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Abstract

We describe an escape analysis [32, 14], used to determine
whether the lifetime of data exceeds its static scope.

We give a new correctness proof starting directly from a
semantics. Contrary to previous proofs, it takes into account
all the features of functional languages, including imperative
features and polymorphism. The analysis has been designed
so that it can be implemented under the small complexity
bound of O(nlog®n) where n is the size of the analyzed
program. We have included it in the Caml Special Light
compiler (an implementation of ML), and applied it to very
large programs. We plan to apply these techniques to the
Java programming language.

Escape analysis has been applied to stack allocation. We
improve the optimization technique by determining minimal
lifetime for stack allocated data, and using inlining. We
manage to stack allocate 25% of data in the theorem prover
Coq. We analyzed the effect of this optimization, and no-
ticed that its main effect is to improve data locality, which
is important for efficiency [8].

1 Introduction

Today, most functional languages use a garbage collector
(GC) to manage memory. The GC automatically frees the
room taken by unreferenced data when the program runs.
However, this mechanism is time consuming. Therefore,
stack allocation may be an interesting optimization for such
languages, as it allows to statically deallocate data, without
calling the GC. Appel claims that ”garbage collection can be
faster than stack allocation” [3] but in fact we shall see that
this is only true when there is much more memory than re-
ally needed. However, stack allocating data is only possible
if its lifetime does not exceed its static scope. The goal of
escape analysis is precisely to determine, thanks to abstract
interpretation [10, 11], which data can be stack allocated.

1.1 Related Work

Escape analysis on lists has been introduced by Park and
Goldberg [32], and Deutsch [14] has much improved the
complexity of their analysis, reducing it to O(nlog”n), with
exactly the same results for first-order expressions (there is
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an unavoidable loss of precision in the higher-order case).
He has also suggested many extensions.

Mohnen [30, 29] describes a similar analysis, but its com-
plexity is quadratic and the analyzed language is first order
and does not contain imperative operations.

Hughes [24] already introduces integer levels to repre-
sent the escaping part of data. He does not perform stack
allocation, but keeps in memory addresses of data to be deal-
located in order to avoid using the GC. The work closest to
Hughes’ is [25] by Inoue, Seki and Yagi, who only free the
top of lists, but give experimental results.

Alias analysis [13], reference counting [22, 19], storage
use analysis [34] which is similar to [26, 18, 12, 35] can be
applied to stack allocation though at a much higher cost.

Another allocation optimization has been suggested in
[38, 5, 2]: region allocation. All objects are allocated in
heap regions whose size is not known statically in general,
but for which we know when they can be deallocated. Re-
gions can therefore be deallocated without GC. This analysis
solves a more general problem than ours, but at the cost of
a much increased complexity. In fact, on many programs,
opportunities for stack allocation outnumber opportunities
for region allocation, as noticed in [5].

[16] uses annotated types to describe escape information.
The results are not as precise as ours and it only gives in-
ference rules and no algorithm to compute annotated types.

1.2 Overview

Deutsch [14] proved that his analysis gave exactly the same
results as Park and Goldberg’s for first-order purely func-
tional programs. Here, in Sections 2 to 4, we give a di-
rect correctness proof from the semantics, and we extend
it to all the extensions Deutsch suggested: imperative op-
erations, pairs, polymorphism, approximate treatment of
higher-order functions. We also extend the analysis to all
inductive types (not only lists). The details of the proofs
have been omitted because of their length (more than 20
pages).

Section 5 describes our implementation which is within
the complexity bound given by Deutsch : O(nlog?n). It
is based on Caml Special Light (CSL), and improves [14]
thanks to intermodular analysis, taking the shortest possible
lifetime for variables, preserving as often as possible tail call
optimizations. We also introduce inlining to increase stack
allocation opportunities.

Section 6 is an experimental study of the effect of the op-
timization. The comparison between SparcStation 5, Alpha
and Pentium Pro shows that the improvement depends on
the characteristics of the processor. The main improvement
is not on GC time but on data locality. We manage to get 5
to 20% speedup on many programs, and our analysis can be
applied to the largest applications thanks to its very good
efficiency.
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1.3 Notations

{z1 +— y1,...,Tn > yYn} is the function which maps z; to y;
for i € [1,n]. flz1 — y1,...,Zn — yn] is the extension of f
which maps z; to y; for ¢ € [1,n]. If f was already defined
at some of these values, the new value replaces the old one.
fig is the restriction of f to E. Dom(f) is the definition
domain of f.

S* is the set of lists whose elements are in S. [] is the
empty list. [p1,...,pn] is the list of elements pi,...,pn.
p1 : 1 is the list [ at the head of which p; has been concate-
nated. () is the ith element of .

FV (M) is the set of free variables of M.

In a lattice, the join is Ll and the meet is M.

2 Analyzed Language

2.1 Syntax

The analysis can handle all features of a functional language
as CSL, but for the theoretical description, we shall restrict
ourselves to a small subset of CSL. We shall use the following
data types:

T=7 — 72| T 1list |71 * 72 | 7 ref | bool | int | unit

The syntax of the language is summarized on Figure 1.

We can easily generalize pairs to records and tuples, let
rec to mutually recursive functions. We also extend the
analysis to polymorphism and inductive types (see Sections
4.1 and 4.2).

Several semantics are associated to this language, begin-
ning with an exact denotational semantics, and then approx-
imating it by abstract semantics (Figure 2).

z € Var Variables
{ € Loc Locations
v € Val = {true, false, NIL} UZ U Loc  Values
SV = Val U (Val x Val) U (Env — Ezp) x Env x Var
s € Store = (Loc x SV)* Stores
Ezp = Store — (Val x Store) | Expressions
e € Env = Var — (Store x Val) Environments
sll—v]=(v):s
s(£) is such that (£, s(£)) is the first element of s of the form
(4)
efz] = v if e(z) = (s,v)
up is the injection from Val x Store to (Val x Store)
L ifh =1,
glz'/x) if h = up(z').
newloc(s, z) = up(¥, s[f — z]) where £ ¢ Dom(s)

let [z] = hin g =

Figure 3: Notations

2.2 Semantics

We use a denotational semantics, with store and non-
termination denoted by L (Figures 3 and 4).

We use two unusual definitions, which are useful to de-
fine the correctness of the analysis: a store is an association
list to remember the history of its changes, but we also con-
sider a store as a function which maps every location to its
contents: Store = Loc — SV. This is similar to Hoare’s
definition of execution traces [21] as sequences of tests and
assignments. In environments, we memorize not only the
value but also the store in which it has been created.

3 Escape Analysis on Paths

The following analysis can be applied as it is to any func-
tional language, even untyped. It is also very precise, so it
can be used as a basis for several less precise analyses which
can be derived by abstract interpretation. Its drawback is
that it is too complex to be directly implemented. We shall
therefore perform a second step of approximations in Section
4.

Abstract values associated with data are access paths
which represent the part of data which is useful (Figure 5):

Path = 1. Path|r.Path|app.Path|T|L

where T means that the whole data is used; L means that
nothing is used; 1 means that the left part of a pair, or the
head of a list, or the contents of a reference is used; r means
that the right part of a pair or the tail of a list is used. app
means that the data is a function which is applied to an
argument.

We define path restrictions by:

e app.cj_. = ¢, ¢—. = L if ¢ is not of the form app.c’.

o Ty =T,Le; = ¢ ¢ = L otherwise. We define |r in

the same way.

The definition of the correctness of the analysis is sum-
marized on Figure 6. Here are some explanations.

Contexts associated to data are sets of paths: Ctz C
P(Path). An empty context would intuitively correspond to
an unevaluated expression. Here, because of call-by-value,
expressions are evaluated even if the result is not needed,
and this evaluation may cause escapement because of im-
perative operations. That is why we use non-empty con-
texts. (Ctz,C) is a sup-semilattice. If ¢ : Path — Path



[M] : Env — Exp
z]es = up(e[z], s)

[fun £ — MJes = newloc(s, ([M], e|rv (tun 2— ), Z))"

[M; N]es =let [(¢,s")] = [M]esin [N]es'

M Nles =let [(f',s')] = [M]esin let [(v,s")] = [N]es'in let (m,e',x) = s'(f)in m(e'[x — v])s"

let £ = M in N]es =let [(v,s')] = [M]esin [N](e[z — (s',v)])s'
let rec f(z) = M in N]es = [N](e[f — (s',¢)])s' where £ ¢ Dom(s), s' = s[l — (¢, €|rv (tun 2+—nm),%)] and
¢ = lp(Ad1.Xe1.Asi.[M](ei[f — (si,£)])s}) where s} is the store s1 where s1(£) has been replaced by (¢1,e1,z)"
[if M then N else Ples = let [(z,s')] = [M]esin if = then [N]es' else [P]es’
M::Nles = let [(z,s")] = [M]esin let [(y,s")] = [N]es'in newloc(s", (z,y))
(M, N)]es = let [(f1,5")] = [M]esin let [(¢2,s")] = [IN]es' in newloc(s", (¢1,£2))

Initial store: so = {ref — (Xe.\s'.newloc(s', e[z]), 0, z), deref — (Xe.Xs'. up(s'(e[z]), s'), 0, x),
affect — (Ae.As'. newloc(s', (Ae’ As". up(NIL, 5" [e'[m] — €'[n]]), e,n)), 0, m),
fst — (Ae.As'.let (h,t) = s'(e[z]) in up(h,s'),0,z),snd — (Ae.As'.let (h,t) = s'(e[z])in up(t,s'),0,z),

null = (Ae.Xs'.(e[z] = NIL), 0, z)}

Initial environment: eg = {ref — (sqo,ref),! — (so,deref), := — (s0, affect), true — (so,true), false — (so, false),
n — (so,n) if n € Z, [1 — (so,NIL),hd — (so, fst), t1 > (so, snd),null — (sg,null),

fst — (so,fst), snd — (so,snd)}.

“We create minimal closures, so we only store in the environment of the closure the free variables of fun z — M.
"We do not write s = s1[¢ — (¢1,e1,z)] because we do not want to consider theses changes as assignments.

Figure 4: Denotational semantics

Figure 5: Paths. For example, 2 is represented by path r.1. T

maps c to one of the paths l.c,r.c,app.c, ¢, ¢}, c|—, we de-
fine ¢¢ . Ctz — Ctz by ¢(c) = {o(p)lp € ¢}. We will
use the same notations for ¢ and ¢©. The path ¢ and the
context {c} will be considered identical.

Intuitively, s’ is after s if s’ can be obtained after s during
the execution of a program.

a(s) is the set of locations of right hand sides of assign-
ments from the store so at the beginning of the program to
the store s. To be able to define this from the store s only,
the stores must keep the history of their modifications. That
is why we have encoded stores as association lists.

loca(s, v, ¢, ep) is the set of locations which escape when
we keep the locations designated by context ¢ in the value v
in the store s. The environment e, indicates which parame-
ters will be given to the function v (it is empty if v is not a
function). (1) makes sure that if we estimate the escapement
in a given store, the analysis will remain correct in a future
store. (3) is the set of locations accessible from £ in the store
s, except that we exclude locations in a(s) to balance the
effect of imperative operations. Intuitively, we follow a path
in two different ways: for data structures, we simply follow
pointers (4, 5), whereas for functions, we apply them to a
parameter taken in the parameter environment (6).

dest((s,v),c) is the set of locations in the value v rep-
resented by the context ¢. If v is not functional, the union
on e, and the subtraction of the locations of e, in (9) are

useless.

In Definitions (10) and (11), we mark the part
(loca(s, v, ¢, ep) or A) of the result represented by the context
c and the stored locations which we consider as escaping, and
we search which locations of the variables are marked.

f is p-transitive if it takes into account locations that
escape through intermediate variables. For example, in the
expression :

let £ = M in let y = N in P

if f = E[P]p is the analysis of P, and if we keep the part rep-
resented by context ¢ of the result, the escapement of y will
be represented by ¢1 = fey. This escapement of y will cause
the escapement c2 = p[y]ciz of x. On the other hand, what
escapes from x is what escapes through assignments during
the evaluation of N, p[y]Llz, union what escapes through
the result, fcx. p-transitivity asserts that this escapement
takes into account the escapement c2 through y.

X —» T1

Example 3.1 | .
1et x i (true.:: [1) :: [1 in y 25 i
et y = hd x in
1 r
y
true I

Let e and s be the environment and the store when y is
evaluated. Let z1, 2 = y be the locations such that e[x] =
z1, e[y] = z2, s(z1) = (z2,NIL), s(z2) = (true, NIL). We
compute ¢ Tx such that corr,(e, s,y, @):

loca(s,y, T,[]) = {z2}, dest((s,z1),l.T) = {z2} and
dest((s,z1),1.1.T) = 0 therefore ¢pTx =1.T.

Theorem 3.2 Consider an expression let © = M in N
or let rec z(y) = M in N. Assume that the location ¢
at the top of x is new when x is defined.

Let s and s' be respectively the stores at the beginning and
at the end of an evaluation of N, and r the result of N. If
¢ ¢ ((a(s') La(s))Uloca(s',r, T, [])) Nloc(s) = (a(s")Ur Ly )
Nloc(s) L a(s), then £ can be stack allocated.

Proof sketch: In this situation, £ is only accessible through z in
the store s'. Indeed, £ ¢ a(s) and £ € loc(s) so £ ¢ a(s')Ur | .



Domains Accessible locations

c € Ctr = P(Path) L {0} Contexts ¢ |, = {locations accessible from location ¢ in store s}
1€ Ind =N Parameter indices v |s =0 if v € {true, false, NIL} UZ
¢ € Exp* = Val# = Ctz — (Var U Ind) — Ctz els =U{efz] |s | z € Dom(e)}
p € Env¥* = Var — Val* Abstract environment loc(s) = Dom(s) (locations existing in the store s)
E[M] : Env* — Ezp* Abstract semantic function loc(ep) = Ui e, (i)=(vp.5,)Vp Lsp
ep € Env, = (Store x Val)* Parameter environment loc(s, ep) = loc(s) Uloc(ep)
Store order Stored locations
sAs' & 5" = 5[ — o] where £ € Loc a : Store — P(Loc)
if £ € Dom(s), £ is mutable (ie has been created by a reference) a() =10
v € val(s) Uval(s) x val(s) U (Env — Ezp) x (Var — val(s)) x Var a(s[l—v])=a(s)Ul |y if £ € loc(s)
val(s) = loc(s) U {true, false, NIL} UZ (a destructive assignment)
s’ after s if sA*s' (A" is the reflexive and transitive closure of A) a(s[€ — v]) = a(s) otherwise (an allocation)

Context concretization

loca : Store x Val x Ctz x Env, — P(Loc)

If ¢ is a path,
loca(s, v, ¢, ep) = U{locao(s', v, ¢, ep)|s’ after s}
If c = L or v € {true, false, NIL} U Z,locao(s,v,c,[]) =0
If c = T,locao(s, 4, c,[]) =€ |s La(s)

If ¢ = Lea, s(€) = (41, £2) (pairs or lists) or s(¢) = ¢1 (references),locag(s, 4, c,ep) = loca(s, f1,c1,€p)

)

/\/\/\/\/\
ot w
T D O —

If ¢ = r.co, s(€) = (b1, £€2), locag(s, ¥, c,ep) = loca(s, €2, ca,ep)

If ¢ = app.ci1, s(£) = (m, €', z), m(e'[z — pi1])s = up(¢", s"),
locao(s, £, ¢, (s,p1) : ep) = ((a(s') La(s)) Uloca(s', £, c1,ep,)) Nloc(s, ep) (6)
If the store s is not the one indicated for the parameter p1 in the parameter environment e,, the result is 0.

If ¢ = app.c1, s(f) = (m,e',z), and m(e'[z — p1])s = L,locag(s,,c,(s',p1) 1 ep) =0 (7)

If the path ¢ does not correspond to the value £ (the path begins with r for a reference, with 1 or r for a closure,
with app for something else than a closure), loca(s, £, ¢,ep) =0

If ¢ is a context,loca(s, £, ¢,ep) = U{loca(s, £, c1,ep)|c1 € ¢} (8)
dest : (Store x Val) x Ctz — P(Loc)

dest((s,v),c) = U{loca(s,v, ¢, ep) Lloc(ep)|e, € Envy} (9)
Correctness

corr, : Env x Store x Val x Val* — {true, false}
corry (e, s,v, ¢) < Ve € Ctz, Ve, € Envy,loca(s,v, ¢, ep) C Uzenom(e) dest(e(x), pex) U Uie ma dest(ep(4), i) (10)
corre : Env x Store x Ezp x Ezp* — {true, false}
corre(e, s, f, ) & Ve € Ctz,Ve, € Envy, A C Uyenom(e) dest(e(x), pcx) U Uie ma dest(ep(4), i) (11)
A=0if fs=1
A = ((a(s") La(s))Uloca(s',v,c,e,)) Nloc(s,e,) if f s=up(v,s').
f € Val* = Exp¥ is p-transitive if, for all y in the lexical scope of , fcz U plylLz 2 plyl(fey)z
corr : (Env — Ezp) x (Env® — Ezp¥#) — {true, false}

corr(f, @) < Ve, Vs, Vp, (Vy € Dom(e), corry (e, s, e[y], ply]) and p[y] is p-transitive) = corre(e, s, fe, ¢p) (12)
and ¢p is p-transitive (¢pc is defined on Dom(e) U Ind).

Figure 6: Definition of the correctness of the analysis



E[M] : Env¥* — Exp*
Elylpc = plylc
E[M Nlpc={i— ¢(i+1)ifi € Ind,z — ¢(z)C UY(z) if
z € Var} where ¢ = E[M]p(app.c) and ¢ = E[N]p(¢(1))
E[fun y — M]pc =
Nepv(ful_ln ) [2] T ife=T,
{ ife=_1,
{1~ ¢(y),i— (i L1)ifi>1,
x — ¢(z) if ¢ € Var}
where ¢ = E[M]ply — p](c|-)
and pt(c)={i— T,y — c}.
E[let y = M in N]pc =
E[N]ply = E[M]pU Ac{y — ctegg UE[M]pLve,
E[let rec f(y) = M in N]pc = E[N]
(fp(Ap1.plf = E[fun y — M]p: UeA{f — c})ezy
E[if M then N else Plpc =
E[M]pLv. UE[N]pc U E[P]pc
E[M::Nipe = B[Mlp(ey) U BIN]ple:,)
E[(M, N)]pc = E[M]p(c;i) U E[N]p(c)r)
E[M; N]pc = E[M]pL v, U E[N]pc

otherwise.

I

[ref]c {} ifc=LlorT,
re =
P {l—=¢_,i—= Tifi>1} otherwise.

{} ifc= L,app.Lor T
pli=le=<{1— T} ifc=app.T,

{2~ T} if ¢ = app.app.L or app.app.T.

pla]c = {} where a € {true, false, [1} UZ.

NES ife=_Lor T,
plfle = {l—>le_,i— Tifi>1} otherwise.
where f is fst, hd or !.
B {} ifec=_lorT,
plfle = {{1 —r.c_,i+— T ifi >1} otherwise.

if f is snd or t1.

ploul]e = {}
E[M]pcx = U{E[M]pc'z|c' € ¢} if ¢ is a context.

Figure 7: The equations of escape analysis

£ is not accessible through the result r as £ ¢ r |, , and £ is not
accessible through other variables in the environment because it
has not been stored. When we get rid of z, £ is no longer accessible
and can be deallocated. [

We denote by f = {z — f(z),...} a function f : (Var U
Ind) — Ctz defined pointwise. f evaluates to L when it is
not explicitly defined. {} is therefore the constant function
equal to L. The analysis F is defined on Figure 7, first for
paths, then we extend it to contexts by taking unions (last
formula of Figure 7).

Example 3.3

let 1 =
leta=1::2::3:: [] in
let g = fun x -> (x,x) in
let rec map f 1 =
if null 1
then []
else (f (hd 1))
in map g a
in ...

(map £ (t1 1))

Let M = 1let rec map = ... in map g a. Let pg be the
environment containing predefined variables.

p=pola— (E[1::2::3::[1]po U Ac.{a — c}),
g+— (EJfun x -> (x,x)]po U Ac.{g — c})]
E[M]pc = E[map g a](Ifp(Ap1.p[map —
Efun £ 1 -> if ...]p1 U Ac.{map > c}]))c

Let p2 = pi[f — p7,1 — p], ¢ = app.app.¢j— |,
Elfun £ 1 -> if ...]pic=

{1 = (app.¢|—|—p1) U p2[map]c't U p>[map]c'l,

2 — {L.T} U p2[map]c'l U r.ps[map]c'2,

map +— ¢’ U ps[map]c map,

z— 0if z € Var L {map}}
The fixed point is:
pi[map]c = {map — ¢, 1 — app.cj—|—|p+;,2 — " 1T}
E[M]p{T}a = pi1[map]{app-app. T}2 =1".1.T
E[M]p{T}g = p1[map]{app.app. T} = {app.T}

The top of a and the closure g can therefore be stack
allocated.

Theorem 3.4 The analysis E is correct corr([M], E[M]),
and e s coherent with p on predefined wvariables:

corry (e, 5, e[y], plyl)-

Proof sketch: The proof, omitted, is by induction on the syntax.

In the lety = M in N case, we have to show that
deSt(e’[[yﬂv E[[Nﬂp’cy)ﬁloc(s) - UmEDom(e) deSt(e(m)v EIINﬂp’(J.’I?U
E[M]pLlzx) where e’ = e[y — (s',v)] and p' = ply — E[M]p U
Ac.{y + c}] are respectively the semantic and abstract environ-
ments in the analysis of N. This expresses that the escapement
through the bound variable y is already taken into account by
other variables. It comes from p-transitivity.

In the let rec case, we do a fixed point induction, and use
p-transitivity as in the let case. [J

In the case:
let rec f(x) = ...
in £(3)
dest((s,f),app.T) contains all the locations of f£,
so E[£(3)]pT = app.T would be correct wrt.
corre(e, s, [£(3)]e, E[£(3)]p), so we cannot use this
criterion directly to decide that f does not escape
p-transitivity is necessary.
However, we can prove the following result:

z :=f ...

Theorem 3.5 (Correctness of E) Consider the expres-
sion let © = M in N or let rec z(y) = M in N. As-
sume that the creation of the location £ at the top of x is the
last operation in M. Also assume that T ¢ E[N]p Path .
Then £ can be stack allocated.

This arises from Theorem 3.4 and p-transitivity.

Proof sketch: Let s, and 9; be respectively the stores at
the beginning and at the end of an evaluation of N.

First, we show that if ¢ € E[N]p Pathx, £ ¢ dest((sz,£),c).
If = is defined by let, we show that if ¢ # T, £ ¢ dest((sz,£), )
using the definition of dest. If z is defined with let rec,
x itself can reference £. By p-transitivity, FE[N]p Pathz LI
plz]Lz D p[z]|(E[N]p Path x)x with p[z] = Ufp(Apz.E[fun y —
M]plz — pe] U Ae{zx — ¢}). Then pfz]le = L, so T ¢



Figure 8: Type levels

plz](E[N]p Path z)x. Tet ¢ € E[N]pPathz. T ¢ plz]cz =
Ifp(Ape .- Efun y — M]p[xz — pz| U Ac.{z — c})cz.

We consider imaginary executions where we only iterate n
times in the fixed point computation, to show by induction that
£ ¢ dest((s?,£),c), if c # T. So we still have £ ¢ dest((sz,£),c) if
¢ € E[N]p Path z.

Then £ ¢ dest((sz,£), E[N]p Path x). Let r be the result of N.
By correctness of the analysis (Theorem 3.4), ((a(s)) L a(sz)) U
loca(sh,r, T,[])) N loc(sz) C Uwevar dest(e(z), E[N]p Path z).
Then £ ¢ (a(sh) La(sz))Ur |g , as £ € loc(sz) and £ is
not in the variables other than z, as it has been created at the
end of the computation of z. Therefore, £ ¢ ((a(s},) L a(sz)) U
loca(sh,r, T,[])) Nloc(sz) and by Theorem 3.2, £ can be stack
allocated. O

4 Escape Analysis on Numerical Contexts

We now represent escapement by integer levels, and we de-
fine a translation from sets of paths to integers.
We define type levels by

To[r] =1if 7 = bool, int or unit
Taolri — 72| = Talr]

To[r * 2] = 14 max(T2[m1], Ta[r2])
To[r list] =14 Ta[7]

Tolr ref] =1+ To7]

Ti[r] = 1if 7 contains a functional type 11 — 7
T1[r] = 0 otherwise

The level of a path is defined by

a3 (T) = Ta[r] if 7 is not functional, cc otherwise

az(L)=0
ay' " (app.c) = a5 ()

07 (Le) = 03t (¢)
aj ***(Le) = aj(c)
oF ™ (1e) = a3 (0

07t
o 5% (1) = o 17 (¢)

a3 (¢) =0 in all other cases (forbidden paths)

rc) = a3 (c)

We define the level of a context by taking the upper bound:
aj(c) = U aj(c)
c'ec

The concretization function is

() = {cla3(e) < '}
(a%,73) is a semi-dual Galois connection:
v
(Ctz, ©) B(NU (s}, <)

-
2

4
2

We write in exponent of as or 2 an expression instead
of a type to mean the type of this expression. We underline
a part of a type to symbolize T4 of this part. For example,
71 list means Ta[71].

Let Ctzy = {0,1} and Ctz» = N. We define the ab-
straction af(c) = (1,0) if aj(c) = oo, ai(c) = (0,a3(c))
otherwise. 7] (c1,c2) = U{c € C(1)|ai(c) < (c1,c2)} where
pairs are ordered lexicographically. (a],~]) is a semi-dual
Galois connection:

1

(Ctz, C) = (Ctz1 x Ciza, <)

-
o

Val; = Ctz; — (Var U Ind) — Ctz; and Env, = Var —
Val;. We define two analyses F;[M] : Env;, — Val; on
Figure 9. In these definitions, £ € Var and i € Ind. A
function evaluates to 0 when it is not explicitly defined. We
write T1, = T1[7] if z is of type 7, and T1 , for clarity when
z is a numeric parameter index. We use the same notations
for To.

The analysis F; takes into account variables which escape
through closures, whereas F5 gives more precise information
for the other variables. One analysis is not enough because
the level of a variable in a closure may be higher than the
level of the closure, so the corresponding escape function
would not be inferior and our fast algorithm would not work
(see Section 5.1).

Example 4.1 For themap : (int -> int) -> int list
-> int list function (Example 3.3),

Fi[fun £ 1 -> if ...]pic=
{1 — cU pi[map]c £ U p1[map]c1,
2 — c U pi[map]cl U p1[map]c2,
map — c¢ Ll p1[map]cmap}
BEoffun £ 1 -> if ...Jpec=
{1~ (¢N (int — int)) U p2[map]c £ U p2[map]c1,
2 — int list U pa[map]cl U ps[map]c 2,
map — c U ps[map]cmap}
Then,
pi[map]c = {map — ¢, 1+ ¢,2 — ¢}

p2[map]c = {map — ¢,1+ ¢ (int — int),2 — int list}

Definition 4.2 The analyses f1 : Ctz1 — Ciz1 and fo :
Ctzs — Cltzo which give escape information about a variable
of type 7' in a term of type 7 are said to be correct wrt. the
analysis f : Ctz — Ciz if

If f11 =0, f Path C~5 (0)

If /10 =0, f(+43(c)) €7 (fac)

The first line handles the case when a closure escapes in the
result (the context passed to analysis fi is 1). In this case,
the analysis f; is just a rough approximation which says that
all free variables escape, so if f1 gives back 0, we know that
the variable is not free and nothing escapes from it. The
second line handles the case when no closure escapes in the
result. In this case, the analysis fi gives back 0 if we can
prove that no closure escapes from the variable, and when
f10 = 0, the analysis f> gives the precise escape information.

C(T[Tl]va f17f2) = {

Theorem 4.3

If vya V'Ta C(T'U [T‘T]ﬂ AC.pIIy]]C.’L', AC'pl [[y]]().’l?, AC.pQ [[y]]CT)J
Ve, C(tm[12], Ac. E[M]pcz, Ae.FA[M]picx, Ac. Fa[M]p2cz).



Filylpic = p1lyle
RIM Npic = i o 80+ 1),7 — o(x) U (x)}

where ¢ = Fi[M]pic and ¢ = Fi[N]p1(¢(1) U ¢).
Fi[fun y —» M]pic={1 ¢(y),i — Pt L1)if ¢ > 1,

x — ¢(x)} where ¢ = Fi[M]p1[y — pitle

and pirc={i— T1; Uc,y — c}.
Fi[let y = M in N]pic =

Fi[N]p1ly = Fi[M]p:r U ey = ctle U Fr[M]p1c;va,
Fi[let rec f(y) = M in N]pic = Fi[N]psc U p3(f)c|var
with p3 = Up(Apz.p1[f — Fi[fun y — M]ps U Ae{f — c}])
Fi[if M then N else Plpic=

F1|IM]]p1C‘Var |_|F1|IN]]p1C|_|F1|IP]]p1(3
F] M:ZN]]p]C = F] HM]]p]CLI F] HNHp]C
F[(M, N)]prc = Fi[M]prcU Fi[N]pic
F] HM, N]]p]c = F] HM]]p1C\Va,r L F] |IN]]p]C
pi[i=]ce={l—c¢,2— T12Uc}
pifa]c = {} where a € {true, false, [1} UZ.
pi[fle={1l—c,i— Ty Ucifi>1}
where f is hd, t1, fst, snd, ref or !.
pi[null]ec = {1 — ¢}

Fyylpac = palyle
Fy[M NJpae = {i— ¢(i+ 1),z — ¢(x) Up(x)}
where § = Fa[M]pac and 4 = Fa[Nlpa(6(1).
Fyfun y —» M]p2c = {1~ ¢(y),i — ¢(: L 1) if
7 g(z)} where ¢ = Fa[M]p2ly — parle
and parc={i — Ta,y — c}.
Fs[let y = M in N]psc =
Fy[N]p2ly — Fo[M]p2 U ey = cte U Fo[M]p20)va,
Fs[let rec f(y) = M in N]pa2c = F>[N]
(p(Apa.p2[f = Fpfun y — M]ps U Xe{f = c}])e
Fy[if M then N else P]psc =
F5[M]pa0jvar U F5[N]pac U F5[Ppsc
HM N]]pQC = FQ[[M]]pQ (C Il TQM) LI FQlIN]]pQC
Fy[(M, N)[pac = Fo[M]p2(cT Tan) U F2[N]p2(c N Ton)
FoM; Nlpac = Fo[M]pa0, var U B[N pac

-

¥)

1>1

[[ref]](‘_{].'—)(’ﬂ—l—g1,’l'—>—|—g7 ifi > 1}
pali=lc = {2 T}

[a]c = {} where a € {true,false, [1} UZ.
[fle={1cir— Toifi>1}

where f is hd, t1, fst, snd or !.
palmo1]é = {}

F2
p2
pz
p2

Figure 9: Analyses Fi and F»

The initial environment satisfies the above hypothesis, hence
the conclusion is true and F1 and F»> are correct.

Proof sketch: By induction on M. In the function case, we
notice that when evaluating Fi[M]picx, the context passed to
subexpressions of M is always at least ¢, so by induction

Vo € Var, Fi[M]picx > U, cpv(uyp1lz]ce

If Fi[funy — M]pilz =0, Vz € FV(funy — M), p1[z]lz = 0
so p[z] Path z C v%(0) therefore E[fun y — M]p Path x C 75 (0).
The other cases are easier. [

Theorem 4.4 (Correctness of Fi and F») Consider
the erpression let x = M in N or let rec z(y) =
in N. Assume that the last operation of M is the allocation
of the location £ at the top of x. Assume furthermore that
if neither N nor x are functional,
" [[N]]p1 0z =0 and FQHN]]pgTQNx < Tog
if N is functional, Fi[N]pilz =0
else F1[N]p10z =0

(13)

Then £ can be stack allocated.

Proof sketch: Condition (13) combined with Theorem 4.3 shows
that T ¢ E[N]p Path z. Then Theorem 3.5 yields the conclusion.
O

4.1 Polymorphism

We first analyze all expressions as if they were monomor-
phic, ie type variables are supposed to be atomic : T3[8] =
La%(c1.1) = 0,05 (c1.T) = 1 if 3 is a type variable. We
can then infer an approximate analysis for the instantiations
of this expression. This can lead to a loss of precision wrt.
the direct analysis of the instantiation but, surprisingly, this
may also be more precise than the direct analysis. For ex-
ample,
phi = fun x -> fun y ->
let z = (x,y) in

a := snd z;

fst z
Here, the analysis gives Fy[phi]pcl = ¢ U Tofr] if y is of
type 7. Assume that we analyze the polymorphic version
7 = (3. Then FhJphiJpcl = ¢ U 1 and the instantiation
does not change this formula (because we instantiate wrt.
the type of x, without considering the type of y). However,
the direct analysis with 7 = int list for example gives
Fs[phi]pcl = ¢ U 2 which is less precise.

Therefore, the analysis by instantiation and the direct
analysis are not comparable : our analysis is not polymor-
phically invariant [1]. We can however prove the correctness
of instantiation wrt. the analysis E.

Definition 4.5 Let o be a given substitution on type vari-
ables. The instantiation and generalization functions are
respectively:

S W{Tofor'] | 7' € S(), To[r'] < '} ifcd >0
L =10 if ¢ =0

0 ife=0

where 7 is the type associated to the contexts we instanti-
ate or generalize, and S(7) is the set of subexpressions of 7,
defined as usual except that for the arrow type, the subex-
pressions are only the subexpressions of the result. For the
analysis F', the instantiation is I] (¢,b) = 1 if o substitutes
some type variables of 7 by function types and b # 0, and
I (¢,b) = ¢ otherwise. The generalization is G1(c) = c.

G3(c) = {'—'{TZ[TI] | 7' € S(7), Tolor'] <c}Ul ifc>0

Theorem 4.6 (Instantiation) Let f = Ac.E[M]pcz.
C(7[rz], f, Ac.(cMa1) Ubi, Ac.(cMa2) L ba)
= C(oT[oT], f, Ac.(¢ T ar) U IT™ (b1, ba),
Ae.(eMI37 (a2)) U I3™ (b2))
This result is useful as every manipulated function is of the
form Ac.(cMa)Ub (because this form is stable under com-

position, meet and join). This proves the correctness of the
instantiation functions I3 and I7 .

Proof sketch: First, f can be put under the form f(c) =
U ¢j.¢jr Uer where ¢; € (appll)*, ¢j € (= [r)*, e1 € Clz
i€l i

and the join may be infinite. To prove the cases f(¢) = c1,
and f(c) = ci1.¢|c,, we show that a7(c) < I3 o aj(c) when
aJ7(¢) # oo. This means that I7(c) represents at least as many
paths in type o7 as cin type 7. O



Example 4.7 The map function has type (@ — 8) —
a list — (3 1list. The analysis for the polymorphic ver-
sion is

pi[map]c = {map — ¢,1 — ¢,2 — ¢}

p2[map]c = {map — ¢,1 — ¢M (int — int),2 + int list}

When instantiating a = 71,3 = T, where 71 and 7 are not
functional types, we find

pi[map]c = {map — ¢,1 — ¢,2 — ¢}

p2[map]c = {map — ¢,1 — cN (11 — 12),2 — 71 list}

Theorem 4.8 (Generalization)

C(T[Tm]a fa fla .fz) = C(UT[T.’I!L f, fl7 f2 o G‘é—)
This shows the correctness of the generalization functions
G1 =1id and G2. This is useful for the case f = Ac.E[y]pcz
when we instantiate a variable y of type T into the type oT.
We shall write

Fi[l,y:7Fy:o7t]pr =p
B y: 17k y:or]pace = p2(G3(c))x

Proof sketch: The key point is that a] < G7oag™. O

4.2 Inductive types

We now extend the definition of type levels T2[7] to induc-
tive types. This level must satisfy the following property: if
a value of type 71 is inside a value of type 7,

Tam] < Tar] (14)

Then, in the case of recursive data types, all the locations
of the same strongly connected component of the type must
have the same level. Between distinct strongly connected
components, we add 1 to the level.

Example 4.9

type term =

Var of int

| Prop of head * term list

and head =

{ name: string;

mutable props: (term * term) list }

Ta[term] = Tytermlist] = T[term*term] =
To[(term* term)list] = Talhead] = 2 and Tz[head list] =
1+ Ts[head] = 3 because this type is not is the strongly con-
nected component.

This definition is compatible with the previous definition
of T, for the 1ist type:
type ’a list = Nil | Cons of ’a * ’a list

If 7 is an abstract type, T2[r] = 1 as nothing can be
extracted from 7.

However, constraint (14) cannot always be satisfied: if
we define non-monotonic recursive types, for example:

a t = None | Some of a * o list t

the cycle check is not enough, as we use infinitely many
different types a list ... list t. In this case, the typeis
called not level preserving, it is handled as functional types
in the preceding analysis and its level is 1. Anyway, such a
type has no practical use, as we cannot write an iterator on
it.

Fp[M]p

\/
op1 v 0pn
v
\
Fi[Mi]pa Fy[Mn]pn

Figure 10: Tree used to represent the equations

5 Implementation

The analyzer is implemented in Caml Special Light (an im-
plementation of the ML programming language). It is rel-
atively small (less than 5000 lines). It works in two passes.
The first pass transforms the abstract syntax tree of the
analyzed program into a tree labeled with escapement in-
formation. The second pass takes this tree and performs
the optimizations. Escapement information is stored in a
file to allow reusing it for intermodular analysis.

5.1 Computing the escape information

Deutsch’s technique [14] can be applied here, except that,
as explained in the following, we must label the tree with
operations Ac.(cM f) Ui (which can be represented by a pair
of contexts) instead of just contexts, to take into account
imperative operations. Because of the presence of higher
order functions, we also have two analyses F; and F» instead
of just one similar to F> in Deutsch’s paper.

Semantic equations are represented by a tree whose
nodes are occurrences of Fi[M]p and edges are such that
Fy[M]p = WiFp[M;]p; o op; if Fi,[M]p is linked by edges
labeled op; to Fy[M;]p: (Figure 10). The definition of Fi
and F> shows that all the operations op; are of the form
op = Ac.(cM f) Ui. We represent them by pairs (f, ).

The composition is defined on the associated pairs:

(frsin) o (f2,i2) = (fr M f2, (211 f1) Win)
If some of these values are unknown (when we compute a
fixed point), we create new unknowns to represent the com-
posed operation and emit equations representing the above
formula.

The operation eval(n) computes the composition of op-
erations labeling the edges on the path from the node n to
the root, doing path compression [37]. We maintain the
relation: Fy[M]p = U,erv(m)nes@)Plz] o eval(n) when
analyzing M, where 6(x) is the set of nodes representing
occurrences of xz. This enables us to compute F.

We solve the equations with a generalization of Di-
jkstra’s shortest paths algorithm given by Knuth [28].
It gives the least fixed point of an equations system
Y = Uigi(Xi1,...,Xr) where g; are inferior functions:
gi(z1,...,2x) < min(z1,...,z;). However, the instantia-
tion function I3 (Definition 4.5) is not inferior. To be able
to use Knuth algorithm, we first split the system in strongly
connected components. We solve each component separately
with Knuth’s algorithm. Inside a component, we approxi-
mate the instantiation by the constant function equal to the
level of the type. This is less precise, but correct. Between
components, we use the more precise instantiation, which is
the most frequent case.



op1 op2
[£] [nd 1]

W[[mapﬂ £l [e1 1]

|

1
[1] [
Figure 11: Tree built by analysis F> on Example 3.3, without
path compression. If f is of type 1 — 12, f = T2[m2] and
it = Ta[r1]. op1 and op» are the unknowns representing
the escapement of the parameters of the map function. The
identity label is omitted.

op1 op2

[£] [1]

Figure 12: Same as Figure 11, after path compression. We
only kept the nodes representing variables for simplicity.

5.2 Program Transformation

We use an expression letstack z = M in N equivalent to
let £ = M in N except that the outer constructor of x will
be stack allocated, and deallocated at the end of the execu-
tion of N. letstack’ * = M in N also stack allocates the
outer constructor of =, but deallocates it before the tail call
of N, which enables us to preserve tail call optimizations.

Example 5.1

let kb_completion =
let rec kbrec j rules =
let rec process failures (k,1) eqs =

let enter_rule(left,right) =
letstack’ left_reducible rule =... in
letstack’ right_reduce rule =... in

kbrec (j+1) (new_rule::irreds) []
(k,1) (eqs @ eqs’ @ failures)
in

left_reducible and right_reduce are deallocated before
the recursive call to kbrec, which avoids a useless stack
growth, and enables us to code the kbrec tail call as a jump.

The expression C[let x = M in N] is changed into
letstack x = M in C[N] and C[M] is changed into

letstack z = M in CJz] if the top of z does not escape
from C[N] or C[z], ie using Theorem 4.4, if condition (13)
is satisfied, which is determined by escape analysis. To per-
form this transformation, the head of M must be an allo-
cator: a type constructor, or a standard primitive doing an
allocation. This transformation must not change the eval-
uation order, so this limits the size of the context C]| (it
must not contain a fun expression for example). This may
also lead to add more lets. For example, we can transform
MOM] - Mn into
let xo = Mgy in

let ©, = M, in

let iy1 = Mi41 in
letstack z; = M, in
.’IZ(]M1 M7i1’L‘7Tn

We put lets for M; (j > i) because M; is evaluated before
M, if j > i (CSL evaluates expressions from right to left).

We choose the context C[] as small as possible to reduce
the time during which z is in the stack. The idea is as fol-
lows: the program transformation takes as a parameter an
expression to transform and gives back the transformed ex-
pression, and the set of lets to put outside of the current
expression. These lets are collected in a tree, whose edges
are labeled with context transformers defining the escape-
ment of the let in the current containing expression. These
transformers have been computed for each expression by the
escape analysis. We perform path compression in this tree
using Tarjan’s algorithm [37], to update the context trans-
formers as we go up in the abstract syntax tree. As soon as
the last let (in evaluation order) does not escape any more
of the current expression, it is extracted from the tree, and
written in the program.

Example 5.2
let rec tak (x,y,z) =
if x>y then
tak
(letstack %t1=(x-1, y, z) in tak %tl,
letstack %t2=(y-1, z, x) in tak %t2,
letstack %t3=(z-1, x, y) in tak %t3)
else
z

#t1, %t2 and %t3 are deallocated each before the allocation
of the next, which reduces the stack size (by a factor 3).

According to command line options, we avoid putting a
letstack which forbids a recursive tail call optimization or
any tail call optimization. In this case, only letstack’ is
possible, if the escapement is correct. Indeed, if we put a
letstack in tail position in a recursive loop, the size of the
stack increases at each loop iteration, whereas with tail call
optimization, it would not have increased. This can make
the program fail, and so must be avoided [9].

To increase opportunities for stack allocation, we per-
form automatic inlining of small functions which allocate
data (only when this effectively allows more stack alloca-
tion). For example,

let £ x = [x];; hd(f 3)
becomes
hd (let x = 3 in [x])
and then
let x = 3 in letstack Jt1l = [x] in hd %t1.



5.3 Complexity

Let n be the size of the program. The number of generated
equations e and unknowns » and the time r to compute
all right-hand sides of the equations are in O(nlogn) [14],
which gives a O(e x logu + r) = O(nlognlog(nlogn)) =
O(nlog?n) solving time [28] (the computation of strongly
connected components is linear, and therefore dominated by
the solving time).

The computation of type levels is dominated by the size
of types (more precisely, the sum of the sizes of types dec-
larations that are used). The program transformation per-
forms O(n) path compressions in a O(n) forest, so by The-
orem 1 of [37], its complexity is O(nlogn). Finally, the
complexity of the analysis is O(nlog”n + t) where ¢ is the
type levels compute time.

If inlining is activated, the complexity of course increases.
If I is the maximum size of an inlined function (fixed by the
user), the size of the resulting program is at most n' =
O(nI), and the analysis time is O(nI + n'logn' + nlog® n)
(we just post-transform the inlined program).

6 Experimental Results

6.1 Compiler Benchmarks

The compiler is given with benchmark programs (Figure 14)
which we have tested in several configurations (Figure 15)
and on several machines (Figure 13).

taku Integer computation, allocating tuples
reynolds2 | Binary tree search, allocating closures
reynolds3 | Binary tree search, allocating pairs
boyer Terms treatments
kb Knuth-Bendix’s completion algorithm
nucleic Floating point computations
Figure 14: Tested programs

All Preserves all tail call optimizations

Rec. | Preserves only recursive tail call opt.

None | Preserves no tail call optimization

Figure 15: Program versions

Inlining does not change anything except on kb and nu-
cleic, so we will only test one version for the other programs.
The inlined versions of kb and nucleic will be named kb-inl
and nucleic-inl. In the following tables, for each information
X, we have given (X L X4, )/X where the value is X with-
out stackallocation, and X, with stackallocation. The last
column of the tables gives X. On Figures 21 to 24, the ”To-
tal time” curve represents the speedup percentage; the "GC
time” curve represents the part of the speedup percentage
due to the GC, and the "let” curve represents the part due
to the lets alone (there is no stack allocation in this case.
We only put lets where there are letstacks in the version
with stack allocation, and inlining has been performed as if
there were stack allocation). The GC parameters have their
default values: GC ratio 30%, minor heap size 32768 words.
Uncertainty on time measures is about 1 to 2%, although
we have repeated each test 30 times to improve precision.

Not preserving tail recursion optimization enables more
stackallocation (Figure 16), but it causes a stack growth
(Figure 17) which may cause the failure of the program

10

Memory size decrease (%) Size
ATl T Rec. | None || (Mwords)
taku 74 74 99 12.7
reynolds2 49 49 99 10.4
reynolds3 9 9 99 31.4
boyer 0 0 16 1.2
kb 1 1 46 8.3
kb-inl 1 1 46 8.3
nucleic 11 11 13 3.8
nucleic-inl | 31 43 45 3.8
Figure 16: Tested on Sparc 5
Stack size increase (%) Size
All T Rec. | None || (bytes)
taku 25 25 29 996
reynolds2 69 71 71 692
reynolds3 | 45 45 107 668
boyer 0 0 1 1772
kb 58 58 165 85812
kb-inl 74 74 181 85812
nucleic 0 0 40 2236
nucleic-inl 3 3 44 2236

Figure 17: Tested on Sparc 5

(even if it does not happen in these benchs). On Sparc 5
and Alpha, it improves speedups, whereas on Pentium Pro,
preserving recursive tail call optimizations is often better
(nucleic, reynolds3). Stack allocation brings more speedup
when the allocated data is larger (because more GC time
is then saved up and the cache behavior is improved for a
greater number of accesses). Then, a size limit can exist
above which stack allocation is more interesting than tail
call optimization. This limit depends on complex factors
(cache and GC behavior), but it may explain that on Pen-
tium Pro, reynolds2 slightly benefits from not preserving tail
call optimizations, whereas reynolds3 loses, as the closures
allocated by reynolds2 are larger than the pairs allocated by
reynolds3.

Inlining increases the effect of stack allocation, but alone
slows down execution on Sparc 5 (probably because of a
larger code transfer between memory and chip) which ex-
plains the bad results on the "let” curve for nucleic-inl. Its
effect is negligible on kb, as we cannot inline enough func-
tions.

Optimal letstack moves and letstack’ also increase
stack allocation opportunities. For example, if we preserve
recursive tail call optimizations, and disable these improve-
ments, stack allocation becomes negligible for taku. Opti-
mizing the lifetime of data also enables to reduce the stack

Total speedup (%) Time

ATl | Rec. | None || (ms)

taku 25 23 26 488
reynolds2 1 0 1]l 6072
reynolds3 2 0 -6 || 3070
boyer 0 0 5 523
kb 0 0 2 || 1332
kb-inl 0 0 2 || 1339
nucleic 6 6 0 696
nucleic-inl 6 10 5 692

Figure 18: Tested on Pentium Pro



Tested computer Primary cache Secondary cache | SPECint95
Alpha DEC 3000/300 | 8kb(I) + 8kb(D) | 512kb(I+D) N/A
Pentium Pro 200MHz | 8kb(I) + 8kb(D) | 256kb(I+D) 8.20
Sparc 5 110MHz 16kb(I) 4+ 8kb(D) | None 1.59
Figure 13: Machines characteristics
size (on taku, it is 25% larger instead of 75% if we take the 8 ' ' ' ' T
longest lifetime). 25 |- Analysis time i
GC speedup on total time (%) [| Time o
ATl T Rec. | None || (ms) 2r . l
taku 3 2 3 2241 15| i
reynolds2 0 0 0 || 13707 ' °p © ¢ o
reynolds3 0 0 2 8087 1k 0 %0 o 4
boyer 1 1 6| 1876 o % .
kb 0 0 2 || 4937 05F o7 -
kb-inl 0 0 3| 4917 @B o
nucleic 0 1 1 1942 0 ' ! ! ! !
nucleic-inl 1 2 9 1912 0 1000 2000 3000 4000 5000 6000
GC speedup (%) GC time Figure 20: Analysis time (in seconds) as a function of the
Tk [?3131 Re7c2. N‘;gg (mgsi size of the expression (number of nodes in the syntax tree)
aku
;Ziigig:; gg ;13 igg ;;g During the bench, Coq allocates 5,25 gigawords, and puts
b(;yer 9 9 9 14925 17% of them on the stack when recursive tail call optimiza-
kb 1 0 6 1543 tions are preserved, and 25% when they are not. Inlining of
kboinl 0 9 9 1558 small functions enables us to stack allocate much more data
nucleic 1 15 17 162 .(Wf% (.:0111d not stack allocate more than 11% of data without
nucleic-inl | 20 | 27| 25 155 inlining).

Figure 19: Tested on Sparc 5

Tests concerning the GC give two results: the speedup
does not depend on the GC parameters (GC ratio, minor
heap size), and the speedup due to the GC represents a
minor part of the total speedup (Figure 19), which confirms
[27]. This can be explained as we mainly stack allocate short
lived data, which have no cost for the GC, since they are not
scanned by minor GCs.

So most of the speedup is due to a better data locality,
as only the data on top of the stack are used in general. For
example, without stack allocation taku allocates 12Mwords,
which are located in a 32kwords minor heap, whereas with
stack allocation, it uses only a less than lkword stack.

The Alpha is the machine which benefits the most
from stack allocation. taku gives the best results, but kb,
reynolds2, reynolds3 and nucleic (with inlining) are also sub-
ject to important improvements.

6.2 Coq

Coq is a theorem prover that we have tested by making it
compile its own benchmarks. In all these tests, letstack’,
optimal let moves and inlining are allowed.

Speedup (%) Time

Rec. | None (s)

Sparc b -2.1 3.0 || 5713

Pentium Pro 3.0 4.3 2339
GC speedup on total time (%) || GC time
Rec. None (s)
Sparc 5 1.2 3.8 2942
Pentium Pro 1.7 2.9 1342
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6.3 Analysis speed

The analysis speed enables us to use it to compile large
programs, of which Coq is a good example featuring 65000
lines. The analysis takes 14% of the compile time on Sparc
5 with inlining. The compilation is 19% longer because the
compilation of the transformed code is a bit longer than the
one of the initial code, especially with inlining. However
Coq does not contain only ML code, so there is a part of the
work which is not subject to the optimization. This shows
nevertheless that the analysis is not too costly. Figure 20
shows that it is nearly linear. We can analyze each recursive
declaration independently, which reduces the value of n in
the complexity O(nlogn).

Let C be the time to compile the compiler itself without
stack allocation, A the escape analysis time, C, the compile
time when enabling stack allocation, and Cy, the compile
time with stack allocation on an optimized (stack-allocating)
compiler. The analysis cost is given in the following table.

%(%) Ca(%(/' (%) GME‘LG (%)
Alpha 17 19 17
Sparc 5 16 20 19
Pentium Pro 19 21 19

7 Conclusion

We have implemented an escape analysis modified from Park
and Goldberg’s [32], but we have much improved its com-
plexity thanks to Deutsch’s method [14]. We also have
extended it to inductive types, imperative operations and
(with approximations) higher order functions.

The results given by this analysis are quite satisfactory.
Experience has shown this analysis can be applied even to



80 80

Total time —— Total time ——
GC time ---- GC time ——-—

70 let ---:- 70 let ---i-
60 60 |-
50 50
40 - 40
30 30
20 20 -
10 B 10
ol o - oiillin. _ nofe.lk

= 0
-10 -10
-20 -20
taku reynol2reynol3 boyer kb  kb-inl nucleic nuc-inl taku reynol2reynol3 boyer kb  kb-inl nucleic nuc-inl
Figure 21: Tested on Sparc 5, preserving recursive tail call Figure 23: Tested on Alpha, preserving recursive tail call
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large programs with at most 20% compile time overhead,
thanks to its reasonable cost in O(nlog® n) (assuming type
levels are precomputed). It also demonstrates the benefits
of stack allocation, as we get important speedups: often 5
to 20%, sometimes more in particularly good cases. Im-
provements are less important for the theorem prover Coq
(4%).

Execution speedups are explained to a very limited ex-
tend by a decrease of the GC workload. In fact, the observed
speedups are essentially accounted for by an improvement in
data locality. The best results are obtained when not pre-
serving tail recursion optimization on Sparc 5 and Alpha.
This solution is unsafe, as it may cause stack overflow, but
this does not happen in the considered examples. On the
other hand, on Pentium Pro processors, it is better to keep
tail recursion optimization, as it balances the improvement
of stack allocation.

Inlining of small functions to increase stack allocation
opportunities and a better adaptation of the GC to stack
allocation have slightly improved the results. However, the
quality of the GC of CSL [15] reduces speedup possibilities.
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