
ARTIFICIAL INTELLIGENCE, LOGICAND FORMALIZING COMMON SENSEJohn McCarthyComputer Science DepartmentStanford UniversityStanford, CA 94305jmc@cs.stanford.eduhttp://www-formal.stanford.edu/jmc/19901 IntroductionThis is a position paper about the relations among arti�cial intelligence (AI),mathematical logic and the formalization of common-sense knowledge andreasoning. It also treats other problems of concern to both AI and philosophy.I thank the editor for inviting it. The position advocated is that philosophycan contribute to AI if it treats some of its traditional subject matter inmore detail and that this will advance the philosophical goals also. Actualformalisms (mostly �rst order languages) for expressing common-sense factsare described in the references.Common-sense knowledge includes the basic facts about events (includingactions) and their e�ects, facts about knowledge and how it is obtained, factsabout beliefs and desires. It also includes the basic facts about materialobjects and their properties.One path to human-levelAI uses mathematical logic to formalize common-sense knowledge in such a way that common-sense problems can be solvedby logical reasoning. This methodology requires understanding the common-sense world well enough to formalize facts about it and ways of achievinggoals in it. Basing AI on understanding the common-sense world is di�erent1



from basing it on understanding human psychology or neurophysiology. Thisapproach to AI, based on logic and computer science, is complementary toapproaches that start from the fact that humans exhibit intelligence, andthat explore human psychology or human neurophysiology.This article discusses the problems and di�culties, the results so far, andsome improvements in logic and logical languages that may be required toformalize common sense. Fundamental conceptual advances are almost cer-tainly required. The object of the paper is to get more help for AI fromphilosophical logicians. Some of the requested help will be mostly philosoph-ical and some will be logical. Likewise the concrete AI approach may fertilizephilosophical logic as physics has repeatedly fertilized mathematics.There are three reasons for AI to emphasize common-sense knowledgerather than the knowledge contained in scienti�c theories.(1) Scienti�c theories represent compartmentalized knowledge. In pre-senting a scienti�c theory, as well as in developing it, there is a common-sensepre-scienti�c stage. In this stage, it is decided or just taken for granted whatphenomena are to be covered and what is the relation between certain formalterms of the theory and the common-sense world. Thus in classical mechan-ics it is decided what kinds of bodies and forces are to be used before thedi�erential equations are written down. In probabilistic theories, the samplespace is determined. In theories expressed in �rst order logic, the predicateand function symbols are decided upon. The axiomatic reasoning techniquesused in mathematical and logical theories depend on this having been done.However, a robot or computer program with human-level intelligence willhave to do this for itself. To use science, common sense is required.Once developed, a scienti�c theory remains imbedded in common sense.To apply the theory to a speci�c problem, common-sense descriptions mustbe matched to the terms of the theory. For example, d = 12gt2 does not initself identify d as the distance a body falls in time t and identify g as theacceleration due to gravity. (McCarthy and Hayes 1969) uses the situationcalculus discussed in that paper to imbed the above formula in a formuladescribing the common-sense situation, for exampledropped(x; s) ^ height(x; s) = h ^ d = 12gt2 ^ d < h�9s0(F (s; s0) ^ time(s0) = time(s) + t ^ ^ height(x; s0) = h� d): (1)Here x is the falling body, and we are presuming a language in which2



the functions height, time, etc. are formalized in a way that corresponds towhat the English words suggest. s and s0 denote situations as discussed inthat paper, and F (s; s0) asserts that the situation s0 is in the future of thesituation s.(2) Common-sense reasoning is required for solving problems in the common-sense world. From the problem solving or goal-achieving point of view, thecommon-sense world is characterized by a di�erent informatic situation thanthat within any formal scienti�c theory. In the typical common-sense infor-matic situation, the reasoner doesn't know what facts are relevant to solvinghis problem. Unanticipated obstacles may arise that involve using parts ofhis knowledge not previously thought to be relevant.(3) Finally, the informalmetatheory of any scienti�c theory has a common-sense informatic character. By this I mean the thinking about the structure ofthe theory in general and the research problems it presents. Mathematiciansinvented the concept of a group in order to make previously vague parallelsbetween di�erent domains into a precise notion. The thinking about how todo this had a common-sense character.It might be supposed that the common-sense world would admit a con-ventional scienti�c theory, e.g. a probabilistic theory. But no one has yetdeveloped such a theory, and AI has taken a somewhat di�erent course thatinvolves nonmonotonic extensions to the kind of reasoning used in formalscienti�c theories. This seems likely to work better.Aristotle, Leibniz, Boole and Frege all included common-sense knowledgewhen they discussed formal logic. However, formalizing much of common-sense knowledge and reasoning proved elusive, and the twentieth centuryemphasis has been on formalizing mathematics. Some important philoso-phers, e.g. Wittgenstein, have claimed that common-sense knowledge is un-formalizable or mathematical logic is inappropriate for doing it. Though it ispossible to give a kind of plausibility to views of this sort, it is much less easyto make a case for them that is well supported and carefully worked out. If acommon-sense reasoning problem is well presented, one is well on the way toformalizing it. The examples that are presented for this negative view bor-row much of their plausibility from the inadequacy of the speci�c collectionsof predicates and functions they take into consideration. Some of their forcecomes from not formalizing nonmonotonic reasoning, and some may be dueto lack of logical tools still to be discovered. While I acknowledge this opin-ion, I haven't the time or the scholarship to deal with the full range of sucharguments. Instead I will present the positive case, the problems that have3



arisen, what has been done and the problems that can be foreseen. Theseproblems are often more interesting than the ones suggested by philosopherstrying to show the futility of formalizing common sense, and they suggestproductive research programs for both AI and philosophy.In so far as the arguments against the formalizability of common-senseattempt to make precise intuitions of their authors, they can be helpful inidentifying problems that have to be solved. For example, Hubert Dreyfus(1972) said that computers couldn't have \ambiguity tolerance" but didn'to�er much explanation of the concept. With the development of nonmono-tonic reasoning, it became possible to de�ne some forms of ambiguity toler-ance and show how they can and must be incorporated in computer systems.For example, it is possible to make a system that doesn't know about possi-ble de re/de dicto ambiguities and has a default assumption that amounts tosaying that a reference holds both de re and de dicto. When this assumptionleads to inconsistency, the ambiguity can be discovered and treated, usuallyby splitting a concept into two or more.If a computer is to store facts about the world and reason with them,it needs a precise language, and the program has to embody a precise ideaof what reasoning is allowed, i.e. of how new formulas may be derived fromold. Therefore, it was natural to try to use mathematical logical languages toexpress what an intelligent computer program knows that is relevant to theproblems we want it to solve and to make the program use logical inference inorder to decide what to do. (McCarthy 1959) contains the �rst proposals touse logic in AI for expressing what a program knows and how it should reason.(Proving logical formulas as a domain for AI had already been studied byseveral authors).The 1959 paper said:The advice taker is a proposed program for solving problemsby manipulating sentences in formal languages. The main di�er-ence between it and other programs or proposed programs for ma-nipulating formal languages (the Logic Theory Machine of Newell,Simon and Shaw and the Geometry Program of Gelernter) is thatin the previous programs the formal system was the subject mat-ter but the heuristics were all embodied in the program. In thisprogram the procedures will be described as much as possiblein the language itself and, in particular, the heuristics are all sodescribed. 4



The main advantages we expect the advice taker to have isthat its behavior will be improvable merely by making state-ments to it, telling it about its symbolic environment and whatis wanted from it. To make these statements will require little ifany knowledge of the program or the previous knowledge of theadvice taker. One will be able to assume that the advice takerwill have available to it a fairly wide class of immediate logicalconsequences of anything it is told and its previous knowledge.This property is expected to have much in common with whatmakes us describe certain humans as having common sense. Weshall therefore say that a program has common sense if it auto-matically deduces for itself a su�ciently wide class of immediateconsequences of anything it is told and what it already knows.The main reasons for using logical sentences extensively in AI are betterunderstood by researchers today than in 1959. Expressing information indeclarative sentences is far more modular than expressing it in segments ofcomputer program or in tables. Sentences can be true in much wider contextsthan speci�c programs can be useful. The supplier of a fact does not have tounderstand much about how the receiver functions, or how or whether thereceiver will use it. The same fact can be used for many purposes, becausethe logical consequences of collections of facts can be available.The advice taker prospectus was ambitious in 1959, would be consideredambitious today and is still far from being immediately realizable. This isespecially true of the goal of expressing the heuristics guiding the search fora way to achieve the goal in the language itself. The rest of this paper islargely concerned with describing what progress has been made, what theobstacles are, and how the prospectus has been modi�ed in the light of whathas been discovered.The formalisms of logic have been used to di�ering extents in AI. Mostof the uses are much less ambitious than the proposals of (McCarthy 1959).We can distinguish four levels of use of logic.1. A machine may use no logical sentences|all its \beliefs" being implicitin its state. Nevertheless, it is often appropriate to ascribe beliefs and goalsto the program, i.e. to remove the above sanitary quotes, and to use aprinciple of rationality|It does what it thinks will achieve its goals. Suchascription is discussed from somewhat di�erent points of view in (Dennett1971), (McCarthy 1979a) and (Newell 1981). The advantage is that the intent5



of the machine's designers and the way it can be expected to behave may bemore readily described intentionally than by a purely physical description.The relation between the physical and the intentional descriptions is mostreadily understood in simple systems that admit readily understood descrip-tions of both kinds, e.g. thermostats. Some �nicky philosophers object tothis, contending that unless a system has a full human mind, it shouldn't beregarded as having any mental qualities at all. This is like omitting the num-bers 0 and 1 from the number system on the grounds that numbers aren'trequired to count sets with no elements or one element. Indeed if your maininterest is the null set or unit sets, numbers are irrelevant. However, if yourinterest is the number system you lose clarity and uniformity if you omit0 and 1. Likewise, when one studies phenomena like belief, e.g. becauseone wants a machine with beliefs and which reasons about beliefs, it worksbetter not to exclude simple cases from the formalism. One battle has beenover whether it should be forbidden to ascribe to a simple thermostat thebelief that the room is too cold. (McCarthy 1979a) says much more aboutascribing mental qualities to machines, but that's not where the main actionis in AI.2. The next level of use of logic involves computer programs that usesentences in machine memory to represent their beliefs but use other rulesthan ordinary logical inference to reach conclusions. New sentences are oftenobtained from the old ones by ad hoc programs. Moreover, the sentencesthat appear in memory belong to a program-dependent subset of the logicallanguage being used. Adding certain true sentences in the language may evenspoil the functioning of the program. The languages used are often ratherunexpressive compared to �rst order logic, for example they may not admitquanti�ed sentences, or they may use a di�erent notation from that usedfor ordinary facts to represent \rules", i.e. certain universally quanti�edimplication sentences. Most often, conditional rules are used in just onedirection, i.e. contrapositive reasoning is not used. Usually the programcannot infer new rules; rules must have all been put in by the \knowledgeengineer". Sometimes programs have this form through mere ignorance, butthe usual reason for the restriction is the practical desire to make the programrun fast and deduce just the kinds of conclusions its designer anticipates. Webelieve the need for such specialized inference will turn out to be temporaryand will be reduced or eliminated by improved ways of controlling generalinference, e.g. by allowing the heuristic rules to be also expressed as sentences6



as promised in the above extract from the 1959 paper.3. The third level uses �rst order logic and also logical deduction. Typ-ically the sentences are represented as clauses, and the deduction methodsare based on J. Allen Robinson's (1965) method of resolution. It is commonto use a theorem prover as a problem solver, i.e. to determine an x such thatP (x) as a byproduct of a proof of the formula 9xP (x). This level is less usedfor practical purposes than level two, because techniques for controlling thereasoning are still insu�ciently developed, and it is common for the programto generate many useless conclusions before reaching the desired solution.Indeed, unsuccessful experience (Green 1969) with this method led to morerestricted uses of logic, e.g. the STRIPS system of (Nilsson and Fikes 1971).The commercial \expert system shells", e.g. ART, KEE and OPS-5,use logical representation of facts, usually ground facts only, and separatefacts from rules. They provide elaborate but not always adequate ways ofcontrolling inference.In this connection it is important to mention logic programming, �rstintroduced in Microplanner (Sussman et al., 1971) and from di�erent pointsof view by Robert Kowalski (1979) and Alain Colmerauer in the early 1970s.A recent text is (Sterling and Shapiro 1986). Microplanner was a ratherunsystematic collection of tools, whereas Prolog relies almost entirely on onekind of logic programming, but the main idea is the same. If one uses arestricted class of sentences, the so-called Horn clauses, then it is possibleto use a restricted form of logical deduction. The control problem is thenmuch eased, and it is possible for the programmer to anticipate the coursethe deduction will take. The price paid is that only certain kinds of facts areconveniently expressed as Horn clauses, and the depth �rst search built intoProlog is not always appropriate for the problem.Even when the relevant facts can be expressed as Horn clauses supple-mented by negation as failure, the reasoning carried out by a Prolog programmay not be appropriate. For example, the fact that a sealed container is ster-ile if all the bacteria in it are dead and the fact that heating a can kills abacterium in the can are both expressible as Prolog clauses. However, theresulting program for sterilizing a container will kill each bacterium individ-ually, because it will have to index over the bacteria. It won't reason thatheating the can kills all the bacteria at once, because it doesn't do universalgeneralization.Here's a Prolog program for testing whether a container is sterile. The7



predicate symbols have obvious meanings.not(P) :- P, !, fail.not(P).sterile(X) :- not(nonsterile(X)).nonsterile(X) :-bacterium(Y), in(Y,X), not(dead(Y)).hot(Y) :- in(Y,X), hot(X).dead(Y) :- bacterium(Y), hot(Y).bacterium(b1).bacterium(b2).bacterium(b3).bacterium(b4).in(b1,c1).in(b2,c1).in(b3,c2).in(b4,c2).hot(c1).Giving Prolog the goal sterile(c1) and sterile(c2) gives the answers yesand no respectively. However, Prolog has indexed over the bacteria in thecontainers.The following is a Prolog program that can verify whether a sequenceof actions, actually just heating it, will sterilize a container. It involvesintroducing situations analogous to those discussed in (McCarthy and Hayes1969).not(P) :- P, !, fail.not(P).sterile(X,S) :- not(nonsterile(X,S)).nonsterile(X,S) :-bacterium(Y), in(Y,X), not(dead(Y,S)).hot(Y,S) :- in(Y,X), hot(X,S).dead(Y,S) :- bacterium(Y), hot(Y,S).bacterium(b1).bacterium(b2).bacterium(b3).bacterium(b4).in(b1,c1).in(b2,c1).in(b3,c2).in(b4,c2). 8



hot(C,result(heat(C),S)).When the program is given the goals sterile(c1; heat(c1; s0)) and sterile(c2; heat(c1; s0))it answers yes and no respectively. However, if it is given the goal sterile(c1; s),it will fail because Prolog lacks what logic programmers call \constructivenegation".The same facts as are used in the �rst Prolog program can be expressedin in a �rst order language as follows.(8X)(sterile(X) � (8Y )(bacterium(Y ) ^ in(Y;X) � dead(Y )));(8XY )(hot(X) ^ in(Y;X) � hot(Y ));(8Y )(bacterium(Y ) ^ hot(Y ) � dead(Y ));and hot(a):However, from them we can prove sterile(a) without having to index overthe bacteria.Expressibility in Horn clauses, whether supplemented by negation as fail-ure or not, is an important property of a set of facts and logic programminghas been successfully used for many applications. However, it seems unlikelyto dominate AI programming as some of its advocates hope.Although third level systems express both facts and rules as logical sen-tences, they are still rather specialized. The axioms with which the programsbegin are not general truths about the world but are sentences whose mean-ing and truth is limited to the narrow domain in which the program has toact. For this reason, the \facts" of one program usually cannot be used in adatabase for other programs.4. The fourth level is still a goal. It involves representing general factsabout the world as logical sentences. Once put in a database, the factscan be used by any program. The facts would have the neutrality of purposecharacteristic of much human information. The supplier of information wouldnot have to understand the goals of the potential user or how his mind works.The present ways of \teaching" computer programs by modifying them ordirectly modifying their databases amount to \education by brain surgery".A key problem for achieving the fourth level is to develop a language for ageneral common-sense database. This is di�cult, because the common-sense9



informatic situation is complex. Here is a preliminary list of features andconsiderations.1. Entities of interest are known only partially, and the information aboutentities and their relations that may be relevant to achieving goals cannotbe permanently separated from irrelevant information. (Contrast this withthe situation in gravitational astronomy in which it is stated in the informalintroduction to a lecture or textbook that the chemical composition andshape of a body are irrelevant to the theory; all that counts is the body'smass, and its initial position and velocity.)Even within gravitational astronomy, non-equational theories arise andrelevant information may be di�cult to determine. For example, it wasrecently proposed that periodic extinctions discovered in the paleontologicalrecord are caused by showers of comets induced by a companion star to thesun that encounters and disrupts the Oort cloud of comets every time itcomes to perihelion. This theory is qualitative because neither the orbit ofthe hypothetical star nor those of the comets is available.2. The formalism has to be epistemologically adequate, a notion intro-duced in (McCarthy and Hayes 1969). This means that the formalism mustbe capable of representing the information that is actually available, notmerely capable of representing actual complete states of a�airs.For example, it is insu�cient to have a formalism that can representthe positions and velocities of the particles in a gas. We can't obtain thatinformation, our largest computers don't have the memory to store it even ifit were available, and our fastest computers couldn't use the information tomake predictions even if we could store it.As a second example, suppose we need to be able to predict someone'sbehavior. The simplest example is a clerk in a store. The clerk is a complexindividual about whom a customer may know little. However, the clerk canusually be counted on to accept money for articles brought to the counter,wrap them as appropriate and not protest when the customer then takesthe articles from the store. The clerk can also be counted on to object ifthe customer attempts to take the articles without paying the appropriateprice. Describing this requires a formalism capable of representing infor-mation about human social institutions. Moreover, the formalism must becapable of representing partial information about the institution, such as athree year old's knowledge of store clerks. For example, a three year olddoesn't know the clerk is an employee or even what that means. He doesn't10



require detailed information about the clerk's psychology, and anyway thisinformation is not ordinarily available.The following sections deal mainly with the advances we see as requiredto achieve the fourth level of use of logic in AI.2 Formalized Nonmonotonic ReasoningIt seems that fourth level systems require extensions to mathematical logic.One kind of extension is formalized nonmonotonic reasoning, �rst proposedin the late 1970s (McCarthy 1977, 1980, 1986), (Reiter 1980), (McDermottand Doyle 1980), (Lifschitz 1989a). Mathematical logic has been monotonicin the following sense. If we have A ` p and A � B, then we also have B ` p.If the inference is logical deduction, then exactly the same proof thatproves p from A will serve as a proof from B. If the inference is model-theoretic, i.e. p is true in all models of A, then p will be true in all modelsof B, because the models of B will be a subset of the models of A. So wesee that the monotonic character of traditional logic doesn't depend on thedetails of the logical system but is quite fundamental.While much human reasoning is monotonic, some important human common-sense reasoning is not. We reach conclusions from certain premisses that wewould not reach if certain other sentences were included in our premisses.For example, if I hire you to build me a bird cage, you conclude that it isappropriate to put a top on it, but when you learn the further fact that mybird is a penguin you no longer draw that conclusion. Some people thinkit is possible to try to save monotonicity by saying that what was in yourmind was not a general rule about birds 
ying but a probabilistic rule. Sofar these people have not worked out any detailed epistemology for this ap-proach, i.e. exactly what probabilistic sentences should be used. Instead AIhas moved to directly formalizing nonmonotonic logical reasoning. Indeed itseems to me that when probabilistic reasoning (and not just the axiomaticbasis of probability theory) has been fully formalized, it will be formallynonmonotonic.Nonmonotonic reasoning is an active �eld of study. Progress is oftendriven by examples, e.g. the Yale shooting problem (Hanks and McDer-mott 1986), in which obvious axiomatizations used with the available rea-soning formalisms don't seem to give the answers intuition suggests. Onedirection being explored (Moore 1985, Gelfond 1987, Lifschitz 1989a) in-11



volves putting facts about belief and knowledge explicitly in the axioms|even when the axioms concern nonmental domains. Moore's classical ex-ample (now 4 years old) is \If I had an elder brother I'd know it."Kraus and Perlis (1988) have proposed to divide much nonmonotonic rea-soning into two steps. The �rst step uses Perlis's (1988) autocircumscriptionto get a second order formula characterizing what is possible. The secondstep involves default reasoning to choose what is normally to be expectedout of the previously established possibilities. This seems to be a promisingapproach.(Ginsberg 1987) collects the main papers up to 1986. Lifschitz (1989c)summarizes some example research problems of nonmonotonic reasoning.3 Some Formalizations and their Problems(McCarthy 1986) discusses several formalizations, proposing those based onnonmonotonic reasoning as improvements of earlier ones. Here are some.1. Inheritance with exceptions. Birds normally 
y, but there are excep-tions, e.g. ostriches and birds whose feet are encased in concrete. The �rstexception might be listed in advance, but the second has to be derived orveri�ed when mentioned on the basis of information about the mechanism of
ying and the properties of concrete.There are many ways of nonmonotonically axiomatizing the facts aboutwhich birds can 
y. The following axioms using a predicate ab standing for\abnormal" seem to me quite straightforward.(1) (8x)(:ab(aspect1(x))� :flies(x))Unless an object is abnormal in aspect1, it can't 
y.It wouldn't work to write ab(x) instead of ab(aspect1(x)), because wedon't want a bird that is abnormal with respect to its ability to 
y to beautomatically abnormal in other respects. Using aspects limits the e�ects ofproofs of abnormality.(2) (8x)(bird(x) � ab(aspect1(x))):(3) (8x)(bird(x)^ :ab(aspect2(x)) � flies(x)):Unless a bird is abnormal in aspect2, it can 
y.When these axioms are combined with other facts about the problem,the predicate ab is then to be circumscribed, i.e. given its minimal extent12



compatible with the facts being taken into account. This has the e�ectthat a bird will be considered to 
y unless other axioms imply that it isabnormal in aspect2. (2) is called a cancellation of inheritance axiom, becauseit explicitly cancels the general presumption that objects don't 
y. Thisapproach works �ne when the inheritance hierarchy is given explicitly. Moreelaborate approaches, some of which are introduced in (McCarthy 1986)and improved in (Haugh 1988), are required when hierarchies with inde�nitenumbers of sorts are considered.2. (McCarthy 1986) contains a similar treatment of the e�ects of actionslike moving and painting blocks using the situation calculus. Moving andpainting are axiomatized entirely separately, and there are no axioms sayingthat moving a block doesn't a�ect the positions of other blocks or the colorsof blocks. A general \common-sense law of inertia"(8pes)(holds(p; s) ^ :ab(aspect1(p; e; s))� holds(p; result(e; s))); (2)asserts that a fact p that holds in a situation s is presumed to hold in thesituation result(e; s) that results from an event e unless there is evidenceto the contrary. Unfortunately, Lifschitz (1985 personal communication)and Hanks and McDermott (1986) showed that simple treatments of thecommon-sense law of inertia admit unintended models. Several authors havegiven more elaborate treatments, but in my opinion, the results are not yetentirely satisfactory. The best treatment so far seems to be that of (Lifschitz1987).4 Ability, Practical Reason and Free WillAn AI system capable of achieving goals in the common-sense world will haveto reason about what it and other actors can and cannot do. For concreteness,consider a robot that must act in the same world as people and perform tasksthat people give it. Its need to reason about its abilities puts the traditionalphilosophical problem of free will in the following form. What view shall webuild into the robot about its own abilities, i.e. how shall we make it reasonabout what it can and cannot do? (Wishing to avoid begging any questions,by reason we mean compute using axioms, observation sentences, rules ofinference and nonmonotonic rules of conjecture.)13



Let A be a task we want the robot to perform, and let B and C bealternate intermediate goals either of which would allow the accomplishmentof A. We want the robot to be able to choose between attempting B andattempting C. It would be silly to program it to reason: \I'm a robot anda deterministic device. Therefore, I have no choice between B and C. WhatI will do is determined by my construction." Instead it must decide in someway which of B and C it can accomplish. It should be able to concludein some cases that it can accomplish B and not C, and therefore it shouldtake B as a subgoal on the way to achieving A. In other cases it shouldconclude that it can accomplish either B or C and should choose whicheveris evaluated as better according to the criteria we provide it.(McCarthy and Hayes 1969) proposes conditions on the semantics of anyformalism within which the robot should reason. The essential idea is thatwhat the robot can do is determined by the place the robot occupies in theworld|not by its internal structure. For example, if a certain sequence ofoutputs from the robot will achieve B, then we conclude or it concludes thatthe robot can achieve B without reasoning about whether the robot willactually produce that sequence of outputs.Our contention is that this is approximately how any system, whetherhuman or robot, must reason about its ability to achieve goals. The basicformalism will be the same, regardless of whether the system is reasoningabout its own abilities or about those of other systems including people.The above-mentioned paper also discusses the complexities that come upwhen a strategy is required to achieve the goal and when internal inhibitionsor lack of knowledge have to be taken into account.5 Three Approaches to Knowledge and BeliefOur robot will also have to reason about its own knowledge and that of otherrobots and people.This section contrasts the approaches to knowledge and belief character-istic of philosophy, philosophical logic and arti�cial intelligence. Knowledgeand belief have long been studied in epistemology, philosophy of mind and inphilosophical logic. Since about 1960, knowledge and belief have also beenstudied in AI. (Halpern 1986) and (Vardi 1988) contain recent work, mostlyoriented to computer science including AI.It seems to me that philosophers have generally treated knowledge and14



belief as complete natural kinds. According to this view there is a fact tobe discovered about what beliefs are. Moreover, once it is decided what theobjects of belief are (e.g. sentences or propositions), the de�nitions of beliefought to determine for each such object p whether the person believes it ornot. This last is the completeness mentioned above. Of course, only humanand sometimes animal beliefs have mainly been considered. Philosophershave di�ered about whether machines can ever be said to have beliefs, buteven those who admit the possibility of machine belief consider that whatbeliefs are is to be determined by examining human belief.The formalization of knowledge and belief has been studied as part ofphilosophical logic, certainly since Hintikka's book (1964), but much of theearlier work in modal logic can be seen as applicable. Di�erent logics andaxioms systems sometimes correspond to the distinctions that less formalphilosophers make, but sometimes the mathematics dictates di�erent dis-tinctions.AI takes a di�erent course because of its di�erent objectives, but I'minclined to recommend this course to philosophers also, partly because wewant their help but also because I think it has philosophical advantages.The �rst question AI asks is: Why study knowledge and belief at all?Does a computer program solving problems and achieving goals in the common-sense world require beliefs, and must it use sentences about beliefs? The an-swer to both questions is approximately yes. At least there have to be datastructures whose usage corresponds closely to human usage in some cases.For example, a robot that could use the American air transportation systemhas to know that travel agents know airline schedules, that there is a book(and now a computer accessible database) called the OAG that contains thisinformation. If it is to be able to plan a trip with intermediate stops it has tohave the general information that the departure gate from an intermediatestop is not to be discovered when the trip is �rst planned but will be avail-able on arrival at the intermediate stop. If the robot has to keep secrets, ithas to know about how information can be obtained by inference from otherinformation, i.e. it has to have some kind of information model of the peoplefrom whom it is to keep the secrets.However, none of this tells us that the notions of knowledge and belief tobe built into our computer programs must correspond to the goals philoso-phers have been trying to achieve. For example, the di�culties involved inbuilding a system that knows what travel agents know about airline schedulesare not substantially connected with questions about how the travel agents15



can be absolutely certain. Its notion of knowledge doesn't have to be com-plete; i.e. it doesn't have to determine in all cases whether a person is tobe regarded as knowing a given proposition. For many tasks it doesn't haveto have opinions about when true belief doesn't constitute knowledge. Thedesigners of AI systems can try to evade philosophical puzzles rather thansolve them.Maybe some people would suppose that if the question of certainty isavoided, the problems formalizing knowledge and belief become straightfor-ward. That has not been our experience.As soon as we try to formalize the simplest puzzles involving knowledge,we encounter di�culties that philosophers have rarely if ever attacked.Consider the following puzzle of Mr. S and Mr. P.Two numbers m and n are chosen such that 2 � m � n � 99. Mr. S istold their sum and Mr. P is told their product. The following dialogue ensues:Mr. P: I don't know the numbers.Mr. S: I knew you didn't know them. I don't know themeither.Mr. P: Now I know the numbers.Mr. S: Now I know them too.In view of the above dialogue, what are the numbers?Formalizing the puzzle is discussed in (McCarthy 1989). For the presentwe mention only the following aspects.1. We need to formalize knowing what, i.e. knowing what the numbersare, and not just knowing that.2. We need to be able to express and prove non-knowledge as well asknowledge. Speci�cally we need to be able to express the fact that as far asMr. P knows, the numbers might be any pair of factors of the known product.3. We need to express the joint knowledge of Mr. S and Mr. P of theconditions of the problem.4. We need to express the change of knowledge with time, e.g. howMr. P's knowledge changes when he hears Mr. S say that he knew that Mr. Pdidn't know the numbers and doesn't know them himself. This includesinferring what Mr. S and Mr. P still won't know.16



The �rst order language used to express the facts of this problem involvesan accessibility relation A(w1; w2; p; t), modeled on Kripke's semantics formodal logic. However, the accessibility relation here is in the language itselfrather than in a metalanguage. Here w1 and w2 are possible worlds, p is aperson and t is an integer time. The use of possible worlds makes it convenientto express non-knowledge. Assertions of non-knowledge are expressed as theexistence of accessible worlds satisfying appropriate conditions.The problem was successfully expressed in the language in the sense thatan arithmetic condition determining the values of the two numbers can be de-duced from the statement. However, this is not good enough for AI. Namely,we would like to include facts about knowledge in a general purpose common-sense database. Instead of an ad hoc formalization of Mr. S and Mr. P, theproblem should be solvable from the same general facts about knowledgethat might be used to reason about the knowledge possessed by travel agentssupplemented only by the facts about the dialogue. Moreover, the languageof the general purpose database should accommodate all the modalities thatmight be wanted and not just knowledge. This suggests using ordinary logic,e.g. �rst order logic, rather than modal logic, so that the modalities can beordinary functions or predicates rather than modal operators.Suppose we are successful in developing a \knowledge formalism" for ourcommon-sense database that enables the program controlling a robot to solvepuzzles and plan trips and do the other tasks that arise in the common-senseenvironment requiring reasoning about knowledge. It will surely be askedwhether it is really knowledge that has been formalized. I doubt that thequestion has an answer. This is perhaps the question of whether knowledgeis a natural kind.I suppose some philosophers would say that such problems are not ofphilosophical interest. It would be unfortunate, however, if philosophers wereto abandon such a substantial part of epistemology to computer science. Thisis because the analytic skills that philosophers have acquired are relevant tothe problems.6 Reifying ContextWe propose the formula holds(p; c) to assert that the proposition p holds incontext c. It expresses explicitly how the truth of an assertion depends oncontext. The relation c1 � c2 asserts that the context c2 is more general17



than the context c1.1Formalizing common-sense reasoning needs contexts as objects, in orderto match human ability to consider context explicitly. The proposed databaseof general common-sense knowledge will make assertions in a general contextcalled C0. However, C0 cannot be maximally general, because it will surelyinvolve unstated presuppositions. Indeed we claim that there can be nomaximally general context. Every context involves unstated presuppositions,both linguistic and factual.Sometimes the reasoning system will have to transcend C0, and tools willhave to be provided to do this. For example, if Boyle's law of the dependenceof the volume of a sample of gas on pressure were built intoC0, discovery of itsdependence on temperature would have to trigger a process of generalizationthat might lead to the perfect gas law.The following ideas about how the formalization might proceed are tenta-tive. Moreover, they appeal to recent logical innovations in the formalizationof nonmonotonic reasoning. In particular, there will be nonmonotonic \in-heritance rules" that allow default inference from holds(p; c) to holds(p; c0),where c0 is either more general or less general than c.Almost all previous discussion of context has been in connection withnatural language, and the present paper relies heavily on examples from nat-ural language. However, I believe the main AI uses of formalized context willnot be in connection with communication but in connection with reasoningabout the e�ects of actions directed to achieving goals. It's just that naturallanguage examples come to mind more readily.As an example of intended usage, considerholds(at(he; inside(car)); c17):Suppose that this sentence is intended to assert that a particular person is ina particular car on a particular occasion, i.e. the sentence is not just beingused as a linguistic example but is meant seriously. A corresponding Englishsentence is \He's in the car" where who he is and which car and when isdetermined by the context in which the sentence is uttered. Suppose, forsimplicity, that the sentence is said by one person to another in a situationin which the car is visible to the speaker but not to the hearer and the timeat which the the subject is asserted to be in the car is the same time at whichthe sentence is uttered.11996: In subsequent papers the notation ist(c; p) was used.18



In our formal language c17 has to carry the information about who he is,which car and when.Now suppose that the same fact is to be conveyed as in example 1, but thecontext is a certain Stanford Computer Science Department 1980s context.Thus familiarity with cars is presupposed, but no particular person, car oroccasion is presupposed. The meanings of certain names is presupposed,however. We can call that context (say) c5. This more general contextrequires a more explicit proposition; thus, we would haveholds(at(\Timothy McCarthy"; inside((�x)(iscar(x) ^^ belongs(x; \John McCarthy")))); c5): (3)A yet more general context might not identify a speci�c John McCarthy, sothat even this more explicit sentence would need more information. Whatwould constitute an adequate identi�cation might also be context dependent.Here are some of the properties formalized contexts might have.1. In the above example, we will have c17 � c5, i.e. c5 is more generalthan c17. There will be nonmonotonic rules like(8c1 c2 p)(c1 � c2) ^ holds(p; c1) ^ :ab1(p; c1; c2) � holds(p; c2) (4)and (8c1 c2 p)(c1 � c2) ^ holds(p; c2) ^ :ab2(p; c1; c2) � holds(p; c1): (5)Thus there is nonmonotonic inheritance both up and down in the generalityhierarchy.2. There are functions forming new contexts by specialization. We couldhave something likec19 = specialize(he = Timothy McCarthy; belongs(car; John McCarthy); c5):(6)We will have c19 � c5.3. Besides holds(p; c), we may have value(term; c), where term is a term.The domain in which term takes values is de�ned in some outer context.4. Some presuppositions of a context are linguistic and some are factual.In the above example, it is a linguistic matter who the names refer to. The19



properties of people and cars are factual, e.g. it is presumed that people �tinto cars.5. We may want meanings as abstract objects. Thus we might havemeaning(he; c17) = meaning(\Timothy McCarthy"; c5):6. Contexts are \rich" entities not to be fully described. Thus the \nor-mal English language context" contains factual assumptions and linguisticconventions that a particular English speaker may not know. Moreover, evenassumptions and conventions in a context that may be individually accessiblecannot be exhaustively listed. A person or machine may know facts about acontext without \knowing the context".7. Contexts should not be confused with the situations of the situationcalculus of (McCarthy and Hayes 1969). Propositions about situations canhold in a context. For example, we may haveholds(Holds1(at(I; airport); result(drive-to(airport;result(walk-to(car); S0))); c1): (7)This can be interpreted as asserting that under the assumptions embodiedin context c1, a plan of walking to the car and then driving to the airportwould get the robot to the airport starting in situation S0.8. The context language can be made more like natural language andmore extensible if we introduce notions of entering and leaving a context.These will be analogous to the notions of making and discharging assump-tions in natural deduction systems, but the notion seems to be more general.Suppose we have holds(p; c). We then writeenter c.This enables us to write p instead of holds(p; c). If we subsequently infer q,we can replace it by holds(q; c) and leave the context c. Then holds(q; c) willitself hold in the outer context in which holds(p; c) holds. When a context isentered, there need to be restrictions analogous to those that apply in naturaldeduction when an assumption is made.One way in which this notion of entering and leaving contexts is moregeneral than natural deduction is that formulas like holds(p; c1) and (say)holds(notp; c2) behave di�erently from c1 � p and c2 � :p which are theirnatural deduction analogs. For example, if c1 is associated with the time 5pm20



and c2 is associated with the time 6pm and p is at(I; o�ce), then holds(p; c1)^holds(not p; c2) might be used to infer that I left the o�ce between 5pm and6pm. (c1 � p)^ (c2 � :p) cannot be used in this way; in fact it is equivalentto :c1 _ :c2.9. The expression Holds(p; c) (note the caps) represents the propositionthat p holds in c. Since it is a proposition, we can assert holds(Holds(p; c); c0).10. Propositions will be combined by functional analogs of the Booleanoperators as discussed in (McCarthy 1979b). Treating propositions involvingquanti�cation is necessary, but it is di�cult to determine the right formal-ization.11. The major goals of research into formalizing context should be todetermine the rules that relate contexts to their generalizations and special-izations. Many of these rules will involve nonmonotonic reasoning.7 RemarksThe project of formalizing common-sense knowledge and reasoning raisesmany new considerations in epistemology and also in extending logic. Therole that the following ideas might play is not clear yet.7.1 Epistemological Adequacy often Requires Approx-imate Partial Theories(McCarthy and Hayes 1969) introduces the notion of epistemological ade-quacy of a formalism. The idea is that the formalism used by an AI systemmust be adequate to represent the information that a person or programwith given opportunities to observe can actually obtain. Often an episte-mologically adequate formalism for some phenomenon cannot take the formof a classical scienti�c theory. I suspect that some people's demand for aclassical scienti�c theory of certain phenomena leads them to despair aboutformalization. Consider a theory of a dynamic phenomenon, i.e. one thatchanges in time. A classical scienti�c theory represents the state of the phe-nomenon in some way and describes how it evolves with time, most classicallyby di�erential equations.What can be known about common-sense phenomena usually doesn'tpermit such complete theories. Only certain states permit prediction of the21



future. The phenomenon arises in science and engineering theories also, butI suspect that philosophy of science sweeps these cases under the rug. Hereare some examples.(1) The theory of linear electrical circuits is complete within its modelof the phenomena. The theory gives the response of the circuit to any timevarying voltage. Of course, the theory may not describe the actual physics,e.g. the current may overheat the resistors. However, the theory of sequentialdigital circuits is incomplete from the beginning. Consider a circuit builtfromNAND-gates and D 
ip
ops and timed synchronously by an appropriateclock. The behavior of a D 
ip
op is de�ned by the theory when one of itsinputs is 0 and the other is 1 when the inputs are appropriately clocked.However, the behavior is not de�ned by the theory when both inputs are 0or both are 1. Moreover, one can easily make circuits in such a way thatboth inputs of some 
ip
op get 0 at some time.This lack of de�nition is not an oversight. The actual signals in a dig-ital circuit are not ideal square waves but have �nite rise times and oftenovershoot their nominal values. However, the circuit will behave as thoughthe signals were ideal provided the design rules are obeyed. Making bothinputs to a 
ip
op nominally 0 creates a situation in which no digital theorycan describe what happens, because the behavior then depends on the actualtime-varying signals and on manufacturing variations in the 
ip
ops.(2) Thermodynamics is also a partial theory. It tells about equilibria andit tells which directions reactions go, but it says nothing about how fast theygo. (3) The common-sense database needs a theory of the behavior of clerks instores. This theory should cover what a clerk will do in response to bringingitems to the counter and in response to a certain class of inquiries. How hewill respond to other behaviors is not de�ned by the theory.(4) (McCarthy 1979a) refers to a theory of skiing that might be used by skiinstructors. This theory regards the skier as a stick �gure with movable joints.It gives the consequences of moving the joints as it interacts with the shape ofthe ski slope, but it says nothing about what causes the joints to be moved ina particular way. Its partial character corresponds to what experience teachesski instructors. It often assigns truth values to counterfactual conditionalassertions like, \If he had bent his knees more, he wouldn't have fallen".22



7.2 Meta-epistemologyIf we are to program a computer to think about its own methods for gath-ering information about the world, then it needs a language for expressingassertions about the relation between the world, the information gatheringmethods available to an information seeker and what it can learn. This leadsto a subject I like to call meta-epistemology. Besides its potential appli-cations to AI, I believe it has applications to philosophy considered in thetraditional sense.Meta-epistemology is proposed as a mathematical theory in analogy tometamathematics. Metamathematics considers the mathematical propertiesof mathematical theories as objects. In particular model theory as a branch ofmetamathematics deals with the relation between theories in a language andinterpretations of the non-logical symbols of the language. These interpre-tations are considered as mathematical objects, and we are only sometimesinterested in a preferred or true interpretation.Meta-epistemology considers the relation between the world, languagesfor making assertions about the world, notions of what assertions are consid-ered meaningful, what are accepted as rules of evidence and what a knowl-edge seeker can discover about the world. All these entities are considered asmathematical objects. In particular the world is considered as a parameter.Thus meta-epistemology has the following characteristics.1. It is a purely mathematical theory. Therefore, its controversies, assum-ing there are any, will be mathematical controversies rather than controver-sies about what the real world is like. Indeed metamathematics gave manyphilosophical issues in the foundations of mathematics a technical content.For example, the theorem that intuitionist arithmetic and Peano arithmeticare equi-consistent removed at least one area of controversy between thosewhose mathematical intuitions support one view of arithmetic or the other.2. While many modern philosophies of science assume some relationbetween what is meaningful and what can be veri�ed or refuted, only spe-cial meta-epistemological systems will have the corresponding mathematicalproperty that all aspects of the world relate to the experience of the knowl-edge seeker.This has several important consequences for the task of programming aknowledge seeker.A knowledge seeker should not have a priori prejudices (principles) about23



what concepts might be meaningful. Whether and how a proposed conceptabout the world might ever connect with observation may remain in suspensefor a very long time while the concept is investigated and related to otherconcepts.We illustrate this by a literary example. Moli�ere's play La Malade Imag-inaire includes a doctor who explains sleeping powders by saying that theycontain a \dormitive virtue". In the play, the doctor is considered a pompousfool for o�ering a concept that explains nothing. However, suppose the doctorhad some intuition that the dormitive virtue might be extracted and concen-trated, say by shaking the powder in a mixture of ether and water. Supposehe thought that he would get the same concentrate from all substances withsopori�c e�ect. He would certainly have a fragment of scienti�c theory sub-ject to later veri�cation. Now suppose less|namely, he only believes that acommon component is behind all substances whose consumption makes onesleepy but has no idea that he should try to invent a way of verifying theconjecture. He still has something that, if communicated to someone morescienti�cally minded, might be useful. In the play, the doctor obviously sinsintellectually by claiming a hypothesis as certain. Thus a knowledge seekermust be able to form new concepts that have only extremely tenuous relationswith their previous linguistic structure.7.3 Rich and poor entitiesConsider my next trip to Japan. Considered as a plan it is a discrete objectwith limited detail. I do not yet even plan to take a speci�c 
ight or to 
y ona speci�c day. Considered as a future event, lots of questions may be askedabout it. For example, it may be asked whether the 
ight will depart on timeand what precisely I will eat on the airplane. We propose characterizing theactual trip as a rich entity and the plan as a poor entity. Originally, I thoughtthat rich events referred to the past and poor ones to the future, but thisseems to be wrong. It's only that when one refers to the past one is usuallyreferring to a rich entity, while the future entities one refers to are more oftenpoor. However, there is no intrinsic association of this kind. It seems thatplanning requires reasoning about the plan (poor entity) and the event of itsexecution (rich entity) and their relations.(McCarthy and Hayes 1969) de�nes situations as rich entities. However,the actual programs that have been written to reason in situation calculusmight as well regard them as taken from a �nite or countable set of discrete24
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