
Calculate Polytypically!Lambert Meertenslambert@cwi.nlDepartment of Algorithmics and Architecture, CWI, Amsterdam, andDepartment of Computing Science, Utrecht University, The NetherlandsAbstract. A polytypic function de�nition is a function de�nition thatis parametrised with a datatype. It embraces a class of algorithms. Asan example we de�ne a simple polytypic \crush" combinator that can beused to calculate polytypically. The ability to de�ne functions polytyp-ically adds another level of exibility in the reusability of programmingidioms and in the design of libraries of interoperable components.1 IntroductionWhich is more exciting: to �nd yet another algorithm, or to discover that twofamiliar algorithms are instances of one more abstract algorithm?It is the latter that sparks new insight and opens the way for �nding furtherconnections, that makes it possible to organise and systematise our knowledgeand eventually set as routine exercises problems that once were feats of scienti�cdiscovery. Mathematics likewise gets its leverage from abstraction, by going fromthe speci�c to the general. Essential to the expression of abstraction is the abilityto parametrise.John Hughes argues in [15] that the ability to name and reuse | i.e., toparametrise | is at the heart of the functional languages' power. Standard com-binators (higher-order functions) like map and foldr capture very general pro-gramming idioms that are useful in almost any context. Polymorphic typingenables us to use the same programming idiom to manipulate data of di�erenttypes.The next step is the ability to parametrise a function de�nition with a type. Afunction thus parametrised is called polytypic. The \derived" functions of Haskellare all polytypic, as are catamorphisms and friends [24] [29] [31]. The standardfoldr combinator is just the instantiation of the cata combinator for the datatypeconstructor List.While a polymorphic function stands for one algorithm that happens to beinsensitive to what type the values in some structure are, a polytypic functionembraces a class of algorithms.The ability to de�ne functions polytypically adds another level of exibilityin the reusability of programming idioms and in the design of libraries of interop-erable components. This, I claim, is of tremendous importance. Yet the greatestgain, I believe, is to come from the ability to reason polytypically in the processof deriving programs, in particular by calculational methods.



2 So what is polytypy?Here are a few datatype constructor de�nitions1:data List a = cons a (List a) j nildata Maybe a = one a j nonedata Bin a = join (Bin a) (Bin a) j tip adata Rose a = fork a (List(Rose a))Each of these types has its own map combinator, for which we only give thetypings:mapList 2 (List a List b) (a b)mapMaybe 2 (Maybe a Maybe b) (a b)mapBin 2 (Bin a Bin b) (a b)mapRose 2 (Rose a Rose b) (a b)Here are functions to test if a given value occurs in a data structure of one ofthese types.e2List cons u x = eq e u _ e2List xe2List nil = falsee2Maybe one u = eq e ue2Maybe none = falsee2Bin join x y = e2Bin x _ e2Bin ye2Bin tip u = eq e ue2Rose fork u xs = eq e u _ any (e2Rose) xsAnd here are functions to sum the elements in one of these structures | assumingthey are numbers.sumList (cons u x) = u + sumList xsumList nil = 0sumMaybe (one u) = usumMaybe none = 01 Examples are in a pidgin based on functional languages like Haskell and Gofer. Inparticular the lexemic restrictions on constructor functions of these languages arenot adhered to. To indicate the typing of a function, I write f 2 a b instead off : b! a . The advantage of this convention is that this matches the \backwardness"of composition, making it easier to assess the function typing of a composition.



sumBin (join x y) = sumBin x + sumBin ysumBin (tip u) = usumRose (fork u xs) = u + sumList (mapList sumRose xs)Polytypy, now, allows us to replace all these de�nitions by a single de�nition formapF , a single de�nition for 2F and a single de�nition for sumF , each of whichcan be specialised to any of the above datatype constructors and many more bytaking F to be List , Maybe , Bin , and so on.Polytypy is orthogonal to polymorphism. The polytypic function mapF istruly polymorphic | that is, each of its instantiations is. The polytypic func-tions 2F and sumF are as polymorphic as eq and + are, which is, respectively,somewhat and hardly. However, eq is | or can be de�ned as | a polytypicfunction; see e.g. Sheard [34].Other terms that have been used for the same concept are \structural poly-morphism" (Ruehr [33]), \generic programming" (de Moor [5], Bird, de Moorand Hoogendijk [4]) and \type parametric programming" (Sheard [34]).3 Some historical remarksIn what I'll refer to as \classic BMF" [28] [2], a.k.a. \Squiggol", the focus wason lists, with particular emphasis on a symmetric view in which lists are builtup from the empty-list constructor [ ], the singleton-list constructor [ ], and anassociative constructor ++. Catamorphisms on these symmetric lists were written,in the most general case, in the form �= . f� (a \reduce" after a \map"), whichrequires � to be an associative operator with some neutral element ��. In otherwords, (�; ��) constitutes a monoid, just like (++; [ ]) does. The meaning is theninductively de�ned by:�= . f� = h whereh (x++y) = h x � h yh [u] = f uh [ ] = ��It is possible to leave �� implicit since neutral elements | if they exist | areunique.These notations were devised with one purpose only: to facilitate the deriva-tion of programs by calculation. In spite of the focus on lists, the intention, fromthe start, has been to contribute to the development of \constructive algorith-mics" as a discipline for calculational program construction encompassing muchmore than the theory of lists, however fertile by itself.Malcolm [24] [25] [26] showed how to generalise essential parts of the theory toother initial datatypes, based on a categorical approach (Manes and Arbib [27],Hagino [13]). Fokkinga [7] [8] [11] honed the categorically-inspired calculationaltechniques to a �ne edge.While the theory developed by Malcolm and Fokkinga gave the basic toolsneeded for polytypic de�nitions, its application to deriving actual programs by



calculation was initially largely con�ned to instantiations for, each time, onespeci�c datatype.The �rst calculational derivation of an actual polytypic algorithm that I saw,and an elegant one at that, was the one in Bird, de Moor and Hoogendijk [4].Earlier work by Bird and de Moor on solving a variety of optimisation prob-lems by calculation was polytypically uni�ed by de Moor in [5]. Several furtherexamples of polytypic calculations can be found in Bird and de Moor [3].The most impressive polytypic algorithms today are those developed by Jeur-ing and his group, such as Jeuring's polytypic pattern-matching algorithm [21].Jansson [17] presents a polytypic uni�cation algorithm (see also Jansson andJeuring [19]). Although not derived calculationally, these algorithms providestrong evidence of the potential of polytypic de�nitions.Huisman [16] de�nes a polytypic function unparser | rather like polytypicatten but with extra \hooks" for plugging in concrete syntax | and calculates apolytypic parser from it by function inversion. By de�ning a suitable intermediateabstract data type, the textual representation of a structured document can bechanged by a composition unparser . parser.4 Notation and terminologyThe notation (x :: e), in which the expression e may depend on the dummyx, denotes the same as the lambda form (�x 7! e). For any e, eK denotes theconstant function that maps all arguments to e. Function ida is the identityfunction restricted to type a. The datatype 1 stands for some one-element type,like that de�ned by:data 1 = blobFunctor. An n-ary functor2 F is a combinator that maps an n-tuple of functionsf0; : : : ; fn�1 to a function F f0 � � � fn�1 in such a way that composition andidentities are respected:F (f0 . g0) � � � (fn�1 . gn�1) = F f0 � � � fn�1 . F g0 � � � gn�1provided that fi 2 ai bi and gi 2 bi ciF id � � � id = idThe clause concerning the typing serves to ensure the de�nedness of the compo-sitions.An example are the functionsmapF , since they satisfy the functional identitiesmapF (f . g) = mapF f . mapF g andmapF id = id. So they are unary functors.As is easily veri�ed, idaK is also a functor. It is n-ary for all n. Further, eachextraction combinator2 The terminology is borrowed from category theory, but no knowledge of categorytheory is needed to follow the exposition here. Gentle introductions to category theorythat are inspired by its use for program calculation can be found in [9] and [30].



Exni f0 � � � fn�1 = fi; i = 0; : : : ; n� 1is an n-ary functor. We write Id for the unary functor Ex10, and Exl and Exr forthe binary functors Ex20 and Ex21.An n-ary functor induces a mapping on n-tuples of types. Let, for fi 2ai bi; i = 0; : : : ; n� 1, the (most general) typing of F f0 � � � fn�1 be givenby F f0 � � � fn�1 2 A BThen we denote these types A and B byF a0 � � � an�1 = AF b0 � � � bn�1 = BSo for unary functor F we haveF f 2 F a F b ( f 2 a bLooking at the typing of mapF :mapF f 2 F a F b ( f 2 a bwe see that the type mapping induced is F , i.e., (a :: F a). We shall from hereon use the same notation for the combinator and for its induced type mapping.Moreover, when applicable, we use the name of the type mapping for that. So,from here on, for function f , we write List f rather than mapList f . Likewise, wewrite aK instead of idaK.To introduce polytypic de�nitions, we need to abstract from the constructorfunction names. Here are some basic functors that will be helpful, together withsome auxiliary functions.The sum functor. The binary sum functor + is given by:data a+ b = inl a j inr bf + g = h whereh(inl u) = inl(f u)h(inr v) = inl(g v)f 5 g = h whereh(inl u) = f uh(inr v) = g vThe following typing rule will be used:f 5 g 2 c a+ b ( f 2 c a ^ g 2 c b



The product functor. The binary product functor � is given by:data a� b = pair a bf �g = h whereh(pair u v) = pair (f u) (g v)exl(pair u v) = uexr(pair u v) = vThe following typing rules will be used:exl 2 a a� bexr 2 b a� bFunctor composition. If F is a k-ary functor, and G0; : : : ; Gk�1 are all n-aryfunctors, their composition F4 G0 � � � Gk�1 is an n-ary functor that maps ann-tuple z to F (G0 z) � � � (Gk�1 z). Instead of +4 F G we write F + G, andlikewise for �.From k-ary F we can make a unary functor F ? by de�ning F ? = F4 Id � � � Id.So F ?z = F z � � � z, with k \z"s. When F is unary, F ? = F . Furthermore wehave a distribution property:(F4 G0 � � � Gk�1)? = F4 G0? � � � Gk�1?In the expression (aK)? the value of k is not determined, but since it is immaterialto the result this shouldn't be a problem.5 CatamorphismsWe �rst look at a simple inductively de�ned datatype, that of the Peano naturals:data Nat = succ Nat j zeroThere is only one number zero, which we can make explicit by:data Nat = succ Nat j zero 1Instead of fancy constructor function names like succ and zero we now employboring standard ones:data Nat = inl Nat j inr 1The choice here is that a�orded by sum, so we obtain, �nally,data Nat = in(Nat + 1)in which there is one explicit constructor function left.Now de�ne the unary functor N byN z = z + 1



Using the notations introduced earlier, this functor can also be expressed asN = Id+ 1K. The functor N captures the pattern of the inductive formation ofthe Peano naturals. The point is that we can use this to rewrite the de�nition ofNat to data Nat = in(N Nat)Apparently, the pattern functor N uniquely determines the datatype Nat . A func-tor built only from constants, extractions, sums, products and composition iscalled a polynomial functor. Whenever F is a unary polynomial functor, a de�ni-tion of the form data Z = in(F Z) uniquely determines Z. We need a notationto denote the datatype Z that is obtained, and write Z = �F . So Nat = �N .Replacing Z by �F in the datatype de�nition, and adding a subscript to the singleconstructor function in in order to disambiguate it, we obtain:data �F = inF (F �F )Now inF is a polytypic function, with typinginF 2 �F  F �FEach datatype �F has its cata combinator, which we denote with Malcolm'sbanana brackets:([f ])F 2 a �F ( f 2 a F aIt is de�ned by:([f ])F = h whereh (inF xs) = f ((F h) xs)In words, when catamorphism ([f ])F is applied to a structure of type �F , thismeans it is applied recursively to the components of the structure, and the resultsare combined by applying its \body" f . The importance of catamorphisms is thatthey embody a closed expression for a familiar inductive de�nition technique(\canned induction") and thereby allow the polytypic expression of importantprogram calculation rules, among which this fusion law (Malcolm):h . ([f ])F = ([g])F ( h . f = g .F h6 Type functorsPlaying the same game on the de�nition of List gives us:data List a = in((a � List a) + 1)Replacing the datatype being de�ned, List a, systematically by z, we obtain the\equation"data z = in((a� z) + 1)



Thus, we see that the pattern functor here is (z :: (a�z) + 1). It has a parametera, which we make explicit by puttingL a = (z :: (a� z) + 1)Abstracting from a and z, we can write: L = (�) + 1K. Now List a = �(L a),or, abstracting from a:List = (a :: �(L a))In general, a parametrised functor F a gives rise to a new functor, like here List .Such functors are called type functors. We introduce a notation:�F = (a :: �(F a))so List = �L, with L as above. The parameter a may actually be an n-tuple iffunctor F is (n + 1)-ary, and then �F is an n-ary functor. The \map" part of aunary type functor can be expressed as a cata:�F f = ([inF a .F f id])F b for f 2 a bRepeating this game for Rose , we �nd for its pattern functor R a z = a�List z,or R = Exl � List4 Exr. This is not a polynomial functor, because of theappearance of the type functor List. Yet �R is well de�ned. Incorporating typefunctors into the ways of constructing functors extends the class of polynomialfunctors to the class of regular functors.7 Regular functorsThe de�nition of Fokkinga [10] will be followed, with one minor modi�cation. Afunctor built only from constants, extractions, sums, products, composition and� is called a regular functor. A formal grammar for the n-ary regular functors is:F(n) ::= tK n-ary constant functor, for each type tj Exni n-ary extraction, i = 0; : : : ; n� 1j + j � (only if n = 2) binary sum and product functorj F(k)4 F(n)0 � � � F(n)k�1 functor compositionj �F(n+1) the type functor induced by F(n+1)The minor modi�cation, now, is that in the constant functors we do not allow anytype t, but consider only the constant functor 1K. This has a technical backgroundthat we cannot go into for space limitations.Here is how the functor Rose is produced by this grammar:Rose = � (�4 Ex20 ((� (+4 (�) 1K))4 Ex21))Daunting as this may look, it was obtained by purely mechanical unfolding ofearlier de�nitions. The embedded � corresponds to the type functor List .



8 Polytypic crushThe key to polytypic type de�nitions (given the present state of the art | noPolyps From Outer Space yet but see Freyd [12], Meijer and Hutton [32], Sheardand Fegaras [35] and Fegaras and Sheard [6] for possible extensions) is the formalgrammar for regular functions. The class of regular functors is itself like (andcan be modelled by) an inductive datatype, and so polytypic functions can bede�ned by induction on the formation of a regular functor.Let us see how we can de�ne a polytypic crush combinator that, applied toa suitable \body", results in a function r[F ] with typing a F ?a for all regularF . We write r[F ] here rather than rF because, in this de�nition, F is the mainparameter. In the process we shall see what ingredients are needed for its \body".We shall make a concerted e�ort to minimise the number of ingredients that needto be supplied to the combinator, and | also to stay as polymorphic as possible| we let ourselves be guided by typing considerations to take whatever will dowhen available \for free".So we consider all cases corresponding to the production rules of the grammar.The inductive hypothesis is that we already haver[F ] 2 a F ?afor su�ciently simple F . For the case �F we assume, for the sake of simplicity,that F is binary. We postpone the case 1K to the last.Case Exni : the requirement is r[Exni ] 2 a a .(Recall that Exni ?a = Exni a � � � a = a). The choice is obvious: r[Exni ] = id.So this need not be supplied.Case +: the requirement is r[+] 2 a a+ a .Here there is one (and only one) polymorphic function that will do, namely id5 id.Case �: the requirement is r[�] 2 a a� a .There are polymorphic possibilities, namely exl and exr, but �xing any choicefrom these here would constitute an unacceptable discrimination against eitherthe Left or the Right. So some ingredient � 2 a a� a will have to be supplied.Case F4 G0 � � � Gk�1: the requirement isr[F4 G0 � � � Gk�1] 2 a F (G0? a) � � � (Gk�1? a) .(The typing uses (F4 G0 � � � Gk�1)? = F4 G0? � � � Gk�1?.) By the inductivehypothesis we haver[F ] 2 a F ?aas well as r[Gi] 2 a Gi? a, so that, using the typing of functors,F r[G0] � � � r[Gk�1] 2 F ?a F (G0? a) � � � (Gk�1? a)By composing these two we obtain for free



r[F ] . F r[G0] � � � r[Gk�1]as having the required typing.Case �F : the requirement is r[�F ] 2 a �F a .Using �F a = �(F a), and pattern matching against([f ])G 2 a �G ( f 2 a G a(replace here G by F a) we see that we can use a catamorphism([f ])Fa 2 a �(F a)which has the required typing iff 2 a F ?aThe latter requirement is solved by f = r[F ]. The free solution is thereforer[�F ] = ([r[F ]])Fa.Case 1K: the requirement is r[1K] 2 a 1 .We need some value of type a. We solve this by imposing the requirement on theingredient � (needed for the case �) that it have a neutral element ��, and takethat.2So, in summary, we only need to supply one ingredient: a binary operation � 2a a� a that has a neutral element. We introduce the notationhh�iiF 2 a F ?afor this polytypic crush.More exibility. We make our crush more exible by allowing an optionalsecond parameter f 2 a b and de�ninghh�; fiiF 2 a F ?bhh�; fiiF = hh�iiF .F ?fwhich generalises the one-parameter form since hh�ii = hh�; idii.We also de�ne a variant crush, actually just a useful abbreviation, designedfor duty under bad weather conditions. What if � has no neutral element, like,for example, the operation # selecting the lesser of two naturals? This was dealtwith in classic BMF by introducing so-called \�ctitious values". Here is a pre-cise way of handling this. Given � 2 a a� a we construct a new operator�M 2 Maybe a Maybe a�Maybe a which behaves like � on the range of one,preserves associativity and symmetry, if any, also on the extended domain andhas none as a neutral element:



one u �M one v = one(u � v)one u �M none = one unone �M one v = one vnone �M none = noneWe use this now to de�ne the variant. To distinguish it from the normal one weprepend a superscript M. With � and f typed as before,Mhh�; f iiF 2 Maybe a F ?bMhh�; f ii = hh�M; one . f iiAs for the normal crush we may omit the f-parameter when it is id.9 Crush compared to cataSo isn't this crush a cata? No, it is not. For one thing, we saw that every typefunctor can be written as a catamorphism. Simple typing considerations showthat in general type functors can not be expressed in the form of a crush. In thatsense the crush combinator is less general. It is more general in the polytypic sensethat crushes apply to source type F ?a for any functor F , while catamorphismsare only de�ned on source types of the form �G. (However, if G = F a, then�G is �F a, and the crush for �F is indeed a catamorphism.)An interesting connection to classic BMF ishh�; f iiList = �= . f�when � is the operator of a monoid. So we see that the catamorphism combina-tor ([ ]) introduced by Malcolm [24] [25] [26] and the present hh ii are di�erent,incomparable, generalisations of Classic CataTM.The most telling di�erence is the following. While ([ ]) itself is a polytypiccombinator, its application to a body does in general not result in a polytypicfunction. In contrast, the application of hh ii always gives a polytypic function.10 Some examples of polytypic crushFunction sum from Section 2 can be de�ned polytypically as a crush:sum = hh+iiin which \+" is addition on numbers. Using the exibility a�orded by the optionalparameter, we can modify this to de�ne polytypic size, a function for countingthe number of elements in a structure:size = hh+; 1KiiPolytypic membership is obtained bye 2 = hh_; eq eii



Here is polytypic atten:attenF 2 List a F ?aatten = hh++; [ ]iiPolytypic �rst returns the �rst element of its argument (�rst in in-order depth-�rst traversal). Since there may be no �rst element, we use the weatherproofvariant:�rstF 2 Maybe a F ?a�rst = Mhh� ii where u� v = uIn all these examples the crush has the form hh�; f ii in which � is associative.This is not a coincidence. Although not required for the well-de�nedness, theassociativity of the operation is suggested by the fact that modelling n-tupleswith pairs can be done from the left or from the right, corresponding to theisomorphy of types (a � b) � c and a � (b � c). Since the choice is arbitrary, itmakes sense to require � to be associative.Why, then, not require it to be associative? Well, here are some interestingapplications with a non-associative operator.Polytypic depth (or height, if you prefer), returns the depth of the deepestelement, if any:depth = Mhh�; 0Kii where m � n = (m " n) + 1Function binned returns a Maybe4Bin value preserving the tree shape (if any)while converting type F ?a to Bin a:binnedF 2 Maybe(Bin a) F ?abinned = Mhhjoin; tipii11 Calculating with polytypic functionsPolytypic crush captures one particular | although rather common | patternof polytypic de�nition. For instantiations to speci�c datatypes, the calculationrules are well known. For example, if h = hh�; f iiBin ,h . join = � . h� hh . tip = fBut we can go further. Not only can \canned" polytypy be put to good use tosave a lot of work in writing polytypic programs, it can also be used to \calculatepolytypically", giving identities that are polytypically valid.As an illustration, we give, without proof, a polytypic fusion law for crushes,analogous to the fusion law for catamorphisms.



Crush fusion. If the following three equations are satis�ed:h .� = 
 . h� hh �� = �
h . f = gthen h . hh�; f ii = hh
; gii2This is basically the \free theorem" (Wadler [37]) for polytypic crush, but a bitof fudging with the type is needed to handle the neutral elements. Jeuring andJansson [22] show how to derive these for polytypic functions in general.We can use this fusion law to �nd a condition under whichhh�; f iiList . atten = hh�; f iiUsing atten = hh++; [ ]ii and putting h = hh�; f iiList , crush fusion gives theconditions:h .++ = � . h� hh [ ] = ��h . [ ] = fFrom the theory of lists [2] we know that these are satis�ed when h = �= . f�,that is, when � is associative. This shows that for associative � the crush hh�iidisregards any tree structure of the argument; it might as well have been a linearlist.For bad weather we have:Corollary. If the following two equations are satis�ed:h .� = 
 . h� hh . f = gthen Maybe h . Mhh�; f ii = Mhh
; gii2An application is:Maybe hh�; f iiBin . binnedF = Mhh�; f iiF



12 Some futuristic remarksSuppose we need a function to swap two naturals, with the typing swap 2Nat � Nat Nat � Nat. That is not a hard task, but somehow it is in the natureof programming that it consists of easy tasks, only there are so many of them.The hard thing is to combine all the easy solutions to the little easy tasks inthe right way, and anything helpful in that is helpful in programming. A goodtyping discipline is helpful. No decent functional programmer would de�ne swapspecialised to the naturals, but instead use a polymorphic functionswap 2 a� b b� aIn fact, giving this typing, you just can't get it wrong or else the type checkingwill tell you.Similarly, even when | for all we know | a function may be needed for onlyone speci�c datatype, it may be helpful to de�ne it polytypically. The possibili-ties to get it wrong but type correct are, if not crushed, then at least de�nitelyreduced. Hindley-Milner style type inference for polytypic functions is describedby Jansson and Jeuring [20]. Also, the polytypic version may be genuinely sim-pler. Just compare the polytypic de�nitions of e2 and sum with the versionsspecialised for Rose from Section 2.I started the Introduction with a question. Finding a new algorithm maybe exciting, but coding yet another specialisation of a generic algorithm is not.Polytypy may prove to be the key to the level of exibility needed to achieve inter-operability by structural (as opposed to ad hoc) techniques. To facilitate poly-morphic de�nition, we need elementary polytypic building blocks. Backhouse,Doornbos and Hoogendijk de�ne, in a relational setting, a doubly polytypic andpolymorphic zip. Jeuring [21] and Jeuring and Jansson [22] give many examplesof further building blocks. More research is needed on \canned" polytypy, ob-viating the need of explicit induction on the formation of a regular functor. Thecrush combinator de�ned above is just a start.References1. Roland Backhouse, Henk Doornbos and Paul Hoogendijk. A Class of Commut-ing Relators. Unpublished, Eindhoven University of Technology, 1992. WwWftp://ftp.win.tue.nl/pub/math.prog.construction/zip.dvi.Z .2. Richard S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logicof Programming and Calculi of Discrete Design, volume F36 of NATO ASI Series,pages 5{42. Springer{Verlag, 1987.3. Richard Bird and Oege de Moor. Algebra of Programming. To appear, PrenticeHall, 1996.4. Richard Bird, Oege de Moor and Paul Hoogendijk. Generic functional program-ming with types and relations. J. of Functional Programming, 6(1):1{28, 1996.5. Oege de Moor. A Generic Program for Sequential Decision Processes. InManuel Hermenegildo and S. Doaitse Swierstra, editors, PLILP'95: ProgrammingLanguages: Implementations, Logics and Programs, volume 982 of LNCS, pages1{23. Springer Verlag, 1995.



6. Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over datatypes withembedded functions. In Proceedings Principles of Programming Languages, POPL'96, 1996.7. Maarten M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University ofTwente, Dept INF, Enschede, The Netherlands, 1992.8. Maarten M. Fokkinga. Calculate categorically! Formal Aspects of Computing,4(4):673{692, 1992.9. Maarten M. Fokkinga. A gentle introduction to category theory | the calculationalapproach. In Lecture Notes of the STOP 1992 Summerschool on ConstructiveAlgorithmics, pages 1{72 of Part 1. Utrecht University, 1992.10. Maarten M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memo-randa Informatica 94-28, University of Twente, 1994.11. Maarten M. Fokkinga. Datatype laws without signatures. Mathematical Structuresin Computer Science, 6:1{32, 1996.12. Peter Freyd. Recursive types reduced to inductive types. In Proceedings Logic inComputer Science, LICS '90, pages 498{507, 1990.13. Tatsuya Hagino. Category Theoretic Approach to Data Types. PhD thesis, Uni-versity of Edinburgh, 1987.14. Paul F. Hoogendijk. Generators, Destructors and Natural Transforma-tions. Unpublished, Eindhoven University of Technology, 1993. WwWftp://ftp.win.tue.nl/pub/math.prog.construction/gendes.dvi.Z .15. John Hughes. The Design of a Pretty-printing Library. In Johan Jeuring andErik Meijer, editors, Advanced Functional Programming, LNCS 925, pages 53{96.Springer Verlag, 1995.16. Marieke Huisman. The Calculation of a Polytypic Parser. Master's thesis, UtrechtUniversity, Dept. of Computing Science, 1996.17. Patrik Jansson. Polytypism and Polytypic Uni�cation. Master's thesis, ChalmersUniversity of Technology and University of G�oteborg, 1995. WwW file://ftp.cs.chalmers.se/pub/users/patrikj/papers/masters/thesis.ps.Z .18. Patrik Jansson and Johan Jeuring. Polyp | a polytypic programming language.Submitted for publication, 1996. WwW http://www.cs.chalmers.se/~johanj/polytypism/polyp.ps .19. Patrik Jansson and Johan Jeuring. Polytypic uni�cation | implementing poly-typic functions with constructor classes. Submitted for publication, 1996. WwWhttp://www.cs.chalmers.se/ johanj/polytypism/unify.ps .20. Patrik Jansson and Johan Jeuring. Type inference for polytypic functions. Inpreparation, 1996.21. Johan Jeuring. Polytypic pattern matching. In S. Peyton Jones, editor, Confer-ence Record of FPCA '95, SIGPLAN-SIGARCH-WG2.8 Conference on FunctionalProgramming Languages and Computer Architecture, pages 238{248, 1995. WwWhttp://www.cs.chalmers.se/~johanj/ppm.dvi .22. Johan Jeuring and Patrik Jansson. Polytypic programming. To appearin Proceedings of the Second International Summer School on AdvancedFunctional Programming Techniques, LNCS, Springer Verlag, 1996. WwWhttp://www.cs.chalmers.se/~johanj/polytypism/notes.ps .23. Mark P. Jones. Functional Programming with Overloading and Higher-Order Poly-morphism. In Johan Jeuring and Erik Meijer, editors, Advanced Functional Pro-gramming, LNCS 925, pages 97{136. Springer Verlag, 1995.24. Grant Malcolm. Homomorphisms and promotability. In J.L.A. van de Snepscheut,editor, Mathematics of Program Construction, LNCS 375, pages 335{347. Springer



Verlag, 1989.25. Grant Malcolm. Algebraic Data Types and Program Transformation. PhD thesis,University of Groningen, 1990.26. Grant Malcolm. Data structures and program transformation. Science of Com-puter Programming, 14(2{3):255{280, 1990.27. Ernest G. Manes and Michael A. Arbib. Algebraic Approaches to Program Seman-tics. Text and Monographs in Computer Science. Springer Verlag, 1986.28. Lambert Meertens. Algorithmics|towards programming as a mathematical activ-ity. In J.W. de Bakker, M. Hazewinkel, and J.K. Lenstra, editors, Proceedings ofthe CWI Symposium on Mathematics and Computer Science, volume 1 of CWIMonographs, pages 289{334. North{Holland, 1986.29. Lambert Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413{425,1992.30. Lambert Meertens. Category Theory for Program Construction by Calcula-tion. Lecture Notes for ESSLLI'95, 1995. WwW http://www.cwi.nl/~lambert/e95.ps.Z .31. Erik Meijer, Maarten M. Fokkinga and Ross Paterson. Functional programmingwith bananas, lenses, envelopes and barbed wire. In FPCA91: Functional Program-ming Languages and Computer Architecture, LNCS 523, pages 124{144. SpringerVerlag, 1991.32. Erik Meijer and Graham Hutton. Bananas in space: extending fold and unfold toexponential types. In S. Peyton Jones, editor, Conference Record of FPCA '95,SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming Languagesand Computer Architecture, pages 324{333, 1995.33. Fritz Ruehr. Analytical and Structural Polymorphism Expressed Using PatternsOver Types. PhD thesis, University of Michigan, 1992.34. Tim Sheard. Type parametric programming with compile-time reection. OregonGraduate Institute of Science and Technology, 1993.35. Tim Sheard and Leonidas Fegaras. A Fold for All Seasons. In FPCA'93, Con-ference on Functional Programming Languages and Computer Architecture, pages233{242. ACM Press, 1993. WwW ftp://cse.ogi.edu/pub/crml/fpca93.ps.Z .36. Dani�el Tuijnman. A Categorical Approach to Functional Programming. PhD the-sis, Universit�at Ulm, Fakult�at f�ur Informatik, Abteilung Programmiermethodik undCompilerbau, 1995.37. Phil Wadler. Theorems for free! In Functional Programming Languages and Com-puter Architecture, FPCA '89, pages 347{359. ACM Press, 1989.


