Vertical Fragmentation For Advanced Object
Models in a Distributed Object Based System*

C.1. Ezeife and Ken Barker

Advanced Database Systems Laboratory
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2

Tel.: (204) 474-8832
FAX: (204) 269-9178

{christie,barker }@cs.umanitoba.ca

Abstract

Many object based systems exist that support some form of distribution.
Optimal application performance on distributed object based systems demands
accurate class fragmentation and the subsequent allocation of these fragments
to distributed sites. Vertical fragmentation must minimize application execu-
tion time by splitting a class so that all class attributes and methods frequently
accessed together are grouped together into a single fragment. This paper de-
scribes a fragmentation algorithm that statically creates a set of fragments for
the most complex object model: namely, one that supports inheritance and
includes a part—of hierarchy, and whose method invocation structure is based
on a nested transaction model. Our approach consists of grouping into a frag-
ment, all attributes and methods of the class frequently accessed together by
applications running on either this class, its descendant classes, its containing
classes or its complex method classes.

*This research was partially supported by the Natural Science and Engineering Research Council
(NSERC) of Canada under an operating grant (OGP-0105566) and a grant from Manitoba Hydro.

1 Introduction

Distributed database design is a two step process. First, database entities are frag-
mented and secondly, the fragments are allocated to distributed sites. Two approaches
are used in distributed database design - top-down and bottom-up. The top-down
approach entails generating a set of local conceptual schemas from a global concep-
tual schema (GCS) and the access pattern information. The GCS describes the global
database entities and their relationships while the LCS describes the database enti-
ties at each local site and their relationships [9]. The input to the design process is
obtained from an earlier static and system requirements analysis which defines the
environment of the system and collect an approximation of both the data and pro-
cessing needs of all potential database users. Our entity of distribution is a class
fragment and the top-down approach is used.

A distributed object based system (DOBS) is a collection of local object bases
distributed among different local sites, interconnected by a communication network.
A DOBS supports an object oriented data model including features of encapsulation
and inheritance. The data in a DOBS consists of a set of encapsulated objects. The
data values (attribute values) are bundled together with the methods (procedures) for
manipulating them to form an encapsulated object. Objects with common attributes
and methods belong to the same class and every class has a unique identifier. Inher-
itance allows reuse and incremental redefinition of new classes in terms of existing
ones. Parent classes are called superclasses while classes that inherit attributes and
methods from them are called subclasses. The database contains a root class called
Root, and Root is an ancestor of every other class in the database. The overall inher-
itance hierarchy of the database is captured in a class lattice. A class is an ordered
relation C = (K, A,M,T) where K is the class identifier, A the set of attributes, M the
set of methods and 7T is the set of objects defined using A and M. There is an object
identifying attribute oid which is a member of the set of attributes A. The oid could
be either a system defined object identifier or a user-defined key attribute. Vertical
fragmentation is the process of breaking up of a class into a set of possibly smaller
classes called vertical fragments. Each object in a vertical fragment is a portion of the
original object in the original class. In effect, each vertical fragment (C”) of a class
contains its class identifier, and all of its instance objects for only some of its methods
(M' C M) and some of its attributes (A" C A). Thus, C* = (K, 4, M",T). Two
types of attributes in a class are possible (simple and complex). Simple attributes
have only primitive attribute types that do not contain other classes as part of them.
Complex attributes have domains in another class. This is often referred to as a

'We adopt the notation of using calligraphic letters to represent sets and roman fonts for non-set
values.

“part—of” or composition hierarchy. Two possible method structures in a distributed
object based system are simple and complex methods. Simple methods are those that
do not invoke other methods of other classes. Complex methods are those that can
invoke methods of other classes. The classes making up the DOBS are classified based
on the nature of the attributes and methods they contain as discussed earlier [5]. Al-
though two basic method types exist, a simple method of a contained (part-of) class
is referred to as a simple method because it is a simple method of a class that is
contained in another class. Thus, the variety of class models that could be defined in
a DOBS are: class models consisting of simple attributes and simple methods, class
models consisting of complex attributes and contained simple methods, class models
consisting of simple attributes and complex methods, and class models consisting of
complex attributes and complex methods. This classification enables us accommo-
date all the necessary features of object orientation and provide solutions for object
bases that are structured in various ways. Distributed object based design enhances
performance by organizing database entities in fragments such that the amount of
irrelevant data accessed by applications is reduced while reducing the amount of data
that needs to be transferred between sites.

Many distributed and client /server object based systems exist which will ben-
efit from fragmentation [7]. A partial list of benefits include: Different applications
access or update only portions of classes so fragmentation will reduce the amount of
irrelevant data accessed by applications. Fragmentation allows greater concurrency
because the “lock granularity” can accurately reflect the applications using the object
base. Fragmentation allows parallel execution of a single query by dividing it into
a set of subqueries that operate on fragments of a class. Fragmentation reduces the
amount of data transferred when migration is required. Fragment replication is more
efficient than replicating the entire class because it reduces the update problem and
saves storage.

The overhead and difficulty involved in implementing distributed design tech-
niques include the generation of inputs from static analysis. Earlier work has argued
that since 20% of user queries account for 80% of the total data accesses, this anal-
ysis is feasible [9]. However, major changes in a domain would entail a re-analysis of
the system and re-running of the distributed design algorithms. Future research will
investigate how these can be incorporated into a dynamic system.

This paper reviews possible DOBS models as initially presented in [5], and con-
tributes by presenting algorithms for vertically fragmenting the most complex class
model consisting of complex attributes with complex methods. The balance of the
paper is organized as follows. We complete this section by briefly reviewing previous
work on distributed database design. Section 2 presents vertical fragmentation algo-
rithm for class model consisting of complex attributes and complex methods. Finally,
Section 3 concludes and suggests future research directions.

1.1 Related Work

Algorithms that fragment relations horizontally and vertically exist. Previous work
on relational vertical fragmentation is reviewed and then previous work on fragmen-
tation in DOBS.

Vertical Fragmentation (relational): Work on vertical fragmentation in the re-
lational data model includes Hoffer and Severance [6], Navathe et al. [8], Cornell and
Yu [2], Ozsu and Valduriez [9] and Chakravarthy et al. [1].

Hoffer and Severance [6] define an algorithm that clusters attributes of a data-

base entity based on their affinity. Attributes accessed together by applications have
high affinity so the Bond Energy Algorithm [9] is used to form these attribute clusters.
Navathe et al. [8] extends Hoffer’s work by defining algorithms for grouping attributes
into overlapping and nonoverlapping fragments. Cornell and Yu [2] optimized this
work by developing an algorithm that obtains an optimal binary partitioning for
relational databases. Ozsu and Valduriez [9] discuss this earlier work on vertical par-
titioning for distributed databases using the access frequency information and the
Bond Energy Algorithm. Chakravarthy et al. [1] argue that earlier algorithms for
vertical partitioning are ad hoc, so they propose an objective function called the Par-
tition Evaluator to determine the “goodness” of the partitions generated by various
algorithms.
Vertical Fragmentation (objects): Karlapalem et al. [7] define issues involved in
distribution design for an object oriented database system. They identify two types
of methods — simple and complex methods. They argue that a model consisting of
simple methods can be vertically partitioned using techniques described by Navathe
et al. [8], while complex methods require a method-based view (MBV). The MBV
identifies the set of objects accessed by a method and the set of attributes or instance
variables accessed by the method. The sets are further grouped into sets of objects
and instance variables based on the classes to which they belong. This generates
the set pairs of objects and instance variables (O;,[;) accessed from a class C; by a
method. This is called method m;’s view of class ;. They suggest the use of concepts
developed by Pernul et al. [10] to fragment classes based on views.

2 Vertical Fragmentation of Classes — Complex
Attributes and Complex Methods

This section presents an algorithm for vertically fragmenting classes consisting of
complex attributes and complex methods. The database information needed is: the
inheritance hierarchy, the attribute link to reflect part-of hierarchy, and the method
links to reflect the use of methods of objects of class C; (being fragmented) by objects

of other classes. This algorithm is built on the algorithms used by simpler models [3].
With this class model, vertical fragmentation aims at splitting a class such that all
attributes and methods of the class most frequently accessed together by user appli-
cations are grouped together. User applications that access attributes and methods of
the class are of the following types: (1) those running directly on this class, (2) those
running on descendants of this class, (3) those running on containing classes which
use this class as a type for their attributes, and (4) those running on complex methods
of other classes in the database that use methods of this class. Vertical fragmentation
aims at splitting a class so all attributes and methods of the class most frequently
accessed together by user applications are grouped together. FEncapsulation means
user applications do not directly access an objects’ attribute values except through
the objects” methods. Since every method in the object accesses a set of attributes
of the class, we first group only methods of the class based on application access
pattern applying the same technique used in [6, 8]. Secondly, we extend each method
group (fragment) to incorporate all attributes accessed by methods in this group. A
problem with this second step is some attributes may belong to the reference set of
more than one method, so deciding which method group these attributes belong in,
so only non-overlapping vertical fragments are generated, is required. Two alterna-
tive approaches for handling this conflict are: (1) use a set of affinity rules similar
to those used in horizontal fragmentation schemes presented in [5] to decide which
fragment to place these overlapping attributes or (2) from the outset, group both
attributes and methods using attribute/method affinity. We adopt the first approach
because it drastically reduces the size of the matrices used as input to the Bond
Energy and Partitioning algorithms of [8]. It also exploits the abstraction power of
the object-oriented data model and thus performs better when there is low overlap
in the attribute reference sets of the methods of a class. Thus, we want to place in
one fragment those methods of a class usually accessed together by applications. The
measure of “togetherness” is the affinity of methods which shows how closely related
the methods are. We first present some definitions and assumptions before presenting
the algorithm. The explicit assumptions are:

1. Objects of a subclass physically contain only pointers to objects of its super-
classes that are logically part of them. In other words, an object of a class
is made from the aggregation of all those objects of its superclasses that are
logically part of this object.

2. Application and database information are pre-determined prior to the fragmen-
tation process.

The major data requirements related to applications is their access frequencies.
Let Q = {¢1,92,- - - ,q,} be the set of user queries (applications) running object methods

from the set of all methods denoted {M™"7 M* . M™P} Then, for each query gz
and each method M®/ (the jth method of class C;), we associate a method usage
value denoted as use(qy, M) where use(qr, M) = 1 if method M*/ is referenced
by query ¢i, 0 otherwise. Thus, for each class, we define a method usage matrix.
The cardinality of a class is the number of instance objects in the class (denoted

card(C})).

Definition 2.1 A user query accessing database objects is a sequence of method in-
vocations on an object or set of objects of classes. The invocation of method j on class
C; is denoted by M®/ and a user query g is represented by { M7 M2% MnP}
where each M in a user query refers to an invocation of a method of a class object.

Definition 2.2 Method Attribute Reference MAR (M) of a method M*/ of a class
C; is the set of all attributes of C; referenced by M7, |

Definition 2.3 A null method of a class C;, denoted NM(C;), with respect to a
superclass C; is a place holder for the superclass’s method. A null method is denoted
by: (original class.method name) where original class is the name of the superclass
and method name is the method in the subclass. H

Definition 2.4 An FExtended Method of a class, C;, (EM)** is either an original
method of the class, M*/ or a null method of the class N M (C;).
Thus, (EM) = MY |NM(C;) . |

In effect, the extended method set of a class is the union of its actual methods and
its null methods (null methods are used to refer to inherited methods).

Definition 2.5 Access frequency of a query is the number of accesses a user applica-
tion makes to “data”. If Q = {1,492, . -,q4} is a set of user queries, acc(q;,d;) indicates
the access frequency of query ¢; on “data” item d; where data item d; can be a class,
a fragment of a class, an instance object of a class, an attribute or method of a class.

Definition 2.6 [nstance Object join (=) between a pointer to an instance object of
a superclass and an instance object ([;) of a class C; returns the “complete” instance
object consisting of the two classes that represent the actual instance object of the

class. [|

To illustrate the aggregate returned by the object join function, we consider the
following example. In a database with Student a superclass of Grad, an instance

object I3 of Gradis represented as (Student pointer5) @ {Grad3,Mary Smith}. This
means that the actual I3 of Gradis the quantity representing the instance object I5 of
the superclass Student combined with the quantity {Grad3,Mary Smith} from Grad
per se.

The next four definitions may be used for computing the method affinity matrix
of the class being fragmented. The method affinity matrix is the matrix to be clus-
tered and gives the affinity values between extended method pairs of the class being
fragmented. While subclass affinity measures the access of the extended methods
through the descendant classes of this class, the method affinity value accounts for
the use of this method pair both through the descendant classes and directly on the
class. The containing class affinity is needed for complex hierarchy to incorporate the
use of the extended method pairs of the class being fragmented through its contain-
ing classes, while complex method affinity incorporates their use through its complex
method classes.

Definition 2.7 Subclass affinity of two extended methods (EM)™ (EM)“* of a class
C;, denoted saff((EM)“ (EM)™*) is a measure of how frequently methods/attributes
of the subclasses or descendant classes of C; and methods/attributes of the class are
needed together by applications running at any particular site. saff((EM)"™, (EM)“*) =
Yoot 2oplluse(ap(EM)7)=1Ause(gp (EM) ¥)=1 2ovs, T€S1(qp)acci(qp)

where w is the number of subclasses, p is some application and S; ranges over all
sites. H

Definition 2.8 Method Affinity between two extended methods of a class C;,
MA(EM)" (EM)**) measures the bond between two extended methods of a class
according to how they are accessed by applications.

MA((EM)'7, (EM)iF) =

(X plfuse(p(EMY-d)=1 Ause(ap (EMY-F=1 2vs, TeSi(qp)acci(qy)) + saf f((EM)™, (EM)"*)
where refi(q,) is the number of accesses to methods ((EM)*“ (EM)**) for each ex-
ecution of application ¢, at site s; and acc(g,) is the application access frequency
modified to include frequencies at different sites. This generates the method affinity
matrix (MA), an n * n matrix. |

Definition 2.9 Containing Class affinity between two extended methods (EM)™ and
(EM)* of a class C;, ccaf f((EM)™,(EM)"“*) is a measure of how frequently meth-
ods/attributes of containing classes of C; and methods/attributes of the class are
needed together by applications running at any particular site.

ccaff((EM)™ (EM)™F) = 301 55 use(ar (EMY-5)=1 nuse(ar,(EM)-F)=1 2vs, "€ J1(qr)acer(qr)

where w is the number of containing classes, C; is the class and S; ranges over all
sites. N

Definition 2.10 Complex Method affinity between two extended methods, (EM)™
and (EM)"* of a class C;, emaff((EM)" (EM)"*) measures how frequently meth-
ods/attributes of other classes in the database and method/attributes of the class C;
are needed together by applications running at any particular site.
cmaff((E M) (EM)*) = 301 S kuse(ar (BM)-5) =1 Ause(ap(EM)-#)=1 Sovs, Tefi(qr)ace(qr)

where d is the number of database classes, C; is the class and S ranges over all sites.

When one attribute becomes a member of more than one vertical fragment,
we need to decide with which fragment it has the highest affinity. The next three
definitions are used to compute these affinities. While attribute/attribute affinity
(AAA) computes the binding of this overlapping attribute with other attributes of
a fragment, the attribute/method affinity binds this attribute with methods in this
fragment. Thus, attribute/fragment affinity now becomes the combination of the
affinities between the attributes and methods of the fragments.

Definition 2.11 Attribute/Attribute Affinity AAA(A™ A*™) between two attributes
of the same class C; is the sum of the access frequencies of all methods accessing these
two attributes together at all sites. AAA(A™ A™) =

2 k|t EMAR(Min-F)AAm M AR((Min-k) oy accl(Mm'k, Ai'j) + acc;(Mm'k, Ai'k)

where ace;(M™*, A™7) is the number of accesses made to the attribute A*/ by method
Mk at site s;. [|

Definition 2.12 Attribute/Method Affinity AMA(A™ M*™) between an attribute
and a method of the same class C; is the sum of the access frequencies of all methods
using this attribute and this method together at all sites. AMA(A™, M"™) =

Z Z GCC[(MS'k,Ai'j) + accl(MS'k,Mi'm)
k|A©9 €M AR(M S)AM#meMMR(Ms*) I=1
where M** belongs to some class (. N

Definition 2.13 Attribute Fragment Affinity AFA(A™™ F*7) is a measure of the
affinity between attribute A*™ and vertical fragment F*7, and is the sum of all the
attribute/attribute and attribute/method affinities between A*™ and all attributes
and methods of the class fragment 7. AFA(A"™,) =

Zk|Ai.meFi.] AATREFT) AAA(Ai'm, Ai'k) + Zk|Ai.meFi.] AMUFCRFid) AMA(A””, Mlk) .

After generating non-overlapping method fragments, it is possible to obtain
overlapping fragments when attributes referenced by methods in the fragments are
included. Since our objective is to make the final method/attribute fragments non-
overlapping, a technique is needed to decide in which fragment it is most beneficial
to keep an overlapping attribute.

Affinity Rule 2.1 Place the overlapping attribute A™/ in the fragment [* with
maximum AFA(A“ F"*) since this is the vertical fragment with which attribute A®/
has highest affinity. H

The proposed algorithm is guided by the intuition that an optimal fragmen-
tation keeps those attributes and methods accessed frequently together while pre-
serving the inheritance, aggregation and method nesting hierarchies. Secondly, the
fragments defined are guaranteed correct by ensuring they satisty the correctness
rules of completeness, disjointness and reconstructibility. Completeness requires that
every attribute or method belongs to a class fragment, while disjointness means every
attribute or method belongs to only one class fragment. Finally, reconstructibility
requires that the union of all class fragments should reproduce the original class.

The algorithms also require the following data structures and functions.

M¢ei : set of all methods of class C;.

Cdes . set of all descendant classes of C;.

Ceo™ : set of all containing classes of C;.

Csmeth : set of all complex method classes of (.

EM-set (%) : set of extended methods of C; and its descendant classes.
NM-set(C*) : set of null methods of C; and its descendant classes.
EMapplic-set(C{°*) : set of applications accessing extended methods of C; and its
descendant classes.

L(C;) : a tree rooted at node (class) C;.

MAR-set(C};): set of method attribute references of of all methods of the class C;.
AF-set(C4): set of application frequency matrices of the class and its descendants.
MU-set(C#*): set of method usage matrices for class C; and its descendant classes.
UsageMtrx(L(C{*)) : a function that returns the original method usage matrices
for the class C; and its descendant classes.

children(C}) : a function that returns the immediate children of the node (class) C}.

Thus, in vertically fragmenting this class model, we generate the method affinity
matrix of the class iteratively in three increments as follows:

1. This initial method affinity matrix is generated using method usage and appli-
cation frequency matrices of the class and its descendant classes.

2. The method affinity matrix is modified using method usage and application
frequency matrices of the class and its containing classes.

3. It is further modified using method usage and application frequency matrices
of the class and its complex method classes.

The steps for generating vertical fragments of classes consisting of complex attributes
and complex methods are given below.
Steps

R1. Generate initial Method Affinity matrix for the class as:

a. Obtain the method usage and application frequency matrices of the class
and its descendants (use algorithm UsageMtrz [4]). This incorporates the
inheritance link information using the class lattice with the objective of
grouping together the set of methods/attributes of class C; that are used
by applications running on its descendants. The algorithm UsageMtrz
accepts a tree rooted at a class C; and generates the original method usage
matrices for class C; and other classes (subclasses of C; in this case) on
the tree. To compute the method usage matrix of a class C; on the tree, it
assigns 1 to the matrix element identified by (row ¢;, column (EM):) for

some application ¢; in the object base and some extended method (£ M)i
of the class, if use(q;, (EM)i) = 1, and 0 otherwise.

b. Define the method affinity matrix of the class from step (Rla) using the
usage matrices and application frequency matrices of the class as defined in
algorithm UsageMtrz. By doing this, we are producing an initial method
affinity matrix of the class that includes use of its methods by methods of
its descendant classes.

R2. Modify the method affinity matrix from step R1 to include use of the methods
through its containing classes.

a. We repeat the operations in step R1 above, using a different type of rela-
tionship. Obtain the method usage and application frequency matrices of
the class and its containing classes using the algorithm UsageMtra with the
Linkgraph [4] that returns a tree rooted at the class showing the attribute
link between that class and other classes in the database.

b. Modify method affinity matrix of the class from step (R1b) using the usage
matrices and application frequency matrices of the class and its containing
classes (from R2a).

R3. Modify method affinity matrix from step R2 above to include usage of methods
through complex method classes.

a. We repeat the operations in step R2 above, using a different type of rela-
tionship — the complex method link. We first produce a link graph which
is a tree rooted at the class being fragmented C;, that links it to all other

classes in the object base whose complex methods are represented in the
intra class null method set of this class.

b. Modify method affinity matrix of the class from step (R2b) using the usage
matrices and application frequency matrices of the class and its complex
method classes (from R3a). This requires adding the cmaff of each method
pair to their current method affinity value.

R4. Use the Bond Energy Algorithm developed [9] as presented in [8, 9] to generate
clustered affinity matrix of the class. This algorithm accepts method affinity
matrix as input and permutes its rows and columns to generate a clustered
affinity matrix. The clusters are formed so that methods with larger affinity
values are together and the ones with smaller values are also together.

R5. Modify the original method usage matrix to include method usages through
complex class and complex method classes.

a. Generate a modified method usage matrix of the class as described in the
algorithm MUsageMrtz [4] which modifies the method usage matrix of a
class C; to include a row for every application ¢; that accesses a null method
representative of this class at all its descendant classes.

b. Generate a modified method usage matrix of the class as described in the
algorithm MUsageMrte which modifies the method usage matrix of a class
C; to include a row for every application ¢; that accesses a null method
representative of this class at all its containing classes

c. Generate a modified method usage matrix of the class as described in the
algorithm MUsageMrte which modifies the method usage matrix of a class
C; to include a row for every application ¢; that accesses a null method
representative of this class at all its complex method classes.

R6. Use method-attribute reference information of the methods in each method frag-
ment (MAR of definition 2.2) to include in each method fragment all attributes
of the class accessed by methods of the fragment.

R7. Since there may be problems of overlapping attributes in more than one frag-
ment, use Attribute Placement Affinity Rule 2.1 to decide which vertical frag-
ment to keep each overlapping attribute.

The formal algorithm for vertically fragmenting a class consisting of complex
attributes and complex methods is presented as algorithm Vert_CA_CM of Figure 1.
This algorithm is the same as the VerticalFrag algorithm [3] of the model with simple

attribute and simple method except that the method affinity matrix includes in addi-
tion to subclass affinity (saff) between the extended methods, complex class affinity
(ccaff) as well as complex method affinity (cmaff). Secondly, the modified method
usage matrix used for the partitioning includes additional rows to account for method
usage of the class being fragmented by methods of containing classes and complex
method classes. The VerticalFrag algorithm for the simplest model generates the
method affinity matrix of a class C; to be fragmented using the method usage and
application frequency matrices of C; and all its descendant classes. It then modifies
the method usage matrix of C; to account for usage of C;’'s methods through its de-
scendant classes. It then generates vertical method fragments of C; using the binary
partition algorithm with modified usage and method affinity matrices of C; as input.

We simplity the presentation of the algorithm Vert_CA_CM for the most com-
plex model by defining the vertical fragmentation algorithm in terms of the two key
matrices of the class C; being fragmented: the method affinity and the modified
method usage matrices of the class. These two matrices constitute the major final
inputs to the vertical fragmentation scheme before fragments are produced. Thus, the
major difference in the various schemes for fragmenting various class models lies in
how these two matrices are obtained. In describing the procedures involved in obtain-
ing the matrices needed before running the vertical fragmentation algorithm, we shall
attach the sequence of modifications performed on the matrix as its arguments. Thus,
VerticalFrag(MA(Cfes, C¢ont) MU(Cdes C¢"') means the method affinity matrix is
produced using method usage and application frequency matrices of the class and its
descendant classes first, followed by a modification using method usage and applica-
tion frequency matrices of the class and its containing classes. Similarly, the method
usage matrix includes rows to account for method usage of the class by applications
running on descendant classes and then containing classes. Running Verticalfrag on
the two matrices MA and MU entails submitting MA to the Bond energy algorithm
for clustering of methods and then partitioning the clustered MA using MU and the
binary partition algorithm. Finally, attributes are included in method fragments to
generate non-overlapping fragments.

2.1 An Example

This example incorporates class models consisting of complex attributes and complex
methods. The extended complex class object base is as given in Figure 2 2. The
database schema information consists of the class hierarchy of the object base and is
given in Figure 3, while the class composition hierarchy is as in Figure 4.

2For readability, we precede each key attribute of a class by &, each attribute by an « and each
method by an m.

Algorithm 2.1 (Vertical Fragments of Complex attributes and Complex Methods)

Algorithm Vert CA_CM

input:

output:
var

begin

ch‘des: set of user queries accessing C; and its descendant classes.

C; @ the database class to fragment; L(C) : the class lattice

Cdes . set of descendant classes of C;

icnm(C;) : set of intra class null methods of C;.

Ceo™ : set of containing classes of C;

Csmeth + set of complex method classes of C;

(EM)Y: extended method set of C;.

MAR-set(C;) : method attribute reference set of methods of C;
AF-set(Cides): application frequency matrices of C; and its descendants.
AF-set(C°"): application frequency matrices of C; and its containing classes.
AF-set(Cfmeth): applic. frequency matrices of C; and complex method classes.
Fe: set of vertical fragment s of (.

MU-set(C?*) : method usage matrices for class C; and its descendants.
MU-set(C¢"") : method usage matrices for class C; and its containing classes.
MU-set(C™") : method usage matrices for class C; and

its complex method classes.

M A" : method affinity matrix of Cj.

C A" : clustered affinity matrix C;.

MU' : the modified method usage matrix of Cj.

//Generate a set of attribute/method fragments of the class C; //
// using algorithm Verticallrag with appropriate method affinity //
// and modified method usage matrices. //

VerticalFrag(MA(C#es, Csont, Cemethy MU (Cfes, Cgont, Cmethy) (1)
end {Vert_CA_CM}

Figure 1: Vertical Fragmentation - Complex Attributes and Complex Methods

Person = {Person,{a.ssno,a.name,a.age,a.address},
{m.ssno-of,;m.whatname,m.age-in-year,m.newaddr},
{ I, {Personl,John James,30,Winnipeg}
15 {Person2,Ted Man,16,Winnipeg}
I3 {Person3,Mary Ross,21,Vancouver}
1, {Person4,Peter Fye,23, Toronto}
I5 {Person5,Mary Smith,40,Toronto}
Is {Person6,John West,32, Vancouver}
17 {Person7,Jacky Brown,35,Winnipeg}
Is {Person8,Sean Dam,27, Toronto}
Iy {Person9,Bill Jeans,43,Vancouver }
I1o {Person10,Mandu Nom,30,Winnipeg} } }
Prof = Person pointer ® {Prof,{a.empno,a.status,a.dept,a.salary,a.student},
{m.empno-of ,m.status-of,m.students-of,m.whatsalary,m.dept-of},
{ Iy (person pointer5) ©
{Profl,asst prof,Computer Sc.,45000,students pointers}
I, (person pointer6) © {Prof2,assoc prof,Math,60000,students pointers }
I3 (person pointer9) © {Prof3, full prof,Math,80000,students pointers}
I (person pointerl0) © {Prof4,full prof,Math,82000,students pointers} } }
Student = Person pointer © {Student,{a.stuno,a.dept,a.feespd,a.coursetaken},
{m.stuno-of,m.dept-of,m.owing,m.course-taken }
{ I (person pointerl) ©® {Studentl,Math,Y []}
I, (person pointerd) © {Student2,Computer Sc.,N,[521,632]}
I3 (person pointer2) © {Student3,Stats,Y,[211]}
I (person pointer3) © {Student4,Computer Sc.,N,[111,211]} } } }
Grad = Student pointer & {Grad,{a.gradstuno,a.supervisor},
{m.gradno-of,m.whatprog}
{ I (Student pointerl) @ {Gradl,John West}
I (Student Pointer2) ® {Grad2,Mary Smith}
I3 (Student Pointer4) ® {Grad3,Mary Smith} } }
Dept = {Dept,{a.code,a.name,a.profs,a.students},
{m.code-of, m.name-of ;m.number-of-profs,m.students-of },
{ I, {Deptl,{Computer Science,prof pointers,student pointers}
15 {Dept2,{Math,prof pointers,student pointers}
I3 {Dept3,{Stats,prof pointers,student pointers} } }

Figure 2: The Complex Sample Object Database Schema

W
e/

UnderGrad @

Figure 3: Complex Class Lattice

Prof
status
dept
salary
Dept students
name {methods}
profs
student
{methods} Student
name
gpa
{methods}

Figure 4: Class Composition Hierarchy

Suppose we want to vertically fragment the class Student, a network of method
usage and application frequency matrices (obtained from an initial system analysis)
needed to compute the method affinity matrix of this class that incorporates saff,
ccaff and emaff is given in Figure 5. The method affinity value of a method pair in
the matrix is computed as follows:

MA(Mstudent.l7Mstudent.2) — Zi:l Z?:l GCCJ(Q1) + Saffgrad(]\4studemf.17 Mstudent.Z)‘
= (4040420) + (04+60+10) = 130 (initial MA).

Ccalcf(Mstudent.l 7]\4studemf.2): Ccaffdept(MStudem'ly Mstudent.2) +
Ccafprof(MStudent'l, Mstudent.?)‘
= [(50 + 15 4+ 0) + (25 + 40 4+ 5)] + 0 = 135

MA(MSt“dem'l,MSt“dem'z) = 130 4+ 135 = 265 (after first modifi cation)

The method affinity, clustered affinity and the modified method usage matrices of the
class after executing line 1 of the algorithm 1 are given in Figure 6.

The vertical fragments from the execution of the partition algorithm are Fy =
{m1,m3,my} and Iy = {mq, mq, ms, me, mr}.

3 Conclusions

This paper reviews issues involved in class fragmentation in a distributed object based
system. The model characteristics incorporated include: the inheritance hierarchy,
the nature of attributes of a class, and the nature of methods in the classes. The paper
argues that vertical fragmentation algorithms of four types of class object models is
required, namely, classes with simple attributes and methods, classes with attributes
that support a class composition hierarchy using simple methods, classes with complex
attributes using simple methods, and finally classes with complex attributes and
complex methods. We provide descriptions and formal algorithm necessary to support
the most complex class model.

Current research efforts include developing performance measurements to demon-
strate the utility of our algorithm. Such performance analysis is difficult because very
few of these systems (or more specifically, applications on these systems) have been
developed. We are currently analyzing objectbased applications to determine the
way they are being used with the goal of determining metrics for such a performance
analysis. Ideally these techniques can be modified so they can be used in a dynamic
environment where data is added and removed. Unfortunately, such an environment
is very complicated because supporting it involves not only the accurate placement
of fragments but also the need to transparently migrate object fragments while the
system is being accessed by users. The initial step in this research requires that we

MUsage
ml m2 m3 M4 m5m6 m7

glf1 000110
q2

q3

1111001
1010000

m1 = stuno-of; m2=dept-of,
m3 = owing; m4=coursetaken,
m5 = Person.ssno—-of;m6=Person.age-in-year,

m7 = Person.whatname.
UnderGrad

No applications

m1m2 m3m4 m5 mém7 m8 sl s2 s3
glj11011100 gl 50 15 0
g2|11011110 g2l 25 40 5
g3)11100001 g3/ 10 0 30

ml=m.code-of,m2=m.name-of,

m3=m.number-of-prof,m4=m.students—of,
m5=Student.stuno-of, m6=Student.dept-of,
m7=Student.coursetaken, m8=Prof.dept-of.

i Person

m1m2 m3m4 m5 m6

sl s2 s3
gl 50 10 50
g2l 40 0 20
Student
N
/ Applic—-freqency

m1 m2 m3m4 m5 mém7 m8 m9
100101000
100110110
101100001

ml=m.gradno—of,m2=m.whatprogram,
m3=supervisor—of,m4=Student.stuno—of,

m9=Person.whatname.

m1m2 m3m4 m5 m6m7 s1

sl s2

s3

ql
q2
q3

0 60 10
40 5 30
10 1020

m5=Student.owing, m6=Student.dept-of,
m7=Person.ssno-of, m8=Person.address,

s2

s3

1100001
1000111
1101001

0 10
40 0

ql
q2
q3

20
0

20 20 20

ml=m.empno-of,m2=status,
m3=dept-of,m4=whatsalary,
mb5=students—-of, m6=Student.stuno-of,
m7=Person.whatname.

sl s2 s3

gl|l011010

g2|110001

30 20 0
50 0 40

ml=m.ssno-of,m2=m.whatname,
m3=m.age-in-year,m4=m.newaddr,
m5=Student.stuno-of, m6=Prof.empno-of.

Note: Person is a superclass of the class Student. Undergrad and Grad are subclasses of
Student while Dept and Prof are containing classes. Person is also its complex method class..

Figure 5: Method Usage/Application Frequencies for Related Classes

mom mom, M5 mg M7 m m, Mg my7 M M me

M, | 645 265 200 170 255 110190 M31200 60 75 0 200 60 60
m,|265 265 60 130 70 0 60 mM,| 60 260 70 0 170190 130
M3 200 60 200 60 75 O 60 Mgl 75 70 255110 255 0 70
m4 170 130 60 260 70 0 190 m7lo0 0 110110 110 0 O
mg| 255 70 75 70 255 110 0O My1| 200 170 255110 645 190 265
Mg(110 0 0 0 110 110 0O M,|60 190 0 O 140230 60
M7|140 60 60 190 0 0 230 mg|60 130 70 0 26560 265
(@) Method Affinity matrix (b) Clustered Method Affinity matrix
mg M g m, M5 M6 my

011 0 00 1 1 0

Oj1 111001

031 010010

g1 100000

951 0 10100

Js|1 0 00001

g7/1 1 00000

g1 101000

g0 0 00 0 0 1

Oio/1 0 00 0 0 1

01170 0 00 0 0 1

01201 0 00 0 0 0

(c) Modified Method Usage matrix

For matrices (a) to (c);)
My = m.stuno—of, m, = m.dept-of, mg = m.owing,
M, = m.course-taken, Mg = Person.ssno-of, Mg = Person.age—in-year,
m7 = Person.whatname.

For matrix (c);
O, to gg) represent application accesses as in the original method usage matrix of class (Student)

(@4 to dg) represent application accesses through methods of subclass (Grad).
@7 to dg) represent application accesses through methods of containing class (Dept)
Q9 to g,)represents application accesses through methods of containing class (Prof)
U12 represents application accesses through methods of complex method class (Person).

Figure 6: Method/Clustered Affinity and Modified Method Usage Matrices

determine a performance threshold below which dynamic redesign is required so the
system will continue to meet its performance goals. The current research is attempt-
ing to determine if these techniques can be modified so that each iteration of the

design process can be accomplished by only analyzing new data added to the system
while updating those fragments that had been previously allocated. Furthermore, we
are working on hybrid fragmentation schemes for more complex class models.

References

1]

S. Chakravarthy, J. Muthuraj, R. Varadarajan, and 5. B. Navathe. An Objective
Function for Vertically Partitioning Relations in Distributed Databases and its

Analysis. Distributed and Parallel Databases, 2(1):183-207, 1993.

D. Cornell and P.S. Yu. A Vertical Partitioning Algorithm for Relational Data-
bases. In Proceedings of the Third International Conference on Data Engineering.

IEEE, 1987.

C.I. Ezeife and Ken Barker. Vertical Class Fragmentation in a Distributed
Object-Based System. In Proceedings of the Second International Symposium
on Applied Corporate Computing, ISACC, volume 2(1). Texas A & M Univer-
sity, 1994. Monterrey, Mexico, October,Vol.2, No.1, pp. 43-52.

C.I. Ezeife and Ken Barker. Vertical Class Fragmentation in a Distributed Object
Based System. Technical Report TR 94-02, Univ. of Manitoba Dept of Computer
Science, April 1994.

C.I. Ezeife and Ken Barker. A Comprehensive Approach to Horizontal Class
Fragmentation in a Distributed Object Based System. International Journal of
Distributed and Parallel Databases, 1, 1995.

J.A. Hoffer and D.G. Severance. The Use of Cluster Analysis in Physical Data-
base Design. In Proceedings of the 1st International Conference on Very Large
Databases. Morgan Kautmann Publishers, Inc, 1975. Vol 1, No.1.

K. Karlapalem, S.B.Navathe, and M.M.A.Morsi. Issues in Distribution Design
of Object-Oriented Databases. In M. Tamer Ozsu, U. Dayal, and P. Valduriez,
editors, Distributed Object Management, pages 148-164. Morgan Kaufmann Pub-
lishers, 1994.

S.B. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical Partitioning Al-
gorithms for Database Design. ACM Transactions on Database Systems, 9(4),
1984.

[9] M.T. Ozsu and P.Valduriez. Principles of Distributed Database Systems. Prentice
Hall, 1991.

[10] G. Pernul, K. Karalapalem, and S.B. Navathe. Relational Database Organiza-
tion Based on Views and Fragments. In Proceedings of the Second Internationa
Conference on Data and Expert System Applications, Berlin, 1991.

