
Vertical Fragmentation For Advanced ObjectModels in a Distributed Object Based System�C.I. Ezeife and Ken BarkerAdvanced Database Systems LaboratoryDepartment of Computer ScienceUniversity of ManitobaWinnipeg, Manitoba, Canada R3T 2N2Tel.: (204) 474-8832FAX: (204) 269-9178fchristie,barkerg@cs.umanitoba.caAbstractMany object based systems exist that support some form of distribution.Optimal application performance on distributed object based systems demandsaccurate class fragmentation and the subsequent allocation of these fragmentsto distributed sites. Vertical fragmentation must minimize application execu-tion time by splitting a class so that all class attributes and methods frequentlyaccessed together are grouped together into a single fragment. This paper de-scribes a fragmentation algorithm that statically creates a set of fragments forthe most complex object model: namely, one that supports inheritance andincludes a part{of hierarchy, and whose method invocation structure is basedon a nested transaction model. Our approach consists of grouping into a frag-ment, all attributes and methods of the class frequently accessed together byapplications running on either this class, its descendant classes, its containingclasses or its complex method classes.�This research was partially supported by the Natural Science and Engineering Research Council(NSERC) of Canada under an operating grant (OGP-0105566) and a grant from Manitoba Hydro.

1 IntroductionDistributed database design is a two step process. First, database entities are frag-mented and secondly, the fragments are allocated to distributed sites. Two approachesare used in distributed database design - top-down and bottom-up. The top-downapproach entails generating a set of local conceptual schemas from a global concep-tual schema (GCS) and the access pattern information. The GCS describes the globaldatabase entities and their relationships while the LCS describes the database enti-ties at each local site and their relationships [9]. The input to the design process isobtained from an earlier static and system requirements analysis which de�nes theenvironment of the system and collect an approximation of both the data and pro-cessing needs of all potential database users. Our entity of distribution is a classfragment and the top-down approach is used.A distributed object based system (DOBS) is a collection of local object basesdistributed among di�erent local sites, interconnected by a communication network.A DOBS supports an object oriented data model including features of encapsulationand inheritance. The data in a DOBS consists of a set of encapsulated objects. Thedata values (attribute values) are bundled together with the methods (procedures) formanipulating them to form an encapsulated object. Objects with common attributesand methods belong to the same class and every class has a unique identi�er. Inher-itance allows reuse and incremental rede�nition of new classes in terms of existingones. Parent classes are called superclasses while classes that inherit attributes andmethods from them are called subclasses. The database contains a root class calledRoot, and Root is an ancestor of every other class in the database. The overall inher-itance hierarchy of the database is captured in a class lattice. A class is an orderedrelation C = (K,A,M,I) whereK is the class identi�er,A the set of attributes,M theset of methods and I is the set of objects de�ned using A andM1. There is an objectidentifying attribute oid which is a member of the set of attributes A. The oid couldbe either a system de�ned object identi�er or a user-de�ned key attribute. Verticalfragmentation is the process of breaking up of a class into a set of possibly smallerclasses called vertical fragments. Each object in a vertical fragment is a portion of theoriginal object in the original class. In e�ect, each vertical fragment (Cv) of a classcontains its class identi�er, and all of its instance objects for only some of its methods(M0 � M) and some of its attributes (A0 � A). Thus, Cv = (K,A0,M0,I). Twotypes of attributes in a class are possible (simple and complex). Simple attributeshave only primitive attribute types that do not contain other classes as part of them.Complex attributes have domains in another class. This is often referred to as a1We adopt the notation of using calligraphic letters to represent sets and roman fonts for non-setvalues.

\part{of" or composition hierarchy. Two possible method structures in a distributedobject based system are simple and complex methods. Simple methods are those thatdo not invoke other methods of other classes. Complex methods are those that caninvoke methods of other classes. The classes making up the DOBS are classi�ed basedon the nature of the attributes and methods they contain as discussed earlier [5]. Al-though two basic method types exist, a simple method of a contained (part-of) classis referred to as a simple method because it is a simple method of a class that iscontained in another class. Thus, the variety of class models that could be de�ned ina DOBS are: class models consisting of simple attributes and simple methods, classmodels consisting of complex attributes and contained simple methods, class modelsconsisting of simple attributes and complex methods, and class models consisting ofcomplex attributes and complex methods. This classi�cation enables us accommo-date all the necessary features of object orientation and provide solutions for objectbases that are structured in various ways. Distributed object based design enhancesperformance by organizing database entities in fragments such that the amount ofirrelevant data accessed by applications is reduced while reducing the amount of datathat needs to be transferred between sites.Many distributed and client/server object based systems exist which will ben-e�t from fragmentation [7]. A partial list of bene�ts include: Di�erent applicationsaccess or update only portions of classes so fragmentation will reduce the amount ofirrelevant data accessed by applications. Fragmentation allows greater concurrencybecause the \lock granularity" can accurately reect the applications using the objectbase. Fragmentation allows parallel execution of a single query by dividing it intoa set of subqueries that operate on fragments of a class. Fragmentation reduces theamount of data transferred when migration is required. Fragment replication is moree�cient than replicating the entire class because it reduces the update problem andsaves storage.The overhead and di�culty involved in implementing distributed design tech-niques include the generation of inputs from static analysis. Earlier work has arguedthat since 20% of user queries account for 80% of the total data accesses, this anal-ysis is feasible [9]. However, major changes in a domain would entail a re-analysis ofthe system and re-running of the distributed design algorithms. Future research willinvestigate how these can be incorporated into a dynamic system.This paper reviews possible DOBS models as initially presented in [5], and con-tributes by presenting algorithms for vertically fragmenting the most complex classmodel consisting of complex attributes with complex methods. The balance of thepaper is organized as follows. We complete this section by briey reviewing previouswork on distributed database design. Section 2 presents vertical fragmentation algo-rithm for class model consisting of complex attributes and complex methods. Finally,Section 3 concludes and suggests future research directions.

1.1 Related WorkAlgorithms that fragment relations horizontally and vertically exist. Previous workon relational vertical fragmentation is reviewed and then previous work on fragmen-tation in DOBS.Vertical Fragmentation (relational): Work on vertical fragmentation in the re-lational data model includes Ho�er and Severance [6], Navathe et al. [8], Cornell andYu [2], �Ozsu and Valduriez [9] and Chakravarthy et al. [1].Ho�er and Severance [6] de�ne an algorithm that clusters attributes of a data-base entity based on their a�nity. Attributes accessed together by applications havehigh a�nity so the Bond Energy Algorithm [9] is used to form these attribute clusters.Navathe et al. [8] extends Ho�er's work by de�ning algorithms for grouping attributesinto overlapping and nonoverlapping fragments. Cornell and Yu [2] optimized thiswork by developing an algorithm that obtains an optimal binary partitioning forrelational databases. �Ozsu and Valduriez [9] discuss this earlier work on vertical par-titioning for distributed databases using the access frequency information and theBond Energy Algorithm. Chakravarthy et al. [1] argue that earlier algorithms forvertical partitioning are ad hoc, so they propose an objective function called the Par-tition Evaluator to determine the \goodness" of the partitions generated by variousalgorithms.Vertical Fragmentation (objects): Karlapalem et al. [7] de�ne issues involved indistribution design for an object oriented database system. They identify two typesof methods { simple and complex methods. They argue that a model consisting ofsimple methods can be vertically partitioned using techniques described by Navatheet al. [8], while complex methods require a method-based view (MBV). The MBVidenti�es the set of objects accessed by a method and the set of attributes or instancevariables accessed by the method. The sets are further grouped into sets of objectsand instance variables based on the classes to which they belong. This generatesthe set pairs of objects and instance variables (Oi,Ii) accessed from a class Ci by amethod. This is called methodmj's view of class Ci. They suggest the use of conceptsdeveloped by Pernul et al. [10] to fragment classes based on views.2 Vertical Fragmentation of Classes { ComplexAttributes and Complex MethodsThis section presents an algorithm for vertically fragmenting classes consisting ofcomplex attributes and complex methods. The database information needed is: theinheritance hierarchy, the attribute link to reect part-of hierarchy, and the methodlinks to reect the use of methods of objects of class Ci (being fragmented) by objects

of other classes. This algorithm is built on the algorithms used by simpler models [3].With this class model, vertical fragmentation aims at splitting a class such that allattributes and methods of the class most frequently accessed together by user appli-cations are grouped together. User applications that access attributes and methods ofthe class are of the following types: (1) those running directly on this class, (2) thoserunning on descendants of this class, (3) those running on containing classes whichuse this class as a type for their attributes, and (4) those running on complex methodsof other classes in the database that use methods of this class. Vertical fragmentationaims at splitting a class so all attributes and methods of the class most frequentlyaccessed together by user applications are grouped together. Encapsulation meansuser applications do not directly access an objects' attribute values except throughthe objects' methods. Since every method in the object accesses a set of attributesof the class, we �rst group only methods of the class based on application accesspattern applying the same technique used in [6, 8]. Secondly, we extend each methodgroup (fragment) to incorporate all attributes accessed by methods in this group. Aproblem with this second step is some attributes may belong to the reference set ofmore than one method, so deciding which method group these attributes belong in,so only non-overlapping vertical fragments are generated, is required. Two alterna-tive approaches for handling this conict are: (1) use a set of a�nity rules similarto those used in horizontal fragmentation schemes presented in [5] to decide whichfragment to place these overlapping attributes or (2) from the outset, group bothattributes and methods using attribute/method a�nity. We adopt the �rst approachbecause it drastically reduces the size of the matrices used as input to the BondEnergy and Partitioning algorithms of [8]. It also exploits the abstraction power ofthe object-oriented data model and thus performs better when there is low overlapin the attribute reference sets of the methods of a class. Thus, we want to place inone fragment those methods of a class usually accessed together by applications. Themeasure of \togetherness" is the a�nity of methods which shows how closely relatedthe methods are. We �rst present some de�nitions and assumptions before presentingthe algorithm. The explicit assumptions are:1. Objects of a subclass physically contain only pointers to objects of its super-classes that are logically part of them. In other words, an object of a classis made from the aggregation of all those objects of its superclasses that arelogically part of this object.2. Application and database information are pre-determined prior to the fragmen-tation process.The major data requirements related to applications is their access frequencies.Let Q = fq1,q2,: : : ,qqg be the set of user queries (applications) running object methods

from the set of all methods denoted fM i1:j ,M i2:k,: : :,M in:pg. Then, for each query qkand each method M i:j (the jth method of class Ci), we associate a method usagevalue denoted as use(qk, M i:j) where use(qk, M i:j) = 1 if method M i:j is referencedby query qk, 0 otherwise. Thus, for each class, we de�ne a method usage matrix.The cardinality of a class is the number of instance objects in the class (denotedcard(Ci)).De�nition 2.1 A user query accessing database objects is a sequence of method in-vocations on an object or set of objects of classes. The invocation of method j on classCi is denoted by M i:j and a user query qk is represented by fM i1:j,M i2:k,: : :,M in:pgwhere each M in a user query refers to an invocation of a method of a class object.De�nition 2.2 Method Attribute Reference MAR(M i:j) of a method M i:j of a classCi is the set of all attributes of Ci referenced by M i:j .De�nition 2.3 A null method of a class Ci, denoted NM(Ci), with respect to asuperclass Cs is a place holder for the superclass's method. A null method is denotedby: (original class.method name) where original class is the name of the superclassand method name is the method in the subclass.De�nition 2.4 An Extended Method of a class, Ci, (EM)i:k is either an originalmethod of the class, M i:j or a null method of the class NM(Ci).Thus, (EM)i = M ci jNM(Ci) .In e�ect, the extended method set of a class is the union of its actual methods andits null methods (null methods are used to refer to inherited methods).De�nition 2.5 Access frequency of a query is the number of accesses a user applica-tion makes to \data". If Q = fq1,q2,: : :,qqg is a set of user queries, acc(qi,dj) indicatesthe access frequency of query qi on \data" item dj where data item dj can be a class,a fragment of a class, an instance object of a class, an attribute or method of a class.De�nition 2.6 Instance Object join (�) between a pointer to an instance object ofa superclass and an instance object (Ij) of a class Ci returns the \complete" instanceobject consisting of the two classes that represent the actual instance object of theclass.To illustrate the aggregate returned by the object join function, we consider thefollowing example. In a database with Student a superclass of Grad, an instance

object I3 of Grad is represented as (Student pointer5) � fGrad3,Mary Smithg. Thismeans that the actual I3 of Grad is the quantity representing the instance object I5 ofthe superclass Student combined with the quantity fGrad3,Mary Smithg from Gradper se.The next four de�nitions may be used for computing the method a�nity matrixof the class being fragmented. The method a�nity matrix is the matrix to be clus-tered and gives the a�nity values between extended method pairs of the class beingfragmented. While subclass a�nity measures the access of the extended methodsthrough the descendant classes of this class, the method a�nity value accounts forthe use of this method pair both through the descendant classes and directly on theclass. The containing class a�nity is needed for complex hierarchy to incorporate theuse of the extended method pairs of the class being fragmented through its contain-ing classes, while complex method a�nity incorporates their use through its complexmethod classes.De�nition 2.7 Subclass a�nity of two extended methods (EM)i:j ,(EM)i:k of a classCi, denoted sa�((EM)i:j,(EM)i:k) is a measure of how frequently methods/attributesof the subclasses or descendant classes of Ci and methods/attributes of the class areneeded together by applications running at any particular site. sa�((EM)i:j ; (EM)i:k) =Pwo=1Ppkuse(qp;(EM)i:j)=1^use(qp;(EM)i:k)=1P8Sl refl(qp)accl(qp) ,where w is the number of subclasses, p is some application and Sl ranges over allsites.De�nition 2.8 Method A�nity between two extended methods of a class Ci,MA((EM)i:j,(EM)i:k) measures the bond between two extended methods of a classaccording to how they are accessed by applications.MA((EM)i:j; (EM)i:k) =(Ppkuse(qp;(EM)i:j)=1^use(qp;(EM)i:k=1P8sl refl(qp)accl(qp)) + saff((EM)i:j ; (EM)i:k)where refl(qp) is the number of accesses to methods ((EM)i:j,(EM)i:k) for each ex-ecution of application qp at site sl and accl(qp) is the application access frequencymodi�ed to include frequencies at di�erent sites. This generates the method a�nitymatrix (MA), an n * n matrix.De�nition 2.9 Containing Class a�nity between two extended methods (EM)i:j and(EM)i:k of a class Ci, ccaff((EM)i:j; (EM)i:k) is a measure of how frequently meth-ods/attributes of containing classes of Ci and methods/attributes of the class areneeded together by applications running at any particular site.cca�((EM)i:j ,(EM)i:k) =Pwo=1Pkkuse(qk ;(EM)i:j)=1^use(qk;(EM)i:k)=1P8Sl refl(qk)accl(qk)where w is the number of containing classes, Ci is the class and Sl ranges over allsites.

De�nition 2.10 Complex Method a�nity between two extended methods, (EM)i:jand (EM)i:k of a class Ci, cma�((EM)i:j ,(EM)i:k) measures how frequently meth-ods/attributes of other classes in the database and method/attributes of the class Ciare needed together by applications running at any particular site.cma�((EM)i:j,(EM)i:k) =Pdo=1Pkkuse(qk ;(EM)i:j)=1^use(qk ;(EM)i:k)=1P8Sl refl(qk)accl(qk)where d is the number of database classes, Ci is the class and Sl ranges over all sites.When one attribute becomes a member of more than one vertical fragment,we need to decide with which fragment it has the highest a�nity. The next threede�nitions are used to compute these a�nities. While attribute/attribute a�nity(AAA) computes the binding of this overlapping attribute with other attributes ofa fragment, the attribute/method a�nity binds this attribute with methods in thisfragment. Thus, attribute/fragment a�nity now becomes the combination of thea�nities between the attributes and methods of the fragments.De�nition 2.11 Attribute/Attribute A�nity AAA(Ai:j,Ai:m) between two attributesof the same class Ci is the sum of the access frequencies of all methods accessing thesetwo attributes together at all sites. AAA(Ai:j,Ai:m) =PkjAi:j2MAR(M in:k)^Ai:m2MAR((M in:k)Pml=1 accl(M in:k; Ai:j) + accl(M in:k; Ai:k)where accl(M in:k; Ai:j) is the number of accesses made to the attribute Ai:j by methodM in:k at site sl.De�nition 2.12 Attribute/Method A�nity AMA(Ai:j,M i:m) between an attributeand a method of the same class Ci is the sum of the access frequencies of all methodsusing this attribute and this method together at all sites. AMA(Ai:j;M i:m) =XkjAi:j2MAR(Ms:k)^M i:m2MMR(Ms:k) mXl=1 accl(M s:k; Ai:j) + accl(M s:k;M i:m)where M s:k belongs to some class Cs.De�nition 2.13 Attribute Fragment A�nity AFA(Ai:m,F i:j) is a measure of thea�nity between attribute Ai:m and vertical fragment F i:j, and is the sum of all theattribute/attribute and attribute/method a�nities between Ai:m and all attributesand methods of the class fragment F i:j. AFA(Ai:m; F i:j) =PkjAi:m2F i:j^Ai:k2F i:j)AAA(Ai:m; Ai:k) +PkjAi:m2F i:j^M i:k�nF i:j)AMA(Ai:m;M i:k).After generating non-overlapping method fragments, it is possible to obtainoverlapping fragments when attributes referenced by methods in the fragments areincluded. Since our objective is to make the �nal method/attribute fragments non-overlapping, a technique is needed to decide in which fragment it is most bene�cialto keep an overlapping attribute.

A�nity Rule 2.1 Place the overlapping attribute Ai:j in the fragment F i:k withmaximumAFA(Ai:j,F i:k) since this is the vertical fragment with which attribute Ai:jhas highest a�nity.The proposed algorithm is guided by the intuition that an optimal fragmen-tation keeps those attributes and methods accessed frequently together while pre-serving the inheritance, aggregation and method nesting hierarchies. Secondly, thefragments de�ned are guaranteed correct by ensuring they satisfy the correctnessrules of completeness, disjointness and reconstructibility. Completeness requires thatevery attribute or method belongs to a class fragment, while disjointness means everyattribute or method belongs to only one class fragment. Finally, reconstructibilityrequires that the union of all class fragments should reproduce the original class.The algorithms also require the following data structures and functions.Mci : set of all methods of class Ci.Cdesi : set of all descendant classes of Ci.Cconti : set of all containing classes of Ci.Ccmethi : set of all complex method classes of Ci.EM-set(Cdesi) : set of extended methods of Ci and its descendant classes.NM-set(Cdesi) : set of null methods of Ci and its descendant classes.EMapplic-set(Cdesi) : set of applications accessing extended methods of Ci and itsdescendant classes.L(Ci) : a tree rooted at node (class) Ci.MAR-set(Ci): set of method attribute references of of all methods of the class Ci.AF-set(Cdesi): set of application frequency matrices of the class and its descendants.MU-set(Cdesi): set of method usage matrices for class Ci and its descendant classes.UsageMtrx(L(Cdesi)) : a function that returns the original method usage matricesfor the class Ci and its descendant classes.children(Ck) : a function that returns the immediate children of the node (class) Ck.Thus, in vertically fragmenting this class model, we generate the method a�nitymatrix of the class iteratively in three increments as follows:1. This initial method a�nity matrix is generated using method usage and appli-cation frequency matrices of the class and its descendant classes.2. The method a�nity matrix is modi�ed using method usage and applicationfrequency matrices of the class and its containing classes.3. It is further modi�ed using method usage and application frequency matricesof the class and its complex method classes.

The steps for generating vertical fragments of classes consisting of complex attributesand complex methods are given below.StepsR1. Generate initial Method A�nity matrix for the class as:a. Obtain the method usage and application frequency matrices of the classand its descendants (use algorithm UsageMtrx [4]). This incorporates theinheritance link information using the class lattice with the objective ofgrouping together the set of methods/attributes of class Ci that are usedby applications running on its descendants. The algorithm UsageMtrxaccepts a tree rooted at a class Ci and generates the original method usagematrices for class Ci and other classes (subclasses of Ci in this case) onthe tree. To compute the method usage matrix of a class Ci on the tree, itassigns 1 to the matrix element identi�ed by (row qj, column (EM)ik) forsome application qj in the object base and some extended method (EM)ikof the class, if use(qj, (EM)ik) = 1, and 0 otherwise.b. De�ne the method a�nity matrix of the class from step (R1a) using theusage matrices and application frequency matrices of the class as de�ned inalgorithm UsageMtrx. By doing this, we are producing an initial methoda�nity matrix of the class that includes use of its methods by methods ofits descendant classes.R2. Modify the method a�nity matrix from step R1 to include use of the methodsthrough its containing classes.a. We repeat the operations in step R1 above, using a di�erent type of rela-tionship. Obtain the method usage and application frequency matrices ofthe class and its containing classes using the algorithm UsageMtrx with theLinkgraph [4] that returns a tree rooted at the class showing the attributelink between that class and other classes in the database.b. Modify method a�nity matrix of the class from step (R1b) using the usagematrices and application frequency matrices of the class and its containingclasses (from R2a).R3. Modify method a�nity matrix from step R2 above to include usage of methodsthrough complex method classes.a. We repeat the operations in step R2 above, using a di�erent type of rela-tionship { the complex method link. We �rst produce a link graph whichis a tree rooted at the class being fragmented Ci, that links it to all other

classes in the object base whose complex methods are represented in theintra class null method set of this class.b. Modify method a�nity matrix of the class from step (R2b) using the usagematrices and application frequency matrices of the class and its complexmethod classes (from R3a). This requires adding the cma� of each methodpair to their current method a�nity value.R4. Use the Bond Energy Algorithm developed [9] as presented in [8, 9] to generateclustered a�nity matrix of the class. This algorithm accepts method a�nitymatrix as input and permutes its rows and columns to generate a clustereda�nity matrix. The clusters are formed so that methods with larger a�nityvalues are together and the ones with smaller values are also together.R5. Modify the original method usage matrix to include method usages throughcomplex class and complex method classes.a. Generate a modi�ed method usage matrix of the class as described in thealgorithm MUsageMrtx [4] which modi�es the method usage matrix of aclass Ci to include a row for every application qj that accesses a null methodrepresentative of this class at all its descendant classes.b. Generate a modi�ed method usage matrix of the class as described in thealgorithm MUsageMrtx which modi�es the method usage matrix of a classCi to include a row for every application qj that accesses a null methodrepresentative of this class at all its containing classesc. Generate a modi�ed method usage matrix of the class as described in thealgorithm MUsageMrtx which modi�es the method usage matrix of a classCi to include a row for every application qj that accesses a null methodrepresentative of this class at all its complex method classes.R6. Use method-attribute reference information of the methods in each method frag-ment (MAR of de�nition 2.2) to include in each method fragment all attributesof the class accessed by methods of the fragment.R7. Since there may be problems of overlapping attributes in more than one frag-ment, use Attribute Placement A�nity Rule 2.1 to decide which vertical frag-ment to keep each overlapping attribute.The formal algorithm for vertically fragmenting a class consisting of complexattributes and complex methods is presented as algorithm Vert CA CM of Figure 1.This algorithm is the same as the VerticalFrag algorithm [3] of the model with simple

attribute and simple method except that the method a�nity matrix includes in addi-tion to subclass a�nity (sa�) between the extended methods, complex class a�nity(cca�) as well as complex method a�nity (cma�). Secondly, the modi�ed methodusage matrix used for the partitioning includes additional rows to account for methodusage of the class being fragmented by methods of containing classes and complexmethod classes. The VerticalFrag algorithm for the simplest model generates themethod a�nity matrix of a class Ci to be fragmented using the method usage andapplication frequency matrices of Ci and all its descendant classes. It then modi�esthe method usage matrix of Ci to account for usage of Ci's methods through its de-scendant classes. It then generates vertical method fragments of Ci using the binarypartition algorithm with modi�ed usage and method a�nity matrices of Ci as input.We simplify the presentation of the algorithm Vert CA CM for the most com-plex model by de�ning the vertical fragmentation algorithm in terms of the two keymatrices of the class Ci being fragmented: the method a�nity and the modi�edmethod usage matrices of the class. These two matrices constitute the major �nalinputs to the vertical fragmentation scheme before fragments are produced. Thus, themajor di�erence in the various schemes for fragmenting various class models lies inhow these two matrices are obtained. In describing the procedures involved in obtain-ing the matrices needed before running the vertical fragmentation algorithm, we shallattach the sequence of modi�cations performed on the matrix as its arguments. Thus,VerticalFrag(MA(Cdesi ; Cconti);MU(Cdesi ; Cconti) means the method a�nity matrix isproduced using method usage and application frequency matrices of the class and itsdescendant classes �rst, followed by a modi�cation using method usage and applica-tion frequency matrices of the class and its containing classes. Similarly, the methodusage matrix includes rows to account for method usage of the class by applicationsrunning on descendant classes and then containing classes. Running Verticalfrag onthe two matrices MA and MU entails submitting MA to the Bond energy algorithmfor clustering of methods and then partitioning the clustered MA using MU and thebinary partition algorithm. Finally, attributes are included in method fragments togenerate non-overlapping fragments.2.1 An ExampleThis example incorporates class models consisting of complex attributes and complexmethods. The extended complex class object base is as given in Figure 2 2. Thedatabase schema information consists of the class hierarchy of the object base and isgiven in Figure 3, while the class composition hierarchy is as in Figure 4.2For readability, we precede each key attribute of a class by k, each attribute by an a and eachmethod by an m.

Algorithm 2.1 (Vertical Fragments of Complex attributes and Complex Methods)Algorithm Vert CA CMinput: QCdesi : set of user queries accessing Ci and its descendant classes.Ci : the database class to fragment; L(C) : the class latticeCdesi : set of descendant classes of Ciicnm(Ci) : set of intra class null methods of Ci.Cconti : set of containing classes of CiCcmethi : set of complex method classes of Ci(EM)Ci: extended method set of Ci.MAR-set(Ci) : method attribute reference set of methods of CiAF-set(Cdesi): application frequency matrices of Ci and its descendants.AF-set(Cconti): application frequency matrices of Ci and its containing classes.AF-set(Ccmethi): applic. frequency matrices of Ci and complex method classes.output: F ci : set of vertical fragment s of Ci.var MU-set(Cdesi) : method usage matrices for class Ci and its descendants.MU-set(Cconti) : method usage matrices for class Ci and its containing classes.MU-set(Ccmethi) : method usage matrices for class Ci andits complex method classes.MAi : method a�nity matrix of Ci.CAi : clustered a�nity matrix Ci.MU i : the modi�ed method usage matrix of Ci.begin//Generate a set of attribute/method fragments of the class Ci //// using algorithm VerticalFrag with appropriate method a�nity //// and modi�ed method usage matrices. //VerticalFrag(MA(Cdesi ; ; Cconti ; Ccmethi);MU(Cdesi ; Cconti ; Ccmethi)) (1)end fVert CA CMgFigure 1: Vertical Fragmentation - Complex Attributes and Complex Methods

Person = fPerson,fa.ssno,a.name,a.age,a.addressg,fm.ssno-of,m.whatname,m.age-in-year,m.newaddrg,f I1 fPerson1,John James,30,WinnipeggI2 fPerson2,Ted Man,16,WinnipeggI3 fPerson3,Mary Ross,21,VancouvergI4 fPerson4,Peter Eye,23,TorontogI5 fPerson5,Mary Smith,40,TorontogI6 fPerson6,John West,32,VancouvergI7 fPerson7,Jacky Brown,35,WinnipeggI8 fPerson8,Sean Dam,27,TorontogI9 fPerson9,Bill Jeans,43,VancouvergI10 fPerson10,Mandu Nom,30,Winnipegg g gProf = Person pointer � fProf,fa.empno,a.status,a.dept,a.salary,a.studentg,fm.empno-of,m.status-of,m.students-of,m.whatsalary,m.dept-ofg,f I1 (person pointer5) �fProf1,asst prof,Computer Sc.,45000,students pointersgI2 (person pointer6) � fProf2,assoc prof,Math,60000,students pointers gI3 (person pointer9) � fProf3,full prof,Math,80000,students pointersgI4 (person pointer10) � fProf4,full prof,Math,82000,students pointersg g gStudent = Person pointer � fStudent,fa.stuno,a.dept,a.feespd,a.coursetakeng,fm.stuno-of,m.dept-of,m.owing,m.course-takengf I1 (person pointer1) � fStudent1,Math,Y,[]gI2 (person pointer4) � fStudent2,Computer Sc.,N,[521,632]gI3 (person pointer2) � fStudent3,Stats,Y,[211]gI4 (person pointer3) � fStudent4,Computer Sc.,N,[111,211]g g g gGrad = Student pointer � fGrad,fa.gradstuno,a.supervisorg,fm.gradno-of,m.whatproggf I1 (Student pointer1) � fGrad1,John WestgI2 (Student Pointer2) � fGrad2,Mary SmithgI3 (Student Pointer4) � fGrad3,Mary Smithg g gDept = fDept,fa.code,a.name,a.profs,a.studentsg,fm.code-of,m.name-of,m.number-of-profs,m.students-ofg,f I1 fDept1,fComputer Science,prof pointers,student pointersgI2 fDept2,fMath,prof pointers,student pointersgI3 fDept3,fStats,prof pointers,student pointersg g gFigure 2: The Complex Sample Object Database Schema

Root

Person

Prof Student

UnderGrad Grad

Dept

Figure 3: Complex Class Lattice
Prof

Dept

name

profs

student

{methods}

status

students

{methods}

Student

name

gpa

{methods}

dept

salary

Figure 4: Class Composition Hierarchy

Suppose we want to vertically fragment the class Student, a network of methodusage and application frequency matrices (obtained from an initial system analysis)needed to compute the method a�nity matrix of this class that incorporates sa�,cca� and cma� is given in Figure 5. The method a�nity value of a method pair inthe matrix is computed as follows:MA(M student:1,M student:2) = P1k=1P3l=1 accl(q1) + saffgrad(M student:1;M student:2).= (40+0+20) + (0+60+10) = 130 (initial MA).cca�(M student:1,M student:2)= ccaffdept(M student:1;M student:2) +ccaffprof(M student:1;M student:2).= [(50 + 15 + 0) + (25 + 40 + 5)] + 0 = 135MA(M student:1,M student:2) = 130 + 135 = 265 (after �rst modi� cation)The method a�nity, clustered a�nity and the modi�ed method usage matrices of theclass after executing line 1 of the algorithm 1 are given in Figure 6.The vertical fragments from the execution of the partition algorithm are F1 =fm1;m3;m4g and F2 = fm1;m2;m5;m6;m7g.3 ConclusionsThis paper reviews issues involved in class fragmentation in a distributed object basedsystem. The model characteristics incorporated include: the inheritance hierarchy,the nature of attributes of a class, and the nature of methods in the classes. The paperargues that vertical fragmentation algorithms of four types of class object models isrequired, namely, classes with simple attributes and methods, classes with attributesthat support a class composition hierarchy using simplemethods, classes with complexattributes using simple methods, and �nally classes with complex attributes andcomplexmethods. We provide descriptions and formal algorithm necessary to supportthe most complex class model.Current research e�orts include developing performance measurements to demon-strate the utility of our algorithm. Such performance analysis is di�cult because veryfew of these systems (or more speci�cally, applications on these systems) have beendeveloped. We are currently analyzing objectbased applications to determine theway they are being used with the goal of determining metrics for such a performanceanalysis. Ideally these techniques can be modi�ed so they can be used in a dynamicenvironment where data is added and removed. Unfortunately, such an environmentis very complicated because supporting it involves not only the accurate placementof fragments but also the need to transparently migrate object fragments while thesystem is being accessed by users. The initial step in this research requires that we

q1

q2

q3

m2 m3 m4m1
MUsage

m5 m6 m7

Applic−freqency

q1

q2

q3

s1 s2 s3

0

20

15 50
Student

UnderGrad

No applications

Dept

q1

q2

q3

m1 m2 m3m4 m5 m6m7 m8

1 1 0 1 1 1 0 0

1 1 0 1 1 1 1 0

1 1 1 0 0 0 0 1

q1

q2

q3

s1 s2 s3

50 15 0

25 40 5

10 0 30

m1=m.code−of,m2=m.name−of,
m3=m.number−of−prof,m4=m.students−of,
m5=Student.stuno−of, m6=Student.dept−of,
m7=Student.coursetaken, m8=Prof.dept−of.

 1 0 0 0 1 1 0

 1 1 1 1 0 0 1

 1 0 1 0 0 0 0

m1 = stuno−of; m2=dept−of,
m3 = owing; m4=coursetaken,
m5 = Person.ssno−of;m6=Person.age−in−year,
m7 = Person.whatname.

Grad

q1

q2

q3

m1 m2 m3m4 m5 m6

q1

q2

q3

s1 s2 s3m7 m8 m9

0 60 10

40 5 30

10 10 20

1 0 0 1 0 1 0 0 0

1 0 0 1 1 0 1 1 0

1 0 1 1 0 0 0 0 1

m1=m.gradno−of,m2=m.whatprogram,
m3=supervisor−of,m4=Student.stuno−of,
m5=Student.owing, m6=Student.dept−of,
m7=Person.ssno−of, m8=Person.address,
m9=Person.whatname.

Prof

q1

q2

q3

m1 m2 m3m4 m5 m6

q1

q2

q3

s1 s2 s3m7

0 10 20

40 0 0

20 20 20

1 1 0 0 0 0 1

1 0 0 0 1 1 1

1 1 0 1 0 0 1

m1=m.empno−of,m2=status,
m3=dept−of,m4=whatsalary,
m5=students−of, m6=Student.stuno−of,
m7=Person.whatname.

Person

q1

q2

m1 m2 m3m4 m5 m6

0 1 1 0 1 0

1 1 0 0 0 1

q1

q2

s1 s2 s3

50 0 40

30 20 0

m1=m.ssno−of,m2=m.whatname,
m3=m.age−in−year,m4=m.newaddr,
m5=Student.stuno−of, m6=Prof.empno−of.

50 10 50

40 0

Note: Person is a superclass of the class Student. Undergrad and Grad are subclasses of
Student while Dept and Prof are containing classes. Person is also its complex method class..Figure 5: Method Usage/Application Frequencies for Related Classes

(a) Method Affinity matrix (b) Clustered Method Affinity matrix

m
4

m2

m3

m
4

m 1m3

m 1

m2

m5

m6

m7

m5

m6

m7m
4

m2

m3

m
4

m 1 m3

m 1

m2

m5

m6

m7

m5

m6

m7

(c) Modified Method Usage matrix

m6 m7m3
m5m2

4q

10q

m
4

m 1

1q

2q
3q

5q
6q

7q

8q

9q

m7

m 1 m2 m3m
4 m5 m6

For matrices (a) to (c);

9q

3q1q to()

6q4q to()

7q 8qto()

For matrix (c);
represent application accesses as in the original method usage matrix of class (Student)
represent application accesses through methods of subclass (Grad).

represents application accesses through methods of containing class (Prof)
represents application accesses through methods of complex method class (Person).

= m.stuno−of, = m.dept−of, = m.owing,
= m.course−taken, = Person.ssno−of, = Person.age−in−year,
= Person.whatname.

represent application accesses through methods of containing class (Dept)

to()q11
q12

1 1 0 0 0 0 0

 1 0 1 0 1 0 0
1 0 0 0 0 0 1
1 1 0 0 0 0 0
1 1 0 1 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 1

q11
q12

0 0 0 0 0 0 1

1 0 0 0 0 0 0

 265 265 60 130 70 0 60

200 60 200 60 75 0 60

 170 130 60 260 70 0 190

140 60 60 190 0 0 230

1 0 0 0 1 1 0

1 1 1 1 0 0 1
1 0 1 0 0 1 0

645 265 200 170 255 110 190

110 0 0 0 110 110 0

255 70 75 70 255 110 0

200 60 75 0 200 60 60

 60 260 70 0 170 190 130

 75 70 255 110 255 0 70

 0 0 110 110 110 0 0

200 170 255 110 645 190 265

 60 190 0 0 140 230 60

 60 130 70 0 265 60 265

Figure 6: Method/Clustered A�nity and Modi�ed Method Usage Matrices

determine a performance threshold below which dynamic redesign is required so thesystem will continue to meet its performance goals. The current research is attempt-ing to determine if these techniques can be modi�ed so that each iteration of thedesign process can be accomplished by only analyzing new data added to the systemwhile updating those fragments that had been previously allocated. Furthermore, weare working on hybrid fragmentation schemes for more complex class models.References[1] S. Chakravarthy, J. Muthuraj, R. Varadarajan, and S. B. Navathe. An ObjectiveFunction for Vertically Partitioning Relations in Distributed Databases and itsAnalysis. Distributed and Parallel Databases, 2(1):183{207, 1993.[2] D. Cornell and P.S. Yu. A Vertical Partitioning Algorithm for Relational Data-bases. In Proceedings of the Third International Conference on Data Engineering.IEEE, 1987.[3] C.I. Ezeife and Ken Barker. Vertical Class Fragmentation in a DistributedObject-Based System. In Proceedings of the Second International Symposiumon Applied Corporate Computing, ISACC, volume 2(1). Texas A & M Univer-sity, 1994. Monterrey, Mexico, October,Vol.2, No.1, pp. 43-52.[4] C.I. Ezeife and Ken Barker. Vertical Class Fragmentation in a Distributed ObjectBased System. Technical Report TR 94-02, Univ. of Manitoba Dept of ComputerScience, April 1994.[5] C.I. Ezeife and Ken Barker. A Comprehensive Approach to Horizontal ClassFragmentation in a Distributed Object Based System. International Journal ofDistributed and Parallel Databases, 1, 1995.[6] J.A. Ho�er and D.G. Severance. The Use of Cluster Analysis in Physical Data-base Design. In Proceedings of the 1st International Conference on Very LargeDatabases. Morgan Kaufmann Publishers, Inc, 1975. Vol 1, No.1.[7] K. Karlapalem, S.B.Navathe, and M.M.A.Morsi. Issues in Distribution Designof Object-Oriented Databases. In M. Tamer Ozsu, U. Dayal, and P. Valduriez,editors, Distributed Object Management, pages 148{164. Morgan Kaufmann Pub-lishers, 1994.[8] S.B. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical Partitioning Al-gorithms for Database Design. ACM Transactions on Database Systems, 9(4),1984.

[9] M.T. Ozsu and P.Valduriez. Principles of Distributed Database Systems. PrenticeHall, 1991.[10] G. Pernul, K. Karalapalem, and S.B. Navathe. Relational Database Organiza-tion Based on Views and Fragments. In Proceedings of the Second InternationaConference on Data and Expert System Applications, Berlin, 1991.

