
Synthese 110 (1997), 77{125Hilbert and Set TheoryBurton Dreben and Akihiro Kanamori*Version of Bloomsday 1997David Hilbert (1862-1943) was the preeminent mathematician of the early decades of the20th Century,1 a mathematician whose pivotal and penetrating results, emphasis on cen-tral problems and conjectures, and advocacy of programmatic approaches greatly expandedmathematics with new procedures, initiatives, and contexts. With the emerging exten-sional construal of mathematical objects and the development of abstract structures, set-theoretic formulations and operations became more and more embedded into the basic frame-work of mathematics. And Hilbert speci�cally championed Cantorian set theory, declaring[1926: 170]: \From the paradise that Cantor has created for us no one will cast us out."On the other hand, Hilbert did not make direct mathematical contributions towardthe development of set theory. Although he liberally used non-constructive arguments, hiswere still the concerns of mainstream mathematics, and he stressed concrete approachesand the eventual solvability of every mathematical problem. After its beginnings as thestudy of the trans�nite numbers and de�nable collections of reals, set theory was becomingan open-ended, axiomatic investigation of arbitrary collections and functions. For Hilbertthis was never to be a major concern, but he nonetheless exerted a strong in
uence on thisdevelopment both through his broader mathematical approaches and through his speci�cattempt to establish the Continuum Hypothesis.What follows is a historical and episodic account of Hilbert's results and initiatives andtheir rami�cations and extensions, in so far as they bear on set theory and its development.2The emphasis on set theory presents a tangential view of Hilbert's main mathematical en-deavors, but one that illuminates their larger themes and motivations. Because of its basicinterplay with set theory, we deal at length with Hilbert's program for establishing theconsistency of mathematics by \�nitary reasoning". Section 1 discusses Hilbert's use of non-constructive existence proofs, with the focus on his �rst major result; section 2 discusseshis axiomatization of Euclidean geometry, with the focus on his Completeness Axiom; andthen section 3 discusses questions about the real numbers and their arithmetic that Hilbertwould later approach through his proof theory. With this as a backdrop, section 4 considersHilbert's involvement in the early development of set theory, and section 5 considers both hismathematical logic as a reaction to Russell's and the two crucial new questions that Hilbertraised. Section 6 describes Hilbert's approach to establishing the consistency of mathemat-ics, and section 7 its application to the Continuum Hypothesis. Then section 8 discussesG�odel's work, particularly on the consistency of the Continuum Hypothesis, in relation toHilbert's. In the appendix, Hilbert's consistency program is reconsidered in light of recentdevelopments in \reverse" mathematics.* This article grew out of an invited talk given by Kanamori on 9 November 1993 at a symposium onHilbert's Philosophy of Mathematics held as part of the Boston Colloquium for Philosophy of Science, forwhich he would like to thank the organizers, Jaakko Hintikka and Alfred Tauber. The authors are verygrateful to Volker Peckhaus, Jose Ruiz, and Christian Thiel for numerous helpful comments and corrections.1 Henri Poincar�e, Hilbert's only rival for preeminence, died in 1912.2 See Kanamori [1996] for the development of set theory from Cantor to Cohen.1



x1. Basis TheoremHilbert's work from the beginning greatly accelerated the move away from the traditionalconstructive moorings, being driven by strong impulses: the solution of focal problems byintuitively clear though not necessarily constructive means, and the drive for systematizationwith its emerging concern with consistency. When Hilbert was in his late twenties, he [1890]established his �rst major result, Hilbert's basis theorem, which cast in current terms is theassertion:Suppose that F is a �eld and F [x1; : : : ; xn] the ring of polynomials over F inx1; : : : ; xn. Then every ideal in F [x1; : : : ; xn] is �nitely generated.Invariant theory, the subject of Hilbert's doctoral dissertation and Habilitationsschrift, wasthe bridge between geometry and algebra in 19th Century mathematics, and the basis theo-rem was the key ingredient in his solution [1890] of invariant theory's then central problem.3Moreover, Hilbert's [1890] with its new structural approach can be considered the �rst paperof modern algebra: In straightforward generalizations in terms of algebraic varieties the basistheorem serves as a foundation for algebraic geometry.The basis theorem caused a sensation since it argued for a �nite number of generators, yetprovided no explicit construction. Moreover, in the form that it was actually established byHilbert, that for any appropriate sequence of polynomials every polynomial in the sequenceis a linear combination of the �rst few, it was a widely applicable result. Paul Gordan [1868]had solved the central invariant theory problem for the special case of two variables by aningenious but tedious construction which was a culmination of what came to be called the\symbolic method". After seeing Hilbert's basis theorem Gordan quipped (Max Noether[1914: 18], Felix Klein [1926: 330]): \This is not mathematics; this is theology!" Hilbert hadcarried out a streamlining double induction (or rather, �nite descent), �rst putting the caseof n variables into a simple form, and then e�ecting a reduction to n�1. He had established a3 That central problem emanated from the work of Arthur Cayley. It had been known that for apolynomial ax2 + 2bxy + cy2 in x and y, if x = �x0 + �y0 and y = 
x0 + �y0 are substituted to geta0x02 + 2b0x0y0 + c0y02, then b02 � a0c0 = (b2 � ac)(�� � �
)2 ;i.e. the new discriminant b02 � a0c0 equals the old discriminant b2 � ac times a constant factor (in fact thesquare of the determinant of the transformation).Generalizing, a form (Cayley's quantic), is a polynomial in x1; : : : ; xn which is homogeneous (i.e. thereis a �xed k such that the sum of the powers of the variables in each summand is k). A linear transformationof x1; : : : ; xn to x01; : : : ; x0n is given by a system of equations, each xi being equated to a linear form inx01; : : : ; x0n. For a form P , a polynomial Q in the coe�cients and variables of P is an invariant if and only iffor every linear transformation, if the corresponding substitutions are made to get a corresponding form P 0in x01; : : : ; x0n and a Q0 corresponding to Q, then Q and Q0 di�er only by a constant factor. A complete systemof invariants for P is a collection C of such invariants such that every invariant is a linear combination ofmembers of C. Finally, the central problem of invariant theory solved by Hilbert [1890] was for any form Pto �nd a �nite, complete system of invariants.Of course, it is straightforward to generalize the foregoing in modern terms to polynomials over a �eldand groups of linear transformations, and then to vector spaces on which groups act linearly, and this is howinvariant theory was eventually reactivated. 2



startling result by a convincing argument, one that was soon accepted by the mathematicalcommunity. Not only was the proof reasonably surveyable, but it made a large array ofalgebraic constructions manageable and introduced simplicity where there had been none.Nonetheless, Hilbert [1893] soon provided an even more informative proof of his invarianttheory result. It was for this purpose that he established his well-known Nullstellensatz,4which like the basis theorem had a non-constructive proof and has become fundamentalin modern algebra. Applying the non-constructive Nullstellensatz Hilbert provided an oth-erwise constructive algorithm for computing complete systems of invariants, building on atechnique due to Arthur Cayley. This was a striking instance of what was becoming a ma-jor trend in mathematics: the development of contextually appropriate proofs for resultsestablished by apparently less informative means, leading to a further enrichment of math-ematics. Indeed, Gordan (Klein [1926: 331]) conceded that \even theology has its merits",and soon provided his own proofs [1893, 1899] of Hilbert's basis theorem.5 Both Hilbert'sbasis theorem as well as his Nullstellensatz would be precisely analyzed in terms of formalsystems. In particular, the double induction in Hilbert's proof of the basis theorem wouldturn out to be a remarkable foreshadowing of how a close variant of the theorem would beshown equivalent to a proposition (the provable totality of Ackermann's function) that justtranscends one common characterization of Hilbert's later �nitistic viewpoint. (See in theappendix Theorem 3 and remarks following.)In addition to non-constructive existence proofs Hilbert championed the use of \idealelements". Well-established were the imaginary i and the points at in�nity for projectivegeometry, and emerging into prominence were the ideals of algebraic number �elds, to thetheory of which Hilbert made fundamental contributions. The imaginary i had stimulatedthe inaugural use of non-constructive existence proofs in algebra: The fundamental theoremof algebra, that every polynomial in complex coe�cients has a root, was �rst established byGauss in his doctoral dissertation [1799] by a proof that provided no means of algebraicallycalculating a root. Weierstrass and Dedekind carried out involved constructive extensionsof Gauss's work in the 1880's; but signi�cantly, Hilbert [1896] considerably streamlined this4 In Hilbert's original [1893] form the Nullstellensatz states that if f; f1; : : : ; fr are in C[x1; : : : ; xn], thering of polynomials in x1; : : : ; xn over the complex �eld, and f vanishes at all the common roots of f1; : : : ; fr,then some power fk is a linear combination fk = h1f1+ : : :+hrfr. The assertion is equivalent to the specialcase when f = 1 and the fi's have no common roots. In modern terms, this special case amounts to theassertion that if F is a �eld, I is the ideal of F [x1; : : : ; xn] generated by ff1; : : : ; frg (and all ideals of thatpolynomial ring are generated by some such �nite collection by Hilbert's basis theorem), and the fi's haveno common roots in the algebraic closure of F , then the ideal is the unit ideal, i.e. the whole ring.5 Hilbert's basis theorem would stimulate the search for algebraic generalizations, with an optimistic onesuggested by the 14th of Hilbert's [1900] problems, and much progress would be made. x3 discusses the �rsttwo of Hilbert's [1900] problems; see Mumford [1976] for the 14th problem.As for invariant theory itself, Hilbert's comprehensive result there was to leave the �eld fallow for mostof Hilbert's lifetime, only revived by his brilliant student Hermann Weyl [1939] for the classical Lie groups aspart of their representation theory. The subject was then fully reactivated by David Mumford [1965] with hisincisive investigation of groups of automorphisms on algebraic varieties (see also Mumford-Fogarty-Kirwan[1994]). Notably it was the approach of [1893] rather than the initial [1890] that was to inspire Mumford[1965], which can be considered as perpetuating in geometric terms the 19th Century view of invariant theoryas a constructive theory. 3



work by applying his Nullstellensatz, later claiming [1928] (see van Heijenoort [1967: 474])that its (non-constructive) proof \uncovers the inner reason for the validity of the assertionsadumbrated by Gauss and formulated by Weierstrass and Dedekind."A remarkable example of the use of non-constructive existence proofs is Hilbert's inge-nious solution to Waring's Problem. Broached by Edward Waring in 1770, it asks of naturalnumbers whether for every positive k there is a �xed r such that for every n,n = nk1 + : : :+ nkr for some n1; : : : ; nr :In that same year Lagrange had established the result for k = 2 with r = 4, but for noother k > 2 was the result known until Hilbert [1909] completely solved the problem byestablishing the existence for every k of a corresponding r. However, taking g(k) to be theleast possible such r, Hilbert's proof provided no way of calculating g(k). Hilbert's resultspurred extensive activity in analytic number theory, in part to determine the values g(k),and they are \almost" completely known today.6However non-constructive Hilbert's approach, he himself never seemed to have enter-tained sets of arbitrary choices as formalized by the Axiom of Choice, an axiom �rst madeexplicit by Ernst Zermelo [1904]. The expansion of mathematics to this level of abstractionwas initiated by Felix Hausdor� in his classic Grundz�uge der Mengenlehre [1914] which brokethe ground for a generation of mathematicians in both set theory and topology. Of particularinterest was Hausdor�'s use of the Axiom of Choice (in [1914: 469�.] and also in [1914a]) toget what is now known as Hausdor�'s Paradox, an implausible decomposition of the sphere;this was a dramatic synthesis of classical mathematics and the new set-theoretic view.Of those directly in
uenced by Hilbert, Georg Hamel, whose doctoral work was super-vised by Hilbert, made [1905] an early and explicit use of the Axiom of Choice to providewhat is now known as a Hamel basis, a basis for the real numbers as a vector space overthe rational numbers. The full exercise of the Axiom of Choice in ongoing mathematics�rst occurred in the pioneering work of Ernst Steinitz [1910], who made systematic use ofwell-orderings to establish the abstract theory of �elds, their algebraic and transcendentalextensions, and algebraic closures. Zermelo [1914] modi�ed Hamel's basis to get one for thecomplex numbers and with a further use of the Axiom of Choice answered a question aboutthe existence of a collection of complex numbers with special closure and basis conditions.Presaging her later work Emmy Noether [1916] axiomatically characterized those integraldomains satisfying Zermelo's conditions.Noether's mathematical roots were in invariant theory and in [1915] she brought togetherHilbert's basis theorem arguments with those of Steinitz's �eld theory. Going to Hilbert'sG�ottingen, Noether became the leading �gure in algebra there through her work on thetheory of ideals in commutative rings. In her incisive [1921] she lifted the �niteness propertiesemanating from Hilbert's basis theorem to a general axiomatic setting by introducing theascending chain condition, and rings satisfying this condition are now known as Noetherianrings. Similarly abstracting another �niteness property, Noether [1927] extended Dedekind'sunique factorization theory for ideals of rings of algebraic numbers to the general setting.She [1927: 45�.] applied the Axiom of Choice without much ado, but only a weak version,the so-called Axiom of Dependent Choices, is needed for the general formulations of her basic6 See Ellison [1971] for a history of Waring's Problem. The conjecture is that g(k) = [(32 )k]+ 2k� 2, andaccording to recent research literature this has been veri�ed for k � 471; 600; 000 and for su�ciently large k.4



results. The full exercise of the Axiom of Choice entered Noether's axiomatic ring theorywhen Wolfgang Krull [1929] investigated rings not necessarily satisfying the ascending chaincondition, speci�cally in the general assertion that every ideal in a ring can be extended to amaximal ideal. Ring theory today is often presented at this level of generality, but Hilbert'sbasis theorem remains a palliative in the crucial cases for algebraic geometry, where thetheorem's applicability renders any appeal to the Axiom of Choice unnecessary.In terms of his later consistency program Hilbert's advocacy of non-constructive existenceproofs and the use of ideal elements necessarily raised the stakes involved. Not only did theissue of consistency become more critical when explicit constructions were not available orideal elements seamlessly introduced, but the weight was shifted from algebraic calculationsto logical deductions, which, however, increasingly took on the spirit of calculations not unlikethose in the \symbolic method" used by Gordan. The existential quanti�er assumed a pivotalrole, both in its interplay with the Law of Excluded Middle and the extent to which it couldbe construed as instrumental in the generation of terms through instantiation. Such issuesbecame central for Hilbert in his mathematical investigation of formalized proofs (see x6),and his early work, which assumed an increasingly abstract and logical form from invarianttheory to algebraic number theory, undoubtedly predisposed him to this later development.x2. GeometryHilbert's new conception of the role of axiomatization as not re
ecting an antecedently givensubject matter and his resulting concern for consistency �rst appeared in print in his Grund-lagen der Geometrie [1899], based on lectures given in the 1890's and especially on those inthe winter of 1898-9. In the introduction to the Grundlagen Hilbert wrote of his investigationas \a new attempt to establish for geometry a simple and complete [vollst�andiges] systemof axioms independent of one another." What vollst�andiges was to mean would become acentral concern of mathematical logic in later decades. He proceeded to provide a rigorousaxiomatization of Euclidean geometry with �ve groups I-V of axioms, for incidence, or-der, congruence, parallelism, and continuity respectively. Previous and venerable work hadalready established the consistency of non-Euclidean geometries via models in Euclideangeometry. Hilbert in a groundbreaking move raised the question of the consistency of Eu-clidean geometry itself as given by his axioms, and proceeded to establish it via a countablearithmetical model. Then, as with the work on the Parallel Axiom, Hilbert went on to usevarious models of subcollections of his axioms to establish the independence of axioms andtheorems.Hilbert's model for the consistency of his full list of axioms took as its \points" thecountable collection of ordered pairs of real numbers generated from 1 by the arithmeticaloperations and the taking of square roots of positive numbers. While �tting into the de-velopment of algebraic number �elds, this model is notable as arguably the �rst instanceof the L�owenheim-Skolem phenomenon, a \Skolem's Paradox" for the continuum. Hilberthad accentuated the reliance on arithmetic by reducing geometry to a countable domain ofordered pairs of algebraic real numbers; Skolem's [1923] argument for generating a count-able model using Skolem terms would give for any (countable �rst-order) theory a countablemodel. To distinguish a countable substructure of the continuum as Hilbert had done wasthe most informative type of \application" that the L�owenheim-Skolem Theorem could havehad before Skolem's own application in [1923] to get his \paradox" in set theory. However,5



despite his professed indi�erence to whether his axioms were about points or tables,7 Hilbertdid not dwell on this model and soon moved to secure Euclidean space.Hilbert's axiom group V for continuity initially consisted of a single axiom, the Archime-dean Axiom,8 but he soon added another, the Completeness [Vollst�andigkeit] Axiom V,2:It is impossible to adjoin further elements to the system of points, lines, and planesin such a way that the system thus extended forms a new geometry satisfying all theaxioms in groups I-V; in other words, the elements of the geometry form a systemwhich is not susceptible to extension, if all of the stated axioms are to be maintained.An arithmetical version of this axiom �rst appeared in �Uber den Zahlbegri� [1900b], of whichmore in x3. The axiom itself is mentioned �rst in the French translation [1900a: 25] of theGrundlagen and then in the English translation [1902: 25], prior to its incorporation into thesecond edition [1903: 16]. In the original Grundlagen [1899: 39] (see also [1971: 58�.]) Hilberthad shown that every \geometry" satisfying I-IV and the Archimedean Axiom is faithfullyembeddable into the \ordinary analytic geometry", i.e. Euclidean space.9 The CompletenessAxiom amounted to making this maximal geometry the unique geometry.A set of axioms is categorical if it has a unique model up to isomorphism. Having inves-tigated his axioms for geometry with models, Hilbert with his Completeness Axiom simplyposited categoricity with the maximal geometry. Hilbert's professed aim in the introductionto the Grundlagen had been to get \a simple and complete system of axioms", yet today hisaxiom would be considered neither simple nor immediately related to notions of complete-ness later studied by Hilbert. With the Completeness Axiom Hilbert had come to an axiomabout models of axioms and thereby raised the sort of issues that would become amenableto mathematical investigation only decades later. (See x8, especially footnote 51.)The Completeness Axiom had speci�c antecedents in the tradition leading to the devel-opment of set theory. In the well-known formulations of the real numbers by Georg Cantor[1872] as fundamental sequences and by Richard Dedekind [1872] as cuts, the correlationwith \the straight line" was not regarded as automatic. Cantor [1872: 128] wrote:In order to complete the connection : : :with the geometry of the straight line, onemust only add an axiom which simply says that conversely every numerical quantityalso has a determined point on the straight line, whose coordinate is equal to thatquantity : : : . I call this proposition an axiom because by its nature it cannot beuniversally proved. A certain objectivity is then subsequently gained thereby for thequantities although they are quite independent of this.7 According to Blumenthal [1935: 403] Hilbert already in 1891 uttered his aphorism portending hisaxiomatic and formalist leanings: \One must always be able to say for points, line, plane: table, chair,beer-mug."8 The Archimedean Axiom asserts that for any two line segments s and t a �nite number of contiguouscopies of s along the ray of t will subsume t.9 The embeddability of an axiomatically presented geometry into Euclidean space was Hilbert's �rst\meta" result in mathematics. In his [1895], appearing as Appendix I from the second edition [1903] on ofthe Grundlagen, what amounts in modern terms to a homeomorphism of a \general geometry" with a �niteconvex part of Euclidean space played a crucial role. [1895] dealt with the problem of \the straight line asthe shortest distance between two points", and a general version of this became the fourth of Hilbert's [1900]problems. See Busemann [1976] for the fourth problem.6



Dedekind [1872: III] wrote:If all points on the straight line fall into two classes such that every point of the �rstclass lies to the left of every point of the second class, then there exists one and onlyone point that produces this division : : :The assumption of this property of the lineis nothing else than an axiom by which we attribute to the line its continuity, bywhich we �nd continuity in the line.At such an interface one �nds what one seeks: Henri Poincar�e [1902: 40] commendedDedekind's cuts as re
ecting the \intuitive truth that if a straight line is cut into two raystheir common border is a point." On the other hand, Bertrand Russell [1919: 71] decriedDedekind's approach of postulating what one wants as having the same advantages as \theftover honest toil". Russell's genetic approach of building up from the natural numbers to therational numbers and then de�ning the real numbers as the cuts is congenial to his logicistreductionism,10 but obscures the antecedent sense of the continuum that both Cantor andDedekind were trying to accommodate. They both had recognized the need for a sort ofChurch's Thesis, a thesis of adequacy for their new construals of the continuum.Dedekind [1872: II] wrote of the \connection [Zusammenhang]" between the rationalnumbers and points on the straight line when an origin and a unit of length have been se-lected. This \connection" is accomplished in Hilbert's axiomatization through the Archime-dean Axiom. Hilbert's Completeness Axiom then ensures through maximality that Dede-kind's cuts actually correspond to points. Conversely, Dedekind's postulation of points cor-responding to cuts entails the Completeness Axiom by an argument given in x9 of latereditions of the Grundlagen: If to the contrary a new point could be added, it would induce aDedekind cut of old points which would then have an old dividing point; but then, a simpleargument using the Archimedean Axiom implies that there would be another old dividingpoint, which is a contradiction.Although the Completeness Axiom would stir interest as an axiom about (models of)axioms, it could thus have been replaced by a continuity axiom along the lines of its an-tecedents. In remarks accompanying the �rst appearance of the Completeness Axiom,Hilbert [1902: 25�.] opined that \the value of [the Completeness Axiom] is that it leadsindirectly to the introduction of limiting points." Today the view would be opposite: secur-ing limit points directly through some axiom like Cantor's or Dedekind's would be consideredmore simple than to introduce an axiom about axioms. Not only does formalizing continuityaxioms require second-order quanti�cation over the real numbers, the Completeness Axiomhas the added complication of having to formalize the second-order satisfaction relation. Butwith the central role that he accorded axiomatization, Hilbert thought that he had readilypositioned continuity into the heart of his axioms with his Completeness Axiom, and uponits incorporation into the second edition of the Grundlagen he [1903: 17] wrote that it \formsthe cornerstone of the entire system of axioms." Nevertheless, years later in a popular bookon geometry, Hilbert and Stephan Cohn-Vossen [1932: x34] noted that the ways in whichthe axioms of continuity are formulated varies a great deal, and the Completeness Axiom is10 After de�ning the real numbers as the cuts, Russell [1919: 73] continued: \The above de�nition of realnumbers is an example of `construction' as against `postulation', of which we had another example in thede�nition of cardinal numbers. The great advantage of this method is that it requires no new assumptions,but enables us to proceed deductively from the original apparatus of logic."7



simply replaced by \Cantor's axiom", that every in�nite sequence of nested segments has acommon point.x3. ArithmeticBefore the Completeness Axiom appeared in any version of his Grundlagen, Hilbert in his�Uber den Zahlbegri� [1900b], dated 12 October 1899, provided an axiomatization of the realnumbers as an ordered �eld satisfying arithmetical versions of the Archimedean Axiom andthe Completeness Axiom.11 Just as for geometry, Hilbert had in e�ect posited categoricitythrough maximality, for it must have been immediately seen that any system satisfyingthe [1900b] axioms, except possibly that arithmetical version of Completeness, is faithfullyembeddable into the real numbers.12Although Hilbert [1900b] acknowledged the pedagogical value of the \genetic method"by which one builds up from the natural numbers through the rational numbers to the realnumbers, he contended that only an axiomatic presentation of the real numbers all at oncecan be logically secure. Just as for geometry, Hilbert in [1900b] reduced arithmetic to theworkings of a few axioms. Today \arithmetic" most often refers to number theory, i.e. thestructure of addition and multiplication for the natural numbers, but for Hilbert \arith-metic" would remain what he would also refer to as analysis, i.e. the structure of addition,multiplication, and continuity for the real numbers. He initially expressed con�dence thathe could easily establish the consistency of his axioms.13 However, this was to become amajor and lifelong concern for him, and he was soon to promulgate it as the second of hisfamous problems.Hilbert's main program for mathematics was launched by his famous declaration [1900]of 23 central problems for the 20th Century at the 1900 International Congress of Mathemati-cians at Paris.14 Not only did he advance the basic picture of mathematical practice as driven11 The arithmetical version of the Archimedean Axiom for ordered �elds states that for any a > 0 andb > 0, a can be added to itself a (�nite) number of times so that: a + a + : : : + a > b. Ordered �eldshaving this property are now called Archimedean. The arithmetical version of the Completeness Axiom in[1900b] states that the reals cannot be properly extended if the Archimedean ordered �eld properties are tobe maintained.12 Hilbert in [1900b] actually asserted that his axioms characterize the real numbers since its version of theCompleteness Axiom implies the existence of limit points; this was the �rst statement along these lines. Inconnection with the discussion above at the end of x2 but shifting from geometry to the real numbers, the laterpolemic of Hilbert [1905: 185] (as translated in van Heijenoort [1967: 138]) is notable: \[The CompletenessAxiom] expresses the fact that the totality [Inbegri�] of real numbers contains, in the sense of one-to-onecorrespondence between elements, any other set whose elements satisfy also the axioms that precede; thusconsidered, the completeness axiom, too, becomes a stipulation expressible by formulas constructed likethose constructed above, and the axioms for the totality of real numbers do not di�er qualitatively in anyrespect from, say, the axioms necessary for the de�nition of the integers. In the recognition of this fact lies,I believe, the real refutation of the conception of the foundations of arithmetic associated with L. Kroneckerand characterized at the beginning of my lecture as dogmatic."13 Hilbert [1900b: 184] wrote: \In order to prove the consistency of the given axioms all that is neededis a suitable modi�cation of known methods of inference." When [1900b] appeared as Appendix VI in latereditions of the Grundlagen, this sentence is missing.14 Browder [1976] is a compendium on the mathematical developments arising from Hilbert's problems.8



by the force of problems and conjectures, but he inspired progress with his �rm belief thatevery problem can ultimately be solved, that \in mathematics there is no ignorabimus".Fermat's last theorem, although unsolved, had already stimulated great developments inmathematics, and now the gauntlet was thrown to the coming generations, one that wouldgradually result in the development of new �elds of mathematics.Hilbert made the �rst of his [1900] problems the problem of establishing Cantor's Con-tinuum Hypothesis, and the second, the problem of establishing \the consistency of thearithmetical axioms", referring to the axioms of his �Uber den Zahlbegri� [1900b]. Both ofthese problems dealt with basic questions about numerical construals of the traditional con-tinuum: the �rst about the possibility of enumerating the real numbers using the countableordinal numbers, and the second about the consistency of an arithmetical axiomatization. Itis quite remarkable that over two decades later Hilbert himself would use a speci�c strategyin his proof theory to attack both problems (see x6 and x7).In his [1900] discussion of his second problem, Hilbert remarked that the consistency ofthe geometrical axioms had been reduced to that of the arithmetical axioms, but that \adirect method is needed for the proof of the consistency of the arithmetical axioms." Inthe Grundlagen his axiomatically presented geometry can be shown consistent by takingas the \points" ordered pairs of real numbers and relying on their arithmetic. However,no such model-theoretic recourse is available for arithmetic itself, and what is left is a di-rect investigation of its axioms and their consequences. Hilbert argued (as translated in[1902a: 446]):The totality of real numbers, i.e. the continuum : : : is not the totality of all possibleseries of decimal fractions, or of all possible laws according to which elements of afundamental sequence may proceed. It is rather a system of things whose mutualrelations are governed by the axioms set up and for which all propositions, and onlythose, are true which can be derived from the axioms by a �nite number of logicalprocesses.This view of the continuum as axiomatically given would later be re
ected in Hilbert'sown attempt to solve his �rst problem, the Continuum Hypothesis, through the use ofde�nable functions, and the emphasis on deductive consequences of axioms would lateranimate his metamathematics. With an arithmetical axiomatization of the continuum whoseconsequences are exactly the true propositions of arithmetic consistency may be establishedthrough the �niteness of proofs without any reference to an antecedent geometric continuum,increasingly the bugbear of 19th Century mathematics.Upon incorporating his Completeness Axiom into his Grundlagen Hilbert [1903: 17] ob-served that it presupposes the Archimedean Axiom, in the sense that \it can be shown" thatthere are geometries satisfying I-IV, and not that axiom, that can be properly extended.15In the tradition of Hilbert [1900b], Hans Hahn [1907] introduced into the theory of ordered�elds a completeness condition analogous to the Completeness Axiom, which however did15 This contention did not become clear until the development of the theory of real-closed �elds by EmilArtin and Otto Schreier in their [1926, 1927]. This development was resonating: Real-closed �elds have amaximal property analogous to Hilbert's Completeness Axiom, and the theory was crucial for Artin's [1927]non-constructive solution of Hilbert's 17th Problem (constructive solutions were later given). See P�ster[1976] for more on Hilbert's 17th Problem. 9



not presuppose the Archimedean condition, and provided an incisive analysis of the result-ing structures.16 The connection to be made here is with Kurt G�odel who as a student andfriend of Hahn's much admired his work.17 It would only be through G�odel's epochal results,themselves responses to questions later raised by Hilbert, that the concepts of categoricityand completeness would become clari�ed (see x8).x4. Set TheoryAlthough Hilbert did not himself pursue axiomatic set theory, he fostered its developmentthrough his encouragement of Ernst Zermelo.18 Zermelo began his investigations of Canto-rian set theory at G�ottingen under Hilbert's in
uence. Zermelo soon found Russell's Paradoxindependently of Russell and communicated it to Hilbert. Zermelo then established the Well-Ordering Theorem in a letter to Hilbert, the relevant part of which soon appeared as Zermelo[1904]. This seminal paper introduced the Axiom of Choice and stirred considerable contro-versy. In the tradition of Hilbert's axiomatization of geometry, Zermelo [1908] subsequentlyprovided the �rst substantial axiomatization of set theory, partly to establish set theory asa discipline free of paradoxes, and particularly to put his Well-Ordering Theorem on a �rmfooting. Zermelo's axiomatization shifted the emphasis from Cantor's trans�nite numbersto an abstract view of sets as structured solely by 2 and simple operations. In addition togenerative axioms corresponding to these operations and the Axiom of Choice, Zermelo withhis Separation [Aussonderung] Axiom incorporated a means of generating sets correspondingto properties that seemed to avoid paradoxes. The Separation Axiom asserted that given aset M , for each de�nite property [de�nite Eigenschaft] a set can be formed of those elementsof M having that property. The vagueness of de�nite property would invite Skolem's [1923]proposal to base it on �rst-order logic, and this would tie in with Hilbert's later developmentof mathematical logic (see x5).For Hilbert himself much of what today would be regarded as the subject matter of settheory would remain largely embedded in mainstream mathematics or be intermixed withthe emerging mathematical logic. In what was to be his only publication on logic whenhe was still in his mathematical prime, Hilbert [1905] addressed the recent paradoxes oflogic and set theory with remarks that pre�gured his later work in metamathematics andhis �nitistic viewpoint. Hilbert [1905] advocated an axiomatic approach, observing that (astranslated in van Heijenoort [1967: 131])in the traditional exposition of the laws of logic certain fundamental arithmeticalnotions are already used, for example, the notion of set, and to some extent, alsothat of number. Thus we �nd ourselves turning in a circle, and that is why apartly simultaneous development of the laws of logic and of arithmetic is required ifparadoxes are to be avoided.Signi�cantly, \the notion of set" for Hilbert here is an \arithmetical notion", and this isconnected with his second [1900] problem, to establish the consistency of the \arithmeticalaxioms". As mentioned earlier, these axioms were to be those of �Uber den Zahlbegri� [1900b]including its version of the Completeness Axiom.16 See Ehrlich [1995].17 Wang [1987] describes G�odel's admiration for Hahn.18 See Moore [1982: 89�.] for more about Zermelo.10



Hilbert [1905] provided only a tentative sketch of how he would carry out such a \simulta-neous development", but intriguingly it has some anticipation of Zermelo's [1908] generativeview of sets. Schematizing a process proceeding by stages, Hilbert [1905] stated �ve princi-ples, the �rst three of which are (see van Heijenoort [1967: 135�.]): (I) \a further propositionis true as soon as we recognize that no contradiction results if it is added as an axiom to thepropositions previously found true"; (II) at any stage the \all" in the axioms is to range overonly those \thought-objects" then taken to be primitive; and (III) a set is a \thought-object"and \the notion of element of a set appears only as a subsequent product of the notion ofset itself."Hilbert would become associated with the \consistency implies truth and existence" viewbehind principle I. First set out by him in correspondence with Frege about the axiomatiza-tion of geometry, the view is similar to that of Cantor but opposite to Frege's \truth impliesconsistency" view.19 Principle II foreshadowed Hilbert's later advocacy of Russell's theoryof types. As for the somewhat cryptic principle III, Hilbert went on to develop its senseby deducing what amounts to a version of Zermelo's [1908] Separation Axiom: From thethought-objects taken to be primitive at a given stage, propositions determine subcollec-tions that are then further thought-objects.Despite Zermelo's association with Hilbert, it is notable that Hilbert's later lectures[1917] on set theory were imbued with the Cantorian initiatives on number and relativelyuna�ected by the Zermelian emphasis on abstract set-theoretic operations and axiomatiza-tion. Hilbert �rst discussed the real numbers, giving a detailed account of the transcendentalnumbers and his [1900b] axiomatization for an ordered �eld. He then developed Cantor'scardinal numbers, and after discussing well-orderings, Cantor's ordinal numbers. Withoutmuch ado Zermelo's Axiom of Choice is stated and his Well-Ordering Theorem proved. Theapproach is reminiscent of Hausdor�'s Grundz�uge der Mengenlehre [1914], with set theorypresented as a new initiative within mathematical practice, one providing a new numbercontext and new approaches to mathematical problems. Hilbert's lectures concluded witha discussion of the paradoxes, both set-theoretic and so-called semantic, and the Dedekind-Peano axioms for the natural numbers.Given his own axiomatization of geometry and with Zermelo in his circle, one mighthave thought that Hilbert would have jumped at the issue of speci�c axiomatizations of settheory. Zermelo's axiomatization had for example been the setting for the incisive work ofFriedrich Hartogs [1915] on Cardinal Comparability, cited by Hilbert in the [1917] lectures.However, not Hilbert but Abraham Fraenkel [1922] would investigate the independence of19 Hilbert wrote to Frege (see Frege [1980: 39�.]):You write: \I call axioms propositions that are true but are not proved because our knowledge of them 
ows from a source verydi�erent from the logical source, a source which might be called spatial intuition. From the truth of the axioms it follows thatthey do not contradict each other." I found it very interesting to read this sentence in your letter, for as long as I have beenthinking, writing and lecturing on these things, I have been saying the exact opposite: if the arbitrarily given axioms do notcontradict each other with all their consequences, then they are true and the things de�ned by the axioms exist. For me thisis the criterion of truth and existence.Cantor [1883: x8] had written:Mathematics is completely free in its development and only bound by the self-evident consideration that its concepts must onthe one hand be consistent in themselves and on the other stand in orderly relation, �xed through de�nitions, to the previousformed concepts already present and tested. 11



Zermelo's axioms, particularly the Axiom of Choice, in the style of Hilbert's Grundlagenwith the liberal use of various models. Hilbert [1918: 411] did point out how the paradoxeswere avoided by Zermelo's axiomatization. But signi�cantly Hilbert [1918: 412] continued:the question of the consistency of the axiom system for the real numbers is reduced,through the use of set-theoretic concepts, to the same question for the natural num-bers: This is the merit of the theories of irrational numbers of Weierstrass andDedekind.Only in two cases, namely when it is a question of the axioms for the naturalnumbers themselves, and when it is a question of the foundations of set theory , isthe method of reduction to another speci�c �eld of knowledge obviously unavailable,since beyond logic there is no further discipline to which an appeal is possible.Since however the proof of consistency is a task that cannot be dismissed, it seemsnecessary to axiomatize logic itself and then to demonstrate that number theory aswell as set theory are only parts of logic.This attitude would presumably have precluded any model-theoretic analysis of axioms forset theory, or indeed any detailed investigation of axiomatizations of set theory separate fromaxiomatizations of logic. The passage is consistent with the previously displayed passage from[1905]. However, it does suggest a softening of both the �Uber den Zahlbegri� [1900b] attitudethat a direct axiomatic presentation of the real numbers is more logically secure than thegenetic method of set-theoretic building up from the natural numbers, and the attitude fromhis discussion of his second [1900] problem that a \direct method is needed" to establish theconsistency of the axioms for the real numbers, in that Hilbert now acknowledges a reductionto number theory and set theory.20Subsequently, Hilbert [1929: 136] did come to appreciate the importance of �rmly estab-lishing the underlying assumptions of Zermelo's axioms. But as with G�odel later, Hilbertwould be more in
uenced by Russell than by Zermelo, and whatever the a�nity of Hilbert's[1905] picture to Zermelo's [1908], Hilbert's investigation of purely set-theoretic notionswould largely remain part of his investigations of the underlying logic. The Axiom of Choicewould be positioned in logic (see x6), and the Continuum Hypothesis would be approachedthrough a hierarchy of de�nable functions (see x7).

20 Hallett [1995: x3] corroborates, through notes to Hilbert's lectures during this period, his more favorableattitude toward the genetic method of building up mathematical objects.12



x5. LogicHilbert only began to carry out a systematic investigation of mathematical logic over adecade after his precursory [1905] and after the appearance of the three tomes of Whiteheadand Russell's Principia Mathematica.21 This work was, in the words of G�odel [1944: 126], the\�rst comprehensive and thorough going presentation of a mathematical logic and derivationof Mathematics". Much of the further development of logic would turn on reactions to andsimpli�cations for this system, but its two basic interlocking hierarchical features, types andorders, would be crucial to the development of set theory.To the modern eye there are two main sources for the great complexity { and even greaterobscurity { of the Principia. First, it is, as G�odel [1944: 126] went on to write, \greatly lackingin formal precision in [its] foundations : : :What is missing, above all, is a precise statementof the syntax of the formalism." This lack of formal precision is exacerbated by Russell'selucidatory accounts of his key logical notions, especially of \propositional function", whichwhen taken literally are peculiarly opaque.22The second source of di�culty, not unrelated to the �rst, is the complexity of Russell's\theory of logical types", his way of avoiding (Whitehead-Russell [1910: vii]) \the contradic-tions and paradoxes which have infected logic and the theory of aggregates [sets]." Russell�rst diagnosed the paradoxes as resulting from the \vicious circle" of \supposing that a col-lection of objects may contain members which can only be de�ned by means of the collectionas a whole", and then adopted as a remedy the vicious-circle principle, \Whatever involvesall of a collection must not be one of the collection" (Whitehead-Russell [1910: 39-40]). More-over, he recognized that his own concept of propositional function represents \perhaps themost fundamental case" of the principle.23 Adhering to the vicious-circle principle Russell21 See Goldfarb [1979] and the note of Dreben and van Heijenoort in G�odel [1986: 44-59] for a discussionof logic in the 1910's and 1920's. And Hylton [1990] for a discussion of the metaphysics underlying Russell'slogic.22 Russell wrote (Whitehead-Russell [1910: 41]):By a `propositional function' we mean something which contains a variable x, and expresses a proposition as soon as avalue is assigned to x. That is to say, it di�ers from a proposition solely by the fact that it is ambiguous: it contains a variableof which the value is unassigned. It agrees with the ordinary functions of mathematics in the fact of containing an unassignedvariable; where it di�ers is in the fact that the values of the function are propositions. : : :The question as to the nature of a[propositional] function is by no means an easy one. It would seem, however, that the essential characteristic of a [propositional]function is ambiguity.A few pages on Russell declared (Whitehead-Russell [1910: 50]): \A [propositional] function, in fact, is nota de�nite object : : : ; it is a mere ambiguity awaiting determination"In a later book Russell [1919: 157] wrote: \We do not need to ask, or attempt to answer, the question:`What is a propositional function?' A propositional function standing all alone may be taken to be a mereschema, a mere shell, an empty receptacle for meaning, not something already signi�cant."23 Russell wrote (continuing in Whitehead-Russell [1910: 41-42] after the quotation from there in theprevious note):a [propositional] function is not : : :well-de�ned unless all its values are already well-de�ned. It follows from this that no[propositional] function can have among its values anything which presupposes the function : : : . This is a particular case,perhaps the most fundamental case, of the vicious-circle principle. A [propositional] function is what ambiguously denotes someone of a certain totality, namely the values of the [propositional] function; hence this totality cannot contain any members which13



insisted that the universe of Principia be viewed as rami�ed into orders. Speaking anachro-nistically, we may say that this universe consists of objects, where those of the lowest orderare the individuals, and both the objects and the (formalized) language of Principia are tosatisfy at least the following three conditions:(i) each object S \consists" of objects of some one �xed order, an order lower thanthe order of S;(ii) all values of each variable are of some one �xed order, called the order of thevariable; and(iii) the order of any notational speci�cation N of an object S is the least order(number) greater than the orders of all the bound variables inN and not exceededby the orders of any free variables in N .These are the essential features of what came to be called the rami�ed theory of types,and guided by them a full formalization up to modern standards can be carried out.24 Inthe rami�ed theory, objects of di�erent orders can have constituents of the same order. Thecollection of such constituents (objects) Russell also called a type. In particular, by conditions(i) and (iii), there could be objects consisting of individuals but of orders di�ering accordingto de�nitional complexity. But then, by condition (ii), it is impossible to quantify over allobjects having individuals as constituents. Analogous situations will occur for objects whoseconstituents are of higher types, and this makes the formulation of numerous mathematicalpropositions at best cumbersome and at worst impossible. Consequently, Russell was led tointroduce the Axiom of Reducibility :For each object there is a predicative objectconsisting of exactly the same objects,where Russell called an object predicative if its order is the least greater than that of itsconstituents. Clearly, Russell did not think that objects having exactly the same constituentsneed be identical; in his jargon, they were intensional and not extensional .The order hierarchy becomes greatly simpli�ed if it were restricted to just predicativeobjects. There would only be individuals, predicative objects consisting of individuals, pred-icative objects consisting of predicative objects consisting of individuals, and so on. In thissimpli�ed hierarchy, the simple theory of types, the orders are just the types.25 For Russell,it was obvious that there could only be �nite orders and types, that is, only natural numberscould index orders and types.The subsequent simpli�cations introduced into the system of Principia have mostlyamounted to adopting a purely extensional version of the simple theory of types in whichpolyadic relations are reduced to sets through the Wiener-Kuratowski de�nition of orderedinvolve the [propositional] function, since, if it did, it would contain members involving the totality, which, by the vicious-circleprinciple, no totality can do.24 See for example Church [1976].25 It is from the simple theory that the terms \�rst-order logic", \second-order logic", and so forthevolved, with \order" retained instead of \type". For example, with the zeroth order comprised of individualsand the �rst order consisting of the (predicative) objects consisting of individuals, �rst-order logic treatsquanti�cation over individuals of a domain. Similarly, second-order logic treats in addition quanti�cationover objects consisting of individuals. 14



pair.26 The Axiom of Reducibility, only germane for the rami�ed theory, would becomemoot. However, for G�odel the axiom would be considered both the basis of comprehensionaxioms in set theory as well as the antecedent to his argument for the relative consistencyof the Continuum Hypothesis (see x8).Hilbert enthusiastically espoused the Principia, saying (Hilbert [1918: 412]) \should Rus-sell's impressive undertaking to axiomatize logic be carried to fruition it would be the crown-ing achievement of axiomatization". But by \fruition [Vollendung]" Hilbert meant somethingutterly unlike what Russell would have meant. At a minimum, Hilbert meant showing \theconsistency of the arithmetical axioms", i.e. solving his second [1900] problem.The book [1928] by Hilbert and Wilhelm Ackermann, originating in Hilbert's [1917a]lectures, reads remarkably like a recent text. In marked contrast to the formidable worksof Frege and Russell with their forbidding notation and all-inclusive approach, it proceededpragmatically and upward to probe the extent of structure, making those moves emphasizingsyntactic forms and axiomatics typical of modern mathematics. After a thorough analysisof sentential logic, it distinguished and focused on �rst-order logic as already the source ofsigni�cant problems. While Frege and Russell never separated out �rst-order logic, Hilbertwould establish it as a subject in its own right. Nevertheless, for the formalization requiredto investigate the foundations of mathematical theories, Hilbert thought that an \extendedcalculus is essential" (Hilbert-Ackermann [1928: 86]). In the [1917a] lectures on logic, thisextended calculus is evidently Russell's rami�ed theory of types, and in it Hilbert constructedthe real numbers as the Dedekind cuts using an extensional version of Russell's Axiom ofReducibility. The book Hilbert-Ackermann [1928] continued to use Russell's rami�ed theoryof types and the Axiom of Reducibility. However, in the course of his development ofmathematical logic Hilbert, like Ramsey,27 would come to regard Russell's ramifying ordersand the Axiom of Reducibility as unnecessary, as is stated on the last two pages of Hilbert-Ackermann [1928].While Hilbert was lecturing on set theory and logic his former student Weyl brought outa notable monograph, Das Kontinuum [1918]. Waxing philosophical, Weyl railed against the\vicious circle" involved in even such basic concepts as the least upper bound for a boundedset of real numbers. That its de�nition presupposes its existence among the possible upperbounds would become the standard example of an impredicative de�nition, de�nitions thatWeyl would banish (as did of course Russell through his rami�ed theory). Reasoning that hecould not avoid presupposing the natural numbers, Weyl took these as the individuals andconsidered what is essentially a version of that part of the rami�ed theory of types in whichquanti�cation is restricted to variables ranging over the individuals.28 The consequences26 The �rst such presentation of Principia in print was G�odel's system P in his Incompleteness paper[1931].27 Ramsey is not mentioned in the text of Hilbert-Ackermann [1928], but his paper [1926] in which hesuggested that the rami�ed theory be replaced by the simple theory and Axiom of Reducibility be droppedis cited in their bibliography.28 Signi�cantly, Weyl [1910: 112�.] had begun his foundational investigations by trying to provide asatisfactory formulation for Zermelo's de�nite property for the Separation Axiom and had suggested buildingup the concept from 2 and = by a �nite number of generating principles. It was in the course of developingthese principles that Weyl [1918: 36] found that he could not avoid presupposing the natural numbers { aprimordial vicious circle. Weyl [1918: 35] acknowledged that his hierarchy \corresponds" to Russell's, but15



of Weyl's system for the real numbers is the same as the system ACA0, formulated in theappendix below. Weyl went on to show that the basic theory of continuous functions couldbe adequately developed in his system. This was a remarkable accomplishment at such anearly stage, both in the formulation of a parsimonious formal system to mirror mathematicalpractice and in the use of coding procedures to adequately develop a surprisingly large partof analysis. The key ingredient was to revert from continuity in terms of sets as given byDedekind cuts to continuity in terms of sequences in the spirit of Cantor's fundamentalsequences, where however real functions and sequences of real numbers are simulated by justsets of natural numbers.Hilbert to be sure was to inspire the development of subsystems of number theory and ofanalysis. However, he reacted vigorously against what he regarded as Weyl's emasculationof mathematics. The di�erence between the two is that Weyl was advocating his system aswhat mathematical analysis ought to be, whereas Hilbert was investigating formal systemsfor speci�c purposes, primarily to carry out proofs of consistency.In spirited response to Weyl's constructivism and also to Brouwer's intuitionism, whichwould banish the Law of Excluded Middle and non-constructive existence proofs, Hilbert[1922, 1923] developed metamathematics and proposed, most fully in [1926], his programof establishing the consistency of ongoing mathematics by �nitary reasoning [das �niteSchliessen]. Metamathematics would grow to be a broad, ultimately mathematical, inves-tigation of the content and procedures of ongoing mathematics through its formalization;for Hilbert, metamathematics was primarily his proof theory , the investigation of formalizedproofs as objects of study. Elaborating on two motifs, the primacy of logical deduction andthe �niteness of formal proof, Hilbert argued that the mathematical investigation of proofswould secure the reduction of the consistency of mathematics to a bedrock of �nitary andincontrovertible means.Hilbert-Ackermann [1928: 65�.,72�.] raised two crucial questions with respect to �rst-order logic: the semantic completeness of its axioms, that is, whether a formula holding inevery model of the axioms is provable from the axioms; and its decision problem [Entschei-dungsproblem], that is, whether there is an algorithm for deciding whether any formula hasa model or not. The �rst �gured in the last of the �ve problems raised in Hilbert's lecture[1929] at the 1928 International Congress of Mathematicians at Bologna, the main theme ofwhich however was still his program for establishing the consistency of mathematics. Hilbertthus generated all the major problems of mathematical logic that would be decisively in-formed by G�odel's work (see x8). As with his [1900] problems, Hilbert was again to stimulatemajor developments through the formulation of pivotal questions, questions that are con-textually speci�c yet set a new frontier. Such questions, especially weighted as conjectures,became increasingly signi�cant for the progress of modern mathematics, and it is Hilbertwhom one acknowledges as pioneer and exemplar for this new development.
rejected the Axiom of Reducibility. 16



x6. MetamathematicsMuch has been written about Hilbert's metamathematics. Here we restrict ourselves todescribing his speci�c strategy for settling his own second problem from his [1900], namelythe problem of showing the \consistency of the arithmetical axioms". In x7 we show howthis strategy was a starting point for his attempt to solve his �rst problem from [1900], thatof establishing the Continuum Hypothesis.Pursuing the analogy with the introduction of ideal elements in mainstream mathe-matics Hilbert [1926] distinguished between numerical formulas communicating contentual[inhaltlich] propositions and those communicating ideal propositions. Quanti�ers are con-tentual as long as they range over speci�ed �nite domains, in which case they can be replacedby �nite disjunctions or conjunctions. Hilbert [1923: 154] had noted that the �rst time \some-thing beyond the concretely intuitive and �nitary" enters logic is in (unrestricted) quanti�-cation and this he [1926] took to be characteristic of ideal propositions, undertaking hismetamathematics as an investigation toward establishing the consistency of their use. Thatinvestigation itself would be conducted in contentual mathematics with formalized proofs asobjects of study, and indeed Hilbert [1926] wrote of metamathematics as \the contentualtheory of formalized proofs."Hilbert [1926] (see van Heijenoort [1967: 382]) stated several axioms for quanti�ers, andthen asserted that they can be derived from a single axiom, one that \contains the core" ofthe Axiom of Choice: A(a) ! A("(A));\where " is the trans�nite logical choice function." The symbol " serves as a logical oper-ator, taking formulas A as arguments and producing terms "(A); the more speci�c "xA(x)was soon deployed to handle A's with several free variables. The "-terms had an engagingindeterminism: they serve as syntactic witnesses to A if 9xA(x), but are bona �de termseven if :9xA(x).29 Like the ideal points at in�nity of projective geometry, Hilbert had ine�ect introduced new ideal elements into �rst-order logic.Hilbert [1928] (see van Heijenoort [1967: 466]) spelled out how the quanti�ers can bede�ned in terms of "-terms:8aA(a) i� A("(:A)) ; and 9aA(a) i� A("(A)) :The usual quanti�er rules follow immediately, e.g.:8aA(a) �! 9a:A(a) :From Frege on, this rule had been regarded as an immediate consequence of the de�nitionsof 9 and 8. For Hilbert, it is only immediate for speci�ed �nite domains as an instance oftertium non datur, the Law of Excluded Middle, and is otherwise a substantial manipulationon ideal propositions as an in�nitary form of the Law.Hilbert [1922: 157] had already expressed the need to formulate the Axiom of Choice sothat it is as evident as 2 + 2 = 4. However, to say that A(a) ! A("(A)) \contains thecore" of the Axiom of Choice is misleading from the modern perspective, for it is after all29 As the Athenians were wont to say of Aristides, if there is an honest man, then it is he.17



just a variant of existential generalization.30 However, it is indeed as a \choice function"that Hilbert had a particular use for his innovation in mind as part of a speci�c strategy forestablishing consistency that he advanced along with his development of proof theory itself.That strategy was �rst broached by Hilbert in his [1923], where before the "-operator hehad introduced his � -operator through what he called the Trans�nite Axiom:A(�(A)) �! A(a) :The logical � -operator encapsulated the universal quanti�er as his later "-operator wouldthe existential quanti�er. From this one axiom he derived all the quanti�er rules, whichhe considered the source of non-�nitary or \trans�nite" reasoning.31 Focusing on number-theoretic functions f , i.e. functions from the natural numbers into the natural numbers, hethen extended the logical � -operator with �(f) = �a(f(a) = 0), specifying the free variablea in the formula f(a) = 0, so that from the Trans�nite Axiom we havef(�(f)) = 0 �! f(a) = 0 :He interpreted �(f) as a mathematical \function-of-functions", a functional we would nowsay, that had already appeared at the end of his [1922]: This mathematical functional �took number-theoretic functions f as arguments, with �(f) = 0 if f(a) = 0 for every naturalnumber a, and otherwise �(f) is the least a such that f(a) 6= 0. Evidently, the admis-sibility of � rests on an in�nitary form of tertium non datur and embodies Hilbert's useof non-constructive existence proofs. From the very beginning of his work on metamathe-matics Hilbert emphasized number-theoretic functions and substantial functionals operatingon them, and this emphasis would soon extend to his attempt to establish the ContinuumHypothesis.In terms of � , Hilbert [1923: 159�.] gave for a very weak subsystem of analysis an exampleof his strategy for establishing consistency: Starting with a putative proof of 0 6= 0, successivesubstitutions of numerals were made for the � -terms appearing in the proof so that only a30 The Second "-Theorem of Hilbert-Bernays [1939] would establish that in �rst-order logic with "-terms,if neither the premises nor the conclusion of a deduction contains such terms, then there is a deduction notusing such terms. In order to derive the Axiom of Choice using "-terms, the crucial set-theoretic feature ofthe Axiom, the existence of a set of choices, or concomitantly a choice function, must be incorporated. Oneapproach is to allow "-terms in the Replacement Axiom, an essential feature of modern set theory. Hilbert[1923: 164] himself used an informal variant of this approach to argue for the Axiom of Choice for sets ofreals. (Wang [1955] discusses the interplay of "-terms and the Axiom of Choice in axiomatic set theory.)Interestingly, Zermelo [1930: 31] in his �nal axiomatizations of set theory also regarded the Axiom of Choiceas a logical principle and did not list it explicitly among his axioms. In later years a fully Tarskian semanticswas developed by G�unter Asser [1957] and Hans Hermes [1965] for the "-operator with its interpretationsbeing global choice functions for the structure at hand. More in the spirit of Hilbert's intention was RudolfCarnap's [1961] indeterminate use of the "-operator as an interpretation of his T-, or theoretical, terms.31 Hilbert [1923: 161] speci�cally asserted that trans�nite reasoning was necessary for his solution of thecentral invariant theory problem discussed in x1, and that although Gordan thought that he had removedthis \theological" aspect of the argument with his own version of the proof, it remained embedded in his\symbolic" approach. Hilbert's view of the complexity of his proof was substantiated; see Theorem 3 in theappendix. 18



deductive sequence of true numerical formulas was left, and hence 0 6= 0 could not haveappeared at the end after all. Hilbert had thus shown how to exploit the �niteness of proofsin a speci�c way, eliminating the \trans�nite" � -terms in favor of �nitely many numericalinstances. Ackermann [1925] undertook to carry out Hilbert's plan to apply this substitutionstrategy to the full system with quanti�cation over number-theoretic functions; this wouldestablish the consistency of analysis, with the number-theoretic functions construed as thereal numbers. Hilbert had by then switched from � -terms to "-terms, which in the newrendition of his strategy were indeed interpreted as �nite \choice functions". At the beginningof his career Hilbert had established a fundamental �niteness property with his basis theorem;he would now e�ect a new reduction to a \�nite basis" to establish the consistency ofmathematics.Hilbert's strategy of eliminating "-terms encountered a basic di�culty in the generalsetting: the possible nestings of "-terms corresponding to quanti�er dependence. In carryingout the substitution procedure, a numerical choice made for an "-term t might typicallycon
ict with a later choice made for an "-term within which t occurs, necessitating a newsubstitution for t. This process can cycle in complicated ways, with the possibility thatsuccessive substitutions may not terminate. Ackermann's [1925] argument fell far short,failing to handle number-theoretic functions and even full induction for the natural numbers.John von Neumann [1927] then carried out a complex argument, based on Hilbert's [1905]approach to consistency as developed by Julius K�onig [1914],32 to establish the consistencyof quanti�er-free induction for the natural numbers. Thereupon Ackermann established thesame result with his original approach. In [1928] Hilbert sketched this new argument ofAckermann's, and in succeeding comments Bernays [1928] elaborated on it.Hilbert and his school (mainly Ackermann, Bernays, and von Neumann) believed atthis time that Ackermann's new argument in fact established the consistency of full numbertheory (�rst-order Peano Arithmetic).33 At the end of [1928] Hilbert wrote (as translated invan Heijenoort [1967: 479]):For the foundations of ordinary analysis [Ackermann's] approach has been developedso far that only the task of carrying out a purely mathematical proof of �niteness[of the number of necessary substitutions of numerals for "-terms] remains.Thus Hilbert was also con�dent that his second [1900] problem, \the consistency of thearithmetical axioms" for the real numbers, would be solved. In his lecture at the 1928 Inter-national Congress of Mathematicians at Bologna, Hilbert [1929] assumed that the �nitenesscondition for the elimination of "-terms had been established for number theory and madehis �rst problem that of establishing the analogous �niteness condition for analysis. In a lec-ture given in December 1930, Hilbert [1931: 490] still thought that the consistency of numbertheory had been established.However, in a lecture given in September 1930, G�odel [1930a] had announced his First In-completeness Theorem, the existence of formally undecidable propositions of number theory.Von Neumann who was in the audience saw not only its broad signi�cance but its particularrelevance to the work of the Hilbert school. Some weeks after his lecture G�odel established32 von Neumann [1927: 22] acknowledges K�onig [1914].33 This was corroborated in oral communication from Bernays to Dreben in 1965, and in a letter fromBernays to the editor of a projected Spanish translation of van Heijenoort [1967], dated 15 June 1974.19



his Second Incompleteness Theorem, the unprovability of consistency, and soon afterwardsin November heard from von Neumann that he too had established this result.34 The SecondIncompleteness Theorem of G�odel [1931] implies in particular that for any theory subsumingthe addition and multiplication of the natural numbers and for any putative proof of 0 6= 0in that theory, no \proof of �niteness" (as in the quotation above) is formalizable in thattheory. Thus, there had to be something wrong with the assumption of the Hilbert schoolthat Ackermann's new argument established the consistency of full number theory, and vonNeumann soon produced an example for which the argument failed.35 Beyond the commonimpression that G�odel's Second Incompleteness Theorem largely precluded Hilbert's consis-tency program, this close interplay between G�odel and von Neumann brings out the speci�cmathematical impact that G�odel's result had on a concerted e�ort then being made by theHilbert school.Gerhard Gentzen [1936, 1938, 1943] would show that there is a \purely mathematicalproof" of the consistency of number theory. However, his method necessarily relied ona mathematical principle presumably non-�nitary by Hilbert's standards, the principle oftrans�nite induction up to the ordinal �0.36 Later Ackermann [1940] showed that for numbertheory Hilbert's original substitution method also provides a \purely mathematical proof of�niteness" and thereby establishes the consistency of number theory, but again by invokingtrans�nite induction up to �0. For number theory, Hilbert's goal of establishing consistencyhas been accomplished and through his substitution method { only the mathematical meanswere not �nitary.37

34 See G�odel [1986: 137].35 The example is given in Hilbert-Bernays [1939: 123�.].36 �0 is the supremum of the ordinals !; !!; !!! ; : : :. There is a primitive recursive ordering � of thenatural numbers which is isomorphic to �0. The principle of trans�nite induction up to �0 asserts that forany formula '(v), 8n(8m(m � n! '(m))! '(n))! 8n'(n) :This assertion is formalizable as a schema in any �rst-order number theory that subsumes primitive recursion,of which the minimal is Primitive Recursive Arithmetic described in the appendix. Gentzen showed that asingle instance of the schema for a certain quanti�er-free ' implies the consistency of number theory.37 A more intuitive, constructive model-theoretic version of Hilbert's substitution method was provided byJacques Herbrand [1930] with his Fundamental Theorem; in particular, Herbrand gave a much simpler proofof the result of von Neumann [1927]. Expanding on Dreben and John Denton's analysis in their [1966, 1970]of Herbrand's Theorem, Thomas Scanlon [1973] provided a Herbrand-style proof for the full number theoryresult of Ackermann [1940]. 20



x7. Continuum HypothesisIn [1923: 151] Hilbert had indicated that not only could his proof theory establish the con-sistency of analysis and set theory, but that it could also provide the means to solve \thegreat classical problems of set theory such as the Continuum Problem", the �rst of his [1900]problems. In [1926] Hilbert claimed to have established the Continuum Hypothesis withhis \continuum theorem" and proceeded to sketch a proof. It is a failure,38 but a notableone both for exhibiting the extent to which Hilbert thought he could extract mathematicalcontent from formal proofs and for stimulating G�odel's work with L.The Continuum Hypothesis would be established if the number-theoretic functions, func-tions from the natural numbers into the natural numbers, can be put into one-to-one corre-spondence with the countable ordinals. Hilbert apparently thought39 that if he could showthat from any given formalized putative disproof of the Continuum Hypothesis, he couldprove the Continuum Hypothesis, then the Continuum Hypothesis would have been estab-lished. (At best, Hilbert's argument could only establish the consistency of the ContinuumHypothesis, but for him consistency is (mathematical) truth.40 )According to Hilbert, the only way that the Continuum Hypothesis could be false is ifthere are non-constructively de�ned number-theoretic functions, i.e. functions de�ned us-ing tertium non datur over existential quanti�ers. A favorite example of Hilbert of such afunction is '(a) = 0 or 1 according to whether apa is rational or not.41 Hence, any proofof a proposition contradicting the Continuum Hypothesis would have to make use of suchde�nitions of functions. Hilbert then asserted that the solvability of every well-posed math-ematical problem is a \general lemma" of his metamathematics,42 and that a \part of thelemma" is the following (as translated in van Heijenoort [1967: 385]):Lemma I. If a proof of a proposition contradicting the continuum theorem is given38 In the reprintings of [1926] and the related [1928] in the seventh edition [1930] of the Grundlagen,Hilbert excised all reference to his purported proof of the Continuum Hypothesis.39 Paul L�evy [1964: 89] remarked, as pointed out by van Heijenoort [1967: 368]: \Zermelo told me in 1928that even in Germany nobody understood what Hilbert meant".40 See note 19 for Hilbert's attitude about consistency and truth. With the metamathematical viewpointslow to �lter into mathematical practice only Nikolai Luzin [1933] among the early commentators saw thatHilbert's argument was really aimed at the consistency of the Continuum Hypothesis. To G�odel [1939b: 129]this was clear: \the �rst to outline a program for a consistency proof of the continuum hypothesis wasHilbert".41 This example occurred in Hilbert's lectures and in his [1923]. For natural numbers a with pa irrational,it was unknown then whether apa is rational or not. The seventh of Hilbert's [1900] problems was to establishthat if � is an algebraic number and � an algebraic irrational, then �� is transcendental, or at least irrational.This problem was to stimulate the development of transcendental number theory. Aleksander Gel'fond [1934]and Theodor Schneider [1934] independently solved the problem by showing that under the hypotheses (andexcluding the trivial cases � 6= 0; 1) �� is in fact transcendental. See Tijdeman [1976] for more on Hilbert'sseventh problem.42 However, Hilbert never claimed that there is an algorithm, a general method, for solving every mathe-matical problem. Indeed, he asserted in [1926] (as translated in van Heijenoort [1967: 384]) that there is no\general method for solving every mathematical problem; that does not exist." Presumably neither Hilbertnor any of his school thought that a positive solution to the decision problem for �rst-order logic would yieldsuch an algorithm. 21



in a formalized version with the aid of functions de�ned by means of the trans�nitesymbol " (axiom group III), then in this proof these functions can always be replacedby functions de�ned, without the use of the symbol ", by means merely of ordinaryand trans�nite recursion, so that the trans�nite appears only in the guise of theuniversal quanti�er.For establishing the consistency of arithmetic, Hilbert had started with a putative proofof 0 6= 0 and outlined a substitution procedure for replacing in e�ect its "-terms by �nitechoice functions and showing that 0 6= 0 could not have appeared at the end after all. WithLemma I he would now start with a \proof of a proposition contradicting the continuumtheorem", and presumably carry out a similar but more complex substitution procedure,this time replacing number-theoretic functions de�ned using " symbols by a collection offunctions de�ned by various forms of recursion. (Hilbert, we assume, was not making thestronger claim that for each given non-constructively de�nable function one can �nd anequivalent recursively de�nable function.) Hence, for Hilbert it remained to examine and tohandle the functions so de�ned because (as translated in van Heijenoort [1967: 387]):in order to prove the continuum theorem, it is essential to correlate those de�ni-tions of number-theoretic functions that are free from the symbol " one-to-one withCantor's numbers of the second number class [the denumerable ordinals].Hilbert was the �rst to consider number-theoretic functions de�ned through recursionsmore general than primitive recursion. He not only allowed de�nitions incorporating trans-�nite recursions through countable ordinals, but also higher type functionals. These arethemselves de�ned recursively, a functional being a function whose arguments and valuesare previously de�ned functionals, and were classi�ed by Hilbert into a hierarchy. Hilbert'slogical beginnings in Russell's rami�ed theory of types is arguably discernible both in thepreoccupation with de�nability, here reduced to recursions by Lemma I, and the introductionof a type hierarchy, though one extended into the trans�nite.In his hierarchy Hilbert classi�ed functionals according to their variable-type by recur-sively considering their complexity of de�nition. He then recursively de�ned the height of avariable-type as the supremum of the heights plus 1 of the variable-types of the argumentsand values. He argued that all de�nitions of functionals can be reduced to substitution,i.e. composition of functionals, and to recursion, i.e. primitive recursion allowing functionals.Hilbert next described how heights of certain variable-types, the Z-types, can be correlatedwith countable ordinals. The Z-types are those variable-types generated by the two pro-cesses of substitution and enumeration of a countable sequence of Z-types. Hilbert pointedout that in his correlation of heights with countable ordinals he had \presupposed" the theoryof the latter. But he argued that only a formalization of the process of generating countableordinals is necessary for his overall argument, and for that only those countable ordinalscorresponding to Z-types matter. Hilbert then went on to describe how new variable-types,and therefore new ordinals, are generated by recursive enumeration of the variable-types upto a certain height and an application of \Cantor's diagonal procedure".Hilbert next pointed out how his correlation of heights with countable ordinals wasbased on two apparent restrictions. First, he had only considered \ordinary recursion", nottrans�nite recursion directly through in�nite ordinals, and second, he had only consideredZ-types, those variable-types generated by enumeration of countably many variable-types.But he then claimed in his remarkable Lemma II that all number-theoretic functions de�ned22



by recursion can \also be de�ned by means of ordinary recursions and the exclusive use ofZ-types".43 But then, Hilbert has done what he said had to be done \in order to provethe continuum theorem". To recapitulate, from a formalized disproof of the ContinuumHypothesis Hilbert has \given" a proof of the Continuum Hypothesis!The basic underlying di�culty with Hilbert's argument lies in his use of his Lemma I.Hilbert apparently thought that he can restrict his attention to only those number-theoreticfunctions that appear in purported disproofs of the Continuum Hypothesis. Whether suchfunctions can be put in one-to-one correspondence with the countable ordinals gets us nocloser to establishing even the consistency of the Continuum Hypothesis. However, Hilbertseems to have believed that there can be no number-theoretic functions unless de�nablein some formal proof. This is borne out by his later remark in [1928] (see van Heijenoort[1967: 476]) that Lemma I is \useful in �xing the train of thought, but it is dispensable for theproof itself." He noted that the introduction of "-terms does not a�ect the denumerabilityof the possible recursions in higher type functionals up to any particular height. Moreover,the "-terms can be systematically \normalized", e.g. for those acting on number-theoreticfunctions, the functional � (de�ned in x6) from his earliest paper [1922] in metamathematicscan be used. The di�culty with Hilbert's attempted proof of the Continuum Hypothesiscan arguably be reduced to his attempt to capture the force of functionals like � in someconstructive way by a collection of recursively de�ned functionals, whereas ironically �, asmentioned earlier, embodies Hilbert's use of non-constructive existence proofs.There is a sense in which Hilbert's Lemma II is correct. Let us suppose, as his discussionwould indicate, that the possible trans�nite recursions that he speaks about are those givenby recursive well-orderings. Then the number-theoretic functions that he was consideringcoincide with what today are called the general recursive functions. This is so because theclass of general recursive functions is closed under recursions along any recursive well-orderingand is also closed under recursions in higher type functionals generated by primitive recursionusing previously de�ned higher type functionals. But then, the conclusion of Lemma II wasestablished independently by Myhill [1953] and Routledge [1953], who proved that everygeneral recursive function is generated by recursion along primitive recursive well-orderingsof ordertype !.4443 The lemma states in full (as translated in van Heijenoort [1967: 391]):Lemma II. In the formation of functions of a number-theoretic variable trans�nite recursions are dispens-able; in particular, not only does ordinary recursion (that is, the one that proceeds on a number-theoreticvariable) su�ce for the actual formation process of the functions, but also the substitutions call merely forthose variable-types whose de�nition requires only ordinary recursion. Or, to express ourselves with greaterprecision and more in the spirit of our �nitist attitude, if by adducing a higher recursion or a correspondingvariable-type we have formed a function that has only an ordinary number-theoretic variable as argument,then this function can always be de�ned also by means of ordinary recursions and the exclusive use ofZ-types.44 Both Myhill [1953] and Routledge [1953] pointed out that the natural hierarchy generating the recur-sive functions already terminates in ! stages. Kleene [1958] formulated a hierarchy of recursive functionswhich may be closer to Hilbert's intentions. Hilbert had argued that his scheme leads to new functions byapplying \Cantor's diagonal procedure" on a recursive enumeration of the functions previously constructed.Kleene's hierarchy is based on enumeration and diagonalization, the former according to a �xed system ofprimitive recursive codes for well-orderings (\Kleene's O"). Feferman [1962] showed that Kleene's hierarchy23



Hilbert broke fertile ground for the later, broad investigation of recursions. Ackermann[1928] showed that a scheme given in Hilbert [1926] does indeed de�ne a non-primitive recur-sive function, now well-known as the Ackermann function. The association of ordinals withrecursive de�nitions has become common place, with Gentzen's [1936, 1938, 1943] analysisof the consistency of number theory paradigmatic. And recursion in higher type functionalsup to height ! in Hilbert's scheme was used by G�odel in his Dialectica interpretation [1958],already worked out in his [1941], to give a consistency proof of intuitionistic number theoryand hence because of his [1933a] a consistency proof of (classical) number theory.45x8. G�odelKurt G�odel virtually completed the mathematization of logic by submerging metamathe-matical methods into mathematics.46 The main vehicle was of course the direct coding, \thearithmetization of syntax", in his celebrated Incompleteness Theorem [1931], which trans-formed Hilbert's consistency program and led to the undecidability of the Decision Problemfrom Hilbert-Ackermann [1928] and the development of recursion theory. But starting anundercurrent, the earlier Completeness Theorem [1930] from his thesis answered a�rma-tively the Hilbert-Ackermann [1928] question about semantic completeness, clari�ed thedistinction between the formal syntax and model theory (semantics) of �rst-order logic, andsecured its key instrumental property with the Compactness Theorem. This work wouldestablish �rst-order logic as the canonical language for formalization because of its mathe-matical tractability, and higher order logics would become downgraded, now viewed as theworkings of the power set operation in disguise. Skolem's earlier suggestion in [1923] thatZermelo's axiomatic set theory be based on �rst-order logic would be generally adopted, thusvindicating Hilbert's emphasis on �rst-order logic.To pursue our earlier discussion of categoricity in connection with Hilbert's CompletenessAxiom in geometry, say that a theory is deductively complete if each sentence of its languageor its negation is provable from the axioms. In the K�onigsberg lecture [1930a] where G�odeldiscussed his Completeness Theorem and announced his First Incompleteness Theorem, heobserved that the former implies that for �rst-order theories categoricity implies deductivecompleteness. The argument is simple: if there were a sentence such that neither it nor itsnegation can be proved from the axioms, then there would be two (non-isomorphic) modelsof the theory.47 Now Hilbert's axioms for geometry inclusive of the Completeness Axiomencompasses all the recursive functions. He showed moreover that such hierarchies terminate rather quicklyso that they do not provide an informative hierarchical analysis of the general recursive functions. In hislater years G�odel considered providing such an analysis to be a major problem of mathematical logic.45 Cli�ord Spector [1962] extended the Dialectica interpretation to full analysis, bringing in certain basicideas of Brouwer.46 Alfred Tarski shares the honor.47 Actually, the assertion that for �rst-order theories categoricity implies deductive completeness is largelyvacuous, since a now well-known consequence of the Compactness Theorem is that any �rst-order theorywith in�nite models is not categorical. However, call a �rst-order theory @0-categorical i� it has a uniquecountably in�nite model up to isomorphism. Then by the argument given in the text as sharpened by theL�owenheim-Skolem Theorem, for �rst-order theories @0-categoricity implies deductive completeness. Thisassertion is not vacuous, and also applicable to the distinction to be made in the text between �rst-orderand higher order logics. 24



and the Dedekind-Peano axioms for the natural numbers are categorical, but as second-ordertheories. However, G�odel's First Incompleteness Theorem established that no (decidable)set of axioms for �rst-order or higher order theories, which subsumes the arithmetic ofthe natural numbers and only proves true sentences of that arithmetic, can be deductivelycomplete. Thus, the Incompleteness Theorem makes a distinction between �rst-order andhigher order theories in terms of categoricity and deductive completeness. Although G�odelin his Incompleteness paper [1931] did not mention this distinction, he had made it themotivation for the Incompleteness Theorem in his K�onigsberg lecture [1930a: 29].Footnote 48a of G�odel's [1931] was as follows:As will be shown in Part II of this paper, the true reason for the incompletenessinherent in all formal systems of mathematics is that the formation of ever highertypes can be continued into the trans�nite (cf. D. Hilbert, \�Uber das Unendliche",Math. Ann. 95, p. 184), while in any formal system at most denumerably manyof them are available. For it can be shown that the undecidable propositions con-structed here become decidable whenever appropriate higher types are added (forexample, the type ! to the system P [the simple theory of types superposed onthe natural numbers as individuals satisfying the Peano axioms]). An analogoussituation prevails for the axiom system of set theory.This prescient note would be an early indication of a steady intellectual progress on G�odel'spart that would take him from the Incompleteness Theorem through pivotal relative con-sistency results for set theory to speculations about its further possibilities. The referenceto Hilbert [1926] and Russell's theory of types foreshadows the strong in
uence that theywould have on this progress.In a subsequent lecture [1933], G�odel expanded on the theme of footnote 48a. He re-garded the axiomatic set theory of Zermelo, Fraenkel, and von Neumann as \a naturalgeneralization of the [simple] theory of types, or rather, what becomes of the theory of typesif certain super
uous restrictions are removed."48 First, instead of having separate typeswith sets of type n+1 consisting purely of sets of type n, sets can be cumulative in the sensethat sets of type n can consist of sets of all lower types. If Sn is the collection of sets of type n,then: S0 is the type of the individuals, and inductively, Sn+1 = Sn[fX j X � Sng. Second,the process can be continued into the trans�nite, starting with the cumulation S! = Sn Sn,proceeding through successor stages as before, and taking unions at limit stages. G�odel[1933: 46] credited Hilbert for pointing out the possibility of continuing the formation oftypes beyond the �nite types. As for how far this cumulative hierarchy of sets is to con-tinue, the \�rst two or three types already su�ce to de�ne very large ordinals" ([1933: 47])which can then serve to index the process, and so on. G�odel observed that although thisprocess has no end, this \turns out to be a strong argument in favor of the theory of types"([1933: 48]). Implicitly referring to his incompleteness result G�odel noted that for a formalsystem S based on the theory of types a number-theoretic proposition can be constructedwhich is unprovable in S but becomes provable if to S is adjoined \the next higher type andthe axioms concerning it" ([1933: 48]).In 1938 modern set theory was launched by G�odel's formulation of the model L of\constructible" sets, a model of set theory that established the consistency of the Axiom48 For this view G�odel [1933: 46] mainly acknowledged von Neumann [1929], although Zermelo [1930]would have been a better source. 25



of Choice and the (Generalized) Continuum Hypothesis. In his �rst announcement G�odel[1938: 556] described L as a hierarchy \which can be obtained by Russell's rami�ed hierarchyof types, if extended to include trans�nite orders." Indeed, with L G�odel had re�ned thecumulative hierarchy of sets described in his [1933] to a cumulative hierarchy of de�nable setswhich is analogous to the orders of Russell's rami�ed theory. This hierarchy of de�nable setswas in the spirit of Hilbert [1926] as was the extension of the hierarchy into the trans�nite.However, G�odel's further innovation was to continue the indexing of the hierarchy throughall the ordinals to get a model of set theory.49 The extent of the ordinals was highlightedin his monograph [1940], based on lectures in 1938, in which he formally generated L setby set using a sort of G�odel numbering in terms of ordinals. As with his proof of theIncompleteness Theorem, G�odel's careful coding of metamathematical features may haveprecluded any misinterpretations; however, it also served to purge the intuitive underpinningsand historical motivations. In his [1939a], G�odel presented the hierarchy whose cumulationis L essentially as it is today:M0 = f;g; M� = S�<�M� for limit ordinals �; and M�+1 = M 0� ;where M 0 is \the set of subsets of M de�ned by propositional functions �(x) over M ," thesepropositional functions having been precisely de�ned. Signi�cantly, footnote 12 of [1939a]revealed that G�odel viewed his axiom A, that every set is constructible (now written V = Lfollowing G�odel [1940]), as deriving its sense from the cumulative hierarchy of sets regardedas an extension of the simple theory of types: \In order to give A an intuitive meaning, onehas to understand by `sets' all objects obtained by building up the simpli�ed hierarchy oftypes on an empty set of individuals (including types of arbitrary trans�nite orders)."The recent publication of hitherto unpublished lectures of G�odel on the ContinuumHypothesis has dramatically substantiated the strong in
uence of both Russell and Hilberton him. Both �gures loom large in G�odel's lecture [1939b] given at Hilbert's G�ottingen.G�odel recalled at length Hilbert's work on the Continuum Hypothesis and cast his own asan analogical development, one leading however to the constructible sets as a model for settheory. G�odel [1939b: 131] pointed out that \the model : : : is by no means �nitary ; in otherwords, the trans�nite and impredicative procedures of set theory enter into its de�nition inan essential way, and that is the reason why one obtains only a relative consistency proof [ofthe Continuum Hypothesis]".To motivate the model G�odel referred to Russell's rami�ed theory of types. G�odel �rstdescribed what amounts to the orders of that theory for the simple situation when themembers of a countable collection of real numbers are taken as the \individuals" and newreal numbers are successively de�ned via quanti�cation over previously de�ned real numbers,and emphasized that the process can be continued into the trans�nite. He then observedthat this procedure can be applied to sets of real numbers, and the like, as \individuals", andmoreover, that one can \intermix" the procedure for the real numbers with the procedurefor sets of real numbers \by using in the de�nition of a real number quanti�ers that refer49 Years later in 1968 G�odel wrote to Hao Wang [1974: 8�.]: \there was a special obstacle which reallymade it practically impossible for constructivists to discover my consistency proof. It is the fact that therami�ed hierarchy, which had been invented expressly for constructive purposes, had to be used in an en-tirely nonconstructive way." G�odel [1947: 518] mentioned in a footnote that the trans�nite iteration of theprocedure for constructing sets in Weyl [1918] results exactly in the real numbers of L.26



to sets of real numbers, and similarly in still more complicated ways" ([1939b: 135]). G�odelcalled a constructible set \the most general [object] that can at all be obtained in this way,where the quanti�ers may refer not only to sets of real numbers, but also to sets of setsof real numbers and so on, ad trans�nitum, and where the indices of iteration : : : can alsobe arbitrary trans�nite ordinal numbers". G�odel considered that although this de�nition ofconstructible set might seem at �rst to be \unbearably complicated", \the greatest generalityyields, as it so often does, at the same time the greatest simplicity" ([1939: 137]). G�odel waspicturing Russell's rami�ed theory of types by �rst disassociating the types from the orders,with the orders here given through de�nability and the types represented by real numbers,sets of real numbers, and so forth. G�odel's intermixing then amounted to a recapturing ofthe complexity of Russell's rami�cation, the extension of the hierarchy into the trans�niteallowing for a new simplicity.G�odel went on to describe the universe of set theory, \the objects of which set theoryspeaks", as falling into \a trans�nite sequence of Russellian [simple] types" ([1939b: 137]),the cumulative hierarchy of sets that he had described in [1933]. He then formulated theconstructible sets as an analogous hierarchy, the hierarchy of [1939a], in e�ect introducingRussellian orders through de�nability. In a comment bringing out the intermixing of typesand orders, G�odel pointed out that \there are sets of lower type that can only be de�nedwith the help of quanti�ers for sets of higher type" ([1939b: 141]). This lecture of G�odel's isa remarkably clear presentation of both the mathematical and historical development of L.G�odel's argument for the Continuum Hypothesis in the model L rests on [1939] \a gen-eralization of Skolem's method for constructing enumerable models". It is arguably the nextsigni�cant application of the L�owenheim-Skolem Theorem after Hilbert's anticipatory onewith his countable interpretation for Euclidean geometry (sans the Completeness Axiom)and Skolem's own [1923] to get his \paradox" for set theory. G�odel showed that every subsetof M! in L belongs to M� for some � < !1. (Thus, every real number in L belongs to M�for some � < !1.) In [1939b: 143] he asserted that \this fundamental theorem constitutesthe corrected core of the so-called Russellian axiom of reducibility." Thus, G�odel establishedanother connection between L and Russell's rami�ed theory of types. But while Russellhad to postulate his Axiom of Reducibility for his �nite orders, G�odel was able to derive ananalogous form for his trans�nite hierarchy. In his �rst announcement G�odel [1938: 556] hadwritten: \The extension to trans�nite orders has the consequence that the model satis�esthe impredicative axioms of set theory, because an axiom of reducibility can be proved forsu�ciently high orders." The beginnings of this was already hinted at in G�odel's Incom-pleteness paper [1931: 178], where he wrote of its Axiom IV: \This axiom plays the role ofthe axiom of reducibility (the comprehension axiom of set theory)." For G�odel, Russell'sAxiom of Reducibility with its capability of replacing notationally speci�ed objects of anyorder by equivalent objects of the lowest order of the same type was the direct antecedentto \the comprehension axiom of set theory". As he said [1939b: 145]:This character of the fundamental theorem as an axiom of reducibility is also the rea-son why the axioms of classical mathematics hold for the model of the constructiblesets. For after all, as Russell showed, the axioms of reducibility, in�nity and choiceare the only axioms of classical mathematics that do not have a tautological charac-ter. To be sure, one must observe that the axiom of reducibility appears in di�erentmathematical systems under di�erent names and in di�erent forms, for example, in27



Zermelo's system of set theory as the axiom of separation, in Hilbert's systems inthe form of recursion axioms, and so on.Hilbert and Russell also �gure prominently in a later lecture [1940a] at Brown Universityon the Continuum Hypothesis. G�odel began by announcing that he had \succeeded in givingthe [consistency] proof a new shape which makes it somewhat similar" to Hilbert's [1926]attempt, and proceeded to sketch the new proof, considering it \perhaps the most perspic-uous". First, G�odel reviewed his construction of the model L. Once again he emphasizedthat his argument showing that the Continuum Hypothesis holds in L proves an axiom ofreducibility.50 Then G�odel turned to his new approach to the consistency proof, and intro-duced the concept of a relation being \recursive of order �" for ordinals �. This conceptis a generalization of the notion of de�nability, a generalization obtained by interweavingthe operation M 0, given �ve paragraphs above, with a recursion scheme akin to Hilbert's forhis [1926] hierarchy of functionals. As G�odel [1940a: 180] said: \The di�erence between thisnotion of recursiveness and the one that Hilbert seems to have had in mind is chie
y that Iallow quanti�ers to occur in the de�niens. This makes one [Lemma I] of Hilbert's lemmassuper
uous and the other [Lemma II] demonstrable in a certain modi�ed sense". Using thisnew concept of recursiveness { better, new concept of de�nability { G�odel gave a model ofRussell's Principia, construed as his system P of his incompleteness paper [1931], in whichthe Continuum Hypothesis holds. (The types of this model were essentially coded versionsof M!n+1 �M!n .)In his monograph [1940] G�odel had provided a formal presentation of L using an axiom-atization of set theory with an antecedent in von Neumann [1925]. G�odel's formalizationnot only recalled von Neumann's [1925: II] analysis of \subsystems", but also shed light onvon Neumann's main concern: the categoricity of his axiomatization. Fraenkel [1922] hadexpressed the desirability of closing o� the Zermelian generative axioms through an \axiomof restriction"; this required that there should be no further sets than those generated bythe axioms, a notable move antithetical to the role played by Hilbert's Completeness Ax-iom in geometry. It was to pursue this that von Neumann had investigated subsystems forhis axiomatization, but he concluded that there was probably no way to formally achieveFraenkel's idea of a minimizing, and hence categorical, axiomatization. G�odel's axiom A,that every set is constructible, can be viewed as formally achieving this sense of categoricity,since, as he essentially showed in [1940], in axiomatic set theory L is a de�nable class thattogether with the membership relation restricted to it is a model of set theory, and L is asubmodel of every other such class.51 In his �rst description of L G�odel wrote ([1938: 557]):\The proposition A added as a new axiom seems to give a natural completion of the axiomsof set theory, in so far as it determines the vague notion of an arbitrary in�nite set in ade�nite way."50 He further said [1940a: 178]: \So since an axiom of reducibility holds for constructible sets it is notsurprising that the axioms of set theory hold for the constructible sets, because the axiom of reducibility orits equivalents, e.g., Zermelo's Aussonderungsaxiom, is really the only essential axiom of set theory."51 In [1940a: 176], G�odel wrote: \One may at �rst doubt that this assertion [A] has a meaning at all,because A is apparently a metamathematical statement since it involves the manifestly metamathematicalterm `de�nable' or `constructible'. But now it has been shown in the last few years how metamathematicalstatements can be translated into mathematics, and this applies also to the notion of constructibility andthe proposition A, so that its consistency with the axioms of mathematics is a meaningful assertion."28



However, G�odel came to regard L as primarily a contrivance for establishing relativeconsistency results. In his [1947] he suggested that the Continuum Hypothesis is false andin footnote 22 that a new axiom \in some sense directly opposite" to A might entail this.In a revision [1964: 266] of [1947], he expanded the footnote: \I am thinking of an axiomwhich (similar to Hilbert's completeness axiom in geometry) would state some maximumproperty of the system of all sets, whereas axiom A states a minimum property. Notethat only a maximum property would seem to harmonize with the concept of [arbitraryset]." This is related to G�odel's speculations with large cardinal hypotheses;52 whereashis axiom A had enforced a kind of categoricity through minimization, large cardinals asmaximum properties might establish the negation of the Continuum Hypothesis. Althoughthe historical connection is now admittedly faint, just as the addition of the CompletenessAxiom in geometry precludes Hilbert's countable interpretation, so maximum properties inset theory may preclude versions of G�odel's Skolem function argument for the consistencyof the Continuum Hypothesis.In an earlier letter to Ulam (see Ulam [1958: 13]) G�odel had written of von Neumann'saxiom [1925] that a class is proper exactly when it can be put into one-to-one correspondencewith the entire universe:The great interest which this axiom has lies in the fact that it is a maximum principle,somewhat similar to Hilbert's axiom of completeness in geometry. For, roughlyspeaking, it says that any set which does not, in a certain well-de�ned way, implyan inconsistency exists. Its being a maximum principle also explains the fact thatthis axiom implies the axiom of choice. I believe that the basic problems of abstractset theory, such as Cantor's continuum problem, will be solved satisfactorily onlywith the help of stronger axioms of this kind, which in a sense are opposite orcomplementary to the constructivistic interpretation of mathematics.Hilbert's Completeness Axiom thus fueled speculations about maximization for set theory,speculations resonating with his \consistency implies existence" view, speculations still beinginvestigated to this day.

52 See Kanamori [1994] for the recent work in set theory on large cardinal hypotheses.29



Appendix53Recent developments have not only led to a precise logical analysis of Hilbert's basis theorembut to results that can be regarded as a�rmatory for Hilbert's consistency program. In thisappendix some of these developments are brie
y described to recast Hilbert's results andinitiatives in a new light.Harvey Friedman [1975] observed that when a theorem of \ordinary" mathematics isproved from a very economical comprehension (or \set existence") axiom, then it should bepossible to \reverse" the process by proving the axiom from the theorem over a weak ambienttheory. Together with initial and continuing results by Friedman, Stephen Simpson and hiscollaborators since the late 1970's proceeded to carry out a program analyzing theorems inthis spirit, the program of reverse mathematics. We �rst set the stage:Primitive Recursive Arithmetic is the system in the language with the logical connectives(but no quanti�ers), the constant 0, a unary function symbol for the successor function, anda function symbol for each (de�nition of a) primitive recursive function, where the axioms arethe recursive de�ning equations for the functions symbols. First presented in Skolem [1923a]and extensively investigated in Hilbert-Bernays [1934], Primitive Recursive Arithmetic hasbeen widely regarded as a characterization of Hilbert's \�nitary" methods.The language of second-order arithmetic54 is a two-sorted language with number variablesi; j;m; n; : : : and set variables X; Y; Z; : : :. The number variables are intended to range overthe natural numbers, and the set variables to range over sets of natural numbers. Numericalterms are generated as usual from the number variables, the constants 0 and 1, and thebinary operations + and �. The atomic formulas are t = u, t < u, and t 2 X, where t; uare numerical terms. Finally, formulas are generated from the atomic formulas via logicalconnectives, number quanti�ers 8n and 9n, and the set quanti�ers 8X and 9X.All the formal systems to be considered include the familiar axioms about +;�; 0; 1; <as well as the induction axiom:55(0 2 X ^ 8n(n 2 X ! n+ 1 2 X)) ! 8n(n 2 X) :Full second-order arithmetic, or analysis, consists of these axioms together with the fullcomprehension scheme: For all formulas ',9X8n(n 2 X $ '(n)) :As shown in Hilbert-Bernays [1939], a great deal of classical mathematics can be faithfullyrecast in second-order arithmetic with codes for the real numbers. In what follows, certain53 This appendix is mostly drawn from Simpson [1985], to which we refer for more details and references.See also Simpson [1988].54 \arithmetic" here refers to number theory, the structure of addition and multiplication of the naturalnumbers. As mentioned in x3, Hilbert used \arithmetic" to refer to analysis, which in the present settingcorresponds to \second-order arithmetic" if sets of natural numbers are construed as real numbers.55 The full induction scheme, which is not assumed, is: For all formulas ',('(0) ^ 8n('(n)! '(n+ 1))) ! 8n'(n) :The subscript 0 in the acronyms for the subsystems distinguished below is an evolutionary artifact, indicatingthat only the induction axiom is being assumed and not the full scheme.30



subsystems are considered that exactly capture the strength of several basic mathematicalresults. We begin with an analysis of the complexity of formulas:A formula is �00 if it has no set quanti�ers and all of its number quanti�ers are bounded,i.e. can be rendered in form 8m(m < t ! : : :) or 9m(m < t ^ : : :). A formula is �01 ifit is of form 9m' where ' is �00, and �01 if it is of form 8m' where ' is �00. For eachnatural number n, a formula is �0n+1 if it is of the form 9m' where ' is �0n, and a formulais �0n+1 if it is of the form 8m' where ' is �0n. A formula is arithmetical if it contains noset quanti�ers, i.e. its prenex form is for some n a �0n or �0n formula. Finally, a formula is�11 if it is of the form 8X' where ' is arithmetical.RCA0 (Recursive Comprehension Axiom)56 is the subsystem of second-order arithmeticconsisting of the axioms of the �01-induction scheme, i.e. for each �01 formula ',('(0) ^ 8n('(n) ! '(n+ 1))) ! 8n'(n);and axioms of the �01-comprehension scheme, i.e. for �01 formulas ' and �01 formulas  ,8n('(n) $  (n)) ! 9X8n(n 2 X $ '(n)):RCA0 just su�ces to establish the existence of the (general) recursive sets and also to developsome basic theory of real-valued continuous functions and of countable algebraic structures.However, with its parsimonious form of induction it can only establish the totality of number-theoretic functions in a restricted class. It is essentially a result of Charles Parsons [1970] thatthe provably total general recursive functions of RCA0 are exactly the primitive recursivefunctions.57 RCA0 proves that the ordinal !n is well-ordered for each particular naturalnumber n, but not that !! is.58 For RCA0 proves that !! is well-ordered implies thetotality of Ackermann's function, the paradigmatic non-primitive recursive function.WKL0 (Weak K�onig's Lemma) is the subsystem consisting of the axioms of RCA0together with: Every in�nite tree of �nite sequences of 0's and 1's ordered by extension hasan in�nite path. WKL0 provides a better theory of continuous functions and su�ces for thedevelopment of ideal theory for countable commutative rings.ACA0 (Arithmetical Comprehension Axiom) is the subsystem consisting of the axiomsof the arithmetical comprehension scheme, i.e. for each arithmetical formula ',9X8n(n 2 X $ '(n)):(In what follows, other comprehension schemes based on formula complexity have analogousformulations.) ACA0 subsumes WKL0. Since RCA0 can encode functions as sets of ordered56 See the previous note for the use of the subscript 0.57 A recursive function f :! ! ! has the Kleene normal form f(i) = U(�m(T (i;m) = 0)) where U andT are primitive recursive functions and � is the least number operator, specifying the least m such thatT (i;m) = 0. That f is total is the assertion 8i9mT (i;m) = 0, and f is provably total in a system ofarithmetic if that system proves this assertion.58 Let � be a primitive recursive ordering of the natural numbers which is isomorphic to the ordinal �0(cf. note 36). For an ordinal � � �0, \� is well-ordered" is the �11 assertion that every set consisting ofnatural numbers corresponding via � to ordinals less than � has a �-least element.31



pairs, it follows that over this base theory ACA0 is equivalent to the �01-comprehensionscheme. In terms of well-orderings, ACA0 proves that every ordinal less than �0 is well-ordered, but not �0 itself.59 ACA0 has the same consequences for analysis as the systemexplored by Weyl [1918].Theorem 1 (Friedman, Simpson). The following are equivalent over RCA0:(a) WKL0.(b) The Heine-Borel Theorem: Every covering of the unit interval of reals by a countablesequence of open sets has a �nite subcover.(c) Every continuous real function on the unit interval has a supremum.(d) Every countable commutative ring has a prime ideal.(e) The G�odel Completeness Theorem.(f) The Hahn-Banach Theorem for separable Banach spaces.Theorem 2 (Friedman, Simpson). The following are equivalent over RCA0:(a) ACA0.(b) The Bolzano-Weierstrass Theorem: Every bounded sequence of real numbers has aconvergent subsequence.(c) Every bounded sequence of real numbers has a least upper bound.(d) Every countable commutative ring has a maximal ideal.(e) K�onig's Lemma: Every in�nite, �nitely branching tree consisting of �nite sequencesof natural numbers ordered by extension has an in�nite path.Theorem 2(e) highlights the new strength beyond WKL0, which draws the same conclusionfor �nite sequences of 0's and 1's.Simpson [1988a] provided the following analysis of Hilbert's basis theorem:Theorem 3 (Simpson). The following are equivalent over RCA0:(a) Hilbert's basis theorem in the following sense: For countable �elds K andx1; : : : ; xn, the (commutative) ring of polynomials K[x1; : : : ; xn] is �nitely generated.(b) The ordinal !! is well-ordered.The proof incidentally is similar to Gordan's [1899] proof of the basis theorem. By ourprevious remarks about RCA0, (a) thus just transcends RCA0 and implies the totality ofAckermann's function.Friedman (unpublished) has in fact established an equivalence between a variant ofHilbert's basis theorem and the totality of Ackermann's function. Friedman showed: Forany natural number k there is a natural number n such that for every sequence of n polyno-mials in k variables over any �eld, where the ith term of the sequence has degree at most i,some polynomial is in the ideal generated by the previous polynomials. With h(k) denotingthe least such n, the function h is essentially Ackermann's function. Note that h does notdepend on the �eld. The assertion cast for polynomials over the two-element �eld is formal-izable as a �02 sentence, as is the assertion of the totality of Ackermann's function. This isa remarkable historical con
uence of Hilbert's mathematics and metamathematics, in thata variant of his �rst major result is seen to be equivalent to the totality of the �rst recur-sive function that he [1926] had considered for transcending primitive recursion, and hence59 See notes 36 and 58 for the terminology. 32



just transcends Primitive Recursive Arithmetic, the common characterization of Hilbert's\�nitary" methods.Hilbert's Nullstellensatz has also been analyzed, though in a di�erent setting. Followinga major reduction of the theorem to an e�ective form by W. Dale Brownawell [1987], MichaelShub and Stephen Smale in their [1995] observed that that e�ective form is equivalent toan algebraic version for the real numbers of the well-known NP 6= P assertion in theoreticalcomputer science.Perhaps the main triumphs of reverse mathematics are the following two conservationresults:Theorem 4(a) (Friedman; Kirby and Paris [1976]) WKL0 is a conservative extension of PrimitiveRecursive Arithmetic with respect to �02 sentences, i.e. every �02 sentence provable in WKL0is already provable in Primitive Recursive Arithmetic.(b) (Harrington) For every model of RCA0 there is a model of WKL0 with the same\natural numbers". In particular, (Friedman [1975: 238]) WKL0 is a conservative extensionof RCA0 with respect to �11 sentences, i.e. every �11 sentence provable in WKL0 is alreadyprovable in RCA0.As emphasized by Simpson [1985: 469], (a) provides a signi�cant advance towards therealization of Hilbert's consistency program in the sense that strong ideal propositions canbe eliminated from the proofs of substantial assertions of Primitive Recursive Arithmetic.One can apply the powerful methods of Riemann integration, the ideal theory for countablecommutative rings, and G�odel's Completeness Theorem available in WKL0 to establishresults of a rich logical complexity as in (a) and (b). In the simplest case, one cannot derive0 6= 0 in WKL0 if one cannot already derive it in Primitive Recursive Arithmetic.Theorem 4 was established by model-theoretic means; Sieg [1991] provided systematicproof-theoretic proofs based on Herbrand and Gentzen. Feferman [1988] gives a detailedaccount of constructive consistency proofs for various powerful subsystems of analysis.
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