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AbstractIn \Syntactic Control of Interference" (POPL, 1978), J. C. Reynolds proposes threedesign principles intended to constrain the scope of imperative state e�ects in Algol-like languages. The resulting linguistic framework seems to be a very satisfac-tory way of combining functional and imperative concepts, having the desirableattributes of both purely functional languages (such as pcf) and simple imperativelanguages (such as the language of while programs).However, Reynolds points out that the \obvious" syntax for interference controlhas the unfortunate property that �-reductions do not always preserve typings.Reynolds has subsequently presented a solution to this problem (ICALP, 1989), butit is fairly complicated and requires intersection types in the type system. Here, wepresent a much simpler solution which does not require intersection types.We �rst describe a new type system inspired in part by linear logic and verifythat reductions preserve typings. We then de�ne a class of \bire
ective" models,which provide a categorical analysis of structure underlying the new typing rules;a companion paper \Bire
ectivity," in this volume, exposes wider rami�cations ofthis structure. Finally, we describe a concrete model for an illustrative programminglanguage based on the new type system; this improves on earlier such e�orts in thatstates are not assumed to be structured using locations.
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O'Hearn et al.about purely functional programs is relatively straightforward. However, for\simple" imperative languages without full procedures, Hoare's logic [13] (andtotal-correctness variants of it) are quite satisfactory. This suggests that itis simplistic to attribute the serious di�culties that arise in reasoning aboutprograms in conventional procedural languages to the presence of interference.J. C. Reynolds [37,38,40] has provided a more re�ned analysis. He arguesthat conventional procedural languages are problematical primarily becausethey permit covert interference, that is to say, interference that is not syn-tactically obvious. For example, if identi�ers x and y are aliases (denote thesame storage variable), then y := a interferes with x + 1, and this is prob-lematic because the interference is not obvious from inspecting these phrases.In general, alias detection in a conventional higher-order procedural languagerequires complex interprocedural data-
ow analysis of an entire program.Similarly, if a procedure accesses a non-local variable and the value of thatvariable can be changed between calls of the procedure, then identical callsof the procedure may have di�erent e�ects. Covert interference via non-localvariables can also result in subtle bugs in the use of procedural parameters.For example, suppose Traverse(p) applies procedural parameter p to everynode of a data structure and Remove has the e�ect of deleting the node towhich it is applied; then a call such as Traverse(Remove) will often fail tohave the e�ect the programmer intends because removing a node can interferewith a traversal.The problem of covert interference also a�ects language designers. Forexample, programmers expect that, immediately after assigning a value to avariable, the variable has the value just assigned; but this \obvious" propertyfails for so-called \bad" variables, such as the subscripted variable A(A(i))whose sub-expression A(i) is interfered with by the array variable A whenA(i) = i. A language designer might want to forbid bad variables syntactically,but covert interference makes this very di�cult; for example, A(j) is a badvariable if j is an alias for A(i). Similar di�culties arise for a language designertrying to provide a \block expression" (a command within an expression)without allowing side e�ects to non-local variables, trying to provide securefeatures for unions of types, or trying to allow concurrent composition of non-interfering commands.The di�culties created by covert interference are especially evident if oneconsiders reasoning principles. For example, in \speci�cation logic," a Hoare-like logic for full Algol-like languages [38,40], the axiom for assignments isgv(V ) & V # P ) fP (E)gV := E fP (V )gThe consequent is essentially the familiar axiom from [13], but assumptionV # P asserts that assignments to variable V do not covertly interfere withthe pre and post-conditions, and assumption gv(V ) asserts that V is a \good"variable. Similarly, the \Constancy" axiom in speci�cation logic di�ers fromthe corresponding axiom in Hoare's logic in that a simple syntactic side con-dition must be replaced by a non-interference assumption. Finally, becauseof possible covert interference, procedure speci�cations must be more com-2



O'Hearn et al.plex: explicit assumptions about what procedures do not do are required(cf. the \frame problem" in arti�cial intelligence [6]) in order to dischargenon-interference assumptions in the context of procedure calls. All of thesecomplexities are clearly evident in the examples in [38].For these reasons, many language designers have argued that program-ming languages should be designed so that it is easy for programmers andcompilers to verify that program phrases do not interfere; some early exam-ples are [5,14,45]. In [37], three general design principles intended to facilitateveri�cation of non-interference are proposed.(i) There should be no \anonymous" channels of interference; then the prob-lem of verifying that C doesn't interfere with E reduces to showing thatno free identi�er of C interferes with any free identi�er of E.(ii) Distinct identi�ers should not interfere; then if two sets of identi�ers aredisjoint, they are guaranteed not to interfere.(iii) Some types of phrases, such as side e�ect-free expressions, are \passive"(do not interfere with anything), and so the disjointness requirement canbe relaxed to allow sharing of identi�ers used only passively.In summary, to verify in this setting that C does not interfere with E, it issu�cient to ensure that no actively occurring free identi�er of C is also freein E.But of course the programming language must be designed so that thereare no anonymous channels of interference and, in every context, distinct iden-ti�ers do not interfere. The �rst requirement is straightforward, but to achievethe second, it is proposed that the following basic constraint be imposed onprocedure calls P (A): the procedure part P and the argument part A shouldbe mutually non-interfering (and similarly for de�ned language constructs,such as local de�nitions, that have implicit procedure calls). Note the elegantcircularity of the approach: the syntactic restriction ensures that distinct iden-ti�ers do not interfere, and this property makes it feasible to implement therestriction using the syntactic criterion described in the preceding paragraph.The syntax of an Algol-like programming language designed according tothese principles is described in [37]. This design is extremely successful inmost respects, combining the desirable attributes of both purely functionallanguages (such as pcf) and simple imperative languages (such as the lan-guage of while programs); however, a problem in the treatment of passivityis noted. In the approach used to incorporate the third principle (allowingsharing of passive identi�ers), the syntax is such that the subject-reductionproperty fails; i.e., reductions may fail to preserve typing. Reynolds subse-quently presented a solution to this problem in [41], but it is fairly complicatedand requires intersection types [7] in the type system. We feel that the meth-ods of interference control should be applicable relatively independently of thespeci�cs of intersection types (which of course have substantial other merits).In this work, we present a very simple and intuitive alternative solution tothe problem of passive uses. Our solution does not require intersection types,allowing interference control to be investigated without unnecessary syntactic3



O'Hearn et al.or semantic complexity. Also, it would be conceivable to apply these methodsin contexts, such as ML-like or Haskell-like languages, where the addition ofintersection types would be far from trivial.The type system presented here was actually worked out by the �rst authorin 1991, but lay dormant for a number of years because it contained featuresfor which no satisfactory semantic explanation was known. More precisely, atthat time it would have been straightforward to formulate a type soundnesstheorem, based on an operational semantics, or a simple denotational model(with an adequacy theorem) that correctly predicted behaviour of completeprograms. The perceived di�culty, however, was not whether some modelexisted, but rather that the typing rules for passivity exhibited intricate inter-actions, which, in the absence of a semantic analysis deeper than that providedby adequacy or type soundness, appeared discomfortingly ad hoc. In particu-lar, the type system hinges on a treatment of \passively occuring" identi�ers;i.e., identi�ers, possibly of active type, that, in some contexts, are only usedpassively. This treatment is subtle, but crucial for treating types that com-bine passivity and activity, such as types for storage variables or products ofpassive and active types.So, a central role is played in this paper by a semantic analysis of passivity,couched in terms of a new categorical concept of bire
ectivity . The bire
ectivesemantics exposes structural properties underlying our type-theoretic treat-ment, where the typing rules for passivity correspond to certain adjunctions.This provides a measure of relief for our previous fears of the potential ad hocnature of the typing rules; further support is provided by a companion paperBire
ectivity , in this volume, which introduces bire
ective subcategories andstudies their mathematical properties.To ground this analysis we describe a concrete model in which a subcate-gory of passive objects is built using semantic entities that, in a precise sense,can read from, but not write to, the computer store. The model improves onearlier e�orts [42,25] in that states are not assumed to be structured using\locations." As a result, we obtain a much cleaner model in which the \dis-jointness" of identi�ers is clearly visible. Distinct identi�ers get associatedwith separate state-sets, and the sharing of passively-used state is explainedthrough semantic \contraction" mappings.We are grateful to Uday Reddy for numerous discussions that in
uencedthe content and presentation of this paper. In fact, the revival of the typesystem came about originally as a result of his model of passivity in [35], follow-up correspondence in which he pointed out that our rules of Passi�cation andActivation corresponded to a monad structure in his model, and his challengeto look for similar structure in Tennent's model of speci�cation logic [43]. Thischallenge led to the identi�cation of bire
ective category structure which, it�nally turns out, is subtly di�erent from the structure in Reddy's model (seeSection 3.4). A crucial step forward in this development was the utilizationof Day's tensor product construction, the relevance of which was suggested byAndy Pitts.A preliminary version of this paper appeared in [26].4



O'Hearn et al.2 Syntax2.1 Passive UsesThe treatment of passivity in [37] is based on designating certain phrase types(such as \state reader" expression types) as being passive, and then, for anyphrase R; determiningthe set of identi�ers which have at least one free occurrence in R which isoutside of any subphrase of passive type.These are considered to be the actively occurring free identi�ers of R. Unfor-tunately, this de�nition, being context-independent, cannot take account ofthe fact that, when R itself occurs within a passive phrase, none of its freeidenti�ers can be used actively. This means that the syntactic constraints onprocedure calls are unnecessarily restrictive, which results in anomalies whentypes combine passive and non-passive capabilities.For example, a storage variable is used passively when it is read from, ason the right-hand side of an assignment statement, and actively when it isassigned to. Suppose that identi�ers x and w are of type var[� ] (i.e., theyare � -valued variable identi�ers, with � a data type such as int or bool), andconsider the following command:��z: � . x := (�y: � .w)z� (w) (1)where typings of the form �: � indicate that � is a � -valued expression identi�er.Although w occurs in both the procedure and argument parts of the outercall, the phrase is legal because both occurrences are in expressions and henceregarded as passive. However, the command �-reduces tox := (�y: � .w)w (2)in which the right-hand side is illegal , according to Reynolds's treatment, be-cause variable identi�er w is deemed to occur actively in the procedure (whichhas type � ! var[� ]), and also occurs in the argument. But the procedurecall is actually an expression, and so there cannot be any interference via w;indeed, the assignment �-reduces to the legal x := w.It can be argued that the anomaly in this example could be avoided ifdereferencing coercions were explicit; however, more complex examples, asin [37], show that the problem is a fundamental one. (An example of thiskind from loc. cit. will be discussed in Section 2.4). The problem arises essen-tially because the context-independent notion of active occurrence cannot besensitive to situations in which the context ensures passive use of potentiallynon-passive entities. To avoid the anomalies, it is necessary to consider whenidenti�ers occur actively in instances of phrases, taking context into account.2.2 The SCIR Type SystemThe phrase types are built from certain primitive types hprimi as follows:� ::= hprimi j � 
 �0 j � � �0 j �0 ! � j �0 !P �:5



O'Hearn et al.A subset hprimpi of the primitive types is singled out as passive, and thisgenerates the passive types as follows:� ::= hprimpi j �
 �0 j �� �0 j � ! � j �0 !P �:There are two products: � � �0; for which the components can interfere, and� 
 �0; for which the components must be non-interfering. There are also twoexponentials: �0 ! �; which is the type of ordinary procedures (which cannotinterfere with, or be interfered with by, their arguments), and �0 !P �; whichis the type of passive procedures. A passive procedure does not assign to anyglobal variables (though a call of a passive procedure may be active, if theargument of the call is).We propose a syntax based on typing judgements � j � ` P : � in which theusual typing context on the left of the turnstile is partitioned into a \passive"zone � and an \active" zone �. No identi�er can be in both the passive andthe active zones. Intuitively, if an identi�er is in the passive zone, it can onlybe used passively, even if the type of the identi�er is non-passive. The typingrules will be arranged so that when a phrase under a type assignment is placedin a context, that context must prevent identi�ers in the passive zone frombeing used actively.This use of zones is reminiscent of Girard's LU [12], with the passive/activedistinction here being similar to the classical/linear distinction there; however,the permeability rules, that govern movement across the zone separator j, donot appear in LU nor, as far as we are aware, in other previous systems. Theserules are the most distinctive aspect of the treatment of passivity here. SeeSection 2.6 for further discussion.The rules concerning identi�ers and contexts are in Table 1. Identi�ersare initially introduced in the active zone, but may change zones with thehelp of the permeability rules of Passi�cation 5 and Activation. Movementto the passive zone is accomplished using Passi�cation, when the phrase onthe right-hand side of the turnstile is of passive type. This is the only waythat an identi�er can move to the passive zone. On the other hand, a passiveidenti�er can always be activated using the Activation rule. Notice that �is unrestricted in the Passi�cation rule, and that the change-of-zone is notaccompanied by a change-of-type for the assumption; this is a key di�erencefrom the otherwise similar use of zones in LU.Weakening and Exchange can be used in either zone. When type assign-ments are concatenated, as in the Weakening rule, we implicitly assume thatthe domains are disjoint. e� and e� are permutations of � and �, respectively.Contraction can only be used in the passive zone. This is the essentialrestriction that implements the requirement that distinct identi�ers do notinterfere. We are using the notation [P ](�0 7! Q) to denote the result ofsubstituting Q for free occurrences of �0 in P .5This fabricated word seems more attractive as a name for this rule than alternatives suchas Passivation or Deactivation. 6



O'Hearn et al.Table 1 Identity and Structural RulesIdentityj �: � ` �: � AxiomStructure� j �: �;� ` P :��; �: � j � ` P :� Passi�cation �; �: � j � ` P : �0� j �: �;� ` P : �0 Activation� j � ` P : ��;�0 j �;�0 ` P : � Weakening � j � ` P : �e� j e� ` P : � Exchange�; �: �; �0: � j � ` P : �0�; �: � j � ` [P ](�0 7! �): �0 Contraction
Rules for the type constructors are given in Table 2. Note that the ac-tive zone in rule !P I is empty. Also, note that the type assignments forthe procedure and the argument parts of procedure calls (rule !E) must bedisjoint; however, Contraction allows sharing of identi�ers from the passivezone. Similar remarks apply to the introduction rule for 
.In the preliminary version of this paper we used a rule for 
-eliminationbased on projections: � j � ` P : �0 
 �1� j � ` �
i P : �i 
Ei (i = 0; 1)This rule was used on the grounds that projections are de�nable in the presenceof Weakening, and the erroneous remark was made that the two forms ofelimination would thus be equivalent.The formulation with projections has two problems. First, it is not possiblein general to unpack a term of type �0 
 �1 into non-interfering components.Second, it is not possible to mimic the isomorphism taking f : �0 ! �1 ! �2 to�x: �0 
 �1 : letx
 y be z in fxy: �0 
 �1 ! �2These remarks do not invalidate any of the technical results in [26]; however,we now regard the formulation using projections as a language-design mistake.7



O'Hearn et al.Table 2 Rules for Type Constructors� j � ` P : �0 � j � ` Q: �1� j � ` hP;Qi: �0 � �1 �I � j � ` P : �0 � �1� j � ` �i P : �i �Ei (i = 0; 1)�0 j �0 ` P : �0 �1 j �1 ` Q: �1�0;�1 j �0;�1 ` P 
Q: �0 
 �1 
I � j � ` P : �0 
 �1 �0 j �0; �0: �0; �1: �1 ` Q: ��;�0 j �;�0 ` let �0 
 �1 be P in Q: � 
E� j �; �: �0 ` P : �� j � ` ��: �0.P : �0 ! � !I �0 j �0 ` P : �0 ! � �1 j �1 ` Q: �0�0;�1 j �0;�1 ` P (Q): � !E� j ` Q: �0 ! �� j ` promoteQ: �0 !P � !P I � j � ` Q: �0 !P �� j � ` derelictQ: �0 ! � !PE2.3 An Illustrative Programming LanguageAn illustrative Algol-like programming language is obtained by choosing ap-propriate primitive types and constants. We use a type comm of commandsand types � for � -valued expressions:hprimi ::= � j commwhere � ranges over, say, int and bool. The only passive primitive types arethe expression types � .The type var[� ] of � -valued variables abbreviates (� ! comm)�� . Deref-erencing is implemented by the second projection; in examples, we will sup-press explicit mention of this projection and assume a rule� j � ` V :var[� ]� j � ` V : � DereferencingWe can consider constants representing various imperative constructs, such as:=� :var[� ]� � ! comm assignment; : comm� comm! comm sequential compositionjj: comm
 comm! comm parallel compositionif�:bool� � � � ! � conditionalY�: (�!P �)! � recursionnew� : (var[� ]! comm)! comm local allocationdo� : (var[� ]!P comm)! � block expression8



O'Hearn et al.The block-expression form requires some explanation; the call do� (p) is eval-uated by allocating a new local variable and applying p to it, as with the ordi-nary command block new� (p); but then returning the �nal value of the localvariable as the value of the expression. The passivity of p:var[� ] !P commensures that the block expression does not interfere with non-local variables,and so no \snap-back" e�ect is needed to restore their original values.2.4 ExamplesWe illustrate the operation of the rules by presenting derivations of sometyping judgements.Consider �rst the (unreduced) example (1) discussed in Section 2.1. Theassignment can be typed as follows:
j x:var[� ] ` x:var[� ]

j w:var[� ] ` w:var[� ]j w:var[� ]; y: � ` w:var[� ] Weakeningj w:var[� ] ` �y: � .w: � ! var[� ] !I j z: � ` z: �j w:var[� ]; z: � ` (�y: � .w)z:var[� ] !Ej w:var[� ]; z: � ` (�y: � .w)z: � Dereferencingw:var[� ] j z: � ` (�y: � .w)z: � Passi�cationw:var[� ] j x:var[� ]; z: � ` x := (�y: � .w)z: comm :=where the last step abbreviates use of the := constant, �I; !E and Weaken-ing. Note that after Dereferencing of the right-hand side, w can be moved tothe passive zone. The typing is then completed as follows, using a Contraction:....w:var[� ] j x:var[� ]; z: � ` x := (�y: � .w)z: commw:var[� ] j x:var[� ] ` �z: � . x := (�y: � .w)z: � ! comm !I j w0:var[� ] ` w0:var[� ]j w0:var[� ] ` w0: �w0:var[� ] j ` w0: � Pass.w;w0:var[� ] j x:var[� ] ` (�z: � . x := (�y: � .w)z) (w0): comm !Ew:var[� ] j x:var[� ] ` (�z: � . x := (�y: � .w)z) (w): comm ContractionThe following shows how to derive a typing for the right-hand side of the\illegal" assignment (2) in Section 2.1:j w:var[� ] ` w:var[� ]j w:var[� ]; y: � ` w:var[� ] Weak.j w:var[� ] ` �y: � .w: � ! var[� ] !I j w0:var[� ] ` w0:var[� ]j w0:var[� ] ` w0: � Dereferencingj w;w0:var[� ] ` (�y: � .w)w0:var[� ] !Ej w;w0:var[� ] ` (�y: � .w)w0: � Dereferencingw;w0:var[� ] j ` (�y: � .w)w0: � Passi�cationw:var[� ] j ` (�y: � .w)w: � Contractionj w:var[� ] ` (�y: � .w)w: � ActivationEven though the types of w and w0 are active, Contraction can be appliedwhen they are in the passive zone; but Dereferencing must be used beforethese identi�ers can be passi�ed. The assignment can then be typed as usual:j x:var[� ] ` x:var[� ] ....j w:var[� ] ` (�y:var[� ].w)w: �j x;w:var[� ] ` x := (�y:var[� ].w)w: comm :=9



O'Hearn et al.The next example demonstrates that an identi�er can be used both ac-tively and passively. The following derivation involves shared passive use of avariable identi�er x:j y:var[� ] ` y:var[� ] j x:var[� ] ` x:var[� ]j x:var[� ] ` x: �x:var[� ] j ` x: � Pass.x:var[� ] j y:var[� ] ` y := x: comm := ....x0:var[� ] j z:var[� ] ` z := x0: commx; x0:var[� ] j y; z:var[� ] ` y := x jj z := x0: comm jjx:var[� ] j y; z:var[� ] ` y := x jj z := x: comm Contractionj x; y; z:var[� ] ` y := x jj z := x: comm Activationwhere the derivation for z := x0 is similar to that for y := x; and the step fork uses the introduction rule for 
 followed by the elimination rule for! withthe constant k. This can then be combined with non-passive use of x, as inthe following derivation:....j w: �; x:var[� ] ` x := w: comm ....j x; y; z:var[� ] ` y := x jj z := x: commj w: �; x; y; z:var[� ] ` x := w ; (y := x jj z := x): comm ;We now consider the problematic example from [37, p. 44]. Supposen; y:var[int]; then, the parallel command in�0Dn + 1 ; (n := 0 k y := �0hn ; n := 0i)Eis illegal in the treatment of [37] because n is used on both sides of k. However,the entire term is of type int, and so these uses should be regarded as passive.To type this in our system, we can proceed as follows:....j n; n0; y:var[int] ` �0hn+ 1 ; (n := 0 k y := �0hn0 ; n0 := 0i)i: intn; n0:var[int] j y:var[int] ` �0hn+ 1 ; (n := 0 k y := �0hn0 ; n0 := 0i)i: int Passi�cationn:var[int] j y:var[int] ` �0hn+ 1 ; (n := 0 k y := �0hn ; n := 0i)i: int Contractionj n; y:var[int] ` �0hn+ 1 ; (n := 0 k y := �0hn ; n := 0i)i: int ActivationThe �rst line can be typed straightforwardly because the identi�ers on eitherside of k are distinct.Notice that the subterm (n := 0 k y := �0hn ; n := 0i) does not itself haveany typing in the SCIR type system. But it can nevertheless appear in a largerterm because Contraction can be applied when a subterm with occurrencesof n remaned apart appears within a passive phrase. This subtle interactionof Contraction and Passi�cation is what allows the subject reduction prob-lems from [37] to be solved. An equivalent type system that does not useContraction explicitly can be formulated, but replaces this subtle interactionby explicitly accounting for the \semi-well-typed" status of phrases such as(n := 0 k y := �0hn ; n := 0i), or more simply (�x: x; y)y.Finally, it is natural to ask about the relationship between the SCIR treat-ment of passivity in the SCI2 treatment in [37].We have argued that a merit of our approach is that it shows that subtypesare not necessary for the treatment of passivity. But a compensating merit of10



O'Hearn et al.Table 3 �-reductions�0hP;Qi !� P �1hP;Qi !� Qlet �0 
 �1 be P 
Q in M !� [M ](�0 7! P; �1 7! Q)(��: �:P )Q !� [P ](� 7! Q) derelict(promoteQ) !� QP !� QC[P ]!� C[Q] for term-with-hole C[�]SCI2 is that it can typecheck programs that SCIR cannot. One example is�c1: comm : �c2: comm : �c3: comm : �0hc0; c3i k �0hc2; c3i: comm! comm! comm! commIn SCIR this program is not typable because the active identi�er c3 appears inboth arms of the parallel composition, and because there are no passive phrasesto allow use of the rule of Passi�cation. But in SCI2 products are representedas records with named alternatives, and a forgetting-�elds conversion can beapplied which, in e�ect, assigns a (passive) unit type to c3; this is reasonable,as c3 is never used.It can be argued that this points to an incompleteness in the SCIR typesystem, because c3 is used passively in the example. A counter-argument isthat the example has not so much to do with passive use but with the abilityof subtyping to account for some circumstances when parts of a record are notused at all. We wonder if there is a precise relationship between SCI2 and aversion (as yet unformulated) of SCIR with conjunctive types.These details aside, we would like to emphasize that the central aspectsof syntactic control of interference, including passivity, were already identi�edin [37], and we regard the type theoretic solution presented in this paper as afurther development and analysis of ideas present there.2.5 Typing and ReductionThe principal reductions for the SCIR type system are in Table 3. (A com-prehensive treatment would require commuting conversions for 
 [1], whichare omitted here.)Theorem 2.1 (Subject Reduction) If � j � ` P : � and P !� Q then� j � ` Q: �. 211



O'Hearn et al.Typing is also preserved by various � laws.To prove this result we will concentrate on the reduction from (�x:P )Q to[P ](� 7! Q). The proofs for let is similar, projections and Promotion/Derelictionelimination are easier, and the extension to subterms via the rule for C[�] isnot di�cult. We need two lemmas.Lemma 2.2 If � j � ` ��: �0.P : �0 ! � then � j �; �: �0 ` P : � :Proof. We have assumed (without loss of generality) that � is not in � or�. The result clearly holds if the last step of the derivation for ��: �0.P is aninstance of !I, and is preserved by any structural rules that might be usedafter !I. 2Next is a generalized form of the \Cut" rule.Lemma 2.3 If �1: �1; : : : ; �n: �n j �n+1: �n+1; : : : ; �m: �m ` P : � and, for all1 � i � m; �i j �i ` Qi: �i, then�1; : : : ;�m;�1; : : : ;�n j �n+1; : : : ;�m ` [P ](�1 7! Q1; : : : ; �m 7! Qm): � :Proof. The proof is by induction on the size of the derivation for P . Wediscuss only the key cases of structural rules that make use of the separationof a type assignment into zones.Case Contraction: the last step is�1: �1; : : : ; �n: �n; �: �n j �n+1: �n+1; : : : ; �m: �m ` P 0: ��1: �1; : : : ; �n: �n j �n+1: �n+1; : : : ; �m: �m ` P : �where P = [P 0](� 7! �n). By the induction hypothesis,�1; : : : ;�m;�;�1; : : : ;�n;� j �n+1; : : : ;�m` [P 0](�1 7! Q1; : : : ; �m 7! Qm; � 7! Q): �where � j � ` Q: �n is a variant of �n j �n ` Qn: �n with fresh identi�ers notappearing in any �i or �i. Then, � and �; being in the passive zone, can becontracted to �n and �n; respectively, using Contractions (and Exchanges),and the resulting judgement is the desired conclusion.Case Activation. The last rule is�1: �1; : : : ; �n+1: �n+1 j �n+2: �n+2; : : : ; �m: �m ` P : ��1: �1; : : : ; �n: �n j �n+1: �n+1; : : : ; �m: �m ` P : �By the induction hypothesis,�1; : : : ;�m;�1; : : : ;�n+1 j �n+2; : : : ;�m ` [P ](�1 7! Q1; : : : ; �m 7! Qm): �Using a number of applications of Activation, we can move �n+1 to the rightof j; obtaining the desired conclusion�1; : : : ;�m;�1; : : : ;�n j �n+1; : : : ;�m ` [P ](�1 7! Q1; : : : ; �m 7! Qm): � :Case Passi�cation. The last rule is�1: �1; : : : ; �n�1: �n�1 j �n: �n; : : : ; �m: �m ` P :��1: �1; : : : ; �n: �n j �n+1: �n+1; : : : ; �m: �m ` P :�12



O'Hearn et al.By the induction hypothesis,�1; : : : ;�m;�1; : : : ;�n�1 j �n; : : : ;�m ` [P ](�1 7! Q1; : : : ; �m 7! Qm):� :Because � is passive (as Passi�cation was the last rule), we can use Passi�ca-tion a number of times to move �n to the left of j; and we obtain the desiredconclusion. 2We can now prove the following desired result: if � j � ` (��: �0:P )Q: �then � j � ` [P ](� 7! Q): �. For the proof, �rst note that if a derivation endsin an application M(N) then there are only a number of possibilities for thelast rule. These are: !E and the structural rules of Contraction, Exchange,Weakening, Passi�cation, and Activation. Further, the structure of such aderivation must always consist, at the end, of an instance of!E, followed bya number of applications of these other rules. The proof goes by induction onthe size of this last part of the derivation, after the �nal elimination rule.The basis case when the last rule is of the form� j � ` ��: �0.P : �0 ! � �0 j �0 ` Q: �0�;�0 j �;�0 ` (��: �0.P )Q: �follows directly from the two lemmas, taking�1: �1; : : : ; �n: �n to be ��n+1: �n+1; : : : ; �m�1: �m�1 to be ��m: �m to be �: �0�i j �i ` Qi: �i to be j �i: �i ` �i: �i (1 � i < m)�m j �m ` Qm: �m to be �0 j �0 ` Q: �0The inductive steps of the proof of the theorem consist of straightforwardveri�cations that the preservation of typing by a �-reduction is preserved byany use of structural rules. 22.6 Relation and Non-Relation to Linear LogicThe SCIR type system was inspired by linear logic, speci�cally in the focuson a restricted use of Contraction. The speci�c presentation, based on zones,was in
uenced by LU, but the basic type system was worked out in May 1991prior to seeing LU. Previously, the syntax worked by \marking" identi�ersin typing contexts as being passively used, with Passi�cation and Activationmanipulating the marks; the zones are a notational variant of this. This wassimilar to the marking in [44], except that marking of identi�ers was donewithout changing types.In linear logic, Contraction and Weakening are allowed only for types ofthe form !A, whereas in SCIR Contraction is allowed only for passively-usedidenti�ers (in the passive zone). Furthermore, the Dereliction and Promotion13



O'Hearn et al.rules for the passive type constructor!P are obviously inspired by the corre-sponding linear logic rules for the \!" modality, though they have precursorsin Reynolds's original (1978) presentation of SCI. These facts, supported bysemantic models, were the basis for the analogy of passivity as \!", and SCI asa�ne linear logic, proposed in [24,25]. It was known then that the passivity � !analogy was not an exact correspondence, and that there were some propertiesof passivity not accounted for by \!".For example, it would have been possible, in principle, to use a linearlogic-based type system to design an alternate type system for SCI satisfyingthe subject reduction property. But if we had followed up the passivity � !analogy, the most obvious candidate syntax would have had a form of \box-ing" [11]. For example, the Promotion rule for passive procedures would besomething like (cf. [1])x1:A1; : : : ; xn:An j ` Q: �0 ! � � � ��i j ` Ei:Ai � � ��1; : : : ;�n j ` promoteE1; : : : ; En for x1; : : : ; xn inQ: �0 !P � !P IWhile this syntax is perhaps appropriate for \!" in linear logic, it seems overlyheavy, with no conceivable justi�cation, from the point of view of interferencecontrol.More importantly, the concept of passivity involves a notion of passive use,which has additional properties beyond those for \!". These extra propertiesare embodied syntactically in the rules of Passi�cation and Activation, whichhave the side bene�t of allowing us to avoid these syntactic complications,retaining a relatively simple syntax possessing the subject reduction property.(Compare the implicit syntax mentioned above with that just given for Pro-motion!) These two rules do not correspond to any rules in linear logic, orLU; this di�erence will be seen again when we consider categorical models ofthe SCIR type system.
3 SemanticsThe permeability rules of Passi�cation and Activitation can exhibit subtlebehaviour (as we saw in Section 2.4). To understand this behaviour, it isbene�cial to have an analysis that exposes their essential structure in moreabstract terms. To this end, in this section we de�ne a class of categoricalmodels of the SCIR type system. We do not attempt to formulate a mostgeneral possible notion of model. Rather, we focus on a particularly cohesiveclass, which we term \bire
ective" models, that are su�cient to secure our ba-sic aim of showing a sound interpretation which accounts for the permeabilityrules.A concrete model for the programming language of Section 2.3 will bepresented in Section 4. 14



O'Hearn et al.3.1 Bire
ective ModelsAs usual, the types and terms of the language are to be interpreted as objectsand morphisms, respectively, of an appropriate semantic category C. We re-quire, �rst, that C come equipped with a symmetric monoidal closed structure(I;
; �), and �nite products. This enables us to interpret the non-interferingproduct, the interfering product, and function types in standard ways. Forexample, the closed structure will provide application mapsapp(A;B): (A � B)
 A! Bfor all objects A and B, and, for every map f :A
B ! C, a curried mapf �:A! (B � C)satisfying appropriate � and � laws.Typing contexts �;� to the left of ` in any syntax judgement will beinterpreted as products built using 
:[[�1: �1; : : : ; �n: �n]] = [[�1]]
 � � � 
 [[�n]]To interpret the Weakening rule, the tensor product 
 must allow forprojection maps, �
0 :A
 B ! A and �
1 :A
B ! B. We therefore requirethe unit I for 
 be a terminal object 1 of C; then �0 is (idA
!B) ; %, where !Bis the unique map from B to 1, and %:A 
 1 ! A is the unity isomorphism,and similarly for �
1 .To treat passivity, we begin by assuming a full subcategory P of C, to bethought of as the subcategory of passive objects. The typing context in thepassive zone will be interpreted as a passive object. Thus, every judgement� j � ` P : � will be interpreted by a mapS[[�]]
 [[�]] �! [[�]]where S[[�]] is an object of P, and [[�]] and [[�]] are objects of C. To treat bothContraction and Weakening in the passive zone, we simply require that 
 be acategorical product in P. The interactions of permeability rules and rules forthe passive function type are accounted for by making a further assumptionon P.De�nition 3.1 (Bire
ective Subcategory) A bire
ective subcategory of acategory C is a full subcategory P of C with inclusion J :P ,! C that has leftand right adjoints equal, say S:C! P, with the compositeJSA A JSA-"0A -�Abeing the identity, where � is the unit of the adjunction S a J and "0A is thecounit of J a S.This de�nition is from [10], where its categorical properties are studied. Ourmain concern here is to explain its connection to the SCIR type system.The adjunction S a J is used to interpret the permeability rules of Pas-si�cation and Activation. For Passi�cation, consider �rst the special case inwhich there is only one identi�er in the active zone and none in the passivezone: 15



O'Hearn et al.j �: � `M :��: � j `M :�The adjunction determines a transformation of mapsf :A! JPpassify(f):SA! Pwhere P is any object of P, and A is an arbitrary C-object. This interpretsthe indicated instance of the rule, and unit of the left adjunction gives us anatural family of maps �A:A! SA to interpret an instance�: � j `M : �0j �: � `M : �0of the Activation rule by pre-composition:f :SA! B�A; f :A! BInstances of these rules involving more than one contextual identi�er can bedealt with by assuming that S be a strong monoidal functor; i.e., that itpreserves tensor products up to (coherent) isomorphism: S(A
B) �= SA
SBand S1 �= 1 [9,18].The right adjunction J a S is utilized in the treatment of !P . Clearly,we would like !P to behave like a function type. But, as evidenced by theintroduction rule!P I, these functions are subject to constraints ensuring thepassive use of free identi�ers within them. If we set A !P B = S(A � B)then, using J a S, this determines an adjunctionJP 
 A! BP ! [A!P B]where P is a passive object. (That is, ({) 
 A:P ! C is left adjoint toS(A � ({)), for all C-objects A.) Thus, we have an interpretation of !Pthat takes into account both passive use and functional properties such as �and �.The further requirement of bire
ectivity|the coincidence of the left andright adjoints to J and the coherence condition|implies certain equationsrelating the left and right adjunctions. First, as the analysis in [10] shows,bire
ectivity implies that the transformation of maps f 7! passify(f) asso-ciated with the left adjunction S a J can be calculated using the counit"0A:SA! A (where SA = JSA) of the right adjunction J a S:passify(f) = "0A ; f (3)where f :A ! P . Similarly, the transformation associated with the rightadjunction g:P ! Apromote(g):P ! SA16



O'Hearn et al.can be calculated using the unit �A:A ! SA (where SA = JSA) of the leftadjunction:promote(g) = g ; �A : (4)The simplifying e�ect of these equations is dramatic.For instance, in [1] it is emphasized that naturality requirements lead toa syntactic treatment of promotion rules such as !P I that involve binding,much like the rule discussed in Section 2.6. But by interpreting !P I usingcomposition on the right, as in equation (4), all necessary naturality require-ments are met by the simpler form of syntax rule that we use. Similarly, theinterpretation of the Passi�cation rule can now be given simply by compos-ing on the left as indicated by (3). This will be a great aid in establishingthe connection between model and syntax, as given by the coherence theorembelow.De�nition 3.2 (Bire
ective Model) A bire
ective model of SCIR is givenby the following data:(i) a symmetric monoidal closed category (C; 1;
; �) with �nite products(1;�); and(ii) a bire
ective subcategory J :P ,! C in which (1;
) is a �nite-productstructure and the bire
ector S:C ! P is a strong symmetric monoidalfunctor for which S a J a S are monoidal adjunctions.Note that, since we have required that 
 be a cartesian product structurein the full subcategory P, the category P is monoidal and the inclusion J isa strong monoidal functor with comparison morphisms JP 
 JQ ! J(P 
Q) and 1 ! J1 being identities. An adjunction is monoidal when certainequations hold involving the units and counits and the comparison morphismsSA
SB ! S(A
B) and 1! S1 [9,18]. Monoidal functors and adjunctionsare useful for treating rules involving typing contexts [1].The conditions that S be strong monoidal and that S a J and J a S bemonoidal adjunctions are equivalent to the condition that, for A and B in C,A
 BJSA
 JSB JS(A
 B)A
B?�A 
 �B -�A
B -�0A 
 �0B ?�0A
Bcommutes, where � is the unit of S a J and �0 is the counit of J a S.To simplify the presentation, we assume that the counit � of S a J is theidentity, and identify P with JP in C. Then the isomorphism mA;B:SA 
SB ! S(A
B) associated with the strong monoidal functor S can be writtenSA
 SB A
 B S(A
 B)-�0A 
 �0B -�A
Bwith inverse �0A
B; �A 
 �B, and m1: 1! S1 is �1.Notice that the units of the monoidal and cartesian structures coincide.The adjunction J a S determines a co-monad on C, and this is the aspect of17



O'Hearn et al.passivity that is similar (but not identical) to \!" from linear logic. The leftadjoint to J determines additional structure, that of a monad.Proposition 3.3 SP �= P for all passive P , and hence S is idempotent.Proof. Standard for re
ective subcategories; see [20]. 2Proposition 3.4 [10](i) P is Cartesian closed.(ii) P �Q �= P 
Q when P and Q are P-objects.(iii) P is an \exponential ideal" of C; i.e. A � P lies in P (up to isomor-phism) when P is a P-object and A is any C-object. 2Part 1 of the proposition corresponds to the following intuition: the passivefragment of SCIR has no interference constraints, and so a model of this frag-ment should be a model of the full typed �-calculus. Parts 2 and 3 correspondto the syntactic classi�cation of passive types. For instance, types of the form� !P � and � ! � are isomorphic, so that the two exponentials coincide forpassive result types.The adjunction S a J could be used to show that \passifying all variables"is bijective, but we also want to passify one variable at a time. That \passifyingone variable is bijective" is the content of the following.Lemma 3.5 There is a bijectionf : JQ
 A
 B ! JP(id
 "0A 
 id); f : JQ
 JSA
 C ! JPwhere P and Q are passive objects.Proof. Immediate from properties of monoidal functors and adjunctions, orit can also be proven directly using the fact that P is an exponential ideal.2Example 3.6 This is essentially from [23], and is related to the functor-category model given later which is based on [43,27].Let N be the category with a single object, �, and where the morphismsare natural numbers together with an extra number1. The compositionm ;nis the minimum of m and n, with m ;1 =1 ;m = m. The functor categorySetsN is a model of SCIR.The category P of passive objects is the subcategory of constant functors,where each morphism inN gets mapped to an identity. Functor S:SetsN ! Pis given by S(A)� = fA(0)a j a 2 A(�)g and SA(m)a = S(0)a. The functorsSA are constant because 0 ; 0 = 0. Given a map f :A .! P , the correspondingmap f 0:SA .! P is given by f 0(�)a = (f(�))(A(0)a). The adjunction J a S isgiven by composing with the inclusion SA! A.To give some intuition, consider a \locations" functor Loc:N ! Sets.Loc(�) is the set of natural numbers, together with an extra element ?. Fornatural numbers n and m, Loc(n)m = m if m < n, and ? otherwise, andLoc(1)m = m. One may think of function Loc(n) as \disallowing access"18



O'Hearn et al.to locations greater than or equal to n, by mapping these locations to ?.S(Loc)(�) has only one element, ?.In this category we can begin to see a glimpse of semantic structure re-lated to side e�ects. But the category P does not quite match computationalintuitions concerning passivity. It consists of constant functors, which aree�ectively stateless. State will be better treated in Section 4 by adopting acategory of worlds with multiple objects (to account for local state) to use inplace of N.3.2 Interpretation of the Typing RulesIn this section, we explain how typing rules are interpreted in any bire
ectivemodel of SCIR. Each of the primitive types � is interpreted as an object [[�]]of C, with passive primitive types interpreted as objects of sub-category P.This then determines interpretations of non-primitive types, as follows:[[� � �0]] = [[�]] � [[�0]] [[� ! �0]] = [[�]] � [[�0]][[� 
 �0]] = [[�]] 
 [[�0]] [[� !P �0]] = S([[�]] � [[�0]])It is clear that each syntactically passive type is interpreted as an object in P(or an object isomorphic to an object in P).Each typing judgement � j � ` P : � is interpreted as a morphism fromS[[�]]
 [[�]] to [[�]], where for any typing context �1: �1; : : : ; �n: �n,[[�1: �1; : : : ; �n: �n]] = [[�1]]
 � � � 
 [[�n]]and where by S[[�]] we mean explicitlyS[[�1: �1; : : : ; �n: �n]] = S[[�1]]
 � � � 
 S[[�n]]In e�ect, we are bypassing the isomorphism S(A
B) �= SA
SB in the pre-sentation, and we are glossing over associativity and unity isomorphisms. Weare most concerned with an analysis of the rules of Passi�cation, Activation,and Contraction, and so will concentrate for the most part on these.The interpretation goes by induction on derivations, so we are assigning ameaning [[	]] to each proof 	 of a typing judgement.The Axiom and the structural rules of Weakening and Exchange are treatedin the standard way, using identities id[[�]]: [[�]]! [[�]]; weakenings [[�]]! 1; andsymmetries A
 B ! B 
 A; respectively.For Activation, suppose f :S[[�; �: �]] 
 [[�]] ! [[�0]]; then we de�ne thedesired map from S[[�]]
 [[�: �;�]] to [[�0]] as the following composite:
S[[�]]
 [[�]]
 [[�]]S[[�]]
 S[[�]]
 [[�]] [[�0]]6id
 �[[�]]
 id -f

where �(A) = passify�1(idA) is the unit of the adjunction S a J .For Passi�cation, suppose f :S[[�]]
 [[�: �;�]]! [[�]]. The interpretation is19



O'Hearn et al.
S[[�]]
 S[[�]]
 [[�]]S[[�]]
 [[�]]
 [[�]] [[�0]]6id
 "0[[�]]
 id -f

where "0 is the counit of J a S. This interpretation is possible because ofequation (3).For Contraction, suppose f :S[[�; �: �; �0: �]] 
 [[�]] ! [[�0]]; then we de�nethe desired map from S[[�; �: �]]
 [[�]] to [[�0]] as follows:
S[[�]]
 S[[�]]
 [[�]]S[[�]]
 S[[�]]
 S[[�]]
 [[�]] [[�0]]6id
 duplicate(S[[�]])
 id-f

Here, duplicate is the diagonal map for the cartesian structure in P.For rule!I; suppose that f :S[[�]]
 [[�; �: �0]]! [[�]]; then the desired mapis f �:S[[�]]
 [[�]]! �[[�0]] � [[�]]�where f � is the currying of f; as discussed in Section 3.1. For rule !E;suppose f0:S[[�0]]
 [[�0]]! �[[�0]] � [[�]]� and f1:S[[�1]] 
 [[�1]] ! [[�0]]; thenthe desired map isS[[�0]]
 [[�0]]
 S[[�1]]
 [[�1]]S[[�0]]
 S[[�1]]
 [[�0]]
 [[�1]]
�[[�0]] � [[�]]�
 [[�0]][[�]]

-f0 
 f16
 ?app([[�0]]; [[�]])where app is the application map discussed in Section 3.1 and 
 is the evidentisomorphism.For rule !P I; suppose f :S[[�]]! [[� ! �0]]; then the desired map isS[[�]] [[�0]] � [[�]]S�[[�0]] � [[�]]�
-f ?�([[�0]] � [[�]])

where �(A):A! SA. This interpretation utilizes equation (4).For rule!PE; suppose f :S[[�]]
 [[�]]! S�[[�0]] � [[�]]�; then the desiredmap is 20



O'Hearn et al.S[[�]]
 [[�]] S�[[�0]] � [[�]]�[[�0]] � [[�]]
-f ?"0([[�0]] � [[�]])where "0(A):SA! A is the counit of J a S, de�nable as promote�1(idSA).The remaining rules, for tensor and categorical products, can be treatedin an obvious way. Each constant is interpreted by a map out of the terminalobject.3.3 CoherenceNotice that the presence of structural rules in the type system allows for mul-tiple proofs of a typing judgement, and it is important to show that this doesnot lead to semantic ambiguity. In this section we verify that the semanticsis in fact coherent ; i.e., all proofs of any syntax judgement have the sameinterpretation.Theorem 3.7 (Coherence) Let 	0 and 	1 be proofs of � j � ` P : �; then[[	0]] = [[	1]].The proof occupies the remainder of this section. It will be convenient tohave a notation for certain composite proofs. Suppose 	 is a proof of ajudgement � j � ` Q: �, and that we can extend 	 by applications 	0 ofonly the structural rules of Contraction, Exchange, Weakening, Activationand Passi�cation to obtain a proof of �0 j �0 ` Q0: �. We write 	 ; 	0 for thecomposite proof, and call 	0 a structural extension of 	.Notice that, because all structural rules are interpreted by composing onthe left, the denotation of any proof 	;	0 of �0 j �0 ` P 0 : � can be decomposedso that[[	 ; 	0]] = h ; [[	]]for a map h:S[[�0]]
 [[�0]]! S[[�]]
 [[�]] induced by structural rules in 	0. Weoften write [[	0]] to denote a map of this form induced by a proof extension.If 	0 is empty then we declare [[	0]] to be the identity.One important property to isolate is coherence of structural extensions.Lemma 3.8 (Coherence of Structural Extensions) Suppose that 	 is aproof of � j � ` Q: �, and that 	 ; 	1 and 	 ; 	2 are structural extensionsthat prove judgement �0 j �0 ` Q0: �; then [[	 ; 	1]] = [[	 ; 	2]].This is really a statement about the maps induced by structural extensions,and is independent of 	, Q, and Q0. A structural extension determines afunction � from variables in � j � to those in �0 j �0 with �(x) being thevariable to which x contracts. (We omit a formal de�nition, which is a simpleinduction on derivations). The desired result, with data as in the statement21



O'Hearn et al.of the lemma, is then:(�) If structural extensions 	1 and 	2 determine the same �, then(A) "0 ; [[	1]] = "0 ; [[	2]], where "0 here is an appropriate component of thecounit of J a S, and(B) [[	1]] = [[	2]] if � is non-passive (so neither derivation uses Passi�ca-tion).It is easy to verify that this formulation (which now has more the 
avourof a categorical coherence result) implies the Coherence of Structural Exten-sions. Note that we cannot generally ask for equality of the [[	i]] (becauseof Passi�cation). In cases where � is passive, we use (A) and the propertyf = g :A! JP i� "0 ; f = "0 ; g to conclude the lemma.We indicate the proof of (�).Proof. Given � and a function � from � j � to �0 j �0, we can de�ne acanonical extension 	1 (that determines �) as follows.(i) Passify all identi�ers if � is passive.(ii) Perform all Contractions indicated by �.(iii) Activate all variables in the intersection of the image of � and the domainof �0.(iv) Perform appropriate Weakenings for variables not in the image of �.Step (ii) assumes that all Contractions indicated by � are for identi�ers in thepassive zone (this is an assumption on � and �).We thus obtain an extension 	1 = P ;C ;A ;W consisting of Passi�cations,followed by Contractions, Activations, and Weakenings (with some Exchangessprinkled throughout). We prove the property (�), for 	1 a canonical exten-sion, by induction on the length of 	2. We consider two sample cases.Base case: length 0. [[	2]] is the identity, whereas 	1 is either empty or asequence P ;A of Passi�cations and Activations (if � is passive). (B) is trivial,and (A) follows from the identity �;"0;f = f , where f :X ! JP . This equationin turn follows from the identities "0 ; f = passify(f) and � ; passify(f) = f ,the former a consequence of bire
ectivity and the latter of S a J .Case: last rule is Passi�cation. Part (B) is trivial. For (A), the inductionhypothesis gives us "0 ; [[	01]] = "0 ; [[	02]], where 	01 = P 0 ;C 0 ;A0 ;W 0 is canonicaland 	2 = 	02 ; p with p an instance of Passi�cation. Suppose that x is theidenti�er moved by p. There are three subcases to consider:1. no rule in 	01 explicitly involves x,2. x was introduced in the active zone through a Weakening step in W 0, or3. x was moved into the active zone through an Activation step in A0.In subcase 1 we mean that x is not moved by Passi�cation or Activation, orintroduced via Contaction or Weakening. Clearly one of these three cases mustapply: note that if x was involved in Contraction, Activation, or Passi�cation,then subcase 3 would apply. Subcase 1 is straightforward since x is interpretedby an identity in [[	01]]; we concentrate on 2 and 3.22



O'Hearn et al.For subcase 2, we can replace the instance of Weakening that introducesx in W 0 by another instance that puts x in the passive zone, giving us W 00.Then [[W 00]] = [[W 0; p]] because of the identityA
 SBA
 B A?id
 "0 -�
0�������
0Thus, [[	2]] = [[P 0;C 0;A0;W 00]], and P 0;C 0;A0;W 00 is of the form prescribedabove for the canonical extension. Simple permutations within each com-ponent P 0, A0, C 0, W 00 su�ce to show that it is semantically equal to theprescribed extension (in any case, there is some trivial imprecision, involvingorder of rules, in the prescription (i)-(iv) for extensions).For subcase 3, we �rst move p to the left of W 0, and then compose theresulting instance of Passi�cation with the instance of A0 that activates x; thiscomposition yields the identity. The involved equations for this areSA
 BA
 B SAA?"0 
 id ?"0-�
0 -�
0 and SAA SA?"0 -id������� :Thus [[P 0;C 0;A00;W 00]] = [[P 0;C 0;A0;W 0; p]] where A00 has the mentioned occur-rence of Activation removed (so later rules in A00 andW 00 are slightly adjusted),and the desired result follows as in subcase 2.Other rules are treated in a similar fashion, using the induction hypothesisand various identities to reduce a proof to a canonical extension. 2With coherence of structural extensions, we may deduce the desired theo-rem as a corollary of the following result.Lemma 3.9 Suppose � j � ` P : � is derivable both from �0 j �0 ` P0: � andfrom �1 j �1 ` P1: �, using only the structural rules. Suppose further that, fori = 0; 1; 	i is any proof of �i j �i ` Pi: �; then[[	0 ; 	00]] = [[	1 ; 	01]] : S[[�]]
 [[�]] �! [[�]]for all structural extensions 	0i such that 	i ; 	0i proves � j � ` P : �, fori = 0; 1.Note that, for i = 0; 1; P = [Pi]�i for identi�er substitutions �i introduced byContractions.Proof. The proof is by induction on the sum of the sizes of proofs 	0 and	1.The main base case is when 	0 and 	1 are both instances of the Axiomfor identi�ers. This case follows from the coherence of structural extensions.23



O'Hearn et al.The other base cases, for constants, are immediate if any constant C: � isinterpreted as a map [[C]]: 1! [[�]].If the last step in 	0 is an instance of a structural rule then we prove theresult as follows. Suppose that RR is the last rule applied in 	0, and considerany appropriate structural extensions 	0i, i = 0; 1. We want to show[[	0 ; 	00]] = [[	1 ; 	01]]:S[[�]]
 [[�]] �! [[�]] :Since the last rule in 	0 is RR, which is one of the rules permissible in proofextensions, this means that 	0 ;	00 is the same proof as 	2 ;	02, where 	2 is 	0with the �nal instance of RR stripped o� and 	02 is 	00 with the correspondinginstance of RR placed on the front. (We have simply moved the break-point\;" indicating a structural extension.) Since the proof 	2 is smaller than 	0,the induction hypothesis applies and we may conclude[[	2 ; 	02]] = [[	1 ; 	01]]:S[[�]]
 [[�]] �! [[�]] :The result follows from the identity 	0 ;	00 = 	2 ;	02. The case when 	1 endsin a structural rule is symmetric.The only remaining cases are when both 	0 and 	1 end in a non-structuralrule for a type constructor. There are two groups of rules to consider: thosethat involve disjoint hypotheses, and those that do not.For the latter group, we consider one example: �I. Suppose the last rulesof 	0 and 	1 are �I, with proofs 	ij of their premises.	00....�0 j �0 ` P0 : � 	01....�0 j �0 ` Q0 : ��0 j �0 ` hP0; Q0i : � � �0 	10....�1 j �1 ` P1 : � 	11....�1 j �1 ` Q1 : ��1 j �1 ` hP1; Q1i : � � �0Let hk = [[	0k]] : S[[�k]] 
 [[�k]] ! S[[�]] 
 [[�]], k = 0; 1, be the maps inducedby the structural extensions. Then by the induction hypothesis, h0 ; [[	0j]] =h1 ; [[	1j]], j = 0; 1. The desired result is then immediate from the usualidentity hk ; hf; gi = hhk ; f; hk ; gi. Other rules not involving disjoint contextsare proven similarly using the induction hypothesis and an additional identity:for 
E and �E, use h ; (f ; �) = (h ; f) ; �; for!I, use h ; f � = ((h
 id) ; f)�;for !P I, use h ; (f ; �) = (h ; f) ; �; for !PE, use h ; (f ; "0) = (h ; f) ; "0.For the rules involving disjoint contexts we consider 
I; !E and 
E aresimilar. In the following, we will content ourselves with skimming over thedetails of some of the (long) syntactic constructions involved. The basic ideawill be to postpone certain Contractions until the end, so that we can applythe induction hypothesis to disjoint terms, and conclude the desired resultusing the coherence of structural extensions.Suppose the last rule in each of 	0, 	1 is 
I, i.e.	00....�0 j �0 ` p0: �0 	01....�00 j �00 ` q0: �1�0;�00 j �0;�00 ` p0 
 q0: �0 
 �1 	10....�1 j �1 ` p1: �0 	11....�01 j �01 ` q1: �1�1;�01 j �1;�01 ` p1 
 q1: �0 
 �1We have structural extensions 	00 and 	01 to consider, where 	i ; 	0i proves24



O'Hearn et al.� j � ` p 
 q : �0 
 �1. Since identi�ers in pi and qi are disjoint, there are(other) structural extensions �i; � possessing the following properties.� 	i ; �i proves a sequent �0 j �0 ` p0 
 q0, for i = 0; 1, where p0 and q0 haveno free identi�ers in common, and� 	i ; �i ; � proves � j � ` p
 q, for i = 0; 1.That is, we are performing just enough Contractions to identify p0 and p1,and q0 and q1, postponing the identi�cation of identi�ers in both p's and q'suntil the � stage. The reader may wish to use the following picture (wherethe contexts have been omitted):p0 
 q0 p0 
 q0p
 q p1 
 q1-�0 � �1?�HHHHHHHj	00 �������� 	01Next, from �i we can obtain proofs �pi and �qi such that [[�pi]]
 [[�qi]] = [[�i]]:�i j �i ` pi : �i.... �pi�pi j �pi ` p0 : �0 �0i j �0i ` qi : �i.... �qi�qi j �qi ` q0 : �1�0 j �0 ` p0 
 q0 : �0 
 �1These are obtained by copying instances of rules that concern p or q, as ap-propriate. Finally, we may apply the induction hypothesis to conclude themiddle equality in the following[[	0 ; �0]] = [[	00 ; �p0]]
 [[	01 ; �q0]]= [[	10; �p1]]
 [[	11 ; �q1]] = [[	1 ; �1]]where we have suppressed some symmetry isos. The outer two equalities followfrom the identity (h
h0);(f
g) = (h;f)
(h0;g) and the indicated constructionof �pi and �qi. The desired result [[	0;	00]] = [[	1;	01]] then follows immediatelyfrom the coherence of structural extensions, using [[�i ; �]] = [[	0i]]. 2The Coherence theorem then follows directly by taking �0 = �1 = �; �0 =�1 = �; and P0 = P1 = P .Having established that the semantics is well-de�ned, we can note that itsatis�es the reductions listed in Table 3.Proposition 3.10 The reductions in Table 3 preserve equality in any bire-
ective model of SCIR. 2For instance, the equivalence derelict(promoteM) �M follows from theidentity f = f ; �A; "0A where f : JP ! A, which is true by virtue of J a Sand equation (4). A fuller treatment of equivalences will not be given here.However, it is worth noting that many additional equations beyond these �laws are valid in bire
ective models. As one example, one can synthesize an25



O'Hearn et al.equivalence from the law of monoidal functorsSA
 SBSB 
 SA S(A
 B)S(B 
 A)?
SA;SB ?S(
A;B)-mA;B
-mB;Aby replacing S({) by C !P ({), where C is a passive type. For instance, themap mA;B would be replaced by the term�f :(C !P A)
 (C !P B) :let f0 
 f1 be f inpromote(�x : C : (derelictf0x)
 (derelictf1x))See [1,3] for discussion.Verifying coherence proved to be quite a lot of detailed work, even with cer-tain isomorphisms left implicit and with the skimming over of some syntacticconstructions. We wonder whether type theoretic coherence could be betterapproached in a more general setting; see [34] for discussion and references.3.4 Discussion: Non-Bire
ective ModelsWe have included the quali�cation \bire
ective" in De�nition 3.2 becausethere are models of the SCIR type system in which the left and right adjointsto the inclusion do not coincide. The �rst, and foremost, examples are givenby the models in [35,36]. Others are given, for example, by arrow categoriesC!. The models that we know of have the form of two categories and threefunctors between them, like so: P C-IL�? �R�6 �with I fully faithful and L a I a R. Additional conditions that a more gen-eral (not necessarily bire
ective) model of SCIR should satisfy have not beenformulated. Coherence is the minimal requirement for any general notion ofmodel of SCIR, and is particularly subtle because of the intricate interactionsbetween the permeability rules and other rules.4 A Functor-Category ModelIn this section, we present a concrete model of the illustrative Algol-like pro-gramming language of Section 2.3, This con�rms that the categorical analysisusing bire
ectivity is consistent with a more concrete reading of passivity interms of read-only access to the computer store.We emphasize that the aim of the model is not simply to characterize be-haviour of complete programs, i.e., closed terms of type comm. Such a modelcould be obtained using a standard \marked stores" model [21] in the cate-gory of cpo's and continuous functions, with a trivial bire
ective subcategory26



O'Hearn et al.structure given by the identity functor on the category. To see why this isso consider �rst that, if we map 
 to � and !P to !, any term in SCIRis typable in simply-typed �-calculus. Then a standard model for IdealizedAlgol can be used, allowing for side e�ects in expressions (to account for theblock expression do) and interpreting parallel composition as if it were sequen-tial. But while such a model would correctly predict observable behaviour andwould satisfy an adequacy correspondence, with a suitable operational seman-tics, it would not make manifest the principle that distinct identi�ers don'tinterfere. Furthermore, the passive function type !P would be semanticallyequivalent to !, and the model would not show the sense in which expres-sions, and in particular the block expression, are free from side e�ects. Thatis, the semantics would fail to elucidate the most important aspects of thelanguage.We desire a semantics that makes the consequences of the syntactic restric-tions clear. For instance, if the principle that distinct identi�ers don't interfereis built into the semantics, so the only environments are ones adhering to theprinciple, then it will be evident that C1 k C2 is deterministic. It will then turnout that x; y and y k x are equivalent, but this fact, which could in hindsightbe assumed by a semantics, is not so interesting as the reason for it; namely,that x and y don't interfere. Similarly, we desire a semantics in which freedomfrom side e�ects is built into passive types, so that the side-e�ect freeness ofthe block expression is a constraint imposed by the types themselves ratherthan a property to be proven about valuations.The main challenge is to de�ne non-interference and passivity for entitiessuch as commands, expressions and procedures, which are conventionally mod-elled as input-to-output functions. In [43,27], the similar problems that arisein treating the non-interference predicates in speci�cation logic are addressedby using a category-theoretic form of possible-world semantics [39,31]. Eachphrase type � is interpreted as a functor [[�]] from a suitable (small) categoryof \possible worlds" to a category of domains, and any phrase P is interpretedas a natural transformation [[P ]] of such functors. We will show that the samecategory of functors and natural transformations can be used to provide asatisfactory model of the SCIR-based programming language.4.1 The Category of WorldsA category of possible worlds appropriate to treating non-interference andpassivity in Algol-like languages is de�ned as follows.� The objects are sets (we require a small collection), thought of as sets ofstates. The set of all worlds is assumed to be closed under the following:� if V� is the set of values appropriate to a data type �; V� is a world;� if X and Y are worlds, so is their set product X � Y ; and� if X is a world, so is any Y � X.� A map from X to Y is a pair (f;Q); where Q is an equivalence relation onX and f is a function from X to Y whose restriction to each Q-equivalenceclass is an injection. Intuitively, X is a world \derived" from Y , f maps27



O'Hearn et al.states in X back into Y; and Q is an equivalence relation on states whichmust be preserved by execution in world X.The composition of maps (f;Q):X ! Y and (g; R):Y ! Z is the map(h; P ):X ! Z such that h = f ; g and xP x0 i� xQx0 and f(x)Rf(x0). Theidentity map idX on world X is (IX ; TX); where IX is the identity function onset X and TX is the everywhere-true binary relation on X. We will designatethis category as X; however, it is the opposite of the category of worlds usedin [43,27].Any one-element set is a terminal object in X; the unique map from Xto, say, f�g is (�x. �;=X). We can also de�ne a tensor product as follows;for objects X and Y , X 
 Y = X � Y (the usual cartesian product of sets),and (f;Q) 
 (g; R) = (f � g;Q� R), where (f � g)hx; yi = hf(x); g(y)i andhx; yi(Q � R)hx0; y0i if and only if xQx0 and y R y0. This is the basis for asymmetric monoidal structure on X, with the designated terminal object asthe unit; for example, the symmetry map from X 
 Y to Y 
 X consists ofthe exchange function and the total relation on X � Y .Projection maps �0:X 
 Y ! X and �1:X 
 Y ! Y can be de�ned toconsist of: the usual projection functions on X � Y , and equivalence rela-tions that relate hx; yi pairs having the same y or x components, respectively.These maps are termed \expansions" in [43,27], where the opposite categoryis considered, and similar maps are treated in [31].We can also de�ne a natural family of diagonal maps �X :X ! X 
 Xwhose components are: the diagonal function on X and the total relation onX. Note, however, that �X ; �i 6= idX , and 
 is not a categorical product.4.2 Semantic Category and Basic FunctorsThe semantic category for our model is the category DXop of contravariantfunctors from the category of possible worlds to D, where D is the categoryof !-cpos (i.e., possibly bottom-less !-complete posets and continuous func-tions), with all natural transformations as the maps. This is essentially thesame semantic category used in [43,27]. Finite products in DXop can be ob-tained pointwise from the familiar products in D.We now consider interpretations in DXop for the basic types (expressionsand commands) in the programming language. First, we de�ne the \domain-of-states" functor, St , to be the covariant functor from X to D such thatSt(X) = X; discretely-ordered, and St(f;Q) = f . Contravariant functors forexpression types can then be de�ned pointwise as follows:[[� ]]X = St(X)! (V� )? and [[� ]]f e = St(f) ; ewhere V� is the set of values associated with � ; i.e., Vint is the set of integersand Vbool is the two-element set of truth values.For the command type, if X is a world then c 2 [[comm]]X is a fam-ily of partial functions, indexed by all X-maps with co-domain X; so thatc(f :Y ! X) is a partial function on St(Y ). The uniformity condition on thefamily is the following \semi-commutativity" requirement: for all f :Y ! X28



O'Hearn et al.and g:Z ! Y;c(g ; f) ; St(g) � St(g) ; c(f);where the � relation is graph inclusion of partial functions:
Z ZY Y6 6St(g) St(g)--c(g ; f)

c(f)�The semi-commutativity allows command meanings to become less-de�ned inmore-restricted worlds; however, the family must also satisfy the followingcommutativity requirement arising from the equivalence-class component ofX-maps. For any X-map (f;Q):Y ! X and y 2 St(Y ); letY 0 = fy0 2 St(Y ) j y Q y0g(i.e., the set of states Q-reachable from y); then
Y 0 Y 0Y Y6 6St(dY 0) St(dY 0)--c�Y 0 ; (f;Q)�

c(f;Q)
must commute (and not just semi-commute), where dY 0:Y 0 ! Y is theX-mapwith components: the insertion function from Y 0 to Y , and the total relationon Y 0. This requirement is imposed to ensure that, when c(f;Q) has a de�nedresult, it preserves the Q-equivalence class of its argument.The morphism part of [[comm]] is de�ned as follows: for any X-mapf :Y ! X; command meaning c 2 [[comm]]X; and X-map g:Z ! Y;[[comm]]f c g = c(g ; f)This makes [[comm]] a contravariant functor from X to D, as required.We now discuss some examples to show how these functors interact withthe X-maps de�ned in the preceding section.Because of maps from subsets of state sets, expression meanings in thesemantics cannot have side e�ects, not even \temporary" ones. For any worldW and w 2 W we can restrict to the singleton set of states fwg using the \re-striction" map dfwg: fwg ! W whose components are: the insertion functionand the total relation on fwg. Then, for any expression meaning e 2 [[� ]]W;the value of e in state w is completely determined by the meaning [[� ]](dfwg)eat world fwg: 29



O'Hearn et al.
fwgW (V� )?-e6St(dfwg) ���������*[[� ]](dfwg)ewhere the vertical arrow is the insertion of fwg into W . There can be no sidee�ects during evaluation of e(w) because, in world fwg, there are no otherstates to change to!The behaviour of commands under restrictions is quite di�erent. Considerthe command meaning c(�) 2 [[comm]](W 
 Z) corresponding to an assign-ment statement z := z + 1; where z accesses the Z-valued component inX 
 Z. The partial function for c(idW
Z) maps hw; ni to maps hw; n + 1i.But we also need to de�ne c(f) for all other X-maps f into W 
Z; includingrestriction maps. In particular, if we consider c(dfhw; nig) then this compo-nent of c cannot produce an output state, because hw; n+1i is not an elementof the world fhw; nig. More generally, c(f)s can be de�ned only if hw; n+ 1iis in the range of St(f). In contrast to the previous example, command mean-ings are not completely determined at singleton worlds, just because they maychange the state.Suppose now that we restrict to the worldY = fhw; ni 2 W 
 Z j n is evengand consider the composite z := z+1;z := z+1; and its semantic counterpartc ; c. Sequential composition is interpreted componentwise, so for commandmeanings c1 and c2; (c1 ;c2)(f) is just the composition c1(f);c2(f) of the partialfunctions for the components. Thus, we get that (c ;c)(idW
Z)hw; ni = hw; ni.However, (c ; c)(dY )hw; ni is unde�ned, because c(dY )hw; ni is unde�ned. Theattempt to \stray" out of Y; even at an intermediate state, leads to divergence.4.3 Non-Interference4.3.1 Tensor ProductIntuitively, meanings a 2 A(W ) and b 2 B(W ) are non-interfering if neithermakes active use of any memory used by the other. We formalize this intuitionas follows: a# b i� there exist worlds X and Y; an X-map f :W ! X
Y andmeanings a0 2 A(X); b0 2 B(Y ) such that A(f ; �0)a0 = a and B(f ; �1)b0 = b:

WX 
 YX Ya0 2 A(X) b0 2 B(Y )a 2 A(W ) b 2 B(W )
��0 -�16f?A(f ; �0) ?B(f ; �1)The idea is that a and b \come from" disjoint worlds X and Y; respectively.The archetypical example of this arises in the declaration of a new local vari-able: the new variable and non-local entities are non-interfering because theycan be viewed as \coming from" the factors of a product world [27, Section 5].30



O'Hearn et al.The map f in the de�nition of a # b allows for sharing of passively-usedmemory, as in
X 
 Z 
 YX 
 Z 
 Z 
 YX 
 Z Z 
 Y� �0 -�16idX 
 �Z 
 idYThe composite maps from X 
 Z 
 Y to X 
 Z and Z 
 Y have the equalityrelation =Z as the equivalence-relation component on Z; this ensures that theshared memory Z can only be used passively. An example is discussed below.We can now de�ne a bifunctor
 onDXop to interpret type assignments andthe non-interfering product type constructor in the syntax. For any functorsA;B:Xop ! D and world W;(A
 B)(W ) = nha; bi 2 (A�B)(W ) ��� a# boand the morphism part is de�ned as follows; for any f :W X�! Y;(A
 B)(f)ha; bi = DA(f)a; B(f)bE :If � : A .! A0 and � : B .! B0; then(� 
 �)(W )ha; bi = D�(W )a; �(W )bE :To complete the monoidal structure on DXop, we de�ne the unit to be aspeci�ed terminal object 1, which can be de�ned pointwise. These de�nitionsmake (DXop ;
; 1) a symmetric monoidal category.4.3.2 Sharing and ContractionTo illustrate the interaction between sharing and disjointness in the de�nitionof 
; we consider a mapk: [[comm]]
 [[comm]] .! [[comm]]for interpreting the deterministic parallel composition of non-interfering com-mands. Given hc1; c2i 2 �[[comm]] 
 [[comm]]�(W ); there exist c01 and c02 asfollows:
WX 
 YX Yc01 2 [[comm]]X c02 2 [[comm]]Yc1 2 [[comm]]W c2 2 [[comm]]W

��0 -�16f?[[comm]](f ; �0) ?[[comm]](f ; �1)De�ne c01 
 c02 2 [[comm]](X 
 Y ) to be the component-wise product map;i.e., (c01 
 c02)(g) = (c01 g) � (c02 g); using the morphism part of the cartesianproduct � in the category of sets and partial functions. To get a meaning atworld W we use map f; as follows:k (W )hc1; c2i = [[comm]](f)(c01 
 c02) :Here, X; Y; c01 and c02 are not uniquely determined, but the functoriality re-quirements on [[comm]] are su�cient to ensure that this is a good de�nition.31



O'Hearn et al.The f map is what allows for a limited amount of sharing. To illustratethis, suppose X = Y = Z
Z; c01(id)hn1; n2i = hn2+1; n2i and c02(id)hn1; n2i =hn1; n1 + 3i. Then, we can form a composite command in which c01 and c02operate on disjoint portions of the state:c01 
 c02 2 [[comm]](Z 
 Z 
 Z 
 Z) :Sharing can be achieved via a diagonal map
Z 
 Z 
 ZZ 
 Z 
 Z 
 Z6idZ 
 �Z 
 idZyielding the meaningc = [[comm]]�idZ 
 �Z 
 idZ�(c01 
 c02) :We �nd that c(id)hn1; n2; n3i = hn2+1; n2; n2+3i: the two middle componentsin the product Z 
 Z 
 Z 
 Z get identi�ed, which is to say, shared, by thediagonal map. Intuitively,� c01 corresponds to a command x := y + 1� c02 corresponds to a command z := y0 + 3; and� c corresponds to the command x := y+1 k z := y+3; obtained by parallelcomposition followed by Contraction of y and y0;where the identi�ers correspond to evident components in Z4 and Z3.Thus, the semantics of k is given by combining functions on disjoint state-sets, followed by sharing. This corresponds closely to how parallel commandsare typed: �rst, commands with no identi�ers in common are combined, andthen sharing is introduced using the Contraction rule.4.3.3 ExponentialAn exponential construction right adjoint to 
 makes DXop a closed cate-gory; (A � B)(W ) is de�ned to be the set (ordered pointwise) of familiesq(X):A(X)! B(W 
X) of continuous functions indexed by worlds X, suchthat, for all X-maps f :Y ! X; the following naturality diagram commutes:

A(Y )A(X) B(W 
 Y )B(W 
X)?A(f) -q(X)
-q(Y ) ?B(idW 
 f)(A � B)(W ) is simply the (pointwise-ordered) hom-set DXop�A;B(W 
{)�.Note that the argument of q(X) is an element of A(X); i.e.,W is not involved,corresponding to the principle that a procedure and its argument are disjoint.The morphism part of A � B is de�ned as follows: for anyX-map f :X ! W;(A � B)(f)(q)(Y ) = q(Y ) ; B(f 
 idY ). If �:A0 .! A and �:B .! B0; then32



O'Hearn et al.� � �: (A � B) .! (A0 � B0) is given by(� � �)(W )(p 2 (A � B)W )(X) = �(X) ; p(X) ; �(W 
X) :The application map app(A;B): (A � B)
 A .! B is de�ned byapp(A;B)(W )Dq 2 (A � B)(W ); a 2 A(W )E = B(f)�q0(Y )a0� ;where f :W ! X 
 Y; A(f ; �0)a0 = a; and (A � B)(f ; �1)q0 = q. Here,f :W ! X
Y; a0 2 A(X) and q0 2 (A � B)(Y ) are not uniquely determined,but the naturality condition on procedure meanings is su�cient to ensure thatthis is a good de�nition. If �:A
B .! C; the curried map ��:A .! (B � C)is de�ned by��(W )�a0 2 A(W )�(X)�b0 2 B(X)� = �(W 
X)DA(�0)a0; B(�1)b0E :Proposition 4.1 (DXop ;
; 1; �) is a symmetric monoidal closed category.Proof. The structure described is an instance of an abstract constructionpresented in [8]. 24.4 PassivityIntuitively, a 2 A(W ) is passive if it doesn't interfere with anything. This canbe de�ned rigorously using \state-change constraint" endomaps �W :W ! Win X whose components are: the identity function on W and the equalityrelation on W . It is easily veri�ed that the �W are idempotent maps, and,furthermore, that they constitute a natural family of maps; i.e., � is a naturalidempotent on the identity functor.The importance of the �W for treating passivity is that, because of thede�nition of [[comm]], they preclude any state changes; hence A(�W ) appliedto any a 2 A(W ) \paci�es" it so that it cannot interfere with anything. Forexample, suppose that c 2 [[comm]]W is the denotation of w := w + 1; thesecond uniformity condition on command meanings ensures that c(�W )s canbe de�ned only if c(idW )s = s; and so, for this c, we obtain that [[comm]](�W )cis everywhere-unde�ned.The e�ect of state-change constraints on expression meanings is quite dif-ferent. For each world W and e 2 [[� ]]W; [[� ]](�W )e = e. State-change con-straints have no e�ect here because expressions cannot cause side e�ects.These examples suggest the following de�nition: a 2 A(W ) is passive if andonly if A(�W )a = a. For example, [[skip]]W (a family of identity functions) and[[diverge]]W (a family of everywhere unde�ned functions) are passive elementsof [[comm]]W .The following results establish the connections between passivity and non-interference.Proposition 4.2 If p 2 P (W ) and q 2 Q(W ) are passive, p# q.Proof. If p and q are passive, P (�W )p = p and Q(�W )q = q; but �W =�W ; �i for i = 0; 1, and so p# q. 2Proposition 4.3 a 2 A(W ) is passive i� a# a.33



O'Hearn et al.Proof. The \only if" part follows from the preceding Proposition.In the other direction, suppose that a # a; then there exist worlds Xand Y , aX 2 A(X), aY 2 A(Y ), and an X-map f :W ! X 
 Y such thatA(f ; �0)aX = a = A(f ; �1)aY . Let Qi for i = 0; 1 be the equivalence-relation components of f ; �i; then (IW ; Qi) ; f ; �i = f ; �i, and so weget, by functoriality of A, that A(IW ; Qi)a = a for i = 0; 1. This gives usthat A�(IW ; Q0) ; (IW ; Q1)�a = a ; but (IW ; Q0) ; (IW ; Q1) = �W , and so a ispassive. 2An object A of DXop is passive i�, for every world W; every a 2 A(W ) ispassive. For example, a terminal object 1 is passive because it is a constantfunctor, and [[� ]] is a passive object because, for any world W and e 2 [[� ]]W;[[� ]](�W )(e) = St(�W ) ; e morphism part of [[� ]]= e St(�W ) is the identity functionLet P be the full subcategory of passive objects of DXop. This determinesa model of SCIR, which follows in fact as a special case of the abstract resultsof [10].Theorem 4.4 [10] Category DXop; together with subcategory P; comprise abire
ective model of SCIR. 2The following data are thus obtained, allowing us to interpret the SCIR typingrules:� the bire
ector S:DXop ! P, which takes A(X) to the sub-cpo of passiveelements: SAX = fa 2 A(X) j a is passiveg, and SAfa = Afa;� the unit �A:A! SA of S a J , given by �AWa = A(�W )a; and� the counit "0A:SA! A of J a S, given by the inclusion SAW ,! AW .4.5 Interpretation of the ConstantsWe now present interpretations of selected constants. The interpretation of khas already been given in Section 4.3.2.Sequential composition is given by a mapsequence: [[comm� comm]] .! [[comm]] :The de�nition is sequence(W )hc1; c2i(f) = c1(f) ; c2(f); using composition ofpartial functions. One can show that the following diagram commutes[[comm
 comm]][[comm� comm]] [[comm
 comm]][[comm]]?i -exchange
-sequence ?kPPPPPPPPPPPPPPqk
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O'Hearn et al.where k is the interpretation of parallel composition from Section 4.3.2, iis the evident inclusion, and exchange is the twist map exchanging the twocomponents of 
. As a consequence, if commands C1 and C2 don't share anyidenti�ers, we have the equivalences C1;C2 � C2;C1 � C1 k C2 � C2 k C1,which wouold not hold in the absence of interference constraints.For assignment, we de�ne a mapassign: �([[� ]] � [[comm]])� [[� ]]�� [[� ]] .! [[comm]] :Because of the presence of � instead of 
 on the left, we cannot simply use theapp map to apply the procedure. To deal with this, we supply the \acceptor"component of a variable with a constant-function argument. Given v 2 V� ;de�ne kv 2 [[� ]]1 to be the constant meaning such that kv(f)(w) = v for allf : 1 X�! W and w 2 W . We can then de�ne the assignment map as follows.assign(W ) Dha; ei; e0Ew = 8><>: i(a(1)(kv)hw; �i); if e0(w) = v 6= ?unde�ned; if e0(w) = ?where i:W 
 1! W is the unity isomap.The block-expression combinator do� is treated by de�ningdo� :S�[[var[� ]]] � [[comm]]� .! [[� ]]:First, let ha; ei 2 [[var[� ]]]V� be the standard \local" variable meaning at worldV� [27]. Thendo� (W ) pw = 8><>: v; if p(V� )ha; eihw; v0i = hw; vi?; if p(V� )ha; eihw; v0i is unde�nedwhere v0 is a standard initial value for � -typed variables. The passivity of pguarantees that w0 = w whenever p(X)(e)hw; xi = hw0; x0i; so there is no needfor a snap-back e�ect.Finally, we show how the �xed-point combinator can be interpreted byde�ning a mapY�:S�[[�]] � [[�]]� .! [[A]]:If p 2 S([[�]] � [[�]])Z then we can obtain a function p0 : [[�]]Z ! [[�]]Z bycomposing p[Z]: [[�]]Z ! [[�]]Z 
 Z with the map [[�]]�Z : [[�]]Z 
 Z ! [[�]]Z.Y�[Z] sends p to the least �xed-point of p0.Other constants can be treated as in [31,43].4.6 An Alternative PresentationJ.C. Reynolds has suggested (private communication) that an interference-controlled Algol-like language should be interpreted by families of continuousfunctions, indexed by assignments of state-sets to identi�ers, with each iden-ti�er in the context interpreted by a meaning relative to its own state-set. Inour framework, this would mean that a syntax judgement � j � ` P : � wouldbe interpreted by a family of functions �(W ), indexed by assignments W of35



O'Hearn et al.worlds to identi�ers, with the functionality of �(W ) being Y�2dom�S[[��]](W�)!�  Y�2dom�[[��]](W�)! �! [[�]] Y�2dom(�;�)W�!Note that the products in the domain of �(W ) are cpo products, whereas theproduct in the co-domain is a set product. This form of semantic interpreta-tion seems intuitively appealing because it makes the disjointness of distinctidenti�ers very explicit; but it is highly non-standard.In this section, we show that we can de�ne a bijection between the standardform of semantics discussed in earlier sections and this non-standard form. Tosimplify the treatment, we will consider natural transformations�:A
 B .! Cand families of functions�(X; Y ):A(X)� B(Y )! C(X 
 Y )natural in X-objects X and Y . From a natural transformation �; we cande�ne a family �(X; Y ) of functions as follows:�(X; Y )(a0; b0) = �(X 
 Y )DA(�0)a0; B(�1)b0EIn the other direction,�(W )ha; bi = C(f)��(X; Y )(a0; b0)�where f :W X�! X 
 Y; a0 2 A(X) and b0 2 B(Y ) such that A(f ; �0)a0 = aand B(f ; �1)b0 = b must exist because ha; bi 2 (A 
 B)(W ); the naturalityrequirement for �(X; Y ) ensures that �(W )ha; bi is uniquely determined. It isa routine exercise to verify that the mappings � 7! � and � 7! � just givenare mutual inverses.Uday Reddy has launched a criticism at semantics based on global states[36], and developed an alternate approach in which di�erent identi�ers denoteindependent \objects," where the state is implicitly represented in \historiesof observations." We would claim that functor-category models, though theyare not stateless, also represent a move away from the viewpoint of a common\global store" that programs act upon. For example, in the presentationsketched in this section, and implicitly in the standard presentation, eachidenti�er is associated with its own state set, separate from the state-setsassociated with other identi�ers; intuitively, each identi�er denotes an objectacting upon a piece of local state.5 Concluding RemarksSyntactic control of interference is an important step toward the ideal of a\clean" form of imperative programming. It retains basic principles of Algol-like and functional programming, including equational laws such as the �law; this it has in common with recent work emanating from the functional-programming community (see, e.g., [32,22,19]). But interference control alsobegins to address some of the problems of state, such as aliasing. Functional36



O'Hearn et al.principles alone do not make state signi�cantly easier to reason about, as isabundantly clear, for example, from speci�cation logic. Controlling interfer-ence addresses some of the most prominent di�culties.At present, syntactic control of interference has developed to the pointwhere it possesses quite satisfactory type systems and models. Nevertheless,there are many issues that need to be addressed before the ideal of a cleanand practical form of imperative programming can be realized. The followingis a partial list of immediately relevant issues.(i) Our example programming language does not have facilities for program-ming dynamically-recon�gurable data structures of the kind often imple-mented using pointers or references. Simple languages of this form canserve as a useful testbed for ideas on integrating imperative and func-tional programming, but extending the basic approach of SCI to supportcoding of dynamic data is clearly crucial. It is not obvious what the bestway to do this might be.(ii) A call-by-value version of SCI could have some interest. A challenge forsuch a design is to maintain a controlled form of side e�ects.(iii) One motivation for interference control is that it should simplify reasoningabout programs. To �nd evidence for this position, one might investigatea version of speci�cation logic stripped of the pervasive # assumptions.A more ambitious program would be to set down axioms characterizingindependence of identi�ers, possibly using the parametricity ideas of [28],and to investigate the thesis that such a characterization simpli�es thelogical form of speci�cations needed for familiar objects or procedures.(iv) The complexity of type checking and the possibility of type inference needto be investigated for the type system presented here.(v) The semantic model presented here possesses two kinds of exponentials,one for the monoidal closed structure, and another, adjoint to �, forcartesian closed structure. This raises the question of whether inter-ference control and uncontrolled Algol can coexist harmoniously in onesystem, which might be useful in addressing di�culties with jumps andrecursive de�nitions having active free identi�ers. Various \uni�ed log-ics" [12,2] have similar aims, combining intuitionistic, linear, and classicallogics; we would want to combine intuitionistic and a�ne systems. Aninteresting point to note is that here the two kinds of closed structurecoexist in the same category, so there is no need to pass to a separatecategory, such as a Kleisli category, to interpret the intuitionistic (i.e.,Algol's) function types.(vi) The hope for a \linear logic-based functional language" that can expressstate manipulation remains unrealized, or certainly not adequately real-ized; but the similarities with interference control, both in aims and intechnical details, are alluring. Rather than taking functional program-ming as the starting point, a reasonable approach might be to modifysyntactic control of interference so that it provides a range of types forexpressing manipulation of state, instead of a single type comm.37
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