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David Hilbert (1862-1943) was the preeminent mathematician of the early decades of the
20th Century,! a mathematician whose pivotal and penetrating results, emphasis on cen-
tral problems and conjectures, and advocacy of programmatic approaches greatly expanded
mathematics with new procedures, initiatives, and contexts. With the emerging exten-
sional construal of mathematical objects and the development of abstract structures, set-
theoretic formulations and operations became more and more embedded into the basic frame-
work of mathematics. And Hilbert specifically championed Cantorian set theory, declaring
[1926:170]: “From the paradise that Cantor has created for us no one will cast us out.”

On the other hand, Hilbert did not make direct mathematical contributions toward
the development of set theory. Although he liberally used non-constructive arguments, his
were still the concerns of mainstream mathematics, and he stressed concrete approaches
and the eventual solvability of every mathematical problem. After its beginnings as the
study of the transfinite numbers and definable collections of reals, set theory was becoming
an open-ended, axiomatic investigation of arbitrary collections and functions. For Hilbert
this was never to be a major concern, but he nonetheless exerted a strong influence on this
development both through his broader mathematical approaches and through his specific
attempt to establish the Continuum Hypothesis.

What follows is a historical and episodic account of Hilbert’s results and initiatives and
their ramifications and extensions, in so far as they bear on set theory and its development.?
The emphasis on set theory presents a tangential view of Hilbert’s main mathematical en-
deavors, but one that illuminates their larger themes and motivations. Because of its basic
interplay with set theory, we deal at length with Hilbert’s program for establishing the
consistency of mathematics by “finitary reasoning”. Section 1 discusses Hilbert’s use of non-
constructive existence proofs, with the focus on his first major result; section 2 discusses
his axiomatization of Euclidean geometry, with the focus on his Completeness Axiom; and
then section 3 discusses questions about the real numbers and their arithmetic that Hilbert
would later approach through his proof theory. With this as a backdrop, section 4 considers
Hilbert’s involvement in the early development of set theory, and section 5 considers both his
mathematical logic as a reaction to Russell’s and the two crucial new questions that Hilbert
raised. Section 6 describes Hilbert’s approach to establishing the consistency of mathemat-
ics, and section 7 its application to the Continuum Hypothesis. Then section 8 discusses
Godel’s work, particularly on the consistency of the Continuum Hypothesis, in relation to
Hilbert’s. In the appendix, Hilbert’s consistency program is reconsidered in light of recent
developments in “reverse” mathematics.

* This article grew out of an invited talk given by Kanamori on 9 November 1993 at a symposium on
Hilbert’s Philosophy of Mathematics held as part of the Boston Colloquium for Philosophy of Science, for
which he would like to thank the organizers, Jaakko Hintikka and Alfred Tauber. The authors are very

grateful to Volker Peckhaus, Jose Ruiz, and Christian Thiel for numerous helpful comments and corrections.
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Henri Poincaré, Hilbert’s only rival for preeminence, died in 1912.
See Kanamori [1996] for the development of set theory from Cantor to Cohen.
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§1. Basis Theorem

Hilbert’s work from the beginning greatly accelerated the move away from the traditional
constructive moorings, being driven by strong impulses: the solution of focal problems by
intuitively clear though not necessarily constructive means, and the drive for systematization
with its emerging concern with consistency. When Hilbert was in his late twenties, he [1890]
established his first major result, Hilbert’s basis theorem, which cast in current terms is the
assertion:

Suppose that F' is a field and F|zi,...,zy] the ring of polynomials over F' in
Z1,...,Zy. Then every ideal in F[z1,...,x,] is finitely generated.

Invariant theory, the subject of Hilbert’s doctoral dissertation and Habilitationsschrift, was
the bridge between geometry and algebra in 19th Century mathematics, and the basis theo-
rem was the key ingredient in his solution [1890] of invariant theory’s then central problem.?
Moreover, Hilbert’s [1890] with its new structural approach can be considered the first paper
of modern algebra: In straightforward generalizations in terms of algebraic varieties the basis
theorem serves as a foundation for algebraic geometry.

The basis theorem caused a sensation since it argued for a finite number of generators, yet
provided no explicit construction. Moreover, in the form that it was actually established by
Hilbert, that for any appropriate sequence of polynomials every polynomial in the sequence
is a linear combination of the first few, it was a widely applicable result. Paul Gordan [1868]
had solved the central invariant theory problem for the special case of two variables by an
ingenious but tedious construction which was a culmination of what came to be called the
“symbolic method”. After seeing Hilbert’s basis theorem Gordan quipped (Max Noether
[1914: 18], Felix Klein [1926:330]): “This is not mathematics; this is theology!” Hilbert had
carried out a streamlining double induction (or rather, finite descent), first putting the case
of n variables into a simple form, and then effecting a reduction to n—1. He had established a

3 That central problem emanated from the work of Arthur Cayley. It had been known that for a

polynomial az? + 2bzy + cy? in = and y, if z = az' + By’ and y = vz’ + 6y’ are substituted to get
a'z'? 4+ 202"y + 'y'2, then
V2 —d'd = (b - ac)(ad — By)?,

i.e. the new discriminant b'? — a'c’ equals the old discriminant b2 — ac times a constant factor (in fact the
square of the determinant of the transformation).

Generalizing, a form (Cayley’s quantic), is a polynomial in z1, ..., 2z, which is homogeneous (i.e. there
is a fixed k such that the sum of the powers of the variables in each summand is k). A linear transformation
of z1,...,xy to a,..., 2}, is given by a system of equations, each z; being equated to a linear form in
#y,...,z,. For a form P, a polynomial @ in the coefficients and variables of P is an invariant if and only if
for every linear transformation, if the corresponding substitutions are made to get a corresponding form P’
inz},..., 2], and a Q' corresponding to @, then @ and Q' differ only by a constant factor. A complete system
of invariants for P is a collection C of such invariants such that every invariant is a linear combination of
members of C. Finally, the central problem of invariant theory solved by Hilbert [1890] was for any form P
to find a finite, complete system of invariants.

Of course, it is straightforward to generalize the foregoing in modern terms to polynomials over a field
and groups of linear transformations, and then to vector spaces on which groups act linearly, and this is how

invariant theory was eventually reactivated.



startling result by a convincing argument, one that was soon accepted by the mathematical
community. Not only was the proof reasonably surveyable, but it made a large array of
algebraic constructions manageable and introduced simplicity where there had been none.

Nonetheless, Hilbert [1893] soon provided an even more informative proof of his invariant
theory result. It was for this purpose that he established his well-known Nullstellensatz,
which like the basis theorem had a non-constructive proof and has become fundamental
in modern algebra. Applying the non-constructive Nullstellensatz Hilbert provided an oth-
erwise constructive algorithm for computing complete systems of invariants, building on a
technique due to Arthur Cayley. This was a striking instance of what was becoming a ma-
jor trend in mathematics: the development of contextually appropriate proofs for results
established by apparently less informative means, leading to a further enrichment of math-
ematics. Indeed, Gordan (Klein [1926: 331]) conceded that “even theology has its merits”,
and soon provided his own proofs [1893,1899] of Hilbert’s basis theorem.? Both Hilbert’s
basis theorem as well as his Nullstellensatz would be precisely analyzed in terms of formal
systems. In particular, the double induction in Hilbert’s proof of the basis theorem would
turn out to be a remarkable foreshadowing of how a close variant of the theorem would be
shown equivalent to a proposition (the provable totality of Ackermann’s function) that just
transcends one common characterization of Hilbert’s later finitistic viewpoint. (See in the
appendix Theorem 3 and remarks following.)

In addition to non-constructive existence proofs Hilbert championed the use of “ideal
elements”. Well-established were the imaginary ¢ and the points at infinity for projective
geometry, and emerging into prominence were the ideals of algebraic number fields, to the
theory of which Hilbert made fundamental contributions. The imaginary 7 had stimulated
the inaugural use of non-constructive existence proofs in algebra: The fundamental theorem
of algebra, that every polynomial in complex coefficients has a root, was first established by
Gauss in his doctoral dissertation [1799] by a proof that provided no means of algebraically
calculating a root. Weierstrass and Dedekind carried out involved constructive extensions
of Gauss’s work in the 1880’s; but significantly, Hilbert [1896] considerably streamlined this

4 In Hilbert’s original [1893] form the Nullstellensatz states that if f, fi,..., fr are in C[zy,. .., zy], the
ring of polynomials in x1, ..., z, over the complex field, and f vanishes at all the common roots of fi,..., fr,
then some power f¥ is a linear combination f¥ = hy fi +...+h, fr. The assertion is equivalent to the special
case when f = 1 and the f;’s have no common roots. In modern terms, this special case amounts to the
assertion that if F is a field, I is the ideal of Fx1,...,zn] generated by {f1,..., fr} (and all ideals of that
polynomial ring are generated by some such finite collection by Hilbert’s basis theorem), and the f;’s have
no common roots in the algebraic closure of F'| then the ideal is the unit ideal, i.e. the whole ring.

5 Hilbert’s basis theorem would stimulate the search for algebraic generalizations, with an optimistic one
suggested by the 14th of Hilbert’s [1900] problems, and much progress would be made. §3 discusses the first
two of Hilbert’s [1900] problems; see Mumford [1976] for the 14th problem.

As for invariant theory itself, Hilbert’s comprehensive result there was to leave the field fallow for most
of Hilbert’s lifetime, only revived by his brilliant student Hermann Weyl [1939] for the classical Lie groups as
part of their representation theory. The subject was then fully reactivated by David Mumford [1965] with his
incisive investigation of groups of automorphisms on algebraic varieties (see also Mumford-Fogarty-Kirwan
[1994]). Notably it was the approach of [1893] rather than the initial [1890] that was to inspire Mumford
[1965], which can be considered as perpetuating in geometric terms the 19th Century view of invariant theory
as a constructive theory.



work by applying his Nullstellensatz, later claiming [1928] (see van Heijenoort [1967:474])
that its (non-constructive) proof “uncovers the inner reason for the validity of the assertions
adumbrated by Gauss and formulated by Weierstrass and Dedekind.”

A remarkable example of the use of non-constructive existence proofs is Hilbert’s inge-
nious solution to Waring’s Problem. Broached by Edward Waring in 1770, it asks of natural
numbers whether for every positive k there is a fixed r such that for every n,

n:n’f+...+nfforsomenl,...,nr.

In that same year Lagrange had established the result for £ = 2 with r = 4, but for no
other £ > 2 was the result known until Hilbert [1909] completely solved the problem by
establishing the existence for every k of a corresponding r. However, taking g(k) to be the
least possible such r, Hilbert’s proof provided no way of calculating ¢g(k). Hilbert’s result
spurred extensive activity in analytic number theory, in part to determine the values g(k),
and they are “almost” completely known today.

However non-constructive Hilbert’s approach, he himself never seemed to have enter-
tained sets of arbitrary choices as formalized by the Axiom of Choice, an axiom first made
explicit by Ernst Zermelo [1904]. The expansion of mathematics to this level of abstraction
was initiated by Felix Hausdorff in his classic Grundzige der Mengenlehre [1914] which broke
the ground for a generation of mathematicians in both set theory and topology. Of particular
interest was Hausdorft’s use of the Axiom of Choice (in [1914: 469ff.] and also in [1914a]) to
get what is now known as Hausdorff’s Paradox, an implausible decomposition of the sphere;
this was a dramatic synthesis of classical mathematics and the new set-theoretic view.

Of those directly influenced by Hilbert, Georg Hamel, whose doctoral work was super-
vised by Hilbert, made [1905] an early and explicit use of the Axiom of Choice to provide
what is now known as a Hamel basis, a basis for the real numbers as a vector space over
the rational numbers. The full exercise of the Axiom of Choice in ongoing mathematics
first occurred in the pioneering work of Ernst Steinitz [1910], who made systematic use of
well-orderings to establish the abstract theory of fields, their algebraic and transcendental
extensions, and algebraic closures. Zermelo [1914] modified Hamel’s basis to get one for the
complex numbers and with a further use of the Axiom of Choice answered a question about
the existence of a collection of complex numbers with special closure and basis conditions.
Presaging her later work Emmy Noether [1916] axiomatically characterized those integral
domains satisfying Zermelo’s conditions.

Noether’s mathematical roots were in invariant theory and in [1915] she brought together
Hilbert’s basis theorem arguments with those of Steinitz’s field theory. Going to Hilbert’s
Gottingen, Noether became the leading figure in algebra there through her work on the
theory of ideals in commutative rings. In her incisive [1921] she lifted the finiteness properties
emanating from Hilbert’s basis theorem to a general axiomatic setting by introducing the
ascending chain condition, and rings satisfying this condition are now known as Noetherian
rings. Similarly abstracting another finiteness property, Noether [1927] extended Dedekind’s
unique factorization theory for ideals of rings of algebraic numbers to the general setting.
She [1927: 45ff.] applied the Axiom of Choice without much ado, but only a weak version,
the so-called Axiom of Dependent Choices, is needed for the general formulations of her basic

6 See Ellison [1971] for a history of Waring’s Problem. The conjecture is that g(k) = [(%)k] +2F 2 and
according to recent research literature this has been verified for £ < 471,600, 000 and for sufficiently large k.
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results. The full exercise of the Axiom of Choice entered Noether’s axiomatic ring theory
when Wolfgang Krull [1929] investigated rings not necessarily satisfying the ascending chain
condition, specifically in the general assertion that every ideal in a ring can be extended to a
maximal ideal. Ring theory today is often presented at this level of generality, but Hilbert’s
basis theorem remains a palliative in the crucial cases for algebraic geometry, where the
theorem’s applicability renders any appeal to the Axiom of Choice unnecessary.

In terms of his later consistency program Hilbert’s advocacy of non-constructive existence
proofs and the use of ideal elements necessarily raised the stakes involved. Not only did the
issue of consistency become more critical when explicit constructions were not available or
ideal elements seamlessly introduced, but the weight was shifted from algebraic calculations
to logical deductions, which, however, increasingly took on the spirit of calculations not unlike
those in the “symbolic method” used by Gordan. The existential quantifier assumed a pivotal
role, both in its interplay with the Law of Excluded Middle and the extent to which it could
be construed as instrumental in the generation of terms through instantiation. Such issues
became central for Hilbert in his mathematical investigation of formalized proofs (see §6),
and his early work, which assumed an increasingly abstract and logical form from invariant
theory to algebraic number theory, undoubtedly predisposed him to this later development.

62. Geometry

Hilbert’s new conception of the role of axiomatization as not reflecting an antecedently given
subject matter and his resulting concern for consistency first appeared in print in his Grund-
lagen der Geometrie [1899], based on lectures given in the 1890’s and especially on those in
the winter of 1898-9. In the introduction to the Grundlagen Hilbert wrote of his investigation
as “a new attempt to establish for geometry a simple and complete [vollstandiges| system
of axioms independent of one another.” What vollstandiges was to mean would become a
central concern of mathematical logic in later decades. He proceeded to provide a rigorous
axiomatization of Euclidean geometry with five groups [-V of axioms, for incidence, or-
der, congruence, parallelism, and continuity respectively. Previous and venerable work had
already established the consistency of non-Euclidean geometries via models in Euclidean
geometry. Hilbert in a groundbreaking move raised the question of the consistency of Eu-
clidean geometry itself as given by his axioms, and proceeded to establish it via a countable
arithmetical model. Then, as with the work on the Parallel Axiom, Hilbert went on to use
various models of subcollections of his axioms to establish the independence of axioms and
theorems.

Hilbert’s model for the consistency of his full list of axioms took as its “points” the
countable collection of ordered pairs of real numbers generated from 1 by the arithmetical
operations and the taking of square roots of positive numbers. While fitting into the de-
velopment of algebraic number fields, this model is notable as arguably the first instance
of the Lowenheim-Skolem phenomenon, a “Skolem’s Paradox” for the continuum. Hilbert
had accentuated the reliance on arithmetic by reducing geometry to a countable domain of
ordered pairs of algebraic real numbers; Skolem’s [1923] argument for generating a count-
able model using Skolem terms would give for any (countable first-order) theory a countable
model. To distinguish a countable substructure of the continuum as Hilbert had done was
the most informative type of “application” that the Lowenheim-Skolem Theorem could have
had before Skolem’s own application in [1923] to get his “paradox” in set theory. However,
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despite his professed indifference to whether his axioms were about points or tables,” Hilbert
did not dwell on this model and soon moved to secure Euclidean space.

Hilbert’s axiom group V for continuity initially consisted of a single axiom, the Archime-
dean Axiom,® but he soon added another, the Completeness [Vollstindigkeit] Axiom V,2:

It is impossible to adjoin further elements to the system of points, lines, and planes
in such a way that the system thus extended forms a new geometry satisfying all the
axioms in groups I-V; in other words, the elements of the geometry form a system
which is not susceptible to extension, if all of the stated axioms are to be maintained.

An arithmetical version of this axiom first appeared in Uber den Zahlbegriff [1900b], of which
more in §3. The axiom itself is mentioned first in the French translation [1900a: 25] of the
Grundlagen and then in the English translation [1902: 25], prior to its incorporation into the
second edition [1903: 16]. In the original Grundlagen [1899: 39] (see also [1971: 58ff.]) Hilbert
had shown that every “geometry” satisfying [-IV and the Archimedean Axiom is faithfully
embeddable into the “ordinary analytic geometry”, i.e. Euclidean space.® The Completeness
Axiom amounted to making this maximal geometry the unique geometry.

A set of axioms is categorical if it has a unique model up to isomorphism. Having inves-
tigated his axioms for geometry with models, Hilbert with his Completeness Axiom simply
posited categoricity with the maximal geometry. Hilbert’s professed aim in the introduction
to the Grundlagen had been to get “a simple and complete system of axioms”, yet today his
axiom would be considered neither simple nor immediately related to notions of complete-
ness later studied by Hilbert. With the Completeness Axiom Hilbert had come to an axiom
about models of axioms and thereby raised the sort of issues that would become amenable
to mathematical investigation only decades later. (See §8, especially footnote 51.)

The Completeness Axiom had specific antecedents in the tradition leading to the devel-
opment of set theory. In the well-known formulations of the real numbers by Georg Cantor
[1872] as fundamental sequences and by Richard Dedekind [1872] as cuts, the correlation
with “the straight line” was not regarded as automatic. Cantor [1872:128] wrote:

In order to complete the connection ... with the geometry of the straight line, one
must only add an aziom which simply says that conversely every numerical quantity
also has a determined point on the straight line, whose coordinate is equal to that
quantity .... I call this proposition an aziom because by its nature it cannot be
universally proved. A certain objectivity is then subsequently gained thereby for the
quantities although they are quite independent of this.

7 According to Blumenthal [1935:403] Hilbert already in 1891 uttered his aphorism portending his

axiomatic and formalist leanings: “One must always be able to say for points, line, plane: table, chair,
beer-mug.”

8 The Archimedean Axiom asserts that for any two line segments s and ¢ a finite number of contiguous
copies of s along the ray of ¢t will subsume t.

9 The embeddability of an axiomatically presented geometry into Euclidean space was Hilbert’s first
“meta” result in mathematics. In his [1895], appearing as Appendix I from the second edition [1903] on of
the Grundlagen, what amounts in modern terms to a homeomorphism of a “general geometry” with a finite
convex part of Euclidean space played a crucial role. [1895] dealt with the problem of “the straight line as
the shortest distance between two points”, and a general version of this became the fourth of Hilbert’s [1900]
problems. See Busemann [1976] for the fourth problem.
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Dedekind [1872: 1] wrote:

If all points on the straight line fall into two classes such that every point of the first
class lies to the left of every point of the second class, then there exists one and only
one point that produces this division ... The assumption of this property of the line
is nothing else than an axiom by which we attribute to the line its continuity, by
which we find continuity in the line.

At such an interface one finds what one seeks: Henri Poincaré [1902: 40] commended
Dedekind’s cuts as reflecting the “intuitive truth that if a straight line is cut into two rays
their common border is a point.” On the other hand, Bertrand Russell [1919: 71] decried
Dedekind’s approach of postulating what one wants as having the same advantages as “theft
over honest toil”. Russell’s genetic approach of building up from the natural numbers to the
rational numbers and then defining the real numbers as the cuts is congenial to his logicist
reductionism,'? but obscures the antecedent sense of the continuum that both Cantor and
Dedekind were trying to accommodate. They both had recognized the need for a sort of
Church’s Thesis, a thesis of adequacy for their new construals of the continuum.

Dedekind [1872:I1] wrote of the “connection [Zusammenhang]” between the rational
numbers and points on the straight line when an origin and a unit of length have been se-
lected. This “connection” is accomplished in Hilbert’s axiomatization through the Archime-
dean Axiom. Hilbert’s Completeness Axiom then ensures through maximality that Dede-
kind’s cuts actually correspond to points. Conversely, Dedekind’s postulation of points cor-
responding to cuts entails the Completeness Axiom by an argument given in §9 of later
editions of the Grundlagen: If to the contrary a new point could be added, it would induce a
Dedekind cut of old points which would then have an old dividing point; but then, a simple
argument using the Archimedean Axiom implies that there would be another old dividing
point, which is a contradiction.

Although the Completeness Axiom would stir interest as an axiom about (models of)
axioms, it could thus have been replaced by a continuity axiom along the lines of its an-
tecedents. In remarks accompanying the first appearance of the Completeness Axiom,
Hilbert [1902: 25ff.] opined that “the value of [the Completeness Axiom] is that it leads
indirectly to the introduction of limiting points.” Today the view would be opposite: secur-
ing limit points directly through some axiom like Cantor’s or Dedekind’s would be considered
more simple than to introduce an axiom about axioms. Not only does formalizing continuity
axioms require second-order quantification over the real numbers, the Completeness Axiom
has the added complication of having to formalize the second-order satisfaction relation. But
with the central role that he accorded axiomatization, Hilbert thought that he had readily
positioned continuity into the heart of his axioms with his Completeness Axiom, and upon
its incorporation into the second edition of the Grundlagen he [1903: 17] wrote that it “forms
the cornerstone of the entire system of axioms.” Nevertheless, years later in a popular book
on geometry, Hilbert and Stephan Cohn-Vossen [1932: §34] noted that the ways in which
the axioms of continuity are formulated varies a great deal, and the Completeness Axiom is

10 After defining the real numbers as the cuts, Russell [1919: 73] continued: “The above definition of real
numbers is an example of ‘construction’ as against ‘postulation’, of which we had another example in the
definition of cardinal numbers. The great advantage of this method is that it requires no new assumptions,
but enables us to proceed deductively from the original apparatus of logic.”
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simply replaced by “Cantor’s axiom”, that every infinite sequence of nested segments has a
common point.

63. Arithmetic

Before the Completeness Axiom appeared in any version of his Grundlagen, Hilbert in his
Uber den Zahlbegriff [1900b], dated 12 October 1899, provided an axiomatization of the real
numbers as an ordered field satisfying arithmetical versions of the Archimedean Axiom and
the Completeness Axiom.'! Just as for geometry, Hilbert had in effect posited categoricity
through maximality, for it must have been immediately seen that any system satisfying
the [1900b] axioms, except possibly that arithmetical version of Completeness, is faithfully
embeddable into the real numbers.!?

Although Hilbert [1900b] acknowledged the pedagogical value of the “genetic method”
by which one builds up from the natural numbers through the rational numbers to the real
numbers, he contended that only an axiomatic presentation of the real numbers all at once
can be logically secure. Just as for geometry, Hilbert in [1900b] reduced arithmetic to the
workings of a few axioms. Today “arithmetic” most often refers to number theory, i.e. the
structure of addition and multiplication for the natural numbers, but for Hilbert “arith-
metic” would remain what he would also refer to as analysis, i.e. the structure of addition,
multiplication, and continuity for the real numbers. He initially expressed confidence that
he could easily establish the consistency of his axioms.!3 However, this was to become a
major and lifelong concern for him, and he was soon to promulgate it as the second of his
famous problems.

Hilbert’s main program for mathematics was launched by his famous declaration [1900]
of 23 central problems for the 20th Century at the 1900 International Congress of Mathemati-
cians at Paris.!* Not only did he advance the basic picture of mathematical practice as driven

11 The arithmetical version of the Archimedean Axiom for ordered fields states that for any a > 0 and

b > 0, a can be added to itself a (finite) number of times so that: a +a + ... +a > b. Ordered fields
having this property are now called Archimedean. The arithmetical version of the Completeness Axiom in
[1900Db] states that the reals cannot be properly extended if the Archimedean ordered field properties are to
be maintained.

12 Hilbert in [1900b] actually asserted that his axioms characterize the real numbers since its version of the
Completeness Axiom implies the existence of limit points; this was the first statement along these lines. In
connection with the discussion above at the end of §2 but shifting from geometry to the real numbers, the later
polemic of Hilbert [1905: 185] (as translated in van Heijenoort [1967: 138]) is notable: “[The Completeness
Axiom] expresses the fact that the totality [Inbegriff] of real numbers contains, in the sense of one-to-one
correspondence between elements, any other set whose elements satisfy also the axioms that precede; thus
considered, the completeness axiom, too, becomes a stipulation expressible by formulas constructed like
those constructed above, and the axioms for the totality of real numbers do not differ qualitatively in any
respect from, say, the axioms necessary for the definition of the integers. In the recognition of this fact lies,
I believe, the real refutation of the conception of the foundations of arithmetic associated with L. Kronecker
and characterized at the beginning of my lecture as dogmatic.”

13 Hilbert [1900b: 184] wrote: “In order to prove the consistency of the given axioms all that is needed
is a suitable modification of known methods of inference.” When [1900b] appeared as Appendix VI in later
editions of the Grundlagen, this sentence is missing.

14" Browder [1976] is a compendium on the mathematical developments arising from Hilbert’s problems.
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by the force of problems and conjectures, but he inspired progress with his firm belief that
every problem can ultimately be solved, that “in mathematics there is no ignorabimus”.
Fermat’s last theorem, although unsolved, had already stimulated great developments in
mathematics, and now the gauntlet was thrown to the coming generations, one that would
gradually result in the development of new fields of mathematics.

Hilbert made the first of his [1900] problems the problem of establishing Cantor’s Con-
tinnum Hypothesis, and the second, the problem of establishing “the consistency of the
arithmetical axioms”, referring to the axioms of his Uber den Zahlbegriff [1900b]. Both of
these problems dealt with basic questions about numerical construals of the traditional con-
tinuum: the first about the possibility of enumerating the real numbers using the countable
ordinal numbers, and the second about the consistency of an arithmetical axiomatization. It
is quite remarkable that over two decades later Hilbert himself would use a specific strategy
in his proof theory to attack both problems (see §6 and §7).

In his [1900] discussion of his second problem, Hilbert remarked that the consistency of
the geometrical axioms had been reduced to that of the arithmetical axioms, but that “a
direct method is needed for the proof of the consistency of the arithmetical axioms.” In
the Grundlagen his axiomatically presented geometry can be shown consistent by taking
as the “points” ordered pairs of real numbers and relying on their arithmetic. However,
no such model-theoretic recourse is available for arithmetic itself, and what is left is a di-
rect investigation of its axioms and their consequences. Hilbert argued (as translated in
[1902a: 446]):

The totality of real numbers, i.e. the continuum ...is not the totality of all possible
series of decimal fractions, or of all possible laws according to which elements of a
fundamental sequence may proceed. It is rather a system of things whose mutual
relations are governed by the axioms set up and for which all propositions, and only
those, are true which can be derived from the axioms by a finite number of logical
processes.

This view of the continuum as axiomatically given would later be reflected in Hilbert’s
own attempt to solve his first problem, the Continuum Hypothesis, through the use of
definable functions, and the emphasis on deductive consequences of axioms would later
animate his metamathematics. With an arithmetical axiomatization of the continuum whose
consequences are exactly the true propositions of arithmetic consistency may be established
through the finiteness of proofs without any reference to an antecedent geometric continuum,
increasingly the bugbear of 19th Century mathematics.

Upon incorporating his Completeness Axiom into his Grundlagen Hilbert [1903:17] ob-
served that it presupposes the Archimedean Axiom, in the sense that “it can be shown” that
there are geometries satisfying I-1V, and not that axiom, that can be properly extended.!?
In the tradition of Hilbert [1900b], Hans Hahn [1907] introduced into the theory of ordered
fields a completeness condition analogous to the Completeness Axiom, which however did

15 This contention did not become clear until the development of the theory of real-closed fields by Emil

Artin and Otto Schreier in their [1926,1927]. This development was resonating: Real-closed fields have a
maximal property analogous to Hilbert’s Completeness Axiom, and the theory was crucial for Artin’s [1927]
non-constructive solution of Hilbert’s 17th Problem (constructive solutions were later given). See Pfister
[1976] for more on Hilbert’s 17th Problem.



not presuppose the Archimedean condition, and provided an incisive analysis of the result-
ing structures.'® The connection to be made here is with Kurt Gédel who as a student and
friend of Hahn’s much admired his work.!” It would only be through Gédel’s epochal results,
themselves responses to questions later raised by Hilbert, that the concepts of categoricity
and completeness would become clarified (see §8).

64. Set Theory

Although Hilbert did not himself pursue axiomatic set theory, he fostered its development
through his encouragement of Ernst Zermelo.'® Zermelo began his investigations of Canto-
rian set theory at Gottingen under Hilbert’s influence. Zermelo soon found Russell’s Paradox
independently of Russell and communicated it to Hilbert. Zermelo then established the Well-
Ordering Theorem in a letter to Hilbert, the relevant part of which soon appeared as Zermelo
[1904]. This seminal paper introduced the Axiom of Choice and stirred considerable contro-
versy. In the tradition of Hilbert’s axiomatization of geometry, Zermelo [1908] subsequently
provided the first substantial axiomatization of set theory, partly to establish set theory as
a discipline free of paradoxes, and particularly to put his Well-Ordering Theorem on a firm
footing. Zermelo’s axiomatization shifted the emphasis from Cantor’s transfinite numbers
to an abstract view of sets as structured solely by € and simple operations. In addition to
generative axioms corresponding to these operations and the Axiom of Choice, Zermelo with
his Separation [Aussonderung] Axiom incorporated a means of generating sets corresponding
to properties that seemed to avoid paradoxes. The Separation Axiom asserted that given a
set M, for each definite property [definite Eigenschaft] a set can be formed of those elements
of M having that property. The vagueness of definite property would invite Skolem’s [1923]
proposal to base it on first-order logic, and this would tie in with Hilbert’s later development
of mathematical logic (see §5).

For Hilbert himself much of what today would be regarded as the subject matter of set
theory would remain largely embedded in mainstream mathematics or be intermixed with
the emerging mathematical logic. In what was to be his only publication on logic when
he was still in his mathematical prime, Hilbert [1905] addressed the recent paradoxes of
logic and set theory with remarks that prefigured his later work in metamathematics and
his finitistic viewpoint. Hilbert [1905] advocated an axiomatic approach, observing that (as
translated in van Heijenoort [1967: 131])

in the traditional exposition of the laws of logic certain fundamental arithmetical
notions are already used, for example, the notion of set, and to some extent, also
that of number. Thus we find ourselves turning in a circle, and that is why a
partly simultaneous development of the laws of logic and of arithmetic is required if
paradoxes are to be avoided.

Significantly, “the notion of set” for Hilbert here is an “arithmetical notion”, and this is
connected with his second [1900] problem, to establish the consistency of the “arithmetical
axioms”. As mentioned earlier, these axioms were to be those of Uber den Zahlbegriff [1900b]
including its version of the Completeness Axiom.

16 See Ehrlich [1995].
17 Wang [1987] describes Godel’s admiration for Hahn.
18 See Moore [1982: 891ff.] for more about Zermelo.
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Hilbert [1905] provided only a tentative sketch of how he would carry out such a “simulta-
neous development”, but intriguingly it has some anticipation of Zermelo’s [1908] generative
view of sets. Schematizing a process proceeding by stages, Hilbert [1905] stated five princi-
ples, the first three of which are (see van Heijenoort [1967: 135ff.]): (I) “a further proposition
is true as soon as we recognize that no contradiction results if it is added as an axiom to the
propositions previously found true”; (II) at any stage the “all” in the axioms is to range over
only those “thought-objects” then taken to be primitive; and (III) a set is a “thought-object”
and “the notion of element of a set appears only as a subsequent product of the notion of
set itself.”

Hilbert would become associated with the “consistency implies truth and existence” view
behind principle 1. First set out by him in correspondence with Frege about the axiomatiza-
tion of geometry, the view is similar to that of Cantor but opposite to Frege’s “truth implies
consistency” view.!? Principle II foreshadowed Hilbert’s later advocacy of Russell’s theory
of types. As for the somewhat cryptic principle III, Hilbert went on to develop its sense
by deducing what amounts to a version of Zermelo’s [1908] Separation Axiom: From the
thought-objects taken to be primitive at a given stage, propositions determine subcollec-
tions that are then further thought-objects.

Despite Zermelo’s association with Hilbert, it is notable that Hilbert’s later lectures
[1917] on set theory were imbued with the Cantorian initiatives on number and relatively
unaffected by the Zermelian emphasis on abstract set-theoretic operations and axiomatiza-
tion. Hilbert first discussed the real numbers, giving a detailed account of the transcendental
numbers and his [1900b] axiomatization for an ordered field. He then developed Cantor’s
cardinal numbers, and after discussing well-orderings, Cantor’s ordinal numbers. Without
much ado Zermelo’s Axiom of Choice is stated and his Well-Ordering Theorem proved. The
approach is reminiscent of Hausdorft’s Grundzige der Mengenlehre [1914], with set theory
presented as a new initiative within mathematical practice, one providing a new number
context and new approaches to mathematical problems. Hilbert’s lectures concluded with
a discussion of the paradoxes, both set-theoretic and so-called semantic, and the Dedekind-
Peano axioms for the natural numbers.

Given his own axiomatization of geometry and with Zermelo in his circle, one might
have thought that Hilbert would have jumped at the issue of specific axiomatizations of set
theory. Zermelo’s axiomatization had for example been the setting for the incisive work of
Friedrich Hartogs [1915] on Cardinal Comparability, cited by Hilbert in the [1917] lectures.
However, not Hilbert but Abraham Fraenkel [1922] would investigate the independence of

19" Hilbert wrote to Frege (see Frege [1980: 39f1.]):

You write: “I call axioms propositions that are true but are not proved because our knowledge of them flows from a source very
different from the logical source, a source which might be called spatial intuition. From the truth of the axioms it follows that
they do not contradict each other.” I found it very interesting to read this sentence in your letter, for as long as I have been
thinking, writing and lecturing on these things, I have been saying the exact opposite: if the arbitrarily given axioms do not
contradict each other with all their consequences, then they are true and the things defined by the axioms exist. For me this

is the criterion of truth and existence.
Cantor [1883: §8] had written:

Mathematics is completely free in its development and only bound by the self-evident consideration that its concepts must on
the one hand be consistent in themselves and on the other stand in orderly relation, fixed through definitions, to the previous

formed concepts already present and tested.
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Zermelo’s axioms, particularly the Axiom of Choice, in the style of Hilbert’s Grundlagen
with the liberal use of various models. Hilbert [1918:411] did point out how the paradoxes
were avoided by Zermelo’s axiomatization. But significantly Hilbert [1918:412] continued:

the question of the consistency of the axiom system for the real numbers is reduced,
through the use of set-theoretic concepts, to the same question for the natural num-
bers: This is the merit of the theories of irrational numbers of Weierstrass and
Dedekind.

Only in two cases, namely when it is a question of the axioms for the natural
numbers themselves, and when it is a question of the foundations of set theory, is
the method of reduction to another specific field of knowledge obviously unavailable,
since beyond logic there is no further discipline to which an appeal is possible.

Since however the proof of consistency is a task that cannot be dismissed, it seems
necessary to axiomatize logic itself and then to demonstrate that number theory as
well as set theory are only parts of logic.

This attitude would presumably have precluded any model-theoretic analysis of axioms for
set theory, or indeed any detailed investigation of axiomatizations of set theory separate from
axiomatizations of logic. The passage is consistent with the previously displayed passage from
[1905]. However, it does suggest a softening of both the Uber den Zahlbegriff [1900b] attitude
that a direct axiomatic presentation of the real numbers is more logically secure than the
genetic method of set-theoretic building up from the natural numbers, and the attitude from
his discussion of his second [1900] problem that a “direct method is needed” to establish the
consistency of the axioms for the real numbers, in that Hilbert now acknowledges a reduction
to number theory and set theory.?0

Subsequently, Hilbert [1929: 136] did come to appreciate the importance of firmly estab-
lishing the underlying assumptions of Zermelo’s axioms. But as with Gaodel later, Hilbert
would be more influenced by Russell than by Zermelo, and whatever the affinity of Hilbert’s
[1905] picture to Zermelo’s [1908], Hilbert’s investigation of purely set-theoretic notions
would largely remain part of his investigations of the underlying logic. The Axiom of Choice
would be positioned in logic (see §6), and the Continuum Hypothesis would be approached
through a hierarchy of definable functions (see §7).

20 Hallett [1995: §3] corroborates, through notes to Hilbert’s lectures during this period, his more favorable
attitude toward the genetic method of building up mathematical objects.
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§5. Logic

Hilbert only began to carry out a systematic investigation of mathematical logic over a
decade after his precursory [1905] and after the appearance of the three tomes of Whitehead
and Russell’s Principia Mathematica.?! This work was, in the words of Gédel [1944: 126], the
“first comprehensive and thorough going presentation of a mathematical logic and derivation
of Mathematics”. Much of the further development of logic would turn on reactions to and
simplifications for this system, but its two basic interlocking hierarchical features, types and
orders, would be crucial to the development of set theory.

To the modern eye there are two main sources for the great complexity and even greater
obscurity of the Principia. First, it is, as Godel [1944: 126] went on to write, “greatly lacking
in formal precision in [its] foundations ... What is missing, above all, is a precise statement
of the syntax of the formalism.” This lack of formal precision is exacerbated by Russell’s
elucidatory accounts of his key logical notions, especially of “propositional function”, which
when taken literally are peculiarly opaque.??

The second source of difficulty, not unrelated to the first, is the complexity of Russell’s
“theory of logical types”, his way of avoiding (Whitehead-Russell [1910: vii]) “the contradic-
tions and paradoxes which have infected logic and the theory of aggregates [sets].” Russell
first diagnosed the paradoxes as resulting from the “vicious circle” of “supposing that a col-
lection of objects may contain members which can only be defined by means of the collection
as a whole”, and then adopted as a remedy the vicious-circle principle, “Whatever involves
all of a collection must not be one of the collection” (Whitehead-Russell [1910: 39-40]). More-
over, he recognized that his own concept of propositional function represents “perhaps the
most fundamental case” of the principle.?? Adhering to the vicious-circle principle Russell

21 See Goldfarb [1979] and the note of Dreben and van Heijenoort in Godel [1986: 44-59] for a discussion
of logic in the 1910’s and 1920’s. And Hylton [1990] for a discussion of the metaphysics underlying Russell’s
logic.

22 Russell wrote (Whitehead-Russell [1910: 41]):

By a ‘propositional function’ we mean something which contains a variable z, and expresses a proposition as soon as a
value is assigned to z. That is to say, it differs from a proposition solely by the fact that it is ambiguous: it contains a variable
of which the value is unassigned. It agrees with the ordinary functions of mathematics in the fact of containing an unassigned
variable; where it differs is in the fact that the values of the function are propositions. ... The question as to the nature of a
[propositional] function is by no means an easy one. It would seem, however, that the essential characteristic of a [propositional]

function is ambiguity.

A few pages on Russell declared (Whitehead-Russell [1910: 50]): “A [propositional] function, in fact, is not
a definite object ...; it is a mere ambiguity awaiting determination”

In a later book Russell [1919: 157] wrote: “We do not need to ask, or attempt to answer, the question:
‘What is a propositional function?’ A propositional function standing all alone may be taken to be a mere
schema, a mere shell, an empty receptacle for meaning, not something already significant.”

23 Russell wrote (continuing in Whitehead-Russell [1910:41-42] after the quotation from there in the

previous note):

a [propositional] function is not ... well-defined unless all its values are already well-defined. Tt follows from this that no
[propositional] function can have among its values anything which presupposes the function .... This is a particular case,
perhaps the most fundamental case, of the vicious-circle principle. A [propositional] function is what ambiguously denotes some

one of a certain totality, namely the values of the [propositional] function; hence this totality cannot contain any members which
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insisted that the universe of Principia be viewed as ramified into orders. Speaking anachro-
nistically, we may say that this universe consists of objects, where those of the lowest order
are the individuals, and both the objects and the (formalized) language of Principia are to
satisfy at least the following three conditions:

(i) each object S “consists” of objects of some one fixed order, an order lower than
the order of S;
(ii) all values of each variable are of some one fixed order, called the order of the
variable; and
(iii) the order of any notational specification N of an object S is the least order
(number) greater than the orders of all the bound variables in N and not exceeded
by the orders of any free variables in N.

These are the essential features of what came to be called the ramified theory of types,
and guided by them a full formalization up to modern standards can be carried out.?* In
the ramified theory, objects of different orders can have constituents of the same order. The
collection of such constituents (objects) Russell also called a type. In particular, by conditions
(i) and (iii), there could be objects consisting of individuals but of orders differing according
to definitional complexity. But then, by condition (ii), it is impossible to quantify over all
objects having individuals as constituents. Analogous situations will occur for objects whose
constituents are of higher types, and this makes the formulation of numerous mathematical
propositions at best cumbersome and at worst impossible. Consequently, Russell was led to
introduce the Aziom of Reducibility:

For each object there is a predicative object
consisting of exactly the same objects,

where Russell called an object predicative if its order is the least greater than that of its
constituents. Clearly, Russell did not think that objects having exactly the same constituents
need be identical; in his jargon, they were intensional and not extensional.

The order hierarchy becomes greatly simplified if it were restricted to just predicative
objects. There would only be individuals, predicative objects consisting of individuals, pred-
icative objects consisting of predicative objects consisting of individuals, and so on. In this
simplified hierarchy, the simple theory of types, the orders are just the types.?’ For Russell,
it was obvious that there could only be finite orders and types, that is, only natural numbers
could index orders and types.

The subsequent simplifications introduced into the system of Principia have mostly
amounted to adopting a purely extensional version of the simple theory of types in which
polyadic relations are reduced to sets through the Wiener-Kuratowski definition of ordered

involve the [propositional] function, since, if it did, it would contain members involving the totality, which, by the vicious-circle

principle, no totality can do.

24 See for example Church [1976].
25 1t is from the simple theory that the terms “first-order logic”, “second-order logic”, and so forth
evolved, with “order” retained instead of “type”. For example, with the zeroth order comprised of individuals
and the first order consisting of the (predicative) objects consisting of individuals, first-order logic treats
quantification over individuals of a domain. Similarly, second-order logic treats in addition quantification

over objects consisting of individuals.
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pair.26  The Axiom of Reducibility, only germane for the ramified theory, would become
moot. However, for Godel the axiom would be considered both the basis of comprehension
axioms in set theory as well as the antecedent to his argument for the relative consistency
of the Continuum Hypothesis (see §8).

Hilbert enthusiastically espoused the Principia, saying (Hilbert [1918:412]) “should Rus-
sell’s impressive undertaking to aziomatize logic be carried to fruition it would be the crown-
ing achievement of axiomatization”. But by “fruition [Vollendung]” Hilbert meant something
utterly unlike what Russell would have meant. At a minimum, Hilbert meant showing “the
consistency of the arithmetical axioms”, i.e. solving his second [1900] problem.

The book [1928] by Hilbert and Wilhelm Ackermann, originating in Hilbert’s [1917a]
lectures, reads remarkably like a recent text. In marked contrast to the formidable works
of Frege and Russell with their forbidding notation and all-inclusive approach, it proceeded
pragmatically and upward to probe the extent of structure, making those moves emphasizing
syntactic forms and axiomatics typical of modern mathematics. After a thorough analysis
of sentential logic, it distinguished and focused on first-order logic as already the source of
significant problems. While Frege and Russell never separated out first-order logic, Hilbert
would establish it as a subject in its own right. Nevertheless, for the formalization required
to investigate the foundations of mathematical theories, Hilbert thought that an “extended
calculus is essential” (Hilbert-Ackermann [1928:86]). In the [1917a] lectures on logic, this
extended calculus is evidently Russell’s ramified theory of types, and in it Hilbert constructed
the real numbers as the Dedekind cuts using an extensional version of Russell’s Axiom of
Reducibility. The book Hilbert-Ackermann [1928] continued to use Russell’s ramified theory
of types and the Axiom of Reducibility. However, in the course of his development of
mathematical logic Hilbert, like Ramsey,?” would come to regard Russell’s ramifying orders
and the Axiom of Reducibility as unnecessary, as is stated on the last two pages of Hilbert-
Ackermann [1928].

While Hilbert was lecturing on set theory and logic his former student Weyl brought out
a notable monograph, Das Kontinuum [1918]. Waxing philosophical, Weyl railed against the
“vicious circle” involved in even such basic concepts as the least upper bound for a bounded
set of real numbers. That its definition presupposes its existence among the possible upper
bounds would become the standard example of an impredicative definition, definitions that
Weyl would banish (as did of course Russell through his ramified theory). Reasoning that he
could not avoid presupposing the natural numbers, Weyl took these as the individuals and
considered what is essentially a version of that part of the ramified theory of types in which
quantification is restricted to variables ranging over the individuals.?® The consequences

26 The first such presentation of Principia in print was Go6del’s system P in his Incompleteness paper

[1931].

27 Ramsey is not mentioned in the text of Hilbert-Ackermann [1928], but his paper [1926] in which he
suggested that the ramified theory be replaced by the simple theory and Axiom of Reducibility be dropped
is cited in their bibliography.

28 Significantly, Weyl [1910:112ff.] had begun his foundational investigations by trying to provide a
satisfactory formulation for Zermelo’s definite property for the Separation Axiom and had suggested building
up the concept from € and = by a finite number of generating principles. It was in the course of developing
these principles that Weyl [1918: 36] found that he could not avoid presupposing the natural numbers a

primordial vicious circle. Weyl [1918: 35] acknowledged that his hierarchy “corresponds” to Russell’s, but
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of Weyl’s system for the real numbers is the same as the system AC Ay, formulated in the
appendix below. Weyl went on to show that the basic theory of continuous functions could
be adequately developed in his system. This was a remarkable accomplishment at such an
early stage, both in the formulation of a parsimonious formal system to mirror mathematical
practice and in the use of coding procedures to adequately develop a surprisingly large part
of analysis. The key ingredient was to revert from continuity in terms of sets as given by
Dedekind cuts to continuity in terms of sequences in the spirit of Cantor’s fundamental
sequences, where however real functions and sequences of real numbers are simulated by just
sets of natural numbers.

Hilbert to be sure was to inspire the development of subsystems of number theory and of
analysis. However, he reacted vigorously against what he regarded as Weyl’s emasculation
of mathematics. The difference between the two is that Weyl was advocating his system as
what mathematical analysis ought to be, whereas Hilbert was investigating formal systems
for specific purposes, primarily to carry out proofs of consistency.

In spirited response to Weyl’s constructivism and also to Brouwer’s intuitionism, which
would banish the Law of Excluded Middle and non-constructive existence proofs, Hilbert
[1922,1923] developed metamathematics and proposed, most fully in [1926], his program
of establishing the consistency of ongoing mathematics by finitary reasoning [das finite
Schliessen]. Metamathematics would grow to be a broad, ultimately mathematical, inves-
tigation of the content and procedures of ongoing mathematics through its formalization;
for Hilbert, metamathematics was primarily his proof theory, the investigation of formalized
proofs as objects of study. Elaborating on two motifs, the primacy of logical deduction and
the finiteness of formal proof, Hilbert argued that the mathematical investigation of proofs
would secure the reduction of the consistency of mathematics to a bedrock of finitary and
incontrovertible means.

Hilbert-Ackermann [1928: 65ff.,72ff.] raised two crucial questions with respect to first-
order logic: the semantic completeness of its axioms, that is, whether a formula holding in
every model of the axioms is provable from the axioms; and its decision problem [Entschei-
dungsproblem], that is, whether there is an algorithm for deciding whether any formula has
a model or not. The first figured in the last of the five problems raised in Hilbert’s lecture
[1929] at the 1928 International Congress of Mathematicians at Bologna, the main theme of
which however was still his program for establishing the consistency of mathematics. Hilbert
thus generated all the major problems of mathematical logic that would be decisively in-
formed by Gddel’s work (see §8). As with his [1900] problems, Hilbert was again to stimulate
major developments through the formulation of pivotal questions, questions that are con-
textually specific yet set a new frontier. Such questions, especially weighted as conjectures,
became increasingly significant for the progress of modern mathematics, and it is Hilbert
whom one acknowledges as pioneer and exemplar for this new development.

rejected the Axiom of Reducibility.
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66. Metamathematics

Much has been written about Hilbert’s metamathematics. Here we restrict ourselves to
describing his specific strategy for settling his own second problem from his [1900], namely
the problem of showing the “consistency of the arithmetical axioms”. In §7 we show how
this strategy was a starting point for his attempt to solve his first problem from [1900], that
of establishing the Continuum Hypothesis.

Pursuing the analogy with the introduction of ideal elements in mainstream mathe-
matics Hilbert [1926] distinguished between numerical formulas communicating contentual
[inhaltlich| propositions and those communicating ideal propositions. Quantifiers are con-
tentual as long as they range over specified finite domains, in which case they can be replaced
by finite disjunctions or conjunctions. Hilbert [1923: 154] had noted that the first time “some-
thing beyond the concretely intuitive and finitary” enters logic is in (unrestricted) quantifi-
cation and this he [1926] took to be characteristic of ideal propositions, undertaking his
metamathematics as an investigation toward establishing the consistency of their use. That
investigation itself would be conducted in contentual mathematics with formalized proofs as
objects of study, and indeed Hilbert [1926] wrote of metamathematics as “the contentual
theory of formalized proofs.”

Hilbert [1926] (see van Heijenoort [1967: 382]) stated several axioms for quantifiers, and
then asserted that they can be derived from a single axiom, one that “contains the core” of
the Axiom of Choice:

Ala) = A(e(A)),

”

“where ¢ is the transfinite logical choice function.” The symbol ¢ serves as a logical oper-
ator, taking formulas A as arguments and producing terms £(A); the more specific £, A(z)
was soon deployed to handle A’s with several free variables. The e-terms had an engaging
indeterminism: they serve as syntactic witnesses to A if 3zA(x), but are bona fide terms
even if -3z A(z).2° Like the ideal points at infinity of projective geometry, Hilbert had in
effect introduced new ideal elements into first-order logic.

Hilbert [1928] (see van Heijenoort [1967:466]) spelled out how the quantifiers can be
defined in terms of e-terms:

VaA(a) iff A(e(=A)), and FaA(a) iff A(e(A4)).
The usual quantifier rules follow immediately, e.g.
—VaA(a) — 3a—A(a) .

From Frege on, this rule had been regarded as an immediate consequence of the definitions
of 4 and V. For Hilbert, it is only immediate for specified finite domains as an instance of
tertium non datur, the Law of Excluded Middle, and is otherwise a substantial manipulation
on ideal propositions as an infinitary form of the Law.

Hilbert [1922:157] had already expressed the need to formulate the Axiom of Choice so
that it is as evident as 2 + 2 = 4. However, to say that A(a) — A(¢(A4)) “contains the
core” of the Axiom of Choice is misleading from the modern perspective, for it is after all

29 As the Athenians were wont to say of Aristides, if there is an honest man, then it is he.
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just a variant of existential generalization.?® However, it is indeed as a “choice function”
that Hilbert had a particular use for his innovation in mind as part of a specific strategy for
establishing consistency that he advanced along with his development of proof theory itself.

That strategy was first broached by Hilbert in his [1923], where before the e-operator he
had introduced his 7-operator through what he called the Transfinite Axiom:

A(T(A)) — Ala) .

The logical 7-operator encapsulated the universal quantifier as his later e-operator would
the existential quantifier. From this one axiom he derived all the quantifier rules, which
he considered the source of non-finitary or “transfinite” reasoning.3! Focusing on number-
theoretic functions f, i.e. functions from the natural numbers into the natural numbers, he
then extended the logical T-operator with 7(f) = 7,(f(a) = 0), specifying the free variable
a in the formula f(a) = 0, so that from the Transfinite Axiom we have

f(r(f)) =0— fla) =0.

He interpreted 7(f) as a mathematical “function-of-functions”, a functional we would now
say, that had already appeared at the end of his [1922]: This mathematical functional
took number-theoretic functions f as arguments, with «(f) = 0 if f(a) = 0 for every natural
number a, and otherwise x(f) is the least a such that f(a) # 0. Evidently, the admis-
sibility of k rests on an infinitary form of tertium non datur and embodies Hilbert’s use
of non-constructive existence proofs. From the very beginning of his work on metamathe-
matics Hilbert emphasized number-theoretic functions and substantial functionals operating
on them, and this emphasis would soon extend to his attempt to establish the Continuum
Hypothesis.

In terms of 7, Hilbert [1923: 159ff.] gave for a very weak subsystem of analysis an example
of his strategy for establishing consistency: Starting with a putative proof of 0 # 0, successive
substitutions of numerals were made for the 7-terms appearing in the proof so that only a

30" The Second e-Theorem of Hilbert-Bernays [1939] would establish that in first-order logic with e-terms,
if neither the premises nor the conclusion of a deduction contains such terms, then there is a deduction not
using such terms. In order to derive the Axiom of Choice using e-terms, the crucial set-theoretic feature of
the Axiom, the existence of a set of choices, or concomitantly a choice function, must be incorporated. One
approach is to allow e-terms in the Replacement Axiom, an essential feature of modern set theory. Hilbert
[1923: 164] himself used an informal variant of this approach to argue for the Axiom of Choice for sets of
reals. (Wang [1955] discusses the interplay of e-terms and the Axiom of Choice in axiomatic set theory.)
Interestingly, Zermelo [1930: 31] in his final axiomatizations of set theory also regarded the Axiom of Choice
as a logical principle and did not list it explicitly among his axioms. In later years a fully Tarskian semantics
was developed by Giinter Asser [1957] and Hans Hermes [1965] for the e-operator with its interpretations
being global choice functions for the structure at hand. More in the spirit of Hilbert’s intention was Rudolf
Carnap’s [1961] indeterminate use of the e-operator as an interpretation of his T-, or theoretical, terms.

31 Hilbert [1923: 161] specifically asserted that transfinite reasoning was necessary for his solution of the
central invariant theory problem discussed in §1, and that although Gordan thought that he had removed
this “theological” aspect of the argument with his own version of the proof, it remained embedded in his
“symbolic” approach. Hilbert’s view of the complexity of his proof was substantiated; see Theorem 3 in the
appendix.
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deductive sequence of true numerical formulas was left, and hence 0 # 0 could not have
appeared at the end after all. Hilbert had thus shown how to exploit the finiteness of proofs
in a specific way, eliminating the “transfinite” 7-terms in favor of finitely many numerical
instances. Ackermann [1925] undertook to carry out Hilbert’s plan to apply this substitution
strategy to the full system with quantification over number-theoretic functions; this would
establish the consistency of analysis, with the number-theoretic functions construed as the
real numbers. Hilbert had by then switched from 7-terms to e-terms, which in the new
rendition of his strategy were indeed interpreted as finite “choice functions”. At the beginning
of his career Hilbert had established a fundamental finiteness property with his basis theorem;
he would now effect a new reduction to a “finite basis” to establish the consistency of
mathematics.

Hilbert’s strategy of eliminating e-terms encountered a basic difficulty in the general
setting: the possible nestings of e-terms corresponding to quantifier dependence. In carrying
out the substitution procedure, a numerical choice made for an e-term ¢ might typically
conflict with a later choice made for an e-term within which ¢ occurs, necessitating a new
substitution for ¢. This process can cycle in complicated ways, with the possibility that
successive substitutions may not terminate. Ackermann’s [1925] argument fell far short,
failing to handle number-theoretic functions and even full induction for the natural numbers.
John von Neumann [1927] then carried out a complex argument, based on Hilbert’s [1905]
approach to consistency as developed by Julius Kénig [1914],3% to establish the consistency
of quantifier-free induction for the natural numbers. Thereupon Ackermann established the
same result with his original approach. In [1928] Hilbert sketched this new argument of
Ackermann’s, and in succeeding comments Bernays [1928] elaborated on it.

Hilbert and his school (mainly Ackermann, Bernays, and von Neumann) believed at
this time that Ackermann’s new argument in fact established the consistency of full number
theory (first-order Peano Arithmetic).33 At the end of [1928] Hilbert wrote (as translated in
van Heijenoort [1967: 479)):

For the foundations of ordinary analysis [Ackermann’s] approach has been developed
so far that only the task of carrying out a purely mathematical proof of finiteness
[of the number of necessary substitutions of numerals for e-terms| remains.

Thus Hilbert was also confident that his second [1900] problem, “the consistency of the
arithmetical axioms” for the real numbers, would be solved. In his lecture at the 1928 Inter-
national Congress of Mathematicians at Bologna, Hilbert [1929] assumed that the finiteness
condition for the elimination of e-terms had been established for number theory and made
his first problem that of establishing the analogous finiteness condition for analysis. In a lec-
ture given in December 1930, Hilbert [1931: 490] still thought that the consistency of number
theory had been established.

However, in a lecture given in September 1930, Godel [1930a] had announced his First In-
completeness Theorem, the existence of formally undecidable propositions of number theory.
Von Neumann who was in the audience saw not only its broad significance but its particular
relevance to the work of the Hilbert school. Some weeks after his lecture Godel established

32" von Neumann [1927: 22] acknowledges Kénig [1914).

33 This was corroborated in oral communication from Bernays to Dreben in 1965, and in a letter from

Bernays to the editor of a projected Spanish translation of van Heijenoort [1967], dated 15 June 1974.
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his Second Incompleteness Theorem, the unprovability of consistency, and soon afterwards
in November heard from von Neumann that he too had established this result.>* The Second
Incompleteness Theorem of Godel [1931] implies in particular that for any theory subsuming
the addition and multiplication of the natural numbers and for any putative proof of 0 # 0
in that theory, no “proof of finiteness” (as in the quotation above) is formalizable in that
theory. Thus, there had to be something wrong with the assumption of the Hilbert school
that Ackermann’s new argument established the consistency of full number theory, and von
Neumann soon produced an example for which the argument failed.?® Beyond the common
impression that Godel’s Second Incompleteness Theorem largely precluded Hilbert’s consis-
tency program, this close interplay between (Godel and von Neumann brings out the specific
mathematical impact that Godel’s result had on a concerted effort then being made by the
Hilbert school.

Gerhard Gentzen [1936, 1938, 1943] would show that there is a “purely mathematical
proof” of the consistency of number theory. However, his method necessarily relied on
a mathematical principle presumably non-finitary by Hilbert’s standards, the principle of
transfinite induction up to the ordinal €).3% Later Ackermann [1940] showed that for number
theory Hilbert’s original substitution method also provides a “purely mathematical proof of
finiteness” and thereby establishes the consistency of number theory, but again by invoking
transfinite induction up to €¢g. For number theory, Hilbert’s goal of establishing consistency
has been accomplished and through his substitution method only the mathematical means
were not finitary.3”

34 See Godel [1986: 137].

35 The example is given in Hilbert-Bernays [1939: 123ff.].

36 €g is the supremum of the ordinals w,w“’,w“’w, .... There is a primitive recursive ordering < of the
natural numbers which is isomorphic to eg. The principle of transfinite induction up to €y asserts that for
any formula ¢(v),

Yn(Ym(m < n — ¢(m)) = ¢(n)) = Yne(n).

This assertion is formalizable as a schema in any first-order number theory that subsumes primitive recursion,
of which the minimal is Primitive Recursive Arithmetic described in the appendix. Gentzen showed that a
single instance of the schema for a certain quantifier-free ¢ implies the consistency of number theory.

37 A more intuitive, constructive model-theoretic version of Hilbert’s substitution method was provided by
Jacques Herbrand [1930] with his Fundamental Theorem; in particular, Herbrand gave a much simpler proof
of the result of von Neumann [1927]. Expanding on Dreben and John Denton’s analysis in their [1966, 1970]
of Herbrand’s Theorem, Thomas Scanlon [1973] provided a Herbrand-style proof for the full number theory
result of Ackermann [1940].
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§7. Continuum Hypothesis

In [1923:151] Hilbert had indicated that not only could his proof theory establish the con-
sistency of analysis and set theory, but that it could also provide the means to solve “the
great classical problems of set theory such as the Continuum Problem”, the first of his [1900]
problems. In [1926] Hilbert claimed to have established the Continuum Hypothesis with
his “continuum theorem” and proceeded to sketch a proof. It is a failure,® but a notable
one both for exhibiting the extent to which Hilbert thought he could extract mathematical
content from formal proofs and for stimulating Godel’s work with L.

The Continuum Hypothesis would be established if the number-theoretic functions, func-
tions from the natural numbers into the natural numbers, can be put into one-to-one corre-
spondence with the countable ordinals. Hilbert apparently thought3® that if he could show
that from any given formalized putative disproof of the Continuum Hypothesis, he could
prove the Continuum Hypothesis, then the Continuum Hypothesis would have been estab-
lished. (At best, Hilbert’s argument could only establish the consistency of the Continuum
Hypothesis, but for him consistency is (mathematical) truth.40 )

According to Hilbert, the only way that the Continuum Hypothesis could be false is if
there are non-constructively defined number-theoretic functions, i.e. functions defined us-
ing tertium mon datur over existential quantifiers. A favorite example of Hilbert of such a
function is ¢(a) = 0 or 1 according to whether V@ is rational or not.*! Hence, any proof
of a proposition contradicting the Continuum Hypothesis would have to make use of such
definitions of functions. Hilbert then asserted that the solvability of every well-posed math-
ematical problem is a “general lemma” of his metamathematics,*? and that a “part of the
lemma” is the following (as translated in van Heijenoort [1967: 385]):

Lemma I. If a proof of a proposition contradicting the continuum theorem is given

38 In the reprintings of [1926] and the related [1928] in the seventh edition [1930] of the Grundlagen,

Hilbert excised all reference to his purported proof of the Continuum Hypothesis.

39 Paul Lévy [1964: 89] remarked, as pointed out by van Heijenoort [1967: 368]: “Zermelo told me in 1928
that even in Germany nobody understood what Hilbert meant”.

40 See note 19 for Hilbert’s attitude about consistency and truth. With the metamathematical viewpoint
slow to filter into mathematical practice only Nikolai Luzin [1933] among the early commentators saw that
Hilbert’s argument was really aimed at the consistency of the Continuum Hypothesis. To Gédel [1939b: 129]
this was clear: “the first to outline a program for a consistency proof of the continuum hypothesis was
Hilbert”.

41 This example occurred in Hilbert’s lectures and in his [1923]. For natural numbers a with \/a irrational,
it was unknown then whether aV® is rational or not. The seventh of Hilbert’s [1900] problems was to establish
that if « is an algebraic number and 3 an algebraic irrational, then a? is transcendental, or at least irrational.
This problem was to stimulate the development of transcendental number theory. Aleksander Gel’fond [1934]
and Theodor Schneider [1934] independently solved the problem by showing that under the hypotheses (and
excluding the trivial cases a # 0,1) @ is in fact transcendental. See Tijdeman [1976] for more on Hilbert’s
seventh problem.

42 However, Hilbert never claimed that there is an algorithm, a general method, for solving every mathe-
matical problem. Indeed, he asserted in [1926] (as translated in van Heijenoort [1967: 384]) that there is no
“general method for solving every mathematical problem; that does not exist.” Presumably neither Hilbert
nor any of his school thought that a positive solution to the decision problem for first-order logic would yield
such an algorithm.
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in a formalized version with the aid of functions defined by means of the transfinite
symbol € (axiom group IIT), then in this proof these functions can always be replaced
by functions defined, without the use of the symbol £, by means merely of ordinary
and transfinite recursion, so that the transfinite appears only in the guise of the
universal quantifier.

For establishing the consistency of arithmetic, Hilbert had started with a putative proof
of 0 # 0 and outlined a substitution procedure for replacing in effect its e-terms by finite
choice functions and showing that 0 # 0 could not have appeared at the end after all. With
Lemma I he would now start with a “proof of a proposition contradicting the continuum
theorem”, and presumably carry out a similar but more complex substitution procedure,
this time replacing number-theoretic functions defined using € symbols by a collection of
functions defined by various forms of recursion. (Hilbert, we assume, was not making the
stronger claim that for each given non-constructively definable function one can find an
equivalent recursively definable function.) Hence, for Hilbert it remained to examine and to
handle the functions so defined because (as translated in van Heijenoort [1967: 387]):

in order to prove the continuum theorem, it is essential to correlate those defini-
tions of number-theoretic functions that are free from the symbol £ one-to-one with
Cantor’s numbers of the second number class [the denumerable ordinals].

Hilbert was the first to consider number-theoretic functions defined through recursions
more general than primitive recursion. He not only allowed definitions incorporating trans-
finite recursions through countable ordinals, but also higher type functionals. These are
themselves defined recursively, a functional being a function whose arguments and values
are previously defined functionals, and were classified by Hilbert into a hierarchy. Hilbert’s
logical beginnings in Russell’s ramified theory of types is arguably discernible both in the
preoccupation with definability, here reduced to recursions by Lemma I, and the introduction
of a type hierarchy, though one extended into the transfinite.

In his hierarchy Hilbert classified functionals according to their variable-type by recur-
sively considering their complexity of definition. He then recursively defined the height of a
variable-type as the supremum of the heights plus 1 of the variable-types of the arguments
and values. He argued that all definitions of functionals can be reduced to substitution,
i.e. composition of functionals, and to recursion, i.e. primitive recursion allowing functionals.
Hilbert next described how heights of certain variable-types, the Z-types, can be correlated
with countable ordinals. The Z-types are those variable-types generated by the two pro-
cesses of substitution and enumeration of a countable sequence of Z-types. Hilbert pointed
out that in his correlation of heights with countable ordinals he had “presupposed” the theory
of the latter. But he argued that only a formalization of the process of generating countable
ordinals is necessary for his overall argument, and for that only those countable ordinals
corresponding to Z-types matter. Hilbert then went on to describe how new variable-types,
and therefore new ordinals, are generated by recursive enumeration of the variable-types up
to a certain height and an application of “Cantor’s diagonal procedure”.

Hilbert next pointed out how his correlation of heights with countable ordinals was
based on two apparent restrictions. First, he had only considered “ordinary recursion”, not
transfinite recursion directly through infinite ordinals, and second, he had only considered
Z-types, those variable-types generated by enumeration of countably many variable-types.
But he then claimed in his remarkable Lemma II that all number-theoretic functions defined
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by recursion can “also be defined by means of ordinary recursions and the exclusive use of
Z-types”.*3 But then, Hilbert has done what he said had to be done “in order to prove
the continuum theorem”. To recapitulate, from a formalized disproof of the Continuum
Hypothesis Hilbert has “given” a proof of the Continuum Hypothesis!

The basic underlying difficulty with Hilbert’s argument lies in his use of his Lemma I.
Hilbert apparently thought that he can restrict his attention to only those number-theoretic
functions that appear in purported disproofs of the Continuum Hypothesis. Whether such
functions can be put in one-to-one correspondence with the countable ordinals gets us no
closer to establishing even the consistency of the Continuum Hypothesis. However, Hilbert
seems to have believed that there can be no number-theoretic functions unless definable
in some formal proof. This is borne out by his later remark in [1928] (see van Heijenoort
[1967: 476]) that Lemma I is “useful in fixing the train of thought, but it is dispensable for the
proof itself.” He noted that the introduction of e-terms does not affect the denumerability
of the possible recursions in higher type functionals up to any particular height. Moreover,
the e-terms can be systematically “normalized”, e.g. for those acting on number-theoretic
functions, the functional k£ (defined in §6) from his earliest paper [1922] in metamathematics
can be used. The difficulty with Hilbert’s attempted proof of the Continuum Hypothesis
can arguably be reduced to his attempt to capture the force of functionals like x in some
constructive way by a collection of recursively defined functionals, whereas ironically k, as
mentioned earlier, embodies Hilbert’s use of non-constructive existence proofs.

There is a sense in which Hilbert’s Lemma II is correct. Let us suppose, as his discussion
would indicate, that the possible transfinite recursions that he speaks about are those given
by recursive well-orderings. Then the number-theoretic functions that he was considering
coincide with what today are called the general recursive functions. This is so because the
class of general recursive functions is closed under recursions along any recursive well-ordering
and is also closed under recursions in higher type functionals generated by primitive recursion
using previously defined higher type functionals. But then, the conclusion of Lemma II was
established independently by Myhill [1953] and Routledge [1953], who proved that every
general recursive function is generated by recursion along primitive recursive well-orderings
of ordertype w.**

43 The lemma states in full (as translated in van Heijenoort [1967: 391]):

Lemma II. In the formation of functions of a number-theoretic variable transfinite recursions are dispens-
able; in particular, not only does ordinary recursion (that is, the one that proceeds on a number-theoretic
variable) suffice for the actual formation process of the functions, but also the substitutions call merely for
those variable-types whose definition requires only ordinary recursion. Or, to express ourselves with greater
precision and more in the spirit of our finitist attitude, if by adducing a higher recursion or a corresponding
variable-type we have formed a function that has only an ordinary number-theoretic variable as argument,
then this function can always be defined also by means of ordinary recursions and the exclusive use of
Z-types.

44 Both Myhill [1953] and Routledge [1953] pointed out that the natural hierarchy generating the recur-
sive functions already terminates in w stages. Kleene [1958] formulated a hierarchy of recursive functions
which may be closer to Hilbert’s intentions. Hilbert had argued that his scheme leads to new functions by
applying “Cantor’s diagonal procedure” on a recursive enumeration of the functions previously constructed.
Kleene’s hierarchy is based on enumeration and diagonalization, the former according to a fixed system of
primitive recursive codes for well-orderings (“Kleene’s 0”). Feferman [1962] showed that Kleene’s hierarchy
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Hilbert broke fertile ground for the later, broad investigation of recursions. Ackermann
[1928] showed that a scheme given in Hilbert [1926] does indeed define a non-primitive recur-
sive function, now well-known as the Ackermann function. The association of ordinals with
recursive definitions has become common place, with Gentzen’s [1936, 1938, 1943] analysis
of the consistency of number theory paradigmatic. And recursion in higher type functionals
up to height w in Hilbert’s scheme was used by Gédel in his Dialectica interpretation [1958],
already worked out in his [1941], to give a consistency proof of intuitionistic number theory
and hence because of his [1933a] a consistency proof of (classical) number theory.%®

68. Godel

Kurt Godel virtually completed the mathematization of logic by submerging metamathe-
matical methods into mathematics.*6 The main vehicle was of course the direct coding, “the
arithmetization of syntax”, in his celebrated Incompleteness Theorem [1931], which trans-
formed Hilbert’s consistency program and led to the undecidability of the Decision Problem
from Hilbert-Ackermann [1928] and the development of recursion theory. But starting an
undercurrent, the earlier Completeness Theorem [1930] from his thesis answered affirma-
tively the Hilbert-Ackermann [1928] question about semantic completeness, clarified the
distinction between the formal syntax and model theory (semantics) of first-order logic, and
secured its key instrumental property with the Compactness Theorem. This work would
establish first-order logic as the canonical language for formalization because of its mathe-
matical tractability, and higher order logics would become downgraded, now viewed as the
workings of the power set operation in disguise. Skolem’s earlier suggestion in [1923] that
Zermelo’s axiomatic set theory be based on first-order logic would be generally adopted, thus
vindicating Hilbert’s emphasis on first-order logic.

To pursue our earlier discussion of categoricity in connection with Hilbert’s Completeness
Axiom in geometry, say that a theory is deductively complete if each sentence of its language
or its negation is provable from the axioms. In the Konigsberg lecture [1930a] where Godel
discussed his Completeness Theorem and announced his First Incompleteness Theorem, he
observed that the former implies that for first-order theories categoricity implies deductive
completeness. The argument is simple: if there were a sentence such that neither it nor its
negation can be proved from the axioms, then there would be two (non-isomorphic) models
of the theory.?” Now Hilbert’s axioms for geometry inclusive of the Completeness Axiom

encompasses all the recursive functions. He showed moreover that such hierarchies terminate rather quickly
so that they do not provide an informative hierarchical analysis of the general recursive functions. In his
later years Gddel considered providing such an analysis to be a major problem of mathematical logic.

45 Clifford Spector [1962] extended the Dialectica interpretation to full analysis, bringing in certain basic
ideas of Brouwer.

46 Alfred Tarski shares the honor.

4T Actually, the assertion that for first-order theories categoricity implies deductive completeness is largely
vacuous, since a now well-known consequence of the Compactness Theorem is that any first-order theory
with infinite models is not categorical. However, call a first-order theory Ng-categorical iff it has a unique
countably infinite model up to isomorphism. Then by the argument given in the text as sharpened by the
Lowenheim-Skolem Theorem, for first-order theories Ng-categoricity implies deductive completeness. This
assertion is not vacuous, and also applicable to the distinction to be made in the text between first-order
and higher order logics.
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and the Dedekind-Peano axioms for the natural numbers are categorical, but as second-order
theories. However, Godel’s First Incompleteness Theorem established that no (decidable)
set of axioms for first-order or higher order theories, which subsumes the arithmetic of
the natural numbers and only proves true sentences of that arithmetic, can be deductively
complete. Thus, the Incompleteness Theorem makes a distinction between first-order and
higher order theories in terms of categoricity and deductive completeness. Although Godel
in his Incompleteness paper [1931] did not mention this distinction, he had made it the
motivation for the Incompleteness Theorem in his Kénigsberg lecture [1930a: 29).
Footnote 48a of Godel’s [1931] was as follows:

As will be shown in Part II of this paper, the true reason for the incompleteness
inherent in all formal systems of mathematics is that the formation of ever higher
types can be continued into the transfinite (cf. D. Hilbert, “Uber das Unendliche”,
Math. Ann. 95, p. 184), while in any formal system at most denumerably many
of them are available. For it can be shown that the undecidable propositions con-
structed here become decidable whenever appropriate higher types are added (for
example, the type w to the system P [the simple theory of types superposed on
the natural numbers as individuals satisfying the Peano axioms]). An analogous
situation prevails for the axiom system of set theory.

This prescient note would be an early indication of a steady intellectual progress on Godel’s
part that would take him from the Incompleteness Theorem through pivotal relative con-
sistency results for set theory to speculations about its further possibilities. The reference
to Hilbert [1926] and Russell’s theory of types foreshadows the strong influence that they
would have on this progress.

In a subsequent lecture [1933], Godel expanded on the theme of footnote 48a. He re-
garded the axiomatic set theory of Zermelo, Fraenkel, and von Neumann as “a natural
generalization of the [simple| theory of types, or rather, what becomes of the theory of types
if certain superfluous restrictions are removed.”*® First, instead of having separate types
with sets of type n+ 1 consisting purely of sets of type n, sets can be cumulative in the sense
that sets of type n can consist of sets of all lower types. If S, is the collection of sets of type n,
then: Sy is the type of the individuals, and inductively, S,,+1 = S, U{X | X C S, }. Second,
the process can be continued into the transfinite, starting with the cumulation S, = U,, Sn,
proceeding through successor stages as before, and taking unions at limit stages. Godel
[1933: 46] credited Hilbert for pointing out the possibility of continuing the formation of
types beyond the finite types. As for how far this cumulative hierarchy of sets is to con-
tinue, the “first two or three types already suffice to define very large ordinals” ([1933:47])
which can then serve to index the process, and so on. Godel observed that although this
process has no end, this “turns out to be a strong argument in favor of the theory of types”
([1933:48]). Implicitly referring to his incompleteness result Godel noted that for a formal
system S based on the theory of types a number-theoretic proposition can be constructed
which is unprovable in S but becomes provable if to S is adjoined “the next higher type and
the axioms concerning it” ([1933: 48]).

In 1938 modern set theory was launched by Godel’s formulation of the model L of
“constructible” sets, a model of set theory that established the consistency of the Axiom

48 For this view Gédel [1933:46] mainly acknowledged von Neumann [1929], although Zermelo [1930]
would have been a better source.
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of Choice and the (Generalized) Continuum Hypothesis. In his first announcement Gdodel
[1938: 556] described L as a hierarchy “which can be obtained by Russell’s ramified hierarchy
of types, if extended to include transfinite orders.” Indeed, with . Godel had refined the
cumulative hierarchy of sets described in his [1933] to a cumulative hierarchy of definable sets
which is analogous to the orders of Russell’s ramified theory. This hierarchy of definable sets
was in the spirit of Hilbert [1926] as was the extension of the hierarchy into the transfinite.
However, Godel’s further innovation was to continue the indexing of the hierarchy through
all the ordinals to get a model of set theory.®® The extent of the ordinals was highlighted
in his monograph [1940], based on lectures in 1938, in which he formally generated L set
by set using a sort of Gddel numbering in terms of ordinals. As with his proof of the
Incompleteness Theorem, Godel’s careful coding of metamathematical features may have
precluded any misinterpretations; however, it also served to purge the intuitive underpinnings
and historical motivations. In his [1939a], Godel presented the hierarchy whose cumulation
is L essentially as it is today:

My = {0}; Mg = Uy<p M, for limit ordinals §; and My11 = M,

where M’ is “the set of subsets of M defined by propositional functions ¢(x) over M.,” these
propositional functions having been precisely defined. Significantly, footnote 12 of [1939a]
revealed that Gddel viewed his axiom A, that every set is constructible (now written V' = L
following Gddel [1940]), as deriving its sense from the cumulative hierarchy of sets regarded
as an extension of the simple theory of types: “In order to give A an intuitive meaning, one
has to understand by ‘sets’ all objects obtained by building up the simplified hierarchy of
types on an empty set of individuals (including types of arbitrary transfinite orders).”

The recent publication of hitherto unpublished lectures of Godel on the Continuum
Hypothesis has dramatically substantiated the strong influence of both Russell and Hilbert
on him. Both figures loom large in Gddel’s lecture [1939b] given at Hilbert’s Gottingen.
Godel recalled at length Hilbert’s work on the Continuum Hypothesis and cast his own as
an analogical development, one leading however to the constructible sets as a model for set
theory. Godel [1939b: 131] pointed out that “the model ... is by no means finitary; in other
words, the transfinite and impredicative procedures of set theory enter into its definition in
an essential way, and that is the reason why one obtains only a relative consistency proof [of
the Continuum Hypothesis]”.

To motivate the model Godel referred to Russell’s ramified theory of types. Godel first
described what amounts to the orders of that theory for the simple situation when the
members of a countable collection of real numbers are taken as the “individuals” and new
real numbers are successively defined via quantification over previously defined real numbers,
and emphasized that the process can be continued into the transfinite. He then observed
that this procedure can be applied to sets of real numbers, and the like, as “individuals”, and
moreover, that one can “intermix” the procedure for the real numbers with the procedure
for sets of real numbers “by using in the definition of a real number quantifiers that refer

49 Years later in 1968 Godel wrote to Hao Wang [1974: 8ff.]: “there was a special obstacle which really

made it practically impossible for constructivists to discover my consistency proof. It is the fact that the
ramified hierarchy, which had been invented expressly for constructive purposes, had to be used in an en-
tirely nonconstructive way.” Godel [1947: 518] mentioned in a footnote that the transfinite iteration of the
procedure for constructing sets in Weyl [1918] results exactly in the real numbers of L.
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to sets of real numbers, and similarly in still more complicated ways” ([1939b: 135]). Godel
called a constructible set “the most general [object] that can at all be obtained in this way,
where the quantifiers may refer not only to sets of real numbers, but also to sets of sets
of real numbers and so on, ad transfinitum, and where the indices of iteration ...can also
be arbitrary transfinite ordinal numbers”. Godel considered that although this definition of
constructible set might seem at first to be “unbearably complicated”, “the greatest generality
yields, as it so often does, at the same time the greatest simplicity” ([1939:137]). Godel was
picturing Russell’s ramified theory of types by first disassociating the types from the orders,
with the orders here given through definability and the types represented by real numbers,
sets of real numbers, and so forth. Godel’s intermixing then amounted to a recapturing of
the complexity of Russell’s ramification, the extension of the hierarchy into the transfinite
allowing for a new simplicity.

Godel went on to describe the universe of set theory, “the objects of which set theory
speaks”, as falling into “a transfinite sequence of Russellian [simple] types” ([1939b: 137]),
the cumulative hierarchy of sets that he had described in [1933]. He then formulated the
constructible sets as an analogous hierarchy, the hierarchy of [1939a], in effect introducing
Russellian orders through definability. In a comment bringing out the intermixing of types
and orders, Godel pointed out that “there are sets of lower type that can only be defined
with the help of quantifiers for sets of higher type” ([1939b: 141]). This lecture of Godel’s is
a remarkably clear presentation of both the mathematical and historical development of L.

Godel’s argument for the Continuum Hypothesis in the model L rests on [1939] “a gen-
eralization of Skolem’s method for constructing enumerable models”. It is arguably the next
significant application of the Lowenheim-Skolem Theorem after Hilbert’s anticipatory one
with his countable interpretation for Euclidean geometry (sans the Completeness Axiom)
and Skolem’s own [1923] to get his “paradox” for set theory. Godel showed that every subset
of M, in L belongs to M, for some o < wi. (Thus, every real number in L belongs to M,
for some a < wy.) In [1939b: 143] he asserted that “this fundamental theorem constitutes
the corrected core of the so-called Russellian axiom of reducibility.” Thus, Godel established
another connection between I and Russell’s ramified theory of types. But while Russell
had to postulate his Axiom of Reducibility for his finite orders, G6del was able to derive an
analogous form for his transfinite hierarchy. In his first announcement Gdodel [1938: 556] had
written: “The extension to transfinite orders has the consequence that the model satisfies
the impredicative axioms of set theory, because an axiom of reducibility can be proved for
sufficiently high orders.” The beginnings of this was already hinted at in Godel’s Incom-
pleteness paper [1931:178], where he wrote of its Axiom IV: “This axiom plays the role of
the axiom of reducibility (the comprehension axiom of set theory).” For Godel, Russell’s
Axiom of Reducibility with its capability of replacing notationally specified objects of any
order by equivalent objects of the lowest order of the same type was the direct antecedent
to “the comprehension axiom of set theory”. As he said [1939b: 145]:

This character of the fundamental theorem as an axiom of reducibility is also the rea-
son why the azioms of classical mathematics hold for the model of the constructible
sets. For after all, as Russell showed, the axioms of reducibility, infinity and choice
are the only axioms of classical mathematics that do not have a tautological charac-
ter. To be sure, one must observe that the axiom of reducibility appears in different
mathematical systems under different names and in different forms, for example, in
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Zermelo’s system of set theory as the axiom of separation, in Hilbert’s systems in
the form of recursion axioms, and so on.

Hilbert and Russell also figure prominently in a later lecture [1940a] at Brown University
on the Continuum Hypothesis. Godel began by announcing that he had “succeeded in giving
the [consistency| proof a new shape which makes it somewhat similar” to Hilbert’s [1926]
attempt, and proceeded to sketch the new proof, considering it “perhaps the most perspic-
uous”. First, Godel reviewed his construction of the model L. Once again he emphasized
that his argument showing that the Continuum Hypothesis holds in L proves an axiom of
reducibility.’? Then Godel turned to his new approach to the consistency proof, and intro-
duced the concept of a relation being “recursive of order «” for ordinals a. This concept
is a generalization of the notion of definability, a generalization obtained by interweaving
the operation M’, given five paragraphs above, with a recursion scheme akin to Hilbert’s for
his [1926] hierarchy of functionals. As Gddel [1940a: 180] said: “The difference between this
notion of recursiveness and the one that Hilbert seems to have had in mind is chiefly that I
allow quantifiers to occur in the definiens. This makes one [Lemma I| of Hilbert’s lemmas
superfluous and the other [Lemma II] demonstrable in a certain modified sense”. Using this
new concept of recursiveness — better, new concept of definability — Godel gave a model of
Russell’s Principia, construed as his system P of his incompleteness paper [1931], in which
the Continuum Hypothesis holds. (The types of this model were essentially coded versions
of My, ., — My,.)

In his monograph [1940] Gédel had provided a formal presentation of L using an axiom-
atization of set theory with an antecedent in von Neumann [1925]. Gddel’s formalization
not only recalled von Neumann’s [1925: I1] analysis of “subsystems”, but also shed light on
von Neumann’s main concern: the categoricity of his axiomatization. Fraenkel [1922] had
expressed the desirability of closing off the Zermelian generative axioms through an “axiom
of restriction”; this required that there should be no further sets than those generated by
the axioms, a notable move antithetical to the role played by Hilbert’s Completeness Ax-
iom in geometry. It was to pursue this that von Neumann had investigated subsystems for
his axiomatization, but he concluded that there was probably no way to formally achieve
Fraenkel’s idea of a minimizing, and hence categorical, axiomatization. Godel’s axiom A,
that every set is constructible, can be viewed as formally achieving this sense of categoricity,
since, as he essentially showed in [1940], in axiomatic set theory L is a definable class that
together with the membership relation restricted to it is a model of set theory, and L is a
submodel of every other such class.’ In his first description of L Godel wrote ([1938:557]):
“The proposition A added as a new axiom seems to give a natural completion of the axioms
of set theory, in so far as it determines the vague notion of an arbitrary infinite set in a
definite way.”

%0 He further said [1940a:178]: “So since an axiom of reducibility holds for constructible sets it is not

surprising that the axioms of set theory hold for the constructible sets, because the axiom of reducibility or
its equivalents, e.g., Zermelo’s Aussonderungsaxiom, is really the only essential axiom of set theory.”

L [1940a: 176], Godel wrote: “One may at first doubt that this assertion [A] has a meaning at all,
because A is apparently a metamathematical statement since it involves the manifestly metamathematical
term ‘definable’ or ‘constructible’. But now it has been shown in the last few years how metamathematical
statements can be translated into mathematics, and this applies also to the notion of constructibility and

the proposition A, so that its consistency with the axioms of mathematics is a meaningful assertion.”
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However, Godel came to regard L as primarily a contrivance for establishing relative
consistency results. In his [1947] he suggested that the Continuum Hypothesis is false and
in footnote 22 that a new axiom “in some sense directly opposite” to A might entail this.
In a revision [1964:266] of [1947], he expanded the footnote: “I am thinking of an axiom
which (similar to Hilbert’s completeness axiom in geometry) would state some maximum
property of the system of all sets, whereas axiom A states a minimum property. Note
that only a maximum property would seem to harmonize with the concept of [arbitrary
set].” This is related to Godel’s speculations with large cardinal hypotheses;*?> whereas
his axiom A had enforced a kind of categoricity through minimization, large cardinals as
maximum properties might establish the negation of the Continuum Hypothesis. Although
the historical connection is now admittedly faint, just as the addition of the Completeness
Axiom in geometry precludes Hilbert’s countable interpretation, so maximum properties in
set theory may preclude versions of Godel’s Skolem function argument for the consistency
of the Continuum Hypothesis.

In an earlier letter to Ulam (see Ulam [1958:13]) Godel had written of von Neumann’s
axiom [1925] that a class is proper exactly when it can be put into one-to-one correspondence

with the entire universe:

The great interest which this axiom has lies in the fact that it is a maximum principle,
somewhat similar to Hilbert’s axiom of completeness in geometry. For, roughly
speaking, it says that any set which does not, in a certain well-defined way, imply
an inconsistency exists. Its being a maximum principle also explains the fact that
this axiom implies the axiom of choice. I believe that the basic problems of abstract
set theory, such as Cantor’s continuum problem, will be solved satisfactorily only
with the help of stronger axioms of this kind, which in a sense are opposite or
complementary to the constructivistic interpretation of mathematics.

Hilbert’s Completeness Axiom thus fueled speculations about maximization for set theory,
speculations resonating with his “consistency implies existence” view, speculations still being
investigated to this day.

52 See Kanamori [1994] for the recent work in set theory on large cardinal hypotheses.
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Appendix®®

Recent developments have not only led to a precise logical analysis of Hilbert’s basis theorem
but to results that can be regarded as affirmatory for Hilbert’s consistency program. In this
appendix some of these developments are briefly described to recast Hilbert’s results and
initiatives in a new light.

Harvey Friedman [1975] observed that when a theorem of “ordinary” mathematics is
proved from a very economical comprehension (or “set existence”) axiom, then it should be
possible to “reverse” the process by proving the axiom from the theorem over a weak ambient
theory. Together with initial and continuing results by Friedman, Stephen Simpson and his
collaborators since the late 1970’s proceeded to carry out a program analyzing theorems in
this spirit, the program of reverse mathematics. We first set the stage:

Primitive Recursive Arithmetic is the system in the language with the logical connectives
(but no quantifiers), the constant 0, a unary function symbol for the successor function, and
a function symbol for each (definition of a) primitive recursive function, where the axioms are
the recursive defining equations for the functions symbols. First presented in Skolem [1923a]
and extensively investigated in Hilbert-Bernays [1934], Primitive Recursive Arithmetic has
been widely regarded as a characterization of Hilbert’s “finitary” methods.

The language of second-order arithmetic’* is a two-sorted language with number variables
i,7,m,n,...and set variables X,Y, Z,.... The number variables are intended to range over
the natural numbers, and the set variables to range over sets of natural numbers. Numerical
terms are generated as usual from the number variables, the constants 0 and 1, and the
binary operations + and x. The atomic formulas are t = u, t < u, and t € X, where t,u
are numerical terms. Finally, formulas are generated from the atomic formulas via logical
connectives, number quantifiers Vn and dn, and the set quantifiers VX and 9X.

All the formal systems to be considered include the familiar axioms about 4, x,0,1, <
as well as the induction aziom:®®

eXAVnne X =-n+1eX)) — Vn(neX).

Full second-order arithmetic, or analysis, consists of these axioms together with the full
comprehension scheme: For all formulas ¢,

IXVn(n € X + p(n)).

As shown in Hilbert-Bernays [1939], a great deal of classical mathematics can be faithfully
recast in second-order arithmetic with codes for the real numbers. In what follows, certain

53 This appendix is mostly drawn from Simpson [1985], to which we refer for more details and references.
See also Simpson [1988].

5 “arithmetic” here refers to number theory, the structure of addition and multiplication of the natural
numbers. As mentioned in §3, Hilbert used “arithmetic” to refer to analysis, which in the present setting
corresponds to “second-order arithmetic” if sets of natural numbers are construed as real numbers.

% The full induction scheme, which is not assumed, is: For all formulas ¢,

(0(0) AVR(p(n) = ¢(n +1))) — Vnp(n).

The subscript 0 in the acronyms for the subsystems distinguished below is an evolutionary artifact, indicating
that only the induction axiom is being assumed and not the full scheme.
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subsystems are considered that exactly capture the strength of several basic mathematical
results. We begin with an analysis of the complexity of formulas:

A formula is A8 if it has no set quantifiers and all of its number quantifiers are bounded,
i.e. can be rendered in form Vm(m < t — ...) or Im(m < t A...). A formula is XY if
it is of form Jme where ¢ is A, and I1{ if it is of form Vm¢p where ¢ is AJ. For each
natural number n, a formula is E%H if it is of the form Imep where ¢ is 119, and a formula
is 10,1 if it is of the form Vmep where ¢ is X0. A formula is arithmetical if it contains no
set quantifiers, i.e. its prenex form is for some n a E% or H% formula. Finally, a formula is
I1} if it is of the form VX where ¢ is arithmetical.

RC Aq (Recursive Comprehension Axiom)?9 is the subsystem of second-order arithmetic
consisting of the axioms of the ¥{-induction scheme, i.e. for each ¥{ formula ¢,

((0) AVn(p(n) = w(n+1))) — Vnp(n),

and axioms of the Al-comprehension scheme, i.e. for ¥ formulas ¢ and I1{ formulas 1,
Vn(p(n) <> ¢(n)) — IXVn(n € X < p(n)).

RC Ag just suffices to establish the existence of the (general) recursive sets and also to develop
some basic theory of real-valued continuous functions and of countable algebraic structures.
However, with its parsimonious form of induction it can only establish the totality of number-
theoretic functions in a restricted class. It is essentially a result of Charles Parsons [1970] that
the provably total general recursive functions of RC' Ay are exactly the primitive recursive
functions.?” RCAy proves that the ordinal w™ is well-ordered for each particular natural
number n, but not that w* is.® For RC Ay proves that w* is well-ordered implies the
totality of Ackermann’s function, the paradigmatic non-primitive recursive function.

WKLy (Weak Konig’s Lemma) is the subsystem consisting of the axioms of RC Ay
together with: Every infinite tree of finite sequences of 0’s and 1’s ordered by extension has
an infinite path. W K Ly provides a better theory of continuous functions and suffices for the
development of ideal theory for countable commutative rings.

ACAp (Arithmetical Comprehension Axiom) is the subsystem consisting of the axioms
of the arithmetical comprehension scheme, i.e. for each arithmetical formula ¢,

AXVn(n € X < p(n)).

(In what follows, other comprehension schemes based on formula complexity have analogous
formulations.) AC' Ay subsumes W K Lj. Since RC Ay can encode functions as sets of ordered

5 See the previous note for the use of the subscript 0.

5T A recursive function f:w — w has the Kleene normal form f(i) = U(um(T(i,m) = 0)) where U and
T are primitive recursive functions and g is the least number operator, specifying the least m such that
T(i,m) = 0. That f is total is the assertion VidmT'(i,m) = 0, and f is provably total in a system of
arithmetic if that system proves this assertion.

% Let < be a primitive recursive ordering of the natural numbers which is isomorphic to the ordinal ¢
(cf. note 36). For an ordinal a < €y, “a is well-ordered” is the H% assertion that every set consisting of
natural numbers corresponding via < to ordinals less than a has a <-least element.
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pairs, it follows that over this base theory AC'Ay is equivalent to the Z?—Comprehension
scheme. In terms of well-orderings, AC' Ay proves that every ordinal less than ¢y is well-
ordered, but not ¢ itself.?? AC Ay has the same consequences for analysis as the system
explored by Weyl [1918].

Theorem 1 (Friedman, Simpson). The following are equivalent over RC Ay:

(a) WKLy.

(b) The Heine-Borel Theorem: Every covering of the unit interval of reals by a countable
sequence of open sets has a finite subcover.

(¢) Every continuous real function on the unit interval has a supremum.

(d) Every countable commutative ring has a prime ideal.

(e) The Godel Completeness Theorem.

(f) The Hahn-Banach Theorem for separable Banach spaces.

Theorem 2 (Friedman, Simpson). The following are equivalent over RC Ay:

(a) ACAO

(b) The Bolzano-Weierstrass Theorem: Every bounded sequence of real numbers has a
convergent subsequence.

(c) Every bounded sequence of real numbers has a least upper bound.

(d) Every countable commutative ring has a maximal ideal.

(e) Konig’s Lemma: Every infinite, finitely branching tree consisting of finite sequences
of natural numbers ordered by extension has an infinite path.

Theorem 2(e) highlights the new strength beyond W K Ly, which draws the same conclusion
for finite sequences of 0’s and 1’s.
Simpson [1988a] provided the following analysis of Hilbert’s basis theorem:

Theorem 3 (Simpson). The following are equivalent over RC Ay:
(a) Hilbert’s basis theorem in the following sense: For countable fields K and
T1,...,Tpn, the (commutative) ring of polynomials K[x1, ..., z,] is finitely generated.
(b) The ordinal w* is well-ordered.

The proof incidentally is similar to Gordan’s [1899] proof of the basis theorem. By our
previous remarks about RC' Ay, (a) thus just transcends RC'Ap and implies the totality of
Ackermann’s function.

Friedman (unpublished) has in fact established an equivalence between a variant of
Hilbert’s basis theorem and the totality of Ackermann’s function. Friedman showed: For
any natural number k there is a natural number n such that for every sequence of n polyno-
mials in k variables over any field, where the ith term of the sequence has degree at most 1,
some polynomial is in the ideal generated by the previous polynomials. With h(k) denoting
the least such n, the function h is essentially Ackermann’s function. Note that h does not
depend on the field. The assertion cast for polynomials over the two-element field is formal-
izable as a I1J sentence, as is the assertion of the totality of Ackermann’s function. This is
a remarkable historical confluence of Hilbert’s mathematics and metamathematics, in that
a variant of his first major result is seen to be equivalent to the totality of the first recur-
sive function that he [1926] had considered for transcending primitive recursion, and hence

59 See notes 36 and 58 for the terminology.
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just transcends Primitive Recursive Arithmetic, the common characterization of Hilbert’s
“finitary” methods.

Hilbert’s Nullstellensatz has also been analyzed, though in a different setting. Following
a major reduction of the theorem to an effective form by W. Dale Brownawell [1987], Michael
Shub and Stephen Smale in their [1995] observed that that effective form is equivalent to
an algebraic version for the real numbers of the well-known NP # P assertion in theoretical
computer science.

Perhaps the main triumphs of reverse mathematics are the following two conservation
results:

Theorem J

(a) (Friedman; Kirby and Paris [1976]) W K Ly is a conservative extension of Primitive
Recursive Arithmetic with respect to I1 sentences, i.e. every I13 sentence provable in W K Ly
is already provable in Primitive Recursive Arithmetic.

(b) (Harrington) For every model of RC Ay there is a model of WK Ly with the same
“natural numbers”. In particular, (Friedman [1975: 238]) W K Ly is a conservative extension
of RC'Ay with respect to H% sentences, i.e. every H% sentence provable in W K Ly is already
provable in RC'Ay.

As emphasized by Simpson [1985:469], (a) provides a significant advance towards the
realization of Hilbert’s consistency program in the sense that strong ideal propositions can
be eliminated from the proofs of substantial assertions of Primitive Recursive Arithmetic.
One can apply the powerful methods of Riemann integration, the ideal theory for countable
commutative rings, and Godel’s Completeness Theorem available in W K Ly to establish
results of a rich logical complexity as in (a) and (b). In the simplest case, one cannot derive
0 # 0 in WK Ly if one cannot already derive it in Primitive Recursive Arithmetic.

Theorem 4 was established by model-theoretic means; Sieg [1991] provided systematic
proof-theoretic proofs based on Herbrand and Gentzen. Feferman [1988] gives a detailed
account of constructive consistency proofs for various powerful subsystems of analysis.
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