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AbstractThis paper introduces the theory of a particular kind of computation domainscalled concrete domains. The purpose of this theory is to �nd a satisfactoryframework for the notions of coroutine computation and sequentiality of eval-uation.
Diagrams are emphasized because I believethat an important part of learning lattice theoryis the acquisition of skill in drawing diagrams.George Gr�atzer



1 Domains of computationIn general, we follow Scott's approach [Sco70]. To every syntactic object oneassociates a semantic object which is found in an appropriate semantic domain.For technical details, we follow [Mil73] and [Plo78] rather than Scott.De�nition 1.1 A partial order is a pair < D;�> where D is a non-emptyset and � is a binary relation satisfying:i) 8x 2 D x � x (re
exivity)ii) 8x; y 2 D x � y; y � x) x = y (antisymmetry)iii) 8x; y; z 2 D x � y; y � z ) x � z (transitivity)One writes x < y when x � y and x 6= y. Two elements x and y are comparablewhen either x � y or y � x. When this is not the case, the elements x and yare incomparable and this relation is written x k y. A partial order in whichany two elements are comparable is a chain.Usual terms: In a partial order < D;�>, let H be a subset of D and x anelement of H . The element x is an upper bound of H i� 8y 2 H y � x. It is alower bound of H i� 8y 2 H x � y. It is a least upper bound (lub) of H i� itis an upper bound of H and8z upper bound of H x � zIt is a greatest lower bound (glb) of H i� it is a lower bound of H and8z lower bound of H z � xWhen x is a lub (resp. glb) of H , one writes x = SH (resp. x = TH).If H = fa; bg, these notations are shortened to x = a _ b and x = a ^ brespectively.Two elements x and y in D are compatible if fx; yg has an upper bound.This relation is noted x " y, and its complement, the incompatibility relation,is written x#y.An element x in H is a maximum i� x = SH . It is a minimum i� x = TH .De�nition 1.2 In a partial order < D;�> a subset X of D is directed i�X is non-empty and8x1; x2 2 X 9x3 2 X : x1 � x3; x2 � x31



Remark: By de�nition the set which is the support of a chain is a fortioridirected.De�nition 1.3 A partial order < D;�> is complete i�i) D has a minimum element ?ii) Any directed subset X of D has a least upper boundDe�nition 1.4 A partial order < D;�> is conditionally complete i� anysubset X of D that has an upper bound has a least upper bound.Remarks:i) Since D is non-empty, the empty set ; has an upper bound. Hence if< D;�> is conditionally complete, D must have a minimum element? = S ;ii) The terminology used here, although standard, may not be ideal since apartial order may be complete without being conditionally complete.Proposition 1.1 A complete partial order < D;�> is conditionally completei� every pair of compatible elements < x; y > has a least upper bound x _ y.Proof: Consider a complete partial order < D;�> in which every pair ofcompatible elements has a least upper bound and let X be a bounded subsetof D. If X = ; then SX = ?. If X is reduced to a single element x, this x isthe least upper bound of X . If X contains exactly two elements x and y, andhas an upper bound, then x and y are compatible and SX = x _ y.Consider now a �nite subset X ofD that has an upper bound, with jX j � 2and X = X 0 _[fxg. Since X has an upper bound, so does X 0 which has, byinduction hypothesis, a least upper bound SX 0. As any upper bound of Xmust dominate both SX 0 and x, these elements must be compatible and henceSX = SX 0 _ x. Now if X is in�nite, let Y be the set of least upper boundsof its �nite subsets. The set Y is directed, so it has a least upper bound SY .For any x in X , x � SY since fxg is a �nite subset for which SY is an upperbound. Since any upper bound of X must at least dominate SY we obtain[X =[ YThe converse is trivial. 2 2



Proposition 1.2 In a conditionally complete partial order < D;�>, anynon-empty subset X of D has a greatest lower bound TX.Proof: Let Y be the set of elements in D dominated by X . Since X is non-empty, some x in X dominates Y . Thus Y has a lub SY . For any x in X itis the case that 8y 2 Y y � x hence also SY � x. So SY is a lower bound ofX , and S Y = TX . 2De�nition 1.5 In a partial order < D;�> a subset X of D is consistent i�any two elements in X are compatible.De�nition 1.6 A partial order < D;�> is coherent i� any consistent subsetX of D has least upper bound.Remarks:1. A subset that has an upper bound is consistent. Hence if a partial orderis coherent it is a fortiori conditionally complete.2. The empty set ; is consistent. Hence it has a least upper bound ?. Adirected set is consistent. Hence if a partial order is coherent it is afortiori complete.Proposition 1.3 A complete partial order < D;�> is coherent i� any con-sistent triple < x; y; z > has a least upper bound.Proof: Any consistent X that has at most 3 elements obviously has a leastupper bound. Now consider a consistent �nite subset X = fx1; x2; : : : ; xngof D such that jX j = n � 3. Assume, by induction hypothesis, that anyconsistent subset Y such that 1 � jY j < n has a lub. Now the set fx1 _x2; x2 _ x3; : : : ; xn�2 _ xn�1; xng contains at most n � 1 elements. Any twoelements in it are compatible, becausei) if both are of the form xi_xi+1, they are dominated by Sfx1; x2; : : : ; xn�1g,which exists by induction hypothesis.ii) xi _xi+1 and xn are compatible since the triple fxi; xi+1; xng is consistentand thus admits a lub.Consequently, using again the induction hypothesis, the set X has a lub. Ifnow X is in�nite, the set Y of the lubs of the �nite subsets of X is a directedset and we have SX = SY . 2 3



De�nition 1.7 In a partial order < D;�>, an element x is isolated (orcompact) i� in any directed set with a lub that dominates x one can �nd anelement y that dominates x. In symbols:8X � D; X directed x �[X ) 9y 2 X x � yNotation: The set of isolated elements less than x is noted A(x). An elementin A(x) is called an approximant of x. The set of all isolated elements in< D;�> is written A(D).Remark: An element x is isolated i� x 2 A(x). Hence A(D) = Sx2DA(x)Proposition 1.4 In a conditionally complete partial order < D;�>i) If two isolated elements a and b are compatible then a _ b is isolated.ii) For any x, the set A(x) is directed.Proof:i) Since a and b are compatible, their lub a_b exists. Consider now a directedset S such that a _ b � SS. Since a and b are isolated, from a � SSand b � SS we deduce that there are two elements a0 and b0 in S witha � a0 and b � b0. Since S is directed, there is a c in S with a0 � c andb0 � c hence a � c and b � c and thus a _ b � c. Hence a _ b is isolated.ii) If a and b are two approximants of x, the element a _ b is isolated by i)and dominated by x, thus it is also an approximant of x. Hence A(x) isdirected. 2De�nition 1.8 A partial order < D;�> is algebraic i� for any x in D theset A(x) is directed and x =[A(x)If additionally A(D) is denumerable, < D;�> is !{algebraic.De�nition 1.9 We will call computation domain a coherent and !{algebraicpartial order.Notation From now on we abandon the precise notation< D;�>. We merelyuse the same letter for the set and the partial order, unless more precisionbecomes necessary.Lemma 1.1 In a computation domain x � y , A(x) � A(y).4



Proof: From left to right the implication is immediate. Conversely, sinceA(x) and A(y) are directed they have lubs that verify SA(x) � SA(y) andby algebraicity we deduce SA(x) = x � y = SA(y). 2Corollary 1.1 In a computation domain, if x is isolated and x < y then thereis an approximant z of y with x < z � y.Proof: Let t be an element of the necessarily non empty set A(y)nA(x). Sincex and t are both approximants of y, so is x _ t. Taking z = x _ t, we havex < z � y. 2Corollary 1.2 If an element y in a computation domain is not isolated,then one can �nd an in�nite strictly increasing chain of isolated elementsf?; x1; x2; : : : ; xn; : : :g approximating y, i.e. with? < x1 < x2 < � � � < xn < � � � < yProof: The minimum element ? is isolated and we have ? < y. Now assumethat we have a chain f?; x1; x2; : : : ; xn�1g of n isolated elements such that? < x1 < x2 < � � �< xn�1 < ySince xn�1 is isolated, one can �nd by the previous Corollary an isolatedelement xn with xn�1 < xn � y. But since y is not isolated, certainly xn < yand the chain has been extended to contain n+ 1 elements. 2Proposition 1.5 The cartesian product of a countable number of computationdomains is a computation domain.Proof: Let � be an ordinal, 1 � � � ! and f< Di;�i>gi<� a fam-ily of computation domains. An element x in D = Qi<�Di is a vector< x0; x1; : : : ; xi; : : : >. The set D inherits the relation � de�ned compo-nentwise: 8x; y 2 D x � y () 8i < � xi � yiTwo elements in D are compatible i� they are compatible componentwise.Indeed, if x and y are compatible, there exists z with x � z and y � zhence 8i xi �i zi and 8i yi �i zi, so x and y are compatible componentwise.Conversely, if 8i 9zi xi �i zi; yi �i zi, the vector z =< z0; z1; : : : ; zi; : : : >dominates x and y which are thus compatible. Similarly, if x " y we havex _ y =< x0 _ y0; : : : ; xi _ yi; : : : >. A subset X of D is consistent i� it is5



?�������1�AAAAAA0�Figure 1: The domain Tconsistent componentwise. Hence if each of the partial orders < Di;�i> iscoherent, so is < D;�>.Let us prove now that < D;�> is !-algebraic. Consider the subset of Dde�ned by I = [i<�fxjxi 2 A(Di) and 8j < �; j 6= i; xj = ?DjgThe elements of I are vectors all components of which are the minimumelement in the relevant domain, except possibly for the i-th component whichis an isolated element in Di. Any element in I is isolated in D. Indeed, let Xbe a directed subset of D with x � SX . Since the i-th component of X is adirected set and xi is isolated in Di, there exists zi in Xi with xi � zi. As wellfor any j with j < �; j 6= i we have xj = ?Dj �j zj so we obtain x � z.Consider now an arbitrary element x in D. The set Yx de�ned by Yx =fy j y 2 I; y � xg has a least upper bound S Yx since it is consistent. Ofcourse SYx � x. But since each of the < Di;�i> is !-algebraic we have also([ Yx)i =[(yijy 2 Yx) �[A(xi) = xithus SYx = x. Let Zx be the directed set obtain by adding to Yx the leastupper bounds of its �nite subsets. We still have SZx = x. Hence if x isisolated, there exists an element z in Zx with x � z. But z must be lessthan x, so z = x. An element in D is isolated i� it is the least upper boundof �nitely many elements of I. Hence D contains at most denumerably manyisolated elements. Futhermore, Zx is directed and x = SZx, so that thedomain is !-algebraic. We have shown that D is coherent and !-algebraic, soit is a computation domain.2Example: Let T =< f?; 0; 1g;�> be the three element computation domainwhere 0 k 1. The cartesian product of denumerably many copies of T is thecomputation domain T!. This domain is discussed in detail by Plotkin [Plo78]who shows that it is a universal domain in a precise mathematical sense.6



De�nition 1.10 Let < D;�> and < D0;�0> be two complete partial orders.A function f from D to D0 is continuous i�8X � D; Xdirected f([X) = 0[ff(x)jx 2 Xg(1)This de�nition is not very convenient to use. In a computation domain, wewill use the following characterization:Lemma 1.2 Consider two computation domains < D;�> and < D0;�0>.A function f from D to D0 is continuous i�( i) f is monotonic, i.e. 8x; y 2 D x � y ) f(x) � f(y)ii) 8e 2 A(f(x)) 9d 2 A(x) such that e �0 f(d)(2)Proof:a) We show �rst that (1) implies (2). Consider a function f verifying (1)and two elements x and y in D with x � y. The set fx; yg is directedsince y = x _ y. Therefore f(y) = f(x) _0 f(y). Hence f(x) and f(y)are comparable and f(x) �0 f(y). Thus f is monotonic. The image ofa directed set by a monotonic function is a directed set f(X) and inparticular, since for any x the set A(x) is directed, the set f(A(x)) isdirected. Let e be an arbitrary approximant of f(x). We havee �0 f(x) = f([A(x)) = 0[ f(A(x))Since e is isolated and f(A(x)) is directed, there exists an element d inA(x) with e � f(d).b) We show now that (2) implies (1). Let X be a directed subset ofD and f afunction from D to D0 verifying (2). Since f is monotonic, the set f(X)is directed and S0 f(X) �0 f(SX). To prove the converse inequalityf(SX) �0 S0 f(X) consider an arbitrary approximant e of f(SX). By(2) one can �nd d in A(SX) with e �0 f(d). Since d is isolated and Xis directed, from d � SX one deduces that there is an element x in Xsuch that d � x. We have f(x) �0 S0 f(X) and, since f is monotonic,f(d) �0 f(x) so 8e 2 A(f([X)) e �0 0[ f(X)and consequently A(f(SX)) � A(S0 f(X)). By Lemma 1.1 f(SX) �0S0 f(X) and �nally f(SX) = S0 f(X).27



Proposition 1.6 Consider the computation domains D1, D2, and D. A func-tion f from D1�D2 to D is continuous i� the functions f1 = �y:f(x1; y) andf2 = �y:f(y; x2) are continuous for any x1 in D1 and any x2 in D2.Proof: First, if f is continuous, so are the functions in the familyf1 and f2.Let us show this for family f1. Consider a directed subset S1 of D2, and thesubset S of D1 �D2 de�ned by S = f< x1; y > jy 2 S1g. Nowf1([2 S1) = f(x1;[2 S1) = f([S) =[ f(S) =[ f(x1; S1) =[2 f1(S1)Assume now conversely that the families of functions f1 and f2 are continuous.Then f is monotonic. Indeed, if < x1; y1 >�< x2; y2 > then f(x1; y1) �f(x2; y1) � f(x2; y2). Consider now a directed subset S of D1�D2, and let S1and S2 be its projections on D1 and D2. Take T = f< x; y > jx 2 S1; y 2 S2g.Because the families f1 and f2 are continuous we can write:f([X) = f([S1;[S2) =[ f(S1;[S2) =[ f(S1; S2) =[ f(T )Since S is directed and f is monotonic, we now that f(S) is directed. Further-more, S is included in T , so S f(S) � S f(T ). Take now an arbitrary element< x; y > in T . There are certainly two elements < x; y1 > and < x1; y > in Sbecause S1 and S2 are projections of S. Since S is directed, there is < x2; y2 >in S that dominates both, thus < x; y >�< x2; y2 >. As f is monotonic, weobtain S f(T ) � S f(S). We conclude f(SS) = S f(T ) = S f(S), thus f iscontinuous.2The result above generalizes trivially to functions with more than twoarguments.In a computation domain D, two elements x and y always have a greatestlower bound x ^ y (Proposition 1.2) and one can de�ne a function ^ from D2to D by ^ = �xy: x^ y.Proposition 1.7 If D is a computation domain ^ is a continuous functionfrom D2 to D.Proof: By the previous result, it is su�cient to prove that the functions^1 = �y:x^ y and ^2 = �y:y^x are continuous. Since ^ is commutative, it isin fact su�cient to prove that ^1 is continuous. We use the characterizationof Lemma 1.2.i) ^1 is monotonic: y1 � y2 ) x ^ y1 � x ^ y28



ii) Le e be an approximant of x ^ y. The element e is an approximant of xand y. So, taking this e in A(y) we have e � x ^ e = ^1(e). 2Theorem 1.1 (Knaster-Tarski) If D is a computation domain, any conti-nous function f from D to D has a least �xed point Y f andY f =[ffn(?)jn � 0gProof: Take S = ffn(?)jn � 0g. The set S is not empty because it contains? = f0(?). Since f is monotonic, it is trivial to show by induction that8n � 0 fn(?) � fn+1(?)hence S is a chain. Thus S has a least upper bound SS. Consider Y f = SS.Since f is continuous and S is directed:f(Y f) = f([S) =[ f(S) =[ffn(?)jn � 1gBut since ? is the minimum element of D[ffn(?)jn � 1g =[hffn(?)jn � 1g[f?gi =[S = Y fThus Y f = f(Y f) which shows that Y f is a �xed point of f . Consider nowany �xed point x of f . We have f0(?) = ? � x and if fn(?) � x, because fis monotonic fn+1(?) = f(fn(?)) � f(x) = x. Therefore S is dominated byx, and so is its lub Y f . Hence Y f is the least �xed point of f .2Notation: IfD and E are computation domains, we will note [D! E] the setof continuous functions from D to E. This space inherits an ordering relationde�ned by extensionality:8f; g 2 [D! E] f � g () 8x 2 D f(x) �E g(x)The constant function �x:?E is the minimum element in [D ! E]. Thefollowing result is fundamental.Theorem 1.2 If D and E are computation domains, the set [D! E] togetherwith its natural ordering is a computation domain.Proof: 9



a) Let F be a consistent subset of [D! E]. For any x in D the set ff(x)jf 2Fg is consistent and thus admits a lub gx. Let us show that the function�x:gx is continuous. Let X be a directed subset of D with lub zgz =[E ff(z)jf 2 FgSince all functions in F are continuous,gz = SEff(x)jx 2 X; f 2 Fg= SEfgxjx 2 Xghence �x:gx is the least upper bound of F in [D ! E]. Thus [D ! E]is coherent.b) We must show now that [D ! E] is !-algebraic. Consider the family offunctions indexed over A(D)�A(E) de�ned by:'d;e(x) = ( e if d � x?E otherwise (d 2 A(D); e 2 A(E))1. The functions in this family, called step functions, are continuousIndeed:i) 'd;e is monotonic (obvious)ii) Let a be an approximant of 'd;e(x). If 'd;e(x) = ?E , thena = ?E � 'd;e(?D) with ?D 2 A(x)If 'd;e(x) = e, then d � x thus d 2 A(x) since d is isolated.But then a � 'd;e(d) = e with d 2 A(x).2. The step functions are isolated elements of [D ! E]. Let F bea directed subset of [D ! E] such that 'd;e � SF . The resultobtained in part a) allows one to write:e = 'd;e(d) � ([F )(d) =[ff(d)jf 2 Fgbut e is isolated and ff(d)jf 2 Fg is a directed set. Thus thereexists a function g in F with e = 'd;e(d) � g(d). But now if x � dthen 'd;e(x) = e � g(d) � g(x), and otherwise 'd;e(x) = ?E � g(x)so that 'd;e � g. 10



3. Any continuous function in [D! E] is the least upper bound of thestep functions under it. De�ne S(f) = f'd;ej'd;e � fg. Remarkthat 'd;e 2 S(f) () e 2 A(f(d)). This obvious from left to rightbecause 'd;e(d) = e and from right to left by monotonicity of f .Using now the continuity of f8xf(x) = f(SA(x)) = Sd2A(x) f(d)= Sd2A(x);e2A(f(d)) e= Sd2A(x);e2A(f(d))'d;e(x)= Se2A(f(d))'d;e(x)So 8x f(x) = (SS(f))(x), thus f = SS(f)4. The isolated elements of [D ! E] are exactly the �nite unions ofstep functions. Consider an isolated element f in [D! E], and theset S 0(f) obtained in closing S(f) by �nite unions. The set S 0(f)is directed and we have f = SS(f) = SS0(f). Since f is isolated,there exists in S 0(f) an element g such that f � g. But since g isa �nite union of elements of S(f) we also have g � f . Thus f = gshowing that f is a �nite union of step functions.5. [D ! E] is !-algebraic. For all f we have f = SS(f) = SS0(f).Thus [D! E] is algebraic. As D and E have at most denumerablymany isolated elements, there exists only denumerably many stepfunctions, hence only denumerably many isolated elements in [D!E].We have proved that when D and E are computation domains, [D ! E]is coherent and !-algebraic, hence also a computation domain.2The theorem above allows one, starting from computation domains, toconstruct a hierarchy of computation domains such as [D ! E], [D ! [D !E]], [[D! E]! [D! E]] etc.2 Concrete domains of computationIn this section, we try to translate into mathematical form a number of ideasthat come from earlier research. It is di�cult to �gure out what is critical tothe well-functioning of a complex operational mechanism. In contrast, we havemore experience in �nding the general conditions under which a mathematicalresult is valid 1.1A similar approach is followed by J-J. L�evy in his Ph. D. Thesis [Lev78]11



The central result of this work is the Representation Theorem that, in asense indicates that we have been successful in our endeavor. Starting fromthe general idea of a computation domain, we justify progressively the needto restrict this notion until we reach the de�nition of a concrete computationdomain and study its properties.2.1 Initial motivationsIn the model theory of programming languages as developed starting with thework of Scott [Sco70, Sco76], there is no distinction between data and func-tions. A single mathematical structure, the computation domain is de�ned andall objects with which one computes are found in appropriate computation do-mains. This is not surprising because the main objective of this theory was,at least initially, to develop a functional model of the �-calculus of Church,language where these distinctions don't exist. Indeed certain programminglanguages such as ISWIM [Lan76], GEDANKEN [Rey72], ML [GRW78], etc.exhibit similar characteristics. However, most programming languages makea very clear distinction between data and procedures. Is it possible to redis-cover this distinction in the models of programming languages, i.e. throughthe study of their denotational semantics? Is it possible to analyze more pre-cisely the structure of computation domains so as to separate, for example,the domains whose structure is su�ciently simple that they don't need to beunderstood as function spaces?Examples:We call ? the single element computation domain, 0 the computation do-main with two elements, T =< f?; 0; 1g;�> the three element domain inwhich 0 and 1 are incomparable. These three spaces, as well as their carte-sian products in a �nite number of copies are clearly data spaces rather thanfunctional spaces.The examples above might lead one to partition computation domains intotwo classes, according to their being �nite or in�nite. Such a categorization ismuch too rough for two reasons:i) We will be unable to give a representation as a data structure for certain�nite domains.ii) On the other hand, certain in�nite domains must clearly be categorizedas data spaces. For example, this will be the case for N? and N , de�ned12



from the set N of natural numbers by:8><>: N? =< f?g [N ;�> with 8x; y 2 N x 6= y =) x k yN =< N [ f1g;�> where � is the natural order on Ncompleted by 8x 2 N; x <1We are going to characterize axiomatically a certain class of computationdomains. In this endeavour, we shall follow two fundamental principles:1. (M. Smyth) All axioms that we postulate specify a property of the iso-lated elements in a computation domain. Other elements are constructedfrom the stock of isolated elements by a limit mechanism; their proper-ties will therefore be deduced from the properties of isolated elements.2. The class of computation domains that we are trying to de�ne mustbe closed by certain elementary constructions, such as �nite or in�nitecartesian products, or taking upper sections (cf. section 1.2). However,it doesn't need to be closed by exponentiation, i.e. when constructingfunction spaces.2.2 The isolated elements axiomIsolated elements in a computation domain are meant to stand for �niteamounts of information. When dealing with data, we would like to be able toreason by induction on these elements. This implies that the set of isolatedelements should be well founded with respect to the relation � , i.e. that thereshould be no in�nite chain fx1; x2; : : : ; xn; : : :g withfx1 > x2 > � � �> xn > � � �gIn this way, an isolated element cannot be decomposed inde�nitely. We wantalso to express the intuitive idea that an isolated element can be built usingonly a �nite number of components. This leads to considering property I:Property IBetween any two distinct comparable isolated elements, any chain of iso-lated elements is �nite.Proposition 2.1 Let < D;�> be a computation domain satisfying propertyI. Consider an arbitrary element x in D and an isolated element y. If x isdominated by y, then x is isolated. 13



Proof: If x is not isolated, then by Corollary 1.2 there is an in�nite chain ofisolated elements f?; x1; x2; : : : ; xn; : : :g with? < x1 < x2 < : : : < xn < : : : < xIf y is isolated and x � y, then necessarily x < y. Hence the chainf?; x1; x2; : : : ; xn; : : : ; ygis an in�nite increasing chain of isolated elements between ? and y. Theexistence of this chain contradicts property I, so x is isolated.2Corollary 2.1 In a computation domain, Property I is equivalent to I1:Property I1Between any two distinct comparable isolated elements, any chain is �nite.Proof: Property I1 implies obviously Property I. Conversely, if x and y areisolated and x � y, then by the previous result, any element z such thatx � z � y is isolated. Since any chain between x and y contains only isolatedelements, it is �nite. 2De�nition 2.1 In a conditionally complete partial order < D;�>, an idealis a non empty subset J of D such that:i) 8x 2 J; 8y 2 D y � x =) y 2 J (i.e. J is downward closed)ii) 8x; y 2 J x " y =) x _ y 2 JCorollary 2.2 In a computation domain, property I is equivalent to propertyI2:Property I2 The set of isolated elements is a well founded ideal.Proof: If a computation domain D veri�es property I, then the set of itsisolated elements is an ideal by Proposition 1.4 and Proposition 2.1. SinceI implies I1, there is no in�nite decreasing chain in A(D). Hence property Iimplies property I2.Conversely, assume D has property I2. Consider an arbitray x less thansome isolated element y in D. There is no in�nite decreasing chain between xand y since A(D) is well-founded. If there were an in�nite increasing chainfx; z1; z2; : : : ; zn; : : : ; yg with x < z1 < z2 < � � � < zn < � � � < y14



one would have S zi = z � y. Now z is not isolated and z < y, whichcontradicts the hypothesis that A(D) is an ideal.Consider now any chain C between x and y. Since C does not containin�nite decreasing chains, C is an ordinal. If C is in�nite, then it contains thesmallest limit ordinal !. But ! contains an in�nite increasing chain, whichcannot be the case for C. Hence C is a �nite chain, and we conclude thatproperty I2 implies property I.2Examples: Domain D1 =< N [f1;>g;�> with the natural ordering on Nand 8x 2 N x <1 and 1 < > does not satisfy property I2 because A(D1) isnot an ideal (> is isolated, but1 is not). DomainD2 =< Z[f�1;+1g;�>with the natural ordering on Z and 8x 2 Z �1 < x < +1 does not verifyI2 because A(D2) is not well founded. However, all �nite domains, as well asN? and N have property I.De�nition 2.2 Consider a partial order < D;�> and two elements x and yin D. We say that y covers x i�:i) x < yii) 8z x � z � y =) x = z or y = zOne may also say that y is just above x. This relation is noted x �< y. Itsre
exive closure is written x =< yProposition 2.2 Consider a computation domain < D;�> with property I.If x and y are isolated elements in D, then we have x � y i�:� Either x = y� Or there exists a �nite sequence fz0; z1; : : : ; zng of elements in A(D)with z0 = x, zn = y and zi �< zi+1 for 0 � i < n.Proof: First, if such a sequence exists, then by transitivity x � y. Conversely,assume x < y. LetH be the set of chains with elements in A(D) with minimumx and maximum y. The setH is not empty because it contains in particular thechain fx; yg, and we can order it by inclusion. In the partial order < H ;�>there cannot be an in�nite increasing chain because < D;�> has property I.Let C = fz0; z1; : : : ; zng be a maximal element in < H ;�>; we will call sucha chain a maximal chain between x and y. Without loss of generality we mayassume z0 < z1 < � � � < zn. 15
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Figure 3: Sample in�nite domainsNow we must have zi �< zi+1 (0 � i < n), because otherwise one couldextend C with an isolated element z such that zi < z < zi+1 contradictingmaximality of C in < H ;�>. Similarly, it must be the case that z0 = x andzn = y.2From now on we will �nd it useful to represent con�gurations of elementsbelonging to a partial order, or partial orders themselves, by graphs calledHasse diagrams. The nodes in a diagram associated to < D;�> denoteelements in D and two nodes a and b are connected by an edge going upwardsi� a �< b in D. Simple conventions will be used to represent in�nite domains.As an example, Figures 2 and 3 show a number of partial orders that we havealready mentioned.Before proceeding with the study of computation domains that satisfy16



property I, we notice that only trivial function spaces have this property.Lemma 2.1 If D and E are computation domains, if D is in�nite and E hasat least two elements, then [D! E] does not satisfy property I.Proof: Observe �rst that if D has in�nitely many elements, then it has in-�nitely many isolated elements by Corollary 1.2. As well, if E has at least twoelements, then there is an isolated element e in E with ?E 6= e. Consider nowthe in�nite partial order < A(D);�D>. By Koenig's lemma:a) Either there exists an in�nite increasing chain of elements in A(D),b) Or there is an element d in A(D), and an in�nite set fdigi2N of elementsin A(D) with ( 8i 2 N d < di8i; j 2 N di k dj if i 6= jCase a. Consider an in�nite increasing chain fd1; d2; : : : ; dn; : : :g in A(D), i.e.such that d1 < d2 < � � � < dn < � � �. and the sequence of step functions 'di;e.This in�nite sequence of isolated elements in [D! E] is decreasing'd1;e > 'd2;e > 'd3 ;e > � � � > 'dn;e > � � �thus A([D! E]) is not well-founded and [D! E] does not have property I2.Case b. In that case we have 8i 2 N 'di;e < 'd;e since d < di. The set � offunctions f'di;egi2N has an upper bound. Since [D ! E] is a computationdomain, it has a least upper bound �. Naturally we have � � 'd;e. But since8i 2 N 'di;e(d) = ?E necessarily �(d) = ?e. But 'd;e(d) = e 6= ?E , so� < 'd;e(d).Let us show now that � is not isolated in [D ! E]. If � were isolated,there would exist a �nite subset J of N with � = Sj2J 'dj ;e. Take an integerk not in J . Since 'dk ;e(dk) = e and 'dk;e � � we have e � �(dk). But byhypothesis 8j 2 J dj k dkso that 'dj ;e(dk) = ?E and also �(dk) = ?E . Since e is di�erent of ?E , wehave a contradiction. So � is not isolated in [D ! E]. Then A([D ! E ]) isnot an ideal.We have shown in both cases that [D! E] does not satisfy I.2Remark: This lemma distinguishes sharply between domains that appear tobe very similar. For example, the domain [N? ! O] does not have property17



I. In contrast O!, the cartesian product of denumerably many copies of O,satis�es property I. This is because O! is only isomorphic to the set of strictfunctions in [N? ! O], i.e. the functions f such that f(?) = ?O. To be veryprecise, the non-strict function �x:>O in [N? ! O] is isolated and it does notcorrespond to any element in O!. But this function dominates the non-strictfunction  de�ned by:  (x) = ( >O if x 6= ?N??O if x = ?N?which is not isolated in [N? ! O] .De�nition 2.3 Consider a partial order < D;�> with a minimum element?. An atom is an element of D that covers ?, and we say that D is atomici� any element distinct from ? dominates an atom.In symbols: 8x 6= ?9y ? �< y � xProposition 2.3 A computation domain that veri�es property I is atomic.Proof: Consider �rst an isolated element x with x 6= ?. By Proposition2.2 there exists a �nite sequence fz0; z1; : : : ; zng of elements in A(D) with? = z0 �< z1 �< � � � �< zn = x. Hence z1 is an atom and ? �< z1 � x.If now x is not isolated, let e be an element in A(D) which is distinct from?. Such an element must exist, otherwise A(x) = f?g = A(?) and thus, byLemma 1.1, x = ?. Now we have just shown that there exists an element ywith ? �< y � e. By transitivity, we obtain ? �< y � x.2Property I and its Corollary, atomicity, are interesting properties for acomputation domain, and they seem to capture a certain intuition about datadomains. We will see now that these properties are not preserved under afundamental operation on computation domains.De�nition 2.4 Consider a partial order < D;�> and two elements x and yin D with x � y. The interval [x; y] is the set fzjx � z � yg and the uppersection of x, noted [x) is the set fzjx � zg. Of course, intervals and uppersections inherit the partial order �. 2Proposition 2.4 Intervals and upper sections of a computation domain arecomputation domains.2We also call [x;y] and [x) the partial orders thus de�ned18



Proof: As reasoning proceeds identically in both cases, we will only provethe result for upper sections. Consider an arbitrary upper section [x) in acomputation domain < D;�>. Any non empty consistent subset of [x) is aconsistent subset of D and therefore has a least upper bound in D. This leastupper bound is necessarily in [x).Furthermore, the empty set also admits a least upper bound in [x). So< [x);�> is a coherent partial order. Let us show now that is is also !-algebraic. Let fdigi2I be an enumeration of A(D). For any i in I de�neci = ( x _ di if x " dix otherwiseOf course, each element ci de�ned in this way belongs to [x) and we willshow that fcigi2I = A([x)).First, the element x is minimum in [x), so it is isolated in < [x);�>.Consider now an element ci di�erent of x, and a directed subset X of [x) suchthat ci � SX . Since ci = x_di, we have also di � SX . Since di is isolated inD, and X is directed, we have di � y for some y in X . Since y is in [x), thuslarger than x we have ci = x _ di � x _ y = y which proves that ci is isolatedin [x). Thus fcigi2I � A([x)).Consider now an arbitrary element of [x). Since D is algebraicy =[fdiji 2 I; di � ygSince y dominates x, we have also y _ x = y = Sfdi _ xji 2 I; di � yg. Butdi � y i� di _ x � y y =[fciji 2 I; ci � ygThe equality above proves that < [x);�> is algebraic. Furthermore, the setfciji 2 I; ci � yg is directed, so if y is isolated in < [x);�>, for some j in Iy = cj. It follows that A([x)) = fcigi2I so A([x)) is denumerable.The partial order < [x);�> is coherent and !-algebraic, so it is a compu-tation domain. 2The counterexample on Figure 4(a) shows that if a computation domainhas property I, it is not necessarily the case for its upper sections. In thatdomain, we have a chain f?; x1; x2; : : : ; xn; : : :g where? �< x1 �< x2 �< x3 � � � �< xn �< � � �with limit x. Additionally atom a1 is assumed to be compatible with x, andincomparable with each of the xi (thus x). Let us now assume also:8j � 1; 8k � j xk k aj and 9aj+1 with xj �< aj+1 < xj _ aj19



? (a)�LLLLLLLLLLLLL
�x ppppppppp �ppppppppp�ppppppppp �ppppppppp��������p p p p p �pppppppppy

����������a1LLLLLLLLLLLLL����������x1 �a2LLLLLLLLLLL����������x2 �a3LLLLLLLLLL����������x3 �a4LLLLLLLL ? (b)�LLLLLLLLLLLLL
�x ppppppppp �ppppppppp�ppppppppp�ppppppppp��������p p p p p�pppppppppy

����������b1LLLLLLLL
LLLLL����������x1 �b2LLLLLLLLLLL����������x2 �b3LLLLLLLLLL����������x3 �b4LLLLLLLLFigure 4: Property I is not valid in upper sectionsand 8j � 1 x _ aj > x _ aj+1. The partial order de�ned in this fashion is acomputation domain satisfying property I. In [x) the sequence fx _ ajgj�1 isan in�nitely decreasing chain of isolated elements of < [x);�> between x andy. (Similarly, one can construct an example exhibiting an in�nite increasingchain of isolated elements of < [x);�> between x and y, see Figure 4(b)).As we indicated in the introduction to this section, we consider it desirablefor the notion of data domain to be preserved under upper sections and inter-vals. This means that we have to consider a stronger property than propertyI.3 The covering relationWe have seen that the isolated elements of < [x);�> are, but for x itself,of the form x _ d with d isolated, compatible and incomparable with x. Thefollowing property postulates a similar characterization of the atoms in anupper section.Property CIf x and y are two compatible isolated elementsx ^ y �< x =) y �< x _ y20
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(e)������QQQQQ�a �c�b����������QQQQQQQQQQ�d �f�e�g QQQQQ����� (f)������QQQQQ�a �c����� QQQQQ�d �f�e�g QQQQQ�����Figure 5: Investigating Property CRemarks:i) If x and y are comparable and verify x ^ y �< x, one cannot have x � yotherwise x^ y = x �< x which is impossible. Hence y � x and x^ y =y �< x. In that case, property C holds trivially.ii) While property I did not exclude any �nite domain, this is not the casefor property C. This is not too surprising, as it already happens forsome axioms of computation domains. For example, the partial orderon Figure 5(a) is not conditionally complete, the partial order on Figure5(b) is not consistent. The partial orders on Figure 5(c) and 5(d) do notsatisfy Property C.In the diagram on Figure 5(b), coherence forces one to add a maximumelement g, yielding the domain of Figure 5(e).In the domain of Figure 5(c), elements a and c are compatible and ? =a ^ c �< a and ? �< c as well. So by property C, one should havea �< a _ c and c �< a _ c. If we add an element e = a _ c that coversa and c and is covered by g, we obtain again the domain of Figure5(e) that satis�es C. Finally, in the domain of Figure 5(d), we have? = a ^ f �< f but a _ f = g does not cover a. If we add an element c21



so that ? �< c �< f and b = a _ c with b �< g, we obtain the domainof Figure 5(f) that has property C.iii) Property C concerns only pairs of compatible elements. This propertycan only constrain the structure of sub-lattices in a computation do-main. In lattice theory, this property is known as the lower coveringcondition[Bir67]. Although a computation domain is not a lattice, theforthcoming developments are largely inspired by the study of this con-dition in lattice theory.We begin by showing, in several steps, that if the set of isolated elementsin a computation domain has property I and C, then the whole domain hasproperty C.Proposition 3.1 Let D =< D;�> be a computation domain with propertiesI and C. We have 8x; y 2 D x �< y ) 9z 2 A(y) x ^ z �< z and y = x _ z.Proof:
x ^ z�LLLLL�x ppppppppp�����p p p p p �pppppppppy������zLLLLLIf x �< y, a fortiori x < y. Consider an element d of A(y) nA(x), which mustexist by Lemma 1.1. Since d is not an approximant of x we have x ^ d 6= d.As D has property I, we deduce:i) x ^ d 2 A(D) because d 2 A(D).ii) 9z 2 A(y) x ^ d �< z � d by Proposition 2.2.This element z is not dominated by x, otherwise it would also be dominatedby x ^ d. Hence x ^ z = x ^ d. Since x and d are compatible, so are x and zand by Property C, x �< x _ z.Since x and z are both less than y, we obtain: x �< x_ z � y. But x �< yso y = x _ z, which proves the result. 222



Proposition 3.2 In a computation domain having Property I, Property C isequivalent ot Property bC:Property bC If x and y are any two compatible elementsx ^ y �< x =) y �< x _ yProof: Property bC trivially implies property C. The converse is shown in twosteps.1. Assume �rst that x is isolated and y is arbitrary, with x " y and x^y �<x. As we have already observed, only the case where x k y is interesting.By Property I3, if x is isolated, so is x^y. Assume now that there existsa v such that y < v < x _ y. Property C excludes this possibility wheny is isolated. Since y < v, there exists an approximant v1 of v which isnot an approximant of y. Since x covers x ^ y, x cannot dominate v,because we would then have y = x ^ y �< x = x _ y.
x ^ y������BBBBBBBBBBBBB �t0 ��������y ����������v �v0 �x

�x _ y�x _ t0Therefore, there is an approximant v2 of v which is not an approximantof x. Since x_y is isolated by Property I3, we can construct the isolatedelement v0 = v1 _ v2 _ (x ^ y). This element veri�es:v0 2 A(v) v0 =2 A(y) v0 =2 A(x) x ^ y � v023



Note also that v0 doesn't dominate x, otherwise v would, which wouldcontradict v < x _ y. Since v0 is dominated by x _ y we have nowv0 � x _ y = x _ ([A(y)) = [z2A(y)(x _ z)Since v0 is isolated and the set fx_ zjz 2 A(y)g is directed, there existsan approximant t of y such that v0 � x _ t. Now take t0 = t _ (x ^ y):v0 _ (x ^ y) = v0 � x _ (t _ (x ^ y)) = x _ t0The element t0 cannot dominate x, otherwise we would have x _ t0 = t0thus v0 � t0, which is impossible because v0 is not an approximant of y.So t0 ^ x = x ^ y and by Property C t0 �< x _ t0. Take then w = v0 ^ t0.We have t0 � w � x_t0 so that either w = t0 or w = x_t0. The �rst case,w = t0 is impossible because it implies v0 � t0, hence v0 2 A(y). The casew = x_ t0 is also impossible, because w = v0 _ t0 is an approximant of vthat cannot dominate x without contradicting v < x _ v. The existenceof v leads to a a contradiction in all cases. So necessarily y �< x _ y.2. Assume now x to be an arbitrary element in the domain. By Proposition3.1, if x^y �< x, one can �nd an approximant z of x with (x^y)^z �< zand x = (x ^ y) _ z. From the �rst inequality we deduce y > z. Butx ^ y � y implies also (x ^ y) ^ z � y ^ z. Thus (x ^ y) ^ z � y ^ z < zand (x ^ y) ^ z = y ^ z. Since y and z are compatible because y andx are, we can apply the result of part 1 and deduce y �< y _ z. Sincex = (x ^ y) _ z we have nowx _ y = (x ^ y) _ z _ y = y _ zand thus also y �< x _ y. 2Corollary 3.1 In a computation domain D satisfying I and C, any uppersection (and any interval) is atomic.Proof: Here again, we give only the proof for an upper section [x). Let y bean element such that x < y. By Lemma 1.1, we can �nd an approximant z ofy which is not an approximant of x and therefore x^ z < z. Since z and x^ zare isolated, there is a t in A(D) with x ^ z = x ^ t �< t � z. Since x " zimplies x " t, we obtain using property bC x �< x _ t � x _ z � y. 224



Proposition 3.3 In a computation domain satisfying I, Property C is equiv-alent to Property C1:Property C1 If x and y are two distinct compatible elements9z z �< x; z �< y =) x �< x _ y; y �< x _ yProof:1. bC implies C1 Indeed, if x and y are distinct, element z is their glb andProperty bC implies immediately x �< x _ y and y �< x _ y.2. C1 implies bC Consider two compatible isolated elements x and y suchthat x ^ y �< y. We will prove by induction that y �< x _ y usingProposition 2.2.
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� Base cases. If y = x ^ y then immediately y �< x _ y = x. If ycovers x ^ y then C1 gives y �< x _ y.� Inductive step. Assume that C is valid when there exists a maximalchain with at most n element between x^y and y and consider twoisolated elements x and y such that there is a sequence of n + 1elements fd0; d1; : : : ; dng with x ^ y = d0 �< d1 �< d2 �< � � � �<dn = y. By property C1 we have d1 �< d1 _ x. Since x < y,d1 _ x is not less than y, so d1 = (d1 _ x) ^ y. Using the inductionhypothesis, we obtain y �< (d1 _ x)_ y. Since d1 is less than y, wededuce y �< x _ y. 2 25



De�nition 3.1 A partial order satis�es the Jordan-Dedekind condition if,between any two comparable elements, all maximal chains are �nite and havethe same length.Theorem 3.1 If D is a computation domain satisfying I and C, then A(D)satis�es the Jordan-Dedekind condition.Proof: The proof follows closely the proof of Theorem 14, in chapter 2 of[Bir67]. We show by induction that if between any two comparable elementsa and b of A(D) there is a maximal chain of length n, then all maximal chainshave length n. Assume a � b. If a = b then all maximal chains between a andb have length 0. If a �< b, there doesn't exist a c with a < c < b, so fa; bg isthe only maximal chain between a and b.Assume now the property valid when there exists, between two comparableelements, a chain with length less than n + 1(n � 1) and take two isolatedelements a and b with a maximal chain of length n+ 1 between them:a = x0 �< x1 �< x2 �< x3 � � � �< xn �< xn+1 = bSince D has property I, all maximal chains between a and b are �niteand built up with elements of A(D). Take any maximal chain fy0; y1; : : : ; ylgbetween a and b. Two cases are possible:� Case 1. x1 = y1. By induction hypothesis, all maximal chains betweenx1 and b have length n, so l = n + 1.� Case 2. x1 6= y1. Since x1 and y1 are dominated by b, we have x1 " y1and, by C1: x1 �< x1 _ y1 and y1 �< x1 _ y1. By induction hypothesis,all maximal chains between x1 and b have length n, so in particularthose that have x1 _ y1 as their �rst element. Hence all maximal chainsbetween x1 _ y1 and b have length n1. Take such a chain fz0 = x1 _y1; z1; : : : ; zn�1 = bg. The chain fy1; z0; : : : ; zn�1g is a maximal chainbetween y1 and b. Using again the induction hypothesis, we obtainthat all maximal chains between y1 and b have length n so in particularfy1; y2; : : : ; ylg. Again l = n+ 1. 2The Theorem above allows one to de�ne an absolute notion of height forisolated elements.De�nition 3.2 In a partial order < D;�> with a minimum element ?, aheight function is a function h from D to N such that:26



i) h(?) = 0ii) x �< y () x � y and h(y) = 1 + h(x)Corollary 3.2 In a computation domain satisfying I and C, the function hfrom A(D) to N that associates to any isolated x the common length of allmaximal chains between ? and x is a height function.Proof: By de�nition h(?) = 0. Assume now x �< y. Any maximalchain f?; x1; : : : ; xh(x)g from ? to x can be extended to a maximal chainf?; x1; : : : ; xh(x); yg hence h(y) = 1 + h(x). Conversely, assume x � y andh(y) = 1 + h(x). All maximal chains from x to y must have length 1, hencex �< y. 2Recall the computation domain N < N [f1g;�> where � is the naturalordering onN and1 is a maximum element. The height function h fromA(D)to N may be extended to an element of [D! N ] because it is monotonic. Thenwe will have h(x) = 1 i� x is not isolated, by Corollary 1.2. This propertylegitimates calling �nite the elements of A(D) and in�nite the elements of Dthat are not isolated.Remark: Properties C and I do not exclude the possibility that a �niteelement might dominate an in�nite number of �nite elements, as illustratedby the counter example of Figure 6.To prove the fundamental inequality of the next Theorem 3.2, we need thefollowing technical result:Lemma 3.1 In a partial order with Property C1 we have8x; y; z x �< y; z " y =) x _ z =< y _ z
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Figure 6: > dominates in�nitely many elements27



Proof: �x �z��� AAAAAAA �x _ z�y _ z�y ���Since y and z are compatible, a fortiori x and z are. Let us examine thepossibilities for x _ z.1. x _ z = x i.e z � x � y. Then x _ z = x �< y = y _ z2. x _ z = y i.e. z � y so x _ z = y = y _ z3. x_ z k y. Then by property C x_ z �< (x_ z)_ y = (x_ y)_ z = y _ z.4. x_z � y. Then x_z � y_z. But from x � y we also deduce x_z � y_z,so x _ z = y _ z.2Theorem 3.2 Let D be a computation domain with properties I and C, andconsider two compatible �nite elements a and b in D. The following inequalityholds: h(a) + h(b) � h(a ^ b) + h(a _ b)Proof: If a and b are comparable, assume for example a � b. Since a^ b = aand a_ b = b, we have trivially h(a)+h(b) = h(a^ b)+h(a_ b). Suppose nowthat a k b and consider a maximal chain fx0; x1; : : : ; xng witha ^ b = x0 �< x1 �< x2 � � � �< xn = bAll elements in this chain are compatible with a and by the previous Lemma:8j 0 � j � n � 1 xj _ a =< xj+1 _ aHence, since h is a height function8j 0 � j � n� 1 h(xj+1 _ a)� h(xj _ a) � 1Summing these inequalitiesX0�j�n�1 [h(xj+1 _ a)� h(xj _ a)] � n = h(b)� h(a ^ b)So reducing the left hand side we obtain h(b_ a)� h(a) � h(b)� h(a^ b) andhence h(a) + h(b) � h(a ^ b) + h(a _ b). 228



Lemma 3.2 Let D be a computation domain with properties I and C, andconsider two arbitrary elements a and b in D with a � b. If there exists amaximal chain with �nite length n between a and b, then all chains in [a; b]are �nite and have a length less than n.Proof: As in the proof of Theorem 3.1, we reason by induction on n. If n = 0or n = 1 we have respectively a = b or a �< b, and the result is immediate.Assume now that the result is true provided there exists a maximal chainbetween two elements with length less than n + 1. Consider two elements aand b for which there exists a maximal chain of length n+ 1:a = x0 �< x1 �< x2 � � � �< xn �< xn+1Take Y = fyigi2I to be an arbitrary chain in [a; b]. Choose in Y an arbitraryelement y distinct of a. Two cases may occur:1. x1 � y All chains from y to b are �nite and include at most n elementsby induction hypothesis, thus the set Z = fyiji 2 I; y � yig has at mostn+ 1 elements.2. x1 k y Then y �< x1 _ y by Property C1 and x1 6= x1 _ y. By inductionhypothesis, all chains between x1 _ y and b are �nite and include atmost n elements. Thus, there exists a chain with at most n+1 elementsbetween y and b, and by induction hypothesis the set Z de�ned abovehas at most n+ 1 elements. Since y was arbitrary di�erent of a, the setfyi 6= agi2I has at most n+1 elements, so Y has at most n+2 elements,and the chain Y has at most length n+ 1. 2We are now ready to prove the �nal result of this section.Theorem 3.3 Any upper section [x) and any interval [x; y] in a computationdomain satisfying I and C is a computation domain satisfying these properties.Proof: We prove the result only for an upper section [x). We have seen that[x) is a computation domain in Proposition 3.3. Its isolated elements are ofthe form x_ d with d 2 A(D) and x " d. Take an element d in A(D) which isnot less than x. Since x ^ d and d are isolated, there exists a maximal chainx ^ d = z0 �< z1 �< � � � �< zn = dBy Lemma 3.1, we have zj _ x =< zj+1 _ x (0 � j � n � 1). Sox =< z1 _ x =< z2 _ x =< � � � =< zn _ x = d _ x29



Hence there exists a �nite maximal chain from x to x_d and, by the previouslemma, all chains from x to x _ d are �nite. Hence [x) has property I. SinceD has property C1, the upper section [x) has property C. 2De�nition 3.3 We say that y is �nite relative to x if y is isolated in [x).This relation is written x � y.Corollary 3.3 In a computation domain satisfying I and C, if y is �niterelative to x then all maximal chains from x to y are �nite and have the samelength.Proof: Simply use Theorem 3.1 in [x).2Remarks: Standard texts about lattice theory provide alternate equivalentsto property C, which is frequently called the lower covering condition. In[Bir67], a lattice that satis�es this condition and in which all chains are �nite iscalled semi-modular. In [Mae72] the term symmetric lattice is used. Elementsthat cover the minimum element are also called points and the interest in semi-modular lattices comes from geometry. A lattice is called geometric if �rst itis semi-modular and second any element is the least upper bound of a set ofpoints. The computation domains that we consider do not have this propertywhich is replaced by algebraicity.4 The incompatibility relationProperties C and I concern only the structure of the sublattices in a com-putation domain. We must now examine more carefully the incompatibilityrelation. This study will lead us to postulate a new property concerning thisrelation.Proposition 4.1 If S is a consistent subset in a computation domain andall elements in S are compatible with a given element x, then SS and x arecompatible.Proof: The set T = S [ fxg is consistent and admits a least upper boundST . Since S is consistent and included in T , SS � ST . Hence SS and xare both less than ST , thus they are compatible.2Corollary 4.1 If a and x are two arbitrary elements in a computation do-main, there exists a maximum element x=a less or equal to x and compatiblewith a. The element a_ (x=a) is called the pseudo least upper bound of a andx, and noted a_x. 30



Proof: Let S be the set of elements less than x compatible with a. By theprevious proposition, SS is compatible with a and the result is proved usingx=a = SS. 2Proposition 4.2 For any element a in a computation domain, the functions�x:x=a and �x:a_x are continuous.Proof: We use the characterization of Lemma 1.2. First both functions aremonotonic: ( x � x0 =) x=a � x0=ax � x0 =) a_x = a _ x=a � a _ x0=a = a_x0Consider now an approximant e of x=a. Since e is compatible with a we havee = e=a so the function �x:x=a is continuous. Consider now an approximant eof a_x. Since e is isolated and e � a_ x=a = Sz2A(x=a)(a_ z), there exists anapproximant d of x=a such that e � a _ d. But when a and d are compatible,a_d = a _ d, hence we obtain e � a_d. Therefore the function �x:a_x iscontinuous. 2Remark: The function �x�y:x_y is not monotonic in its �rst argument. Forexample in domain T we have ?_1 = 1 and 0_1 = 0.In a computation domain satisfying I and C, we can give a more precisecharacterization of the incompatibility relation.De�nition 4.1 An interval [a,b] is called prime when a �< b.Proposition 4.3 In a partial order D, the intervals are ordered by the relation� de�ned by: [a; b]� [c; d] () a = b^ c and d = b _ cThe resulting partial order is noted I(D).Proof:� Re
exivity If [a; b] is an interval, then a � b so a = b ^ a and b = b _ a.So [a; b]� [a; b].� Antisymmetry If [a; b]� [c; d] then also a � c and b � d. So from [a; b] �[c; d] � [a; b] we deduce a � c � a and b � d � b. By antisymmetry inD we obtain a = c and b = d. 31



� Transitivity Consider three intervals [a; b], [c; d], [e; f ] and assume [a; b] �[c; d]� [e; f ]. Using the de�nition we write( a = b ^ c; c = d ^ e hence a = b ^ d ^ ed = b_ c; f = d _ e hence f = b_ c_ eNow b � d and c � e yield a = b^ e and f = b _ e, i.e. [a; b] � [e; f ]. 2Proposition 4.4 Let D be a computation domain satisfying I and C. Twoelements x and y in D are incompatible i� there are two prime intervals [x1; x01]and [y1; y01] included respectively in [x ^ y; x] and [x ^ y; y], and two primeintervals [u; a] and [u; b] with:[x1; x01] � [u; a] [y1; y01] � [u; b] x ^ y � u a#bProof: The situation described in the statement of the proposition is sum-marized in the �gure below: �x ^ y���������y@@@@@@@@�x �x01 �����x1 ������ �y01@@@@ �y1@@@@@@�u�a �bConsider two incompatible elements x and y and let us reason in the compu-tation domain [x ^ y). Since A(y) is a directed set, hence consistent, thereexists necessarily an element y0 in A(y) that is incompatible with x. Takey1 = y0=x. Since y1 is less than y0 which is isolated in [x ^ y), it is also iso-lated by Property I. Take for y01 any element such that y1 �< y01 � y. Such anelement must exist because y1 is compatible with x thus di�erent of y, whichis not, by hypothesis. By de�nition of y1 we must have y01#x. We notice thenthat x ^ y01 = x ^ y and perform the construction again, �nding x1 and x01isolated such that: x1 " y01 x1 �< x01#y01Now we take u = x1 _ y1, a = x01 _ y1 , and b = x1 _ y01. Since x1 and y1 areisolated in [x ^ y), so is u. Since x01 and y01 dominate respectively x1 and y1,we can write: a = x01 _ (x1 _ y1) = x01 _ u32



and b = (x1 _ y1) _ y01 = u _ y01Finally u dominates neither x01 nor y01 because x01#y01. Thus u ^ x01 = x1 andu^y01 = y1. Using Property C, we conclude u �< x01_u = a and u �< y01_u = band, since x01 and y01 are incompatible, a#b.The proposition is proved from left to right. Conversely, assume that wehave two prime intervals [x1; x01] and [y1; y01] included respectively in [x^ y; x]and [x ^ y; y], and two prime intervals [u; a] and [u; b] with:[x1; x01] � [u; a] [y1; y01] � [u; b] a#bElements a and b are incompatible and b = u_y01. Since a and u are compatible,then a and y01 must be incompatible. But a = x01 _ u and u " y01. So �nallyx01#y01, and consequently x#y. 2We introduce now a new property, Property Q, that restricts the way inwhich incompatibilities may appear.Property QIf x and y are two incompatible isolated elementsx ^ y �< x =) 9!t t#x; x ^ y �< t � yVery simple �nite computation domains fail to have Property Q.For example the domains whose diagrams are represented on Figure 7 donot satisfy Q. For the �rst one, we observe that a and b are incompatible, witha ^ b = ? and ? �< b. But c is the only element in [?; a] that covers ?, andit is compatible with d. So there exists no element t such that a ^ b �< t � aand t#b. In the second case, the domain of Figure 7 (b), it is unicity that is(a)��������a�c@@@�b ����d@@@ (b)���� �!!!!!!!! a� b@@@�c ����d@@@Figure 7: (a) and (b) fail to have Property Q33



not satis�ed. Indeed, elements a and d are incompatible, and ? = a^ d �< a.But both b and c cover ?, are less than d and are incompatible with a.These examples suggest that Property Q may be considered as the con-junction of two simpler properties.Notation: Let x be an arbitrary element in a computation domain D. Wewill note Px the set fzjx �< zg of atoms of [x). On Px we can de�ne therelation Rx by aRxb () a#b or a = bRelation Rx is of course re
exive and symmetric.Proposition 4.5 In a computation domain D, Property Q is equivalent tothe conjunction of the following properties QE and QU:Property QE (Existence of a minimal incompatible element)8x; y 2 A(D) x#y; x ^ y �< x =) 9t#x; x ^ y �< t � yProperty QU (Uniqueness)8x 2 A(D) Rx is an equivalence relation on PxProof:i) Q implies QE and QU. It is immediate that Q implies QE, which is weaker.But we already know thatRx is re
exive and symmetric, so we need onlyto show that Q implies that Rx is transitive. Consider three elementsa, b, and c of Px with aRxb and bRxc. If a = b or b = c we haveimmediately aRxc. Suppose now a#b and b#c. We need to show thateither a = c or a#c. Assume we had a " c. From b#a and b#c wededuce b#a_ c. There can be only one element t such that b#t � a _ cby Property Q. But both a and c satisfy this condition. Hence a = c.ii) Assume now QE and QU. Consider two isolated elements x and y withx#y and x ^ y �< x. By QE there exists an element t with x#t andx ^ y �< t � y. Let now t0 be an arbitrary element such that x#t0 andx^y �< t0 � y. In Px^y we have xRx^yt and xRx^yt0. Thus, since Rx^yis an equivalence relation tRx^yt0. But t and t0 are compatible, becauseboth are less than y. So t = t0. Hence QE and QU imply Q. 2De�nition 4.2 Two prime intervals [x; x0] and [y; y0] are equipollent whenx = y and x0Rxy0. 34



We call IP (X) the set of prime intervals in a partial order X . The previousresult shows that if D has Property Q, equipollence is an equivalence relationon IP (A(D)).Following what we did for Property C, we will show that it is su�cient topostulate property Q on the isolated elements in a computation domain for itto be valid in the whole domain.Proposition 4.6 In a computation domain satisfying I and C, consider twoarbitrary elements x and y such that x#y and x ^ y �< x. There exists anapproximant e of x withe#y; e ^ y �< e and e _ (x ^ y) = xProof: �d ^ y����������y�x ^ y@@@�d �e ������x @@If x is incompatible with y, there exists an approximant d of x incompatiblewith y since A(x) is a consistent subset, using Proposition 4.1. Since d istherefore not comparable with y, we have necessarily d ^ y < d. We canthen �nd, by Corollary 3.1 an element e with d ^ y �< e � d. Since ecovers d ^ y and is not less than y we have also e ^ y = d ^ y. By PropertybC we obtain x ^ y �< (x ^ y) _ e. Since e is an approximant of x, theelement (x^ y)_ e is less than x. As x covers x^ y by hypothesis, we obtain(x ^ y) _ e = x. Finally, elements e and y are incompatible, otherwise wewould have x = e _ (x ^ y) � e _ y so x and y would be incompatible, whichcontradicts the hypothesis. 2Lemma 4.1 In a computation domain satisfying properties I and C, PropertyQE is equivalent to Property dQE:Property dQE8x; y x#y; x ^ y �< x =) 9t#x; x ^ y �< t � y35



Proof: PropertydQE trivially implies Property QE. The converse is proved intwo steps.1. Assume �rst that x is isolated and y is an arbitrary element with x#yand x^y �< x. As we have remarked before, there exists an approximantd of y which is incompatible with x. Since both d and x^y are less thany, de�ne e by e = d _ (x ^ y). The element e is isolated because both dand x^ y are, and incompatible with x because d is. Hence x^ y = x^ eand we can use property QE. There exists t with x#t and x^e �< t � e,and we deduce immediately x#t and x ^ y �< t � y.�x ^ y����������y�e@@@�x @@@@�d2. Consider now an arbitrary x. By Proposition 4.6, there exists an isolatedelement e with e#y, e ^ y �< e, and e _ (x^ y) = x.
�e ^ y����������x ^ yDDD�xDDD�e ��������� �������������y�� �� �� �� �� �� �� ���t��������uSo we can use the result of the �rst case and �nd an element t with e#tand e^ y �< t � y. We notice now �rst that t and x^ y are compatible(both are less than y) and second that t is not less than x^ y (because tis incompatible with e); so we deduce t^ (x^ y) = e^ y. Using property36



bC: x ^ y �< (x ^ y) _ t = uThe element u is incompatible with e thus with x and we have as re-quested x ^ y �< u � y. 2Proposition 4.7 In a computation domain with properties I and C, let a, x,and y be three elements satisfying(G1) a �< x; a �< y; x#yThen there are three elements �, �, and � approximants (resp.) of a, x, andy in the con�guration correponding to (G1), as well as:x = � _ a and y = � _ aProof:
�������AAA �������������

���x1 ������������������ �HHHHHH ���AAAAAAAAAAAAA
AA �y1HHHHHH AAAAAAAAAAAA���aAAA�� �
x ������yApplying twice Proposition 4.6, we can �nd x1 and y1, approximants of xand y (resp.) with ( x1#y; x1 ^ y �< x1; x1 _ a = xy1#x; y1 ^ x �< y1; y1 _ a = yNow take � = (x1 ^ y) _ (y1 ^ x). The element � is an approximant of aand it dominates neither x1 nor y1. So:( � ^ x1 = x1 ^ y �< x1� ^ y1 = x ^ y1 �< y137



By property C we obtain ( � �< � _ x1 = �� �< � _ y1 = �and since � and � are necessarily incomparable with a:( x = � _ ay = � _ aIf � and � were compatible, the set f�; �; ag would be consistent, admittingthus a lub that would dominate �_a and �_a. But this is impossible becausex and y are incompatible by hypothesis. So we have:� �< �; � �< �; �#�2Proposition 4.8 In a computation domain with properties I and C, let a, x,y, and z be four elements satisfying(G2) a �< x; a �< y; x#y; y#z; x 6= zThen there are four elements �, �, �, and � approximants (resp.) of a, x, y,and z satisfying (G2) as well as:x = � _ a y = � _ a z = � _ aProof: First we apply the previous result to the three elements a, x, and y.We can �nd �1, �1, and �1 approximants of a, x, and y with:( �1 �< �1; �1 �< �1; �1#�1x = �1 _ a; y = �1 _ aConsider now [�1). By Proposition 3.1, we can �nd an element � such that�1 � � with ( � ^ a = � �< �z = � _ aSince �1 is isolated, so is � as well as the elements � and � de�ned by( � = �1 _ �� = �1 _ �38



(Since �1 and �1 are compatible with a, they are a fortiori compatible with�). Since �1 and �1 cannot be less than a hence than �( �1 ^ � = �1 �< �1�1 ^ � = �1 �< �1and by property C: ( � �< �� �< �We also have � �< �. Let us show the remaining properties. First, �#� since�1#�1. Next we have:8><>: x = a _ �1 = a _ �1 _ � = a _ �y = a _ �1 = a _ �1 _ � = a _ �z = a _ �If � and � were compatible the set fa; �; �g would be consistent, which con-tradicts the fact that x and y are incompatible. So we have also �#�. Last,since x 6= z, we have trivially � 6= �. 2Remark: In the previous propositions, as well as in several propositions inthis section, we use freely coherence, which sometimes leads to shorter proofs.However this property is not necessary for the results to hold.Lemma 4.2 In a computation domain satisfying properties I and C, PropertyQU is equivalent to Property dQU:Property dQUIn IP (D), equipollence is an equivalence relation.Proof: Property dQU implies trivially property QU which is weaker. Theconverse is a corollary of the previous result. Let [a; x], [a; y], and [a; z] bethree intervals with [a; x]R[a; y] and [a; y]R[a; z]. As in Proposition 4.5, theonly non-trivial case is when x " z with x#y, y#z, and x 6= z. By Proposition4.6, we can then �nd approximants �,�,�,� for a,x,y,z with:� �< � � �< � � �< � �#� �#� � 6= �as well as x = a_� and z = a_�. So if x and z are compatible, so are � and �.But property QU excludes this possibility. So x and z must be incompatibleand the equipollence relation is an equivalence on prime intervals. 239



Corollary 4.2 In a domain satisfying I and C, property Q is equivalent toproperty bQ:Property bQ If x and y are two incompatible elementsx ^ y �< x =) 9!t t#x; x ^ y �< t � yProof: It is easy to show, as in Proposition 4.5, that bQ is equivalent to theconjunction of dQE and dQU. 2Corollary 4.3 In a domain D satisfying properties I, C, and Q, an uppersection also satis�es these properties.Proof: Consider an arbitrary upper section [a). As a computation domain,[a) has properties I and C. If x and y are two elements of [a), then x ^ y alsobelongs to [a). So if D satis�es property bQ , so does [a). 2Notation: If [a; b] and [c; d] are equipollent prime intervals, we write now[a; b] ' [c; d].De�nition 4.3 In a partial order D, two intervals are transposed i� they arecomparable as elements of I(D).We call T the transposition relation. This relation is obviously re
exive andsymmetric.Lemma 4.3 In a computation domain satisfying I, C, and Q, equipollenceand transposition commute on IP (D), i.e. ' �T = T � '.Proof: Consider prime intervals [a; a0], [a; a00], and [b; b0] such that [a; a0] '[a; a00] and [a; a00]T [b; b0]. We must show that there exists a prime interval [b; b00]such that [a; a0]T [b; b00] and [b; b00] ' [b; b0]. If a0 = a00 then [a; a0]T [b; b0] and wecan take [b; b00] = [b; b0]. Thus, assume a0#a00. If [a; a00] = [b; b0], we can take[b; b00] = [a; a0]. Two cases are still possible:Case 1: [a; a00] < b; b0] 40



�a@@@�a0 �a00�������b�b0������In this case, a0 is necessarily compatible with b. Assume indeed a0#b.By property Q, there exists an element t with a0#t and a �< t � b.Therefore [a; a00] ' [a; a0] ' [a; t]. By Q again [a; a00] = [a; t]. Now� either a00#t, but this is impossible because both a0 and t are lessthan b0� or a00 = t, but this is also impossible because a00 ^ b = a 6= a00 so a00is not less than b while t is less than b.So we can take b00 = a0_b. Since a0^b = a �< a0, by property C b �< b00.Finally, elements b00 and b cannot be compatible, because otherwise a0and a00 would be compatible, which contradicts the hypothesis. We have[a; a0]T [b; b00] and [b; b00] ' [b; b0], which concludes this case.Case 2: [a; a00] > [b; b0] �b� b0�������a�a00������@@@�a0In this case, a0 and b0 are necessarily incompatible. Indeed, if a0 and b0were compatible, the element a0_b0 = a0_a_b0 = a_a00 would exist, whichcontradicts a0#a00. From a0#b0 we deduce by Q, since a0 ^ b0 = b �< b0,that there exists an element b00 with b00#b0 and b �< b0 � a0. Thiselement b00 is not less than a, otherwise a00 would dominate b0 and b00, sob00 _ a = a0 and b00 ^ a = b. So [a; a0]T [b; b00] and [b; b00] ' [b; b0], whichconcludes this case and the proof of the Lemma. 2De�nition 4.4 The projectivity relation is the transitive closure of transpo-sition. 41



This relation is an equivalence relation written �. If intervals [a; b] and [c; d]satisfy [a; b] � [c; d], they are called projective intervals. We will only considerthis relation for prime intervals.Theorem 4.1 On the prime intervals of a partial order satisfying I, C, andQ, equipollence and projectivity are commuting equivalence relations, i.e:' � �=� � 'Proof: By the previous lemma we know that ' �T = T � '. Let us show byinduction that for any n, n positive, we have:' �T n = T n� 'The case were n = 1 is immediate and' �T n+1 = (' �T n) � T= (T n� ') � T by induction hypothesis= T n � (' �T ) by associativity= T n � (T � ')= T n+1� ' by associativity againAs [a; b] ' � � [c; d] i� there is an integer n such that [a; b] ' �T n[c; d], wehave then also [a; b]T n� ' [c; d] hence [a; b]� � ' [c; d]. 2The product of the equivalence relations ' and � is again an equivalencerelation that we will write �. Since the relation � extends ', we will say fromnow on that the prime intervals [a; b] and [c; d] are equipollent i� [a; b] � [c; d].Before studying further equipollence and projectivity, we try to give anintuitive feeling for the meaning of these relations.Example 1: Consider the domain O3 whose diagram is shown on Figure 8.Since this domain is a lattice, it cannot be used to illustrate equipollence.However, there are three equivalence classes for the projectivity relation �.1: [(?;?;?); (>;?;?)] � [(?;>;?); (>;>;?)] � [(?;>;>); (>;>;>)] � [(?;?;>); (>;?;>)]2: [(?;?;?); (?;>;?)] � [(>;?;?); (>;>;?)] � [(>;?;>); (>;>;>)] � [(?;?;>); (?;>;>)]3: [(?;?;?); (?;?;>)] � [(>;?;?); (>;?;>)] � [(>;>;?); (>;>;>)] � [(?;>;?); (?;>;>)]Example 2: Consider the domain O � T whose diagram is shown on Figure9. Here, there are three equivalence classes for the projectivity relation �.42



? (?;?;?)������QQQQQ�(>;?;?) � (?;?;>)�(?;>;?)����������QQQQQQQQQQ�(>;>;?) � (?;>;>)�(>;?;>)�(>;>;>) QQQQQ�����Figure 8: Domain O31: [(?;?); (0;?)]� [(?;>); (0;>)]2: [(?;?); (1;?)]� [(?;>); (1;>)]3: [(0;?); (0;>)]� [(?;?); (?;>)]� [(1;?); (1;>)]The union of classes 1 and 2 is an equivalence class for the equipollence re-lation, while class 3 is a second one. The fact the O contains two incompatibleatoms results in the �rst equipollence class containing exactly two projectivityclasses. The fact that we have a cartesian product of two domains can be seenin the presence of two equipollence classes. With the help of these two equiva-lence relations, we are able to analyze the structure of a computation domain.Naturally, the Representation Theorem will be based on these relations, thatwe study now in greater depth. (?;?)������QQQQQ�(0;?) �(0;>) � (1;?)� (1;>)�(?;>)�����QQQQQFigure 9: Domain O � T43



?�������HHHHHH�a �������> �cHHHHHH� bFigure 10: The diamond domain5 The projectivity relationIf two prime intervals are projective, we would like them to represent the sameelementary information increment, possibly taking place in two distinct globalstates. We shall call now an elementary decision, or more brie
y a decision,an equivalence class of projective prime intervals. However, such an interpre-tation of projectivity faces an inconsistency that can only be eliminated bypostulating an additional property.Consider the partial order on Figure 10. It is trivial to verify that thispartial order is a computation domain satisfying I,C, and Q. Since we havealso [?; a] � [b;>] � [?; c] � [a;>] � [?; b] � [c;>]all prime intervals in this lattice belong to one and the same projectivityclass. It is di�cult to accept that a single elementary decision may allow theconstruction of four di�erent elements. More speci�cally, two precise facts runcounter to our interpretation:i) All prime intervals of the form [?; x] are projective, and should constitutethe same elementary decision,ii) To go from ? to b, for example, the \decision" is the same one as to gofrom b to >.The lattice of Figure 10 plays an important role in lattice theory so onemight try simply to exclude such a con�guration with �ve elements from acomputation domain. We will see that if a computation domain is a lattice,this idea is valid. But as there are incompatible elements, the situation is moreintricate. Consider for example the domain of Figure 11, which is representedby a Hasse diagram \seen from above".44



?�����@@@I ���	 @@@R��� �����@@@I @@@R����@@@I ���	 ���	 @@@I @@@R @@@R�������	 �@@@I @@@@@@R�����������	 �@@@@@@I @@@@@@R ��������������	 �b -� b0�a����@@@I � ��� @@@I�����a0� d��d0 �c?�c0Figure 11: Diamond is not a sublatticeArrows point upwards in the partial order. A sublattice of this domainmust be a sublattice of one of the intervals [?; a0], [?; b0], [?; c0], or [?; d0]because elements a0, b0, c0, and d0 are maximal and incompatible. But it isclear that none of these intervals contains a sublattice that is isomomorphicto the �ve element lattice of Figure 10. However, phenomena that we haveconsidered above as inconsistent with our intuition still occur: in the interval[a; a0] all prime intervals are projective. In a similar fashion, the 25 elementdomain of Figure 12 shows that two distinct prime intervals may be simul-taneously projective and equipollent: [a; a1] � [a; a2] and a1#a2. But in ourunderstanding, two distinct equipollent prime intervals should correspond totwo contradictory elementary information increases.The examples above, due to Gordon Plotkin, point to a new property, thatwe call property R.Property RIf [a; x] and [a; y] are two projective prime intervals with isolatedendpoints, then x = y45



?�����@@@I ���	 @@@R�@@@R@@@I��������	 �@@@I @@@R ��������	 �b�a� d �c �������� ����a2���� ����@@@I @@@R�����������	����@@@I @@@R����������	 CCC�CCC� CCC�a1 CCC� CCC�@@@I @@@RCCC��������	CCC�@@@I @@@RCCC��������	Figure 12: Another counterexampleThis property can be stated in the following way: if a is an isolated element,then two distinct elementary increases from a are two distinct decisions.Before examining the many consequences of property R, we show as is nowcustomary that the property is valid for two arbitrary prime intervals.Proposition 5.1 Consider two prime intervals with isolated endpoints [a; a0]and [b; b0], in a computation domain satisfying I and C. If there exists a primeinterval [c; c0] such that [a; a0] � [c; c0] � [b; b0]then there exists a prime interval [d; d0] with isolated endpoints such that[a; a0] � [d; d0] � [b; b0]Proof: By hypothesis, c0 = a_c hence c0 = a_ (SA(c)) and c0 = Sz2A(c)(a0_z). The set fa0 _ zjz 2 A(c)g is directed and it dominates b0. So there existsan isolated element e with b0 � a0 _ e; e 2 A(c). Take d = e _ a _ b. Theelement d is an approximant of c that dominates a and b. So d dominatesneither a0 nor b0 and, by property C, d �< d _ a0 and d �< d _ b0. So sinceb0 � a0_ e � a0_ e_a_ b = a0_d we have d �< d_ b0 � d_a0. Elements d_ b0and d _ a0 are thus equal to the same element d0 and[a; a0] � [d; d0] � [b; b0]2Proposition 5.2 In a computation domain satisfying I and C, property R isequivalent to property bR: 46



Property bRIf [a; x] and [a; y] are two projective prime intervals then x = yProof: Property bR implies trivially property R. Conversely, consider twoarbitrary projective prime intervals [a; x] and [a; y]. There exists a sequencef[xi; x0i]g0�i�n with [x0; x00] = [a; x] and [xn; x0n] = [a; y] such that[x0; x00]T [x1; x01] � � �T [xn; x0n]By Lemma 3.1, we can �nd intervals with isolated endpoints [zi; z0i] � [xi; x0i](0 � i � n). If we take now [ti; t0i] = [xi _ xi+1; x0i _ x0i+1] (0 � i � n � 1) wehave [zi; z0i] � [ti; t0i] � [zi+1; z0i+1] (0 � i � n � 1)By the previous proposition, there are prime intervals with isolated endpoints[ui; u0i] (0 � i � n� 1) such that[zi; z0i] � [ui; u0i] � [zi+1; z0i+1] (0 � i � n� 1)As a consequence, [z0; z00] and [zn; z0n] are projective in A(D). From [z0; z00] �[a; x] and [zn; z0n] � [a; y] we deduce that z0 and zn are both less than a andwe can take z = z0 _ zn. This element z cannot dominate z00 nor z0n since it isan approximant of a that does not dominate them. Hence( z ^ z00 = z0z ^ z0n = zntherefore ( z �< z _ z00 = z0z �< z _ z0n = z00which shows that [z0; z00] � [z; z0] and [zn; z0n] � [z; z00]. Since z is isolated and[z; z0] � [z; z00], we can use property R and deduce z0 = z00. Since we have also[z; z0] � [a; x] and [z; z00] � [a; y] we conclude x = y. 2Corollary 5.1 In a domain satisfying I,C, Q , and R, any upper section (andany interval) satisfyies these properties.Proof: Consider an upper section [b). If the prime intervals [a; x] and [a; y]are projective in [b), they are also projective in the whole domain. Hencex = y, so the upper section [b) has property R. We know from before that ithas properties I,C, and Q. 2 47



Proposition 5.3 In a computation domain D satisfying I,C, and R considertwo compatible elements x and y. If [a; a0] is a prime interval such thata � x ^ y and a0 � x _ yThen either a0 � x or a0 � y.Proof: Notice �rst that in the case where x and y are comparable, say x � y,we have immediately a0 � y = x _ y so that the proposition holds trivially.Suppose now x k y. We can also assume a0 6� x ^ y otherwise the propositionis again immediate. Consider �rst the case where x and y are �nite relativeto x ^ y.Case 1. x ^ y � x; x^ y � y The proof is by induction on the sum �(x; y) ofthe lengths of the maximal chains from x ^ y to x and from x ^ y to y.i) Base case Since x k y the �rst case to consider is when �(x; y) = 2, i.e.x^y �< x and x^y �< y. From a0 k x^y we deduce a = a0^x^y,and by property C, which we can use because a0 " x^ y we obtain:x ^ y �< a00 � x _ y with a00 = a0 _ (x ^ y). Now either a00 = xand then a0 � x, or a00 6= x and then, by Property C, we havex �< a00 _x � x_ y. But we have also x �< x_ y so a00 _x = x_ y.From [x ^ y; a00] � [x; x _ y] � x ^ y; y] we deduce by property Rthat a00 = y.As a result, we have indeed when �(x; y) = 2 either a0 � x or a0 � y.ii) Induction step Assume now �(x; y) = n; n � 2. Since x and y areincomparable we have x^ y < x and x^ y < y. By atomicity, thereare two elements x1 and y1 with x^y �< x1 � x and x^y �< y1 � y.Take now z = x1 _ y1, x01 = x _ y1 = x _ z, y01 = y _ x1 = y _ z.Elements x01, y01, and z do exist because x and y are compatible.
x ^ y�������@@@@@@�x �������x _ y �y@@@@@@�x1 �y1������@@@@@@ �z�x01 �y0148



Two cases are now possible:Case 1.1 a0 � z: Then the result of the base case may be used todeduce that either a0 � x1 or a0 � y1, thus either a0 � x ora0 � y.Case 1.2 a0 6� z: Then a = a0 ^ z. Since a0 and z are both lessthan x _ y they are comaptible and we can use property C.With a00 = z _ a0 we have z �< a00 � x _ y. But x01 _ y01 =x_ z _ y _ z = x_ y and since z is less than x01 and y01 we havealso z � x01 ^ y01. To be in a position to apply the inductionhypothesis to the interval [z; a00] and elements x01 and y01, weneed only verify that �(x01; y01) < �(x; y). Now �(x01; y01) is lessthan the sum of the lengths of maximal chains from z to x01and from z to y01. So �(x01; y01) � n� 2. Applying the inductionhypothesis yields that either a00 � x01 or a00 � y01. Assumewithout loss of generality that a00 � x01. Since a0 � a00 we havealso a0 � x01. But �(x; z) � n � 1. We can use the inductionhypothesis again for the interval [a; a0] and the elements x andz, to conclude that either a0 � z or a0 � x. We have assumedthat a0 6� z. So a0 � x.Case 2. Assume now x and y are arbitrary and take again a00 = a0 _ (x ^y). Since the upper section [x ^ y) is a computation domain, there areapproximants x0 and y0 of x and y in this domain such that the atom a00is dominated by x0 _ y0. Then a � x ^ y � x0 ^ y0 and a0 � x0 _ y0 withx0 ^ y0 � x0 and x0 ^ y0 � y0. Using the result of the �rst case, we deducethat either a0 � x0 or a0 � y0, so that again a0 � x or a0 � y.2Corollary 5.2 In a computation domain satisfying properties I, C and R, nosublattice is isomorphic to the sublattice of �gure 10.Proof: Let x and y be two arbitrary compatible, incomparable elements. Takeany z such that x ^ y < z < x _ y. By atomicity, there is an element t withx^ y �< t � z. By the previous result, either t � x or t � y. In the �rst case,x ^ y < x ^ z and in the second case x ^ y < y ^ z. 2To prove the converse, we need a very useful result that limits the casesthat we need to consider when two intervals are projective. This result isobtained in two steps. 49



Proposition 5.4 In a computation domain satisfying I, C, and R, considerthree prime intervals [a; a0], [b; b0], and [c; c0] such that [a; a0] � [b; b0] � [c; c0].If a and c are compatible, then we have also [a; a0] � [a _ c; a0 _ c0] � [c; c0].Proof:
b�������@@@@@@�a �������a _ c �c@@@@@@�b0������@@@@@@ �c0�a0By de�nition of the relation � for intervals we have a0 = a_b0 and c0 = b0_c.Since a and c are compatible, the triple fa; b0; cg is consistent. It has a lubd0 = a _ b0 _ c. But( d0 = a _ c _ b0 = (a _ c) _ (c_ b0) = (a _ c)_ c0d0 = a _ c _ b0 = (a _ c) _ (a _ b0) = (a _ c)_ a0Take d = a _ c. Since b0 is not less than a nor c, by the previous propositionb0 is not less than a_ c. Thus d0 is di�erent from d, so d �< d0 by property C.Since d0 dominates a0 and c0, d0 = a0 _ c0. Since we have [a; a0] � [d; d0] � [c; c0]the result follows. 2De�nition 5.1 We call concrete domain a domain of computation satis-fying properties I, C, Q, and R.Lemma 5.1 In a concrete domain, two distinct prime intervals [a; a0] and[b; b0] are projective i� there exists an alternating sequence of prime intervalsf[x0; x00]; [x1; x01]; : : : ; [xn; x0n]g i.e. [a; a0] = [x0; x00], [b; b0] = [xn; x0n],and either ( [a; a0] < [x1; x01] > [x2; x02] < [x3; x03] � � � [xn; x0n][a; a0] > [x1; x01] < [x2; x02] > [x3; x03] � � � [xn; x0n]satisfying additionally condition Z:8i 2 [0; n� 2] [xi; x0i] > [xi+1; x0i+1] < [xi+2; x0i+2] ) xi#xi+250



Proof: The proof proceeds by induction on the length of the sequence oftranspositions that are needed to go from [a; a0] to [b; b0]. If [a; a0]T [b; b0] theresult is immediate. Assume now the property to be true for two projectiveprime intervals for which there is a sequence of transpositions of length at mostn�1, and suppose [a; a0]T [x1; x01] � � � [xn�1; x0n�1]T [b; b0]. By induction hypoth-esis there is an alternating sequence f[y1; y01]; : : : ; [ye; y0e]g between [x1; x01] and[b; b0]. Thus two cases are possible:Case 1: [x1; x01] < [y1; y01] > [y2; y02] < � � � [b; b0]Case 1.1:[a; a0] � [x1; x01]. Then we have also [a; a0] � [y1; y01] by transi-tivity and so [a; a0] < [y1; y01] > [y2; y02] < � � � [b; b0]Case 1.2: [a; a0] > [x1; x01]. Then if a#y1 the sequencef[a; a0]; [x1; x01]; [y1; y01]; : : : ; [b; b0]gsatis�es condition Z. Otherwise, by the previous result, we have:[a; a0] < [a _ y1; a0 _ y01] > [y1; y01]and the sequence f[a; a0]; [a _ y1; a0 _ y01]; [y2; y02] < : : : [b; b0]g is analternating sequence. If y3 exists, we know that y1#y3 so a fortioria _ y1#y3 and the sequence satis�es Z.Case 2: [x1; x01] > [y1; y01] < [y2; y02] > � � � [b; b0]Case 2.1: [a; a0] < [x1; x01]. Then f[a; a0]; [x1; x01]; [y1; y01]; : : : ; [b; b0]g isan acceptable alternating sequence.Case 2.2: [a; a0] � [x1; x01]. Then by transitivity [a; a0] > [y1; y01] andthe sequence f[a; a0]; [y1; y01]; : : : ; [b; b0]g is an alternating sequence.Since we had x1#y2, certainly a#y2 and the sequence satis�es Z.2Corollary 5.3 If a concrete domain is a lattice, two prime intervals [a; a0]and [b; b0] are projective i� there exists a prime interval [c; c0] such that[a; a0] � [c; c0] � [b; b0]Proof: Since two elements cannot be incompatible, the only alternating se-quences of prime intervals between two distinct prime intervals [a; a0] and [b; b0]are of the form: 1: [a; a0] < [b; b0]2: [a; a0] > [b; b0]3: [a; a0] < [c; c0] > [b; b0]51



Collecting these three cases with the case where [a; a0] and [b; b0] are identical,we obtain [a; a0] � [c; c0] � [b; b0]. The converse is immediate. 2Theorem 5.1 If a computation domain is a lattice satisfying I and C, theproperty R is equivalent to property RT :Property RTNo sublattice is isomorphic to the lattice of Figure 10.Proof: We already know by Corollary 5.2 that R implies RT . Assume nowthat RT holds and consider two projective prime intervals [a; x] and [a; y]. ByCorollary 5.2, there exists a prime interval [c; c0] such that[a; x] � [c; c0] � [a; y]We will reason by induction on �(a; c), the length of the maximal chains froma to c to prove that such a con�guration implies x = y when a � c, and thenby continuity to prove the result in general.Case �(a; c) = 0. Then a = c and c0 = x_c = x_a = x as well as c0 = y_c =y _ a = y so x = y.Case �(a; c) = 1. Then �(a; c0) = 2. Since c_ x 6= c and c_ y 6= c, necessarilyc 6= x and c 6= y. It is not possible to have c0 = x _ y because thesublattice including a; x; c; y; c_ y would be isomorphic to the lattice of�gure foo. Hence x_ y < c0, which implies �(a; x_ y) � 1. Consequentlyx and y are comparable. As both cover a they must be equal.Case �(a; c) = n > 1. Then there exists an element d with a �< d � c so�(d; c) = n � 1. Since a = x ^ c = x ^ d and a = y ^ c = y ^ d, usingproperty C we deduce d �< d_ x and d �< d_ y. We have immediately[d; d_ x] � [c; c0] � [d; d_ y]By induction hypothesis the d _ x = d _ y. But then, if x and y weredistinct, the lattice including a; x; y; d; c_ x would be isomorphic to thelattice of Figure 10. So we must have x = y.We conclude the proof using Proposition 5.1. If [a; x] � [c; c0] � [a; y] thereexists a prime interval [
; 
 0] with a � 
 and [a; x] � [
; 
 0] � [a; y]. Hencehere again x = y. 2 52



An interesting consequence of property RT is that it excludes a domainlike the one on Figure 6. More precisely:Proposition 5.5 In a concrete domain, an interval [x; y] of height n containsat most n elements covering x.Proof: We reason again by induction on the height of the interval [x; y]. Theresult is immediate when x = y and x �< y. If all maximal chains from x to yhave length 2, then consider two elements a and b covering x and less than y.If they are distinct, we have y = a _ b by property C. Property RT excludesthe possibility of a third element c less than y covering x.Now in the general case, assume all maximal chains from x to y have lengthn, with n > 2. Consider an arbitrary element t such that x �< t � y. Theinterval [t; y] is of height n� 1 and by induction hypothesis there are at mostn� 1 elements covering t in that interval.
x�@@@ HHHHHH�b ����a � t@@@�� �y

By property RT , the mapping that associates to any element of [x; y] cov-ering x the element x_ t is an injection. So there are at most n�1 elements of[x; y] covering x and distinct from t. If we now count t, the result is established.2Corollary 5.4 In a concrete domain, if x � y the interval [x; y] contains only�nitely many elements.Proof: We reason again by induction on the height �(x; y) of the interval[x; y]. If �(x; y) = 0 or �(x; y) = 1 the result is immediate. Suppose now�(x; y) = n > 1. Then for any a covering x in [x; y] there are, by inductionhypothesis, �nitely many elements in [a; y]. Since the number of elementscovering x in [x; y] is �nite, there are �nitely many elements in [x; y]. 2Corollary 5.5 In a concrete domain, a �nite element dominates only �nitelymany elements. 53



Remark: We are not too concerned with the independence of the variousaxioms that we postulate for computation domains, nor of the properties thatwe have studied so far. But one may notice here that properties C and RTimply respectively conditional completeness and coherence, which in a way isanother argument in favor of these axioms. Since coherence has been studiedrelatively little in the literature, we prove that it is not independent of I,C, Qand RT .Proposition 5.6 If an algebraic partial order is conditionally complete, andit satis�es properties I,C,Q, and RT , then it is coherent.Proof: By proposition 1.2, we need only to show that any pairwise consistenttriple a; b; c has a least upper bound. We reason by induction on �(a^b^c; a).a) Base cases: If �(a ^ b ^ c; a) = 0, then a,b, and c are less than b _ c. If�(a^ b^ c; a) = 1, then suppose a were incompatible with b_ c.a ^ b ^ c�@@@ PPPPPPPPP ����a ����b �c@@@� b_ cBy property Q, since a ^ b^ c = a ^ (b_ c) there exists a t such thata ^ b ^ c �< t � b _ c and a#tBut by proposition 5.2 (whose proof doesn't rely on coherence!) thatcan be applied since a ^ b^ c � b^ c, either t � b or t � c. But then, ineither case the set fa; b; cg cannot be pairwise consistent. If for examplet is less than b, then b cannot be compatible with a. So a " (b _ c) andby conditional completeness a _ (b _ c) exists.b) Induction step: Assume the property holds when �(a ^ b ^ c; a) < n � 1and assume �(a ^ b ^ c; a) = n. consider a maximal chaina ^ b^ c = x0 �< x1 �< x2 �< � � � �< xn�1 �< xn = afrom a ^ b^ c to a. Since the triple fa; b; cg is pairwise consistent, so isthe triple fxn�1; b; cg. By induction hypothesis, it admits a least upperbound xn�1 _ b _ c. We can use the argument of the base case to thetriple fa; xn�1 _ b; xn�1 _ cg. Finally, a _ xn�1 _ b _ c = a _ b _ c.54



c) Continuity argument: If a is not �nite relatively to a ^ b ^ c, consider anarbitrary � approximant of a. The triple fa; b; cg is pairwise consistent,so is the triple f�; b; cg, thus � _ (b _ c) exists. In the upper section[a^ b^ c) we have:[�2A(a)(� _ (b_ c)) = 0@ [�2A(a)�1A _ (b_ c)By algebraicity we have S�2A(a)� = a and consequently a_b_c exists.2We return to our central concern, the study of the consequences of propertyR.Lemma 5.2 Consider two compatible elements x and y in a concrete domain.If [x; x0] is a prime interval included in [x; x _ y], then there exists a primeinterval [u; u0] included in [x^ y; y] which is projective with it.Proof: Remark �rst that y cannot be less than x because then we would havex_y = x and the prime interval [x; x0] could not be included in [x; x_y]. Nowwe reason by induction on the length �(x ^ y; y) of the maximal chains fromx ^ y to y.a) Base case:�(x^y; y) = 1, i.e. x^y �< y. By property C we have x �< x_y.Since we have also x �< x0 � x _ y we deduce x0 = x _ y. The intervals[x^ y; y] and [x; x0] are transposed.b) Induction step: Assume �(x^y; y) = n > 1. Consider an arbitrary elementv covered by y. By Lemma 3.1 we have v _ x =< v _ x0. We examineboth cases in turn:Case 1: v _ x = v _ x0. We can apply the induction hypothesis becausex^ v = x^ y so �(x^ v; v) = �(x^ y; v) = n� 1. Thus there existsan interval [u; u0] included in [x^ y; v] { thus a fortiori in [x^ y; y]{ projective with [x; x0].Case 2: v _ x �< v _ x0. Note that this case implies that y is not lessthan v _ x: we would then have v _ x _ y = x _ y = v _ x andv _ x �< v _ x0 � x _ y = v _ xwhich is impossible. Thus (v_x)^y = v and we can use property Cand deduce v_x �< (v_x)_y = x_y. But v_x �< v_x0 � x_y55



hence v _ x0 = x _ y = (v _ x) _ y which means that the followingholds: [x; x0] � [v _ x; v _ x0] � [v; y]This concludes the proof when �(x ^ y; y) is �nite.x ^ y�@@@ 





�x ����x0 �x _ y@@@@ �yc) Continuity argument: If now y is not �nite relative to x ^ y, there existsnevertheless an element d 2 A(y) with x ^ y � d and x �< x0 � x _ dand we can apply the previous results to the elements x,x0, and d. 2Remark:1. This proof doesn't use property R. It is included in this Section becausewe need the Lemma here.2. In fact, we can prove with a minor adjustment of the induction argumentthat there exists a prime interval [t; t0] and [x; x0] � [t; t0] � [u; u0].Corollary 5.6 In a concrete domain, if [x; x0] is a prime interval included inin the interval [?; a_ b], there exists a prime interval projective with it eitherin [?; a] or in [?; b].Proof: Using Lemma 3.1 we obtain a _ x =< a _ x0 and b _ x =< b _ x0.Case 1: a _ x �< a _ x0 and b_ x �< b_ x0. Then we have[a _ x; a_ x0] � [x; x0] � [b_ x; b_ x0]thus by Proposition 5.3, since (a_ x) " (b_ x)[a _ x; a _ x0] � [a _ b _ x; a_ b_ x0] � [b_ x; b_ x0]But there is a contradiction since a _ b = a _ b_ x = a _ b _ x0, makingit impossible for the interval [a_ b_ x; a_ b_ x0] to be prime. This casecannot happen. 56



Case 2: a _ x = a _ x0 (the case b _ x = b _ x0 is handled symmetrically).Then the prime interval [x; x0] is included in [x; x_ a]. By the previousLemma, there exists a prime interval [u; u0] included in [x ^ a; a] (hencea fortiori in [?; a]) with [x; x0] � [u; u0]. 2Lemma 5.3 Consider two projective prime intervals [x; x0] and [z; z0] in aconcrete domain. If there exists a prime interval [y; y0] projective with [x; x0]in [?; x], then there exists a prime interval projective with [z; z0] in [?; z].Proof: The proof proceeds by induction on the length Z of the alternatingsequence of transposed prime intervals between [x; x0] and [z; z0]. If Z = 0 theintervals [x; x0] and [z; z0] are identical, so the result is immediate. Assumenow Z = n; n > 0. Two cases are possible, depending on the form of thealternating sequence.Case 1: [x; x0] < [x1; x01] > � � � [z; z0]. In that case the interval [y; y0] is alsoincluded in [?; x1]. By induction hypothesis, there exists a prime interval[t; t0] in [?; z] with [t; t0] � [y; y0] because the alternating sequence from[x1; x01] to [z; z0] is of length n� 1.Case 2: [x; x0] > [x1; x01] < � � � [z; z0]. Since x1 and y are compatible, wededuce by Lemma 3.1 x1 _ y =< x1 _ y0, thus two cases are possible.Case 2.1: x1 _ y �< x1 _ y0 x1�y ������� XXXXXX�x1 _ y�y0 �x1 _ y0 �x01�������x������ \\\\\\\\ \\\\\\\\�x0Since x1 and y are both less than x, so is x1 _ y. Therefore x01 is not lessthan x1 _ y, because otherwise x01 would be less than x and x �< x0 =x01 _ x would be impossible. So x1 = (x1 _ y) ^ x01 and by property C:x1 _ y �< (x1 _ y) _ x01 = x01 _ yHence we have [x1_y; x1_y0] � [y; y0] � [x; x0] � [x1; x01] � [x1_y; x01_y].By property bR we conclude x1 _ y0 = x01 _ y. But then x01 � x1 _ y0 � x,which we have seen is impossible. There is a contradiction, so this casecannot happen. 57



Case 2.2: x1 _ y = x1 _ y0. Then we can use Lemma 5.1. There is aprime interval [u; u0] projective with [y; y0] in [x1 ^ y; x1]. By transi-tivity [u; u0] � [x1; x01]. Using the induction hypothesis, we deduce thatthere exists a prime interval [t; t0] in [?; z] with [u; u0] � [t; t0] and thus[y; y0] � [t; t0]. 2Theorem 5.2 In a concrete domain, if [x; x0] is a prime interval, then theinterval [?; x] contains no equipollent prime interval.Proof:A. We prove �rst that there cannot be a prime interval [y; y0] in [?; x] with[x; x0] � [y; y0]. The proof is by induction on h(x) the height of x. Ifh(x) = 0 the result is immediate. If h(x) = n > 0, assume some [y; y0]included [?; x] veri�ed [y; y0] � [x; x0]. By the previous lemma, thereexists [t; t0] � [y; y0] with [t; t0] included in [?; y]. But h(y) < h(x) soby induction hypothesis this is impossible. Hence the property is provedfor any �nite x. If now h(x) is in�nite, there exists by Proposition 3.1a prime interval with �nite endpoints [�; �0] with [�; �0] � [y; y0]. In theupper section [�0) there exists a �nite [�; �0] with [�; �0] � [x; x0]. Theprime intervals [�; �0] and [�; �0] are now projective intervals with �niteendpoints and the reasoning above applies.B. We prove now that there can't be a prime interval equipollent to [x; x0]in [?; x]. Assume such an interval [y; y0] would exist,i.e. [y; y0] � [x; x0].By de�nition �=' � �=� � '. Hence [y; y0] � � ' [x; x0], whichmeans that there is a prime interval [x; x00] with [y; y0] � [x; x00]. This isimpossible by the result of part A. 2In the �ve sections above, we have de�ned the essential properties thata computation domain should satisfy to be considered plausibly a data do-main rather than a functional domain. The mathematical consequences ofthese properties are consistent with our intuition. But it remains to showthat these properties are su�cient to characterize truly a notion of concretecomputation domain. This is the role of the forthcoming sections that developa representation theory for concrete domains.6 The information matrixTo start with, we expose the essential facts on which the representation ofconcrete domains will be based. 58



De�nition 6.1 An equivalence class of equipollent prime intervals will becalled a cell.Notation: Let [x; x0] be a prime interval. We denote d[x; x0] the equivalenceclass of [x; x0] under projectivity (the decision associated to [x; x0]) and c[x; x0]the cell associated with [x; x0], i.e. its equivalence class under equipollence.De�nition 6.2 If [x; x0] is a prime interval and a dominates x0, we say thata occupies cell c[x; x0] and contains decision d[x; x0]. We note:�(a) = fc[x; x0] j x �< x0 and x0 � ag�(a) = fd[x; x0] j x �< x0 and x0 � agProposition 6.1 For any a:�(a) = fc[x; x0] j x �< x0 and x0 2 A(a)g�(a) = fd[x; x0] j x �< x0 and x0 2 A(a)gProof: This result is a simple application of Proposition 3.1. For any primeinterval [y; y0] with y0 � a, there is a prime interval [x; x0] with �nite endpointssuch that [x; x0] � [y; y0], hencec[x; x0] = c[y; y0]d[x; x0] = d[y; y0]Since y0 � a, a fortiori x0 � a. As x0 is �nite, it is an approximant of a. 2Proposition 6.2 Consider a consistent subset X in a concrete domain. Wehave the following equalities:( �(SX) = Sx2X �(x)�(SX) = Sx2X �(x)Proof: First, by coherence, if X is consistent it has a least upper bound SX .Now by de�nition of � and �:( x � y ) �(x) � �(y)x � y ) �(x) � �(y)So immediately: ( Sx2X �(x) � �(SX))Sx2X �(x) � �(SX))We prove now the converse inequalities by induction on the cardinal of Xwhen X is �nite and then by continuity.59



a) Base Cases: If jX j = 0 then SX = ? and �(?) = �(?) = ;. If jX j = 1then X = fxg and SX = x. So obviously �(x) � �(SX) and �(x) ��(SX).b) Induction step: let X = fx1; x2; : : : ; xn�1; xng(n > 1). If X is consistent,so is X 0 = fx1; x2; : : : ; xn�1g. By induction hypothesis:( Sx2X 0 �(x) � �(SX 0))Sx2X 0 �(x) � �(SX 0))Since SX = (SX 0) _ xn, so by Corollary 5.6, any prime interval [x; x0]included in [?;SX ] is projective with a prime interval included eitherin [?;SX 0] or in [?; xn]. Hence( �(SX) � �(SX 0) [ �(xn)�(SX) � �(SX 0) [�(xn)Using the induction hypothesis we obtain:( �(SX) � Sx2X �(x)�(SX) � Sx2X�(x)c) Continuity argument: consider an arbitrary prime interval [x; x0] with �-nite endpoints included in [?;SX ]. Since x0 is �nite less than SX andthe set obtained by adding to X the least upper bounds of its �nitesubsets is directed, we can �nd a �nite subset Y of X whose least upperbound dominates x0. Thus by the previous result:( c[x; x0] 2 Sy2Y �(y)d[x; x0] 2 Sy2Y �(y)so we deduce ( �(SX) � Sx2X �(x)�(SX) � Sx2X�(x)2 In a concrete domain, we have a property that is far stronger than theJordan-Dedekind condition.Lemma 6.1 Consider an arbitrary element x in a concrete domain and amaximal chain f? = x0; x1; : : : ; xn; : : :g between ? and x. We have the equal-ities: �(x) = fc[xi; xi+1]ji � 0g�(x) = fd[xi; xi+1]ji � 0g60



Proof: the equalities are proved by induction on h(x).a) Base Cases: if h(x) = 0 then x = ? and �(?) = �(?) = ;. If h(x)=1,then x is an atom and the property is obvious again.b) Induction step: assume now h(x) = n > 1. Take an arbitrary primeinterval [y; y0] in [?; x]. Since y0 and xn�1 are compatible, by Lemma3.1 we have xn�1 _ y =< xn�1 _ y0 and two cases have to be considered:Case 1: xn�1_y = xn�1_y0. In that case, by Lemma 5.1 there exists aprime interval [z; z0] in [?; xn�1] projective with [y; y0]. Since xn�1is of height n�1, we can use the induction hypothesis. Hence thereexists an interval [xk; xk+1] with k � n � 2 and [z; z0] � [xk; xk+1]i.e. d[z; z0] = d[xk; xk+1] and therefored[y; y0] 2 fd[xi; xi+1]ji � 0gc[y; y0] 2 fc[xi; xi+1]ji � 0gCase 2: xn�1 _ y �< xn�1 _ y0. In that case the prime interval [xn�1 _y; xn�1_y0] is included in the prime interval [xn�1; x] which impliesxn�1 = xn�1 _ yx = xn�1 _ y0so [y; y0] � [xn�1; x] and here againd[y; y0] 2 fd[xi; xi+1]ji � 0gc[y; y0] 2 fc[xi; xi+1]ji � 0gc) Continuity argument: If x is not �nite, we know nevertheless byproposition 6.1 that�(x) = fc[y; y0]j[y; y0] prime and y; y0 2 A(x)g�(x) = fd[y; y0]j[y; y0] prime and y; y0 2 A(x)gConsider then a prime interval [y; y0] with �nite endpoints. Themaximal chain from ? to x is a directed set so there is a �niteelement xn in the chain such that y0 � xn. Using the result of the�nite case, we can �nd an interval [xi; xi+1](i � n � 1) projectivewith [y; y0]. 2Corollary 6.1 For any x in a concrete domain h(x) = j�(x)j = j�(x)j.61



Proof: Assume �rst x is �nite. By the previous lemma, we know that j�(x)j �h(x) and j�(x)j � h(x). But by Theorem 5.1 a maximal chain cannot containtwo equipollent prime intervals. So h(x) � j�(x)j and h(x) � j�(x)j. Now ifx is in�nite, using Theorem 5.1 we have j�(x)j =1 and j�(x)j =1. 2We prove now a technical result that is much stronger than Proposition5.4.Proposition 6.3 Consider two projective prime intervals [a; a0] and [b; b0] ina concrete domain. If a and b are compatible we have also:[a; a0] � [c; c0] � [b; b0]with c = a _ b and c0 = a0 _ b = a _ b0Proof: First a0 and a_b are compatible. Indeed if we had a0#a_b, there wouldexist an element t such that a �< t � a _ b and t#a0. By Lemma 5.1 therewould exist an interval [u; u0] in [?; b] with [u; u0] � [a; t] thus [u; u0] � [a; a0].But since [a; a0] � [b; b0] we deduce [u; u0] � [b; b0], which is impossible byTheorem 5.1. Symmetrically we can show b0 " c = a _ b. The same reasoningalso shows that a0 and b0 are not less than c. By Property C we deducec �< (a _ b) _ a0 = a0 _ bc �< (a _ b) _ b0 = a _ b0But the prime intervals [a _ b; a0 _ b] and [a _ b; a _ b0] are projective. So byproperty R we obtain a0 _ b = a _ b0. 2Corollary 6.2 If [x; x0] and [y; y0] are two equipollent prime intervals includedin the same interval [?; z] then they are projective.Proof: From [x; x0] � [y; y0] we deduce that there exists a a prime interval[y; y00] such that [x; x0] � [y; y00] � [y; y0]. But x and y are compatible, so bythe previous result [x; x0] � [x _ y; x0 _ y] � [y; y00]. As x0 _ y is less than z,so is y00. Since y0 is also dominated by z we must have y0 = y00 and therefore[x; x0] � [y; y0]. 2Theorem 6.1 In a concrete domainx � y , �(x) � �(y)Proof: By de�nition of � we have x � y ) �(x) � �(y), so we need onlyto prove the converse implication. We reason by induction on the height of x.62



a) Base Case: If h(x) = 0 then x = ? and for any y we have x � y.b) Induction step: Assume we have �(x) � �(y) ) x � y when the heightof x is less than n, and assume h(x) = n. Consider an arbitrary maximalchain ? = x0 �< x1 �< � � � �< xn�1 �< xn = x from? to x, and assume�(x) � �(y). Since xn�1 � x, we have �(xn�1) � �(x) � �(y). Ash(xn�1) = n�1 we can use the induction hypothesis to deduce xn�1 � y.Now d[xn�1; xn] belongs to �(x) thus to �(y) so there exists a primeinterval [z; z0] in [?; y] with [xn�1; xn] � [z; z0]. Both elements xn�1 andz are less than y so we can use Proposition 6.3:[xn�1; xn] � [xn�1 _ z; t] � [z; z0]t = xn�1 _ z0 = xn _ zBut since both xn�1 and z0 are less than y so is t, therefore xn is lessthan y. As xn = x we obtain x � y.c) Continuity argument: From �(x) � �(y) we deduce8a 2 A(x) �(a) � �(y)thus by the result of the �nite case 8a 2 A(x) a � y. By algebraicityx = Sa2A(x) a and therefore x � y. 2De�nition 6.3 A prime interval is called minimal if it is minimal for therelation � between intervals.De�nition 6.4 An element x is join{irreducible i�i) x 6= ?ii) x = a _ b) x = a or x = bProposition 6.4 In a concrete domain, for any prime interval [x; x0] thereexists a prime interval [y; y0] less than [x; x0] where y0 is join{irreducible.Proof: By Proposition 3.1 it is su�cient to examine the case where [x; x0] has�nite endpoints. We reason by induction on h(x0).a) Base Case: h(x0) = 1. The element x0 is an atom thus necessarily join{irreducible. The result is immediate.63



b) Induction step: Assume h(x0) = n; n > 1. If x0 is join{irreducible, theproperty is proved immediately. Otherwise x0 = a _ b together witha < x0 and b < x0. By Corollary 5.6 there exists a prime interval [u; u0]included either in [?; a] or in [?; b] such that [u; u0] � [x; x0]. Since bothu and x are both less than x0, by Proposition 6.3:[u; u0] � [x_ u; x_ u0] � [x; x0]Since x _ u0 � x0 necessarily x _ u0 = x0 and thus x _ u = x so[u; u0] � [x; x0]. But since u0 is either less than a or less than b wehave in fact [u; u0] < [x; x0], which implies h(u) < h(x0) and we can ap-ply the induction hypothesis to the prime interval [u; u0]. There existsa prime interval [y; y0] with y0 join-irreducible and [y; y0] � [u; u0] and afortiori [y; y0] � [x; x0]. 2Corollary 6.3 In a concrete domain, a prime interval [x; x0] is minimal i�x0 is join{irreducible.Proof: Assume �rst that x0 is join{irreducible and consider a prime interval[y; y0] such that [y; y0] � [x; x0]. By de�nition of � we have x0 = x _ y0. Sincex0 is join{irreducible and x 6= x0 we must have y0 = x0. Thus y = y0 ^ x =x0 ^ x = x, and [y; y0] = [x; x0]. So [x; x0] is minimal.Conversely, assume that [x; x0] is minimal. By the previous propostionthere exists [y; y0] with y0 join{irreducible and [y; y0] � [x; x0]. By minimality[y; y0] = [x; x0] so y0 = x0 which proves that x0 is join{irreducible. 2Proposition 6.5 In a concrete domain, if the prime interval [x; x0] is mini-mal, then any prime interval [x; x00] such that [x; x00] ' [x; x0] is also minimal.Proof: Consider an arbitrary prime interval [y; y00] such that[y; y00] � [x; x00] ' [x; x0]Since � � ' = ' � � there exists a y0 such that[y; y00] ' [y; y0] � [x; x0]Since [x; x0] is minimal [y; y0] = [x; x0] so y = x. Hence x^y00 = x which impliesx � y00. Since x00 = x _ y00 we have x00 = y00 and therefore [y; y00] = [x; x00],which proves that [x; x00] is minimal. 264



De�nition 6.5 In a concrete domain, consider a decision � and a set of deci-sions �. We say that � enables � i� there is a minimal prime interval [x; x0]such that: ( d[x; x0] = ��(x) = �By the previous proposition, if � enables � it also enables all decisionsequipollent to � so we can say that � enables cell 
 i� there exists a minimalprime interval [x; x0] such that:( c[x; x0] = 
�(x) = �Remarks:1. If the interval [x; x0] is minimal, elements x and x0 are �nite. There-fore, since j�(x)j = h(x), a cell is always enabled by a �nite number ofdecisions.2. In general, within a given equivalence class of projective prime intervals,there are several distinct minimal intervals. Therefore, several distinctsets of decisions may enable a given cell. The case where any cell 
 isenabled by a single set of decisions � is a very important special casethat we will consider in section 10.We are now ready to build a whole class of concrete domains, using thenotions introduced in this section.De�nition 6.6 An information matrix is a quadruple M =< �; V;V ; E >where1. � is a countable set. Its elements will be called cells.2. V is a countable set.3. V is a function from � to P(V ) that maps any cell c in � to the subsetV(c) of possible values at c. We simply say that V(c) is the type of c.We call decision a pair < c; v > where c is a cell and v is a possible valueat c, i.e. c 2 � and v 2 V(c). We note �M the set of decisions de�nedby �,V , and V, and F(�M) the set of �nite subsets of �M .65



4. the enabling function E maps � to P(F(�M))�;. If a �nite set of deci-sions fd1; d2; : : : ; dng belongs to E(c) we say that fd1; d2; : : : ; dng enablescell c.Notations: Let M =< �; V;V ; E > be an information matrix with set ofdecision �M . If d =< c; v > (c 2 �; v 2 V(c)) is a decision, we say that thisdecision concerns cell c; if fd1; d2; : : : ; dng is a set of decisions in E(c), we saythat this set enables cell c and decision d. This relation is written:d1; d2; : : : ; dn ` dIf the empty set enables a cell (resp. a decision) we say that this cell (resp.this decision) is initial.De�nition 6.7 Consider an information matrix M and a decision d in M .A �nite sequence of decisions d0; d1; d2; : : : ; dn�1; dn = d is a proof of d i� forany j with 0 � j � n there is a subset fdj1 ; dj2 ; : : : ; djkg of fd0; : : : ; dj�1g thatenables dj, i.e. dj1 ; dj2 ; : : : ; djk ` dj.De�nition 6.8 In an information matrix, a subset of decisions X is con-nected by another subset Y i� any decision in X has a proof included in Y .A subset X that is connected by itself is called connected.Remarks: If X is connected by Y we have X � Y . If X is connected by Y ,em a fortiori X is connected by any superset of Y . If two sets of decisionsare connected, so is their set union. A proof is of course connected. Fromthese last two remarks, we deduce that any �nite subset X of a connected setmay be included in a �nite connected subset: simply include a proof of eachelement of X .De�nition 6.9 In an information matrix M a con�guration is a connectedset of decisions in which no two distinct decisions concern the same cell.Let �M be the set of con�gurations of an information matrix M . Any con-�guration � is a subset of �M by de�nition, so �M is naturally ordered byinclusion.Example: Consider the matrix M1 =< �1; V1;V1; E1 > de�ned by1. �1 = fc1; c2; c3g2. V1 = f>g 66



�1������QQQQQ��2 ��3����� QQQQQ��5 ��6��4��7 QQQQQ�����Figure 13: �M13. V1 = �c:f>g4. E1(c1) = E1(c2) = f;g E1(c3) = ffc1g; fc2ggSince V1 contains a single value, the set of decisions is isomorphic to �1 andthe set of con�gurations �M1 comprises the following seven con�gurations:�1 = ; �2 = fc1g �3 = fc2g �4 = fc1; c2g�5 = fc1; c3g �6 = fc2; c3g �7 = fc1; c2; c3gThe diagram of the partial order < �M1 ;�> is shown on Figure 13.We have used extensively Hasse diagrams to represent partial orders; in thesame manner it is useful to represent in a synthetic manner an informationmatrix. Such a graphical representation is only feasible when all cells mayonly contain a single value > (i.e. V = �c:f>g). In that case � and �M areisomorphic and E maps � to P(F(�)) so that we can use a representationby \and-or" graphs that is familiar in computer science. Each cell in M isrepresented by a node in the graph and if we have c1; c2; : : : ; cn�1 ` cn thegraph of M has n � 1 edges ci ! cn and they are drawn connected by an arc(for \and"). For example matrix M1 that we have just seen is representedhere: c1���� @@@I c2c3Matrix M2 =< �1; V1;V1; E2 > where E2(c1) = E2(c2) = f;g and E2(c3) =ffc1; c2gg is represented by 67



c1���� @@@I c2c3̂Simple conventions allow representing in�nite matrices in this manner (cf.Figure 14).Lemma 6.2 In the partial order < �M ;�> of the con�gurations of an infor-mation matrix M ordered by set inclusion, two con�gurations �1 and �2 arecompatible i� the set �1[�2 is a con�guration. Furthermore �1_�2 = �1[�2.Proof: First if �1[�2 is a con�guration, since �1 � �1 [�2 and �2 � �1[�2,we have �1 " �2. Assume conversely �1 " �2, i.e. that there is a con�guration� with �1 � � and �2 � � and consider the set of decisions �1 [ �2. Weremarked earlier that since �1 and �2 are connected, so is their union. If in�1 [ �2 two distinct decisions concerned the same cell, then this would alsobe the case in � that includes �1 [ �2. But this is impossible because � is acon�guration. Thus �1 [ �2 is a con�guration.Since any con�guration dominating �1 and �2 must contain (hence domi-nate) �1 [ �2 we have �1 _ �2 = �1 [ �2. 2Remark: However, the set intersection of two con�gurations is not necessarilya con�guration because it may not be connected. For example in the matrixM1 considered earlier, we have �5 \ �6 = fc3g and fc3g is not connected. Infact �5 ^ �6 = �1 = ; 6= �5 \ �6.Lemma 6.3 In the partial order < �M ;�> con�guration �2 covers con�gu-ration �1 i� there exists a decision d such that �2 = �1 _[ d.Proof: Assume �rst that �1 and �2 are two con�gurations such that �2 =�1 _[ d. Then �1 � �2 and �1 6= �2. Let � be an arbitrary con�guration in[�1; �2], i.e �1 � � � �2. Since �1 and �2 di�er only by the element d, either� doesn't contain d and �1 = � or � contains d and � = �2. Thus we haveindeed �1 �< �2.Conversely assume �1 �< �2. Let d be an arbitrary decision in �2 not in�1. Such a decision exists since �1 and �2 are distinct. Since �2 is connected,there is a proof of d in �2:d0; d1; d2; : : : ; dn�1; dn = d68
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Consider the �rst decision dj in this proof that does not belong to �1. Theset �1 _[ fdjg is connected since dj has a proof entirely contained in it. Now���1 _[ fdjg � �2 and �1 6= �1 _[ fdjg. So since �2 covers �1 we must have�1 _[ fdjg = �2. 2Theorem 6.2 For any information matrix M the partial order < �M ;�> isa concrete domain.Proof:Part 1: < �M ;�> is a computation domain.1. < �M ;�> is coherent. Let X be a consistent set of con�gurationsand consider the set of decisions obtained in taking all decisions ofall elements of X . This set � is connected because it is a unionof connected sets. Suppose two decisions in � would concern thesame cell. These two decisions could not be included in the sameelement of X , because X contains only con�gurations. But theycannot come from two distinct elements x1 and x2 of X , otherwisex1 [ x2 would not be a con�guration, contradicting the hypothesisx1 " x2 by Lemma 6.2. Thus � is a con�guration. It is the smallestcon�guration that dominates all elements of X , so � = SX .2. < �M ;�> is !{algebraic. Let us show that the �nite con�gura-tions are exactly the isolated elements in < �M ;�>.First we show that �nite con�gurations are isolated. Let X be adirected set of con�gurations and � a �nite set of decisions such that� � SX . We reason by induction on the size (cardinal) of � . In thebase case, if j� j = 0 then � = ; and for any x in X , � � x. If nowj� j = n(n > 0) then choose an arbitrary decision d in � and take� = � 0 _[fdg. Since j� 0j < n by the induction hypothesis there existsx1 in X such that � 0 � x1. Now there must exists a con�guration x2in X that contains decision d, otherwise it wouldn't be a decision ofSX , which would contradict � � SX . Since X is directed, thereis x in X with x1 � x and x2 � x, so � � x.Consider now an arbitrary con�guration x. If a is a �nite subset ofx, we have seen that a may be included in a �nite connected subseta of x, which is then a con�guration. As X is the union of all its�nite parts, we have x = [faja 2 F(x)g. On the right hand side ofthis equation is a directed set of con�gurations, so we have also:x =[faja 2 F(x)g70



So if x is isolated, there exists a �nite subset a of x with x � a andtherefore, since a � x, a = x, proving that x is a �nite con�guration.We have proved that the �nite elements of < �M ;�> are exactlythe �nite con�gurations. As there are only denumerably many �nitesubsets in a denumerable set, we conclude that < �M ;�> is !{algebraic. This terminates the �rst part.Part 2: < �M ;�> is a concrete domain. We check in turn that < �M ;�>has properties I,C, Q, and R.1. Property I. The set of �nite con�gurations is trivially an ideal of< �M ;�>. As there are only �nitely many subsets of a �nite set,a fortiori there are only �nitely many con�gurations included in a�nite con�guration. So the ideal is well founded.2. Property C. Let �1 and �2 be two compatible �nite con�gurationssuch that �1^�2 �< �1. By Lemma 6.3 we have �1 = �1^�2 _[ fdg.By Lemma 6.2, if �1 " �2 then �1 _ �2 = �1 [ �2, so:�1 _ �2 = �1 ^ �2 [ fdg [ �2 = �2 [ fdgIf element d belonged to �2, we would have �1_�2 = �2 thus �1 � �2and �1 ^ �2 = �1 which contradicts the hypothesis. Therefore:�1 _ �2 = �2 _[fdgand by Lemma 3.2 again �2 �< �1 _ �2.3. Property Q. If two con�gurations �1 and �2 are incompatible, theset �1 [ �2 is not a con�guration by Lemma 6.2. Since �1 [ �2is connected, there must exist two distinct decisions d1 and d2,with d1 2 �1 and d2 2 �2 concerning the same cell. Consider twoincompatible and �nite con�gurations �1 and �2 with �1^�2 �< �1.Let d1 =< c; x > and d2 =< c; y > (x 6= y). Since �1 ^ �2 is lessthan �1 and �2, it cannot contain a decision concerning cell c. Thus�1 = �1 ^ �2 _[ fd1g. The decision d1 has a proof fd00; d01; : : : ; d0n =d1g. Without loss of generality we can assume this proof has noearlier occurrence of d1, i.e. the elements d0i (0 � i � n� 1) are allin �1 ^ �2. Since d1 and d2 concern the same cell, we have:d00; d01; : : : ; d0n�1 ` d271



hence the set � = �1 ^ �2 _[ fd2g is connected, and since d2 isthe only decision concerning c, it is a con�guration. We have now�1 ^ �2 �< � � �2 and �1#� , so Property QE is satis�ed. Considernow three con�gurations �1, �2, and �3 covering � i.e.�1 = � _[ fd1g �2 = � _[ fd2g �3 = � _[ fd3gIf �1R��2 and �2R��3 we must have d1 =< c; v1 >, d2 =< c; v2 >,and d3 =< c; v3 >. If v3 = v1 then �1 = �3 and if v3 6= v1 then�1#�3. So property QU is satis�ed as well.4. Property R. We will prove that if two prime intervals [�1; �01] and[�2; �02] there exists a decision d with �01 = �1 _[ fdg and �02 =�2 _[ fdg. In fact, since projectivity is the transitive closure of trans-position, it is su�cient to prove this property when [�1; �01]T [�2; �02].If [�1; �01] � [�2; �02] we have seen in part 2 of this proof that�02 = �01_�2 = �2 _[ fdg. If [�1; �01] � [�2; �02] assume �02 = �2 _[ fd0gand �01 = �1 _[ fdg. By de�nition, �01 = �02 _ �1 = (�2 _[fd0g) [ �1.But we know that �2 � �1, so �01 = �1 _[ fd0g = �1 _[ fdg. Henced = d0 and �02 = �2 _[ fdg.Now if [�; �0] and [�; �00] are projective, we must have �0 = � _[ fdgand �00 = � _[ fdg, hence � = �0 which proves property R. 2Remark: In < �M ;�>, the height h(�) of a con�guration � is simply j�j if� is �nite, and in�nite otherwise. From the set theoretic equality:jAj+ jBj = jA \Bj + jA [Bjwe deduce, since �1 ^ �2 � �1 \ �2:h(�1) + h(�2) � h(�1 ^ �2) + h(�1 _ �2)an inequality that we have already proved. It is clear here that there will bea strict inequality whenever �1 ^ �2 6= �1 \ �2.7 The representation TheoremThe theorem that we are going to prove now is a representation theorem thatplays a role similar to the two classical representation theorems of LatticeTheory([Bir67]): 72



1. every boolean lattice is isomorphic to a �eld of sets2. every distributive lattice is isomorphic to a ring of setsHere, given an arbitrary concrete domain, we will construct an informationmatrix whose space of con�gurations, which is a concrete domain by the resultof the previous section, is isomorphic to the concrete domain that we startedwith.Theorem 7.1 Every concrete domain is isomorphic to the set of con�gura-tions of an information matrix.Proof: Consider an arbitrary concrete domain D.Part 1: Construction of the information matrix.We build an information matrix M =< �; V;V ; E > in the manner that isimplicit in our terminology.i) � is the set of cells (equivalence classes under equipollence) of D (cf. Def-inition 6.1). Since the cardinality of this set is less than the cardinalityof the set of isolated elements in D, the set � is countable.ii) V is the set of decisions of D (equivalence classes under projectivity),which is countable for the same reason.iii) If c is a cell in D, it is the union of equivalence classes under projectivity,so we take V(c) to be the set of projectivity classes in c. Thus if c1 andc2 are two distinct cells in D, the sets V(c1) and V(c2) are disjoint sets.Therefore the set �M of decisions of M is isomorphic to V . In otherwords, all cells in M have a distinct type.iv) Function E is the function that maps any cell c to the set of �nite partsof �M (i.e. of V ) that enable c (cf. De�nition 6.5).The set of con�gurations of the matrix M built in this manner is a concretedomain by Theorem 6.2.Part 2: The injection � from D to < �M ;�>.Any element x in D de�nes the set �(x) of the decisions that it contains(cf. De�nition 6.2). The set �(x) is a subset of V in one-one correspondencewith a subset �(x) of �M . We prove by induction on h(x) that �(x) is acon�guration of M .a) Base case: If h(x) = 0 then x = ? and �(x) = �(x) = ;. The empty setis a con�guration. 73



b) Induction step: Assume h(x) = n (n > 0). Two cases are to be considered:Case 1: x is not join{irreducible. Then x = a_b with a < x and b < x,thus h(a) < n and h(b) < n. By induction hypothesis �(a) and�(b) are con�gurations. Since �(x) = �(a) [�(b) by Proposition6.2, we have also �(x) = �(a) [ �(b). Thus �(x) is a connectedset of decisions. By Corollary 5.2, if two prime intervals dominatedrespectively by a and b are equipollent they are projective, therefore�(a)[�(b) does not contain two distinct decisions in �M concerningthe same cell. Hence �(x) is a con�guration of M .Case 2: x is join{irreducible. If the element x is join{irreducible it hasa (unique) predecessor �x and h(�x) = n�1. By induction hypothesis�(�x) is a con�guration. By de�nition, in D the set �(�x) enablescell [�x; x], so the set �(�x)[ d[�x; x] is connected in M . Furthermoreit is a con�guration by Theorem 5.1. Since �x is a predecessor of x,we have �(x) = �(�x) [ d[�x; x] so �(x) is a con�guration.c) Continuity argument: If x is in�nite �(x) = S�2A(x)�(�) by Proposition6.2. Thus �(x) = S�2A(x) �(�). Since for any �nite � the set �(�) isa con�guration, the set �(x) is connected. By Corollary 6.2 we obtainthat �(x) is a con�guration.Now x � y implies �(x) � �(y), i.e. �(x) � �(y). Function � is monotonic.By Theorem 6.1, if �(x) = �(y) we have x = y. Hence � is a monotonicinjection.Part 3: Function � is onto.Since �M is a concrete domain, we reason naturally by induction on the sizeof an element � in �M , i.e. on j�j.a) Base case: If j�j = 0 then � is the empty con�guration. It is the case that�(?D) is the empty con�guration.b) Induction step: Assume that any con�guration in �M of cardinality lessthan n(n > 0) is the image by � of some element in D anc consider acon�guration � with j�j = n. Two cases are to be considered:Case 1: � is not join{irreducible in �M . Then � = �1 _ �2, with j�1j < nand j�2j < n. By induction hypothesis, there are two elements x1 andx2 in D with �1 = �(x1) and �2 = �(x2). The elements x1 and x2are compatible, because otherwise, by Proposition 4.4 we could �nd two74



equipollent non projective prime intervals [�1; �01] and [�2; xi02] in [?; x1]and [?; x2] respectively. But then � would contain two distinct decisionsd[�1; �01] and d[�2; xi02] concerning the same cell, which is impossible. Sothe element x1 _ x2 exists in D and �(x1 _ x2) = �(x1) [ �(x2) =�(x1) _ �(x2) = �.Case 2: � is join{irreducible in �M . Let �� be the unique predecessor of �.Since j��j = j�j � 1 there exists an element �x in D such that �(�x) = ��by induction hypothesis. Since � covers ��, there is a decision d with� = �� _[d and d has a proof � _[d with � � ��. Given the way we haveconstructed E , there exists therefore in D a minimal prime interval [�; �0]with d[�; �0] = d and �(�) � �.Since �(�) � �� = �(�x) we conclude � � �x by Theorem 6.1. Since �� _[ dis a con�guration, there is no prime interval in �(�x) in the equipollenceclass of [�; �0]. Hence �0 is compatible with �x and is not less than �x. Takenow x = �x _ �0. Then �(x) = �(�x) [�(�0) and�(x) = �(�x) [ � [ d = �(�x) _[d = �� _[d = �and consequently �(x) = �.c) Continuity argument: Assume now that � is an in�nite con�guration.Since �M is algebraic, we have � = Sf� j� 2 A(�)g. Any con�guration inA(�) is �nite, so it is the image of some � inD. The inverse image ofA(�)by � is a directed set. Let now x be de�ned by x = Sf�j�(�) 2 A(�)g.By Proposition 6.2 we obtain �(x) = Sf� j� 2 A(�)g and therefore�(x) = �.Theorem 6.1 can now be rewritten in the following manner:x � y () �(x) � �(y)which concludes the proof of the isomorphism between D and < �M ;�>.2Examples: We show now on a few simple examples how one obtains aninformation matrix that represents a concrete domain.Example 1: The diagram of Figure 15 (a) has three equivalence classes ofprime intervals for equipollence, so we build three cells. The join{irreducibleelements are underlined: a; a0; c; c0. Since �(?) = f;g, cells A and B (corre-sponding to equipollence classes f[?; a]; [c; b]; [c0; b0]g and f[?; c]; [a; b]; [a0; b0]grespectively) are initial. The domain is a lattice, so each cell can only have onepossible value (no incompatibility may arise). Finally cell C, which represents75



(a)?������QQQQQ�a �c����� QQQQQ�a0 �c0�b�b0 QQQQQ����� (b)A���� @@@I BCFigure 15: Example 1equipollence class f[a; a0]; [b; b0]; [c; c0]g is enabled either by �(a) or by �(c).In other words, C is enabled by any decision on A or on B.It is easy to verify that the set of con�gurations of the information matrixon Figure 15 (b) is isomorphic to the partial order on Figure 15 (a) with forexample the following correspondence:domain element Con�guration? ;a f< A;> >gc f< B;> >gb f< A;> >;< B;> >ga0 f< A;> >;< C;> >gc0 f< B;> >;< C;> >gb0 f< A;> >;< B;> >;< C;> >gExample 2:The diagram of Figure 16 (a) has two equipollence classes, so we build twocells A and B (A = f[?; a]; [b0; a0]; [?; c]; [b0; c0]g andB = f[a; a0]; [?; b0]; [c; c0]g).As the three join{irreducible elements are atoms, both cells are initial. Finally,cell A contains two equivalence classes of projective prime intervals, and so itmay take two distinct values. To double{check, we �ll out the correspondencetable: 76



(a)?������QQQQQ�a �c�a0 �c0�b0QQQQQ ����� (b)0; 1A 0BFigure 16: Example 2
(a)?����AAA�a �b�e�f �g�c �d�h �i�j���@@@��� AAAHHH ������ HHH��� AAAHHH��� (b)A BC D� �� �?66 6Figure 17: Example 3domain element Con�guration? ;a f< A; 0 >gc f< A; 1 >gb0 f< B; 0 >ga0 f< A; 0 >;< B; 0 >gc0 f< A; 1 >;< B; 0 >gRemark: The domain on Figure 16 (a) is the cartesian product T �O. Notethat O is represented by a single cell that may take only a single value, andT is represented by a single cell that may take two values. We will see in thenext section that the cartesian product of two concrete domains is representedby the juxtaposition of their representations.Example 3:Here again, the diagram of Figure 17 (a) is a lattice, thus all cells in itsrepresentation as an information matrix may take only one value.77



?����HHH ������HHHHHH ������HHHHHH�a �b �c������HHH�������d �e �fHHHHHH HHHHHH������HHH� ���� � �� � ��
Figure 18: Example 4There are four cells:A = f[?; a]; [b; e]; [d; g]; [i; j]gB = f[?; b]; [a; e]; [c; f ]; [h; j]gC = f[a; c]; [e; f ]; [g; j]; [d; i]gD = f[b; d]; [e; g]; [f; j]; [c; h]gand six join{irreducible elements: a; b; c; d; h; i. Hence cells A and B are initial,and sets fA;Cg and fBg enable cell D; as well sets fB;Dg and fAg enable cellC. We notice here that the representation theorem doesn't yield a \minimal"representation since the matrix on Fig. 17 (b) is equivalent, i.e. gives rise to thesame con�gurations, but includes less constraints than the one we have built.In view of the symmetry, we give only half of the correspondence between thedomain and the con�gurations of the information matrix.domain element Con�guration? ;a f< A;> >ge f< A;> >;< B;> >gc f< A;> >;< C;> >gf f< A;> >;< B;> >;< C;> >gh f< A;> >;< C;> >;< D;> >gj f< A;> >;< B;> >;< C;> >;< D;> >gRemark: Cell C enables cell D and conversely. This \loop" cannot be elim-inated.Example 4: 78



The lattice on Figure 18 is the free distributive lattice with three genera-tors. Any �nite distributive lattice has property RT and therefore is automat-ically a concrete domain. The lattice has six equivalence classes of projectiveprime intervals and each class contains a single minimal interval. We will seelater that this fact is general in presence of distributivity. The diagram of therepresentation is on Figure 14 (b).For the moment, we do not give examples of in�nite domains, beyond thewell{known domain of in�nite sequences. We must �rst examine a number ofbasic operations that allow one to construct concrete domains.8 Basic OperationsIn this section and in the next one, we study certain operations that allowone to construct complex concrete domains starting from simpler ones. Forexample, we have seen that the cartesian product of two computation domainsis a computation domain. Similarly:Proposition 8.1 The cartesian product of two concrete domains is a concretedomainProof: If D and E are two concrete domains, their cartesian product isordered componentwise:< x; y >�D�E< x0; y0 >, x �D x0 and y �E y0The isolated points in D � E are pairs of the form < d; e > where d 2 A(D)and e 2 A(E). One checks immediately that the covering and incompatiblityrelations are given by( < d; e >�<< d0; e0 > , (d �<D d0 and e = e0) or (d = d0 and e �<E e0)< d; e > # < d0; e0 > , (d#Dd0) or (e#Ee0)We can now verify that D � E has all the properties of a concrete domain.1. Property I: Consider two isolated elements < d; e > and < d0; e0 > inD � E. Any element < x; y > in the interval [< d; e >;< d0; e0 >]satis�es: ( d � x � d0e � y � e0There are only �nitely many such pairs by Property I in D and E, anda fortiori all chains in this interval are �nite.79



2. Property C: Upper and lower bounds in D�E are taken componentwise.Assume then we have < x; x0 >"< y; y0 > and < x ^ y; x0 ^ y0 >�<<x; x0 >. Two cases are to be considered:Case 1. x = x ^ y and x0 ^ y0 �< x0. Then by C in E, y0 �< x0 _ y0and of course x _ y = y. Hence < y; y0 >�<< x _ y; x0 _ y0 >=<x; x0 > _ < y; y0 >.Case 2. x0 = x0 ^ y0 and x ^ y �< x. Property C in D yields simi-larly < y; y0 >�<< x; x0 > _ < y; y0 >.So D �E has property C.3. Property Q: Let < x; x0 > and < y; y0 > be two incompatible elements inD �E such that < x ^ y; x0 ^ y0 >�<< x; x0 >. We have either x#y orx0#y0 and these conditions are not mutually exclusive. Two (symmetric)cases are possible:Case 1. x ^ y = x. Then x and y are comparable and therefore x0#y0;since x0 ^ y0 �< x0, by Property Q in E there exists an element t0such that x0 ^ y0 �< t0 � y0 and x0#t0. Thus( < x ^ y; x0 ^ y0 >�<< x; t0 >�< y; y0 >< x; x0 > # < x; t0 >so Property QE is established in this case. Since Property QU isvalid in E, there cannot exist an element t00 distinct from t0 with( < x ^ y; x0 ^ y0 >�<< x; t00 >�< y; y0 >< x; x0 > # < x; t00 >Furthermore, any element of the form < u; x0 ^ y0 > with x ^ y =x �< u is compatible with < x; x0 >. Thus Property QU is valid inthis case.Case 2. x0 ^ y0 = x0. This case is treated symmetrically.Property Q is therefore established in D � E.4. Property R: To establish Property R, we must have closer look at theprime intervals inD�E and the transposition relation. First, the interval[< d; e >;< d0; e0 >] is prime i� 80



Either [d; d0] is prime and e = e0Or [e; e0] is prime and d = d0Take two intervals [< d1; e1 >;< d01; e01 >] and [< d2; e2 >;< d02; e02 >].If [< d1; e1 >;< d01; e01 >] � [< d2; e2 >;< d02; e02 >] then( d1 = d01 ^ d2 and e1 = e01 ^ e2d02 = d01 _ d2 and e02 = e01 _ e2If [d1; d01] is prime and e1 = e01 then( [d1; d01] � [d2; d02]e1 = e01 = e2 = e02If [e1; e01] is prime and d1 = d01 then( [e1; e01] � [e2; e02]d1 = d01 = d2 = d02By symmetry and transitivity we obtain that if[< d1; e1 >;< d01; e01 >] � [< d2; e2 >;< d02; e02 >]( Either [d1; d01] � [d2; d02] and e1 = e01 = e2 = e02Or [e1; e01] � [e2; e02] and d1 = d01 = d2 = d02where both cases are mutually exclusive.Assume now that we have [< d; e >;< d0; e0 >] � [< d; e >;< d00; e00 >].1. either [d; d0] �D [d; d00], and by Property R, d0 = d00. Since e = e0 =e00 we have indeed < d0; e0 >=< d00; e00 >2. or [e; e0] �E [e; e00] and by Property R, e0 = e00. Since d = d0 = d00we have also < d0; e0 >=< d00; e00 >.Property R is therefore valid in D � E. 2Remark: To prove that a computation domain is concrete we have two strate-gies. Either we examine in turn, as we just did, the properties that must beveri�ed. Or we make use of the representation theorem, i.e. we produce aninformation matrix whose set of con�gurations is isomorphic to the domain inquestion. These two strategies have their own advantages and we will illustratethis in the sequel. 81



De�nition 8.1 Consider two information matrices M 0 =< �0; V 0;V 0; E 0 >and M 00 =< �00; V 00;V 00; E 00 > whose sets of cells are disjoint. The juxtaposi-tion ofM 0 and M 00 is the information matrix < �; V;V ; E > de�ned as follows:8>>>>>>><>>>>>>>: � = �0 _[�00V = V 0 [ V 008c 2 �0 V(c) = V 0(c)8c 2 �00 V(c) = V 00(c)8c 2 �0 E(c) = E 0(c)8c 2 �00 E(c) = E 00(c)Proposition 8.2 IfM 0 and M 00 are two information matrices and M is theirjuxtaposition, then < �M ;�>=< �M 0 ;�> � < �M 00 ;�>.Proof: Consider an arbitrary con�guration � of M . Since the set of cells ofM is the disjoint union of the sets of cells of M 0 and M 00, con�guration � isthe disjoint union of two sets of decisions �0 and �00 concerning respectivelycells in M 0 and in M 00. The sets �0 and �00 are connected by de�nition of theaccessibility relation in M . As connected subsets of a con�guration �0 and �00are con�gurations ofM in in trivial correspondence with con�gurations ofM 0andM 00. So to any element in �M we can associate an element in �M 0��M 00 .Conversely, by de�nition of the juxtaposition of two matrices, to any elementin �M 0 � �M 00 we can associate a con�guration in �M . Finally:�1 �M �2 , (�01 �M 0 �02) and (�001 �M 00 �002)hence the one-one mapping between �M and �M 0 � �M 00 is order preserving.Thus the domains �M and �M 0 � �M 00 are isomorphic. 2From the proposition above, we deduce a quick proof that the the cartesianproduct of two concrete domains is concrete. If D0 and D00 are two concretedomains, represented respectively by matrices M 0 and M 00, the set of con�g-urations of the juxtaposition of M 0 and M 00 is isomorphic to D0 �D00. HenceD0 �D00 is a concrete domain. The reasoning can be extended to a countablenumber of information matrices, so we obtain as well:Corollary 8.1 The cartesian product of a countable domain of concrete do-mains is concrete.Example: Domain T on Figure 19 (a) is associated to the matrix repre-sented on Figure 19 (b), and T! , the universal computation domain of Plotkin([Plo78]) is associated to the matrix of Figure 19 (c). Hence T! is a concretedomain. Similarly N!?, the domain underlying the language LUCID ([AW77])is a concrete domain. 82



(a)?����AAA�0 �1 (b)0; 1(c)0; 1 0; 1 0; 1 0; 1 0; 1 q q qFigure 19: T and T!?�PPPPP hhhhhhhhh �����((((((((( q q q?3D3������CCCCC?2D2������CCCCC?1D1������CCCCC ?4D4������CCCCCFigure 20: Separated sumDe�nition 8.2 Consider f< Di;�i>gi2I a countable family of partial orderswhose domains are disjoint. The separated sum of this family is the partialorder de�ned byi) D = f?g _[Si2DiDiii) x � y , x = ? or 9i 2 I x �i y(The element ? is not in any of the sets Di).Proposition 8.3 The separated sum of countably many concrete domains isconcrete.Proof: It is immediate that the separated sum of a countable number ofcomputation domains is a computation domain whose isolated elements arethose of the component domains plus the new element ?. Property I is validas soon as it is valid in the component domains. Property C carries becauseno new pair of compatible and incomparable elements has been created. Theonly pairs < x; y > with x#y and x ^ y �< x that have appeared in the83



separated sum are of the form < ?i; dj > with i 6= j and dj 2 Dj , sincein that case ?i ^ dj = ?. But then ?j is the unique element such that?i#?j ;? �< ?j � dj. Hence the separated sum D has property Q. PropertyR remains valid because the only prime intervals that have appeared in D areof the form [?;?j] and they are alone in their projectivity class. 2The separated sum of a family of concrete domains f< Di;�i>gi2I con-tains only one new cell that is the equipollence class of the prime intervals ofthe form [?;?i](i 2 I). This cell is enabled by the empty set. This remarkleads into the following de�nition.De�nition 8.3 Consider a �nite or countable set of information matriceswith disjoint sets of cells fMigi2I . The sum of this family of matrices is thematrix M de�ned by:i) � = ( _Si2I�i) _[f
gii) V = (Si2I Vi)[fIgiii) V(
) = I and 8c 2 �i V(c) = Vi(c)iv) E(
) = f;g and 8c 2 �i E(c) = fe _[f< 
; i >gje 2 Ei(c)gProposition 8.4 The set of con�gurations of the sum of a countable fam-ily of information matrices is isomorphic to the separated sum of the sets ofcon�gurations of this family. concrete.Proof: Consider a countable set of information matrices with disjoint sets ofcells fMigi2I and their sum M . A non empty con�guration � of M containsnecessarily one and only one decisions of the form < 
; i >. Thus all otherdecisions in � are decisions in Mi and they form a con�guration in �Mi . Thusthere is an injection of M in the separated sum (�Mi)i2I . Conversely it istrivial to associate a con�guration of M to any element in the separated sum.Thus there is a one-one mapping that preserves order, so it is an isomorphism.2Remark: The choice of a separated sum of concrete domains is not arbitrary.Indeed, the coalesced sum of two concrete domains is not necessarily a concretedomains; nor is the skew sum where one of the minimal elements is taken tobe the minimal element of the result. The �gure below illustrates the fact thatproperty Q may fail in both cases. Domain Q is either the coalesced sum ofO2 and O, or the skew sum of O2 and ?. But Q doesn't have property Q.84
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 JJJJ������ �� �Remark: Domain ? may be represented by the information matrix with nocells. Domain N? is the separated sum of a countable number of copies of?. Hence N? may be represented by a unique cell that can take an arbitraryinteger as value.De�nition 8.4 In a coherent partial order < D;�> a coherent ideal is anon-empty subset J of D such that:i) 8x 2 J; 8y 2 D y � x =) y 2 Jii) 8X � J X consistent=) SX 2 JRemark: Since two compatible elements form a consistent set, this de�nitionis a generalization of De�nition 2.1.Proposition 8.5 In a concrete domain < D;�>, any coherent ideal J is aconcrete sub{domain.Proof: By de�nition < J ;�> is coherent. If d is an isolated element in Dbelonging to J , then d is certainly isolated in J . Conversely, by algebraicityof D, for any d in J we have d = SA(d). But all elements in A(d) belongto J since they are less than d. Hence if d is isolated in J it is also isolatedin D. Thus the isolated elements in J are exactly the isolated elements of Dbelonging to J . So < J ;�> is a sub{domain of < D;�>. Lets us show nowthat J is concrete.Property I: Since A(J) = A(D) \ J it is immediate that A(J) is a well-founded ideal of J .Property C: If x and y are compatible elements in J , then x ^ y 2 J andx _ y 2 J . Since Property C holds in D it is valid in J .Property Q: If x and y are incompatible elements in J , the whole interval[x^y; y] is contained in J . Thus the validity of Q in D implies its validityin J . 85



Property R: If R were not valid in J , it would not be valid in D. Hence Ris satis�ed. 2Before exhibiting the representation of coherent ideals, we note an inter-esting result whose validity relies on the entire property R.Lemma 8.1 In a concrete domain, the coherent ideal generated by a �nite setof �nite elements is �nite.Proof: Let X be a �nite set of �nite elements in a concrete domain D. Take� = [f�(x)jx 2 Xg. The set � is �nite. Let J be the coherent ideal generatedby X , i.e. the intersection of all coherent ideals containing X . Consider theset K = fzj�(z) � �g. This set K contains X and it is a coherent ideal:1. If x 2 X then �(x) � �, thus x 2 K2. If x � y and y 2 K, we have �(x) � �(y) � �, thus x 2 K3. If Y is a consistent subset of D such that 8y 2 Y �(y) � �, then byproposition 6.2 �([Y ) = [y2Y �(y) � �thus K is coherent.Therefore J � K and 8z 2 J �(z) � �. By Theorem 6.1 z1 6= z2 =)�(z1) 6= �(z2) thus jJ j � jP(�)j. Since � is �nite, so is P(�). Hence J is�nite. 2Remark: It is easy to generalize the example of Figure 12 to show that theproperty above is not a consequence of RT alone.De�nition 8.5 Let M =< �; V;V ;E > be an information matrix and X bean arbitrary subset of �M . Take �X = SX. The restriction MX of M to Xis the information matrix < �0; V 0;V 0; E 0 > de�ned as follows:i) �0 = fcj < c; v >2 �Xgii) V 0 = fvj < c; v >2 �Xgiii) v 2 V 0(c) i� < c; v >2 �Xiv) A set of decisions � in MX enables c i� � 2 E(c)86



Remark that two restrictions MX and MY are distinct i� �X and �Y aredistinct. The restrictions of a given information matrix are naturally orderedby inclusion and we have:Lemma 8.2 Let M be an information matrix. The set of restrictions of Mordered by inclusion is isomorphic to the set of coherent ideals of �M .Proof:1. Consider an arbitrary subset X of �M and the restriction MX of M toX . Let � be the function that, for any X , maps MX to �MX . We show�rst that �MX is a coherent ideal of �M .i) A con�guration � of MX is also a con�guration of M . If �0 is anarbitrary con�guration of M such that �0 � �, then �0 is certainlya con�guration of MX .ii) Let S be a consistent set of con�gurations of MX . The set [�2S�is also a con�guration of MX . But by Lemma 6.2, in �M SS =[�2S�. Therefore SS 2 �MX , which proves that �MX is a coherentideal of �M .Function � is trivially monotonic. We show that it is an injection. COn-sider two distinct restriction MX and MY of M . By the remark abovewe have �X 6= �Y . Hence there exists a con�guration � in Y such thatnot all of its decisions are in �X . This con�guration � is an element of�MY that is not in �MX .2. Conversely let J be a coherent ideal of �M , and consider the restrictionMJ . By Part 1, the set �MJ is a coherent ideal of M that contains J .If we had J 6= �MJ , there would be a decision in �MJ that is not in J .But by De�nition 8.5 this is impossible. So J = �MJ and � is onto. 2In a computation domain, the dual concept of an ideal is that of an uppersection. Recall that any upper section in a concrete domain is a concretedomain. Upper sections have naturally the dual interpretation of that of ideals.De�nition 8.6 LetM =< �; V;V ; E > be an information matrix and � be anarbitrary con�guration of M . Take O� = fc j < c; v >2 �g. The extensionM� of � in M is the information matrix < �0; V 0;V 0; E 0 > de�ned as follows:i) �0 = �nO� 87



ii) V 0 = Viii) V 0 is the restriction of V to �0iv) If a set of decisions � in M enables c in �0 then �n� enables c in M�;conversely if �0 enables c in M� then it must be the case that �0 [ �enables c in M .Lemma 8.3 Let M be an information matrix. The set of extensions M� ofthe con�gurations � of M is isomorphic to the set of upper sections �M .Proof: A set of decisions � in M� is a con�guration of M� i� � [ � is acon�guration of M . 2De�nition 8.7 In a partial order < D;�>, a subset X of D is convex i�whenever it contains x and y with x � y, it contains all elements in the interval[x; y].In a computation domain D, a sub-domain H has a minimum element ?H .If H is convex, then H is a coherent ideal of [?H). Hence any convex sub{domain of a concrete domain is concrete. A convex sub{domain is naturallyinterpreted as the restriction of the extension of some con�guration.De�nition 8.8 In a computation domain D, an open set is an arbitraryunion of upper sections of �nite elements.Remarks:1. The family F of subsets of D de�ned in this way has the followingproperties:(O1) D 2 F since D = [?)(O2) Arbitrary union of elements of F are also elements of F(O3) Finite intersections of elements of F are also elements of F byProposition 1.4.Therefore the family F constitues a family of open sets in the usual sense,which justi�es our terminology. Note that the upper sections of �niteelements form a basis for this topology, and the the upper sections of thejoin{irreducible elements are a sub{basis, i.e. that any element of thebasis is obtained by �nite intersection of the elements of the sub{basis(using Corollary 5.5). 88



F1�� �� �� �� ���@@@��� @@@���@@@ @@@��� @@@��� F2� ��� � ����@@@��� @@@@@@ @@@��� F3� �� � �����@@@��� @@@ ���@@@��� F4� �� �� �� ���@@@��� @@@@@@��� @@@��� F5� �� �����@@@��� @@@@@@���Figure 21: Fi = O2 Oi_ O2. A subset ofD is an open set i� it is the inverse image of> by a continuousfunction from D to O. Indeed, �rst if f is a continuous function from Dto O it is the lub of a family of step functions �d;> with d isolated in D.But ��1d;>(>) = [d), hence f�1(>) is an open set. Conversely if O is anopen set, the function f de�ned by( f(x) = > if x 2 Of(x) = ? otherwiseis monotonic and continuous.De�nition 8.9 Consider two computation domains < D;�D> and < E;�E>, and an open set O in D. The graft of E on D at O, noted D O_ E, is thepartial order < F ;�> de�ned as follows:i) F = f< d; e > j d 2 D; e 2 E and d 2 O or e = ?gii) � is the partial order induced by D �E on F .Example: Take D = O2 and E = O. The open sets in O2 are the setsOi(0 � i � 5) de�ned by:O1 = [?) O2 = [0) O3 = [1) O4 = [0)[ [1) O5 = [>)and the grafts of E on D at Oi are the Fi whose diagram is shown on Figure21.Proposition 8.6 If D and E are concrete domains, any graft F of E on Dis a concrete domain, and D is isomorphic to a coherent ideal of F .89



Proof: Consider an arbitrary open set O in D and take F = D O_ E. Theset F is a subset of D � E. If two elements in F are compatible, they arecompatible in D � E. Conversely, if two elements < d1; e1 > and < d2; e2 >of F are compatible in D�E, they have a lub < d1 _ d2; e1_ e2 >. Two casesmay occur:i) Either d1 or d2 is in O. Then d1 _ d2 2 O and < d1 _ d2; e1_2 >2 F .ii) Or neither d1 nor d2 are in O. Then e1 = e2 = ?E so e1 _ e2 = ?E and< d1 _ d2; e1_2 >2 F .Therefore two elements in F are compatible i� they are compatible in D�E,and the least upper bounds in F are those in D�E. It follows immediately thatF is coherent. We show now that F is !-algebraic. If x is an isolated elementin D � E belonging to F , it is obviously isolated in F . Furthermore, anyelement < x; y > in F is the lub of its approximants in D�E by algebraicityof D � E. Consider an approximant < d; e > of < x; y > that is in D � Ebut not in F . Then d 62 O and e 6= ?E . Hence y 6= ?E and therefore x 2 OSince the characteristic function of O is continuous, there exists c in A(x)\Osuch that d � c � x. Now < d; e > is less than < c; e > which is an isolatedelement in F . Thus < x; y >= Sf< d; e > j < d; e >2 A(D � E) \ Fg. Itfollows that F is !-algebraic.Property I is trivially inherited from D�E. Before checking further prop-erties, remark that < d; e >�<F< d0; e0 > implies < d; e >�<D�E< d0; e0 >.Indeed two cases may occur:Case 1: d 2 O. Then < d; e >�<F< d0; e0 >()< d; e >�<D�E< d0; e0 >.Case 2: d 62 O. Then e = ? and < d; e >�<F< d0; e0 > implies d �<D d0and e0 = e = ?.Now if we have < d; e >"< d0; e0 > and < d; e > ^F < d0; e0 >�<F< d; e > wemust have < d; e > ^F < d0; e0 >�<D�E< d; e >. By Property C in D�E wehave < d0; e0 >�<D�E< d_ e; d0 _ e0 >and therefore < d0; e0 >�<F< d _ e; d0 _ e0 > which proves property C.Similarly if < d; e > # < d0; e0 > and < d; e > ^F < d0; e0 >�<F< d; e >then < d; e > ^F < d0; e0 >=< d^d0; e^e0 > and by Property Q in D�E thereexists a unique < t; t0 > such that < d^ d0; e^ e0 >�<D�E< t; t0 >�< d0; e0 >and < d; e > #t; t0 >. Two cases may occur:90



Case 1: d ^ d0 2 O. Then < t; t0 >2 F .Case 2: d ^ d0 62 O. Then if e 6= ? then d ^ d0 = d but in that case< d; e >62 F . Therefore e = ? and d^ d0 �< d. If t0 6= ? then t = d^ d0aand < d; d >"< t; t0 >. So t0 = ? and < t; t0 >2 F . Hence Property Qholds in F.Finally, if two intervals of F are transposed, they are also transposed in D�Ethus Property R must be valid in F .Domain D is isomorphic to the partial order of the pairs of the form <d;? > in F which is a coherent ideal of F . 2Remarks:1. The domains D and D D_ E are isomorphic, so that we can consider acartesian product as a particular kind of graft.2. If D is �nite, the set of maximal points in D is an open set M. Theconstruction D M_ E is particularly useful, so we write it simply D_E.Proposition 8.7 Let M1 =< �1; V1;V1; E1 > and M2 =< �2; V2;V2; E2 > betwo information matrices, and X be an arbitrary set of �nite con�gurationsof M1. De�ne M =< �; V;V ;E > as follows:i) � = �1 _[�2 (One may assume �1 and �2 disjoint w.l.o.g.)ii) V = V1 [ V2iii) V(c) = ( V1(c) if x 2 �1V2(c) if x 2 �2iv) The function E is de�ned by cases:1. If 
 2 �1 then E(
) = E1(
)2. If 
 2 �2 and � 2 E2(
) then 8� 2 X f�g [� 2 E(
)Then if we take O = f�0j�0 � � 2 Xg we have:�M = �M1 O_ �M2Proof: It is immediate by de�nition that any con�guration in �M is a con-�guration of the juxtaposition of M1 and M2, hence that �M is included in�M1 � �M2 . Furthermore, the ordering on �M is inherited from �M1 � �M2 .91



If � is a con�guration of �M , let �1 and �2 be the restrictions of � to �1 and�2 respectively. By de�nition of E , either �2 = ; and �1 is a con�guration ofM1, or �2 6= ; and then �1 must contain at least one element of X . Hencethere is an injection between �M and �M1 O_ �M2 . Conversely, any elementof �M1 O_ �M2 is a compatible set of decisions in �M1��M2 , and by de�nitionof E it is connected in M , which concludes the proof of the isomorphism. 2Example: MatricesMO2 and MO represent respectively O2 and O. MatricesMi in the table represent each one of the grafts Fi of O on O2.MOMO2M1M2 6M3 6M4 ��* HHYM5 ��* HHŶ9 Inverse limit constructionsWe investigate now the possibility of constructing concrete domains by a lim-iting process. Of course, since the property of being concrete is not in generalpreserved by exponentiation, it is impossible to preserve it by arbitrary inverselimits. However, it is also clear that certain restricted limit constructions willpreserve this property.De�nition 9.1 If D and E are two computation domains, a projection is apair of continuous functions < �;  > with � 2 [D ! E] and  2 [E ! D]such thati) 8x 2 D  (�(x)) = xii) 8x 2 E �( (x)) � x 92



De�nition 9.2 A projection < �;  > between D and E is rigid i�8d 2 A(D); e 2 A(E) e � �(d) ) e = �( (e))Proposition 9.1 A projection < �;  > between D and E is rigid i�8x 2 D; y 2 E y � �(x) ) y = �( (y))Proof: Consider an arbitrary approximant e of y in E. If e is less than �(x),since � is continuous, there exists an approximant d of x with e � �(d). But< �;  > is a rigid projection so e = �( (e)). As � and  are continuous, sois � �  and thusy = [e2A(y) e = [e2A(y)�( (e)) = �( ( [e2A(y)e))and therefore y = �( (y)). 2Proposition 9.2 Between two computation domains D and E, there exists arigid projection i� D is isomorphic to a coherent ideal of E.Proof:Part 1: Consider a coherent ideal J of E and let � be the restriction to Jof the identity function on E. Map any x in E to  (x) de�ned by (x) = Sfzj z 2 A(x) \ Jg. Since E is coherent, the element  (x)exists; since J is coherent, the element is in J . We show that  (x) iscontinuous using the characterization of Lemma 1.2. First  is triviallymonotonic. Consider now an arbitrary approximant e of  (x). Since eis isolated and the set fzj z 2 A(x)\ Jg is directed, there exists some zwith e � z and z 2 A(x) \ J . Since for any z in J we have  (z) = z:8e 2 A( (x)) 9z 2 A(x) e �  (z)which proves that  is a continuous function. The pair < �;  > is aprojection between J and E as:i) 8x 2 J  (�(x)) =  (x) = xii) 8x 2 E  (x) � x thus �( (x)) =  (x) � xConsider now two elements x and y with x in J and y in E. If y ��(x) = x, since J is an ideal, element y is in J and therefore  (y) = yand also y = �( (y)). Hence the projection < �;  > is rigid.93



Part 2: Assume that there is a rigid projection < �;  > between D and E.Take J = �(D). We show �rst that J is a coherent ideal of E.i) J is downward closed. Consider an arbitrary element y less than�(x), for some x in D. Since < �;  > is rigid, we have y = �( (y))by Proposition 9.1. Hence y belongs to �(D).ii) J is coherent. Consider a consistent subset X of �(D) and let Y bethe inverse image of X by �. The set Y is consistent: consider twoarbitrary elements a and b in Y . Since X is consistent, elements�(a) and �(b) are compatible and we have:( a =  (�(a)) �  (�(a)_ �(b))b =  (�(b))�  (�(a)_ �(b))hence a and b are compatible. Since Y is consistent, it has a l.u.b�. Since � is monotonic 8x 2 X x � �(�) and therefore, since Xis consistent SX � �(�) and SX = �( (SX)) since < �;  > isrigid. Thus SX belongs to �(D) and �(D) is a coherent ideal.Finally, if < �;  > is a projection between D and E, the partial ordersD and �(D) are isomorphic. We conclude that D is isomorphic to acoherent ideal of E when < �;  > is rigid. 2Notation: If D and E are concrete domains, we write D � E when D isisomorphic to a coherent ideal of E or, equivalently when there is a rigidprojection from D to E.Proposition 9.3 Among concrete domains, relation � is a preorder.Proof:i) If D is an arbitrary concrete domain, D is a coherent ideal of itself.ii) Assume D � E � F i.e. that there are two rigid projections < �1;  1 >and < �2;  2 > with:( 8x 2 D  1 2(�2�1(x)) =  1( 2�2(�1(x))) =  1�1(x) = x8x 2 E �2�1( 1 2(X)) � �2( 2(x)) � xAssume now that, for some x in D and for some y in F we havey � �2�1(x). Since < �2;  2 > is rigid y = �2( 2(y)). But  2(y) � 2�2�1(x) = �1(x). Hence since < �1;  1 > is rigid,  2(y) = �1 1 2(y).So �nally y = �2�1 1 2(y) which proves that < �2 � �1;  1 �  2 > isrigid. Therefore D is isomorphic to an ideal of F , i.e. D � F .294



De�nition 9.3 A sequence fD1; D2; � � � ; Dn; � � �g of computation domains is adirected sequence i� for all i(i � 1) there exists a projection < �i;i+1;  i+1;i >between Di and Di+1.Between two domains Di and Dj of a directed sequence (i < j), there existsthen a projection noted < �i;j ;  j;i >. By convention we note < �i;i;  i;i >the pair < Ii; Ii > where Ii is the identity function on Di. If all projections< �i;i+1;  i+1;i > are rigid, we say that the sequence is rigid, which we noteD1 � D2 � � � � � Dn � � � �By Proposition 9.3, all projections < �i;j ;  j;i > are also rigid.De�nition 9.4 Consider a directed sequence fD1; D2; � � � ; Dn; � � �g of compu-tation domains. The inverse limit of this sequence is the partial order < D;�>wherei) D is the set of sequences < x1; x2; : : : ; xn; : : : > with( 8i � 1 xi 2 Di8j � i xi =  j;i(xj)ii) � is the partial order de�ned componentwise:x �D y , 8i � 1 xi �Di yiTheorem 9.1 The inverse limit of a rigid sequence of concrete domains is aconcrete domain.Proof: Let D be the inverse limit of the rigid sequenceD1 � D2 � � � � � Dn � � � �1. The partial order D is coherent. Let X be a consistent subset of D andfor all i(i � 1) Xi be the set of i-th coordinates of the elements of X .Each of the Xi is consistent in Di and therefore has a lub SXi. Weshow that the sequence < SX1;SX2; : : : ;SXi; : : : > is in D. Since Xis a subset of D: 8x 2 X xi =  j;i(xj) (i � j)hence [Xi = [xj2Xj  j;i(xj)95



Let X 0j be the directed set obtained from Xj by adding all lubs of its�nite subsets. By continuity:[xj2Xj  j;i(xj) = [xj2X 0j  j;i(xj) =  ([X 0j) =  ([Xj)and therefore ([X)i =[Xi =  j;i([Xj) =  j;i([X)j2. The partial order D is !-algebraic. We must identify the isolated ele-ments in D. To this end, de�ne two collections of functions f�i;1g andf 1;ig from Di to D and from D to Di respectively in the followingfashion: 8><>: 8e 2 Di (�i;1(e))j = �i;j(e) (j � i)8e 2 Di (�i;1(e))j =  i;j(e) (j < i)8x 2 D  1;i(x) = xiThis de�nition makes sense provided 8i � 1; 8e 2 Di; �i;1(e) 2 D.Take x = �i;1(e). For any k, it is immediate that xk belongs to Dk.We must check now the second condition, i.e. 8n � m xm =  n;m(xn).There are three cases:Case 1. m � i. Then xm = �i;m(e) and xn = �i;n(e). We compute: n;m(xn) =  n;m(�i;n(e)) =  n;m(�m;n(�i;m(e)))=  n;m(�m;n(xn))= xmCase 2. n � i. Then xm =  i;m(e) and xn =  i;n(e). We compute: n;m(xn) =  n;m( i;n(e)) =  i;m(e) = xmCase 3. n � i > m. Then xm =  i;m(e) and xn = �i;n(e). Therefore: n;m(xn) =  n;m(�i;n(e)) =  i;m( n;i(�i;n(e))) =  i;m(e)and here again xm =  n;m(xn).It is immediate that, for any i, the functions �i;1 and  1;i are contin-uous. We show now that the pairs < �i;1;  1;i > are projections fromDi to D. First,8i � 1; 8e 2 Di  1;i(�i;1(e)) = (�i;1(e))i = �i;i(e) = e96



To prove the second condition, namely8i � 1; 8d 2 D �i;1( 1;i(d)) � dwe examine the j-th coordinate and distinguish two cases:Case 1. j < i. Then (�i;1( 1;i(d)))j = (�i;1(dj))j =  i;j(di). But dbelongs to D thus, if j < i then  i;j(di) = dj . We have the requiredinequality for all coordinates with rank less than i.Case 2. j � i. Then (�i;1( 1;i(d)))j = (�i;1(di))j = �i;j(di). But dbelongs to D thus, if j � i then di =  j;i(dj). Therefore(�i;1( 1;i(d)))j = �i;j( j;i(dj)) � djsince the pair < �i;j ;  j;i > is a projection. The inequality is estab-lished in this case as well.To conclude, we show now that the isolated elements of D are exactly the�i;1(e) for any i(i � 1) and e isolated in Di. Consider �rst an elementd with d = �i;1(e) and e isolated in Di. Let X be an arbitrary directedsubset of D such that d � SX . On the i-th coordinate, we have:di = (�i;1(e))i = �i;i(e) = e � ([X)i =[XiAs e is isolated and Xi is directed, there exists x in X with e � xi. Bymonotonicity of �i;1 we conclude �i;1(e) = d � �i;1(xi). We are leftto prove that �i;1(xi) � x.i) j < i: (�i;1(xi))j =  i;j(xi) = xjii) j � i: (�i;1(xi))j = �i;j(xi) = �i;j( j;i(xj)) � xj .We conclude that d � x with x 2 X hence d is isolated in D. Similarly,one shows that 8i; k i � k �i;k(e) 2 A(Dk). Thus the setfzjz � x and z = �i;1(e)gis directed and its lub is x. Thus A(D) = f�i;1(e)ji � 1 and e 2 Digand D is !-algebraic.3. The pairs < �i;1;  1;i > are rigid. Assume that we have y � �i;1(x)for some y in D and x in Di. We have to show that y = �i;1( 1;i(y)).i) j < i: Then yj =  i;j(yi) hence yj = (�i;1(yi))j = (�i;1( 1;i(y)))j.97



ii) j � i: Then (�i;1(x))j = �i;j(x). Since the pairs < �i;j ;  j;i >are rigid, from yj � �i;j(x) we deduce yj = �i;j( j;i(yj)). But j;i(yj) = yi so that we obtain:yi = �i;j(yi) = (�i;1(yi))j = (�i;1( 1;i(y)))jIn both cases we have the desired inequality, The pairs < �i;1;  1;i >are therefore rigid, and all domains Di are isomorphic to coherent idealsof D.4. The domain D is concrete. We check �rst Property I. If �i;1(e) and�j;1(f) are two isolated elements in D with �i;1(e) � �j;1(f), then�i;1(e) belongs to �j;1(Dj) since �j;1(Dj) is an ideal of D. Since�j;1(Dj) is isomorphic to Dj that has Property I, there cannot be anin�nite chain between �i;1(e) and �j;1(f). The remaining propertiesC,Q,and R are expressed in terms of a �nite number of �nite elementsin D. There exists always a coherent ideal �k;1(Dk) that contains allthese elements, and therefore the properties are valid in D because theyare valid in Dk. 2Proposition 9.4 Any concrete domain is the inverse limit of a rigid sequenceof some of its �nite coherent ideals.Proof: Consider an enumeration fc1; c2; : : : ; cn; : : :g of the �nite elements ina concrete domain D. This enumeration exists since D is !-algebraic. Let usbuild a sequence fJ1; J2; : : : ; Jn; : : :g of ideals where Ji is the coherent idealgenerated by fc1; c2; : : : ; cig. By Lemma 8.1, each one of these ideals is �nite,and by Proposition 8.6, each one of them is a concrete domain. Since for anyi domain Ji is a coherent ideal of Ji+1, the sequence fJig is a rigid sequenceof concrete domains, and its inverse limit J is a concrete domain. We have toshow that J is isomorphic to D.By Proposition 9.2, if Ji is a coherent ideal of Jj the pair < �i;j ;  j;i >with i � j and ( 8x 2 Ji �i;j(x) = x8x 2 Jj  i;j(x) = Sfzjz 2 A(x) \ Jigis a rigid projection between Ji and Jj . Take x =< x1; x2; : : : ; xn; : : : > anelement of J . From xi =  j;i(xj) we deduce 8i; j � i xi � xj . The sequencefx1; x2; : : : ; xn; : : :g is increasing and has a lub �(x). It is immediate thatfunction � is a monotonic function from J to D.98



1. � is onto. Consider an arbitrary element d in D and the sequence � =<d1; d2; : : : ; dn; : : : > where di = Sfzjz 2 A(d) \ Jig. The sequence �belongs to J because if i � j then Ji � Jj and thereforedi = Sfzjz 2 A(d)\ Jig = Sfzjz 2 A(d)\ Jj \ Jig (i � j)= Sfzjz 2 A(dj) \ Jig =  j;i(dj)Finally �(�) = Si�1 di = d since the family fJigi�1 covers A(D).2. � is one-one. Consider two distinct elements x =< x1; : : : ; xn; : : : > andx0 =< x01; : : : ; x0n; : : : > of J and let k be the smallest integer such thatxk 6= x0k . We must have xk = x0k _ ck or the symmetric equality. From8l � k xk = Sfzjz 2 A(Dl) \ Jkg we deduce 8l � k xl 6� ck andtherefore �(x) = Si�1 xi 6� ck. But �(x0) � x0k � ck so that necessarily�(x) 6= �(x0).2We give now a result that justi�es our expressing all properties in termsof isolated elements.Theorem 9.2 (Ideal Completion) Let < L;�> be a partial order whereL is denumerable andi) Any consistent �nite subset of L has a lub.ii) Between any two elements of L, all chains are �nite.iii) L has properties C, Q, and R.Consider then the partial order bL of the directed ideals of L ordered by inclu-sion. Then bL is a concrete domain and L is isomorphic to A(bL).Proof:1. bL is coherent. Let X be a consistent family of directed ideals. Considertwo compatible elements J1 and J2 of J. They are compatible, so thereexists a directed ideal J3 with J1 � J3 and J2 � J3. For any a 2 J1 andb 2 J2 we have also a 2 J3 and b 2 J3 so a and b are compatible. Let X 0be the union of all ideals in X and J the set obtained from X 0 in addingthe lubs of all of the �nite subsets of X 0 (they exist by hypothesis i) )and the elements dominated by these lubs. It is immediate that J isa directed ideal. Since any directed ideal containing the elements of Xmust include J we deduce J = SbLX and therefore bL is coherent.99



2. bL is !-algebraic. We show that the principal ideal of L, i.e. the sets ofthe form Ja with Ja = fzjz � ag (a 2 L)are exactly the isolated elements in bL. Consider a directed subset X ofbL such that Ja � SbLX . We have a � SL(SbLX). But in L, all elementsa are isolated because all chains from ? to a are �nite by hypothesis ii).Thus there exists an element x in the directed ideal SbLX with a � x,and therefore an ideal � in X that contains x. We obtain Ja � � whichproves that Ja is isolated.Consider now an arbitrary element J in bL. Trivially we have J = [a2JJa.But [a2JJa � Sa2J Ja � [a2JJa hence Sa2J Ja = [a2JJa. FinallyJ = Sa2J Ja, which proves that bL is algebraic, and that the principalideal of L are the isolated elements of bL. Since L is denumerable, bL is!-algebraic.Finally we note that A(bL) is isomorphic to L. Consequently, properties C,Q, and R are valid in A(bL) hence in bL. This concludes the proof that bL is aconcrete domain. 210 Distributive concrete domainsWe are going to study now a special case of importance in applications, thatof concrete domains in which there is a unique minimal prime interval in eachequivalence class of projective prime intervals (by Proposition 6.4, there existsat least one minimal interval in each projectivity class). We call this unicityproperty Property U. It is de�ned as follows:Property UIf [a; a0] and [b; b0] are two minimal projective prime intervals, then[a; a0] = [b; b0].Proposition 10.1 Property U is equivalent to Property U':If [a; a0] and [b; b0] are two minimal projective prime intervals and there existsa prime interval o with [a; a0] � o � [b; b0] then [a; a0] = [b; b0].100



Proof: It is immediate that Property U implies Property U'. Assume now thatU' holds, and consider an alternating sequence of transposed prime intervalsbetween two minimal intervals [a; a0] and [b; b0]f[a; a0]; [x1; x01]; : : : ; [xn�1; x0n�1]; [b; b0]gSince [a; a0] and [b; b0] are minimal, we have necessarily [a; a0] � [x1; x01] and[b; b0] � [xn�1; x0n�1] hence n is an even number. Take n = 2p and reasonby induction on p. If p = 1, we are in the con�guration of Property U', so[a; a0] = [b; b0]. If p is larger than 1, two cases are possible:Case 1: x02 is join{irreducible. By U' we have [a; a0] = [x2; x02]. There existsnow an alternating chain of length 2(p � 1) of prime intervals between[a; a0] and [b; b0]. By induction hypothesis we conclude [a; a0] = [b; b0].Case 2: x02 is not join{irreducible. Then there exists a minimal prime interval[x2; x02] with [x2; x02] � [x2; x02]. But then [a; a0] � [x1; x01] � [x2; x02] �[x2; x02] and by Property U' we obtain [a; a0] = [x2; x02]. The sequencef[x2; x02]; [x3; x03]; : : : ; [b; b0] is an alternating sequence of length 2(p� 1),and [x2; x02] = [b; b0] by induction hypothesis. We conclude [a; a0] =[x2; x02] = [b; b0]. 2Lemma 10.1 In a concrete domain D, the following properties are equiva-lent:1. Property U2. Conditional distributivity:8a; b; c 2 D b " c) a ^ (b_ c) = (a ^ b)_ (a^ c)3. Conditional modularity:8a; b; c 2 D a " b; a � c) a _ (b ^ c) = (a _ b) ^ c4. 8x; y 2 D �(x ^ y) = �(x)\�(y)5. The height function is a valuation, i.e.8x; y 2 A(D) x " y ) h(x) + h(y) = h(x _ y) + h(x ^ y)Proof: 101



a) 1 implies 4. We know already, by Proposition 6.2, that �(x ^ y) � �(x)and �(x ^ y) � �(y) and therefore �(x ^ y) � �(x) \ �(y). Considernow a decision d belonging to �(x) and �(y), and two prime intervals[u; u0] and [v; v0] included respectively in [?; x] and [?; y] and in theprojectivity class of d. By Proposition 6.4, we can �nd two minimalintervals [u; u0] and [v; v0] such that [u; u0] � [u; u0] and [v; v0] � [u; u0].Since [u; u0] � [v; v0] Property U allows one to deduce [u; u0] = [v; v0].Since u0 and v0 are dominated respectively by x and y we have u0 = v0 �x^y. Thus decision d belongs to �(x^y). We have shown the inequality�(x)\�(y) � �(x ^ y) and we conclude �(x ^ y) = �(x) \�(y).b) 4 implies 5. In the lattice of �nite subsets of an arbitrary set, we havethe equation jA [ Bj = jAj + jBj � jA \ Bj. Consider two arbitrarycompatible elements x and y inD. By Proposition 6.2 we have �(x_y) =�(x)[�(y). Thereforej�(x _ y)j = �(x)[�(y)j= j�(x)j+ j�(y)j � j�(x)\�(y)j= j�(x)j+ j�(y)j � j�(x^ y)j by 4Using the result of Proposition 6.4, we obtainx " y ) h(x) + h(y) = h(x _ y) + h(x ^ y)c) 5 implies 1. We show that 5 implies Property U', which is su�cient byProposition 12.1. Assume we have [a; a0] � [z; z0] � [b; b0] with [a; a0] and[b; b0] minimal. Let us show that either [a; a0] = [b; b0] or a ^ b = a0 ^ b0.Suppose we had a ^ b < a0 ^ b0. By relative atomicity, there would existan element t such that a ^ b �< t � a0 ^ b0. Thus either t 6� a or t 6� b.Assume w.l.o.g. that t 6� a. Then t ^ a = a ^ b and by Property Ca �< a_ t � a0. Since we have also a �< a0 we must have a_ t = a0 and[a^b; t] � [a; a0]. Since [a; a0] is minimal a^b = a and t = a0. Since [a; a0]and [b; b0] are projective, by Theorem 5.1 a0 � b is not possible. Hence[a; a0] � [b; b0]. But [b; b0] is also minimal, so [a; a0] = [b; b0]. We haveproved by contradiction that if [a; a0] and [b; b0] are distinct a0^b0 = a^b.But Proposition 6.5 allows one to write:[a; a0] � [a_ b; a0 _ b0] � [b; b0]By hypothesis, function h is a valuation and we haveh(a ^ b) = h(a) + h(b)� h(a _ b)102



thus 1 + h(a ^ b) = h(a0 ^ b0), which contradicts a ^ b = a0 ^ b0. Weconclude that [a; a0] = [b; b0] thereby proving Property U'.d) 4 implies 2. Consider three elements a; b; c in D with b " c.�(a ^ (b _ c)) = �(a)\�(b _ c) by 4= �(a)\ (�(b)[�(c)) (Proposition 6.2)= (�(a)\�(b))[ (�(a)\�(c)) (set theory)= �(a^ b)[�(a ^ c) by 4 again= �((a^ b) _ (a ^ c)) (Proposition 6.2)And by Theorem 6.1 we conclude a ^ (b_ c) = (a ^ b)_ (a^ c).e) 2 implies 3. This is a standard proof in lattice theory. Assume a " b anda � c. By distributivity:(a_ b)^ (a_ c)) = ((a _ b)^ a) _ ((a _ b)^ c)= a _ ((a_ b)^ c)= a _ ((a^ c)_ (b^ c)) by distributivity= a _ a _ (b ^ c) since a � cWe obtain the required modularity law (a_ b)^ c = a _ (b ^ c).f) 3 implies 1. Assume we have the modularity law and consider two minimalprime intervals [a; a0] and [b; b0] such that [a; a0] � [a _ b; a0 _ b0] � [b; b0].Since a _ b0 = a0 _ b = a0 _ b0 and b � b0 we obtain by modularity:b0 = (a0 _ b) ^ b0 = b_ (a0 ^ b0)But if [a; a0] and b; b0] are distinct, we have seen that a0 ^ b0 = a^ b thusb0 = a_(a^b) = b which is a contradiction. Since [a; a0] = [b; b0] PropertyU' holds. 2The result above justi�es calling a domain satisfying Property U eithermodular or distributive or even metric.Proposition 10.2 A concrete domain D is distributive i� it is isomorphic tothe partial order of con�gurations of a matrix < �; V;V ; E > with8
 2 �; jE(
)j= 1In other words D is represented by a matrix without disjunctions.103



Proof: From left to right, the result is a direct consequence of the constructionused in the Representation Theorem and Property U. Conversely, consider amatrix M =< �; V;V ; E > verifying the condition 8
 2 � jE(
)j = 1. For anydecision d, let p(d) the unique set of decisions that enables d. We show that,in such an information matrix, if a decision d has a proof, then it has a uniqueirredundant proof. The proof is by induction on the length l(d) of the proofof d.Base Case: l(d) = 1, i.e. d is initial and p(d) = ;. The proof fdg is irredun-dant and any other proof of d includes it, hence it is unique.Inductive step: l(d) = n(n > 1). Then d has a proof d1; d2; : : : ; dn�1; d.Since only p(d) enables d, we must have p(d) � fd1; d2; : : : ; dn�1g. Thusall decisions in p(d) have proof of length less than n, therefore a uniqueirredundant proof by induction hypothesis. Let now �(d) be the union ofall unique irredundant proofs of all elements of p(d). The set �(d)[fdgis a proof of d. Any proof of d contains d and the irredundant proofsof the elements of p(d). Therefore �(d)[ fdg is the unique irredundantproof of d.Consider now �1 and �2 two �nite compatible con�gurations of M . Since �1and �2 are compatible, the set of decisions �1\�2 doesn't contain two distinctdecisions concerning the same cell because it is included in �1 [ �2. If d isan arbitrary decision in �1 \ �2 it has a unique irredundant proof �. Since�1 and �2 are connected � � �1 and � � �2 thus � � �1 \ �2 and the set�1 \ �2 is connected. Hence it is a con�guration and �1 ^ �2 = �1 \ �2. Thenj�1j + j�2j = j�1 ^ �2j + j�1 _ �2j and the height of the elements of �M is avaluation. By Lemma 10.1 the concrete domain < �M ;�> is distributive. 2Remark: The previous results states that if < �M ;�> is distributive, thenthere exists a matrix M 0 with < �M ;�>=< �0M ;�>. But it is perfectlypossible for M to contain disjunctions, as shown in the example of Figure 22.The following proposition characterizes a frequent case, where distributiv-ity can be proved quickly.Proposition 10.3 A concrete domain is distributive i� the domain is thepartial order of con�gurations of some information matrix M =< �; V;V ;E >where any cell is enabled by sets of decisions that concern a single set of cells.Proof: The proof follows the pattern of the proof of the previous result. Theproperty is immediate from left to right. For any d let q(d) be the commonset of cells occupied by all sets of decisions that enable the cell of d. We104



M0; 10; 16 60 1 �M������@@@@@@ ��� @@@� ��� �� � M 00; 10; 1 0; 1@@@@@I ������0 1Figure 22: M and M 0 have the same con�guration space �Mshow that in such an information matrix, if a decision d has a proof, then allirredundant proofs of d occupy the same set of cells. We proceed by inductionon the length l(d) of the length of d.Base Case: l(d) = 1. The empty set is the only one that enables d. Hencethe cell of d is occupied by any proof of d.Inductive step: l(d) = n(n > 1). Then d has a proof d1; d2; : : : ; dn�1 ` d.Let O(fd1; d2; : : : ; dn�1g) be the set of cells occupied by the decisionsin fd1; d2; : : : ; dn�1g. Any set of decisions enabling d occupies q(d) soq(d) � O(fd1; d2; : : : ; dn�1g). Consider an element � in E(d) includedin fd1; d2; : : : ; dn�1g. By induction hypothesis, all irredundant proofs ofthe elements of � occupy the same set of cells. Let 
 be the cell occupiedby d. Taking the union of all these cells with 
 we obtain a set of cells�(d) and any irredundant proof of d contains �(d).Consider now two �nite and compatible con�gurations �1 and �2 of M andtake an arbitrary decision d in �1 \ �2. Any irredundant proof of d occupies�(d). Hence �1 and �2 occupy �(d). Therefore d has a proof in �1 \ �2 andthius set of decisions is connected. Hence �1 ^ �2 = �1 \ �2 and �M is adistributive concrete domain. 2Proposition 10.4 The separated sum of a �nite or denumerable number ofdistributive concrete domains, the cartesian product of a �nite or denumerablenumber of distributive concrete domains, the inverse limit of any rigid sequenceof distributive concrete domains are distributive concrete domains.Proof: It is immediate that the sum and the juxtaposition of an arbitrarynumber of information matrices in which all cells are enabled by a unique set of105



decisions is of this kind as well. Let D be the inverse limit of a rigid sequenceof distributive concrete domains D1;� D2 � � � � � Dn � � � �. If [x; x0] and[y; y0] are two minimal prime intervals with [x; x0] � [x _ y; x0 _ y0] � [y; y],consider the coherent ideal generated by the isolated elements x0 and y0. Theideal J is �nite and thus there exists an integer k such that J � Dk. Since Dkis distributive, by Property U' we obtain [x; x0] = [y; y0] which proves PropertyU' in D. 2Proposition 10.5 If D and E are two distributive concrete domains, and ifO is an open set such that8d; e 2 Ominimal �(d) = �(e)then D O_ E is a distributive concrete domain.Proof: By construction of the matrix associated to D O_ E, it is immediatethat it satis�es the condition of Proposition 10.3. 2Example: It is easy to check on Figure 21 that only F4 is not distributive.Historical Note(1978): The essential part of the research reported herewas carried out in Autumn 1975 at the University of Edinburgh. Preliminaryversions of this text have been distributed privately during seminars on Se-mantics in Sophia-Antipolis in Autumn 1977 and on the Theory of ContinuousLattices in Darmstadt, July 1978.References[AW77] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedural languagewith iteration. Communications of the ACM, 20:519{526, 1977.[Bir67] G. Birkho�. Lattice Theory. Volume 25, American MathematicalSociety, 1967.[GRW78] M.J. Gordon, R.Milner, and C. Wadsworth. Edinburgh LCF: amechanized logic of computation. Volume 78 of LNCS, Springer-Verlag, 1978.[Lan76] P. J. Landin. The next 700 programming languages. Communica-tions of the ACM, 9:157{164, 1976.[Lev78] J.-J. L�evy. R�eductions correctes et optimales dans le �-calcul. Ph.D.dissertation, Universit�e Paris 7, 1978.106
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