
Escape Analysis: Correctness Proof, Implementation and Experimental ResultsBruno BlanchetENS and INRIA Rocquencourt�AbstractWe describe an escape analysis [32, 14], used to determinewhether the lifetime of data exceeds its static scope.We give a new correctness proof starting directly from asemantics. Contrary to previous proofs, it takes into accountall the features of functional languages, including imperativefeatures and polymorphism. The analysis has been designedso that it can be implemented under the small complexitybound of O(n log2 n) where n is the size of the analyzedprogram. We have included it in the Caml Special Lightcompiler (an implementation of ML), and applied it to verylarge programs. We plan to apply these techniques to theJava programming language.Escape analysis has been applied to stack allocation. Weimprove the optimization technique by determining minimallifetime for stack allocated data, and using inlining. Wemanage to stack allocate 25% of data in the theorem proverCoq. We analyzed the e�ect of this optimization, and no-ticed that its main e�ect is to improve data locality, whichis important for e�ciency [8].1 IntroductionToday, most functional languages use a garbage collector(GC) to manage memory. The GC automatically frees theroom taken by unreferenced data when the program runs.However, this mechanism is time consuming. Therefore,stack allocation may be an interesting optimization for suchlanguages, as it allows to statically deallocate data, withoutcalling the GC. Appel claims that "garbage collection can befaster than stack allocation" [3] but in fact we shall see thatthis is only true when there is much more memory than re-ally needed. However, stack allocating data is only possibleif its lifetime does not exceed its static scope. The goal ofescape analysis is precisely to determine, thanks to abstractinterpretation [10, 11], which data can be stack allocated.1.1 Related WorkEscape analysis on lists has been introduced by Park andGoldberg [32], and Deutsch [14] has much improved thecomplexity of their analysis, reducing it to O(n log2 n), withexactly the same results for �rst-order expressions (there is�E-mail: Bruno.Blanchet@ens.fr. Address: 45, rue d'Ulm. F-75005PARIS.Permission to make digital/hard copies of all or part of thismaterial for personal or classroom use is granted without feeprovided that the copies are not made or distributed for pro�tor commercial advantage, the copyright notice, the title of thepublication and its date appear and notice is given that copy-right is by permission of the ACM, Inc. To copy otherwise, torepublish, to post on servers or to redistribute to lists, requiresspeci�c permission and/or fee.POPL 98 San Diego CA USACopyright 1998 ACM 0-89791-979-3/98/01..$3.50

an unavoidable loss of precision in the higher-order case).He has also suggested many extensions.Mohnen [30, 29] describes a similar analysis, but its com-plexity is quadratic and the analyzed language is �rst orderand does not contain imperative operations.Hughes [24] already introduces integer levels to repre-sent the escaping part of data. He does not perform stackallocation, but keeps in memory addresses of data to be deal-located in order to avoid using the GC. The work closest toHughes' is [25] by Inoue, Seki and Yagi, who only free thetop of lists, but give experimental results.Alias analysis [13], reference counting [22, 19], storageuse analysis [34] which is similar to [26, 18, 12, 35] can beapplied to stack allocation though at a much higher cost.Another allocation optimization has been suggested in[38, 5, 2]: region allocation. All objects are allocated inheap regions whose size is not known statically in general,but for which we know when they can be deallocated. Re-gions can therefore be deallocated without GC. This analysissolves a more general problem than ours, but at the cost ofa much increased complexity. In fact, on many programs,opportunities for stack allocation outnumber opportunitiesfor region allocation, as noticed in [5].[16] uses annotated types to describe escape information.The results are not as precise as ours and it only gives in-ference rules and no algorithm to compute annotated types.1.2 OverviewDeutsch [14] proved that his analysis gave exactly the sameresults as Park and Goldberg's for �rst-order purely func-tional programs. Here, in Sections 2 to 4, we give a di-rect correctness proof from the semantics, and we extendit to all the extensions Deutsch suggested: imperative op-erations, pairs, polymorphism, approximate treatment ofhigher-order functions. We also extend the analysis to allinductive types (not only lists). The details of the proofshave been omitted because of their length (more than 20pages).Section 5 describes our implementation which is withinthe complexity bound given by Deutsch : O(n log2 n). Itis based on Caml Special Light (CSL), and improves [14]thanks to intermodular analysis, taking the shortest possiblelifetime for variables, preserving as often as possible tail calloptimizations. We also introduce inlining to increase stackallocation opportunities.Section 6 is an experimental study of the e�ect of the op-timization. The comparison between SparcStation 5, Alphaand Pentium Pro shows that the improvement depends onthe characteristics of the processor. The main improvementis not on GC time but on data locality. We manage to get 5to 20% speedup on many programs, and our analysis can beapplied to the largest applications thanks to its very goode�ciency.1
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Figure 2: The exact and abstract semantics1.3 Notationsfx1 7! y1; :::; xn 7! yng is the function which maps xi to yifor i 2 [1; n]. f [x1 7! y1; :::; xn 7! yn] is the extension of fwhich maps xi to yi for i 2 [1; n]. If f was already de�nedat some of these values, the new value replaces the old one.fjE is the restriction of f to E. Dom(f) is the de�nitiondomain of f .S� is the set of lists whose elements are in S. [] is theempty list. [p1; : : : ; pn] is the list of elements p1; : : : ; pn.p1 : l is the list l at the head of which p1 has been concate-nated. l(i) is the ith element of l.FV (M) is the set of free variables of M .In a lattice, the join is t and the meet is u.2 Analyzed Language2.1 SyntaxThe analysis can handle all features of a functional languageas CSL, but for the theoretical description, we shall restrictourselves to a small subset of CSL. We shall use the followingdata types:� = �1 ! �2 j � list j �1 � �2 j � ref j bool j int j unitThe syntax of the language is summarized on Figure 1.We can easily generalize pairs to records and tuples, letrec to mutually recursive functions. We also extend theanalysis to polymorphism and inductive types (see Sections4.1 and 4.2).Several semantics are associated to this language, begin-ning with an exact denotational semantics, and then approx-imating it by abstract semantics (Figure 2).

x 2 Var Variables` 2 Loc Locationsv 2 Val = ftrue; false;NILg [Z[ Loc ValuesSV = Val [ (Val �Val) [ (Env ! Exp)� Env �Vars 2 Store = (Loc � SV )� StoresExp = Store ! (Val � Store)? Expressionse 2 Env = Var ! (Store �Val) Environmentss[` 7! v] = (`; v) : ss(`) is such that (`; s(`)) is the �rst element of s of the form(`; )e[[x]] = v if e(x) = (s; v)up is the injection from Val � Store to (Val � Store)?let [x] = h in g = (? if h = ?;g[x0=x] if h = up(x0):newloc(s; x) = up(`; s[` 7! x]) where ` =2 Dom(s)Figure 3: Notations2.2 SemanticsWe use a denotational semantics, with store and non-termination denoted by ? (Figures 3 and 4).We use two unusual de�nitions, which are useful to de-�ne the correctness of the analysis: a store is an associationlist to remember the history of its changes, but we also con-sider a store as a function which maps every location to itscontents: Store = Loc ! SV . This is similar to Hoare'sde�nition of execution traces [21] as sequences of tests andassignments. In environments, we memorize not only thevalue but also the store in which it has been created.3 Escape Analysis on PathsThe following analysis can be applied as it is to any func-tional language, even untyped. It is also very precise, so itcan be used as a basis for several less precise analyses whichcan be derived by abstract interpretation. Its drawback isthat it is too complex to be directly implemented. We shalltherefore perform a second step of approximations in Section4. Abstract values associated with data are access pathswhich represent the part of data which is useful (Figure 5):Path = l:Path jr:Path japp:Path j>j?where > means that the whole data is used; ? means thatnothing is used; l means that the left part of a pair, or thehead of a list, or the contents of a reference is used; r meansthat the right part of a pair or the tail of a list is used. appmeans that the data is a function which is applied to anargument.We de�ne path restrictions by:� app:cj! = c, cj! = ? if c is not of the form app:c0.� >jl = >, l:cjl = c, cjl = ? otherwise. We de�ne jr inthe same way.The de�nition of the correctness of the analysis is sum-marized on Figure 6. Here are some explanations.Contexts associated to data are sets of paths: Ctx �P(Path). An empty context would intuitively correspond toan unevaluated expression. Here, because of call-by-value,expressions are evaluated even if the result is not needed,and this evaluation may cause escapement because of im-perative operations. That is why we use non-empty con-texts. (Ctx ;�) is a sup-semilattice. If � : Path ! Path2



[[M ]] : Env ! Exp[[x]]es = up(e[[x]]; s)[[M N ]]es = let [(f 0; s0)] = [[M ]]es in let [(v; s00)] = [[N ]]es0 in let (m; e0; x) = s0(f 0) in m(e0[x 7! v])s00[[fun x!M ]]es = newloc(s; ([[M ]]; ejFV (fun x!M); x))a[[let x =M in N ]]es = let [(v; s0)] = [[M ]]es in [[N ]](e[x 7! (s0; v)])s0[[let rec f(x) =M in N ]]es = [[N ]](e[f 7! (s0; `)])s0 where ` =2 Dom(s), s0 = s[` 7! (�; ejFV (fun x!M); x)] and� = lfp(��1:�e1:�s1:[[M ]](e1[f 7! (s01; `)])s01) where s01 is the store s1 where s1(`) has been replaced by (�1; e1; x)b[[if M then N else P ]]es = let [(x; s0)] = [[M ]]es in if x then [[N ]]es0 else [[P ]]es0[[M ::N ]]es = let [(x; s0)] = [[M ]]es in let [(y; s00)] = [[N ]]es0 in newloc(s00; (x; y))[[(M;N)]]es = let [(`1; s0)] = [[M ]]es in let [(`2; s00)] = [[N ]]es0 in newloc(s00; (`1; `2))[[M ;N ]]es = let [(`; s0)] = [[M ]]es in [[N ]]es0Initial store: s0 = fref 7! (�e:�s0: newloc(s0; e[[x]]); ;; x);deref 7! (�e:�s0: up(s0(e[[x]]); s0); ;; x);a�ect 7! (�e:�s0: newloc(s0; (�e0:�s00: up(NIL; s00[e0[[m]] 7! e0[[n]]]); e; n)); ;; m);fst 7! (�e:�s0: let (h; t) = s0(e[[x]]) in up(h; s0); ;; x); snd 7! (�e:�s0: let (h; t) = s0(e[[x]]) in up(t; s0); ;; x);null 7! (�e:�s0:(e[[x]] = NIL); ;; x)gInitial environment: e0 = fref 7! (s0; ref); ! 7! (s0; deref); := 7! (s0; a�ect); true 7! (s0; true); false 7! (s0; false);n 7! (s0; n) if n 2 Z; [] 7! (s0;NIL); hd 7! (s0; fst); tl 7! (s0; snd); null 7! (s0; null);fst 7! (s0; fst); snd 7! (s0; snd)g.aWe create minimal closures, so we only store in the environment of the closure the free variables of fun x! M .bWe do not write s01 = s1[` 7! (�1; e1; x)] because we do not want to consider theses changes as assignments.Figure 4: Denotational semantics
3 l []rl1 r rl 2
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Figure 5: Paths. For example, 2 is represented by path r:l:>maps c to one of the paths l:c; r:c; app:c; cjl; cjr; cj!, we de-�ne �C : Ctx ! Ctx by �C(c) = f�(p)jp 2 cg. We willuse the same notations for � and �C . The path c and thecontext fcg will be considered identical.Intuitively, s0 is after s if s0 can be obtained after s duringthe execution of a program.a(s) is the set of locations of right hand sides of assign-ments from the store s0 at the beginning of the program tothe store s. To be able to de�ne this from the store s only,the stores must keep the history of their modi�cations. Thatis why we have encoded stores as association lists.loca(s; v; c; ep) is the set of locations which escape whenwe keep the locations designated by context c in the value vin the store s. The environment ep indicates which parame-ters will be given to the function v (it is empty if v is not afunction). (1) makes sure that if we estimate the escapementin a given store, the analysis will remain correct in a futurestore. (3) is the set of locations accessible from ` in the stores, except that we exclude locations in a(s) to balance thee�ect of imperative operations. Intuitively, we follow a pathin two di�erent ways: for data structures, we simply followpointers (4, 5), whereas for functions, we apply them to aparameter taken in the parameter environment (6).dest((s; v); c) is the set of locations in the value v rep-resented by the context c. If v is not functional, the unionon ep and the subtraction of the locations of ep in (9) are

useless.In De�nitions (10) and (11), we mark the part(loca(s; v; c; ep) orA) of the result represented by the contextc and the stored locations which we consider as escaping, andwe search which locations of the variables are marked.f is �-transitive if it takes into account locations thatescape through intermediate variables. For example, in theexpression :let x = M in let y = N in Pif f = E[[P ]]� is the analysis of P , and if we keep the part rep-resented by context c of the result, the escapement of y willbe represented by c1 = fcy. This escapement of y will causethe escapement c2 = �[[y]]c1x of x. On the other hand, whatescapes from x is what escapes through assignments duringthe evaluation of N , �[[y]]?x, union what escapes throughthe result, fcx. �-transitivity asserts that this escapementtakes into account the escapement c2 through y.Example 3.1let x = (true :: []) :: [] inlet y = hd x iny []true []l rl rx2 x1xyLet e and s be the environment and the store when y isevaluated. Let x1, x2 = y be the locations such that e[[x]] =x1, e[[y]] = x2, s(x1) = (x2;NIL), s(x2) = (true;NIL). Wecompute �>x such that corrv(e; s; y; �):loca(s; y;>; []) = fx2g, dest((s; x1); l:>) = fx2g anddest((s; x1); l:l:>) = ; therefore �>x = l:>.Theorem 3.2 Consider an expression let x = M in Nor let rec x(y) = M in N . Assume that the location `at the top of x is new when x is de�ned.Let s and s0 be respectively the stores at the beginning andat the end of an evaluation of N , and r the result of N . If` =2 ((a(s0)�a(s))[ loca(s0; r;>; []))\ loc(s) = (a(s0)[r #s0 )\ loc(s)� a(s), then ` can be stack allocated.Proof sketch: In this situation, ` is only accessible through x inthe store s0. Indeed, ` =2 a(s) and ` 2 loc(s) so ` =2 a(s0) [ r #s0 .3



Domains Accessible locationsc 2 Ctx = P(Path)� f;g Contexts ` #s = flocations accessible from location ` in store sgi 2 Ind = N Parameter indices v #s = ; if v 2 ftrue; false;NILg [ Z� 2 Exp# = Val# = Ctx ! (Var [ Ind)! Ctx e #s = [fe[[x]] #s j x 2 Dom(e)g� 2 Env# = Var ! Val# Abstract environment loc(s) = Dom(s) (locations existing in the store s)E[[M ]] : Env# ! Exp# Abstract semantic function loc(ep) = [i;ep(i)=(vp;sp)vp #spep 2 Envp = (Store �Val)� Parameter environment loc(s; ep) = loc(s) [ loc(ep)Store order Stored locationssAs0 , s0 = s[` 7! v] where ` 2 Loc a : Store ! P(Loc)if ` 2 Dom(s), ` is mutable (ie has been created by a reference) a([]) = ;v 2 val(s) [ val(s)� val(s) [ (Env ! Exp)� (Var ! val(s))�Var a(s[` 7! v]) = a(s) [ ` #s0 if ` 2 loc(s)val(s) = loc(s) [ ftrue; false;NILg [ Z (a destructive assignment)s0 after s if sA�s0 (A� is the reexive and transitive closure of A) a(s[` 7! v]) = a(s) otherwise (an allocation)Context concretizationloca : Store �Val � Ctx � Envp ! P(Loc)If c is a path,loca(s; v; c; ep) = [floca0(s0; v; c; ep)js0 after sg (1)If c = ? or v 2 ftrue; false;NILg [ Z, loca0(s; v; c; []) = ; (2)If c = >, loca0(s; `; c; []) = ` #s � a(s) (3)If c = l:c1, s(`) = (`1; `2) (pairs or lists) or s(`) = `1 (references), loca0(s; `; c; ep) = loca(s; `1; c1; ep) (4)If c = r:c2, s(`) = (`1; `2), loca0(s; `; c; ep) = loca(s; `2; c2; ep) (5)If c = app:c1, s(`) = (m;e0; x), m(e0[x 7! p1])s = up(`00; s0),loca0(s; `; c; (s; p1) : ep) = ((a(s0)� a(s)) [ loca(s0; `00; c1; ep)) \ loc(s; ep) (6)If the store s is not the one indicated for the parameter p1 in the parameter environment ep, the result is ;.If c = app:c1, s(`) = (m;e0; x), and m(e0[x 7! p1])s = ?, loca0(s; `; c; (s0; p1) : ep) = ; (7)If the path c does not correspond to the value ` (the path begins with r for a reference, with l or r for a closure,with app for something else than a closure), loca(s; `; c; ep) = ;If c is a context, loca(s; `; c; ep) = [floca(s; `; c1; ep)jc1 2 cg (8)dest : (Store �Val)� Ctx ! P(Loc)dest((s; v); c) = [floca(s; v; c; ep)� loc(ep)jep 2 Envpg (9)Correctnesscorrv : Env � Store �Val �Val# ! ftrue; falsegcorrv(e; s; v; �), 8c 2 Ctx ; 8ep 2 Envp; loca(s; v; c; ep) � [x2Dom(e) dest(e(x); �cx) [ [i2Ind dest(ep(i); �ci) (10)corre : Env � Store � Exp � Exp# ! ftrue; falsegcorre(e; s; f; �), 8c 2 Ctx ; 8ep 2 Envp; A � [x2Dom(e) dest(e(x); �cx) [ [i2Ind dest(ep(i); �ci) (11)A = ; if f s = ?A = ((a(s0)� a(s)) [ loca(s0; v; c; ep)) \ loc(s; ep) if f s = up(v; s0).f 2 Val# = Exp# is �-transitive if, for all y in the lexical scope of x, fcx t �[[y]]?x � �[[y]](fcy)xcorr : (Env ! Exp)� (Env# ! Exp#)! ftrue; falsegcorr(f; �), 8e;8s; 8�; (8y 2 Dom(e); corrv(e; s; e[[y]]; �[[y]]) and �[[y]] is �-transitive)) corre(e; s; fe; ��) (12)and �� is �-transitive (��c is de�ned on Dom(e) [ Ind).Figure 6: De�nition of the correctness of the analysis4



E[[M ]] : Env# ! Exp#E[[y]]�c = �[[y]]cE[[M N ]]�c = fi 7! �(i+ 1) if i 2 Ind ; x 7! �(x)C t  (x) ifx 2 Varg where � = E[[M ]]�(app:c) and  = E[[N ]]�(�(1))E[[fun y !M ]]�c =8>>><>>>: tz2FV (fun y!M) �[[z]]> if c = >,fg if c = ?,f1 7! �(y); i 7! �(i� 1) if i > 1;x 7! �(x) if x 2 Varg otherwise.where � = E[[M ]]�[y 7! �>](cj!)jfygand �>(c) = fi 7! >; y 7! cg.E[[let y =M in N ]]�c =E[[N ]]�[y 7! E[[M ]]� t �c:fy 7! cg]cjfyg tE[[M ]]�?jVarE[[let rec f(y) =M in N ]]�c = E[[N ]](lfp(��1:�[f 7! E[[fun y !M ]]�1 t �c:ff 7! cg])cjffgE[[if M then N else P ]]�c =E[[M ]]�?jVar t E[[N ]]�c t E[[P ]]�cE[[M ::N ]]�c = E[[M ]]�(cjl) tE[[N ]]�(cjr)E[[(M;N)]]�c = E[[M ]]�(cjl) tE[[N ]]�(cjr)E[[M ;N ]]�c = E[[M ]]�?jVar tE[[N ]]�c�[[ref]]c = (fg if c = ? or >,f1 7! cj!jr; i 7! > if i > 1g otherwise.�[[:=]]c = 8><>:fg if c = ?; app:? or >f1 7! >g if c = app:>,f2 7! >g if c = app:app:? or app:app:>.�[[a]]c = fg where a 2 ftrue; false; []g [Z.�[[f ]]c = (fg if c = ? or >,f1 7! l:cj!; i 7! > if i > 1g otherwise.where f is fst, hd or !.�[[f ]]c = (fg if c = ? or >,f1 7! r:cj!; i 7! > if i > 1g otherwise.if f is snd or tl.�[[null]]c = fgE[[M ]]�cx = [fE[[M ]]�c0xjc0 2 cg if c is a context.Figure 7: The equations of escape analysis` is not accessible through the result r as ` =2 r #s0 , and ` is notaccessible through other variables in the environment because ithas not been stored. When we get rid of x, ` is no longer accessibleand can be deallocated. �We denote by f = fx 7! f(x); :::g a function f : (Var [Ind) ! Ctx de�ned pointwise. f evaluates to ? when it isnot explicitly de�ned. fg is therefore the constant functionequal to ?. The analysis E is de�ned on Figure 7, �rst forpaths, then we extend it to contexts by taking unions (lastformula of Figure 7).Example 3.3let l =let a = 1 :: 2 :: 3 :: [] inlet g = fun x -> (x,x) inlet rec map f l =if null lthen []else (f (hd l)) :: (map f (tl l))in map g ain ...

Let M = let rec map = ... in map g a. Let �0 be theenvironment containing prede�ned variables.� = �0[a 7! (E[[1::2::3::[]]]�0 t �c:fa 7! cg);g 7! (E[[fun x -> (x,x)]]�0 t �c:fg 7! cg)]E[[M ]]�c = E[[map g a]](lfp(��1:�[map 7!E[[fun f l -> if ...]]�1 t �c:fmap 7! cg]))cLet �2 = �1[f 7! �>; l 7! �>], c0 = app:app:cj!j!jr.E[[fun f l -> if ...]]�1c =f1 7! (app:cj!j!jl) t �2[[map]]c0f t �2[[map]]c01;2 7! fl:>g t �2[[map]]c0l t r:�2[[map]]c02;map 7! c0 t �2[[map]]c0map;x 7! ; if x 2 Var � fmapggThe �xed point is:�1[[map]]c = fmap 7! c; 1 7! app:cj!j!jr�jl; 2 7! r�:l:>gE[[M ]]�f>ga = �1[[map]]fapp:app:>g2 = r�:l:>E[[M ]]�f>gg = �1[[map]]fapp:app:>g1 = fapp:>gThe top of a and the closure g can therefore be stackallocated.Theorem 3.4 The analysis E is correct corr([[M ]]; E[[M ]]),and e is coherent with � on prede�ned variables:corrv(e; s; e[[y]]; �[[y]]).Proof sketch: The proof, omitted, is by induction on the syntax.In the let y = M in N case, we have to show thatdest(e0[[y]]; E[[N ]]�0cy)\loc(s) � [x2Dom(e) dest(e(x); E[[N ]]�0cxtE[[M ]]�?x) where e0 = e[y 7! (s0; v)] and �0 = �[y 7! E[[M ]]� t�c:fy 7! cg] are respectively the semantic and abstract environ-ments in the analysis of N . This expresses that the escapementthrough the bound variable y is already taken into account byother variables. It comes from �-transitivity.In the let rec case, we do a �xed point induction, and use�-transitivity as in the let case. �In the case:let rec f(x) = ... z := f ...in f(3)dest((s; f); app:>) contains all the locations of f,so E[[f(3)]]�> = app:> would be correct wrt.corre(e; s; [[f(3)]]e; E[[f(3)]]�), so we cannot use thiscriterion directly to decide that f does not escape :�-transitivity is necessary.However, we can prove the following result:Theorem 3.5 (Correctness of E) Consider the expres-sion let x = M in N or let rec x(y) = M in N . As-sume that the creation of the location ` at the top of x is thelast operation in M . Also assume that > =2 E[[N ]]�Path x.Then ` can be stack allocated.This arises from Theorem 3.4 and �-transitivity.Proof sketch: Let sx and s0x be respectively the stores atthe beginning and at the end of an evaluation of N .First, we show that if c 2 E[[N ]]�Path x, ` =2 dest((sx; `); c).If x is de�ned by let, we show that if c 6= >, ` =2 dest((sx; `); c)using the de�nition of dest. If x is de�ned with let rec,x itself can reference `. By �-transitivity, E[[N ]]�Path x t�[[x]]?x � �[[x]](E[[N ]]�Path x)x with �[[x]] = lfp(��x:E[[fun y !M ]]�[x 7! �x] t �c:fx 7! cg). Then �[[x]]?x = ?, so > =25



1230 1 2 3l ll r r []rLevel (1,2 :: 3 :: [])
Figure 8: Type levels�[[x]](E[[N ]]�Path x)x. Let c 2 E[[N ]]�Path x. > =2 �[[x]]cx =lfp(��x:E[[fun y !M ]]�[x 7! �x] t �c:fx 7! cg)cx.We consider imaginary executions where we only iterate ntimes in the �xed point computation, to show by induction that` =2 dest((snx ; `); c), if c 6= >. So we still have ` =2 dest((sx; `); c) ifc 2 E[[N ]]�Path x.Then ` =2 dest((sx; `); E[[N ]]�Path x). Let r be the result ofN .By correctness of the analysis (Theorem 3.4), ((a(s0x) � a(sx)) [loca(s0x; r;>; [])) \ loc(sx) � [x2Var dest(e(x); E[[N ]]�Path x).Then ` =2 (a(s0x) � a(sx)) [ r #s0x , as ` 2 loc(sx) and ` isnot in the variables other than x, as it has been created at theend of the computation of x. Therefore, ` =2 ((a(s0x) � a(sx)) [loca(s0x; r;>; [])) \ loc(sx) and by Theorem 3.2, ` can be stackallocated. �4 Escape Analysis on Numerical ContextsWe now represent escapement by integer levels, and we de-�ne a translation from sets of paths to integers.We de�ne type levels by>2[� ] = 1 if � = bool, int or unit>2[�1 ! �2] = >2[�2]>2[�1 � �2] = 1 +max(>2[�1];>2[�2])>2[� list] = 1 +>2[� ]>2[� ref] = 1 +>2[� ]>1[� ] = 1 if � contains a functional type �1 ! �2>1[� ] = 0 otherwiseThe level of a path is de�ned by��2 (>) = >2[� ] if � is not functional, 1 otherwise��2 (?) = 0��1!�22 (app:c) = ��22 (c)��1��22 (l:c) = ��12 (c)�� list2 (l:c) = ��2 (c)�� ref2 (l:c) = ��2 (c)��1��22 (r:c) = ��22 (c)�� list2 (r:c) = �� list2 (c)��2 (c) = 0 in all other cases (forbidden paths)We de�ne the level of a context by taking the upper bound:��2 (c) = tc02c��2 (c0)The concretization function is�2 (c0) = fcj��2 (c) � c0g(��2 ; �2 ) is a semi-dual Galois connection:(Ctx ;�) �2���2 (N [ f1g;�)

We write in exponent of �2 or 2 an expression insteadof a type to mean the type of this expression. We underlinea part of a type to symbolize >2 of this part. For example,�1 list means >2[�1].Let Ctx 1 = f0; 1g and Ctx 2 = N. We de�ne the ab-straction ��1 (c) = (1; 0) if ��2 (c) = 1, ��1 (c) = (0; ��2(c))otherwise. �1 (c1; c2) = tfc 2 C(�)j��1(c) � (c1; c2)g wherepairs are ordered lexicographically. (��1 ; �1 ) is a semi-dualGalois connection:(Ctx ;�) �1���1 (Ctx 1 � Ctx 2;�)Val i = Ctx i ! (Var [ Ind) ! Ctx i and Env i = Var !Val i. We de�ne two analyses Fi[[M ]] : Env i ! Val i onFigure 9. In these de�nitions, x 2 Var and i 2 Ind . Afunction evaluates to 0 when it is not explicitly de�ned. Wewrite >1x = >1[� ] if x is of type � , and >1;x for clarity whenx is a numeric parameter index. We use the same notationsfor >2.The analysis F1 takes into account variables which escapethrough closures, whereas F2 gives more precise informationfor the other variables. One analysis is not enough becausethe level of a variable in a closure may be higher than thelevel of the closure, so the corresponding escape functionwould not be inferior and our fast algorithm would not work(see Section 5.1).Example 4.1 For the map : (int -> int) -> int list-> int list function (Example 3.3),F1[[fun f l -> if ...]]�1c =f1 7! c t �1[[map]]c f t �1[[map]]c 1;2 7! c t �1[[map]]c l t �1[[map]]c 2;map 7! c t �1[[map]]c mapgF2[[fun f l -> if ...]]�2c =f1 7! (c u (int! int)) t �2[[map]]c f t �2[[map]]c 1;2 7! int list t �2[[map]]c l t �2[[map]]c 2;map 7! c t �2[[map]]c mapgThen,�1[[map]]c = fmap 7! c; 1 7! c; 2 7! cg�2[[map]]c = fmap 7! c; 1 7! c u (int! int); 2 7! int listgDe�nition 4.2 The analyses f1 : Ctx 1 ! Ctx 1 and f2 :Ctx 2 ! Ctx 2 which give escape information about a variableof type � 0 in a term of type � are said to be correct wrt. theanalysis f : Ctx ! Ctx ifC(� [� 0]; f; f1; f2), (If f11 = 0, f Path � � 02 (0)If f10 = 0, f(�2 (c)) � � 02 (f2c)The �rst line handles the case when a closure escapes in theresult (the context passed to analysis f1 is 1). In this case,the analysis f1 is just a rough approximation which says thatall free variables escape, so if f1 gives back 0, we know thatthe variable is not free and nothing escapes from it. Thesecond line handles the case when no closure escapes in theresult. In this case, the analysis f1 gives back 0 if we canprove that no closure escapes from the variable, and whenf10 = 0, the analysis f2 gives the precise escape information.Theorem 4.3If 8y;8x;C(�y[�x]; �c:�[[y]]cx; �c:�1[[y]]cx; �c:�2[[y]]cx),8x;C(�M [�x]; �c:E[[M ]]�cx; �c:F1[[M ]]�1cx; �c:F2[[M ]]�2cx).6



F1[[y]]�1c = �1[[y]]cF1[[M N ]]�1c = fi 7! �(i+ 1); x 7! �(x) t  (x)gwhere � = F1[[M ]]�1c and  = F1[[N ]]�1(�(1) t c).F1[[fun y !M ]]�1c = f1 7! �(y); i 7! �(i� 1) if i > 1;x 7! �(x)g where � = F1[[M ]]�1[y 7! �1>]cand �1>c = fi 7! >1i t c; y 7! cg.F1[[let y =M in N ]]�1c =F1[[N ]]�1[y 7! F1[[M ]]�1 t �c:fy 7! cg]c t F1[[M ]]�1cjVarF1[[let rec f(y) =M in N ]]�1c = F1[[N ]]�3c t �3(f)cjVarwith �3 = lfp(��3:�1[f 7! F1[[fun y!M ]]�3 t �c:ff 7! cg])F1[[if M then N else P ]]�1c =F1[[M ]]�1cjVar t F1[[N ]]�1c t F1[[P ]]�1cF1[[M ::N ]]�1c = F1[[M ]]�1c t F1[[N ]]�1cF1[[(M;N)]]�1c = F1[[M ]]�1c t F1[[N ]]�1cF1[[M ;N ]]�1c = F1[[M ]]�1cjVar t F1[[N ]]�1c�1[[:=]]c = f1 7! c; 2 7! >1;2 t cg�1[[a]]c = fg where a 2 ftrue; false; []g [Z.�1[[f ]]c = f1 7! c; i 7! >1i t c if i > 1gwhere f is hd, tl, fst, snd, ref or !.�1[[null]]c = f1 7! cgF2[[y]]�2c = �2[[y]]cF2[[M N ]]�2c = fi 7! �(i+ 1); x 7! �(x) t  (x)gwhere � = F2[[M ]]�2c and  = F2[[N ]]�2(�(1)).F2[[fun y !M ]]�2c = f1 7! �(y); i 7! �(i� 1) if i > 1;x 7! �(x)g where � = F2[[M ]]�2[y 7! �2>]cand �2>c = fi 7! >2i; y 7! cg.F2[[let y =M in N ]]�2c =F2[[N ]]�2[y 7! F2[[M ]]�2 t �c:fy 7! cg]c t F2[[M ]]�20jVarF2[[let rec f(y) =M in N ]]�2c = F2[[N ]](lfp(��4:�2[f 7! F2[[fun y !M ]]�4 t �c:ff 7! cg])cF2[[if M then N else P ]]�2c =F2[[M ]]�20jVar t F2[[N ]]�2c t F2[[P ]]�2cF2[[M ::N ]]�2c = F2[[M ]]�2(c u >2M ) t F2[[N ]]�2cF2[[(M;N)]]�2c = F2[[M ]]�2(c u >2M ) t F2[[N ]]�2(c u >2N )F2[[M ;N ]]�2c = F2[[M ]]�20jVar t F2[[N ]]�2c�2[[ref]]c = f1 7! c u >2;1; i 7! >2i if i > 1g�2[[:=]]c = f2 7! >2;2g�2[[a]]c = fg where a 2 ftrue; false; []g [Z.�2[[f ]]c = f1 7! c; i 7! >2i if i > 1gwhere f is hd, tl, fst, snd or !.�2[[null]]c = fgFigure 9: Analyses F1 and F2The initial environment satis�es the above hypothesis, hencethe conclusion is true and F1 and F2 are correct.Proof sketch: By induction on M . In the function case, wenotice that when evaluating F1[[M ]]�1cx, the context passed tosubexpressions of M is always at least c, so by induction8x 2 Var ; F1[[M ]]�1cx � tz2FV (M)�1[[z]]cxIf F1[[fun y ! M ]]�11x = 0, 8z 2 FV (fun y ! M); �1[[z]]1x = 0so �[[z]]Path x � x2 (0) therefore E[[fun y !M ]]�Path x � x2 (0).The other cases are easier. �Theorem 4.4 (Correctness of F1 and F2) Considerthe expression let x = M in N or let rec x(y) = Min N . Assume that the last operation of M is the allocationof the location ` at the top of x. Assume furthermore that8>>><>>>:if neither N nor x are functional,F1[[N ]]�10x = 0 and F2[[N ]]�2>2Nx < >2xif N is functional, F1[[N ]]�11x = 0else F1[[N ]]�10x = 0 (13)

Then ` can be stack allocated.Proof sketch: Condition (13) combined with Theorem 4.3 showsthat > =2 E[[N ]]�Path x. Then Theorem 3.5 yields the conclusion.�4.1 PolymorphismWe �rst analyze all expressions as if they were monomor-phic, ie type variables are supposed to be atomic : >2[�] =1; ��2 (c1:?) = 0; ��2 (c1:>) = 1 if � is a type variable. Wecan then infer an approximate analysis for the instantiationsof this expression. This can lead to a loss of precision wrt.the direct analysis of the instantiation but, surprisingly, thismay also be more precise than the direct analysis. For ex-ample,phi = fun x -> fun y ->let z = (x,y) ina := snd z;fst zHere, the analysis gives F2[[phi]]�c1 = c t >2[� ] if y is oftype � . Assume that we analyze the polymorphic version� = �. Then F2[[phi]]�c1 = c t 1 and the instantiationdoes not change this formula (because we instantiate wrt.the type of x, without considering the type of y). However,the direct analysis with � = int list for example givesF2[[phi]]�c1 = c t 2 which is less precise.Therefore, the analysis by instantiation and the directanalysis are not comparable : our analysis is not polymor-phically invariant [1]. We can however prove the correctnessof instantiation wrt. the analysis E.De�nition 4.5 Let � be a given substitution on type vari-ables. The instantiation and generalization functions arerespectively:I�2 (c0) = (tf>2[�� 0] j � 0 2 S(�);>2[� 0] � c0g if c0 > 00 if c0 = 0G�2 (c) = (tf>2[� 0] j � 0 2 S(�);>2[�� 0] � cg t 1 if c > 00 if c = 0where � is the type associated to the contexts we instanti-ate or generalize, and S(�) is the set of subexpressions of � ,de�ned as usual except that for the arrow type, the subex-pressions are only the subexpressions of the result. For theanalysis F1, the instantiation is I�1 (c; b) = 1 if � substitutessome type variables of � by function types and b 6= 0, andI�1 (c; b) = c otherwise. The generalization is G�1 (c) = c.Theorem 4.6 (Instantiation) Let f = �c:E[[M ]]�cx.C(� [�x]; f; �c:(c u a1) t b1; �c:(c u a2) t b2)) C(�� [��x]; f; �c:(c u a1) t I�x1 (b1; b2);�c:(c u I�x2 (a2)) t I�x2 (b2))This result is useful as every manipulated function is of theform �c:(c u a) t b (because this form is stable under com-position, meet and join). This proves the correctness of theinstantiation functions I�2 and I�1 .Proof sketch: First, f can be put under the form f(c) =ti2I ci:cjc0i t c1 where ci 2 (appjljr)�, c0i 2 (! jljr)�, c1 2 Ctxand the join may be in�nite. To prove the cases f(c) = c1,and f(c) = c1:cjc2 , we show that ���2 (c) � I�2 � ��2 (c) when���2 (c) 6=1. This means that I�2 (c) represents at least as manypaths in type �� as c in type � . �7



Example 4.7 The map function has type (� ! �) !� list ! � list. The analysis for the polymorphic ver-sion is�1[[map]]c = fmap 7! c; 1 7! c; 2 7! cg�2[[map]]c = fmap 7! c; 1 7! c u (int! int); 2 7! int listgWhen instantiating � = �1; � = �2, where �1 and �2 are notfunctional types, we �nd�1[[map]]c = fmap 7! c; 1 7! c; 2 7! cg�2[[map]]c = fmap 7! c; 1 7! c u (�1 ! �2); 2 7! �1 listgTheorem 4.8 (Generalization)C(� [�x]; f; f1; f2)) C(�� [�x]; f; f1; f2 �G�2)This shows the correctness of the generalization functionsG1 = id and G2. This is useful for the case f = �c:E[[y]]�cxwhen we instantiate a variable y of type � into the type �� .We shall writeF1[[�; y : � ` y : �� ]]�1 = �1F2[[�; y : � ` y : �� ]]�2cx = �2(G�2 (c))xProof sketch: The key point is that ��2 � G�2 � ���2 . �4.2 Inductive typesWe now extend the de�nition of type levels >2[� ] to induc-tive types. This level must satisfy the following property: ifa value of type �1 is inside a value of type �2,>2[�1] � >2[�2] (14)Then, in the case of recursive data types, all the locationsof the same strongly connected component of the type musthave the same level. Between distinct strongly connectedcomponents, we add 1 to the level.Example 4.9type term =Var of int| Prop of head * term listand head ={ name: string;mutable props: (term * term) list }>2[term] = >2[term list] = >2[term � term] =>2[(term � term)list] = >2[head] = 2 and>2[head list] =1+>2[head] = 3 because this type is not is the strongly con-nected component.This de�nition is compatible with the previous de�nitionof >2 for the list type:type 'a list = Nil | Cons of 'a * 'a listIf � is an abstract type, >2[� ] = 1 as nothing can beextracted from � .However, constraint (14) cannot always be satis�ed: ifwe de�ne non-monotonic recursive types, for example:� t = None | Some of � * � list tthe cycle check is not enough, as we use in�nitely manydi�erent types � list : : : list t. In this case, the type iscalled not level preserving, it is handled as functional typesin the preceding analysis and its level is 1. Anyway, such atype has no practical use, as we cannot write an iterator onit.

@@@@@I������ opn: : :op1 Fk[[M ]]�Fk[[M1]]�1 Fk[[Mn]]�nFigure 10: Tree used to represent the equations5 ImplementationThe analyzer is implemented in Caml Special Light (an im-plementation of the ML programming language). It is rel-atively small (less than 5000 lines). It works in two passes.The �rst pass transforms the abstract syntax tree of theanalyzed program into a tree labeled with escapement in-formation. The second pass takes this tree and performsthe optimizations. Escapement information is stored in a�le to allow reusing it for intermodular analysis.5.1 Computing the escape informationDeutsch's technique [14] can be applied here, except that,as explained in the following, we must label the tree withoperations �c:(cuf)t i (which can be represented by a pairof contexts) instead of just contexts, to take into accountimperative operations. Because of the presence of higherorder functions, we also have two analyses F1 and F2 insteadof just one similar to F2 in Deutsch's paper.Semantic equations are represented by a tree whosenodes are occurrences of Fk[[M ]]� and edges are such thatFk[[M ]]� = tiFk[[Mi]]�i � opi if Fk[[M ]]� is linked by edgeslabeled opi to Fk[[Mi]]�i (Figure 10). The de�nition of F1and F2 shows that all the operations opi are of the formop = �c:(c u f) t i. We represent them by pairs (f; i).The composition is de�ned on the associated pairs:(f1; i1) � (f2; i2) = (f1 u f2; (i2 u f1) t i1)If some of these values are unknown (when we compute a�xed point), we create new unknowns to represent the com-posed operation and emit equations representing the aboveformula.The operation eval(n) computes the composition of op-erations labeling the edges on the path from the node n tothe root, doing path compression [37]. We maintain therelation: Fk[[M ]]� = tx2FV (M);n2�(x)�[[x]] � eval(n) whenanalyzing M , where �(x) is the set of nodes representingoccurrences of x. This enables us to compute Fk.We solve the equations with a generalization of Di-jkstra's shortest paths algorithm given by Knuth [28].It gives the least �xed point of an equations systemY = tigi(X1; : : : ; Xk) where gi are inferior functions:gi(x1; : : : ; xk) � min(x1; : : : ; xk). However, the instantia-tion function I�2 (De�nition 4.5) is not inferior. To be ableto use Knuth algorithm, we �rst split the system in stronglyconnected components. We solve each component separatelywith Knuth's algorithm. Inside a component, we approxi-mate the instantiation by the constant function equal to thelevel of the type. This is less precise, but correct. Betweencomponents, we use the more precise instantiation, which isthe most frequent case.
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[[l]]
[[if ....]][[[]]] [[... :: ...]][[f (hd l)]][[map f (tl l )]][[hd l]] [[f]][[map]] [[tl l]][[l]] [[l]]

[[null l]]
[[f]] op2

�c:0 �c:c u f op1�c:i�c:0
Figure 11: Tree built by analysis F2 on Example 3.3, withoutpath compression. If f is of type �1 ! �2, f = >2[�2] andi = >2[�1]. op1 and op2 are the unknowns representingthe escapement of the parameters of the map function. Theidentity label is omitted. [[if ...]]�c:c u f[[f]] op1 [[f]][[l]] �c:i [[l]]�c:0 op2[[l]]Figure 12: Same as Figure 11, after path compression. Weonly kept the nodes representing variables for simplicity.5.2 Program TransformationWe use an expression letstack x = M in N equivalent tolet x =M in N except that the outer constructor of x willbe stack allocated, and deallocated at the end of the execu-tion of N . letstack0 x = M in N also stack allocates theouter constructor of x, but deallocates it before the tail callof N , which enables us to preserve tail call optimizations.Example 5.1let kb_completion =let rec kbrec j rules =let rec process failures (k,l) eqs =...let enter_rule(left,right) =letstack' left_reducible rule =... inletstack' right_reduce rule =... in...kbrec (j+1) (new_rule::irreds) [](k,l) (eqs @ eqs' @ failures)in...left reducible and right reduce are deallocated beforethe recursive call to kbrec, which avoids a useless stackgrowth, and enables us to code the kbrec tail call as a jump.The expression C[let x = M in N ] is changed intoletstack x = M in C[N ] and C[M ] is changed into

letstack x = M in C[x] if the top of x does not escapefrom C[N ] or C[x], ie using Theorem 4.4, if condition (13)is satis�ed, which is determined by escape analysis. To per-form this transformation, the head of M must be an allo-cator: a type constructor, or a standard primitive doing anallocation. This transformation must not change the eval-uation order, so this limits the size of the context C[] (itmust not contain a fun expression for example). This mayalso lead to add more lets. For example, we can transformM0M1 : : :Mn into let x0 =M0 inlet xn =Mn in: : :let xi+1 =Mi+1 inletstack xi =Mi inx0M1 : : :Mi�1xi : : : xnWe put lets for Mj (j > i) because Mj is evaluated beforeMi if j > i (CSL evaluates expressions from right to left).We choose the context C[] as small as possible to reducethe time during which x is in the stack. The idea is as fol-lows: the program transformation takes as a parameter anexpression to transform and gives back the transformed ex-pression, and the set of lets to put outside of the currentexpression. These lets are collected in a tree, whose edgesare labeled with context transformers de�ning the escape-ment of the let in the current containing expression. Thesetransformers have been computed for each expression by theescape analysis. We perform path compression in this treeusing Tarjan's algorithm [37], to update the context trans-formers as we go up in the abstract syntax tree. As soon asthe last let (in evaluation order) does not escape any moreof the current expression, it is extracted from the tree, andwritten in the program.Example 5.2let rec tak (x,y,z) =if x>y thentak(letstack %t1=(x-1, y, z) in tak %t1,letstack %t2=(y-1, z, x) in tak %t2,letstack %t3=(z-1, x, y) in tak %t3)elsez%t1, %t2 and %t3 are deallocated each before the allocationof the next, which reduces the stack size (by a factor 3).According to command line options, we avoid putting aletstack which forbids a recursive tail call optimization orany tail call optimization. In this case, only letstack' ispossible, if the escapement is correct. Indeed, if we put aletstack in tail position in a recursive loop, the size of thestack increases at each loop iteration, whereas with tail calloptimization, it would not have increased. This can makethe program fail, and so must be avoided [9].To increase opportunities for stack allocation, we per-form automatic inlining of small functions which allocatedata (only when this e�ectively allows more stack alloca-tion). For example,let f x = [x];; hd(f 3)becomeshd (let x = 3 in [x])and thenlet x = 3 in letstack %t1 = [x] in hd %t1.9



5.3 ComplexityLet n be the size of the program. The number of generatedequations e and unknowns u and the time r to computeall right-hand sides of the equations are in O(n log n) [14],which gives a O(e � log u + r) = O(n log n log(n log n)) =O(n log2 n) solving time [28] (the computation of stronglyconnected components is linear, and therefore dominated bythe solving time).The computation of type levels is dominated by the sizeof types (more precisely, the sum of the sizes of types dec-larations that are used). The program transformation per-forms O(n) path compressions in a O(n) forest, so by The-orem 1 of [37], its complexity is O(n log n). Finally, thecomplexity of the analysis is O(n log2 n + t) where t is thetype levels compute time.If inlining is activated, the complexity of course increases.If I is the maximum size of an inlined function (�xed by theuser), the size of the resulting program is at most n0 =O(nI), and the analysis time is O(nI + n0 log n0 + n log2 n)(we just post-transform the inlined program).6 Experimental Results6.1 Compiler BenchmarksThe compiler is given with benchmark programs (Figure 14)which we have tested in several con�gurations (Figure 15)and on several machines (Figure 13).taku Integer computation, allocating tuplesreynolds2 Binary tree search, allocating closuresreynolds3 Binary tree search, allocating pairsboyer Terms treatmentskb Knuth-Bendix's completion algorithmnucleic Floating point computationsFigure 14: Tested programsAll Preserves all tail call optimizationsRec. Preserves only recursive tail call opt.None Preserves no tail call optimizationFigure 15: Program versionsInlining does not change anything except on kb and nu-cleic, so we will only test one version for the other programs.The inlined versions of kb and nucleic will be named kb-inland nucleic-inl. In the following tables, for each informationX, we have given (X �Xsta)=X where the value is X with-out stackallocation, and Xsta with stackallocation. The lastcolumn of the tables gives X. On Figures 21 to 24, the "To-tal time" curve represents the speedup percentage; the "GCtime" curve represents the part of the speedup percentagedue to the GC, and the "let" curve represents the part dueto the lets alone (there is no stack allocation in this case.We only put lets where there are letstacks in the versionwith stack allocation, and inlining has been performed as ifthere were stack allocation). The GC parameters have theirdefault values: GC ratio 30%, minor heap size 32768 words.Uncertainty on time measures is about 1 to 2%, althoughwe have repeated each test 30 times to improve precision.Not preserving tail recursion optimization enables morestackallocation (Figure 16), but it causes a stack growth(Figure 17) which may cause the failure of the program

Memory size decrease (%) SizeAll Rec. None (Mwords)taku 74 74 99 12.7reynolds2 49 49 99 10.4reynolds3 9 9 99 31.4boyer 0 0 16 1.2kb 1 1 46 8.3kb-inl 1 1 46 8.3nucleic 11 11 13 3.8nucleic-inl 31 43 45 3.8Figure 16: Tested on Sparc 5Stack size increase (%) SizeAll Rec. None (bytes)taku 25 25 29 996reynolds2 69 71 71 692reynolds3 45 45 107 668boyer 0 0 1 1772kb 58 58 165 85812kb-inl 74 74 181 85812nucleic 0 0 40 2236nucleic-inl 3 3 44 2236Figure 17: Tested on Sparc 5(even if it does not happen in these benchs). On Sparc 5and Alpha, it improves speedups, whereas on Pentium Pro,preserving recursive tail call optimizations is often better(nucleic, reynolds3). Stack allocation brings more speedupwhen the allocated data is larger (because more GC timeis then saved up and the cache behavior is improved for agreater number of accesses). Then, a size limit can existabove which stack allocation is more interesting than tailcall optimization. This limit depends on complex factors(cache and GC behavior), but it may explain that on Pen-tium Pro, reynolds2 slightly bene�ts from not preserving tailcall optimizations, whereas reynolds3 loses, as the closuresallocated by reynolds2 are larger than the pairs allocated byreynolds3.Inlining increases the e�ect of stack allocation, but aloneslows down execution on Sparc 5 (probably because of alarger code transfer between memory and chip) which ex-plains the bad results on the "let" curve for nucleic-inl. Itse�ect is negligible on kb, as we cannot inline enough func-tions.Optimal letstack moves and letstack' also increasestack allocation opportunities. For example, if we preserverecursive tail call optimizations, and disable these improve-ments, stack allocation becomes negligible for taku. Opti-mizing the lifetime of data also enables to reduce the stackTotal speedup (%) TimeAll Rec. None (ms)taku 25 23 26 488reynolds2 1 0 1 6072reynolds3 2 0 -6 3070boyer 0 0 5 523kb 0 0 2 1332kb-inl 0 0 2 1339nucleic 6 6 0 696nucleic-inl 6 10 5 692Figure 18: Tested on Pentium Pro10



Tested computer Primary cache Secondary cache SPECint95Alpha DEC 3000/300 8kb(I) + 8kb(D) 512kb(I+D) N/APentium Pro 200MHz 8kb(I) + 8kb(D) 256kb(I+D) 8.20Sparc 5 110MHz 16kb(I) + 8kb(D) None 1.59Figure 13: Machines characteristicssize (on taku, it is 25% larger instead of 75% if we take thelongest lifetime).GC speedup on total time (%) TimeAll Rec. None (ms)taku 3 2 3 2241reynolds2 0 0 0 13707reynolds3 0 0 2 8087boyer 1 1 6 1876kb 0 0 2 4937kb-inl 0 0 3 4917nucleic 0 1 1 1942nucleic-inl 1 2 2 1912GC speedup (%) GC timeAll Rec. None (ms)taku 83 72 100 81reynolds2 56 42 100 112reynolds3 29 20 100 235boyer 2 2 9 1425kb -1 0 6 1543kb-inl 0 2 9 1558nucleic 1 15 17 162nucleic-inl 20 27 25 155Figure 19: Tested on Sparc 5Tests concerning the GC give two results: the speedupdoes not depend on the GC parameters (GC ratio, minorheap size), and the speedup due to the GC represents aminor part of the total speedup (Figure 19), which con�rms[27]. This can be explained as we mainly stack allocate shortlived data, which have no cost for the GC, since they are notscanned by minor GCs.So most of the speedup is due to a better data locality,as only the data on top of the stack are used in general. Forexample, without stack allocation taku allocates 12Mwords,which are located in a 32kwords minor heap, whereas withstack allocation, it uses only a less than 1kword stack.The Alpha is the machine which bene�ts the mostfrom stack allocation. taku gives the best results, but kb,reynolds2, reynolds3 and nucleic (with inlining) are also sub-ject to important improvements.6.2 CoqCoq is a theorem prover that we have tested by making itcompile its own benchmarks. In all these tests, letstack',optimal let moves and inlining are allowed.Speedup (%) TimeRec. None (s)Sparc 5 -2.1 3.0 5713Pentium Pro 3.0 4.3 2339GC speedup on total time (%) GC timeRec. None (s)Sparc 5 1.2 3.8 2942Pentium Pro 1.7 2.9 1342
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Figure 20: Analysis time (in seconds) as a function of thesize of the expression (number of nodes in the syntax tree)During the bench, Coq allocates 5,25 gigawords, and puts17% of them on the stack when recursive tail call optimiza-tions are preserved, and 25% when they are not. Inlining ofsmall functions enables us to stack allocate much more data(we could not stack allocate more than 11% of data withoutinlining).6.3 Analysis speedThe analysis speed enables us to use it to compile largeprograms, of which Coq is a good example featuring 65000lines. The analysis takes 14% of the compile time on Sparc5 with inlining. The compilation is 19% longer because thecompilation of the transformed code is a bit longer than theone of the initial code, especially with inlining. HoweverCoq does not contain only ML code, so there is a part of thework which is not subject to the optimization. This showsnevertheless that the analysis is not too costly. Figure 20shows that it is nearly linear. We can analyze each recursivedeclaration independently, which reduces the value of n inthe complexity O(n log n).Let C be the time to compile the compiler itself withoutstack allocation, A the escape analysis time, Ca the compiletime when enabling stack allocation, and Cao the compiletime with stack allocation on an optimized (stack-allocating)compiler. The analysis cost is given in the following table.AC (%) Ca�CC (%) Cao�CC (%)Alpha 17 19 17Sparc 5 16 20 19Pentium Pro 19 21 197 ConclusionWe have implemented an escape analysis modi�ed from Parkand Goldberg's [32], but we have much improved its com-plexity thanks to Deutsch's method [14]. We also haveextended it to inductive types, imperative operations and(with approximations) higher order functions.The results given by this analysis are quite satisfactory.Experience has shown this analysis can be applied even to11
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Figure 21: Tested on Sparc 5, preserving recursive tail calloptimization.
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Figure 22: Tested on Sparc 5, preserving no tail call opti-mization
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Figure 23: Tested on Alpha, preserving recursive tail calloptimization
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Figure 24: Tested on Alpha, preserving no tail call optimiza-tion12
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