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Abstract

In “Syntactic Control of Interference” (POPL, 1978), J. C. Reynolds proposes three
design principles intended to constrain the scope of imperative state effects in Algol-
like languages. The resulting linguistic framework seems to be a very satisfac-
tory way of combining functional and imperative concepts, having the desirable
attributes of both purely functional languages (such as PcF) and simple imperative
languages (such as the language of while programs).

However, Reynolds points out that the “obvious” syntax for interference control
has the unfortunate property that (§-reductions do not always preserve typings.
Reynolds has subsequently presented a solution to this problem (ICALP, 1989), but
it is fairly complicated and requires intersection types in the type system. Here, we
present a much simpler solution which does not require intersection types.

We first describe a new type system inspired in part by linear logic and verify
that reductions preserve typings. We then define a class of “bireflective” models,
which provide a categorical analysis of structure underlying the new typing rules;
a companion paper “Bireflectivity,” in this volume, exposes wider ramifications of
this structure. Finally, we describe a concrete model for an illustrative programming
language based on the new type system; this improves on earlier such efforts in that
states are not assumed to be structured using locations.
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1 Introduction

It has long been known that a variety of anomalies can arise
when a programming language combines assignment with a
sufficiently powerful procedure mechanism.

J. C. Reynolds (1978)

In an imperative programming language, a term C' is said to interfere with a
term FE if executing (or, as appropriate, assigning to or calling) C' can affect
the outcome of E. For example, command z := a interferes with expression
r + 1, but not wvice versa.

In purely functional languages, there is no interference between terms,
and it is usually taken for granted [4,17,16] that this explains why reasoning
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about purely functional programs is relatively straightforward. However, for
“simple” imperative languages without full procedures, Hoare’s logic [13] (and
total-correctness variants of it) are quite satisfactory. This suggests that it
is simplistic to attribute the serious difficulties that arise in reasoning about
programs in conventional procedural languages to the presence of interference.

J. C. Reynolds [37,38,40] has provided a more refined analysis. He argues
that conventional procedural languages are problematical primarily because
they permit covert interference, that is to say, interference that is not syn-
tactically obvious. For example, if identifiers x and y are aliases (denote the
same storage variable), then y := a interferes with x + 1, and this is prob-
lematic because the interference is not obvious from inspecting these phrases.
In general, alias detection in a conventional higher-order procedural language
requires complex interprocedural data-flow analysis of an entire program.

Similarly, if a procedure accesses a non-local variable and the value of that
variable can be changed between calls of the procedure, then identical calls
of the procedure may have different effects. Covert interference via non-local
variables can also result in subtle bugs in the use of procedural parameters.
For example, suppose Traverse(p) applies procedural parameter p to every
node of a data structure and Remowve has the effect of deleting the node to
which it is applied; then a call such as Traverse(Remove) will often fail to
have the effect the programmer intends because removing a node can interfere
with a traversal.

The problem of covert interference also affects language designers. For
example, programmers expect that, immediately after assigning a value to a
variable, the variable has the value just assigned; but this “obvious” property
fails for so-called “bad” variables, such as the subscripted variable A(A(7))
whose sub-expression A(7) is interfered with by the array variable A when
A(i) = i. Alanguage designer might want to forbid bad variables syntactically,
but covert interference makes this very difficult; for example, A(j) is a bad
variable if j is an alias for A(¢). Similar difficulties arise for a language designer
trying to provide a “block expression” (a command within an expression)
without allowing side effects to non-local variables, trying to provide secure
features for unions of types, or trying to allow concurrent composition of non-
interfering commands.

The difficulties created by covert interference are especially evident if one
considers reasoning principles. For example, in “specification logic,” a Hoare-
like logic for full Algol-like languages [38,40], the axiom for assignments is

gv(V) & V#P = {P(E)}V :=E{P(V)}

The consequent is essentially the familiar axiom from [13], but assumption
V # P asserts that assignments to variable V' do not covertly interfere with
the pre and post-conditions, and assumption gv(V') asserts that V' is a “good”
variable. Similarly, the “Constancy” axiom in specification logic differs from
the corresponding axiom in Hoare’s logic in that a simple syntactic side con-
dition must be replaced by a non-interference assumption. Finally, because
of possible covert interference, procedure specifications must be more com-
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plex: explicit assumptions about what procedures do not do are required
(¢f. the “frame problem” in artificial intelligence [6]) in order to discharge
non-interference assumptions in the context of procedure calls. All of these
complexities are clearly evident in the examples in [38].

For these reasons, many language designers have argued that program-
ming languages should be designed so that it is easy for programmers and
compilers to verify that program phrases do not interfere; some early exam-
ples are [5,14,45]. In [37], three general design principles intended to facilitate
verification of non-interference are proposed.

(i) There should be no “anonymous” channels of interference; then the prob-
lem of verifying that C' doesn’t interfere with E reduces to showing that
no free identifier of C' interferes with any free identifier of E.

(ii) Distinct identifiers should not interfere; then if two sets of identifiers are
disjoint, they are guaranteed not to interfere.

(iii) Some types of phrases, such as side effect-free expressions, are “passive”
(do not interfere with anything), and so the disjointness requirement can
be relaxed to allow sharing of identifiers used only passively.

In summary, to verify in this setting that C' does not interfere with F, it is
sufficient to ensure that no actively occurring free identifier of C' is also free
in K.

But of course the programming language must be designed so that there
are no anonymous channels of interference and, in every context, distinct iden-
tifiers do not interfere. The first requirement is straightforward, but to achieve
the second, it is proposed that the following basic constraint be imposed on
procedure calls P(A): the procedure part P and the argument part A should
be mutually non-interfering (and similarly for defined language constructs,
such as local definitions, that have implicit procedure calls). Note the elegant
circularity of the approach: the syntactic restriction ensures that distinct iden-
tifiers do not interfere, and this property makes it feasible to implement the
restriction using the syntactic criterion described in the preceding paragraph.

The syntax of an Algol-like programming language designed according to
these principles is described in [37]. This design is extremely successful in
most respects, combining the desirable attributes of both purely functional
languages (such as pcr) and simple imperative languages (such as the lan-
guage of while programs); however, a problem in the treatment of passivity
is noted. In the approach used to incorporate the third principle (allowing
sharing of passive identifiers), the syntax is such that the subject-reduction
property fails; i.e., reductions may fail to preserve typing. Reynolds subse-
quently presented a solution to this problem in [41], but it is fairly complicated
and requires intersection types [7] in the type system. We feel that the meth-
ods of interference control should be applicable relatively independently of the
specifics of intersection types (which of course have substantial other merits).

In this work, we present a very simple and intuitive alternative solution to
the problem of passive uses. Our solution does not require intersection types,
allowing interference control to be investigated without unnecessary syntactic
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or semantic complexity. Also, it would be conceivable to apply these methods
in contexts, such as ML-like or Haskell-like languages, where the addition of
intersection types would be far from trivial.

The type system presented here was actually worked out by the first author
in 1991, but lay dormant for a number of years because it contained features
for which no satisfactory semantic explanation was known. More precisely, at
that time it would have been straightforward to formulate a type soundness
theorem, based on an operational semantics, or a simple denotational model
(with an adequacy theorem) that correctly predicted behaviour of complete
programs. The perceived difficulty, however, was not whether some model
existed, but rather that the typing rules for passivity exhibited intricate inter-
actions, which, in the absence of a semantic analysis deeper than that provided
by adequacy or type soundness, appeared discomfortingly ad hoc. In particu-
lar, the type system hinges on a treatment of “passively occuring” identifiers;
i.e., identifiers, possibly of active type, that, in some contexts, are only used
passively. This treatment is subtle, but crucial for treating types that com-
bine passivity and activity, such as types for storage variables or products of
passive and active types.

So, a central role is played in this paper by a semantic analysis of passivity,
couched in terms of a new categorical concept of bireflectivity. The bireflective
semantics exposes structural properties underlying our type-theoretic treat-
ment, where the typing rules for passivity correspond to certain adjunctions.
This provides a measure of relief for our previous fears of the potential ad hoc
nature of the typing rules; further support is provided by a companion paper
Bireflectivity, in this volume, which introduces bireflective subcategories and
studies their mathematical properties.

To ground this analysis we describe a concrete model in which a subcate-
gory of passive objects is built using semantic entities that, in a precise sense,
can read from, but not write to, the computer store. The model improves on
earlier efforts [42,25] in that states are not assumed to be structured using
“locations.” As a result, we obtain a much cleaner model in which the “dis-
jointness” of identifiers is clearly visible. Distinct identifiers get associated
with separate state-sets, and the sharing of passively-used state is explained
through semantic “contraction” mappings.

We are grateful to Uday Reddy for numerous discussions that influenced
the content and presentation of this paper. In fact, the revival of the type
system came about originally as a result of his model of passivity in [35], follow-
up correspondence in which he pointed out that our rules of Passification and
Activation corresponded to a monad structure in his model, and his challenge
to look for similar structure in Tennent’s model of specification logic [43]. This
challenge led to the identification of bireflective category structure which, it
finally turns out, is subtly different from the structure in Reddy’s model (see
Section 3.4). A crucial step forward in this development was the utilization
of Day’s tensor product construction, the relevance of which was suggested by
Andy Pitts.

A preliminary version of this paper appeared in [26].

4
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2 Syntax

2.1 Passive Uses

The treatment of passivity in [37] is based on designating certain phrase types
(such as “state reader” expression types) as being passive, and then, for any
phrase R, determining

the set of identifiers which have at least one free occurrence in R which is
outside of any subphrase of passive type.

These are considered to be the actively occurring free identifiers of R. Unfor-
tunately, this definition, being context-independent, cannot take account of
the fact that, when R itself occurs within a passive phrase, none of its free
identifiers can be used actively. This means that the syntactic constraints on
procedure calls are unnecessarily restrictive, which results in anomalies when
types combine passive and non-passive capabilities.

For example, a storage variable is used passively when it is read from, as
on the right-hand side of an assignment statement, and actively when it is
assigned to. Suppose that identifiers  and w are of type var[r| (i.e., they
are T-valued variable identifiers, with 7 a data type such as int or bool), and
consider the following command:

()\z: T. T = ()\y:T.w)z) (w) (1)
where typings of the form ¢: 7 indicate that ¢ is a 7-valued expression identifier.
Although w occurs in both the procedure and argument parts of the outer

call, the phrase is legal because both occurrences are in expressions and hence
regarded as passive. However, the command S-reduces to

r = (Ay:T.w)w (2)

in which the right-hand side is illegal, according to Reynolds’s treatment, be-
cause variable identifier w is deemed to occur actively in the procedure (which
has type 7 — var|r]), and also occurs in the argument. But the procedure
call is actually an ezpression, and so there cannot be any interference via w;
indeed, the assignment (-reduces to the legal x := w.

It can be argued that the anomaly in this example could be avoided if
dereferencing coercions were explicit; however, more complex examples, as
in [37], show that the problem is a fundamental one. (An example of this
kind from [loc. cit. will be discussed in Section 2.4). The problem arises essen-
tially because the context-independent notion of active occurrence cannot be
sensitive to situations in which the context ensures passive use of potentially
non-passive entities. To avoid the anomalies, it is necessary to consider when
identifiers occur actively in instances of phrases, taking context into account.

2.2 The SCIR Type System
The phrase types are built from certain primitive types (prim) as follows:
0= (prim) |60 |0 x6 |0 =060 —p6.
5
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A subset (prim,) of the primitive types is singled out as passive, and this
generates the passive types as follows:

¢ = (prim) [ ¢ R ¢ [px @' |0 — ¢ |0 —pb

There are two products: # x #', for which the components can interfere, and
f ® @', for which the components must be non-interfering. There are also two
exponentials: 8 — 6, which is the type of ordinary procedures (which cannot
interfere with, or be interfered with by, their arguments), and ' —p 6, which
is the type of passive procedures. A passive procedure does not assign to any
global variables (though a call of a passive procedure may be active, if the
argument of the call is).

We propose a syntax based on typing judgements IT | I' = P: 6 in which the
usual typing context on the left of the turnstile is partitioned into a “passive”
zone Il and an “active” zone I'. No identifier can be in both the passive and
the active zones. Intuitively, if an identifier is in the passive zone, it can only
be used passively, even if the type of the identifier is non-passive. The typing
rules will be arranged so that when a phrase under a type assignment is placed
in a context, that context must prevent identifiers in the passive zone from
being used actively.

This use of zones is reminiscent of Girard’s LU [12], with the passive/active
distinction here being similar to the classical/linear distinction there; however,
the permeability rules, that govern movement across the zone separator |, do
not appear in LU nor, as far as we are aware, in other previous systems. These
rules are the most distinctive aspect of the treatment of passivity here. See
Section 2.6 for further discussion.

The rules concerning identifiers and contexts are in Table 1. Identifiers
are initially introduced in the active zone, but may change zones with the
help of the permeability rules of Passification® and Activation. Movement
to the passive zone is accomplished using Passification, when the phrase on
the right-hand side of the turnstile is of passive type. This is the only way
that an identifier can move to the passive zone. On the other hand, a passive
identifier can always be activated using the Activation rule. Notice that 6
is unrestricted in the Passification rule, and that the change-of-zone is not
accompanied by a change-of-type for the assumption; this is a key difference
from the otherwise similar use of zones in LU.

Weakening and Exchange can be used in either zone. When type assign-
ments are concatenated, as in the Weakening rule, we implicitly assume that
the domains are disjoint. IT and T are permutations of IT and T, respectively.

Contraction can only be used in the passive zone. This is the essential
restriction that implements the requirement that distinct identifiers do not
interfere. We are using the notation [P](' — @) to denote the result of
substituting () for free occurrences of /' in P.

5 This fabricated word seems more attractive as a name for this rule than alternatives such
as Passivation or Deactivation.
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Table 1 Identity and Structural Rules

IDENTITY

Axiom

| 1:0 026

STRUCTURE

H\L:H,FI—P:ng — H’L:9|F|_P:9’A- ‘
II,:0 | T P:¢p assification |6, P o ctivation

e po Weakeni 7H‘F|_P:0Exchange
LIV [ T,0F pig o oemn® I|T+ P:6
I,0:0,:0 | T+ P: ¢ ]
Contraction

el | TH[P( )0

Rules for the type constructors are given in Table 2. Note that the ac-
tive zone in rule —pI is empty. Also, note that the type assignments for
the procedure and the argument parts of procedure calls (rule —FE) must be
disjoint; however, Contraction allows sharing of identifiers from the passive
zone. Similar remarks apply to the introduction rule for ®.

In the preliminary version of this paper we used a rule for ®-elimination
based on projections:

H|F|_P90®9]
| Fx?P:o;

®F; (i=0,1)

This rule was used on the grounds that projections are definable in the presence
of Weakening, and the erroneous remark was made that the two forms of
elimination would thus be equivalent.

The formulation with projections has two problems. First, it is not possible
in general to unpack a term of type 6y ® 6; into non-interfering components.
Second, it is not possible to mimic the isomorphism taking f: 0, — 6; — 6, to

My ®6; . letr @y be zin fry: 00, — 0,

These remarks do not invalidate any of the technical results in [26]; however,
we now regard the formulation using projections as a language-design mistake.

7
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Table 2 Rules for Type Constructors

I|TFP6, TI|TFQ:6 I|TF P:6y x 6,
I[TF(P,Q) 0 x0 [T - mP:0;

E; (1=0,1)

Hg‘Fg"P:HO H1\F]I—Q:0] H‘F"PG()@H] H/‘FI,Lgleo,L]!e]l_Qla

Tlo.Th [T Th F P® Qi@ 0r © LI | T,I" - let oo ® ¢; be P in Q: 0
II|T,u:6+ P:6 ; Iy [ Do P:0' =60 T, |T1 FQ:6
O TF \:0.P0 =0 Mo, I | Do, T1 - P(Q): 6
I[FQ:60 —0 M[TFQ:60 —pb

I

— —pk
11|+ promote Q:0/ —»p 0 1| T+ derelict Q: 0/ — 6 "

2.8  An Illustrative Programming Language

An illustrative Algol-like programming language is obtained by choosing ap-
propriate primitive types and constants. We use a type comm of commands
and types 7 for 7-valued expressions:

(prim) ::= 7 | comm
where 7 ranges over, say, int and bool. The only passive primitive types are
the expression types 7.
The type var[r| of T-valued variables abbreviates (7 — comm) x 7. Deref-

erencing is implemented by the second projection; in examples, we will sup-
press explicit mention of this projection and assume a rule

IT|TF V:var|7]
n|r=ver

Dereferencing

We can consider constants representing various imperative constructs, such as

:=,:var[r| X 7 — comm assignment

;:comm X comm — comim sequential composition
||: comm ® comm — comm parallel composition
ify: bool x 0 x 0 — 0 conditional

Yo: (0 =p0) >0 recursion

new,: (var[r| - comm) — comm local allocation

do,: (var[r| -p comm) — 7 block expression



~ L4 LRALIN W U

The block-expression form requires some explanation; the call do,(p) is eval-
uated by allocating a new local variable and applying p to it, as with the ordi-
nary command block new, (p), but then returning the final value of the local
variable as the value of the expression. The passivity of p: var[r] —p comm
ensures that the block expression does not interfere with non-local variables,
and so no “snap-back” effect is needed to restore their original values.

2.4  FEzamples

We illustrate the operation of the rules by presenting derivations of some
typing judgements.

Consider first the (unreduced) example (1) discussed in Section 2.1. The
assignment can be typed as follows:

| w: var[r] F w: var|7]

Weakeni
| w: var[r],y: 7 F w: var|7] eakening

| w:var[r] F Ay: 7. w: T — var|[r] - | z2T bk 2:7

| w:var[7],z: 7 F (Ay: 7. w)z: var|[T] oF

Dereferenci
| w:var[r],z:TF (Ay:T.w)z: 7 relerencing

| z: var[7] I z: var[r] wivar[r] |zt F (Ay:T.w)z: T 'P_asmﬁcatlon

w:var[r] | z:var[r],z: 7 F x := (\y: 7. w)z: comm

where the last step abbreviates use of the := constant, xI, —F and Weaken-
ing. Note that after Dereferencing of the right-hand side, w can be moved to
the passive zone. The typing is then completed as follows, using a Contraction:

| w':var[r] F w': var[r]

w:var|r] | z: var[r], z: T b= (A\y: 7. w)z: comm | w':var[r] Fw': T

Pass.
w:var|r] | z:var[r] F Az: 7. x ;= (A\y: 7. w)z: T = comm w':var[r] |Fw': T ass

w,w':var[r] | z:var[r] F (Az: 7. == (A\y: 7. w)z) (w'): comm

w:var|r] | z:var[r] F (Az: 7. z := (Ay: 7. w)z) (w): comm Contraction

The following shows how to derive a typing for the right-hand side of the
“illegal” assignment (2) in Section 2.1:

| w: var[r] - w: var|7]

Weak.

| w:var[r],y: T F w: var[7] | w':var[r] F w': var[r]

Dereferencing

B
Dereferencing

| w:var[r] - Ay: 7. w: 7 — var[7] | w':var[r] Fw': T

| w,w':var[r] F (Ay: 7. w)w': var[r]

| w,w':var[r] F (Ay: 7. w)w': T

w,w':var[t] |F Ay: 7. w)w': 7 Passification

w:var[r] [F (\y: 7. w)w: T Contraction

| w:var[r] F (Ay: 7. w)w: T Activation

Even though the types of w and w' are active, Contraction can be applied
when they are in the passive zone; but Dereferencing must be used before
these identifiers can be passified. The assignment can then be typed as usual:

| z: var[r] F z: var[r] | w:var[r]F ()\g-/:var[r].w)wzr -

| z,w: var[r] F z := (A\y: var[r]. w)w: comm

9
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The next example demonstrates that an identifier can be used both ac-
tively and passively. The following derivation involves shared passive use of a
variable identifier x:

| z: var[r] I 2: var[T]

| z:var[r] F z: 7

Pass.
| y: var[7] F y: var[7] x:var[r] |[F a7 __aqq
z:var[r] | y:var[r] F y := z:comm x':var[r] | z:var[r] F z := 2': comm I
x, 2" var[r] | y,z:var[r] Fy:= x || z := 2': comm
Contraction
x:var[r] | y,z:var[r| F y :== 2 || z := z: comm
Activation

| z,y,z:var[r| Fy := ¢ || z :== z: comm

where the derivation for z := ' is similar to that for y := x, and the step for
|| uses the introduction rule for ® followed by the elimination rule for — with
the constant ||. This can then be combined with non-passive use of z, as in
the following derivation:

| w: T, z: var[r] F 2 := w: comm | z,y,z:var[t] F y S || z:=z:comm
bl

| w:r,z,y,z:var[r| F z:=w; (y .=z || 2 := z): comm

We now consider the problematic example from [37, p. 44]. Suppose
n,y: var[int]; then, the parallel command in

mo(n+1, (n:=0] y:=m(n, n:=0)))
is illegal in the treatment of [37] because n is used on both sides of ||. However,

the entire term is of type int, and so these uses should be regarded as passive.
To type this in our system, we can proceed as follows:

| n,n', y: var[int] - mo(n + 1, (n':: 0|y :==mo(n', n' :=0))):int

n,n':var[int] | y: var[int] - mo(n + 1, (n:= 0| y := me(n’, n' :=0))): int gasmﬁca‘r:mn
n:var[int] | y: var[int] F m7o(n + 1, (n:=0 || y := 7o(n, n := 0))): int ontraction
Activation

| n,y:var[int] F mo(n + 1, (n:=0|| y := mo(n, n:=0))):int

The first line can be typed straightforwardly because the identifiers on either
side of || are distinct.

Notice that the subterm (n := 0| y := mo(n, n := 0)) does not itself have
any typing in the SCIR type system. But it can nevertheless appear in a larger
term because Contraction can be applied when a subterm with occurrences
of n remaned apart appears within a passive phrase. This subtle interaction
of Contraction and Passification is what allows the subject reduction prob-
lems from [37] to be solved. An equivalent type system that does not use
Contraction explicitly can be formulated, but replaces this subtle interaction
by explicitly accounting for the “semi-well-typed” status of phrases such as
(n:=01 y:=m(n, n:=0)), or more simply (Az.x;y)y.

Finally, it is natural to ask about the relationship between the SCIR treat-
ment of passivity in the SCI2 treatment in [37].

We have argued that a merit of our approach is that it shows that subtypes
are not necessary for the treatment of passivity. But a compensating merit of

10



~ L4 LRALIN W U

Table 3 [-reductions

7T0<P3Q> _>ﬂP 7T]<P7Q> _>,6Q
let @1 be P®Qin M —g [M](io+— P11 — Q)

(A:0.P)Q —5 [P](t — Q)  derelict(promote Q) =3 Q

P—>5Q

——————  for term-with-hole C|-
C[P] =5 C[Q] [}

SCI2 is that it can typecheck programs that SCIR cannot. One example is
Aci:comm . eyt comm . A\cg: comm . mo{¢o, ¢3) || mo{c2, ¢3)
:comm — comm — comm — comim

In SCIR this program is not typable because the active identifier ¢3 appears in
both arms of the parallel composition, and because there are no passive phrases
to allow use of the rule of Passification. But in SCI2 products are represented
as records with named alternatives, and a forgetting-fields conversion can be
applied which, in effect, assigns a (passive) unit type to cs; this is reasonable,
as c¢3 is never used.

It can be argued that this points to an incompleteness in the SCIR type
system, because c¢3 is used passively in the example. A counter-argument is
that the example has not so much to do with passive use but with the ability
of subtyping to account for some circumstances when parts of a record are not
used at all. We wonder if there is a precise relationship between SCI2 and a
version (as yet unformulated) of SCIR with conjunctive types.

These details aside, we would like to emphasize that the central aspects
of syntactic control of interference, including passivity, were already identified
in [37], and we regard the type theoretic solution presented in this paper as a
further development and analysis of ideas present there.

2.5 Typing and Reduction

The principal reductions for the SCIR type system are in Table 3. (A com-
prehensive treatment would require commuting conversions for ® [1], which
are omitted here.)

Theorem 2.1 (Subject Reduction) If 11 | ' = P:0 and P —3 @ then
Tk Q:0. 0

11
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Typing is also preserved by various n laws.

To prove this result we will concentrate on the reduction from (Az.P)Q to
[P](+ — Q). The proofs for let is similar, projections and Promotion/Dereliction
elimination are easier, and the extension to subterms via the rule for C[] is
not difficult. We need two lemmas.

Lemma 2.2 If I1 | T F Ae:0'.P:0' — 6 then 11 | T, ::0' = P:6 .

Proof. We have assumed (without loss of generality) that ¢ is not in IT or
I'. The result clearly holds if the last step of the derivation for Ac: #'. P is an
instance of —1, and is preserved by any structural rules that might be used
after —1. O

Next is a generalized form of the “Cut” rule.

Lemma 2.3 If 11:61,...,00:0n | tns1:6ni1s-- s tm:0m B P:0 and, for all

Hl,...,Hm,Fl,...,Fn‘Fn+1,...,rm|_[P](L1|—>Q1,...,Lml—>Qm):9.

Proof. The proof is by induction on the size of the derivation for P. We
discuss only the key cases of structural rules that make use of the separation
of a type assignment into zones.

Case Contraction: the last step is

. . . . . /.
11:01, i Oy O b1 O, b O B PO
112601, O | b Oy b O PO

where P = [P'](1 + 1,). By the induction hypothesis,
My, .. T I, T o, Ts T [ Togrs vy T

= [P’](I’1'_)Qh"'alfml_)Qmal"_)Q):H

where IT | T' = @Q: 6, is a variant of T1,, | T',, F Q,: 8, with fresh identifiers not
appearing in any II; or [';. Then, Il and T', being in the passive zone, can be
contracted to II, and T, respectively, using Contractions (and Exchanges),
and the resulting judgement is the desired conclusion.

Case Activation. The last rule is

1,1:9],...,/,n+1:9n+1 ‘ l,n+2:9n+2,...,l,m:9mI—P:9
11201, O | i Oy b O PO

By the induction hypothesis,
Hl;---;Hm;FI;---;Fn—I—l ‘ Fn+2,...,Fm - [P](Ll P-)Ql,...,bm |—>Qm)9

Using a number of applications of Activation, we can move I',,,; to the right
of |, obtaining the desired conclusion

My, I, Oy D [ Doy o T E [P = Q1 oyt = Q)i 0
Case Passification. The last rule is
101, iy 101 | i Oyt O P
1201, i O | b1 Oty O B P

12
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By the induction hypothesis,
Hl,...,Hm,Fl,...,Fn,1‘Fn,...,rml_[P](L1|—>Q1,...,Lml—>Qm)1¢.

Because ¢ is passive (as Passification was the last rule), we can use Passifica-
tion a number of times to move I',, to the left of |, and we obtain the desired
conclusion. O

We can now prove the following desired result: if IT | T' = (A: 0".P)Q: 0
then IT | I' F [P](+ — @): 0. For the proof, first note that if a derivation ends
in an application M (N) then there are only a number of possibilities for the
last rule. These are: —F and the structural rules of Contraction, Exchange,
Weakening, Passification, and Activation. Further, the structure of such a
derivation must always consist, at the end, of an instance of —FE, followed by
a number of applications of these other rules. The proof goes by induction on
the size of this last part of the derivation, after the final elimination rule.

The basis case when the last rule is of the form

T PO —0 II'T'FQ: 0
ILIT | T, " E (M2 0. P)Q: 0

follows directly from the two lemmas, taking

b1:01,. 0,0, to be II

bps1: Oty oo sbmo1:0, 1 tobe T

L' O to be v: 0’

I | T, F Qi 6 tobe | t:0; F 20, (1 <i<m)
My | T B Qi O tobeIl' | T"F Q: 0

The inductive steps of the proof of the theorem consist of straightforward
verifications that the preservation of typing by a -reduction is preserved by
any use of structural rules. O

2.6 Relation and Non-Relation to Linear Logic

The SCIR type system was inspired by linear logic, specifically in the focus
on a restricted use of Contraction. The specific presentation, based on zones,
was influenced by LU, but the basic type system was worked out in May 1991
prior to seeing LU. Previously, the syntax worked by “marking” identifiers
in typing contexts as being passively used, with Passification and Activation
manipulating the marks; the zones are a notational variant of this. This was
similar to the marking in [44], except that marking of identifiers was done
without changing types.

In linear logic, Contraction and Weakening are allowed only for types of
the form !A, whereas in SCIR Contraction is allowed only for passively-used
identifiers (in the passive zone). Furthermore, the Dereliction and Promotion

13
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rules for the passive type constructor — p are obviously inspired by the corre-
sponding linear logic rules for the “!” modality, though they have precursors
in Reynolds’s original (1978) presentation of SCI. These facts, supported by
semantic models, were the basis for the analogy of passivity as “!”, and SCI as
affine linear logic, proposed in [24,25]. Tt was known then that the passivity ~ !
analogy was not an exact correspondence, and that there were some properties
of passivity not accounted for by “!”.

For example, it would have been possible, in principle, to use a linear
logic-based type system to design an alternate type system for SCI satisfying
the subject reduction property. But if we had followed up the passivity ~!
analogy, the most obvious candidate syntax would have had a form of “box-
ing” [11]. For example, the Promotion rule for passive procedures would be
something like (cf. [1])

A Ay FQO =0 A EGA; -
Ay,...,A, |FpromoteF;,..., E,forz,...,z,inQ: 0 —p 0

—pl

“y

While this syntax is perhaps appropriate for in linear logic, it seems overly
heavy, with no conceivable justification, from the point of view of interference
control.

More importantly, the concept of passivity involves a notion of passive use,
which has additional properties beyond those for “!”. These extra properties
are embodied syntactically in the rules of Passification and Activation, which
have the side benefit of allowing us to avoid these syntactic complications,
retaining a relatively simple syntax possessing the subject reduction property.
(Compare the implicit syntax mentioned above with that just given for Pro-
motion!) These two rules do not correspond to any rules in linear logic, or
LU; this difference will be seen again when we consider categorical models of
the SCIR type system.

3 Semantics

The permeability rules of Passification and Activitation can exhibit subtle
behaviour (as we saw in Section 2.4). To understand this behaviour, it is
beneficial to have an analysis that exposes their essential structure in more
abstract terms. To this end, in this section we define a class of categorical
models of the SCIR type system. We do not attempt to formulate a most
general possible notion of model. Rather, we focus on a particularly cohesive
class, which we term “bireflective” models, that are sufficient to secure our ba-
sic aim of showing a sound interpretation which accounts for the permeability
rules.

A concrete model for the programming language of Section 2.3 will be
presented in Section 4.

14
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3.1 Bireflective Models

As usual, the types and terms of the language are to be interpreted as objects
and morphisms, respectively, of an appropriate semantic category C. We re-
quire, first, that C come equipped with a symmetric monoidal closed structure
(I, ®,—o), and finite products. This enables us to interpret the non-interfering
product, the interfering product, and function types in standard ways. For
example, the closed structure will provide application maps

app(A,B):(A—o B)® A — B
for all objects A and B, and, for every map f: A® B — (', a curried map
f""A— (B— ()

satisfying appropriate 3 and n laws.
Typing contexts II,I" to the left of - in any syntax judgement will be
interpreted as products built using ®:

[t1:61,.. ., tn:60,] = [01] @R [6]

To interpret the Weakening rule, the tensor product ® must allow for
projection maps, m5: A® B — A and 77: A® B — B. We therefore require
the unit 7 for ® be a terminal object 1 of C; then 7y is (id4®!p) ; 0, where !
is the unique map from B to 1, and 9: A® 1 — A is the unity isomorphism,
and similarly for 7.

To treat passivity, we begin by assuming a full subcategory P of C, to be
thought of as the subcategory of passive objects. The typing context in the
passive zone will be interpreted as a passive object. Thus, every judgement
IT| T F P:6 will be interpreted by a map

S e [T — {61

where S[II] is an object of P, and [T'] and [[f] are objects of C. To treat both
Contraction and Weakening in the passive zone, we simply require that ® be a
categorical product in P. The interactions of permeability rules and rules for

the passive function type are accounted for by making a further assumption
on P.

Definition 3.1 (Bireflective Subcategory) A bireflective subcategory of a
category C is a full subcategory P of C with inclusion J: P < C that has left
and right adjoints equal, say S: C — P, with the composite

!

JSA—SA LA TA | jg4

being the identity, where 7 is the unit of the adjunction S 4 .J and &', is the
counit of J 4 S.

This definition is from [10], where its categorical properties are studied. Our
main concern here is to explain its connection to the SCIR type system.

The adjunction S - J is used to interpret the permeability rules of Pas-
sification and Activation. For Passification, consider first the special case in
which there is only one identifier in the active zone and none in the passive
zone:

15
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10 |- M:¢
The adjunction determines a transformation of maps

FiA JP
passify(f): SA — P

where P is any object of P, and A is an arbitrary C-object. This interprets
the indicated instance of the rule, and unit of the left adjunction gives us a
natural family of maps 7,: A — SA to interpret an instance

vl F MO
O F MG

of the Activation rule by pre-composition:

f:SA— B
na; f:A— B

Instances of these rules involving more than one contextual identifier can be
dealt with by assuming that S be a strong monoidal functor; i.e., that it
preserves tensor products up to (coherent) isomorphism: S(A®B) = SA® SB
and S1 =1 [9,18].

The right adjunction J - S is utilized in the treatment of —p. Clearly,
we would like —p to behave like a function type. But, as evidenced by the
introduction rule —p/, these functions are subject to constraints ensuring the
passive use of free identifiers within them. If we set A —-p B = S(A — B)
then, using J = S, this determines an adjunction

JPR A— B
P — [A —p B|

where P is a passive object. (That is, ( ) ® A:P — C is left adjoint to
S(A —o ()), for all C-objects A.) Thus, we have an interpretation of —p
that takes into account both passive use and functional properties such as 3
and 7.

The further requirement of bireflectivity—the coincidence of the left and
right adjoints to J and the coherence condition implies certain equations
relating the left and right adjunctions. First, as the analysis in [10] shows,
bireflectivity implies that the transformation of maps f — passify(f) asso-
ciated with the left adjunction S < J can be calculated using the counit

g'yi SA — A (where SA = JSA) of the right adjunction J = S:
passify(f) = ey f (3)

where f: A — P. Similarly, the transformation associated with the right
adjunction

gP— A
promote(g): P — SA
16
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can be calculated using the unit n4: A — SA (where SA = JSA) of the left
adjunction:

promote(g) = g;na - (4)
The simplifying effect of these equations is dramatic.

For instance, in [1] it is emphasized that naturality requirements lead to
a syntactic treatment of promotion rules such as —p/l that involve binding,
much like the rule discussed in Section 2.6. But by interpreting —p/ using
composition on the right, as in equation (4), all necessary naturality require-
ments are met by the simpler form of syntax rule that we use. Similarly, the
interpretation of the Passification rule can now be given simply by compos-
ing on the left as indicated by (3). This will be a great aid in establishing
the connection between model and syntax, as given by the coherence theorem
below.

Definition 3.2 (Bireflective Model) A bireflective model of SCIR is given
by the following data:

(i) a symmetric monoidal closed category (C, 1, ®,—o) with finite products
(1, x); and

(ii) a bireflective subcategory J: P < C in which (1, ®) is a finite-product
structure and the bireflector S: C — P is a strong symmetric monoidal
functor for which S 4 J 4 S are monoidal adjunctions.

Note that, since we have required that ® be a cartesian product structure
in the full subcategory P, the category P is monoidal and the inclusion .J is
a strong monoidal functor with comparison morphisms JP ® JQ — J(P ®
() and 1 — J1 being identities. An adjunction is monoidal when certain
equations hold involving the units and counits and the comparison morphisms
SA®SB — S(A® B) and 1 — S1 [9,18]. Monoidal functors and adjunctions
are useful for treating rules involving typing contexts [1].

The conditions that S be strong monoidal and that S 4 J and J 4 S be
monoidal adjunctions are equivalent to the condition that, for A and B in C,

A® B— %5 | JS(A® B)

na ® NB 6IA@B
JSA® JSB A®B

€) ® €p
commutes, where 7 is the unit of S < .J and € is the counit of .J 4 S.

To simplify the presentation, we assume that the counit € of S - .J is the
identity, and identify P with JP in C. Then the isomorphism m 5: SA ®
SB — S(A® B) associated with the strong monoidal functor S can be written

SA®SB-A9B, ygp_ M8 g4g B

with inverse €/, 514 ® Ng, and m;:1 — S1is ;.
Notice that the units of the monoidal and cartesian structures coincide.
The adjunction J =4 S determines a co-monad on C, and this is the aspect of
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passivity that is similar (but not identical) to “!” from linear logic. The left
adjoint to .J determines additional structure, that of a monad.

Proposition 3.3 SP = P for all passive P, and hence S is idempotent.
Proof. Standard for reflective subcategories; see [20]. O

Proposition 3.4 [10]

(i) P is Cartesian closed.
(ii) Px Q= P®Q when P and Q) are P-objects.

(iii) P is an “exponential ideal” of C; i.e. A —o P lies in P (up to isomor-
phism) when P is a P-object and A is any C-object. O

Part 1 of the proposition corresponds to the following intuition: the passive
fragment of SCIR has no interference constraints, and so a model of this frag-
ment should be a model of the full typed A-calculus. Parts 2 and 3 correspond
to the syntactic classification of passive types. For instance, types of the form
0 —p ¢ and € — ¢ are isomorphic, so that the two exponentials coincide for
passive result types.

The adjunction S = J could be used to show that “passifying all variables”
is bijective, but we also want to passify one variable at a time. That “passifying
one variable is bijective” is the content of the following.

Lemma 3.5 There is a bijection

f:JQ®A®B — JP
(ded,®id); f: IQ® JSA®C — JP

where P and @ are passive objects.

Proof. Immediate from properties of monoidal functors and adjunctions, or
it can also be proven directly using the fact that P is an exponential ideal.
(I

Example 3.6 This is essentially from [23], and is related to the functor-
category model given later which is based on [43,27].

Let N be the category with a single object, %, and where the morphisms
are natural numbers together with an extra number co. The composition m;n
is the minimum of m and n, with m ; oo = oo ; m = m. The functor category
Sets™ is a model of SCIR.

The category P of passive objects is the subcategory of constant functors,
where each morphism in N gets mapped to an identity. Functor S: Sets™ — P
is given by S(A)x = {A(0)a | a € A(x)} and SA(m)a = S(0)a. The functors
S A are constant because 0;0 = 0. Given a map f: A = P, the corresponding
map f: SA = P is given by f'(x)a = (f(*))(A(0)a). The adjunction J 4 S is
given by composing with the inclusion SA — A.

To give some intuition, consider a “locations” functor Loc:IN — Sets.
Loc(x) is the set of natural numbers, together with an extra element —. For
natural numbers n and m, Loc(n)m = m if m < n, and — otherwise, and
Loc(oo)m = m. One may think of function Loc(n) as “disallowing access”

18
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to locations greater than or equal to n, by mapping these locations to —.
S(Loc)(*) has only one element, —.

In this category we can begin to see a glimpse of semantic structure re-
lated to side effects. But the category P does not quite match computational
intuitions concerning passivity. It consists of constant functors, which are
effectively stateless. State will be better treated in Section 4 by adopting a
category of worlds with multiple objects (to account for local state) to use in
place of N.

3.2 Interpretation of the Typing Rules

In this section, we explain how typing rules are interpreted in any bireflective
model of SCIR. Each of the primitive types 6 is interpreted as an object [0]
of C, with passive primitive types interpreted as objects of sub-category P.
This then determines interpretations of non-primitive types, as follows:

[0 > 0T =167 x [6'] [0 — 6T = [6] — [0]

[ o] =10l [0 —p 0T = S([6] — [0')

It is clear that each syntactically passive type is interpreted as an object in P
(or an object isomorphic to an object in P).

Each typing judgement IT | T' = P:6 is interpreted as a morphism from
S @ [T] to [#], where for any typing context tq: 0y, ..., 1,: 0y,

[[Ll: 017 <oy lnt 971]] - [[91]] - ® [[977]]
and where by S[II] we mean explicitly
Sler:0, .. i 60,] = S[01] @ --- @ S[0,]

In effect, we are bypassing the isomorphism S(A® B) 2 SA® SB in the pre-
sentation, and we are glossing over associativity and unity isomorphisms. We
are most concerned with an analysis of the rules of Passification, Activation,
and Contraction, and so will concentrate for the most part on these.

The interpretation goes by induction on derivations, so we are assigning a
meaning [¥] to each proof W of a typing judgement.

The Axiom and the structural rules of Weakening and Exchange are treated
in the standard way, using identities idpgy: [#] — [], weakenings [#] — 1, and
symmetries A ® B — B ® A, respectively.

For Activation, suppose f:S[IL, t:0] @ [I] — [#']; then we define the
desired map from S[I] ® [¢:0,T] to [#'] as the following composite:

s & S[0] @ [1] ———— [¢']

id @[] ® id

S[M] & [0] @ [T']

where 1n(A) = passify ' (id4) is the unit of the adjunction S - .J.
For Passification, suppose f: S[1] ® [¢:0,T] — [¢]. The interpretation is
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s e [0] ® [I] ——— [#']

id ® &[] ® id
S e S[el @ [I]

where &’ is the counit of J 4 S. This interpretation is possible because of
equation (3).

For Contraction, suppose f:S[II,c:0,.:0] ® [T'] — [#']; then we define
the desired map from S[II, : 0] ® [I'] to [0'] as follows:

si] e S[o] @ S[o] @ [1] —L— 0]
id ® duplicate(S[0]) ® id

s e sfel © [T

Here, duplicate is the diagonal map for the cartesian structure in P.
For rule —1, suppose that f: S[II] @ [T, ¢: '] — [0]; then the desired map
is
M@ 1] — (16T — [41)
where f* is the currying of f, as discussed in Section 3.1. For rule —F,

suppose. fo: S[Tlo] ® [To] — ([0'] —o [0]) and fi: S| @ [I1] — [#']; then
the desired map is

SIMs] @ o] @ S[M] @ 1] —L2 85 (18] — [6]) @ [9]

v

app([0'], [6T)

S[p] @ S]] @ [To] @ [[T1] 1]

where app is the application map discussed in Section 3.1 and 7 is the evident
isomorphism.
For rule —p1, suppose f: S[II] — [[# — €']; then the desired map is

S PN
\ n([8'] —o [6])
S(19'1 — [9])

where n(A): A — SA. This interpretation utilizes equation (4).
For rule —p , suppose f: S[I] @ [I'] — S([¢0'] —o [0]); then the desired
map is
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s @ [1] —— s (1] —o [0])
([0 —o [0])

[0'] —o ]

where €'(A): SA — A is the counit of J 4 S, definable as promote ™' (idg4).

The remaining rules, for tensor and categorical products, can be treated
in an obvious way. Each constant is interpreted by a map out of the terminal
object.

3.8 Coherence

Notice that the presence of structural rules in the type system allows for mul-
tiple proofs of a typing judgement, and it is important to show that this does
not lead to semantic ambiguity. In this section we verify that the semantics
is in fact coherent; i.e., all proofs of any syntax judgement have the same
interpretation.

Theorem 3.7 (Coherence) Let Wy and U, be proofs of [1 | T+ P:0; then
[Wo] = [W1].

The proof occupies the remainder of this section. It will be convenient to
have a notation for certain composite proofs. Suppose ¥ is a proof of a
judgement IT | T' F @:6, and that we can extend W by applications ¥ of
only the structural rules of Contraction, Exchange, Weakening, Activation
and Passification to obtain a proof of I' | IV = @Q': 0. We write W ; ¥’ for the
composite proof, and call ¥’ a structural extension of W.

Notice that, because all structural rules are interpreted by composing on
the left, the denotation of any proof W; W' of IT" | ' = P’ : # can be decomposed
so that

[V W] = h; [V]

for a map h: S[II'] @ [I'] — S[II] @ [I'] induced by structural rules in ¥'. We
often write [¥'] to denote a map of this form induced by a proof extension.
If ¥’ is empty then we declare [¥'] to be the identity.

One important property to isolate is coherence of structural extensions.

Lemma 3.8 (Coherence of Structural Extensions) Suppose that ¥ is a
proof of I | Tk Q:0, and that W ; ¥y and ¥ ; Wy are structural extensions
that prove judgement II' | T = Q':0; then [V ; U] = [V ; Uy].

This is really a statement about the maps induced by structural extensions,
and is independent of ¥, (), and )’. A structural extension determines a
function p from variables in IT | T to those in IT" | T” with p(z) being the
variable to which x contracts. (We omit a formal definition, which is a simple
induction on derivations). The desired result, with data as in the statement
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of the lemma, is then:

(%) If structural extensions Wy and W, determine the same p, then
(A) & ;[¥,] =¢&";[¥y], where £ here is an appropriate component of the
counit of J 4 S, and
(B) [W] = [W,] if  is non-passive (so neither derivation uses Passifica-
tion).

It is easy to verify that this formulation (which now has more the flavour
of a categorical coherence result) implies the Coherence of Structural Exten-
sions. Note that we cannot generally ask for equality of the [¥;] (because
of Passification). In cases where 6 is passive, we use (A) and the property
f=g:A—= JPiff &'; f =¢<'; ¢ to conclude the lemma.

We indicate the proof of (x).

Proof. Given 6 and a function p from IT | T to II' | T', we can define a
canonical extension Uy (that determines p) as follows.

(i) Passify all identifiers if # is passive.
(ii) Perform all Contractions indicated by p.

(iii) Activate all variables in the intersection of the image of p and the domain
of I'.

(iv) Perform appropriate Weakenings for variables not in the image of p.

Step (ii) assumes that all Contractions indicated by p are for identifiers in the
passive zone (this is an assumption on p and ).

We thus obtain an extension ¥; = P;(C'; A; W consisting of Passifications,
followed by Contractions, Activations, and Weakenings (with some Exchanges
sprinkled throughout). We prove the property (x), for U; a canonical exten-
sion, by induction on the length of ¥,. We consider two sample cases.

Base case: length 0. [Ws] is the identity, whereas W, is either empty or a
sequence P ; A of Passifications and Activations (if 6 is passive). (B) is trivial,
and (A) follows from the identity n;e’; f = f, where f: X — JP. This equation
in turn follows from the identities ¢’ ; f = passify(f) and n ; passify(f) = f,
the former a consequence of bireflectivity and the latter of S - J.

Case: last rule is Passification. Part (B) is trivial. For (A), the induction
hypothesis gives us &' ; [¥}] = ¢’; [¥}], where W, = P';C"; A"; W' is canonical
and ¥y = W, ; p with p an instance of Passification. Suppose that x is the
identifier moved by p. There are three subcases to consider:

1. no rule in ¥} explicitly involves z,
2. x was introduced in the active zone through a Weakening step in W', or

3. = was moved into the active zone through an Activation step in A’.

In subcase 1 we mean that x is not moved by Passification or Activation, or
introduced via Contaction or Weakening. Clearly one of these three cases must
apply: note that if  was involved in Contraction, Activation, or Passification,
then subcase 3 would apply. Subcase 1 is straightforward since x is interpreted
by an identity in [¥}]; we concentrate on 2 and 3.
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For subcase 2, we can replace the instance of Weakening that introduces
x in W' by another instance that puts x in the passive zone, giving us W".
Then [W"] = [W'; p] because of the identity

®
A®SB&:

A\
A\

id® e’ v
v 71—0
A® B

Thus, [¥y] = [P;C"; A W], and P';C"; A, W" is of the form prescribed
above for the canonical extension. Simple permutations within each com-
ponent P, A’ C', W" suffice to show that it is semantically equal to the
prescribed extension (in any case, there is some trivial imprecision, involving
order of rules, in the prescription (i)-(iv) for extensions).

For subcase 3, we first move p to the left of W', and then compose the
resulting instance of Passification with the instance of A’ that activates z; this
composition yields the identity. The involved equations for this are

® .
SA® B0, 54 5A14d.§14
! ‘d ! d ! v v
e ®1 € an £ i 0
A® B A '
L

Thus [P';C"; A", W] = [P';C'; A'; W'; p] where A” has the mentioned occur-
rence of Activation removed (so later rules in A” and W" are slightly adjusted),
and the desired result follows as in subcase 2.

Other rules are treated in a similar fashion, using the induction hypothesis
and various identities to reduce a proof to a canonical extension. O

With coherence of structural extensions, we may deduce the desired theo-
rem as a corollary of the following result.

Lemma 3.9 Suppose 11 | T' = P: 0 is derivable both from 11y | Ty b Py: 6 and
from 11y | Ty & Py: 0, using only the structural rules. Suppose further that, for
i=0,1, U; is any proof of I1; | T'; = P;: 0; then

[Wo; Wo] = [ ; W] : SH] @ [T — [0]
for all structural extensions V' such that V; ; W, proves Il | T' = P:6, for
1 =0,1.

Note that, for i = 0,1, P = [P,;]o; for identifier substitutions o; introduced by
Contractions.

Proof. The proof is by induction on the sum of the sizes of proofs ¥, and
v,.

The main base case is when ¥, and W, are both instances of the Axiom
for identifiers. This case follows from the coherence of structural extensions.
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The other base cases, for constants, are immediate if any constant C:0 is
interpreted as a map [C]:1 — [4].

If the last step in ¥q is an instance of a structural rule then we prove the
result as follows. Suppose that RR is the last rule applied in ¥y, and consider
any appropriate structural extensions W, i = 0,1. We want to show

[Wo; Uy] =[Py ; W ]: ST @ [T] — [6] -
Since the last rule in ¥y is RR, which is one of the rules permissible in proof
extensions, this means that W, ; Wy is the same proof as Wy ; W), where W, is ¥,
with the final instance of RR stripped off and W, is U, with the corresponding
instance of RR placed on the front. (We have simply moved the break-point
“” indicating a structural extension.) Since the proof U, is smaller than Wy,
the induction hypothesis applies and we may conclude

[y W] = [0, ; W\ ]: S[IT] @ [T] — [A] .
The result follows from the identity Vg ; ¥ = Wy ; ¥,,. The case when ¥, ends
in a structural rule is symmetric.
The only remaining cases are when both ¥, and ¥, end in a non-structural
rule for a type constructor. There are two groups of rules to consider: those
that involve disjoint hypotheses, and those that do not.

For the latter group, we consider one example: xI. Suppose the last rules
of ¥y and W, are xI, with proofs ¥;; of their premises.

oo o Wi Uy

Ho‘ro.l_POZH H0|F0.|_Q019 H]|F]I|_P]§9 H]‘F].’_Q]ZH
H0|F0|_<P0,Q0>39X9’ H]‘F]F(P],Q])ZHXH’

Let hy = [¥%] : S[Ik] @ [Tx] — S[II] @ [T'], £ = 0,1, be the maps induced
by the structural extensions. Then by the induction hypothesis, hg ; [Wo;] =
hy ; [¥4,], 7 = 0,1. The desired result is then immediate from the usual
identity hy; (f, g) = (hg; f, hx ; g). Other rules not involving disjoint contexts
are proven similarly using the induction hypothesis and an additional identity:
for @F and xFE, use h; (f;m) = (h; f);m; for =1, use h; f* = ((h®id); f)*;
for —=pl,use h; (f;n)=(h;[f);n; for =pE, use h;(f;e")=(h;f);e.

For the rules involving disjoint contexts we consider ®/; —F and @ F are
similar. In the following, we will content ourselves with skimming over the
details of some of the (long) syntactic constructions involved. The basic idea
will be to postpone certain Contractions until the end, so that we can apply
the induction hypothesis to disjoint terms, and conclude the desired result
using the coherence of structural extensions.

Suppose the last rule in each of ¥y, ¥, is ®1, i.e.

oo o Ui U

Hg ‘ Fol_ polgg H;) | F;)'_ qOZH] H] | F] l_ p]:ﬁg H’I ‘ F’ll_ q1:9]
Iy, ITg | To, T = po ® qo: o @ 6y LI [T, T o @ gi by @ 6

We have structural extensions Wy and W) to consider, where ¥, ; W proves
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M|TFpRq: by ®6;,. Since identifiers in p; and ¢; are disjoint, there are
(other) structural extensions ®;, ® possessing the following properties.

e U, ; ®; proves a sequent IT" | T" - p' ® ¢/, for i = 0,1, where p' and ¢ have
no free identifiers in common, and

e U, :d,;dproves [I | TFp®gq, fori=0,1.

That is, we are performing just enough Contractions to identify p, and py,
and ¢o and ¢, postponing the identification of identifiers in both p’s and ¢’s
until the ® stage. The reader may wish to use the following picture (where
the contexts have been omitted):

PR P1®q

\ d /
\IJO \Ijl

P&q
Next, from ®; we can obtain proofs ®,, and ®,; such that [®,,[]®[P,] = [P:]:

Do & qo

I [Dibpii 6y T T g0
Hm‘rpi'_p’:gﬂ Hqi‘rqil_q’ﬁgl
' I'-p ¢ : 060

These are obtained by copying instances of rules that concern p or ¢, as ap-
propriate. Finally, we may apply the induction hypothesis to conclude the
middle equality in the following

[Wo; Do) = [Woo ; Ppo] @ [Wor ; Pyol
= [U10;Pp1] @ [Vy1 5 ] = Wy 5 @]

where we have suppressed some symmetry isos. The outer two equalities follow
from the identity (h®@h');(f®g) = (h;f)®(h';g) and the indicated construction
of ®,; and ®,;. The desired result [Wy; W] = [¥y;¥]] then follows immediately
from the coherence of structural extensions, using [®; ; @] = [¥!]. O

The Coherence theorem then follows directly by taking [1y = II; = II, [’y =
['=T,and Py = P, = P.

Having established that the semantics is well-defined, we can note that it
satisfies the reductions listed in Table 3.

Proposition 3.10 The reductions in Table 3 preserve equality in any bire-
flective model of SCIR. O

For instance, the equivalence derelict(promote M) = M follows from the
identity f = f;na;€’y where f : JP — A, which is true by virtue of J 4 S
and equation (4). A fuller treatment of equivalences will not be given here.
However, it is worth noting that many additional equations beyond these [
laws are valid in bireflective models. As one example, one can synthesize an
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equivalence from the law of monoidal functors

SA® SB— A" S(4 @ B)
YSA,SB S(’YA,B)
SB®SA o S(B® A)

by replacing S(-) by C —p (—), where C' is a passive type. For instance, the
map m4 g would be replaced by the term

let fo X f] be f in
promote(\z : C. (derelict fyx) ® (derelict f,z))

See [1,3] for discussion.

Verifying coherence proved to be quite a lot of detailed work, even with cer-
tain isomorphisms left implicit and with the skimming over of some syntactic
constructions. We wonder whether type theoretic coherence could be better
approached in a more general setting; see [34] for discussion and references.

3.4 Discussion: Non-Bireflective Models

We have included the qualification “bireflective” in Definition 3.2 because
there are models of the SCIR type system in which the left and right adjoints
to the inclusion do not coincide. The first, and foremost, examples are given
by the models in [35,36]. Others are given, for example, by arrow categories
C . The models that we know of have the form of two categories and three
functors between them, like so:

with I fully faithful and L 4 I 4 R. Additional conditions that a more gen-
eral (not necessarily bireflective) model of SCIR should satisfy have not been
formulated. Coherence is the minimal requirement for any general notion of
model of SCIR, and is particularly subtle because of the intricate interactions
between the permeability rules and other rules.

4 A Functor-Category Model

In this section, we present a concrete model of the illustrative Algol-like pro-
gramming language of Section 2.3, This confirms that the categorical analysis
using bireflectivity is consistent with a more concrete reading of passivity in
terms of read-only access to the computer store.

We emphasize that the aim of the model is not simply to characterize be-
haviour of complete programs, i.e., closed terms of type comm. Such a model
could be obtained using a standard “marked stores” model [21] in the cate-
gory of cpo’s and continuous functions, with a trivial bireflective subcategory
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structure given by the identity functor on the category. To see why this is
so consider first that, if we map ® to x and —p to —, any term in SCIR
is typable in simply-typed A-calculus. Then a standard model for Idealized
Algol can be used, allowing for side effects in expressions (to account for the
block expression do) and interpreting parallel composition as if it were sequen-
tial. But while such a model would correctly predict observable behaviour and
would satisfy an adequacy correspondence, with a suitable operational seman-
tics, it would not make manifest the principle that distinct identifiers don’t
interfere. Furthermore, the passive function type —p would be semantically
equivalent to —, and the model would not show the sense in which expres-
sions, and in particular the block expression, are free from side effects. That
is, the semantics would fail to elucidate the most important aspects of the
language.

We desire a semantics that makes the consequences of the syntactic restric-
tions clear. For instance, if the principle that distinct identifiers don’t interfere
is built into the semantics, so the only environments are ones adhering to the
principle, then it will be evident that C; || Cy is deterministic. It will then turn
out that z;y and y || x are equivalent, but this fact, which could in hindsight
be assumed by a semantics, is not so interesting as the reason for it; namely,
that = and y don’t interfere. Similarly, we desire a semantics in which freedom
from side effects is built into passive types, so that the side-effect freeness of
the block expression is a constraint imposed by the types themselves rather
than a property to be proven about valuations.

The main challenge is to define non-interference and passivity for entities
such as commands, expressions and procedures, which are conventionally mod-
elled as input-to-output functions. In [43,27], the similar problems that arise
in treating the non-interference predicates in specification logic are addressed
by using a category-theoretic form of possible-world semantics [39,31]. Each
phrase type 6 is interpreted as a functor [f] from a suitable (small) category
of “possible worlds” to a category of domains, and any phrase P is interpreted
as a natural transformation [[P] of such functors. We will show that the same
category of functors and natural transformations can be used to provide a
satisfactory model of the SCIR-based programming language.

4.1 The Category of Worlds

A category of possible worlds appropriate to treating non-interference and
passivity in Algol-like languages is defined as follows.

» The objects are sets (we require a small collection), thought of as sets of
states. The set of all worlds is assumed to be closed under the following:
- if V; is the set of values appropriate to a data type 7, V, is a world;
- if X and Y are worlds, so is their set product X x Y’; and
- if X is a world, so is any Y C X.

* A map from X to Y is a pair (f,Q), where @ is an equivalence relation on
X and f is a function from X to Y whose restriction to each QQ-equivalence
class is an injection. Intuitively, X is a world “derived” from Y, f maps
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states in X back into Y, and () is an equivalence relation on states which
must be preserved by execution in world X.

The composition of maps (f,Q): X — Y and (¢,R):Y — Z is the map
(h,P): X — Z such that h=f;gand x P2’ iff x Q2' and f(z) R f(x'). The
identity map idx on world X is (Ix,Tx), where Iy is the identity function on
set X and T is the everywhere-true binary relation on X. We will designate
this category as X; however, it is the opposite of the category of worlds used
in [43,27].

Any one-element set is a terminal object in X; the unique map from X
to, say, {*} is (Az.*,=x). We can also define a tensor product as follows;
for objects X and Y, X ® Y = X x Y (the usual cartesian product of sets),
and (f,Q) ® (9, R) = (f x g,Q x R), where (f x g)(z,y) = (f(x),g(y)) and
(x,y)(Q x R){(z',y') if and only if z @2z’ and y Ry'. This is the basis for a
symmetric monoidal structure on X, with the designated terminal object as
the unit; for example, the symmetry map from X ® ¥ to Y ® X consists of
the exchange function and the total relation on X x Y.

Projection maps mp: X ® ¥ — X and 7: X ® ¥ — Y can be defined to
consist of: the usual projection functions on X x Y, and equivalence rela-
tions that relate (x,y) pairs having the same y or x components, respectively.
These maps are termed “expansions” in [43,27], where the opposite category
is considered, and similar maps are treated in [31].

We can also define a natural family of diagonal maps dx: X — X ® X
whose components are: the diagonal function on X and the total relation on
X. Note, however, that dx ; m; # idx, and ® is not a categorical product.

4.2 Semantic Category and Basic Functors

The semantic category for our model is the category DX™ of contravariant
functors from the category of possible worlds to D, where D is the category
of w-cpos (i.e., possibly bottom-less w-complete posets and continuous func-
tions), with all natural transformations as the maps. This is essentially the
same semantic category used in [43,27]. Finite products in D*" can be ob-
tained pointwise from the familiar products in D.

We now consider interpretations in DX*” for the basic types (expressions
and commands) in the programming language. First, we define the “domain-
of-states” functor, St, to be the covariant functor from X to D such that
St(X) = X, discretely-ordered, and St(f, Q) = f. Contravariant functors for
expression types can then be defined pointwise as follows:

[7]X = St(X) — (Vz)- and [r]fe = St(f);e

where V is the set of values associated with 7; i.e., Vi is the set of integers
and Vyoor 1S the two-element set of truth values.

For the command type, if X is a world then ¢ € [comm]X is a fam-
ily of partial functions, indexed by all X-maps with co-domain X, so that
c(f:Y — X) is a partial function on St(Y"). The uniformity condition on the
family is the following “semi-commutativity” requirement: for all f:Y — X
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and g: 7 — Y,

c(g; f);St(g) € St(g):c(f),

where the C relation is graph inclusion of partial functions:

c(f)

St(g) 2 St(g)

c(g; f)

The semi-commutativity allows command meanings to become less-defined in
more-restricted worlds; however, the family must also satisfy the following
commutativity requirement arising from the equivalence-class component of

X-maps. For any X-map (f,Q):Y — X and y € St(Y), let
Yi=A{y eSt(Y)yQy'}

(i.e., the set of states @-reachable from y); then
co(f.Q)

su(ry)| [sun)
.

!
(Y5 (1,Q) "
must commute (and not just semi-commute), where [Y': Y’ — Y is the X-map
with components: the insertion function from Y’ to Y, and the total relation
on Y’. This requirement is imposed to ensure that, when ¢(f, )) has a defined
result, it preserves the (Q-equivalence class of its argument.

The morphism part of [comm] is defined as follows: for any X-map
f:Y — X, command meaning ¢ € [comm]X, and X-map g: Z — Y,

[comm]fcg = c(g:f)

This makes [comm] a contravariant functor from X to D, as required.

We now discuss some examples to show how these functors interact with
the X-maps defined in the preceding section.

Because of maps from subsets of state sets, expression meanings in the
semantics cannot have side effects, not even “temporary” ones. For any world
W and w € W we can restrict to the singleton set of states {w} using the “re-
striction” map [{w}: {w} — W whose components are: the insertion function
and the total relation on {w}. Then, for any expression meaning e € [7]W,
the value of e in state w is completely determined by the meaning [7]([{w})e
at world {w}:

29



~ L4 LRALIN W U

W ¢ (Vi)

St([{w})
wy” ITI(Rwhe

where the vertical arrow is the insertion of {w} into W. There can be no side
effects during evaluation of e(w) because, in world {w}, there are no other
states to change to!

The behaviour of commands under restrictions is quite different. Consider
the command meaning ¢(-) € [comm](W ® Z) corresponding to an assign-
ment statement z := z + 1, where z accesses the Z-valued component in
X ® Z. The partial function for ¢(idygz) maps (w,n) to maps (w,n + 1).
But we also need to define ¢(f) for all other X-maps f into W ® Z, including
restriction maps. In particular, if we consider ¢([{(w,n)}) then this compo-
nent of ¢ cannot produce an output state, because (w, n—+ 1) is not an element
of the world {(w,n)}. More generally, c¢(f)s can be defined only if (w,n + 1)
is in the range of St(f). In contrast to the previous example, command mean-
ings are not completely determined at singleton worlds, just because they may
change the state.

Suppose now that we restrict to the world

Y ={(w,n) e W®Z|niseven}

and consider the composite z := z+4+1;2z := 241, and its semantic counterpart
¢ ; c. Sequential composition is interpreted componentwise, so for command
meanings ¢; and ¢y, (¢1;¢9)(f) is just the composition ¢;(f);ca(f) of the partial
functions for the components. Thus, we get that (¢;c¢)(idwgz)(w,n) = (w,n).
However, (c¢;¢)(]Y){w, n) is undefined, because ¢([Y){w, n) is undefined. The
attempt to “stray” out of Y, even at an intermediate state, leads to divergence.

4.3 Non-Interference

4.3.1  Tensor Product

Intuitively, meanings a € A(W) and b € B(W) are non-interfering if neither
makes active use of any memory used by the other. We formalize this intuition
as follows: a # b iff there exist worlds X and Y, an X-map f: W — X ®Y and
meanings a’ € A(X), b’ € B(Y') such that A(f;m)d’ = a and B(f ;m )b = b:

deAX) X Xey-T.y b e B(Y)

A(f i mo) f B(f;m)

a€ AW) w be B(W)

The idea is that a and b “come from” disjoint worlds X and Y, respectively.
The archetypical example of this arises in the declaration of a new local vari-
able: the new variable and non-local entities are non-interfering because they
can be viewed as “coming from” the factors of a product world [27, Section 5.
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The map f in the definition of a # b allows for sharing of passively-used
memory, as in

o B!

X®7Z

XRZIRZRY Y

idX X 6Z X ldy

XRZRY

The composite maps from X ® Z ® Y to X ® Z and Z ® YV have the equality
relation = as the equivalence-relation component on /7; this ensures that the
shared memory Z can only be used passively. An example is discussed below.

We can now define a bifunctor ® on DX to interpret type assignments and

the non-interfering product type constructor in the syntax. For any functors
A, B: X°® — D and world W,

(A®B)(W) = {{a,b) € (Ax B)(W) | a#b}

and the morphism part is defined as follows; for any f: W X, Y,
(A® B)(f){a,b) = (A(f)a, B(f)b) .
Ifn: A= A" and p: B = B, then
(1 1) (W){a,b) = (n(W)a, u(W)b) .
To complete the monoidal structure on D*"", we define the unit to be a

specified terminal object 1, which can be defined pointwise. These definitions
make (DX ®,1) a symmetric monoidal category.

4.3.2 Sharing and Contraction
To illustrate the interaction between sharing and disjointness in the definition
of ®, we consider a map

||I: [comm] ® [comm] = [comm]

for interpreting the deterministic parallel composition of non-interfering com-
mands. Given (¢, ¢) € ([[commﬂ ® [[commﬂ)(W), there exist ¢| and ¢, as
follows:

¢ €comm]X X+ X@V-—"rV (¢ € [comm]Y
[comm](fim)  f [comm](f ; m)
¢ € [comm]W w ¢o € [comm]W

Define ¢} ® ¢, € [comm](X ® Y) to be the component-wise product map;
e, (df ®cy)(g) = () g) x (cyg), using the morphism part of the cartesian
product x in the category of sets and partial functions. To get a meaning at
world W we use map f, as follows:

| (W)(er,¢2) = [[comm](f)(c) @) -

Here, X, Y, ¢| and ¢, are not uniquely determined, but the functoriality re-
quirements on [comm)] are sufficient to ensure that this is a good definition.
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The f map is what allows for a limited amount of sharing. To illustrate
this, suppose X =Y = Z® 7, ¢|(id)(ny,ne) = (no+1,ny) and ¢, (id)(ny, ny) =
(n1,m1 + 3). Then, we can form a composite command in which ¢] and ¢
operate on disjoint portions of the state:

®cy€comm)|(Z@ZQZR7) .
Sharing can be achieved via a diagonal map

VAW AA

YA
yielding the meaning
¢ = [comm](id; ® 6, @ idz)(c} ® c}) .

We find that ¢(id)(n1, ne, ng) = (na+1, ny, no+3): the two middle components
in the product 7 ® Z ® Z ® Z get identified, which is to say, shared, by the
diagonal map. Intuitively,

e ¢} corresponds to a command z .=y + 1
¢, corresponds to a command z := gy’ + 3, and

* ¢ corresponds to the command z :=y +1 || z := y + 3, obtained by parallel
composition followed by Contraction of y and v/,

where the identifiers correspond to evident components in Z* and Z3.

Thus, the semantics of || is given by combining functions on disjoint state-
sets, followed by sharing. This corresponds closely to how parallel commands
are typed: first, commands with no identifiers in common are combined, and
then sharing is introduced using the Contraction rule.

4.3.8  Ezponential

An ezponential construction right adjoint to ® makes DX™ a closed cate-
gory; (A —o B)(W) is defined to be the set (ordered pointwise) of families
q(X): A(X) — B(W ® X) of continuous functions indexed by worlds X, such
that, for all X-maps f: Y — X, the following naturality diagram commutes:

AX) — 1Y) g g )
A(f) B(idw ® f)
A —1Y) | g e vy

(A —o B)(W) is simply the (pointwise-ordered) hom-set DX (A, B(W® ))
Note that the argument of ¢(X) is an element of A(X); i.e., W is not involved,
corresponding to the principle that a procedure and its argument are disjoint.
The morphism part of A —o B is defined as follows: for any X-map f: X — W,
(A— B)(f)(q)(Y) =q(Y); B(f®idy). If n: A" = A and p: B = B’, then
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n—o u: (A—o B) = (A" —o B') is given by
(n—o p)(W)(p € (A—o B)W)(X) = n(X);p(X); u(W & X) .
The application map app(A, B): (A —o B) ® A = B is defined by
app(A4. B)(W){q € (A—o B)(W),a € AW)) = B(f)(¢(V)a') .

where f:W — X ®Y, A(f;m)d’ = a, and (A —o B)(f ; m)¢ = q. Here,
f[W = X®Y,d € A(X) and ¢’ € (A —o B)(Y') are not uniquely determined,
but the naturality condition on procedure meanings is sufficient to ensure that
this is a good definition. If n: A® B = C, the curried map n*: A = (B —o C)
is defined by

" (W) (a' € AW))(X)(b' € B(X)) = n(W & X){A(mo)a’, B(m)b') .
Proposition 4.1 (DX, ®,1,—0) is a symmetric monoidal closed category.

Proof. The structure described is an instance of an abstract construction
presented in [8]. O

4.4 Passivity

Intuitively, a € A(W) is passive if it doesn’t interfere with anything. This can
be defined rigorously using “state-change constraint” endomaps ay: W — W
in X whose components are: the identity function on W and the equality
relation on W. It is easily verified that the ay are idempotent maps, and,
furthermore, that they constitute a natural family of maps; i.e., o is a natural
idempotent on the identity functor.

The importance of the ay for treating passivity is that, because of the
definition of [comml]|, they preclude any state changes; hence A(ay) applied
to any a € A(W) “pacifies” it so that it cannot interfere with anything. For
example, suppose that ¢ € [comm]W is the denotation of w := w + 1; the
second uniformity condition on command meanings ensures that c(ay)s can
be defined only if ¢(idy)s = s, and so, for this ¢, we obtain that [comml](ay)c
is everywhere-undefined.

The effect of state-change constraints on expression meanings is quite dif-
ferent. For each world W and e € [7]|W, [7](cw)e = e. State-change con-
straints have no effect here because expressions cannot cause side effects.

These examples suggest the following definition: a € A(W) is passive if and
only if A(aw)a = a. For example, [skip]|W (a family of identity functions) and
[diverge]W (a family of everywhere undefined functions) are passive elements
of [comm]W.

The following results establish the connections between passivity and non-
interference.

Proposition 4.2 Ifp € P(W) and q € Q(W) are passive, p # q.

Proof. If p and ¢ are passive, P(aw)p = pand Q(aw)g = ¢; but ay =
ow;m; for 2 = 0,1, and so p # q. O

Proposition 4.3 a € A(W) is passive iff a # a.
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Proof. The “only if” part follows from the preceding Proposition.

In the other direction, suppose that a # a; then there exist worlds X
and Y, ax € A(X), ay € A(Y), and an X-map f:W — X ® Y such that
A(f;m)ax = a = A(f;m)ay. Let Q; for i = 0,1 be the equivalence-
relation components of f; m; then (Iy,Q;); f;m = f;m, and so we
get, by functoriality of A, that A(Iw,Q;)a = a for i = 0,1. This gives us

that A((IW,QO) : (IW,Q1))(1, =a ; but (I, Qo) ; Iw, Q1) = aw, and so a is

passive. O

An object A of DX is passive iff, for every world W, every a € A(W) is
passive. For example, a terminal object 1 is passive because it is a constant
functor, and [[7] is a passive object because, for any world W and e € [[T]]W,

[7](aw)(e) = St(aw);e  morphism part of [7]
=e St(ayy) is the identity function
Let P be the full subcategory of passive objects of DX™. This determines

a model of SCIR, which follows in fact as a special case of the abstract results

of [10].

Theorem 4.4 [10] Category DX™, together with subcategory P, comprise a
bireflective model of SCIR. O

The following data are thus obtained, allowing us to interpret the SCIR typing
rules:

* the bireflector S: DX — P, which takes A(X) to the sub-cpo of passive
elements: SAX = {a € A(X) | a is passive}, and SAfa = Afa;

e the unit n4: A — SA of S+ .J, given by nsWa = A(ayw)a; and
e the counit ¢/;: SA — A of J 4 S, given by the inclusion SAW — AW.

4.5 Interpretation of the Constants

We now present interpretations of selected constants. The interpretation of ||
has already been given in Section 4.3.2.
Sequential composition is given by a map

The definition is sequence(W){c1, co)(f) = c1(f) ; ca(f), using composition of
partial functions. One can show that the following diagram commutes

exchange

i I

[comm ® comm] [comm ® comm]|

[comm x comm] [comm]|

Sequence
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where || is the interpretation of parallel composition from Section 4.3.2, i
is the evident inclusion, and exchange is the twist map exchanging the two
components of ®. As a consequence, if commands C; and C5 don’t share any
identifiers, we have the equivalences C1;Cy = Cy;Cy = Cy || Cy = Cy || O,
which wouold not hold in the absence of interference constraints.
For assignment, we define a map
assign: (([[T]] —o [comm]) x [[T]]) X [r] = [comm] .

Because of the presence of X instead of ® on the left, we cannot simply use the
app map to apply the procedure. To deal with this, we supply the “acceptor”
component of a variable with a constant-function argument. Given v € V,,

define k, € [7]1 to be the constant meaning such that k,(f)(w) = v for all
fi1 X5 W and w € W. We can then define the assignment map as follows.
i(a(1) (k) {w,*)), if ' (w) = v # —
soign9) { (0. = | AV ) ) =2
undefined, if '(w) = —

where i: W ® 1 — W is the unity isomap.
The block-expression combinator do, is treated by defining

do,: S ([var[r]] —o [comm]) - [r].

First, let (a,e) € [var[r]]V; be the standard “local” variable meaning at world
V, [27). Then

v, if p(V;){a,e){w, vy) = (w,v)
—, if p(V;)(a, €){w, vp) is undefined

do.(W)pw =

where vy is a standard initial value for 7-typed variables. The passivity of p
guarantees that w’ = w whenever p(X)(e)(w, x) = (w', '), so there is no need
for a snap-back effect.

Finally, we show how the fixed-point combinator can be interpreted by
defining a map

Yo: (101 — [01) = [A]-

If p € S([0] —o [f])Z then we can obtain a function p' : [0]Z — [0#]Z by
composing p[Z]: [0]7 — [0]7 ® Z with the map [0]d, : [0]Z ® Z — [0] Z.
Yy[Z] sends p to the least fixed-point of p'.

Other constants can be treated as in [31,43].

4.6 An Alternative Presentation

J.C. Reynolds has suggested (private communication) that an interference-
controlled Algol-like language should be interpreted by families of continuous
functions, indexed by assignments of state-sets to identifiers, with each iden-
tifier in the context interpreted by a meaning relative to its own state-set. In
our framework, this would mean that a syntax judgement IT | T' = P: 6 would
be interpreted by a family of functions ¢(W), indexed by assignments W of
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worlds to identifiers, with the functionality of ¢(W) being

( II s (W/)) X ( II [t (W/)) — [[9]]( 1I WL)
tedom I1 tedomT tedom (T1,T")
Note that the products in the domain of ¢(W) are cpo products, whereas the
product in the co-domain is a set product. This form of semantic interpreta-
tion seems intuitively appealing because it makes the disjointness of distinct
identifiers very explicit; but it is highly non-standard.

In this section, we show that we can define a bijection between the standard
form of semantics discussed in earlier sections and this non-standard form. To
simplify the treatment, we will consider natural transformations

AR B> C
and families of functions
(X, Y)AX)xBY)—>C(X®Y)

natural in X-objects X and Y. From a natural transformation 7, we can
define a family ¢(X,Y") of functions as follows:

$(X,Y)(d, V) = n(X ®@Y)(A(m)d, B(m)b')
In the other direction,
n(W){a, by = C(f)(b(X, V) (a,1))

where f:W 25 X ®@V, d € A(X) and b/ € B(Y) such that A(f;m)d' = a
and B(f ; m)b' = b must exist because (a,b) € (A ® B)(W); the naturality
requirement for ¢(X,Y’) ensures that n(WW)(a, b) is uniquely determined. It is
a routine exercise to verify that the mappings n — ¢ and ¢ — n just given
are mutual inverses.

Uday Reddy has launched a criticism at semantics based on global states
[36], and developed an alternate approach in which different identifiers denote
independent “objects,” where the state is implicitly represented in “histories
of observations.” We would claim that functor-category models, though they
are not stateless, also represent a move away from the viewpoint of a common
“global store” that programs act upon. For example, in the presentation
sketched in this section, and implicitly in the standard presentation, each
identifier is associated with its own state set, separate from the state-sets
associated with other identifiers; intuitively, each identifier denotes an object
acting upon a piece of local state.

5 Concluding Remarks

Syntactic control of interference is an important step toward the ideal of a
“clean” form of imperative programming. It retains basic principles of Algol-
like and functional programming, including equational laws such as the [
law; this it has in common with recent work emanating from the functional-
programming community (see, e.g., [32,22,19]). But interference control also
begins to address some of the problems of state, such as aliasing. Functional
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principles alone do not make state significantly easier to reason about, as is
abundantly clear, for example, from specification logic. Controlling interfer-
ence addresses some of the most prominent difficulties.

At present, syntactic control of interference has developed to the point
where it possesses quite satisfactory type systems and models. Nevertheless,
there are many issues that need to be addressed before the ideal of a clean
and practical form of imperative programming can be realized. The following
is a partial list of immediately relevant issues.

(1)

Our example programming language does not have facilities for program-
ming dynamically-reconfigurable data structures of the kind often imple-
mented using pointers or references. Simple languages of this form can
serve as a useful testbed for ideas on integrating imperative and func-
tional programming, but extending the basic approach of SCI to support
coding of dynamic data is clearly crucial. It is not obvious what the best
way to do this might be.

A call-by-value version of SCI could have some interest. A challenge for
such a design is to maintain a controlled form of side effects.

One motivation for interference control is that it should simplify reasoning
about programs. To find evidence for this position, one might investigate
a version of specification logic stripped of the pervasive # assumptions.
A more ambitious program would be to set down axioms characterizing
independence of identifiers, possibly using the parametricity ideas of [28],
and to investigate the thesis that such a characterization simplifies the
logical form of specifications needed for familiar objects or procedures.

The complexity of type checking and the possibility of type inference need
to be investigated for the type system presented here.

The semantic model presented here possesses two kinds of exponentials,
one for the monoidal closed structure, and another, adjoint to x, for
cartesian closed structure. This raises the question of whether inter-
ference control and uncontrolled Algol can coexist harmoniously in one
system, which might be useful in addressing difficulties with jumps and
recursive definitions having active free identifiers. Various “unified log-
ics” [12,2] have similar aims, combining intuitionistic, linear, and classical
logics; we would want to combine intuitionistic and affine systems. An
interesting point to note is that here the two kinds of closed structure
coexist in the same category, so there is no need to pass to a separate
category, such as a Kleisli category, to interpret the intuitionistic (i.e.,
Algol’s) function types.

The hope for a “linear logic-based functional language” that can express
state manipulation remains unrealized, or certainly not adequately real-
ized; but the similarities with interference control, both in aims and in
technical details, are alluring. Rather than taking functional program-
ming as the starting point, a reasonable approach might be to modify
syntactic control of interference so that it provides a range of types for
expressing manipulation of state, instead of a single type comm.
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