. W e de�ne the p o w er distance of a

p oin t x from a w eigh ted p oin t p as

�

p

( x ) = jj p � x jj

2

� w

p

where jj p � x jj is the Euclidean distance b et w een p and

x . A geometric in terpretation of the p o w er distance is

the follo wing: If w eigh ted p oin t p represen ts a sphere

of cen ter p and radius

p

w

p

, then �

p

( x ) is the square

of the length of a tangen t line segmen t from x to the

sphere (see Figure 2).

Let P � R

3

b e a �nite set of p oin ts (general p o-

sition is assumed implicitly throughout the pap er),

j P j � 4, and T its Delauna y triangulation. F or ev-

ery simplex �

T

2 T , let y

T

b e the smallest sphere

(w eigh ted p oin t) suc h that �

y

T

( p ) = 0 ; 8 p 2 T . If

j T j = 4 there is only one suc h sphere y

T

, the circum-

sphere of �

T

. If j T j = k + 1 < 4 there are in�nitely

man y suc h spheres, but only one has minim um ra-

p

w

p

p

�

p

( x )

x

p

jj p � x jj

Figure 2 : P o w er distance of a p oin t

x from the w eigh ted p oin t p .

dius. The cen ter of y

T

is lo cated at the in tersection

of the chor dale of T (see Figure 3)

�

T

=

\

p;q 2 T

�

p;q

; �

p;q

= f x 2 R

3

j jj p � x jj = jj q � x jjg

with the orthogonal k -
at a�( T ). Let �

T

b e the ra-

dius of y

T

, and call w

y

T

= �

2

T

the size of the k -simplex

�

T

. Notice that the size of a 0-simplex is 0. The size

of simplices satis�es the follo wing monotonicit y prop-

ert y: if U � T then w

y

U

< w

y

T

, that is the size of

a prop er face of a simplex is smaller than the size of

the simplex itself.

A p oin t q 2 P � T is a c on
ict for y

T

if �

y

T

( q ) < 0,

and y

T

is c on
ict-fr e e if it has no con
icts. Ob vi-

ously , all 3-simplices �

T

2 T are con
ict-free, but a

k -simplex, k < 3, can ha v e con
icts.

De�niti on 4.1 The alpha-complex of P is the sub-

c omplex �

�

of T forme d by al l simplic es �

T

such that:

(a) The size of y

T

is less than � and y

T

is c on
ict-

fr e e, or

(b) �

T

is a fac e of �

U

and �

U

2 �

�

.

The underlying sp ac e W

�

of �

�

, c al le d alpha-shap e ,

is a p olytop e, which c an b e non-c onne cte d and di�er-

ent fr om the closur e of its interior (i.e. it may c on-

tains p arts of heter o gene ous dimensionality).

It can b e pro v ed (see [22 ]) that the follo wing is an

alternativ e de�nition of alpha-shap es:

p
q

y

T

�

T

�

T

Figure 3 : The collection of spheres

con taining the t w o v ertices of the

1-simplex T = f p; q g . The sphere

y

T

of minim um radius �

T

is dra wn

in b old.
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De�nitio n 4.2 Consider a subset T � P , with j T j =

k + 1 � 3 , and the k -simplex �

T

. L et us c al l �

T

� -

exp ose d if ther e exists a weighte d p oint x , of weight

w

x

= � (that is, a spher e of r adius

p

� ), such that

�

x

( p ) =

�

= 0 8 p 2 T

> 0 8 p 2 P � T

The alpha-shap e W

�

of P is a p olytop e whose b ound-

ary is the union of al l � -exp ose d simplic es sp anne d

by subsets T � P ; j T j � 3 . The interior of W

�

is

forme d by those c omp onents of R

3

b ounde d by c ol-

le ctions of � -exp ose d 2-simplic es �

T

, such that �

T

is

� -exp ose d only on one side (i.e. ther e exists only one

weighte d p oint of weight � that exp oses �

T

). The in-

terior p oints of W

�

lie on the side of �

T

that is not

� -exp ose d.

4.4 Bernstein-B � ezie r F orms

An y p olynomial of degree n can b e expressed as a

Bernstein-B � ezier form (BB-form) o v er a tetrahedron

� . An algebraic patc h is the zero-set of a p olyno-

mial, restricted to the supp orting tetrahedron. The

Bernstein-B � ezier form is particularly suitable to the

represen tation of piecewise algebraic surfaces as it al-

lo ws to express deriv ativ e con tin uit y b et w een patc hes

with simple, geometrically in tuitiv e constrain ts. The

shap e of eac h patc h can b e lo cally con trolled b y ad-

justing a net of c ontr ol p oints . In this section w e

review de�nitions and basic prop erties of BB-forms,

and in tro duce A-patc hes, algebraic patc hes that are

guaran teed to b e single-sheeted and singularit y-free.

Let p

1

; p

2

; p

3

; p

4

2 R

3

b e a�ne indep enden t.

Then the tetrahedron � with v ertices p

1

; p

2

; p

3

; p

4

,

is � = [ p

1

p

2

p

3

p

4

]. F or an y p =

P

4

i =1

�

i

p

i

, � =

( �

1

; �

2

; �

3

; �

4

)

T

,

P

4

i =1

�

i

= 1 are the barycen tric co-

ordinates of p . Let p = ( x; y ; z )

T

, p

i

= ( x

i

; y

i

; z

i

)

T

.

The barycen tric co ordinates relate to the Cartesian

co ordinates via the follo wing relation:

2

6

6

4

x

y

z

1

3

7

7

5

=

2

6

6

4

x

1

x

2

x

3

x

4

y

1

y

2

y

3

y

4

z

1

z

2

z

3

z

4

1 1 1 1

3

7

7

5

2

6

6

4

�

1

�

2

�

3

�

4

3

7

7

5

(1)

An y p olynomial f ( p ) of degree n can b e expressed as

a Bernstein-B � ezier (BB) form o v er � as

f ( p ) =

X

j � j = n

b

�

B

n

�

( � ) ; � 2 Z

4

+

where

B

n

�

( � ) =

n !

�

1

! �

2

! �

3

! �

4

!

�

�

1

1

�

�

2

2

�

�

3

3

�

�

4

4

is a Bernstein p olynomial , j � j =

P

4

i =1

�

i

with

� = ( �

1

; �

2

; �

3

; �

4

)

T

, � = ( �

1

; �

2

; �

3

; �

4

)

T

are the

barycen tric co ordinates of p , b

�

= b

�

1

�

2

�

3

�

4

(as a sub-

script, w e simply write �

1

�

2

�

3

�

4

for ( �

1

; �

2

; �

3

; �

4

)

T

)

are called B � ezier ordinates, and Z

4

+

stands for the set

of all four dimensional v ectors with non-negativ e in-

teger comp onen ts.

The p oin ts

p

�

=

�

1

n

p

1

+

�

2

n

p

2

+

�

3

n

p

3

+

�

4

n

p

4

; j � j = n

are called the r e gular p oints of � . The p oin ts

( p

�

; b

�

) 2 R

4

are called B � ezier p oints , and the regular

lattice of lines connecting them B � ezier net .

The follo wing lemma giv es necessary and su�cien t

conditions for con tin uit y b et w een adjacen t p olyno-

mial patc hes:

Lemma 4.1 (se e [25]) L et f ( p ) =

P

j � j = n

a

�

B

n

�

( � )

and g ( p ) =

P

j � j = n

b

�

B

n

�

( � ) b e two p olynomials de-

�ne d on the tetr ahe dr a [ p

1

p

2

p

3

p

4

] and [ p

0

1

p

2

p

3

p

4

] , r e-

sp e ctively.

Then

(i) f and g ar e C

0

c ontinuous at the c ommon fac e

[ p

2

p

3

p

4

] if and only if

a

�

= b

�

; for al l � = 0 �

2

�

3

�

4

; j � j = n (2)

(ii) f and g ar e C

1

c ontinuous at the c ommon fac e

[ p

2

p

3

p

4

] if and only if (2) holds and, for al l � =

0 �

2

�

3

�

4

, j � j = n � 1 ,

b

� + e

1

= �

1

a

� + e

1

+ �

2

a

� + e

2

+ �

3

a

� + e

3

+ �

4

a

� + e

4

(3)

wher e � = ( �

1

; �

2

; �

3

; �

4

)

T

ar e the b aryc entric

c o or dinates of p

0

w.r.t. [ p

1

p

2

p

3

p

4

] , de�ne d by the

fol lowing r elation

p

0

1

= �

1

p

1

+ �

2

p

2

+ �

3

p

3

+ �

4

p

4

; j � j = 1

The relation (3) will b e called coplanar condition.

4.5 De�nition and Prop erties of A-

P atc hes

The success of parametric surfaces in geometric mo d-

eling is due to the ease of ev aluation and lo cal con trol

they o�er. Non-Uniform Rational B-Spline (NURBS)

surfaces ha v e b ecome a fairly standard represen tation

of free-form surfaces in commercial CAD pac k ages.

Ho w ev er, parametric surfaces ha v e some imp ortan t

limitatio ns, suc h as the fact that in tersection and o�-

set op erations can pro duce results that are not rep-

resen table exactly in parametric form [2 ].
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In recen t y ears, there has b een an increasing at-

ten tion to alternativ e forms of surface mo deling. In

particular, piecewise algebraic implicit surface repre-

sen tations ha v e man y app ealing prop erties.

An algebraic surface [49 , 47 , 48] is de�ned as the

t w o-dimensional algebraic v ariet y expressed b y the

equation f ( x; y ; z ) = 0, where f is a p olynomial. A

piecewise algebraic surface is a collection of surface

p atches , pieced together with some degree of deriv a-

tiv e con tin uit y . Eac h patc h is an algebraic surface

with a �nite exten t, usually giv en b y a b ounding b ox

or tetr ahe dr on . Piecewise algebraic surfaces of lo w

degree ha v e man y attractiv e qualities, from the clo-

sure prop erties with resp ect to imp ortan t mo deling

op erations suc h as in tersection and blending, to a

high design 
exibilit y for a relativ ely lo w algebraic

degree [2 ]. By using the Bernstein-B � ezier form to rep-

resen t eac h p olynomial, one inherits the large w ealth

of useful prop erties that ha v e made this represen ta-

tion so p opular in the parametric surface domain.

The main shortcoming of algebraic patc hes is that,

in general, the zero-set of a p olynomial can ha v e more

than one real sheet, and ma y con tain singular p oin ts.

Researc hers ha v e therefore lo ok ed at conditions on

the w eigh ts that guaran tee that the patc h is single-

sheeted and singularit y-free (or smo oth ).

Sederb erg [49 ] sho w ed that, if the co e�cien ts of

the BB-form on the lines parallel to one edge of the

tetrahedron all increase (or decrease) monotonically

in the same direction, then an y line parallel to that

edge will in tersect the surface patc h at most once.

Guo [26 ] treats the same problem b y enforcing mono-

tonicit y conditions on a cubic p olynomial along the

direction from one v ertex to a p oin t on the opp osite

face of the v ertex. F rom this he deriv es the condition

a

� � e

1

+ e

4

� a

�

� 0 for all � = ( �

1

; �

2

; �

3

; �

4

)

T

with

�

1

� 1, where a

�

are the co e�cien ts of the cubic BB-

form and e

i

is the i- th unit v ector. This condition is

di�cult to satisfy in general, and do es not in general

a v oid singularities on the zero-con tour.

Another problem is ho w to \stitc h" together a col-

lection of patc hes so that they join with the desired

deriv ativ e con tin uit y .

F or this problem, partial solutions ha v e b een giv en

b y Dahmen [18 ] using quadric patc hes, Dahmen and

Thamm-Sc haar [19 ], Lo dha [35 ], and Guo [26 , 27 ] us-

ing cubic patc hes and Ba ja j and Ihm [6 ] using quin tic

for con v ex triangulations and degree sev en patc hes

for arbitrary surface triangulations. All these pap ers

pro vide heuristics to o v ercome the m ultiple-sheeted

and singularit y problems of implicit patc hes.

All these metho ds use v ariations of the sc heme de-

scrib ed in [18 ] of building a surrounding simplicial

hul l of a giv en triangulation. Suc h a construction is

non trivial and none of the pap ers cited en umerate the

exceptional cases (p ossible ev en for con v ex triangula-

tions) nor pro vide solutions to o v ercome them.

Related pap ers on appro ximating scattered data

using implicit algebraic patc hes include [1 , 35, 38 ].

More recen tly , Ba ja j, Chen and Xu [4 , 5, 14 ] ha v e

describ ed a new class of algebraic patc hes, called A-

p atches . A-patc hes are guaran teed, b y imp osing con-

strain ts on the v alues of their w eigh ts, to b e non sin-

gular (except where needed, see b elo w) and single-

sheeted. A simplicial h ull construction algorithm for

C

1

surfaces, using cubic patc hes, or C

2

surfaces, us-

ing quin tic patc hes, is also pro vided. Exceptional

cases are individuated, and heuristic solutions to

o v ercome them pro vided. Here w e shortly review def-

initions and prop erties of A-patc hes. A more detailed

discussion can b e found in the cited references.

A-patc hes are guaran teed to b e single-sheeted

when the conditions describ ed in t w o follo wing lem-

mas are satis�ed. In particular, A-patc hes can b e

classi�ed as thr e e-side d when a segmen t connecting a

v ertex of the tetrahedron to a p oin t on the opp osite

face in tersects the patc h at most once, and four-side d

when the same prop ert y holds for a segmen t connect-

ing t w o p oin ts on t w o opp osite edges (see Figure 5).

Lemma 4.2 L et � = [ p

1

p

2

p

3

p

4

] . The r e gular p oints

of � c an b e thought of as or ganize d in triangular lay-

ers, that we c an numb er fr om 0 to n going fr om p

1

to the opp osite fac e [ p

2

p

3

p

4

] (se e Figur e 4). If the

B � ezier or dinates ar e al l p ositive (ne gative) on lay-

ers 0 ; : : : ; k � 1 and al l ne gative (p ositive) on layers

k + 1 ; : : : ; n ( 0 < k < n ), then the p atch is single-

she ete d (i.e., any line thr ough p

1

and p 2 [ p

2

p

3

p

4

]

interse cts the p atch only onc e).

Lemma 4.3 L et � = [ p

1

p

2

p

3

p

4

] . The r e gular p oints

of � c an b e thought of as or ganize d in quadrilater al

layers, that we c an numb er fr om 0 to n going fr om

e dge [ p

1

p

2

] to the opp osite e dge [ p

3

p

4

] (se e Figur e 4).

If the B � ezier or dinates ar e al l p ositive (ne gative) on

layers 0 ; : : : ; k � 1 and al l ne gative (p ositive) on layers

k + 1 ; : : : ; n ( 0 < k < n ), then the p atch is single-

she ete d (i.e., any line thr ough p 2 [ p

1

p

2

] and q 2

[ p

3

p

4

] interse cts the p atch only onc e).

In the Lemmas ab o v e, the B � ezier ordinates on la y er

k can ha v e an y sign. P atc hes satisfying the condi-

tions of Lemma 4.2 will b e called thr e e-side d ; those

satisfying the conditions of Lemma 4.3 will b e called

four-side d (Figure 5). See [5] for pro ofs and further

details.
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p
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2

p

3

p

4

p

1

p

2

p

3

p

4

Figure 4 : The la y ers of B � ezier ordinates in a tetrahedron. (left) Three-sided patc h. (righ t)

F our-sided patc h.

a*
a*

a*

(a) (b) (c)

a*

a*

b*

a*

b*

(d) (e) (f )

Figure 5 : Di�eren t t yp es of patc hes. (a), (b), (c) and (d) Three-sided patc hes. (e) and (f )

F our-sided patc hes.
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p

1

p

4

p

00

1

p

0

4

p

3

q

0

4

q

00

1

q

4

p

2

p

0

1

(a) (b)

Figure 6 : (a) Construction of a simplicial h ull. The triangles [ p

1

p

2

p

3

] and [ p

0

1

p

2

p

3

] b elong

to the initial triangle mesh. V ertices p

4

; p

0

4

; q

4

; q

0

4

ha v e b een in tro duced to form the four

fac e-tetr ahe dr a (on the t w o opp osite sides of eac h original triangle). V ertices p

00

1

and q

00

1

are needed to form the four e dge-tetr ahe dr a . (b) An example of simplicial h ull. Note that

for eac h tetrahedron the net of con trol p oin ts is also sho wn. The net of one of the face

tetrahedra is highligh ted in red. P atc hes ha v e b een randomly colored for clarit y .

(a) (b) (c)

(d) (e) (f )

Figure 7 : Mo deling with singular A-patc hes. (a) In terp olating a v ertex with a singular

p oin t. (b) In terp olating t w o v ertices. (c) In terp olating an edge with a singular edge on the

surface. (d) In terp olating t w o edges. (e) In terp olating a face of a cub e. (f ) The A-patc h

surface degenerates in to the cub e. All the edges are no w singular.
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(a) (b) (c)

Figure 8 : Examples of simple ob jects with sharp features mo deled with singular A-patc hes.

4.6 P olyhedra \Smo othing" with A-

P atc hes

An A-patc h is de�ned inside a supp orting tetrahe-

dron. When mo deling a piecewise algebraic surface,

w e need to \stitc h" together a collection of patc hes,

with the desired con tin uit y prop erties. This raises

t w o problems: (a) Ho w to build a supp orting tetra-

hedral mesh, i.e. a simplicial complex suc h that A-

patc hes can b e de�ned inside eac h 3-simplex to form

a con tin uous (op en or closed) surface. (b) Ho w to set

the w eigh ts of eac h patc h so that the surface has the

desired deriv ativ e con tin uit y prop erties.

One p ossibilit y is to build a 3D triangulation of a

con v ex p olyhedron enclosing the surface to b e mo d-

eled. One can for example de�ne a �nite set of p oin ts

P and compute the 3D Delauna y triangulation T

of P . The subset of tetrahedra � 2 T that in ter-

sect the surface will b e used as supp ort mesh. With

this construction, no v ertex of the supp ort mesh will

in general lie on the surface. The w eigh ts of eac h

patc h can b e set so that the patc h appro ximates p oin t

data within the tetrahedron, for example b y solving a

least-squares problem, and constrained to satisfy the

single-sheeted conditions stated ab o v e. W e used this

t yp e of construction to build an adaptiv e appro xima-

tion of a triv ariate signed-distance function in [3 ].

Another approac h starts with a triangulated t w o-

manifold that appro ximates the surface. One then

builds t w o t yp es of tetrahedra: (a) F or eac h triangle

of the mesh, t w o fac e -tetrahedra are created, one on

eac h side of the triangle, and (b) F or eac h edge of

the mesh, four e dge -tetrahedra are in tro duced, bridg-

ing the gaps b et w een the four face-tetrahedra whic h

share that edge (see Figure 6(a)). The tetrahedral

mesh obtained with this pro cess is called simplicial

hul l (see Figure 6(b) for an example), and details on

its construction can b e found in [5 , 14 ]. This metho d

is used in Section 8 to selectiv ely smo oth and appro x-

imate a dense mesh of triangles.

Once the simplicial h ull is constructed, w e need to

set the w eigh ts of eac h patc h so that the surface is

C

1

(or lo cally C

0

in the presence of a sharp feature)

and the collection of patc hes:

1. In terp olate the v ertices (and optionally the as-

so ciated normals) of the triangle mesh;

2. Appro ximate other data p oin ts.

C

0

and C

1

features can b e mixed in to the same

mo del, b y appropriately setting w eigh ts and allo wing

patc hes with singular v ertices/edges [14 ]. Figures 7

sho ws ho w C

0

and C

1

features can b e mixed to in ter-

p olate some of the v ertices, edges and faces of a cub e.

Other examples of sharp features mo deled with sin-

gular A-patc hes are illustrated in Figure 8.

5 Ov erview of the Reconstruc-

tion Algorithm

An example of the reconstruction pro cess is sho wn

in Figure 9. The simple ob ject sho wn will b e used

as a running example in the follo wing Sections. Our

algorithm is based on the follo wing three phases:

1. Build an initial triangle mesh that in terp olates

all data p oin ts, appro ximating the ob ject shap e

(Figure 9 (a)-(c)). Our approac h (describ ed in

Section 6) is based on alpha-shap es [24 ], and is

capable of automatically selecting an optimal al-

pha v alue and impro ving the resulting mesh in

areas of insu�cien t sampling. W e also presen t

a theorem stating su�cien t conditions on the

sampling that guaran tee a homeomorphic, error

b ounded reconstruction.

The resulting triangle mesh can b e used to esti-

mate normals at smo oth v ertices (b y a v eraging

13



(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 9 : The complete reconstruction pro cess. (a) P oin t sampling. (b) 3D Delauna y

triangulation. (c) Alpha-solid. (d) Simpli�ed mesh. (e) Sharp features. (f ) Supp ort mesh.

(g) A-patc hes. (h) Reconstructed mo del.
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the normals of inciden t triangles) and to detect

sharp features (b y lo oking at the dihedral angle

formed b y t w o adjacen t triangles). Notice that

for the dense surface sampling that w e are in-

terested in, these estimates are usually quite ac-

curate. The use of more complex and accurate

sharp-feature detection strategies will b e in v es-

tigated in the future.

2. Simplify the mesh to reduce the n um b er of tri-

angles, while guaran teeing go o d asp ect-ratio of

triangles, b ounded distance of the data p oin ts

from the reduced mesh, and feature preserv ation

(Figure 9 (d)). The tec hnique used in our pap er

has b een extended from [8]. The edges and v er-

tices of the reduced mesh are \tagged" as either

smo oth (the surface is C

1

con tin uous across it)

or sharp (only C

0

con tin uit y), and v ertices are

classi�ed according to the t yp e of inciden t edges

and the n um b er and t yp e of estimated v ertex

normals (Figure 9 (e)). Section 7 describ es the

mesh reduction algorithm.

3. The reduced mesh is used as the starting p oin t

for a p olynomial- patc h data �tting. F or ev ery

triangle, w e build an implicit Bernstein-B � ezier

patc h of lo w degree whic h in terp olates the v er-

tices and v ertex normals (if de�ned) and least-

squares appro ximates data p oin ts in its vicinit y .

The algebraic patc hes used (cubic A-patc hes [4,

5, 14 ]) allo w a simple form ulation of C

1

con-

tin uit y constrain ts b et w een adjacen t patc hes,

and ha v e b een extended to allo w the mo del-

ing of sharp features suc h as linear sharp edges,

piecewise-planar curv ed creases and sharp cor-

ners (Figure 9 (f )-(h)). W e detail this phase of

the algorithm in Section 8.

Some of the adv an tages of our metho d with resp ect

to existing tec hniques are the follo wing: (i) Our al-

gorithm do es not require costly global optimizations,

and is therefore quite suitable for practical use. (ii)

The reconstructed mo del is in a form that can b e

easily used in successiv e analysis or mo deling steps.

Results of mo del reconstruction obtained with our

tec hnique are presen ted and discussed in Section 8.5.

6 Connect-the-Dots: Inferring

T op ology from Vicinit y

One of the most di�cult problems of surface recon-

struction from unorganized p oin ts is understanding

ho w to connect the p oin ts so as to form a surface that

has the same top ological (e.g. n um b er of handles) and

geometric (e.g. depressions and protrusions) c harac-

teristics of the original.

In this c hapter w e will formalize the problem of sur-

face appro ximation and reconstruction, giv e a set of

su�cien t conditions for reconstructing a shap e using

alpha-shap es, and in tro duce an automatic metho d for

building an in terp olating triangle mesh.

6.1 Sampling and Reconstructing a

3D Ob ject

Reconstructing the shap e of an ob ject from an un-

organized \cloud" of p oin ts is in general an under-

constrained problem. Consider the simple 2D recon-

struction problem illustrated in Figure 10: Sev eral

solutions are p ossible, and it is di�cult to iden tify a

\b est" solution to the problem. It is therefore of in-

terest lo oking at the follo wing problem: What are the

c haracteristics of a sampling S (a �nite set of p oin ts)

of the surface of a solid ob ject M , suc h that M can

b e reconstructed from S unam biguously and within

prede�ned appro ximatio n b ounds?

In particular, w e consider the follo wing r e c onstruc-

tion pr oblem : Starting with a sampling of the surface

B of a solid, w e w an t to compute a triangulated sur-

face K that has the \same shap e" of B , and suc h that

a suitably de�ned distanc e D ( K ; B ) of K from B is

b ounded b y a giv en " . A useful distance measure is

for example:

D ( K ; B ) = max

p 2 [ K ]

min

q 2 B

jj p � q jj :

Stated formally:

Problem 6.1 L et B b e the b oundary of a solid M ,

and S � B a �nite set of p oints (sampling). Con-

struct a (ge ometric) simplicial c omplex K , such that

K

(0)

= S , K is home omorphic to B , and D ( K ; B ) <

" .

An algorithm aimed at reconstructing the shap e of

an ob ject from p oin t data alone m ust ha v e a w a y of

inferring spatial relationships among p oin ts. Char-

acteristics of the sampling that guaran tee an unam-

biguous and correct reconstruction dep end on ho w

the data is in terpreted b y the algorithm.

W e ha v e already men tioned that alpha-shap es al-

lo w us to �nd spatial relationships b et w een p oin ts of

an unorganized set. The relationships are based on

pro ximit y . Clusters of p oin ts close to eac h other are

group ed to form edges, triangles and tetrahedra, and

more complex structures made of collections of these

simple constituen ts. An alpha-shap e is (the underly-

ing space of ) a sub complex of the Delauna y triangu-

lation (regular triangulation in the case of w eigh ted

p oin ts). Therefore, it is relativ ely easy to compute.
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Figure 10 : An example of am biguous 2D reconstruction from p oin ts. F rom left to righ t:

A p oin t sampling and three, equally acceptable, reconstructions.

Let us recall that (see Section 4) an alpha-shap e is a

p olytop e whose b oundary is comp osed of � -exp osed

k -simplices (con v ex com binations of subsets T of a

p oin t set S � R

3

, k = 0 ; 1 ; 2). A simplex �

T

is

� -exp osed if there exists a ball of radius

p

� that

\touc hes" its v ertices and do es not con tain an y other

p oin t of S (w e will lo ok at the case where w eigh ts

can b e assigned to p oin ts later). If a 2-simplex �

T

is � -exp osed on b oth sides then �

T

do es not b ound

in terior p oin ts of the alpha-shap e.

Our reconstruction problem can b e reform ulated as

follo ws: What are su�cien t conditions of a sampling

that guaran tee that there exists an � suc h that the

corresp onding � -shap e satis�es the requiremen ts of

Problem 6.1?

W e can lo ok at the t w o-dimensional case to get

some insigh t in to the problem. Figure 11 illustrates

the discussion that follo ws. In this case, w e are sam-

pling a 1-manifo ld B ( B is a collection of \lo ops").

In tuitiv ely , w e can think of the p oin ts of the sam-

pling as \pins" that w e �x on B . W e no w use a

disk prob e of radius � =

p

� to \sense" the manifold.

The prob e m ust b e able to mo v e from p oin t to p oin t

of S on the surface, touc hing pairs of p oin ts in se-

quence, and without touc hing other parts of B . The

pairs of p oin ts will b e connected b y segmen ts of the

alpha-shap e, and will form lo ops homeomorphic (and

geometrically close) to eac h comp onen t of B .

Clearly , a necessary condition is that no t w o ad-

jacen t p oin ts of the sampling are farther a w a y than

the diameter of our disk-prob e, b ecause otherwise the

prob e w ould \fall" inside the b oundary of our solid

ob ject. W e also need to mak e sure that all, and only ,

the edges connecting pairs of adjacen t p oin ts are � -

exp osed. T o do this, our prob e needs to b e small

enough to b e able to isolate a neigh b orho o d of a p oin t

p on B , or, equiv alen tly , discern \adjacen t" p oin ts on

B from p oin ts that are close in the Euclidean sense

but not on the surface. These requiremen ts are for-

malized in the follo wing

Theorem 6.1 L et B � R

3

b e a c omp act 1 -manifold

without b oundary, and S � B a �nite p oint set. If

1. F or any close d b al l D

�

� R

3

of r adius � , B \ D

�

is either (a) empty; (b) a single p oint p (then

p 2 b d( D

�

) ); (c) home omorphic to a close d 2 -

b al l I , such that in t ( D

�

) \ B = in t( I ) ;

2. A n op en b al l of r adius � c enter e d on B c ontains

at le ast one p oint of S ,

then the alpha-shap e W

�

of S , � = �

2

is home omor-

phic to B and

D ( W

�

; B ) = max

p 2W

�

min

q 2 B

jj p � q jj < �:

The pro ofs of the 2D and 3D v ersions of this theo-

rem app ear in [9 , 10 ], resp ectiv ely .

Notice that lo cally the error b ound can b e made

arbitrarily small. In fact, for eac h segmen t �

T

; T =

f p; q g , if jj p � q jj = 2 d , the maxim um lo cal error is

� < � �

p

�

2

� d

2

whic h has limit zero as d tends to zero. There-

fore, while a � -dense sampling will su�ce to recon-

struct the manifold B with distance b ounded b y � ,

w e can alw a ys mak e the appro ximation error arbitrar-

ily small in an y region C � B b y simply sampling C

at a higher densit y . Also note that the expression for

� con v erges to zero quadratically , that is it is su�-

cien t to double the densit y of the sampling to reduce

the error b y a factor of four.

The conditions ab o v e restrict the domain of appli-

cabilit y of our reconstruction to ol to curv es whose

radius of curv ature is larger than � , as otherwise the

ball-in tersection requiremen t is imp ossible to satisfy

(see Figure 12). Note ho w ev er the follo wing: (i) This

restriction parallels the band-limited requiremen t in

Nyquist's theorem; (ii) � can b e made (at least in the-

ory) arbitrarily small. The price to pa y to reconstruct

small-scale features is to use a high-densit y sampling,
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B

B

B

(a) (b) (c)

Figure 11 : Sampling requiremen ts for 1-manifol ds in R

2

. (a) The sampling densit y m ust

b e suc h that the cen ter of the \disk prob e" is not allo w ed to cross B without touc hing a

sample p oin t. (b) The radius � of the disk prob e m ust b e small enough that the in tersection

with B has at most one connected comp onen t. (c) Examples of non admissible cases of

prob e-manifold in tersections.

(a) (b)

Figure 12 : A small neigh b orho o d of regions of curv ature higher than � can b e incorrectly

reconstructed b y the alpha-shap e W

�

2
. Bold segmen ts represen t \extraneous" alpha-exp osed

1-simplices. (a) A con v ex sharp feature and a conca v e high-curv ature feature. (b) Extrane-

ous alpha-exp osed 1-simplex (detail).
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whic h is reasonable. On a more practical side: (iii)

the sampling densit y of laser scanners is usually m uc h

smaller than t ypical ob ject features (otherwise large

measuremen t errors w ould o ccur), and (iv) data col-

lected in pro ximit y of sharp (or high-curv ature) fea-

tures is sub ject to noise, and therefore not reliable.

Accurately reconstructing sharp features (for exam-

ple to segmen t the surface in to a collection of smo oth

faces) requires an elab orate analysis of the data, addi-

tional kno wledge of surface c haracteristics, and some

art (see recen t review [53 ]). W e will describ e later

ho w to deal in practice with small features not di-

rectly captured b y the alpha-shap e.

Note also that one can use w eigh ted alpha-shap es

to reconstruct ob jects that ha v e b een sampled at m ul-

tiple resolutions. F or example, one migh t scan some

parts of an ob ject at a relativ ely coarse resolution,

and other, more complicated, parts at a �ner reso-

lution, and assign di�eren t w eigh ts to the p oin ts of

eac h scan (an example is sho wn in Figure 18).

6.2 Alpha-solids

While the theorems ab o v e giv e us su�cien t conditions

for a sampling to allo w a faithful reconstruction using

� -shap es, in practice one has to deal with less than

ideal scans.

In general, i.e. when the conditions of the theo-

rems ab o v e are not satis�ed, an alpha-shap e is a non-

connected, mixed-dim ension p olytop e. W e are in ter-

ested in reconstructing solids , and therefore it is con-

v enien t to de�ne a \regularized" v ersion of an alpha-

shap e. The regularization should eliminate dangling

and isolated faces, edges, and p oin ts from the alpha-

shap e, and recognize solid comp onen ts. W e will de-

�ne the alpha-solid b y giving a construction algo-

rithm for it.

De�nitio n 6.1 Assume that the r e gular triangula-

tion and family of alpha-shap es of S has b e en c om-

pute d. Then we start fr om a tetr ahe dr on with a ver-

tex \at in�nity", mark it as exterior , and pr o c e e d to

visit adjac ent tetr ahe dr a, without cr ossing fac es that

b elong to the alpha-shap e. A l l tetr ahe dr a we c an r e ach

in this way ar e marke d as exterior. Now c onsider the

b oundary of the set of marke d tetr ahe dr a. If it is not

empty, it is forme d by one or mor e c ontinuous shel ls

of triangles. We start another se ar ch fr om al l un-

marke d tetr ahe dr a that have a fac e on this b oundary,

and mark al l tetr ahe dr a that c an b e r e ache d without

tr aversing alpha-shap e fac es as in ternal . We r ep e at

this pr o c e dur e until al l tetr ahe dr a have b e en marke d.

The union of al l interior tetr ahe dr a wil l b e c al le d

the alpha-solid S

�

of S .

The alpha-solid is clearly a homogeneously three-

dimensional ob ject. Observ e also that it can b e com-

puted v ery e�cien tly from the underlying triangula-

tion, b y simply tra v ersing the adjacency graph.

V arying � , one obtains a �nite collection of dif-

feren t alpha-solids, ranging from the empt y set for

su�cien tly small v alues of � , to the con v ex h ull of

the set of p oin ts for � large enough.

Since w e kno w that the p oin t sampling comes from

a t w o-manifol d, w e can searc h automatically for the

\b est" appro ximating alpha-solid. Because alpha-

solids can b e ordered with resp ect to the parameter

� , and there is only a �nite n um b er of di�eren t alpha-

solids (and corresp onding � -v alues), w e can p erform

a binary searc h on the family of alpha-solids. F or

example, to reconstruct a single connected b o dy , w e

w an t the follo wing prop erties to b e satis�ed b y the

alpha-solid:

1. It is connected;

2. All the data p oin ts are on its b oundary or in its

in terior;

3. Its b oundary is a t w o-manifold.

T o searc h for the minim um � suc h that the corre-

sp onding alpha-solid satis�es these requiremen ts w e

pro ceed as follo ws:

1. Compute the regular triangulation T and thresh-

old v alues for alpha-shap es. Let k b e the n um b er

of di�eren t � v alues.

2. Do a binary searc h on the v alue of � .

(a) Start with min = 0, max = k � 1

(b) Set mid = b ( min + max ) = 2 c and � = �

mid

.

Compute the corresp onding � -solid.

(c) Chec k whether the � -solid satis�es the

three prop erties ab o v e. If it do es, then try

a smaller v alue of � : Set max = mid and go

bac k to step 2b. If it do esn't, then try a

larger v alue of � : Set min = mid+1 and go

bac k to step 2b. If min � max then exit the

lo op.

This algorithm tak es O (log n ) time (where n is the

size of S ) b ecause the n um b er of p ossible � -v alues

is b ounded b y the n um b er of simplices in T , whic h

is p olynomial in n . Observ e also that the con v ex

h ull satis�es the three prop erties ab o v e, so the al-

gorithm alw a ys terminates successfully . F or a suf-

�cien tly dense and uniform sampling of the ob ject

b oundary the � -solid selected b y this strategy is a

go o d appro ximation of the ob ject's shap e. Ho w ev er,

18



a

Figure 13 : Automatic selection of an optimal � -v alue.

19



small, conca v e features ma y b e o ccluded b y un w an ted

tetrahedra, and some of the sampled p oin ts migh t lie

in the in terior of the � -solid (see Figure 14). W e

impro v e the initial alpha-solid with the tec hnique de-

scrib ed in the follo wing section.

6.3 Impro ving the Alpha-Solid

Our criterion for impro ving the initial alpha-solid is

based on the searc h for a subset of tetrahedra whose

b oundary in terp olates all the p oin ts, and that maxi-

mizes the \smo othness" of the triangle mesh, de�ned

as

X

e

i

j � � 


i

j

o v er all edges of the triangle mesh, where 


i

is the

dihedral angle formed b y the t w o triangles inciden t

on edge e

i

.

Searc hing for the global optim um for this optimiza-

tion problem w ould b e clearly computationally ex-

p ensiv e (if not in tractable: This problem is probably

not easier than computing a mesh of minima l surface

area, whic h has b een conjectured to b e NP-complete).

Ho w ev er, in practice our alpha-solid is already a

go o d appro ximation of the optimal p olyhedron, and

w e only need to mo dify it where conca v e, high cur-

v ature features are presen t. W e therefore resort to a

simple greedy strategy , similar to the \sculpturing"

approac h prop osed b y Boissonnat [12 ] (see also Sec-

tion 3.1). Ho w ev er, w e apply the iterativ e remo v al of

tetrahedra only to lo cally impro v e the alpha-solid,

rather than as a global strategy to extract an in-

terp olating mesh from the 3D Delauna y triangula-

tion. Our tec hnique, based on the smo othness of the

mesh, giv es, in our exp erience, b etter results, esp e-

cially when sharp features are presen t (see Figure 14).

The greedy optimization algorithm is as follo ws.

All tetrahedra ha ving one or more b oundary faces

are inserted in a priorit y queue, where the max pri-

orit y is giv en to tetrahedra with the largest v alue of

the max distance b et w een a b oundary face and their

circumscribing sphere. These candidate tetrahedra

are then extracted from the queue one b y one and

considered for remo v al.

A candidate tetrahedron is remo v ed if and only if:

1. It has one b oundary face and the opp osite v ertex

is in ternal;

2. It has t w o b oundary faces, the opp osite edge

do es not lie on the b oundary , and the lo c al

smo othness criterion is satis�ed (see b elo w for

details).

When only these t w o t yp es of tetrahedra are remo v ed,

the b oundary of the remaining set of tetrahedra is

guaran teed to remain a manifold [12 ]. After a candi-

date tetrahedron has b een remo v ed, adjacen t tetrahe-

dra whose faces b ecome b oundary faces are inserted

in the priorit y queue as candidates for remo v al.

The smo othness criterion men tioned ab o v e is here

stated more precisely:

De�niti on 6.2 Consider a tetr ahe dr on having ex-

actly two b oundary fac es (se e �gur e 15). These fac es

form a dihe dr al angle 


0

. They also form four dihe-

dr al angles 


1

: : : 


4

with adjac ent b oundary fac es. L et

� b e the fol lowing sum:

� =

4

X

i =0

j � � 


i

j

� gives a me asur e of the \lo c al smo othness" of the

mesh: If the dihe dr al angles forme d by al l adjac ent

b oundary fac es ar e al l close to str aight angles, then �

is smal l.

Assuming that the tetr ahe dr on is r emove d, its two

internal fac es b e c ome b oundary fac es. We c an me a-

sur e what the new lo c al smo othness, say � , would b e,

and c omp ar e it with � .

The lo c al smo othness criterion is ther efor e the fol-

lowing: remo v e the tetrahedron if and only if � > � ,

that is, if the lo c al smo othness impr oves.

As in all greedy optimization strategies, the algo-

rithm ab o v e migh t get trapp ed in a lo cal minim um .

F or example, at some p oin t it migh t b ecome imp ossi-

ble to remo v e an y tetrahedron, b ecause all ha v e t w o

b oundary faces and none satis�es the smo othness cri-

terion. W e therefore do a \lo ok-ahead" searc h b efore

deciding whether to remo v e a tetrahedron that do es

not satisfy the criterion: If b y remo ving it, and some

other tetrahedra adjacen t to it that consequen tly b e-

come candidates, the smo othness criterion is satis�ed,

then w e remo v e it. The depth of suc h lo ok-ahead

searc h can b e limited, for all practical purp oses, to

a small in teger v alue (w e ha v e used 10 for all our

examples).

Figures 16, 17 and 18 and T able 1 illustrate some

examples of alpha-solids computed with the tec h-

nique describ ed ab o v e.

7 Mesh Simpli�cati on

Surface mesh simpli�cation refers to a general cat-

egory of tec hniques designed to generate compact,

adaptiv e appro ximations of dense tesselated sur-

faces. Optimization metho ds [51 , 33, 30 ] ha v e pro-

duced go o d results, but their time-in tensiv e nature
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(a) (b)

Figure 14 : Sculpturing to lo cally impro v e an � -solid. (a) Initial appro ximation. (b) After

sculpturing.
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3




4

Figure 15 : Lo cal smo othness criterion.
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Numb er � -Solid Numb er of R emove d Numb er of

Obje ct of Points Time tetr ahe dr a tetr ahe dr a T riangles

F em ur 9807 1.5 36182 3704 19610

Tibia 9200 1.4 33232 2172 18396

Fibula 8146 1.1 30876 2896 16288

P atella 2050 0.3 7536 683 4096

P art 1 13040 2.5 42507 2473 26088

Club 16864 4.1 58657 754 33142

3 T ori 10833 2.2 42970 2914 21692

Bunn y 33123 19.6 127607 3761 66224

Mannequin 10392 2.1 35383 2077 19802

T able 1 : Results of alpha-solid reconstruction. The table sho w for eac h ob ject, from left

to righ t: (1) The n um b er of p oin ts in the sampling; (2) The time, in min utes, required b y

the alpha-solid computation (including 3D Delauna y triangulation, computation of family

of alpha-shap es, automatic selection of alpha v alue, impro v emen t b y lo cal sculpturing). All

computations w ere carried out on a SGI Indigo2, with a 250MHz MIPS 4400 CPU; (3) The

n um b er of tetrahedra in the initial alpha-solid; (4) The n um b er of tetrahedra remo v ed b y

the heuristic; (5) The n um b er of triangles in the b oundary of the �nal reconstructed mo del.

(a) (b) (c)

(d) (e) (f )

Figure 16 : Examples of alpha-solids. (a)-(c) The data p oin ts are from a random sampling

of a mo del (P art 1) created with a commercial solid mo deler. (d)-(f ) The knee data is from

an isosurface extracted from the Visible Human Pro ject data set. Data w as reduced b y

eliminating roughly 50% of the original p oin ts.
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(a) (b) (c)

(d) (e) (f )

Figure 17 : Reconstruction from range data. (a) and (d) Com bined scans. (b) and (e)

Reconstructed alpha-solid. (c) and (f ) Phong-shaded rendering.

(a) (b) (c)

(d) (e) (f )

Figure 18 : Example of reconstruction from a m ulti-resolution scan using w eigh ted al-

pha-shap es. (a) Sampling. Notice ho w the ey es area has b een scanned at higher resolu-

tion. (b) and (c) W eigh ted p oin ts represen ted as balls. W eigh ts w ere assigned man ually

to sim ulate a m ulti-resolution scan. (d) Reconstructed alpha-solid. (e) Alpha-solid after

impro v emen t b y sculpturing. (f ) The same reconstructed mo del Phong-shaded.
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leads us to consider more practical metho ds. He et

al. [29 ] sample a geometric ob ject in to a v olume bu�er

whic h is then lo w-pass �ltered. Multiresolution sur-

faces are then extracted from the v olume bu�er us-

ing traditional isosurfacing tec hniques. Suc h an ap-

proac h e�ectiv ely generates nested appro ximations of

surfaces, ho w ev er the surfaces at eac h lev el of detail

do not adapt w ell to large and small features sim ul-

taneously . A broad family of algorithms based on

lo cal p oin t, edge, or triangle deletion and retrian-

gulation based on geometric criteria are attractiv e

for their ease of implemen tati on, abilit y to capture

sharp features, high simpli�cation rates and fast p er-

formance [46 , 28 , 8, 16 ].

In this w ork, w e adapt and impro v e the metho d

of [8 ] to handle explicit edge feature detection and

preserv ation. The resulting algorithm is able to main-

tain a strict b ound on the distance b et w een the orig-

inal mesh and the surface mesh, in addition to main-

taining sharp features in the reconstructed triangula-

tion.

7.1 Mesh Simpli�cation Algorithm

The simpli�cation algorithm follo ws the basic strat-

egy of other \v ertex deletion" sc hemes, and is based

on accum ulated error b ounds whic h are propagated

from the original surface mesh through the succes-

siv e simpli�ed meshes pro duced b y p oin t deletion. A

compact error represen tation consisting of t w o scalar

error b ounds p er triangle is used. The error v alues

corresp ond to a b ound on the error (geometric dis-

placemen t) to w ard the outside (inside) of the ob ject.

These b ounds e�ectiv ely form an en v elop e surround-

ing the simpli�ed mesh whic h is guaran teed to con-

tain the original surface, th us main taining a b ound

on the total amoun t of accum ulated error through

successiv e deletion of v ertices. The algorithm can b e

summarized as follo ws:

1. Initialize errors on all triangles to 0

2. Initialize priorit y queue P of candidate v ertices

v

i

(a) Classify v

i

according to v ertex con�gura-

tions in �gure 19

(b) Compute an initial triangulation of the

neigh b ors of v

i

(c) P erform edge 
ipping to lo w er the error in

the new triangulation

(d) Assign priorit y based on in tro duced error

asso ciated with v

i

3. While next candidate v ertex v from P do es not

violate error constrain ts

(a) Delete v and inciden t triangles

(b) Add new triangles

(c) Up date error v alues for new triangles

(d) Up date P

In the follo wing subsections, w e will describ e the

steps of the algorithm and our extensions for sharp

feature detection.

7.2 Geometric Error

Errors in tro duced b y deletion of a v ertex v are com-

puted b y establishing a mapping b et w een the curren t

triangulation ab out v and the retriangulation of the

neigh b ors of v . This is accomplished b y normal pro-

jection of the new triangulation on to the original sur-

face, as indicated in Figure 20. As sho wn in the �g-

ure, this pro jected triangulation e�ectiv ely segmen ts

the region surrounding a v ertex in to simple w edge

shap es. In this lo cal mapping of triangulations, the

maxim al error (distance b et w een triangulations) o c-

curs at the in tersections of new edges with the original

edges, and need only b e computed at these p oin ts. In

one exceptional case, the triangle whic h con tains the

v ertex v whic h is b eing deleted, the error m ust also

b e computed b et w een v and the p oin t whic h pro jects

to it.

Errors in the geometry are quan ti�ed b y the signed

distance spanned b y the mapping from one triangu-

lation to another. W e use the con v en tion that a dis-

placemen t to w ard the outside (in the direction of the

normal) of a mesh is a p ositiv e displacemen t, while

displacemen t to w ard the inside is a negativ e displace-

men t.

(a) (b) (c)

Figure 19 : T yp es of candidate v er-

tices. (a) A \smo oth" v ertex (all di-

hedral angles are larger than feature

angle). (b) A v ertex along a feature

edge. (c) A corner.
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(a) (b)

Figure 20 : Segmen tation of m utual

pro jection. (a) Pro jection of new tri-

angulation on to the old one. (b) In-

duced segmen tation.

P ositiv e and negativ e errors con tribute to the out-

side and inside accum ulated error b ounds as illus-

trated in Figure 21. The curren t error b ounds are

represen ted as thin dashed lines, while the accum u-

lated error b ounds for the edge from V

i

to V

j

are

represen ted b y the thic k dashed lines. As exp ected,

deletion of a conca v e v ertex requires an increase in the

inside error b ound, while deletion of a con v ex v ertex

requires an increase in the outside error b ound.

7.3 Retriangulation

Our retriangulation strategy starts with an initial tri-

angulation of the \hole" left b y v and all adjacen t tri-

angles, and then p erforms edge-
ippings to impro v e

the appro ximation error. In order to accurately cap-

ture edge features, w e mo dify this p ortion of the al-

gorithm to detect edges in the triangulation of v b y

computing the dihedral angle for eac h pair of adjacen t

triangles inciden t to v . Edges are classi�ed as fea-

tures b y a giv en threshold dihedral angle, as in [46 ].

In the case of t w o feature angles inciden t to v , our ini-

tial triangulation is constrained to con tain the edge

Error b ound in original triangulation

Error b ound propagated to edge V

i

, V

j

V

i

p

V

j

V

i

p

1

V

j

Figure 21 : Propagating error

b ounds to a new triangulation.

de�ning the feature. If three or more feature edges

are inciden t with v , the v ertex will not b e deleted.

Retriangulation pro ceeds b y 
ipping in terior edges

whic h decrease the error in tro duced b y the deletion

of v . Edges are 
ipp ed only when the resulting tri-

angulation is non self-in tersecting, and no long, thin

triangles are in tro duced. In order to main tain the

computed features, edges in tro duced according to the

dihedral angle condition will not b e 
ipp ed.

7.4 V ertex ordering

The order of v ertex deletions is con trolled b y the pri-

orit y queue. Initally , a priorit y is assigned to eac h

v ertex b y computing the error in tro duced through

the deletion and subsequen t triangulation describ ed

ab o v e. V ertices whic h in tro duce little error, and

whose deletion will not violate the accum ulated er-

ror b ounds, are giv en preference o v er those whic h

in tro duce greater error. This approac h helps to en-

sure that our error b ounds will remain relativ ely close

to the actual error, giving a go o d estimation of the

actual error incurred through successiv e deletions of

p oin ts. When eac h p oin t is deleted, those v ertices

in the lo cal neigh b orho o d are revisited, their priori-

ties are recomputed and their p osition in the priorit y

queue up dated.

7.5 F eature Classi�cation and Nor-

mals Estimation

W e need to tag edges of the simpli�ed mesh whic h

corresp ond to sharp features in the data, and to esti-

mate normals at v ertices of the mesh. This informa-

tion will b e used in the data �tting phase.

As w e said ab o v e, sharp (linear or curv ed) creases

are detected in the initial, �ne mesh b y computing

the dihedral angle b et w een adjacen t faces. Where

three or more edges meet at a v ertex w e ha v e a sharp

corner. When an edge is recognized and tagged as

sharp, it is nev er 
ipp ed during the simpli�cation.

P oin ts b et w een t w o adjacen t sharp edges can ho w-

ev er b e remo v ed, as long as the other b ounds and

conditions of the simpli�cation algorithm are satis-

�ed. P oin ts remo v ed along sharp features are k ept in

a list to b e used later in the data �tting step.

F or ev ery v ertex in the simpli�ed mesh w e need to

estimate one or more (in the case of a v ertex lying on

sharp feature) normals. Some of the p ossible cases

are depicted in Figure 22. The simplest case is that

of a smo oth v ertex. None of the edges inciden t on

the v ertex is tagged as sharp, and the normals of

all inciden t triangles form small pairwise angles. In

this case a unique normal (computed b y a v eraging
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(a) (b) (c) (d)

Figure 22 : F eature classi�cation and normal estimations: A smo oth v ertex in whic h a

unique (a v erage) normal is de�ned (a). Tw o edges along a crease (b); t w o distinct normals

are de�ned at the v ertex. Sev eral sharp edges meeting at a corner (c); eac h sector b et w een

t w o sharp edges has its o wn normal. A singular v ertex (d); no normal is de�ned.

all triangles normals) is asso ciated with the v ertex.

Notice that ev en if all edges inciden t on a v ertex are

not sharp, the v ertex itself can still b e singular. This

is for example the case of the ap ex of a cone. This

condition is easily c hec k ed b y lo oking at the angle

formed b y normals to pairs of inciden t faces. In this

case, no normal is de�ned for the v ertex, and the

v ertex is tagged as singular . A mix of the previous

situations o ccurs when t w o or more sharp edges are

inciden t on a v ertex. These edges partition the region

around the v ertex in to se ctors , for eac h of whic h w e

will compute a separate normals. Again, the group

of triangles forming a sector can ha v e similar normals

(therefore de�ning a smo oth sector with a unique,

a v eraged normal) or rather div ergen t, in whic h case

the sector is singular and no normal is de�ned for it.

In summary , w e can sa y that the region around a

v ertex can b e divided in to one or more sectors, and

eac h sector has an asso ciated normals (unde�ned in

the case of a singular sector). Notice that normals

can b e computed from the initial �ne mesh, and can

therefore pro vide a rather go o d estimate of the sur-

face curv ature.

8 Piecewise -Smo oth

Reconstruction

Our A-patc h �tting sc heme in terp olates the v ertices

(and estimated surface normals) of the simpli�ed

mesh computed as describ ed ab o v e, and appro xi-

mates the remaining data p oin ts. F eatures tagged

as sharp during mesh simpli�cation are retained in

the resulting piecewise-smo oth mo del. The �tting

pro cess b egins with the construction of a tetrahe-

dral mesh to act as supp ort for the A-patc hes. Then,

w eigh ts for eac h patc h are set to in terp olate v ertices

and sharp features, and least-squares appro ximate

the remaining p oin t. Finally , a fairing and �tting

optimization can b e applied to impro v e the qualit y

of the reconstructed mo del.

8.1 Simplicial-Hull Construction

Piecewise algebraic surfaces require a supp ort mesh

of tetrahedra, built o v er a base triangle mesh. Eac h

tetrahedron con tains a single, smo oth (except for con-

trolled singularities required to mo del C

0

features)

and single sheeted A-patc h. A patc h passes through

the three base v ertices of the supp ort tetrahedron, in-

terp olates sp eci�ed surface normals at these v ertices,

and appro ximates other data p oin ts within the tetra-

hedron. Figure 6 sho ws an example of simplicial h ull,

and Figure 23 illustrates the detail of the construc-

tion for a pair of adjacen t triangles.

Di�eren t sc hemes for constructing a suitable tetra-

hedral mesh, called simplicial-hul l , ha v e b een pro-

p osed in the literature (see Section 4 for related prior

w ork). A general simplicial-h ull sc heme, guaran teed

to satisfy conditions for the construction of a glob-

ally C

1

A-patc h in terp olan t, is describ ed in [5]. This

sc heme ho w ev er do es not deal with additional data

p oin ts to b e appro ximated. W e brie
y describ e in the

follo wing the simplicial -h ull construction algorithm,

and a simple extension to handle appro ximation of

in ternal data p oin ts.

The basic construction step consists in building, for

eac h triangle of the base mesh, a pair of tetrahedra,

on the t w o sides of the triangle. These fac e-tetr ahe dr a

will con tain a pair of patc hes that in terp olate the

26



0003

3000

0003

3000

3000

0300

1200

2100

0210

0120

0030

1020

2010

1110

0201

1101

2001

1011

0021

0102

1002

0012

0003

0003

3000

2010 1011

1101

2100

1020

1110

1200

10022001

0111

negativ e con trol p oin t

p ositiv e con trol p oin ts

zero con trol p oin t

sign undetermined

10

9

7 5

9

8

0

1

1

6

6

4

4

4

1

1

0

0

1

3

3

3

3

p

0

4

p

0

1

p

2

q

0

4

q

00

1

q

4

p

1

p

3

p

0

1

p

4

1

1

1

1

1

1

2

Figure 23 : Construction of a simplicial h ull. The triangles [ p

1

p

2

p
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] and [ p
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] b elong

to the initial triangle mesh. V ertices p

4

; p

0

4

; q

4

; q

0

4

ha v e b een in tro duced to form the four

fac e-tetr ahe dr a (on the t w o opp osite sides of eac h original triangle). V ertices p

00

1

and q

00

1

are

needed to form the four e dge-tetr ahe dr a . The picture also sho ws the assignmen t of w eigh ts

for t w o patc hes joining with C

1

con tin uit y .
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three v ertices of the base triangle (refer to Figure 23).

Gaps b et w een face-tetrahedra built on top of adjacen t

triangles are �lled b y pairs of e dge-tetr ahe dr a , t w o on

eac h side of the base mesh. The main requiremen ts

for the simplicial h ull are as follo ws:

Simplici al complex: The collection of tetrahedra

forms a v alid (geometric) simplicial complex,

i.e., the only in tersections o ccur b et w een shared

faces.

T angen t-plane con tainmen t: F or eac h v ertex v

(with an assigned normal) there exist a closed

neigh b orho o d of v on the tangen t plane that is

con tained in the collection of tetrahedra inciden t

on v .

P oin t con tainmen t : The collection of tetrahedra

con tains all the additional data p oin ts to b e ap-

pro ximated.

A classi�cation of sp ecial cases is giv en in the cited

w ork [5 ]. Mainly , one is concerned with highly con v o-

luted triangle-meshes and wild assignmen ts of v ertex

normals. Heuristics to build a simplicial h ull in all

these cases are giv en (lo cal retriangulation can also b e

used to a v oid some tric ky situations). W e should note

ho w ev er that suc h pathological cases, whic h m ust b e

dealt with in the general case, are unlik ely to o ccur

in our triangle meshes, as they are deriv ed b y a sim-

pli�cation pro cess that uses large triangles in smo oth

areas, but appro ximates the shap e of the surface with

smaller triangles in areas of large curv ature. Note also

that, where sharp features o ccur, the tangen t plane

con tainmen t prop ert y can b e relaxed.

8.2 Setting the W eigh ts for Piecewise-

Smo oth Fitting

The sc heme used here follo ws Ba ja j, Chen and Xu [5 ],

and consists basically in building t w o tetrahedra for

eac h triangle of the mesh ( fac e-tetr ahe dr a ) and four

tetrahedra for eac h edge ( e dge-tetr ahe dr a ), see Fig-

ure 23. Splitting is only used in sp ecial cases.

Figure 23 also illustrates the sc heme to set the

w eigh ts of a patc h under C

1

con tin uit y constrain ts [5 ].

The sequence of steps in v olv ed is as follo ws:

1. Set w eigh ts

i

0 to b e zero so that the surface in-

terp olates the v ertices. Set w eigh ts

i

1 around

eac h v ertex according to its normal so that the

surface in terp olates the normal. W eigh ts

i

2

will b e set in the subsequen t least-square appro x-

imation phase.

2. W eigh ts

i

1 ,

i

2 and

i

3 around [ p

2

p

3

] m ust

b e a�ne coplanar. Solv e for

i

3 according to

the others.

3. Compute w eigh ts

i

6 according to w eigh ts

i

4 ,

i

3 and

i

1 . Preset w eigh ts

i

4 to

b e p ositiv e enough so that w eigh ts

i

6 are also

p ositiv e.

4. Compute w eigh ts

i

7 according to w eigh ts

i

5

and

i

4 . Preset w eigh ts

i

5 to b e p ositiv e

enough so that w eigh ts

i

7 are also p ositiv e.

5. Set w eigh ts

i

8 to b e p ositiv e. Compute

w eigh ts

i

9 b y a v eraging

i

6 and

i

8 .

W eigh t

�

�

�

�

10 is de�ned b y the C

1

condition.

W e no w extend the sc heme to allo w for C

0

fea-

tures to b e represen ted, and sho w ho w to use a lo cal

energy-minimi zation approac h to set the free w eigh ts

for a go o d data-�t. W e will restrict ourselv es to the

follo wing t yp es of features (recall Figure 22):

1. Sharp corners (m ultiple normals de�ned, for ex-

ample the corner of a cub e).

2. Singular v ertices (no normal de�ned, for example

the ap ex of a cone).

3. Straigh t edges (t w o normals, one for eac h side,

de�ned at eac h endp oin t).

4. Planar or piecewise-planar curv ed ridges (t w o

normals at eac h endp oin t).

Notice that linear or planar features (straigh t edges

or planar face) can b e in terp olated b y simply setting

all w eigh ts on the corresp onding edge (or face) equal

to zero.

W e will no w describ e in some detail ho w to set

the w eigh ts for the case illustrated in Figure 23, in

whic h the edge b et w een the t w o shaded triangles has

b een tagged as sharp , and a planar, curv ed sharp

edge m ust b e represen ted. The setting of the w eigh ts

for this C

0

case is similar to the C

1

�tting describ ed

ab o v e:

1. Determine the plane that con tains the curv e. In

the mesh simpli�cation phase, w e store p oin ts

asso ciated with a sharp feature. W e use these

p oin ts no w to determine a b est-�t plane through

the edge [ p

2

p

3

]. This plane determines the p osi-

tion of p

00

1

(or p

0

1

).

2. W eigh ts

i

0 are set to zero so that the surface

in terp olates the v ertices.
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3. W eigh ts

i

1 are set according to the normals at

p

2

and p

3

. Let's call these normals n

2

; n

0

2

; n

3

; n

0

3

.

W eigh ts

i

1 on the t w o sides of [ p

2

p

3

p

00

1

] de-

p end on the pro jection of the normals on the

plane of triangle [ p

2

p

3

p

00

1

]. Let's call these pro-

jections �n

2

; �n

0

2

; �n

3

; �n

0

3

. T o ac hiev e C

0

-con tin uit y

on face [ p

2

p

3

p

00

1

], all w eigh ts m ust b e the same

on its t w o sides (after normalization b y a scaling

factor). This is p ossible only if �n

2

; �n

0

2

(resp ec-

tiv ely �n

3

; �n

0

3

) lie in the same direction, and if

the ratios j �n

2

j = j �n

0

2

j and j �n

3

j = j �n

0

3

j are equal. If

the condition on the normals is not satis�ed, w e

need to \adjust" the normals (for example b y

a v eraging).

4. The follo wing steps are similar to the C

1

case, ex-

cept that ob viously the C

1

conditions on w eigh ts

do not propagate through face [ p

2

p

3

p

00

1

].

5. W eigh ts

i

9 and

�

�

�

�

10 can b e set freely and will

b e used to impro v e the �t to the data.

8.3 Least-Squares Appro ximation

W e ha v e seen in the previous section that some of the

w eigh ts in eac h patc h are free, i.e. their v alue can b e

set to guaran tee a go o d �t to the data p oin ts.

Ba ja j, Ihm and W arren [7] suggest the use of al-

gebraic distance to measure the distance b et w een a

p oin t ~p and a surface f ( ~ x ) = 0. The algebraic dis-

tance b et w een a p oin t ~p and a surface f ( ~ x ) = 0 is

the v alue of f ( ~p ) pro vided that f ( ~ x ) = 0 is normal-

ized. The normalization used in the pap er is

~

b

T

~

b = 1,

where

~

b is the w eigh ts of f ( ~ x ). In the A-patc h sc heme,

as some of the non-zero w eigh ts are giv en according

to data at the v ertices of the triangulation, no nor-

malization is needed.

The function to b e minim i zed can b e written as

follo ws:

E =

X

i

n

X

j =0

( w

T

B ( �

j

))

2

= w

T

Qw

where i is the index of an A-patc h and j is the index of

an auxiliary p oin t within the domain simplex. Ho w-

ev er, some equalit y and inequalit y constrain ts m ust

b e added to the system to mak e sure that con tin u-

it y and single-sheeted conditions are satis�ed b y the

w eigh ts. W e therefore obtain a quadratic program-

ming problem, whic h can, in general, b e expressed

as

minimi ze

1

2

w

T

Qw + w

T

c

sub ject to a

T

i

w = b

i

; i 2 E

a

T

i

w � b

i

; i 2 I :

(4)

where E and I are index sets for equalit y and inequal-

it y constrain ts. The matrix Q is symmetric and p os-

itiv e semide�nite (if not actually p ositiv e de�nite).

The general quadratic program with inequalit y

constrain ts is almost alw a ys solv ed b y an activ e set

metho d (see [37 ], Section 11.3). There is an esp e-

cially simple v ersion for the case where Q is p ositiv e

de�nite. More details on the solution of this problem

can b e found in [14 ].

8.4 F airing and Fitting Optimization

F airing a surface is the pro cess of sligh tly mo di-

fying its shap e to impro v e the distribution of cur-

v ature across it. Although the surfaces pro duced

b y our �tting sc heme are mathematicall y deriv ativ e-

con tin uous, fairing is usually required to \remo v e the

wrinkles" and obtain surfaces that are more aestheti-

cally pleasing. F airing strategies are usually based on

minim izati on of a functional that dep ends on the sec-

ond deriv ativ es of the surface. A p opular c hoice is for

example the thin-plate strain energy , whic h is prop or-

tional to the surface in tegral of the sum of principal

curv atures squared:

Z

S

�

2

1

+ �

2

2

dS

The problem has b een studied in detail for the para-

metric case. In general, its solution requires costly

global optimization algorithms.

F or implicit surfaces little is kno wn. Chen [14 ] dis-

cusses t w o p ossible metho dologies. The �rst tec h-

nique is based on iterativ e, n umerical minimi zation

of a functional that measures the strain energy of a

thin-plate spline. The second tec hnique, simpler and

faster, is form ulated as the in tegral of a w eigh ted sum

of the squares of the �rst and second deriv ativ es of

eac h patc h o v er its domain tetrahedron. Suc h an en-

ergy function is easy to b e minimi zed as the optimiza-

tion problem can b e form ulated as a quadratic pro-

grammi ng problem with linear inequalit y constrain ts.

The fairing pro cess can b e com bined with an opti-

mization of the �tting to the data p oin ts.

While the approac hes outlined ab o v e ga v e promis-

ing preliminary results, more researc h is needed to

devise an e�cien t and general fairing and optimiza-

tion for comp osite algebraic surfaces. W e will further

in v estigate these issues in the future.

8.5 Results

Examples of reconstruction of 3D mo dels are pre-

sen ted and discussed in this Section.
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(a) (b)

(c) (d)

(e) (f )

Figure 24 : Example of an ob ject reconstruction. The sho e w as sampled at ab out 1 � 10

4

p oin ts (a). The selected � -solid is sho wn in (b). The simpli�ed mesh, 310 triangles (c) is

used in (d) to build the simplicial h ull and �t the data with p olynomial algebraic patc hes

(e). The �nal result is sho wn in (f ).
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(a) (b)

(c) (d)

(e) (f )

Figure 25 : Example of reconstruction from real range data. The scan (a) con tains 16000

p oin ts. The � -solid (b) is a mesh of 33142 triangles, simpli�ed to 268 b y our algorithm (c).

The reconstructed ob ject con tains ab out 1000 patc hes and is sho wn in (d). Another re-

construction, based on a simpli�ed mesh of 636 triangles (e), results in 2500 patc hes (f ).

Di�eren t colors ha v e b een used to distinguish b et w een face- and edge-patc hes.
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Numb er � -Solid & � -Solid Simpl. N. of Fitting

Obje ct of Points Simp. Time T ri. T ri. Patches Err or Time

CSG 12128 2.5 24264 290 1680 < 1% 2.0

Sho e 9089 2.0 17786 248 1482 < 1% 2.7

Club 16576 3.2 33142 636 2522 < 1% 4.2

Club 2 16576 3.3 33142 268 1002 < 1.5% 2.8

T able 2 : Results obtained with the � -solid prepro cessing and A-patc h piecewise-smo oth

�tting metho d. Time is in min utes. Errors are relativ e to the diameter (distance b et w een

farthest p oin ts) of the ob ject.

Figure 24 con tains a dense sampling of p oin ts from

a high-heeled sho e. The original sampling consists of

9089 p oin ts, uniformly distributed o v er the surface.

The reconstructed piecewise linear ob ject con tains

17786 triangles. This linear appro ximation is simpli-

�ed to a rough appro ximation of 248 triangles, while

main taining C

0

features and a surface distance error

of less than 1%. A total of ab out 1500 piecewise C

0

and C

1

cubic patc hes in terp olate the simpli�ed mo del

and appro ximate the original set of p oin ts. The en-

tire pro cess required appro ximately 2.5 min utes for

the computation of the � -solid and successiv e simpli-

�cation, and ab out 2 min utes to set the w eigh ts of the

p olynomial patc hes for data �tting with the required

con tin uit y .

Figure 25 sho ws another example from real range

data, reconstructed at t w o lev els of resolution. The

range data consists of o v er 1 : 6 � 10

4

uniformly dis-

tributed p oin ts. The reconstructed piecewise linear

appro ximation of the surface con tains 33142 trian-

gles. Mesh reduction pro duces coarse appro ximations

of 636 and 268 triangles while main taini ng the sharp

features of the ob ject and appro ximating the surface

to within a tolerance of 1% and 1 : 5% resp ectiv ely .

Appro ximately 2500 (1000) piecewise C

0

and C

1

cu-

bic patc hes in terp olate the v ertices of the simpli�ed

mo del as w ell as the normals (when de�ned) while

appro ximating the original p oin ts. The computation

time includes less than 4 min utes for the initial re-

construction and mesh simpli�cation, follo w ed b y ap-

pro ximately 4 min utes for A-patc h �tting. All com-

putations w ere carried out on an SGI Indigo2 (250

MHz MIPS R4400).

9 Conclusions

W e presen ted in this pap er a metho d to reconstruct

the geometric shap e of ob jects from a sampling of

their surfaces. W e established su�cien t conditions

for the sampling to allo w a homeomorphic and error-

b ounded reconstruction. The use of alpha-shap es

(and alpha-solids) p ermitted us to use a solid mathe-

matical framew ork (to formally pro v e the sampling

conditions) and to dev elop e�cien t algorithms for

practical uses. W eigh ted alpha-shap es can b e used

to deal with m ulti-resolution scans.

While other reconstruction tec hniques from unor-

ganized p oin ts exist and can w ork w ell in practical

applications, our alpha-shap es based tec hnique is, to

the b est of our kno wledge, the �rst reconstruction

algorithm whic h guaran tees a correct reconstruction

when certain sampling conditions are satis�ed.

W e also describ ed a metho d to con v ert the �ne tri-

angle mesh pro duced b y the alpha-solid reconstruc-

tion in to a more useful, and manageable, piecewise-

p olynomial surface mo del. Our metho d is based

on implicit algebraic patc hes, or A-patc hes. While

less p opular than parametric represen tations, the A-

patc h mo deling tec hnique o�ers sev eral adv an tages,

from the closure with resp ect to basic mo deling op-

erations (o�setting, in tersection) to the high design


exibilit y for a relativ ely lo w p olynomial degree.

Our metho d is targeted to shap es that ha v e sharp

features. It starts with an error-b ounded simpli�-

cation of the alpha-solid triangle mesh. It creates

a supp orting tetrahedral mesh around the simpli�ed

mesh, and �ts A-patc hes to the data p oin ts inside

eac h tetrahedron.

One of the main adv an tages of these tec hniques

o v er previous metho ds is that they are fast. In our

curren t implemen tatio n, w e reconstruct mo dels from

samplings of the order of 10

4

p oin ts in min utes on a

general purp ose, uni-pro cessor w orkstation. The b ot-

tlenec k of our curren t implem en tation is the amoun t

of memory used b y the incremen tal triangulation al-

gorithm to store the history of split/
ipp ed tetrahe-

dra. A di�eren t implemen tatio n (or a di�eren t algo-

rithm), could allo w us to deal with larger p oin t sets.

Notice that a laser range scan migh t b e more dense
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than is needed b y our alpha-solid reconstruction al-

gorithm. A simple pre�ltering can b e applied to the

data set to reduce its size. In the follo wing A-patc h

�tting phase, all the original measured p oin ts can b e

used to ac hiev e the b est p ossible reconstruction. As

all of the computation in v olv ed in the A-patc h �t-

ting is done lo cally , the algorithms handle large data

sets gracefully . W e plan in the future to impro v e our

fairing and �tting optimization tec hniques for the re-

constructed A-patc h mo del.

W e ha v e not addressed all of the problems

that arise in dev eloping a fully automatic rev erse-

engineering tec hnique. W e ha v e already men tioned

the problems asso ciated with handling noisy mea-

suremen ts and incomplete information. W e ha v e not

attempted to understand the shap e of the ob ject to

build a represen tation that captures its functionalit y

or man ufacturing pro cess.

While more researc h is needed to answ er fully the

needs of rev erse-engineering applications, w e b eliev e

that automatic reconstruction will b ecome an in-

creasingly viable and common alternativ e to man ual

or semi-automati c shap e acquisition.

Ac kno wledgmen ts . Thanks to the Computer

Graphics Group, Univ ersit y of W ashington and the

Stanford Univ ersit y Computer Graphics Lab oratory ,
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