Greibach Normal Form Transformation.
Revisited

Norbert Blum
Robert Koch
Informatik IV, Universitat Bonn
Romerstr. 164, D-53117 Bonn, Germany
email: blum@cs.uni-bonn.de

August 25, 1998

Abstract

We develop a new method for placing a given context-free gram-
mar into Greibach normal form with only polynomial increase of its
size. Starting with an arbitrary e-free context-free grammar G, we
transform G into an equivalent context-free grammar H in extended
Greibach normal form;i.e., in addition to rules, fulfilling the Greibach
normal form properties, the grammar can have chain rules. The size
of H will be O(|G|?), where |G] is the size of (G. Moreover, in the
case that G is chain rule free, H will be already in Greibach normal
form. If H is not chain rule free then we use the standard method
for chain rule elimination for the transformation of H into Greibach
normal form. The size of the constructed grammar is O(|G/[%).

1 Introduction and definitions

We assume that the reader is familiar with the elementary theory of finite
automata and context-free grammars as written in standard text books, e.g.
[1, 4, 5, 11]. First, we will review the notations used in the subsequence.

A context-free grammar G is a 4-tuple (V,X, P,S) where V is a finite,
nonempty set of symbols called the total vocabulary, ¥ C V a finite set of
terminal symbols, N = V' \ ¥ the set of nonterminal symbols (or variables),
P a finite set of rules (or productions), and S € N is the start symbol. The
productions are of the form A — «, where A € N and a € V*. « is called
alternative of A. L((G) denotes the context-free language generated by G.
The size |G| of the context-free grammar G is defined by

Gl= 2. lg(Aa),

A—a€P

where [g(Aa) is the length of the string Aa. Two context-free grammars
G and G’ are equivalent if both grammars generate the same language; i.e.,
L(G) = L(G"). Let € denote the empty word. A production A — ¢ is called
e-rule. A production A — B with B € N is called chain rule.

A leftmost (rightmost) derivation is a derivation where, at every step, the
variable replaced has no variable to its left (right) in the sentential form from
which the replacement is made.

A context-free grammar G = (V, X, P, S) is e-free if each production is of
the form

1) A= awithae (V\{SHT, or
i) S —e.

A context-free grammar G is in Chomsky normal form if each production
is of the form

i) A— BC with B,C € N\ {5},
ii) A— awitha € X, or
i) S e

A context-free grammar G is in extended Chomsky normal form if each
production is of the form

i) A— BC with B,C' € N\ {S},
i) A— B with Be N\ {S},

iii) A — a with a € ¥, or
iv) S —e.

A context-free grammar G = (V, X, P, S) is in Greibach normal form if
each production is of the form

i) A= aawitha e X, ae (V\{S})" or
i) S —e.

A context-free grammar G = (V, X, P, S) is in extended Greibach normal
form if each production is of the form

i) A= aawitha € X, ae (V\{S}),
ii) A— B with Be N\{S}, or
i) S e

A context-text free grammar in (extended) Greibach normal form is in 2
(extended) Greibach normal form if for all productions of type i) lg(a) < 2.

Given an arbritrary context-free grammar G' = (V, X, P, 9), it is well
known that G can be transformed into an equivalent context-free grammar G’
which is in Greibach normal form [3, 4, 5, 11]. But the usual algorithms pos-
sibly construct a context-free grammar G’, where the size of GG is exponential
in the size of G (see [4], pp. 113-115 for an example). Given a context-free
grammar (without e-rules and without chain rules, Rosenkrantz [9] has
given an algorithm which produces an equivalent context-free grammar G’
in Greibach normal form such that |G'| = O(|G|?). Rosenkrantz gave no
analysis of the size of G'. For an analysis, see [4], pp. 129-130 or [7]. Given
an arbitrary context-free grammar G' = (V, X, P, 5), the usual algorithm for
the elimination of the chain rules can square the size of the grammar (see
[4], p. 102 for an example). No better algorithm is known. Hence, given an
arbitrary context-free grammar &, the elimination of the chain rules in a first
step and applying Rosenkrantz’s algorithm in a second step can produce an
equivalent context-free grammar G in Greibach normal form of size O(|G|%).

Rosenkrantz’s algorithm uses formal power series. In [10] Urbanek has
given an algorithm for the transformation of a given context-free grammar

in Chomsky normal form into Greibach normal form which produces in a
pure derivation-oriented way without using systems of equations the same
grammar as Rosenkrantz’s algorithm. Ehrenfeucht and Rozenberg [2] have
given another algorithm which constructs for a given arbitrary e-free context-
free grammar G an equivalent grammar in 2 Greibach normal form of size
O(|G|°). They also use the language Lp of sentential forms of terminal
leftmost derivations introduced in Section 2. But during the construction
they use a chain rule free right linear scheme H, where the absence of chain
rules seems to be essential. In [8], we have given a similiar construction. But
since we do not need the chain rule freedom in between, we get an equivalent
context-free grammar in 2 Greibach normal form of size O(|G/|*).

We will develop a more direct method for placing a given context-free
grammar into Greibach normal form with only polynomial increase of its
size. Starting with an arbitrary e-free context-free grammar G, we transform
(¢ into an equivalent context-free grammar H in extended Greibach normal
form. The size of H will be O(|G|?). Moreover, in the case that G is chain
rule free, H will be already in Greibach normal form. If H is not chain
rule free, then we use the standard method for chain rule elimination for the
transformation of H into Greibach normal form. The size of the constructed
grammar is O(|G]*).

In [6], Piricka-Kelemenova has shown for a specific infinite family of con-
text-free grammars G that any equivalent context-free grammar in Greibach
normal form has size Q(|G|?) (see also [4], p. 131). This is the best lower
bound known so far such that a gap of O(|G|?) between to the best lower
bound and the new upper bound still exists.

2 The method

Let G = (V,X, P,S) be an arbitrary e-free context-free grammar. Note that
by the definition of e-freedom, the start symbol does not appear at the right
side of any production. Productions of type A — aa with a € ¥ already
fulfill the Greibach normal form properties. Our goal is now to replace the
productions of type A — Ba, B € N\ {S} by productions which fulfill the
Greibach normal form properties.

The idea is the following. For all B € N \ {5}, we want to construct a

context-free grammar G = (Vg,V, Pg, Sg) such that

a) G is in extended Greibach normal form; i.e., for each rule A — «
there holds @ = ay with a € Vor a € Ng =V \ V,

b) S — o € Pg implies that a = avy with « € ¥ and v € (Vs \ {SB})",
and

c) H is obtained from G by replacing each production A — Ba, B €
N\ {S} by the set {A — aya | Sp — avy € Pg} of productions and
adding P\ {Sg — a | a € (VB \{SB})*}, B € N\ {5} to the set of

productions.

For the construction of GGg, we are interested in leftmost derivations of
the form
B = avyor B=;, Ca= aya,

where a € ¥, C' € N\{S} and o,y € (V\{5S})*. Up to the last replacement,
only alternatives from N (V' \{S})* are chosen. The last replacement chooses
for C' an alternative in X(V \ {S})*. Such a leftmost derivation is called
terminal leftmost derivation and is denoted by

B =y, ay and B =7, aya, respectively.

Let Lp = {ad € E(V\ {S})" | B =, ad}. Our goal is to construct a
context-free grammar G = (Vg,V, Pg, Sg) such that

a) L(Gp) = Lg, and

b) each alternative of a variable begins with a symbol in V or is itself a
variable.

For the construction of Pg, let us consider a terminal leftmost derivation
B = Doy = Dyagay = ... = Doy ...y = avyoy... o

in more detail. Then a € ¥, D; € N\ {S} and v, € (V\{5})", 1 <i <t
ayo = ayoy. .. aq is the corresponding terminal string in Lp.
For A € N, the set W(A) contains exactly the variables which can be

reached from A using only chain rules; i.e.,

W(A)={CeN|A="C}.

5

Our goal is now to define the productions in Pg in a way such that a ter-
minal leftmost derivation is simulated by a rightmost derivation backwards.
For doing this, we introduce for all C' € N the new variable C's. The right-
most derivation with respect to the terminal leftmost derivation above is the
following

Sp = ayDpy = ayayDpy—1 = ... = avyoy...a3Dpy = ayoy ... 0.
There are three types of productions:

1. Productions with the start symbol Sg on the left side, the so-called
start productions. These productions correspond to productions of GG
where the first symbol of the right side is in X.

2. Productions which are no start productions with a variable in Ng\{Sg}
on the right side, the so-called inner productions. These productions
correspond to productions of G where the first symbol of the right side
isin N\ {S}.

3. Productions which are no start productions with no variable in Ng \
{Sp} on the right side, the so-called final productions. These produc-
tions correspond to productions of (G where the left side is in W(B)
and the first symbol of the right side is in N \ {S}.

Altogether, we obtain the context-free grammar Gg = (Vg,V, Pg, Sg) de-
fined by

Ve = {A4p | A€ N}UV, and

Pg = {S — ay |C —waye Pfor C e W(B),ae X, yveV*}
U{Sg = ayCp |C —ay € Pac¥,vyeV*}
U{Cg—aDg |D—=CaeP,DeN\{S},CeN,aeV*}
U{Cp = « | D - CaeP,DeW(B),CeNaecVT}

The grammar G’ has the following properties:
1. L(Gg)=Lg
2. |Gl <3|G|

3. Sp — a € Pg implies that a = ad, a € X.

6

4. Gp is in extended Greibach normal form with respect to the terminal

alphabet V.
5. B # C implies Ng N No = .

Starting with an arbitrary derivation in GGg and G, respectively, Property
1 can easily be proven by construction of the corresponding derivation with
respect to the other context-free grammar (¢ and G, respectively. Property 2
follows from the observation that for every production of GG with first symbol
in ¥ there correspond at most two start productions of GGg and the fact that
each other production of G corresponds to at most one inner production and
to at most one final production. Note that the length of a start production
is at most equal the length of the corresponding production in G plus 1
and the length of any other production is at most equal the length of the
corresponding production in . Properties 3 — 5 follow directly from the
construction.
Now, we obtain H from G by performing the following algorithm:

(1) For all Be N\ {S} add Py to P.
(2) Forall B,E € N\ {S} replace

— each production A - Ba by A — Spa and

— each production A — Ba by Ap — Spa.
(3) Forall B,E € N\ {S} replace

— each production A — Sga by {A — aya | S — ay € Pg} and
— each production Ay — Sga by {Ap = aya | Sp — avy € Pg}.

(4) For all B € N\ {S} remove {Sg — a | S5 — o € Pg}.
The grammar H = (V',%, P, S) has the following properties:
1. L(H) = L(G)
2. [H| = O(|GP)

3. H is in extended Greibach normal form.

4. For all B € N\ {S}, G is replaced by an equivalent grammar G’ of
size O(|G|?).

5. If G has no chain rules then H is already in Greibach normal form.

6. If H is not chain rule free then all chain rules of H are of the form

Property 1 follows directly from the construction. By the definition of Lp,
B e N\{S} it is clear that Steps 1 — 2 do not change the generated language.
Step 3 replaces only some variables by all possible alternatives. Property 2
holds since for all B € N \ {S} the size of G is O(|G|). Note that after
performing Step 2, the size of the grammar is O(|G/|*) and hence, after Step 3
O(|G]*). Moreover, Step 3 produces for all B € N\ {5} for G an equivalent
context-free grammar G’ of size O(|G|*). By construction, it is clear that
the grammar is in extended Greibach normal form. The only possibility to
construct chain rules is during the construction of inner productions in the
case that @ = . But then, P contains the chain rule D — (. Hence,
Properties 5 and 6 are fulfilled.

In the case that H is not chain rule free, we use the standard method
for chain rule elimination, getting an equivalent context-free grammar G’ in

Greibach normal form. This is done by performing for all B € N\ {S} the

following algorithm:
(1) Compute W(Dg) for all Dg € Np.

(2) Replace for all Dg € Ng {Dp — Ep | Dg — Eg € P’} by {Dp — «
a ¢ Ngand 3Cg € W(Dp): Cg — a € P'}.

The grammar ' has the following properties:
1. L(G") = L(G).
9. (' is in Greibach normal form.
3. |G = O(|G]Y).

Properties 1 and 2 follow directly from the construction. Since for all B €

N\ {5}, the size of N is bounded by |G| and the size of G5 is bounded by

O(|G|*), Step 2 replaces each grammar G’ by an equivalent grammar G’ of
size O(|G|?). This implies Property 3.

Altogether, we have proven the following theorem:

Theorem 1 Let G = (V,X, P,S) be an arbitrary e-free context-free gram-
mar. Then there exists an equivalent context-free grammar G' = (V' ¥, P',S)
in Greibach normal form such that |G'| = O(|G]?) if G is chain rule free and
|G'| = O(|G|*) otherwise.

If we want to construct for an arbitrary e-free context-free grammar an
equivalent context-free grammar in 2 Greibach normal form, then we trans-
form G in a first step into an equivalent context-free grammar in extended
Chomsky normal form and apply in a second step the algorithm above to
the resulting grammar. It is easy to see that we get a context-free grammar
G’ in 2 Greibach normal form. Since the first step increases the size of the
grammar only by a small constant factor (see e.g. [4]), |G'| = O(|G|*).

Acknowledgment: We thank Claus Rick for helpful comments, Werner
Kuich for pointing out the work of Urbanek and of Ehrenfeucht and Rozen-

berg to the first author at the 14th STACS in Libeck, and the referees for
helpful suggestions and pointing out some minor errors.

References

[1] A. V. Aho, and J. D. Ullman, The Theory of Parsing, Translation, and
Compiling, Vol. I: Parsing, Prentice-Hall (1972).

[2] A. Ehrenfeucht, and G. Rozenberg, An easy proof of Greibach normal
form, Inform. and Control 63 (1984), 190-199.

[3] S. A. Greibach, A new normal-form theorem for context-free, phrase-
structure grammars, JACM 12 (1965), 42-52.

[4] M. A. Harrison, Introduction to Formal Language Theory, Addison-
Wesley (1978).

[5] J. E. Hopcroft, and J. D. Ullman, Introduction to Autmata Theory, Lan-
guages, and Computation, Addison-Wesley (1979).

9

[6] A. Piricka-Kelemenova, Greibach normal form complexity, 4th MFCS
(1975), 344-350.

[7] A. Kelemenova, Complexity of normal form grammars, TCS 28 (1984),
299-314.

[8] R. Koch, and N. Blum, Greibach normal form transformation, revisited,

14th STACS (1997), 47-54.

[9] D. J. Rosenkrantz, Matrix equations and normal forms for context-free

grammers, JACM 14 (1967), 501-507.

[10] F. J. Urbanek, On Greibach normal form construction, TCS 40 (1985),
315-317.

[11] D. Wood, Theory of Computation, Harper & Row (1987).

10

