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Abstract

The big question that motivates this dissertation is the following: under what con-

ditions and to what extent can passive observations inform us of the structure of

causal connections among a set of variables and of the potential outcome of an active

intervention on some of the variables? The particular concern here revolves around

the common kind of situations where the variables of interest, though measurable

themselves, may suffer from confounding due to unobserved common causes.

Relying on a graphical representation of causally insufficient systems called max-

imal ancestral graphs, and two well-known principles widely discussed in the litera-

ture, the causal Markov and Faithfulness conditions, we show that the FCI algorithm,

a sound inference procedure in the literature for inferring features of the unknown

causal structure from facts of probabilistic independence and dependence, is, with

some extra sound inference rules, also complete in the sense that any feature of the

causal structure left undecided by the inference procedure is indeed underdetermined

by facts of probabilistic independence and dependence.

In addition, we consider the issue of quantitative reasoning about effects of local

interventions with the FCI-learnable features of the unknown causal structure. We

improve and generalize two important pieces of work in the literature about identifying

intervention effects. We also provide some preliminary study of the testability of the

Causal Faithfulness Condition.
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Chapter 1

Introduction

Probably few people today would agree with Hume that “all reasonings concerning

matter of fact seem to be founded on the relation of Cause and Effect.” Many predic-

tions we make about yet unobserved features, e.g., tomorrow’s weather or a woman’s

age, are based on information of statistical correlations among various features of

the world, and oftentimes rightly so. In these cases we reason about matter of fact

without having to rely on knowledge of cause and effect1. In other cases, however,

the basis of reasoning does involve causal knowledge. This is so whenever the objects

of inquiry concern consequences of actions, effects of policies or outcomes of inter-

ventions in general. As long as such questions are of interest, as they have been all

along, causal inference and reasoning are unavoidable.

Unavoidable as they are, inferences about causal relations have been the cynosure

of skeptical arguments ever since Hume. Skepticism in general embraces two ways that

evidence could leave reality undetermined: global underdetermination – alternative,

contradictory hypotheses may be compatible with all of the evidence there could

1This does not necessarily contradict what Hume had in mind. For example, Hume could be
merely asserting that all empirical relations that reasonings are founded upon, including statisti-
cal/probablistic associations, are derivative (ontologically?) of the relation of cause and effect.
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possibly be; and local underdetermination – alternative, contradictory hypotheses

may be compatible with all of the available evidence at any time. Hume’s critique

of our causal knowledge invokes both kinds: if “causation” is meant to be some

sort of “necessary connection” that transcends the observable regularity, then it is

underdetermined in the first, global sense; alternatively, even if “causation” is defined

as nothing more than the “constant conjunction of events”, there is still the issue of

inferring genuine regularities from the temporarily observed patterns, which suffers

from underdetermination of the second sort.

This two-fold picture is largely inherited in the modern statistical inference of

causality, which can be viewed as involving two general steps: inferring (objective)

probabilities from sample statistics; and inferring causality from probabilities (cf. Pa-

pineau 1994). The first step – with primarily underdetermination of the second sort

– has of course been a central subject of statistics. A typical antidote statisticians

provide to the skeptical worry, for example, is to demonstrate long term properties of

statistical inference – in particular, to prove asymptotic convergence to the true hy-

pothesis (or at least asymptotic avoidance of false conclusions), and more powerfully,

to calculate rates of the convergence or bounds of the errors. The second step – the

one that motivates this dissertation as well as much work on probabilistic theories

of causation, however, is sabotaged by underdetermination of the more radical sort,

unless further assumptions are adopted that in some way restrict alternative causal

hypotheses and their relations to possible data. Making further assumptions about

causality is thus commonplace in treatises on causal inference methodologies. Mill,

for example, made a principle of Hume’s hope that similar causes produce similar

effects (Mill 1843); Fisher implicitly assumed that potential causes could be random-

ized to eliminate confounding (Fisher 1935); and both of them were committed to
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some version of the well known principle of the common cause2, which is of central

import in the recent philosophical literature.

There are two types of projects associated with any candidate principles proposed

to support causal inference. One may be called the “Humean” project and the other

the “Millian” project. The former is concerned with the nature and status of the

assumptions themselves, and seeks to provide a justification of the assumptions or,

when no rational basis is found, a psychological explanation of why people believe in

those assumptions. The latter, by contrast, is concerned with the epistemic conse-

quences of the assumptions, and seeks to develop methodologies of causal inference

justifiable given the assumptions. These two projects are obviously complementary

but also largely orthogonal to each other, which makes it possible to pursue both in

parallel. Philosophers tend to emphasize the first type of inquiry much more than

the second, but the present dissertation, if only to counterbalance the tendency, will

focus on the second type of inquiry.

Specifically, this dissertation aims to contribute to the methodologies of causal in-

ference in observational, non-experimental settings based on graphical representations

and methods, a field that has been drawing increasing attention, in the past three

decades or so, from researchers in various disciplines such as philosophy, statistics,

computer science and artificial intelligence. Before I synopsize what the contributions

are, it is helpful to introduce some relevant background of the research program.

2Randomization is intended to do more than the elimination of confounding. For Fisher, it is
an important device to create a well-defined sampling distribution (under the null hypothesis of no
causal effect) so as to facilitate the calculation of significance levels. But to calculate the significance
level, for example in the classical tea-tasting case, it is necessary to interpret what the null hypothesis
of “no effect” means in terms of the relationship between the lady’s responses and the schedules of
adding milk, where it is assumed that “no effect” implies “no covariation” (or independence). Mill’s
commitment to the principle of the common cause, on the other hand, is evident in his fifth canon
of induction.
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1.1 Variable Causation and Directed Acyclic Graphs

A large body of philosophical work on causation is devoted to metaphysical issues.

One problem, for example, is about relata of the causal relation: what is causation a

relation of? There is yet nothing close to a consensus on this issue, or any reason to

expect one is forthcoming. Indeed, if we look at the actual use of the word in daily

discourse, we find a variety of bearers of causal relations. A cause can be an event,

an object (or a feature thereof), a property, a fact, a state of affairs, or an agent, as

far as linguistic evidence goes. Causation, to name another widely discussed topic,

is also classified into token-level or singular causation on the one hand, and type-

level or general causation on the other. There is the controversy about which level

is more fundamental and whether one level is definable in terms of the other. The

literature on this topic is again equivocal and does not exhibit any sign of convergence

of opinions. Fortunately, the subject that concerns me in this dissertation does not

depend crucially on settlement of these metaphysical issues.

My interest lies in one manifestation of causal relations that is probably of the

most practical import among conceptions of cause and effect. No matter how vague

and multifaceted is the meaning of the word “cause”, a key intuition most people share

is that causes make effects happen but not vice versa, and causes can be exploited to

produce changes in their effects. In the simplest case, for example, we can imagine

“taking away” a cause (be it an event, an object or a fact) that was present, and as

such producing a change from an effect being present to that effect being absent (or

from the effect being very probably present to being less probably present). Indeed a

major practical reason for acquiring knowledge of causal relations is to predict effects

of interventions, a central task in many decision and policy making scenarios. For this

purpose it is convenient to conceive causal influence as operating among variables,
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and to equate the presence or absence of causal influence with the potential variance

or invariance upon manipulation.

Some philosophers maintain that causal relations are relations between contrast

pairs or transitional events (Hitchcock 1996, Belnap 2005). Under such views, vari-

ables are a suitable surrogate for the fundamental causal relata, as a contrast or a

transition is naturally represented by a variable taking different values. On the other

hand, it is fairly straightforward to define variable causation in terms of event cau-

sation or object causation or what have you, as long as the fundamental relata can

be represented by variables being instantiated to specific values. For example, we

can generically define a variable A being a cause of another variable B in terms of

some value of A being a cause of some value of B. If the appropriate causal relata

are states of affairs, then different values of A or B correspond to different states

of affairs; if the appropriate causal relata are events, then different values of A or B

correspond to different events (or non-happening of events), and so forth. In this way,

the controversy over causal relata translates into a controversy about the ontological

category of the range of the “right” variables for causal analysis, but does not affect

the intelligibility of the notion of variable causation. So, to make sense of variable

causation does not have to wait for a resolution of the debate over causal relata.

Variable causation is often viewed as type-level causation in the causal modelling

literature, rightly so because the purpose is usually to model a type of systems or a

population of individuals that admits sampling and statistical analysis. Conceptually,

however, the notion of variable causation seems to cut through both type-level and

token-level. We speak of both generic variables, such as brain weight in general, and

specific variables, such as Albert Einstein’s brain weight in particular, just as we

speak of both generic and concrete events (Strevens 2003). Accordingly we may talk
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about general variable causation as well as singular variable causation. Again which

level is ontologically basic is controversial, but that controversy does not matter from

an epistemic point of view.

Variable causation is amenable to formal analysis in that it naturally admits math-

ematical representations. The mathematical representations that will play a major

role in this dissertation are graphs, consisting of vertices that represent variables3, and

various types of edges between pairs of vertices that represent relationships between

variables. The tradition of representing causal relations graphically can be traced

back at least to Sewell Wright’s pioneering work in genetics (e.g., Wright 1921, 1934).

In recent years graphical models have also received a lot of attention in statistics

(Whittaker 1990, Lauritzen 1996) and computer science (Pearl 1988, Jordan 1998,

Neapolitan 2004).

The most widely used graphs in causal modelling are directed acyclic graphs

(DAGs). A directed graph (DG) is a mathematical object consisting of a pair 〈V,E〉,
where V is a set of vertices and E is a set of arrows. An arrow is an ordered pair

of nodes, say 〈A,B〉, represented visually by A → B. Given a graph G(V,E), if

〈A,B〉 ∈ E, then A and B are said to be adjacent, and A is called a parent of B

and B a child of A. A path in G is a sequence of distinct vertices 〈V0, ..., Vn〉 such

that for 0 ≤ i ≤ n − 1, Vi and Vi+1 are adjacent in G. A directed path in G from A

to B is a sequence of distinct vertices 〈V0, ..., Vn〉 such that V0 = A, Vn = B and for

0 ≤ i ≤ n − 1, Vi is a parent of Vi+1 in G, i.e., all arrows on the path point in the

same direction. A is called an ancestor of B and B a descendant of A if A = B or

there is a directed path from A to B. DAGs are simply DGs in which there are no

directed cycles, or in other words, there are no two distinct vertices in the graph that

are ancestors of each other.

3Throughout I will talk about vertices and variables interchangeably.
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DAGs are a great tool in statistical modelling in virtue of their standard proba-

bilistic semantics: a DAG over a set of random variables encodes a set of conditional

independence constraints on the joint probability distribution by its Markov property.

The (local) Markov property specifies that every variable in the DAG is independent

of its non-descendants (i.e., variables that are not its descendants) conditional on its

parents. These conditional independence constraints entail still others, all of which

can be read off the DAG by a graphical criterion known as d-separation (Pearl 1988),

which will be defined later in Chapter 2.

More importantly for our purpose, DAGs have a natural causal semantics: vertices

represent variables, and arrows represent direct causal relationship between pairs of

variables.4 By “direct causal relationship” it is meant that there is no variable that

mediates the relationship, or intuitively, that there exists a manipulated change in the

variable cause that will be followed by a change in the variable effect, while holding

all other variables fixed.5 The last clause makes it clear that it only makes sense

to talk about “direct causes” relative to a given set of variables. Arrows in a DAG,

we stipulate, represent “direct causation” relative to the variables in the DAG. An

obvious limitation of acyclic graphs is that they cannot represent feedback or non-

recursive mechanisms. To represent and infer feedback via cyclic graphs is a difficult

subject that deserves a whole other dissertation (see Richardson 1996), and will not

be considered in this one.

4Strictly speaking, I would also include the manipulation principle introduced in Chapter 5 to be
an important component of the causal interpretation of DAGs.

5As emphasized by almost everyone working in this field, this account of “direct cause” in terms
of manipulations does not make a definition in the usual reductive sense, because manipulation is
not a non-causal term. However, the elucidation of one causal notion by way of another causal
notion does not need to be fruitlessly circular, as Woodward (2003) vigorously argued.
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1.2 Causal Sufficiency, Markov and Faithfulness

Conditions

Hume is commonly regarded as identifying cause and effect with merely constant con-

junction of events or objects (plus spacial contiguity and time order). This prototype

of the so-called regularity theory of causation encountered various objections from

the very beginning (e.g., Reid 1788), but the motivating insight is seldom denied, i.e.,

the only aspect of “causation” that can have direct empirical basis is constant con-

junction, or from our point of view, statistical associations in general (plus perhaps a

time order). By contrast, causation beyond constant conjunction does not lend itself

to direct observation.

The recent advance in causal modelling does not refute this point, but starts by

positing bridge principles that connect causal structures to correlation patterns. As I

said, this dissertation is for the most part a sort of “Millian” effort, an effort to explore

the epistemic and methodological consequences of certain principles. The principles

I will rely upon are precisely two bridge principles that are becoming influential: the

Causal Markov Condition (CMC) and the Causal Faithfulness Condition (CFC). In

particular, I aim to continue and improve the existing study of the consequences of

these two principles.

The CMC is closely related to the concept of causal sufficiency. Given a set of

variables V, also referred to as a causal system in this dissertation, and two variables

A,B ∈ V, a variable C (not necessarily included in V) is called a common direct

cause of A and B relative to V if C is a direct cause of A and also a direct cause of

B relative to V∪{C}. V is said to be causally sufficient if for every pair of variables

V1, V2 ∈ V, every common direct cause of V1 and V2 relative to V is also a member
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of V. Only for causally sufficient systems do we have reason to assume the CMC.

(A number of counterexamples to the condition in causally insufficient systems can

be found in Spirtes et al. 1993/2000, pp. 33-35, page number referring to the 2nd

edition.)

Given a causally sufficient set of variables, the CMC states that every variable in

the set is probabilistically independent of its non-effects (i.e., variables that are not

its effects) conditional on its direct causes. This condition obviously brings together

the probabilistic semantics and the causal semantics of DAGs, so that the same DAG

can represent a set of variables both causally and probabilistically. The CFC is the

converse principle, which, to put it simply, states that no conditional independence

other than those entailed by the CMC holds. I will explain the content in more detail

in the next chapter. For now, note that the two conditions together provide a link

between causality and probability, which, if valid, opens up the possibility of inferring

causal information from probabilistic information.

1.3 A Representation of Causally Insufficient Sys-

tems: Maximal Ancestral Graphs

A major worry among statisticians towards inferring causation from correlation is that

there are unobserved or latent variables that contribute to the observed correlation

pattern among observed variables – variables of which we can and do measure the

values. In such cases the set of observed variables may be causally insufficient.

For a causally insufficient system O, DAGs over O do not provide a satisfactory

representation, because the CMC typically fails of O.6 The causal DAG over O – i.e.,

6By this I mean that some variable in O is not probabilistically independent of its non-effects
conditional on its direct causes in the set.
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the DAG in which there is an arrow from A to B, A → B, if and only if A is a direct

cause of B relative to O – does not represent the joint probability over O properly

in the sense of entailing the right conditional independence constraints.7 On the

other hand, a DAG that represents the joint probability correctly cannot be causally

accurate. So no DAG over just the variables in O can do the dual representational

job.

Suppose, as I will do throughout the dissertation, that a causally insufficient

system can nonetheless be extended to a causally sufficient system by adding a finite

number of extra variables. Then in theory we can represent a causally insufficient set

of observed variables O both causally and probabilistically by a DAG over V = O∪L,

where L is a set of unobserved or latent variables added to make the whole set V

causally sufficient.8 In this dissertation, however, I will not directly work with DAGs

with latent variables. The reason is two-fold. First, there are well-known undesirable

statistical properties of DAG models with latent variables. For example, DAG models

with latent variables are not always identified (Bollen 1989); DAG models with latent

variables are usually not curved exponential families (Geiger et al. 2001), and hence

such commonly used score as BIC may not be a consistent model selection criterion

(Haughton 1988); Moreover, it is in general difficult to even calculate such penalized

likelihood scores for DAG models with latent variables, because they in general do not

have a well-defined dimension, being unions of curved exponential families of different

dimensions (Geiger et al. 2001); and so forth.

7Another more important complication is that the causal DAG of a causally insufficient system
does not enable us to identify all effects of interventions on the system, even if the CMC happens to
hold of the system. In other words, the manipulation principle to be discussed in Chapter 5 fails.
This, however, is an inherent problem with causally insufficient systems that will not be resolved
by adopting the ancestral graphical representation that I will rely upon. We will come back to this
issue in Chapter 5.

8More generally there can also be what we call selection variables, which will be considered in
Chapters 3 and 4.
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Second, and more importantly, occasions often arise in which there is very little

information about unmeasured variables. Sometimes researchers fail to measure a

variable because it is not easy or practically impossible to measure, but other times

researchers fail to measure a variable because they have no idea about the existence

of the variable or the relevance of the variable never comes into mind. In the latter

situations, except for the suspicion that the set of observed variables is insufficient,

there is no reason to posit anything specific about latent variables, such as the number

of the relevant latent variables and their locations in the causal network. We then

face the following dilemma: one horn is to put no constraint on latent variables, which

implies, among other difficulties, that there are literally infinitely many DAGs with

latent variables to consider as candidate causal models; the other horn is to posit

groundless constraints on latent variables, which is undesirable because inference

with latent variable DAG models is sensitive to the assumptions made about latent

variables.

I will thus rely on an alternative graphical representation of causally insufficient

systems developed in Richardson and Spirtes (2002), which does not explicitly include

latent variables and represents them only implicitly. Again, this choice means that I

target at those situations where a set of observed variables is not known or assumed

to be causally sufficient, but little is known about the extra relevant variables, if

any. Moreover the query itself only concerns the observed variables, such as what

would happen to an observed variable Y if another observed variable X is intervened

to take some value, and there is no interest in latent variables per se, except that

they may be relevant to the inference about those observed variables. As will become

clear, however, even when latent variables themselves are of interest, the methodology

based on the representation to be introduced is not useless, as the method, among
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other things, may indicate the locations of latent variables in the causal network.

The alternative representation is a generalization of DAGs. A directed mixed

graph9 is just like a directed graph except that it can contain, besides directed edges

or arrows (→), also bi-directed edges or double-headed arrows (↔). All graphical

notions introduced earlier, adjacency, parent/child, ancestor/descendant, path and

directed path, obviously remain meaningful. In addition, if there is a bi-directed edge

A ↔ B in a directed mixed graph G, then A is called a spouse of B and B a spouse

of A. An almost directed cycle occurs if there are two variables A and B such that A

is both an ancestor and a spouse of B.

Given a path u = 〈V0, ..., Vn〉 with n > 1, Vi (1 ≤ i ≤ n − 1) is a collider on u if

the two edges incident to Vi are both into Vi, i.e., have an arrowhead at Vi; otherwise

it is a noncollider on u. A path is called a collider path if every vertex on it (except

for the endpoints) is a collider along the path. Let L be any subset of vertices in G,

an inducing path relative to L is a path on which every vertex not in L (except for the

endpoints) is a collider on the path and every collider is an ancestor of an endpoint

of the path. When L is empty we simply call the path an inducing path.10

The representation to be used extensively later is called a maximal ancestral graph

(MAG). A mixed graph is ancestral if it does not contain any directed or almost

directed cycle. It is maximal if no inducing path is present between any two non-

adjacent vertices in the graph. A MAG is a mixed graph that is both ancestral and

maximal. Note that syntactically a DAG is a special case of MAG, simply a MAG

without bi-directed edges.

A nice feature of MAGs is that they can represent the marginal independence

models of DAGs in the following sense: given any DAG G over V = O ∪ L, there is

9Richardson and Spirtes (2002) actually considered more general mixed graphs that can also
include undirected edges (−−). Chapters 3 and 4 will consider this general case.

10It is called a primitive inducing path in Richardson and Spirtes (2002).
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a MAG over O alone such that for any three disjoint sets of variables A,B,C ⊆ O,

if A and B are entailed to be independent conditional on C by G (according to the

Markov property of DAGs) if and only if the conditional independence is entailed by

the MAG, by the Markov property of MAGs to be formally defined in Chapter 2.

The following construction gives us such a MAG:

Input: a DAG G over 〈O,L〉
Output: a MAG MG over O

1. for each pair of variables A,B ∈ O, A and B are adjacent in MG if and only if

there is a inducing path between them relative to L in G;

2. for each pair of adjacent vertices A,B in MG, orient the edge as A → B in MG

if A ∈ AnG(B); orient it as A ← B in MG if B ∈ AnG(A); orient it as A ↔ B

in MG otherwise.

It can be shown that MG is indeed a MAG and represents the marginal independence

model over O (Richardson and Spirtes 2002). More importantly, notice that MG also

retains the ancestral relationships — and hence causal relationships under the stan-

dard interpretation — among O in G. So, if G is the causal DAG for 〈O,L〉, it is

fair to call MG the causal MAG for O. It is thus hopeful to infer causal informa-

tion from probabilistic information via MAGs. There are of course also limitations

of working with MAGs. First, it is not the case that the causal MAG retains all

causal information needed to predict all effects of interventions among the observed

variables (see Chapter 5), as different DAGs with latent variables can entail differ-

ent intervention effects but correspond to the same MAG, even though a MAG does

retain all qualitative information regarding whether an observed variable X has a

causal influence on another observed variable Y .
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Second, MAGs do not give any clue about the causal structure among latent

variables, except for indicating where the relevant latent variable might be. I will

not be concerned with queries about causal structure among the unobserved in the

present work, and I refer interested readers to Silva et al. (2006) for a novel treatment

of the issue.

1.4 Overview of the Dissertation

The foregoing background description probably falls short of rigor, most of which will

be formally introduced again later. But it should be enough for the current overview.

My primary interest in the dissertation is to study the consequence of the CMC

and the CFC for causal inference, so I will not attempt to dig into the literature that

debates about the status of these principles themselves. Still, in Chapter 2, I will try to

shed some light on the testability of the Causal Faithfulness Condition. In particular,

I will present a simple finding that, surprisingly enough, has not been noticed or

emphasized before. The simple fact is that the CFC can be dissected into at least

two components, one of which is in principle testable given the other. This observation

suggests a simple twist to a familiar causal discovery procedure, known as the PC

algorithm (Spirtes et al. 1993/2000). The resulting algorithm, called Conservative

PC (CPC), is provably correct under a weaker-than-standard Faithfulness condition.

I shall also argue, in a preliminary fashion, that the CPC algorithm is in a sense robust

against limited violations of the CMC, given that the CFC (or for that matter, the

weaker Faithfulness condition) holds. In addition to presenting these substantive

results, this chapter will also serve the purpose of describing relevant background

of causal discovery under the assumption of causal sufficiency, which is helpful for

understanding later chapters on causal discovery without the assumption of causal
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sufficiency.

The rest of the dissertation will take the two principles, CMC and CFC, as given,

and investigate the possibility and limit of inferring causal information from facts of

probabilistic independence and dependence given these two principles.11 First of all,

the issue is to infer qualitative causal structures, represented by causal graphs, from

patterns of probabilistic independence and dependence. It is still true under the two

assumptions that correlation does not imply causation. In general, the true causal

graph is underdetermined by a pattern of correlations, or in other words, there are

multiple causal graphs that satisfy the CMC and CFC with the given pattern of con-

ditional independence constraints – such graphs are what we call Markov equivalent.

Nonetheless, these Markov equivalent causal structures can and do share some com-

mon features that are hence uniquely determined. An important project is then to

fully characterize the extent of underdetermination due to Markov equivalence, and

to develop a feasible calculus that can derive all valid qualitative causal information

entailed by a pattern of conditional independence constraints, assuming the CMC

11Let me note a couple of limitations right away. First, the qualitative information about condi-
tional independence or dependence is presumably not the only type of probabilistic information that
one can employ to infer causal information. Given suitable parametric assumptions, for example,
there has been an important thread of work that focuses on inferring causal structure of linear mod-
els from a type of probabilistic constraint known as the tetrad constraints (Glymour, et al. 1987,
Spirtes, et al. 1993/2000, Silva, et al. 2003, 2006). It is also known that some DAGs with latent
variables entail non-parametric constraints on the marginal probability over observed variables that
do not take the form of conditional independence. There has been some detailed study of how to
derive these constraints from a given DAG (e.g., Tian and Pearl 2002), but the reserve direction,
i.e., how these non-parametric constraints may be employed to recover the unknown causal graph,
is not yet well understood. So the current dissertation does not aim to reveal the full implication of
the CMC and CFC for causal inference, but rather the implication of the two principles for causal
inference based on conditional independence and dependence facts. In some sense, the implication
of the latter sort will be fully given by this work.

Second, I will bypass the step of statistical inference to the conditional independence and depen-
dence facts. It is undoubtedly an extremely important issue that will engage statisticians for a long
time. In the subsequent chapters I will often talk about a perfect oracle of conditional independence,
which is only available in the large sample limit provided that there are consistent statistical tests
of conditional independence.
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and CFC.

If the set of observed variables can be assumed to be causally sufficient, the target

causal graph is a DAG. For this case, there are sound and complete algorithms for

extracting causal information out of an oracle of probabilistic independence, an ora-

cle that is assumed to decide queries about conditional independence correctly (e.g.

Meek 1995). The output of such algorithms, a graphical object that represents an

equivalence class of causal structures, displays all and only those common features

shared by all causal structures that satisfy the CMC and CFC with the oracle.

However, it is seldom (or never, according to some epidemiologists) unproblematic

to assume that the observed causal system is causally sufficient. Without the assump-

tion of causal sufficiency, the target causal graph is in general not a DAG over the

observed variables, but rather, as we briefly explained, a MAG over the observed vari-

ables (since we rely on conditional independence and dependence facts only). In this

regard, there is a sound algorithm, known as the FCI algorithm, for extracting causal

information out of an oracle of conditional independence (Spirtes et al. 1999), but it

is unknown whether the algorithm is complete. To establish completeness amounts

to fully characterizing commonalities in an equivalence classes of MAGs, which turns

out to be substantially more difficult than the analogous task for DAGs.

I will tackle this completeness problem in Chapters 3 and 4. Chapter 3 will prove

that the FCI algorithm is actually “arrowhead complete”, complete regarding common

arrowheads among Markov equivalent MAGs. In Chapter 4, I point out that the FCI

algorithm is not “tail complete”, i.e., not complete regarding arrow tails shared by

all Markov equivalent MAGs. I then present an augmented FCI algorithm which

proves to be complete. This part on completeness is probably the most difficult and

significant portion of the dissertation, which, in addition to the theoretical significance
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in its own right, have potential applications in further research.

For example, in Chapter 4 I will also present a result which is to a large extent

a by-product of the arguments used there to prove completeness. The result is a

transformational characterization of Markov equivalent MAGs, MAGs that are indis-

tinguishable given an oracle of conditional independence. As I shall explain in due

time, I expect this result to be useful for several purposes, given that the analogous

result for DAGs established by Chickering (1995) found several interesting applica-

tions.

I begin this introduction by indicating that we care about acquiring causal in-

formation not because it constitutes the basis for all actual and possible empirical

reasonings, but because it enables reasonings about effects of certain changes. In

Chapter 5, I address the issue of quantitative causal reasoning that intends to make

use of the qualitative causal information inferred from the FCI algorithm. In a gen-

eral form, the inference problem of interest is this: given a set of observed random

variables, whose joint probability distribution can be consistently inferred from (non-

experimental) data, we want to figure out, for three subsets of variables X,Y and

(possibly empty) Z, whether or not we can infer the probability of Y conditional on

Z) given that X were intervened to follow certain probability distribution (Spirtes et

al. 1993/2000). We will specify the formal details of the intervention in question in

Chapter 5, but essentially the inference is about the outcome of certain “changes”

imposed from outside the given system based on information about the probability

distribution before the change.12

12Put this way, the problem looks much harder than what Hume was worried about. The kind
of induction Hume wrestled with would be warranted by a principle of the uniformity of nature,
as Hume apparently thought. There can be, of course, many versions of the uniformity principle,
but Hume’s version – that similar causes are followed by similar effects – is obviously too vague
and simple to even indicate how an inference of intervention effects can be carried out. The kind of
uniformity or invariance principle needed for this inference will be discussed in Chapter 5.
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The attempted solution to this problem proceeds in two stages: (1) extract quali-

tative information of the causal structure – represented by a causal graph – from the

joint probability distribution, say, from the conditional independence and dependence

relations implies by the joint distribution; and (2) predict the effect of certain inter-

ventions based on the acquired causal information and the joint distribution over the

observed variables before interventions.13 The causal information obtainable in (1) is

not always enough for identifying a given causal quantity, so an important subtask

in (2) is to determine whether the quantity of interest is predictable at all given the

information about causal structure gained in (1).

Stage (1) is tackled in Chapters 3 and 4 (with the limitation that only conditional

independence and dependence facts are exploited). Chapter 5 thus deals exclusively

with stage (2). An output from the (augmented) FCI algorithm is assumed to be

given, and the question is how much quantitative reasoning is warranted. My contri-

bution here will be to improve or generalize two existing methodologies, one due to

Spirtes et al. (1993/2000) and the other due to Pearl (2000). The former has a theory

of invariance based on a graphical representation called “inducing path graphs”, which

is a less elegant representation than ancestral graphs. I will thus develop a similar,

and in an important aspect better, theory of invariance based on MAGs. The latter is

known for its seminal work on causal reasoning based on a (single) causal DAG with

latent variables. But, as one would naturally worry, the true causal DAG is seldom

fully discoverable. I will hence adapt Pearl’s celebrated do-calculus to cases where

the available causal information is summarized by an output of the FCI algorithm.

I conclude the dissertation by pointing out a few open problems in Chapter 6.

13In practice, the pre-intervention distribution needs to be inferred from data, and hence there is
usually also a step of estimating parameters.
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Chapter 2

Decomposition and Testability of

the Causal Faithfulness Condition

Much of the recent advance in causal modelling starts by explicitly acknowledging the

Causal Markov Condition (CMC) and the Causal Faithfulness Condition (CFC) as

axioms. Any principle that receives such a treatment will almost certainly be subject

to philosophical scrutiny. Since my purpose is not to defend these two principles,

but rather to explore their implications on the epistemology and methodology of

causal inference, I will leave aside the literature that attempts to justify or criticize

them. A large part of that literature is devoted to the CMC, which, for the most

part, centers around a few problem cases, such as EPR-like funny business (e.g.,

Artzenius 1992, Steel 2003), apparent correlations between causally unconnected time

series (e.g., Yule 1926, Sober 1987, 2001, Hoover 2003), and examples of the sort of

Wesley Salmon’s interactive fork (e.g., Salmon 1980, Cartwright 1999, Hausman and

Woodward 2004). Fewer reflections are cast on the CFC, perhaps because it looks

more like a standard methodological assumption of simplicity than a substantive posit

about the world. It is clear, however, that standard asymptotical justifications of
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causal discovery procedures regard the CFC as substantive (Spirtes et al. 1993/2000).

As a substantive principle, the CFC incurs criticisms that cite versions of Simpson’s

paradox or more generally cases where multiple causal pathways exactly cancel each

other, and cases where causal transitivity fails. Relevant discussions have thus focused

on how often or rarely cancellation or failure of transitivity could occur, or in what

domains would the CFC be particularly shaky or safe. In this chapter I shall adopt

a different perspective. I will consider the issue of detecting violations of the CFC

and the possibility of relaxing the assumption of CFC within a standard approach to

causal discovery.

This chapter is distinctive in this dissertation in that it studies the epistemic

status of the CFC itself, albeit from a different angle than the normal one in the

literature, whereas later chapters will take the CMC and CFC as axioms and study

what follow from them. The results to be presented are preliminary in a couple of

respects. Most notably they are established in the context of causal discovery with

the assumption of causal sufficiency, unlike the rest of the dissertation that deals with

causally insufficiency systems. However, it should become clear later that the work

can be extended to the context of causally insufficient systems, which I list as an

open but relatively straightforward project in the concluding chapter. For now, this

apparent limitation also gives us an opportunity to go through some details of causal

discovery for causally sufficient systems, which will be helpful for understanding later

chapters as well.

In the main I will focus on a decomposition of the CFC into two components

that suggests a simple test of one component assuming the other. I report a piece

of joint work with Joseph Ramsey and Peter Spirtes on constructing a conservative

version of the well-known PC procedure for inferring causal structure from indepen-
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dence/dependence facts assuming causal sufficiency.1 The resulting algorithm proves

to be superior in both theoretical properties and empirical performance.

2.1 A Simple Note on Testing the CFC

The general issue is whether and how the CFC can be tested, assuming the CMC

holds. Let us first recall what the CFC says. The CFC essentially states the converse

of the CMC. The CMC says, for a given set of variables V, that every variable is

probabilistically independent of its non-effects conditional on its direct causes relative

to V. This condition (as thus formulated) typically fails if the set of variables is

not causally sufficient or there is causal feedback among the given variables. Note

that, as explained in Chapter 1, either of these scenarios will render DAGs (over the

given set of variables alone) an ”improper” representation of the causal structure.

In this chapter, we assume neither of these scenarios obtain, and will express this

assumption by simply saying that the causal structure of the given set of variables

can be represented by a DAG. Let us reformulate the CMC in terms of the causal

DAG.

1Much of the ensuing discussion is also included in Ramsey, Zhang and Spirtes (2006), which
focuses on evaluating the empirical performance of the resulting algorithm. This collaboration
reflects an interesting convergence of and interplay between theoretical work and empirical work.
Peter Spirtes and I, while discussing issues related to my master thesis on uniform consistency
(Zhang 2002) two years ago, realized that different components of the CFC serves very different
purposes, and the full CFC need not be assumed if computational complexity is not a concern. But
at that time we thought the algorithm theoretically correct under a weaker assumption would not be
computationally feasible. From a totally different motivation, Joe Ramsey came up with virtually
the same proposal of modifying PC due to his frustration with some undesirable features of the
typical output of the PC algorithm. To our surprise and joy, Joe’s simulation work clearly shows
that the conservative version runs almost as fast as the standard version but improves accuracy
significantly. Most interestingly, one possible explanation we can think of for why the conservative
version has better performance at modest sample sizes seems to link well, in a way, to the issue of
uniform consistency that initially concerned Peter and me.
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Causal Markov Condition: Given a set of variables whose structure can

be represented by a DAG, every variable is probabilistically independent of its

non-descendants in the DAG conditional on its parents in the DAG.

The CFC is accordingly formulated as such:

Causal Faithfulness Condition: Given a set of variables whose causal struc-

ture can be represented by a DAG, no conditional independence holds among

the variables unless entailed by the causal Markov condition.

Evidently the CFC describes a relationship between the causal DAG over a set of

variables and the probability distribution of that set of variables. It dictates a list

of probabilistic dependence relations that are required by a given causal DAG. Thus

to test whether the CFC actually holds requires in general information about the

true causal structure and the true probability distribution (see Spanos 2006 for an

example of testing the CFC with assumptions about causal structure). But if the

purpose of testing the CFC is ultimately for the sake of inferring causal structure, it

is obviously not very useful to have a test that requires information about the causal

structure in the first place. So can we detect failure of the CFC without knowing the

causal structure? Not always, but there is a distinction to draw between violations

of the CFC that are not detectable and violations of the CFC that are in principle

detectable with access to the probabilistic information alone.

The idea is simple. Assuming the CMC holds, if a probability distribution does

not satisfy the CFC with any possible causal structure it is Markov to, then no

matter what the true causal structure is, the CFC is violated. By contrast, if the true

probability distribution is faithful to some causal structure but not to the true one,

it would be a violation of the CFC that cannot be recognized without information

about the true causal structure.
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To fully characterize detectable violations of the CFC in this sense is an ongoing

project. In what follows we will only make a step towards that end. In particular,

we explore a natural decomposition of the CFC suggested by familiar procedures of

learning (equivalence classes of) causal DAGs. We show that assuming one compo-

nent of the decomposition holds, any failure of the other component is in principle

detectable. Moreover, the relevant test is readily incorporated into the familiar causal

learning procedure, and clearly improves the empiricial performance.

2.2 Causal Inference with Causal Sufficiency

A quick review of some familiar methods for inferring causal DAGs is in order. For one

thing, the decomposition to be introduced arises naturally from a standard routine for

inferring causal DAGs (when the set of observed variables is known or assumed to be

causally sufficient) from an oracle of conditional independence constraints. Moreover,

a central topic in later chapters is inference of causal MAGs (when the set of observed

variables is not assumed to be causally sufficient), which is in many ways parallel to,

though significantly harder than, inference of causal DAGs. So an understanding of

inference of causal DAGs will be very helpful for reading later chapters.

Suppose we have a set of observed variables V, which is known or assumed to be

causally sufficient. The (unknown) causal structure can be represented by a DAG, as

it is assumed throughout this dissertation that causation is acyclic. Furthermore we

assume the CMC holds, so all conditional independence constraints entailed by this

causal DAG via its Markov property hold of the true joint probability distribution

over V. To better understand those entailed constraints, it is time to formally define

the d-separation criterion.

Given a path u in a DAG, a non-endpoint vertex V on u is called a collider if
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the two edges incident to V on u are both into V (→ V ←), otherwise V is called a

non-collider.

Definition 2.2.1 (d-separation). In a DAG, a path u between vertices A and B is

active (d-connecting) relative to a set of vertices Z (A,B /∈ Z) if

i. every non-collider on u is not a member of Z;

ii. every collider on u is an ancestor of some member of Z.

A and B are said to be d-separated by Z if there is no active path between A and

B relative to Z.

The importance of the d-separation criterion lies in the fact that it captures exactly

the conditional independence constraints entailed by the local Markov property of a

DAG (Pearl 1988). The d-separation criterion is also referred to as the global Markov

property, and the useful fact is that the local and the global Markov properties are

equivalent for DAGs.

Given this fact, the CMC can be rephrased as saying that for any three disjoint

subsets of variables A,B and C, if A and B are d-separated by C in the causal DAG,

then A and B are independent conditional on C.2 The CFC hence says the following:

Causal Faithfulness Condition: Given a set of variables whose causal struc-

ture can be represented by a DAG, for any three disjoint subsets of variables

A,B and C, if A and B are not d-separated by C in the causal DAG, then A

and B are not independent conditional on C.

2A note for interested readers: there are good reasons to assume this formulation of the CMC in
linear feedback systems represented by directed cyclic graphs (Spirtes 1995, Koster 1996) as well as
non-recursive structural equations among discrete variables with equilibrium solutions (Pearl and
Dechter 1996), though the earlier formulation fails.
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The CMC and CFC together set up a perfect correspondence between condi-

tional independence constraints and d-separation features of the causal DAG. In other

words, an oracle of conditional independence constraints over the given set of observed

variables translates into an oracle of d-separation features in the causal DAG. One

prominent approach to causal discovery, the independence-constraint-based approach,

attempts precisely to recover the causal structure from the d-separation features.

An important limitation is that d-separation features usually do not uniquely

pick out a DAG. Multiple DAGs over the same set of variables can have the exact

same d-separation features, and hence entail the exact same conditional independence

relations among the variables. These DAGs are referred to as Markov equivalent and

are indistinguishable by an oracle of conditional independence facts. Hence the output

of independence-constraint-based procedures is a Markov equivalence class of DAGs,

represented by a graphical object, known as a Pattern or PDAG or essential graph,

that displays common features shared by all DAGs in the class.

Two simple facts about d-separation are particularly relevant to constraint-based

causal discovery procedures (see e.g. Neapolitan 2004, pp. 89 for proofs):

Lemma 2.2.1. Two variables are adjacent in a DAG if and only if they are not

d-separated by any subset of other variables in the DAG.

Call a triple of variables 〈X, Y, Z〉 in a DAG an unshielded triple if X and Z are

both adjacent to Y but are not adjacent to each other. It is an unshielded collider

if X → Y ← Z, i.e., the edge between X and Y and the one between Z and Y are

both into Y ; otherwise it is an unshielded non-collider.

Lemma 2.2.2. In a DAG, any unshielded triple 〈X, Y, Z〉 is a collider if and only if

all sets that d-separate X from Z do not contain Y ; it is a non-collider if and only if

all sets that d-separate X from Z contain Y .
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Lemma 2.2.1 implies that all Markov equivalent DAGs have the same adjacencies.

Lemma 2.2.2 implies that all Markov equivalent DAGs have the same unshielded col-

liders (and unshielded non-colliders). In fact, the converse is also true, i.e., two DAGs

with the same adjacencies and the same unshielded colliders are Markov equivalent

(Verma and Pearl 1991).

Constraint-based causal discovery proceeds in two stages. The first stage infers

the common adjacencies shared by all DAGs Markov equivalent to the true causal

graph, and the second stage infers some (preferably all) arrow orientations shared by

all DAGs Markov equivalent to the true causal graph. A well-known representative of

constraint-based algorithms is the PC algorithm (Spirtes et al. 2000). The algorithm

is reproduced below, in which ADJ(G,X) denotes the set of nodes adjacent to X in

a graph G:

PC Algorithm

S1 Form the complete undirected graph U on the set of variables V;

S2 n = 0

repeat

For each pair of variables X and Y that are adjacent in (the current) U such

that ADJ(U,X)\{Y } or ADJ(U, Y )\{X} has at least n elements, check

through the subsets of ADJ(U,X)\{Y } and the subsets of ADJ(U, Y )\{X}
that have exactly n variables. If a subset S is found conditional on which

X and Y are independent, remove the edge between X and Y in U , and

record S as Sepset(X, Y );

n = n + 1;
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until for each ordered pair of adjacent variables X and Y , ADJ(U,X)\{Y }
has less than n elements.

S3 Let P be the graph resulting from step S2. For each unshielded triple 〈A, B, C〉
in P , orient it as A → B ← C iff. B is not in Sepset(A,C).

S4 Execute the following orientation rules until none of them applies:

a If A → B −−C, A and C are not adjacent, orient as B → C.

b If A → B → C and A−−C, orient as A → C.

c If A → B ← C, A−−D−−C, D−−B, and A and C are not adjacent, orient

D −−B as D → B.

In the PC algorithm, S2 constitutes the adjacency stage; S3 and S4 constitute the

orientation stage. In S2, the PC algorithm essentially searches for a conditioning set

for each pair of variables that renders them independent, which we henceforth call

a screen-off conditioning set. Why it does so is obvious given Lemma 2.2.1. What

distinguishes the PC algorithm from other constraint-based algorithms is the way it

performs search. Two tricks are employed: (1) it starts with the conditioning set of

size 0 (i.e., the empty set) and gradually increases the size of the conditioning set;

and (2) it confines the search of a screen-off conditioning set for two variables within

the potential parents – i.e., the currently adjacent nodes – of the two variables, and

thus systematically narrows down the space of possible screen-off sets as the search

goes on. These two tricks increase both computational and statistical efficiency in

most real cases.

In S3, the PC algorithm uses a very simple criterion to identify unshielded colliders

or non-colliders. For any unshielded triple 〈X,Y, Z〉, it simply checks whether or not

Y is contained in the screen-off set for X and Z found in the adjacency stage. The
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connection between this rule and Lemma 2.2.2 should be obvious. S4 consists of

orientation propagation rules based on information about non-colliders obtained in

S3 and the assumption of acyclicity. These rules are shown to be both sound and

complete in Meek (1995). In plain terms, they pick out all remaining orientations that

are shared by all DAGs Markov equivalent to the true causal DAG. The major task

in Chapters 3 and 4 is to prove the analogous completeness theorem for an algorithm

that infers causal MAGs.

Figure 2.1: A sample output from the PC algorithm.

A typical output of the PC algorithm is shown in Figure 2.1. It is a graphical object

containing both directed edges and undirected edges. Although the true causal graph

is not fully known, this output reveals quite some causal information, for example,

that X2, X3, X4 are direct causes of X5. For people who have resources to perform

controlled experiments, the output suggests what experiments are needed in order to

fully discover the true causal graph (Murphy 2001, Frederick et al. 2005).
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2.3 The CFC Decomposed

The two stages of constraint-based causal discovery algorithms suggest a natural

decomposition of the CFC into two parts, which will be referred to as Adjacency-

Faithfulness and Orientation-Faithfulness, respectively.

Adjacency-Faithfulness: Given a set of variables V whose causal structure

can be represented by a DAG G, if two variables X,Y are adjacent in G, then

they are dependent conditional on any subset of V\{X, Y }.

That this condition follows from the CFC should be clear in light of Lemma 2.2.1.

The Adjacency-Faithfulness condition is the part of the CFC that is used to justify

the stage of recovering adjacencies in the causal graph in constraint-based algorithms.

Again, as we saw in the PC algorithm, this stage proceeds by searching for screen-

off sets for pairs of variables, and by the causal Markov and Adjacency-Faithfulness

conditions, two variables are not adjacent if and only if a screen-off set for them is

found.

Orientation-Faithfulness: Given a set of variables V whose causal structure

can be represented by a DAG G, let 〈X, Y, Z〉 be any unshielded triple in G.

(O1) if X → Y ← Z, then X and Z are dependent given any subset of V\{X, Z}
that contains Y ;

(O2) otherwise, X and Z are dependent conditional on any subset of V\{X, Z}
that does not contain Y .

Orientation-Faithfulness is entailed by the CFC in light of Lemma 2.2.2. It is called

Orientation-Faithfulness for the obvious reason that it serves to justify the step of
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identifying unshielded colliders (and unshielded non-colliders) in constraint-based al-

gorithms. In particular, for any unshielded triple 〈X, Z, Y 〉 resulting from the adja-

cency stage, a screen-off set for X and Y must have been found. The Orientation-

Faithfulness condition then implies that the triple is an unshielded collider if and

only if the screen-off set does not contain Z, which is exactly what the PC algorithm

checks.

We should note that the Adjacency-Faithfulness and the Orientation-Faithfulness

do not constitute an exhaustive decomposition of the CFC. Both of them are conse-

quences of the CFC, but they together do not imply the CFC. Consider, for example,

a causal graph consisting of a simple chain X → Y → Z → W . We can easily cook

up a case/parameterization for this causal structure where transitivity of causation

fails (see McDermott’s example below) and as a result X is independent of W , which

violates the CFC. But it does not have to violate the Adjacency-Faithfulness or the

Orientation-Faithfulness. For example, we can make a case where the only conditional

independence relations that hold are X⊥⊥W , X⊥⊥W |Y , X⊥⊥W |Z and X⊥⊥W |Y, Z.3

It is easy to check that Adjacency-Faithfulness and Orientation-Faithfulness are both

satisfied, whereas the CFC is violated due to the independence between X and W .

It is worth noting, however, that the correctness of the PC algorithm only depends

on the truth of Adjacency-Faithfulness and Orientation-Faithfulness. As long as these

two components of the CFC holds, the PC will not err given the right oracle of

conditional independence. In our example, for instance, the PC algorithm outputs

X−−Y −−Z−−W , with 〈X, Y, Z〉 and 〈Y, Z, W 〉 being unshielded non-colliders, which is

obviously correct. So the parts of the CFC that get actually used in constraint-based

causal discovery are the Adjacency-Faithfulness and the Orientation-Faithfulness.

3⊥⊥is a symbol that denotes probabilistic independence introduced by Dawid (1979). The vertical
bar | denotes conditioning.
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The above example shows that in general there exist cases where Adjacency-

Faithfulness and Orientation-Faithfulness are both satisfied but the full Faithfulness

condition is violated. It is of course equally obvious that in general there exist cases

where the Adjacency-Faithfulness condition holds but the Orientation-Faithfulness

condition fails. Again, this can happen with a simple chain A → B → C where causal

transitivity fails along this chain. McDermott (1995) gave an interesting example of

the sort. The story goes roughly as this: a right-handed terrorist is about to press a

detonation button to explode a building when a dog bites his right hand, so he uses

his left hand instead to press the button and triggers the explosion. Intuitively, the

dog-bite causes the terrorist pressing the button with his left hand, which in turn

causes the explosion, but the dog-bite does not cause the explosion. Transitivity of

causation apparently fails. (Other putative cases of failure of causal transitivity can

be found in e.g. Hitchcock 2001.)

This example is supposedly a case token-level event causation, but there is no

difficulty turning it into a case of type-level variable causation. Let A be the variable

that takes two values: ’yes’ if dog bites, and ’no’ otherwise; B be the variable that

takes three values: ’right’ if the terrorist presses the button with his right hand, ’left’

if he does it with his left hand, and ’none’ if he does not press the button at all; and

C be the variable that takes two values: ’yes’ if explosion occurs, and ’no’ otherwise.

If we assign probabilities in line with McDermott’s intended story, we find that A⊥⊥C

and A⊥⊥C|B.

Note that for restricted class of causal structures and family of probability distri-

butions, adjacency-faithfulness may imply orientation-faithfulness. In other words,

there may not be any probability from the given family that is adjacent-faithful but

not orientation-faithful to a causal structure in the given class. For example, in
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the above case of a simple chain A → B → C, if we restrict to binary variables

or Gaussian variables that bear linear relationships, there do not exist distributions

that are adjacency-faithful but not orientation-faithful to A → B → C. (The exam-

ple given in the previous paragraph involves a variable with three categories.) More

generally there are known results (e.g., Becker et al. 2000) that imply that in bi-

nary tree-like networks adjacency-faithfulness implies orientation-faithfulness. This

result can be generalized to Gaussian tree-like networks as well. 4 However, if we

do not restrict to tree-like causal structures and consider general DAGs, both bi-

nary and linear Gaussian networks admit failure of orientation-faithfulness but not

adjacency-faithfulness. The simplest example is cancellation of two causal pathways

A → B → D and A → B → D. It follows that the Adjacency-Faithfulness condition

is indeed weaker than the CFC.

Now the main point. If we assume the causal Markov and Adjacency-Faithfulness

conditions are true, we can in principle test whether Orientation-Faithfulness fails

of a particular unshielded triple. Suppose we have a perfect oracle of conditional

independence relations, which is in principle available in the large sample limit. Since

the CMC and the Adjacency-Faithfulness conditions are by assumption true, out of

the oracle one can construct correct adjacencies and non-adjacencies, and thus correct

unshielded triples in the causal graph. For such an unshielded triple, say, 〈X,Y, Z〉,
if there is a subset of V\{X, Z} containing Y that renders X and Z independent

and a subset not containing Y that renders X and Z independent, then Orientation-

Faithfulness definitely fails on this triple. This failing condition can of course be

verified by the oracle.

Note that this simple test of Orientation-Faithfulness does not rely on knowing

what the true causal graph is, even though Orientation-Faithfulness is a relation be-

4Thanks to Thomas Richardson for pointing this out.
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tween a probability distribution and a graph. The reason why this test works is

already hinted earlier, namely, that it actually checks whether the distribution (or

the conditional independence oracle) is Orientation-Faithful to any DAG. A distri-

bution that satisfies the causal Markov and Adjacency-Faithfulness conditions with

the true DAG but fails the above test is not Orientation-Faithful to any DAG, and in

particular, not Orientation-Faithful to the true DAG. This is why we do not need to

know what the true graph is in order to detect a violation of Orientation-Faithfulness.

This suggests that theoretically we can relax the standard CFC and still have

provably correct and informative causal discovery procedures. In fact, a main re-

sult to be established is that the PC algorithm, though incorrect under the weaker,

Adjacency-Faithfulness condition, can be revised such that the modified version –

that we call CPC (conservative PC) – is (1) correct given the Adjacency-Faithfulness

condition; and (2) as informative as the standard PC algorithm if the CFC actually

obtains.

2.4 The Conservative PC (CPC) Algorithm

Before we present a modified PC algorithm, it is helpful to explain how the PC

algorithm can make mistakes under the causal Markov and Adjacency-Faithfulness

conditions. Basically the causal Markov and Adjacency-Faithfulness conditions guar-

antee that adjacencies (and non-adjacencies) resulting from the adjacency stage of the

PC algorithm are asymptotically correct. However, these two conditions do not imply

the truth of Orientation-Faithfulness, and when the latter fails, the PC algorithm will

err even in the large sample limit.

Consider again the adapted McDermott’s case where A → B → C is the true

causal structure and the true probability distribution implies that A⊥⊥C and A⊥⊥C|B.
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The causal Markov and Adjacency-Faithfulness conditions are both satisfied, but

Orientation-Faithfulness is not true of the triple 〈A,B, C〉. Now, given the correct

conditional independence oracle, the PC algorithm would remove the edge between

A and C in S2 because A⊥⊥C, and later in S3 orient the triple as A → B ← C

because B is not in the screen-off set found in S2, i.e., the empty set. Simple as it is,

the example suffices to establish that the PC algorithm is not asymptotically correct

under the causal Markov and Adjacency-Faithfulness assumptions. We can of course

construct any number of examples in which the PC algorithm makes any number of

mistakes in the large sample limit.

It is not hard, however, to modify the PC algorithm to retain correctness un-

der the weaker assumption. Indeed a predecessor of the PC algorithm, called the

SGS algorithm (Spirtes et al. 1993/2000), is almost correct. The SGS algorithm de-

cides whether an unshielded triple 〈X,Y, Z〉 is a collider or a non-collider by literally

checking whether (O1) or (O2) in the statement of Orientation-Faithfulness is true.

Theoretically all it lacks is a clause that acknowledges the failure of Orientation-

Faithfulness when neither (O1) nor (O2) passes the check. Practically, however, the

SGS algorithm is a terribly inefficient algorithm. In terms of computation, it is best

case exponential because it has to check dependence between X and Z conditional

on every subset of V\{X, Z}. Moreover, the oracle of conditional independence is in

practice provided by statistical tests. When too many statistical tests of conditional

independence have to be done, it is exceedingly likely that some of them will err, and

we suspect that almost every unshielded triple will be marked as unfaithful if we run

the SGS algorithms on more than a few variables.

Fortunately, the leading idea in the adjacency stage of the PC algorithm can be

exploited here. In principle in order to test whether 〈X, Y, Z〉 is a collider, a non-
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collider, or an unfaithful triple, we only need to check subsets of the variables that

are potential parents of X and Z. The fact that this is sufficient to make a proce-

dure asymptotically correct under the CMC and Adjacency-Faithfulness condition is

demonstrated in Theorem 2.4.1 below. This trick, as we shall see, makes the modified

algorithm almost as fast as the PC algorithm in simulations.5

The modified PC algorithm, called CPC (Conservative PC), replaces S3 in PC

with the following S3’, and otherwise remains the same.

S3’ Let P be the graph resulting from step 1. For each unshielded triple 〈A, B, C〉,
check all subsets of A’s potential parents and of C’s potential parents:

(a) If B is NOT in any such set conditional on which A and C are independent,

orient A−B − C as A → B ← C;

(b) if B is in all such sets conditional on which A and C are independent, leave

A−B − C as it is, i.e., a non-collider;

(c) otherwise, mark the triple as “unfaithful” or “ambiguous” by an underline.

(Note: of course a triple marked “unfaithful” does not count as a non-collider in S4(a)

and S4(c).)

It should be clear why the modified PC algorithm is labelled ”conservative”: it

is more cautious than the PC algorithm in drawing unambiguous conclusions about

causal orientations. A typical output of the CPC algorithm is shown in Figure 2.2,

where the underlinings (which are lines crossing pairs of edges in the figure) denote

marks of ”unfaithful”.

The conservativeness is what is needed to make the algorithm correct under the

causal Markov and Adjacency-Faithfulness assumptions.

5This idea was initially suggested by Joseph Ramsey, who tried to improve the practical perfor-
mance of the PC algorithm by imposing extra checks on edge orientations.
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Figure 2.2: A sample output from the CPC algorithm.

Theorem 2.4.1 (Correctness of CPC). Under the causal Markov and Adjacency-

Faithfulness assumptions, the CPC algorithm is asymptotically correct in the sense

that given a perfect conditional independence oracle, the algorithm returns a graphical

object such that (1) it has the same adjacencies as the true causal graph does; and

(2) all arrowheads and unshielded non-colliders in it are also in the true graph.

Proof. Suppose the true causal graph is G, and all conditional independence judg-

ments are correct. The Markov and Adjacency-Faithfulness assumptions imply that

the undirected graph P resulting from step S2 has the same adjacencies as G does

(Spirtes et al. 1993/2000). Now consider step S3′. If S3′(a) obtains, then A → B ←
C must be a subgraph of G, because otherwise by the Markov assumption, either A’s

parents or C’s parents d-separate A and C, which means that there is a subset S of

either A’s potential parents or C’s potential parents containing B such that A⊥⊥C|S,

contradicting the antecedent in S3′(a). If S3′(b) obtains, then A → B ← C cannot be

a subgraph of G (and hence the triple must be an unshielded non-collider), because

otherwise by the Markov assumption, there must be a subset S of either A’s potential

parents or C’s potential parents not containing B such that A⊥⊥C|S, contradicting

the antecedent in S3′(b). So neither S3′(a) nor S3′(b) will introduce an orientation
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error. Trivially S3′(c) does not produce an orientation error, and it has been proven

(in e.g., Meek 1995) that S4 will not produce any, which completes the proof.

Note that the two edges that figure in a triple marked “unfaithful” may still be

oriented via other unshielded triples or by some propogation rules. For example, a

triple 〈A,B,C〉 is marked as unfaithful, but there may be an unshielded collider A →
B ← D and an unshielded collider C → B ← D in the output of the CPC, in which

case we get A → B ← C. In such cases as A → B ← C, A → B → C, A ← B → C

and A−−B → C, the underlining serves no real purpose and can be removed. The

remaining triples marked unfaithful by the CPC algorithm in the large sample limit

are truly ambiguous in that either a collider or a non-collider is compatible with the

conditional independence judgments. We conjecture but cannot yet prove that the

CPC algorithm is complete in the sense that for every undirected edge in the output,

there is a DAG that orients the edge in one way and a DAG that orients the edge

in the other way such that both DAGs satisfy the causal Markov and Adjacency-

Faithfulness assumptions with the given oracle of conditional independence.

The following theorem is obvious, of which we omit the proof.

Theorem 2.4.2. Asymptotically the CPC algorithm and the PC algorithm produce

the same output under the causal Markov and Faithfulness assumptions.

Therefore, the CPC algorithm in principle does not sacrifice informativeness if the

standard causal Faithfulness condition actually obtains. This theoretical result does

not imply that the CPC algorithm will not be significantly less informative than the

PC algorithm in realistic sample sizes. The latter needs to be studied empirically. In

the next section I report some simulation work done by Joe Ramsey to show that it

still pays to be conservative when the CFC holds. In particular, the CPC algorithm

runs almost as fast as the PC algorithm, does not noticeably sacrifice information, but
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drastically decreases the amount of misinformation provided by PC with moderate

sample sizes.6

2.5 Some Simulation Results

There are two immediate worries about the CPC algorithm. First, the extra check

the CPC does might be a computational overhead that significantly slows down the

procedure. Second, the theoretical superiority of the CPC algorithm over the PC algo-

rithm may not necessarily cash out in practice if the situations where the Adjacency-

Faithfulness but not the Orientation-Faithfulness holds do not arise often. (We will

not try to make an argument to the contrary here, which does not mean that we

endorse the claim). When the CFC actually holds, wouldn’t the CPC algorithm be

unnecessarily conservative? The following simulation results will address these wor-

ries by showing that the CPC algorithm in practice performs better than the PC

algorithm, regardless of whether Orientation-Faithfulness holds or not. Even when

the data are generated from a distribution Markov and Faithful to the true causal

graph, it pays to be conservative on realistic sample sizes. In such cases, of course

triples marked by the CPC algorithm should not be interpreted as “unfaithful”. They

are triples deemed ambiguous in the sense that the sample does not provide strong

evidence to favor the collider structure over the non-collider structure or vice versa.

In practice this is the interpretation we should give to the marked triples.

The simulations illustrate that the extra independence checks invoked in the CPC

algorithms do not render CPC significantly slower than PC and that CPC is signifi-

cantly more accurate than PC in terms of arrow orientations. The simulations were

6I thank Joe for generously permitting me to report the results here, and thank Clark Glymour
for suggesting to include the simulation study for the readers’ sake. The following section is a slightly
extended version of what is reported in Ramsey et al. (2006).
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performed on linear Gaussian models, with variations for sparser and denser graphs.

The number of variables in the generated graphs ranges from 5 to 100 variables. For

the sparser case, for each d from 5 to 100 in increments of 5, five random graphs with

d random variables were selected uniformly from the space of DAGs with at most d

edges and with a maximum degree of 10. For each such graph, a random linear struc-

tural equation model with independent Gaussian errors was constructed. For each

such model, a random data set of 1000 cases was generated, to which PC and CPC

were applied with significance level α = 0.05 for each hypothesis test of conditional

independence.7 For denser models, the only difference is that the generated DAGs

can have up to 2× d edges instead of just d edges.

The output in each instance was compared to the Pattern for the true DAG in that

instance, the true Pattern. Performance statistics were recorded, including elapsed

time and false positive and negative counts for arrowheads, unshielded non-colliders,

and adjacencies, etc. For each number of variables, each performance statistic was

averaged over the five random models constructed with that many variables, for PC

and for CPC, respectively.

Figure 2.3 shows that for both sparser and denser models, the extra times CPC

spend (recorded in seconds) are negligible, even in denser models with many variables.

In all figures in this section, the performance statistics for the PC algorithm are

represented by triangles and those for the CPC algorithm are represented by circles;

sparser models use filled symbols, and denser models used unfilled symbols. The

horizontal axis is the number of variables in the true DAG.

Since the CPC algorithm uses the exact same adjacency search routine as the

PC algorithm, the number of adjacency errors do not differ. So our focus was on

orientation errors. However, in our counting orientation errors, we decided to be

7The tests based on Fisher’s Z transformation of correlation and partial correlation were used.
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strict and incorporate adjacency errors in a way. Specifically, in our scoring scheme,

an arrowhead removal error (false negative) occurs when the true pattern P1 contains

A → B, but the output P2 either does not contain an edge between A and B or

does contain an edge between A and B but there is no arrowhead on this edge at B.

Analogously, an arrowhead addition error (false positive) occurs when the output P2

contains A → B, but the true Pattern P1 either does not contain the edge at all or

has an edge with no arrowhead at B.

Obviously this scoring renders some but not all of the adjacency errors matter for

evaluating orientation accuracy. For example, if A and B are not adjacent in P1, but

A−−B is in P2, this is counted as an adjacency addition error, but not an arrowhead

addition or removal error. In contrast, if A → B is in P2, this is counted as an

adjacency addition error and an arrowhead addition error, because of the arrowhead

at B. We chose this scoring rule to differentiate between adjacency errors that lead
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to further orientations and adjacency errors that stand idle.

0 20 40 60 80

0
40

80
12

0

Arrows Added

Dimension

Co
un

t

0 20 40 60 80

0
40

80
12

0

0 20 40 60 80

0
40

80
12

0

0 20 40 60 80

0
40

80
12

0

Figure 2.4: Average Counts of Arrow False Positives

Figure 2.4 shows that for both sparser and denser models, the number of extra

arrowheads introduced is far better controlled by CPC than by PC. In other words,

the conservativeness of the CPC algorithm avoids many false arrowheads output by

the PC algorithm. For sparser models, the error is particularly well-controlled by the

CPC algorithm, almost perfectly.

This would not be impressive if the CPC algorithm simply avoided mistakes at the

cost of information. One may easily avoid mistakes by refusing to make judgments all

the time. Our simulations suggest, however, that this is not the case with CPC. Figure

2.5 shows that for both sparser and denser models, the number of arrowhead removal

errors committed by CPC is almost indistinguishable from the number of arrowhead

removal errors committed by PC. So CPC does not sacrifice the true arrowheads

inferred by PC.
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Besides false positive and false negative of arrowheads, we also recorded false pos-

itive and false negative for unshielded non-colliders, because unshielded non-colliders

also contain important causal information, which, though disjunctive in nature, can

easily lead to arrowhead orientations given some background knowledge. The count-

ing method is similar. There is an unshielded non-collider addition error for the triple

〈X, Y, Z〉 if they form an unshielded non-collider in P2, but in P1 they either do not

form an unshielded triple or form an unshielded collider. An ambiguous triple in G2

does not count as an unshielded non-collider addition error, regardless of what is in

G1. Unshielded non-collider removal errors are calculated in an analogous fashion.

The performance of CPC and that of PC regarding false positive and false negative

unshielded non-colliders are almost indistinguishable, as shown in Figures 2.6 and 2.7.

We also see that both PC and CPC do well regarding non-collider errors for sparser
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graphs, but are not satisfactory for denser graphs. This is a well-known limitation for

constraint-based causal discovery algorithms, and is probably due to the considerable

number of adjacency errors encountered in denser graphs.

In a word, CPC does no worse than PC in any aspect, but drastically decreases the

number of false arrowheads inferred by the PC algorithm — in this sense a “Pareto

improvement”. The simulations suggest that the PC algorithm too often infers that

unshielded triples are colliders, and the CPC algorithm provides the right antidote
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to this by means of the extra checks it performs. Similar simulations were carried

out parameterizing random graphs using discrete variables with 2 to 4 categories, but

otherwise with identical setup to the sparser continuous simulations above. Results

are very similar.

A consequence of CPC’s well control of false arrowheads is that it outputs way

fewer “illegitimate” bi-directed edges. One complaint about constraint-based causal

discovery procedures, and the PC algorithm in particular, is that at moderate sample

sizes their outputs are usually outside the class of objects the algorithms aim to

produce. Bi-directed edges should not occur in DAGs, and hence should not occur

in Patterns that represent Markov equivalence classes of DAGs. From Figure 2.8 we

can see that the number of bi-directed edges output by the CPC is almost zero in

sparser graphs, and is in any case much smaller than the number of bi-directed edges

resulting from the PC algorithm.
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We have established in theory that the CPC inference procedure would be more

accurate than the PC inference procedure when the Orientation-Faithfulness fails —

indeed in the large sample limit the former is correct whereas the latter is often not.

But why is CPC more accurate than PC at moderate sample sizes when Orientation-

Faithfulness does hold? We think the reason is actually analogous. At

Although PC is correct in the large sample limit if Orientation-Faithfulness is not

violated, it is very liable to error on realistic sample sizes if Orientation-Unfaithfulness

is almost violated. By “almost violations” of Orientation-Faithfulness we mean the

kind of situations where two variables, though entailed to be dependent conditional on

some variables by the Orientation-Faithfulness condition, are close to be conditionally

independent. How to quantify the “closeness” and just how close is close enough to

cause trouble depend on distributional assumptions and sample sizes, and will not be

formally pursued here. But intuitively if a distribution, though orientation-faithful

to the true causal graph, is very similar to a distribution that is not orientation-

faithful, then it cannot be well distinguished from the unfaithful distribution at a

certain sample size. Eventually the faithfulness of the distribution will be revealed

given more and more data, but at a certain sample size it may well be regarded as

unfaithful, because it is close enough to being unfaithful relative to that sample size.

Almost-violations of Orientation-Faithfulness can arise in several ways – for ex-

ample, when a triple chain is almost non-transitive, or more generally, when one of

the edges in an unshielded triple is very weak — and are likely to arise especially

relative to small sample sizes. When they happen, the CPC procedure tends to mark

the relevant triples as ambiguous and avoids jumping into judgments of colliders as

the PC procedure tends to do. That, we think, is a major reason for the improvement

gained by CPC. In this regard, CPC seems to provide a partial solution to handling
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close-to-unfaithfulness, a situation pointed out by several authors as a major obstacle

to reliable causal inference (Meek 1996, Robins et al. 2003, Zhang and Spirtes 2003).

2.6 Adjacency Error and the CPC algorithm

Earlier we drew a distinction between “detectable” and “undetectable” failure of the

CFC. The testability of Orientation-Faithfulness given the CMC and the Adjacency-

Faithfulness is certainly not the whole story. For example, assuming the CMC, some

violations of the Adjacency-Faithfulness may be detectable. A simple instance of

this is the following case: suppose there are two fair coins and a bell. The bell

rings if and only if independent flips of the two coins respectively turn out the same

(both heads or both tails). In this case, we have three binary variables and the

true causal graph is a unshielded collider: coin1 → bell ← coin2. The distribution

violates the Adjacency-Faithfulness because, as can be easily calculated, coin1⊥⊥bell

and coin2⊥⊥bell. However, the violation is detectable because the distribution does

not satisfy the CMC and the CFC with any causal DAG. So to fully characterize

detectable violations of the CFC remains an open problem.

Still, the testability result about Orientation-Faithfulness is particularly nice in

that the test is local and can be easily incorporated into constraint-based algorithms.

Moreover, precisely due to the locality, some causal information can still be obtained

even when violations of Orientation-Faithfulness are detected. Other detectable un-

faithfulness may call for more global tests.

We should keep in mind that the testability result is based on the CMC and the

Adjacency-Faithfulness condition, which ensure that the adjacencies can be correctly

inferred from a perfect oracle of conditional independence. A simple Duhemian point

is that a detected “unfaithful” triple indicates either an adjacency error or a real
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violation of Orientation-Faithfulness. Adjacency errors could be due to failure of the

Adjacency-Faithfulness, or failure of the CMC, or in practical cases due to statistical

errors. So a mark of “unfaithful” in the CPC algorithm suggests that extra checks

on the adjacencies in the triple should be performed, if possible. It is important

and complementary to the work presented in this chapter to explore ways that can

increase the accuracy of the estimated adjacencies. Steck and Tresp (1996, also see

Steck 2001), for example, have made interesting contributions related to this issue,

which result in the NPC algorithm implemented in the Hugin package.

In this section we will present a very preliminary result intended to suggest that

the CPC algorithm may be more robust than the PC algorithm against adjacency

errors. The result is about whether adjacency errors will further lead to orientation

errors. An adjacency error is usually not as consequential as an ensuing orientation

error, as the former by itself does not imply an unambiguous causal claim, but an

ensuing orientation error typically implies a substantial error in causal judgments. So

it would be a virtue to have some measure against propagating adjacency errors into

further orientation errors.

For the moment we only have a very simple and limited theorem on offer, but we

expect to have a more interesting story to tell regarding this issue.

Theorem 2.6.1. Suppose A−−B is the only adjacency error made in the adjacency

stage of the CPC algorithm, and the CMC holds of all other pairs of variables. Then

given a perfect oracle of conditional independence, the CPC algorithm does not produce

any orientation error except possibly an orientation of A−−B. Moreover, if A is not

an ancestor of B in the true causal DAG, the CPC algorithm does not orient A−−B

into A → B.

Proof. Consider S3’ first. Since A −−B is the only adjacency error, applications of
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S3’ can produce errors only on unshielded triples that include A−−B. Consider any

unshielded triple that includes A−−B, say, without loss of generality, 〈A,B,C〉. We

show that S3’ will not mis-orient the edge between B and C, and will not orient

A−−B as A → B unless A is an ancestor of B in the true causal DAG.

Note that B and C are truly adjacent by assumption, so there are two cases to

consider:

Case 1: B → C appears in the true causal DAG. We argue that there is a set of

variables (adjacent to A or C) containing B that d-separates A and C. Note that A

and C are truly non-adjacent. If A is not a descendant of C, then A is d-separated

from C by the set of C’s parents which contains B. If A is a descendant of C, we

claim that A is d-separated from C by A’s parents plus B, Pa(A) ∪ {B}. Suppose

otherwise, that there is a d-connecting path u between A and C given Pa(A)∪ {B}.
Then the arrow on u incident to A must be out of A. It is then easy to derive that A

is an ancestor of either C or a member of Pa(A)∪ {B}, which contradicts acyclicity.

So there exists a set containing B that d-separates A and C. Since the CMC holds

(of the pair A and C), there is a screen-off set for A and C containing B. Then it

is clear that S3’ will not orient the triple 〈A,B, C〉 as a collider, and thus will not

produce an orientation error.

Case 2: B ← C appears in the true causal DAG. Since A and C are d-separated by

either A’s parents or C’s parents, there is a screen-off set for A and C not containing

B. So S3’ will not judge the triple to be a non-collider. If it marks the triple

as ambiguous, it does not commit an orientation error. If it orients the triple as

A → B ← C, it correctly orients B ← C, and we show that A is an ancestor of B

in the true causal graph. Suppose otherwise, that A is not an ancestor of B. Then

A and C are d-separated by Pa(A)∪{B}. Because any d-connecting between A and
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C relative to Pa(A) ∪ {B} must be out of A, which implies that A is an ancestor of

either C or a member of Pa(A)∪{B}, which is impossible. It follows that S3’ would

not have oriented the triple as a collider.

Next consider S4. We argue by induction. Assume orientations so far satisfy the

theorem. Consider S4(a) first. Again we only need to worry about S4(a) being applied

to unshielded non-colliders that involve the edge between A and B. Note that the

proof for S3’ above already establishes that for any vertex C such that 〈A,B,C〉 forms

an unshielded the triple, it will be judged to be a non-collider only if B → C appears

in the true causal DAG (Case 1 above). Moreover, by the inductive hypothesis, every

orientation so far satisfies the theorem, so the only possible application of S4(a) on

this triple is to orient the edge between B and C as B → C, which is correct.

For S4(b), if S4(b) orients A−−B as A → B, obviously A has to be an ancestor of

B. And if S4(b) orients some other edge based on A → B, obviously that orientation

is correct given that A is an ancestor of B.

For S4(c), if S4(c) orients A −−B as A → B, again it is easy to see that A has

to be an ancestor of B in the true causal graph. And if S4(b) orients some other

edge based on A → B, that orientation will be correct given that A is an ancestor of

B.

So, given the conditions in Theorem 2.6.1, the only orientation error that could

result is on the edge that should not have been there at all. In other words, the adja-

cency error does not lead to false orientations of other edges. The possible orientation

error on the falsely added edge is also mitigated by the fact that it tracks the ancestral

relationship in the true causal DAG. By contrast, the PC algorithm does not have

this property. A single adjacency error can easily lead to orientation errors on other

edges. As an simplest example, suppose the true causal DAG is A B → C, but
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there is an adjacency error that results in A−−B−−C as the output of the adjacency

stage of the PC (and the CPC) algorithm. If the conditions in Theorem 2.6.1 hold,

then A⊥⊥C, and accordingly the PC algorithm will falsely judge the triple to be a

collider A → B ← C.

A false adjacency can arise due to failure of the CMC. Even though, for example,

A and B are not adjacent in the true causal DAG, a typical failure of CMC on the

pair A and B will render it the case that no set of other variables can screen off A

from B. In that case, A and B will be falsely judged to be adjacent. Theorem 2.6.1,

prima facie, suggests that the CPC algorithm is in a sense robust against a failure of

the CMC on a single pair of variables. But it is not clear whether there are interesting

cases where the CMC only fails on two variables against which the CPC but not the

PC algorithm is robust.8 In the example we gave in the end of the last paragraph,

for instance, if the CMC fails of A and B, one would expect that it also fails of A

and C so that A is not independent of C. We suspect that there are more interesting

results along the line of Theorem 2.6.1 that await further research.

2.7 Related Issues

The CPC algorithm proposed in this chapter is provably correct under the causal

Markov assumption plus a weaker-than-standard Faithfulness assumption, the Adjacency-

Faithfulness assumption. It is a conservative generalization of the PC algorithm in

that it theoretically gives the same answer as the PC does under the standard as-

sumptions.

8Moreover, if the failure is a superficial one due to causal insufficiency, then the fact that the
orientation rules used by the PC algorithm are also used by the FCI algorithm to be discussed in
Chapter 3 implies that the PC algorithm is robust in the sense of Theorem 2.6.1. Thanks to Thomas
Richardson for this point.

50



The other prominent approach to causal discovery and to learning graphical mod-

els in general is known as the score-based search. A natural question here is how a

score-based algorithm would perform when the true distribution is only Adjacency-

Faithful to the true causal graph. We will not undertake an extended discussion here,

but it seems clear that such algorithms could err even in the large sample limit given

typical scores such as BIC. For example, we constructed a case where two binary

variables A, C and a quaternary variable form a causal graph A → B ← C. We pa-

rameterized the graph producing a distribution such that A⊥⊥C and A⊥⊥C|B, which

violates the Orientation-Faithfulness.9 The GES algorithm (Meek 1996, Chickering

2002), for example, when fed sufficient data from this distribution, outputs A−−B−−C,

an unshielded non-collider. This is to be expected from any algorithm using a con-

sistent score such as BIC or the BDe score, as a consistent score would (eventually)

prefer the model with fewer parameters – in this case, the non-collider model – if both

models contain the true distribution.

The foregoing analysis of decomposing and testing the CFC is confined to the con-

text of inferring causal structure of causally sufficient systems. We see no principal

reason that this confinement is necessary. Indeed some preliminary work is under-

way that intends to prove parallel results and make parallel improvements to causal

inference algorithms without assuming that the set of observed variables is causally

sufficient. We will report some basic ideas only in the final concluding chapter, as

9A causal story for how this could arise is this: imagine B is actually a compound variable
B = (B1, B2), where B1 and B2 are both binary. A and C are probabilistically independent. A is
a cause of B1 and C is a cause of B2 such that the two causal mechanisms are autonomous with
no interaction. So when we consider the three variables A, B and C, the causal DAG is indeed
A → B ← C, but it is not hard to see that A⊥⊥C|B. One may object that this example is based on
an “improper” choice of a compound variable. But it is not clear what the criterion is for defining
variables. At least this example does not look more artificial than the failure of causal transitivity
along a simple chain A → B → C. The generalized dog-bit case, for example, is also based on a
particular choice of variables.
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those ideas are rooted in standard procedures of inferring causal structure of causally

insufficient systems assuming the CMC and the CFC. To this central topic we now

turn.
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Chapter 3

Inference of ‘Non-Cause’ without

Causal Sufficiency: Arrowhead

Completeness

This chapter and the next will tackle an open problem that has been out there for over

ten years (Spirtes et al. 1993/2000). As we briefly explained in Chapter 1, a major

subtlety of causally insufficient systems is that DAGs over just the observed variables

typically do not provide a proper representation: any such DAG either misrepresents

the causal structure or misrepresents the probability distribution. If we do not want to

explicitly introduce latent variables in the representation (which are indeed desirable

to avoid if possible), we need to use graphs with a richer expressive machinery. One

of such kinds is the class of inducing path graphs (Spirtes and Verma 1992, Spirtes et

al. 1993/2000). Another kind is the class of MAGs roughly introduced in Chapter 1.

A representative constraint-based causal discovery algorithm for causally insufficient

systems is known as the FCI algorithm. The algorithm has at least two versions, one
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targeted at learning causal inducing path graphs (Spirtes et al. 1993/2000), and the

other targeted at learning causal MAGs (Spirtes et al. 1999), but neither of them was

proved to be complete in the sense that the output of the algorithm contains all valid

features, features shared by all causal structures compatible with the given oracle of

conditional independence assuming the CMC and CFC.

In fact, neither of them is complete. An open problem is thus to augment the

FCI algorithm with additional inference rules and to prove its completeness, which is

the one to be solved in the current and next chapters. Recent studies of MAGs (esp.

Richardson and Spirtes 2002, 2003) show that MAGs are superior than inducing path

graphs in several aspects — for example, that MAGs are much easier to parameterize.

The Appendix also shows that syntactically MAGs form a subclass of inducing path

graphs, which means that a Markov equivalence class of MAGs can contain more

commonalities than a Markov equivalence class of inducing path graphs. So we will

use MAGs in this dissertation. Since MAGs are not only a proper representation for

causal inference, but also a useful tool in statistical modelling, the work presented

here is hopefully also a contribution to the general statistical literature on graphical

models.

We break the completeness result into two parts. In this chapter, we prove that the

FCI algorithm is actually complete for inferring arrowheads that are common among

all possible causal MAGs compatible with a given oracle of conditional independence.

As shall be explained, arrowheads represent non-causes. They report information of

the form: some variable is not a cause of another variable.1 In the next chapter,

we provide additional inference rules such that the resulting inference procedure is

proved to be also sound and complete for inferring valid tails, which represent positive

1Another way of saying this may be more informative but less concise. An arrowhead at B on
an edge between A and B means that either A is a cause of B or there is a latent common cause of
A and B or both. Thanks to Clark Glymour for emphasizing this point.
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statements of cause and effect.2

The class of ancestral graphical models as introduced by Richardson and Spirtes

(2002) is more general than the one needed for representing causally insufficient sys-

tems as roughly introduced in Chapter 1. For full generality, we will consider inferring

general ancestral graphs from conditional independence facts in these two chapters,

and will highlight the special case of inferring causal structures for causally insufficient

systems. The rest of the chapter is organized as follows. We introduce some details

of ancestral graphs and their probabilistic and causal semantics in section 3.1. Then

in section 3.2 we introduce the main components of the FCI algorithm as presented

in Spirtes et al. (1999), and reproduce the proof of its soundness. Lastly, in section

3.3, the proof for the arrowhead completeness of the FCI algorithm is given.

3.1 Ancestral Graphs and Their Interpretations

The following example attributed to Chris Meek in Richardson (1998) illustrates

nicely the major motivation of ancestral graphs:

“The graph [Figure 3.1] represents a randomized trial of an ineffective drug

with unpleasant side-effects. Patients are randomly assigned to the treatment

or control group (A). Those in the treatment group suffer unpleasant side-

effects, the severity of which is influenced by the patient’s general level of health

(H), with sicker patients suffering worse side-effects. Those patients who suffer

sufficiently severe side-effects are likely to drop out of the study. The selection

variable (Sel) records whether or not a patient remains in the study, thus for

2Dividing the completeness result into two chapters is largely a stylistic matter in view of the
length of the proof, but also intends to highlight the modularity of the inference rules. The arrowhead
completeness result in this chapter is joint work with Peter Spirtes, who, among other things, proves
the key lemma, Lemma 3.3.1. The arrowhead completeness result is also obtained independently by
Ayesha Ali and Thomas Richardson in a slightly different framework (Ali et al. 2005).
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all those remaining in the study Sel = StayIn. Since unhealthy patients who

are taking the drug are more likely to drop out, those patients in the treatment

group who remain in the study tend to be healthier than those in the control

group. Finally health status (H) influences how rapidly the patient covers (R).”

(Richardson 1998, pp. 234)

A H

REf

Sel

Figure 3.1: A Causal Mechanism with Latent and Selection Variables

Simple as this case is, it shows how the presence of latent confounders and/or

selection variables matters. The two variables of primary interest, A and R, will be

observed to be positively correlated, even though the supposed causal mechanism

represented in Figure 3.1 seems to entail independence between them. Note that

this correlation is not due to sample variation, but rather corresponds to genuine

probabilistic association induced by design, the design that only the subjects that

eventually stay in the study are considered. The observed correlation is in effect a

correlation conditional on the variable Sel (taking the value StayIn), which should

indeed be non-zero given the causal structure. This case thus provides a canonical

example of what is called “selection effect” or “selection bias”, in that a subject
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is sampled in virtue of the value of certain variable or variables – which are called

selection variables – that are causally influenced by some other variables in the system.

The point is that in those situations where selection variables matter, any probabilistic

relationship inferrable from data is conditional upon (certain values of) the selection

variables.

In Figure 3.1, H is supposed to be unobserved or latent, and hence the set of

observed variables {A,Ef, R} is causally insufficient. Note that if H were measured,

we would in principle be able to find out that A and R are independent conditional on

H (and, implicitly, on Sel), which would naturally suggest caution against drawing

a causal conclusion about A and R. Without observing H, no screen-off set can

be found between A and R, which makes a relatively strong appearance of causal

relationship between A and R. As noted above, the current and the next chapters

take into account both the possibility of causal insufficiency and the possibility of

selection effect, but we will make comments now and then about situations where

only causal insufficiency is possibly an issue.

As explained in Chapter 1, it is not possible to represent a causally insufficient

system properly with a DAG over the observed variables, let alone a situation with

both latent and selection variables. Oftentimes, a fortiori, there is no DAG over the

observed variables that can even represent the (marginal) probability perfectly (i.e.,

that entails all and only those conditional independence relations implied by the mar-

ginal probability over the observed variables). The primary motivation of ancestral

graphs is precisely the need to represent the presence of latent common causes and

selection variables in the causal process that generates the data. Besides directed

edges (→), an ancestral graph can also contain bi-directed edges (↔, associated with

the presence of latent common causes), and undirected edges (−−, associated with the

57



presence of selection variables).

3.1.1 Syntax of Ancestral Graphs

A mixed graph is a graph consisting of vertices and edges that may contain any of

the three kinds of edges (directed, bi-directed and undirected) and at most one edge

between any two vertices. The two ends of an edge we call marks or orientations.

Obviously two kinds of marks can appear in a mixed graph: arrowhead (>) or tail

(−). Specifically, the marks of an undirected edge are both tails; the marks of a

bi-directed edge are both arrowheads; and a directed edge has one arrowhead and

one tail. Sometimes we say an edge is into (or out of) a vertex if the mark of the

edge at the vertex is an arrowhead (or tail).

Two vertices are said to be adjacent in a graph if there is an edge (of any kind)

between them. Given a mixed graph G and two adjacent vertices A, B therein, A is a

parent of B and B is a child of A if A → B is in G; A is called a spouse of B (and

B a spouse of A) if A ↔ B is in G; A is called a neighbor of B (and B a neighbor

of A) if A−−B is in G. A path in G is a sequence of distinct vertices 〈V0, ..., Vn〉 such

that for 0 ≤ i ≤ n− 1, Vi and Vi+1 are adjacent in G. A directed path from V0 to

Vn in G is a sequence of distinct vertices 〈V0, ..., Vn〉 such that for 0 ≤ i ≤ n−1, Vi is a

parent of Vi+1 in G. A is called an ancestor of B and B a descendant of A if A = B

or there is a directed path from A to B. We use PaG,ChG,SpG,NeG,AnG,DeG to

denote the set of parents, children, spouses, neighbors, ancestors, and descendants

of a vertex in G, respectively. A directed cycle occurs in G when B → A is in G
and A ∈ AnG(B). An almost directed cycle occurs when B ↔ A is in G and

A ∈ AnG(B).

Definition 3.1.1. A mixed graph is ancestral if the following three conditions hold:
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(a1) there is no directed cycle;

(a2) there is no almost directed cycle;

(a3) if there is an undirected edge between V1 and V2, i.e., V1 −−V2, then V1 and V2

have no parents or spouses.

Obviously DAGs and undirected graphs (UGs) – graphs in which all edges are

undirected – meet the definition, and hence are special cases of ancestral graphs. The

first condition in Definition 3.1.1 is just the familiar one for DAGs. Together with

the second condition, they define a nice connotation of arrowheads — that is, an

arrowhead implies non-ancestorship, which induces a natural causal interpretation

of ancestral graphs. The third condition requires that there is no edge into any

vertex in the undirected component of an ancestral graph. This property simplifies

parameterization and fitting of ancestral graphs (Richardson and Spirtes 2002, Drton

and Richardson 2003), and it still allows selection effect to be properly represented.

3.1.2 Probabilistic Interpretation of Ancestral Graphs

Ancestral graphs are interpreted as encoding conditional independence relations by

a graphical criterion that generalizes d-separation (Definition 2.2.1) for DAGs, called

m-separation. The definition of d-separation essentially carries over to m-separation

except that colliders and non-colliders admit more edge configurations in ancestral

graphs than they do in DAGs. Given a path u in a graph, a non-endpoint vertex V on

u is called a collider if the two edges incident to V on u are both into V , otherwise V

is called a non-collider. The following definition is virtually the same as Definition

2.2.1.
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Definition 3.1.2 (m-separation). In an ancestral graph, a path u between vertices A

and B is active (m-connecting) relative to a set of vertices Z (A,B /∈ Z) if

i. every non-collider on u is not a member of Z;

ii. every collider on u is an ancestor of some member of Z.

A and B are said to be m-separated by Z if there is no active path between A

and B relative to Z.

Let X,Y,Z be three disjoint sets of vertices. X and Y are said to be m-separated

by Z if Z m-separates every member of X from every member of Y.

For DAGs, this probabilistic interpretation reduces to d-separation3. The follow-

ing property is true of DAGs: if two vertices are not adjacent in a DAG, then there

is a subset of other vertices that m-separates (d-separates) the two. This, however,

is not always true of ancestral graphs. For example, the graph (a) in Figure 3.2 is an

ancestral graph that fails this condition: C and D are not adjacent, but no subset of

{A,B} m-separates them. This motivates the following definition:

C D

(a)

C D

(b)

A B A B

Figure 3.2: (a) an ancestral graph that is not maximal; (b) a maximal ancestral graph

3When there are only undirected edges in an ancestral graph, m-separation also reduces to the
probabilistic interpretation of undirected graphs, the simple separation criterion.
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Definition 3.1.3 (maximality). An ancestral graph is said to be maximal if for any

two non-adjacent vertices, there is a set of vertices that m-separates them.

As already noted, DAGs are all maximal. In fact, maximality corresponds to the

property known as the pairwise Markov property, i.e., every missing edge corresponds

to a conditional independence relation, which, recall, is particularly relevant to infer-

ence of adjacencies in the PC algorithm. It is shown in Richardson and Spirtes (2002)

that every non-maximal ancestral graph has a unique supergraph that is ancestral and

maximal, and furthermore, every non-maximal ancestral graph can be transformed

into the maximal supergraph by a series of additions of bi-directed edges. For exam-

ple, in Figure 3.2, (b) is the unique maximal supergraph of (a), which has an extra

bi-directed edge between C and D. From now on, we focus on maximal ancestral

graphs (MAGs).

Maximality is closely related to the notion of inducing path, defined below:

Definition 3.1.4 (inducing path). In an ancestral graph, let A, B be any two variables

and L, S be two disjoint sets of variables not containing A,B. A path u between A

and B is called an inducing path relative to L and S if every non-endpoint vertex

on u is either in L or a collider, and every collider on u is an ancestor of either A,

B, or a member of S.

When L and S are both empty, the path u is simply called an inducing path4

between A and B.

According to this definition, if A and B are adjacent, then the edge between

them is trivially an inducing path. An important fact is that given an ancestral

graph over V, the presence of an inducing path relative to L and S is necessary

and sufficient for two vertices, say A and B, not to be m-separated by any C ∪ S,

4It is named primitive inducing path in Richardson and Spirtes (2002).
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where C ⊆ V\(L ∪ {A,B}). This property will play an important role in linking

a causal DAG with latent variables to a causal MAG (see 3.1.3). In the special

case of L and S being empty, the presence of an inducing path is necessary and

sufficient for two vertices not to be m-separated by any set of other variables, which

is obviously connected to maximality. (Recall that in Chapter 1 we actually give a

definition of maximality in terms of inducing paths). We write the connection down

as a proposition for later reference, a proof of which can be found in Richardson and

Spirtes (2002).

Proposition 3.1.1. An ancestral graph is maximal if and only if there is no inducing

path between any two non-adjacent vertices in the graph.

Probabilistically, a MAG represents the set of joint distributions over its vertices

that satisfy its global Markov property, i.e., the set of distributions of which the con-

ditional independence relations as implied by the m-separation relations in the MAG

hold. Hence, if two MAGs share the same m-separation features, then they represent

the same set of distributions. In this case, we call them Markov equivalent.

Definition 3.1.5 (Markov equivalence). Two MAGs G1,G2 (with the same set of

vertices) are Markov equivalent if for any three disjoint sets of vertices X,Y,Z,

X and Y are m-separated by Z in G1 if and only if X and Y are m-separated by Z

in G2.

There are sufficient and necessary conditions for Markov equivalence of MAGs that

can be checked in polynomial time (Spirtes and Richardson 1996, Ali et al. 2004).

To present a version of the conditions, the following notions are needed.

Definition 3.1.6 (unshielded collider). In a MAG, a triple of vertices 〈A,B, C〉
forms an unshielded collider if A and C are not adjacent, and there is an edge

between A and B and one between B and C such that both edges are into B.
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It is well known that two DAGs are Markov equivalent if and only if they have the

same adjacencies and the same unshielded colliders (Verma and Pearl 1990). These

conditions are still necessary for Markov equivalence between MAGs, but are not

sufficient. For two MAGs to be Markov equivalent, some shielded colliders have to

be present in both or neither of the graphs. The next definition is related to this.

Definition 3.1.7 (discriminating path). In a MAG, a path between D and C, u =

〈D, · · · , A, B,C〉, is a discriminating path for B if

i. u includes at least three edges;

ii. B is a non-endpoint vertex on u, and is adjacent to C on u; and

iii. D is not adjacent to C, and every vertex between D and B is a collider on u

and is a parent of C.

A canonical pictorial illustration of an discriminating path is included in Figure

3.3. Note that we write a discriminating path in such a form u = 〈D, · · · , A, B, C〉,
that is, we specify the endpoints and the vertices adjacent to B, the vertex being

discriminated. The ellipsis therein designates any number (possibly zero) of other

vertices. More generally, we adopt it as a convention for depicting a path: the

vertices specified in the sequence are understood as distinct, and the ellipsis could be

any number (possibly zero) of vertices.

X W V

Y

Figure 3.3: A discriminating path between X and Y for V
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Discriminating paths behave similarly to unshielded triples in the following way

(cf. Lemma 2.2.2): if a path between D and C is discriminating for B, then B is

a collider on the path if and only if every set that m-separates D and C excludes

B; and B is a non-collider on the path if and only if every set that m-separates D

and C contains B. Thus we have the following proposition, proved in Spirtes and

Richardson (1996):

Proposition 3.1.2. Two MAGs over the same set of vertices are Markov equivalent

if and only if

(e1) They have the same adjacencies;

(e2) They have the same unshielded colliders;

(e3) If a path u is a discriminating path for a vertex B in both graphs, then B is a

collider on the path in one graph if and only if it is a collider on the path in the

other.

Given an arbitrary MAG G, we denote its Markov equivalence class, the set of

MAGs Markov equivalent to G, by [G]. A mark in G is said to be invariant if the

mark is the same in all members of [G]. According to Proposition 3.1.2, all members

of [G] have the same adjacencies. But between two adjacent vertices, the edge, and

hence one or both of the marks on the edge, may be variant across [G]. An important

task is then to fully characterize the invariant marks in G, or in other words, the

common marks shared by every member of [G]. This will become crucial for the sake

of causal inference, once we interpret MAGs causally.
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3.1.3 Causal Interpretation of Maximal Ancestral Graphs

Consider again the simple motivating example in Figure 3.1. No conditional inde-

pendence relation among A,Ef, R holds (conditionally on Sel implicitly). The non-

vanishing correlations among them, however, hardly warrant any causal conclusion.

In fact, according to the general definition to be presented shortly, the MAG over

A,Ef,R that represents the situation is R ← A−−Ef → R. The causal interpreta-

tion of this MAG has to derive from the underlying causal DAG it represents.

More generally, the pattern of association and independence among a set of ob-

served variables can be “misleading”about causal structure for at least two reasons.

First, the set of observed variables may be causally insufficient (in the usual sense

noted above), and some or all associations are due to unobserved common causes

(or confounders as they are usually called). Second, the population that samples are

drawn from may be just a subpopulation of the population of interest. The subpopu-

lation, in particular, is characterized by a set of unobserved selections or conditioning

variables such that units in the subpopulation share the values of the selection vari-

ables. If so, the pattern of association and independence among the observed variables

is really a pattern conditional upon the selection variables.

Formally it is natural to represent such a situation by a causal DAG over the

union of three disjoint sets of variables, V = O ∪ L ∪ S, where O denotes a set of

observed variables, L denotes a set of latent or unobserved variables, and S denotes a

set of unobserved selection variables to be conditioned upon. The DAG entails a set

of conditional independence constraints among V. Among these constraints, what

are in principle testable are ones of the form A⊥⊥B|C ∪ S5, where A,B,C ⊆ O.

5Strictly speaking, we are conditioning on a specific value or vector of values of S, so it is
more accurate to write A⊥⊥B|C∪S = s. This note applies to every occasion we write a conditional
independence relation with selection variables in the conditioning set. Thanks to Thomas Richardson
for emphasizing this.
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A distinctive property of MAGs is that they can represent such in-principle-

testable constraints without explicitly introducing L and S. Given any DAG G over

V = O ∪ L ∪ S, there exists a MAG over O alone such that for any three disjoint

sets of variables A,B,C ⊆ O, if A and B are entailed to be independent conditional

on C ∪ S by G if and only if A and B are entailed to be independent conditional on

C by the MAG. (This is obviously a generalization of the fact introduced in section

1.3.) When this is the case, we say the MAG probabilistically represents the DAG.

The following construction gives us such a MAG:

Input: a DAG G over 〈O,L,S〉
Output: a MAG MG over O

1. for each pair of variables A,B ∈ O, A and B are adjacent in MG if and only if

there is an inducing path relative to L and S between them in G;

2. for each pair of adjacent vertices A,B in MG, orient the edge between them as

follows:

(a) orient it as A → B in MG if A ∈ AnG(B ∪ S) and B /∈ AnG(A ∪ S);

(b) orient it as A ← B in MG if B ∈ AnG(A ∪ S) and A /∈ AnG(B ∪ S);

(c) orient it as A ↔ B in MG if A /∈ AnG(B ∪ S) and B /∈ AnG(A ∪ S);

(d) orient it as A−−B in MG if A ∈ AnG(B ∪ S) and B ∈ AnG(A ∪ S).

It can be shown thatMG is indeed a MAG and probabilistically represents G (Richard-

son and Spirtes 2002). Moreover, it is easy to see that MG also encodes ancestral

relationships in G. So, if G is the causal DAG for 〈O,L,S〉, a causal reading of MG

readily follows. Notice that MG is a unique outcome of the above construction, so

it is fair to call it the causal MAG over O. Let us put down the now obvious causal

interpretation of MAGs:
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Causal Interpretation of MAGs

Edges in a MAG G are to be interpreted as follows:

1. A → B means that A is a cause of B or some (unobserved) selection variable,

but B is not a cause of A or any (unobserved) selection variable.67

2. A ↔ B means that A is not a cause of B or any (unobserved) selection variable,

and B is not a cause of A or any (unobserved) selection variable.8

3. A−−B means that A and B are both ancestors of some selection variable. (The

relationship between A and B is not clear.)

In short, arrowheads in a MAG are interpreted as “non-cause” (hence the title of

this chapter), and tails are interpreted as “cause” (of either an observed variable or

a selection variable). Note that in a situation where no selection effect is present

(i.e., S = Ø), the causal MAG will not contain any undirected edges, as implied, for

example, by the third clause above. Therefore, regarding our main subject, causal

insufficiency, alone, it suffices to consider directed MAGs as briefly described in Chap-

ter 1. Furthermore, if there is no selection effect, directed edges (or tails) in a MAG

get a more elegant and informative interpretation: A → B means that A is a cause of

B. The interpretation of a directed path (or more generally, a partial directed path –

6When we say A is a cause of B, it means that there is a causal pathway from A to B in
the true causal structure (with possibly latent variables). The presence of a causal pathway may
not be sufficient for attributing cause and effect – for one thing, whether causation is transitive is
controversial – and it is probably more appropriate to use “candidate cause” or “prima facie cause”
in this regard. However, since we are assuming the CFC, causal transitivity is also assumed.

7This disjunctive interpretation may sound hardly useful, but it is a reflection the fact that the
presence of selection effects seriously limits the possibility of inferring useful causal information from
observations. Moreover, this disjunctive information may be combined with other information to
deduce more useful information. For example, if there is also an arrowhead at A, then it can be
deduced that A is not a cause of any selection variable, but a cause of B.

8Since the fact that there is an edge between A and B at all implies that A and B are not
probabilistically independent conditional on any subset of other observed variables, the above causal
interpretation of A ↔ B also implies that there is a latent common cause of A and B.
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a path in which arrowheads, if any, point to the same direction) from A to B readily

follows.

3.2 Inferring Causal Structure in the Presence of

Latent Confounders and Selection Variables –

the FCI Algorithm

Since a causal MAG involves observed variables only, it is hopeful to infer from

data (features of) the causal structure via the MAG representation in the presence of

latent common causes and/or selection selection variables, given suitable assumptions.

Given an arbitrary set of observed variables O, we again skip over statistical inference

and assume a reliable oracle of conditional independence is available. Since there

may be selection effects, a peculiarity of this oracle is that there exists a (possibly

empty) set of variables S such that whatever conditional independence query, say

A⊥⊥B|C, passed to the oracle will be translated into a query with S being added to

the conditioning set, A⊥⊥B|C ∪ S (for some particular value of S).

The two main assumptions to be relied upon are the CMC and the CFC. In

particular, although O may be causally insufficient, we assume that there always exists

a (possibly empty) set of variables L such that the causal structure over V = O∪L∪S

is properly represented by a DAG, i.e., the CMC holds of the causal DAG and the

true joint distribution over V. Assume furthermore that the CFC also holds between

them. These two assumptions imply that the given oracle satisfies the CMC and CFC

with the true causal MAG.9 The question is how much information about the MAG

9Of course the assumptions we will rely upon henceforth are simply that the (marginal) dis-
tribution of the observed variables O satisfy the CMC and CFC with the true causal MAG over
O, whether or not there is an underlying causal DAG over a superset V of O such that the joint
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can be inferred from the oracle.

By Definition 3.1.5, if the oracle is Markov and Faithful to the true causal MAG

G, it is also Markov and Faithful to all (and only) causal MAGs Markov equivalent

to G. Hence the oracle, given the CMC and the CFC, only determines up to [G],

the Markov equivalence class of the true causal MAG. The aim is thus to infer all

invariant features of G, features that are common across [G].

Richardson (1996) introduced a class of graphical objects called partial ancestral

graphs (PAGs) to represent the output of his causal inference algorithm in linear feed-

back systems. It turns out PAGs can also be used to represent Markov equivalence

classes of MAGs. Spirtes et al. (1999) used PAGs to represent the output of the FCI

(Fast Causal Inference) algorithm, an algorithm for causal inference in the presence

of latent and selection variables. The basic idea of the FCI algorithm is not unlike the

PC algorithm described in the previous chapter. Specifically, the FCI algorithm also

consists of two stages: the adjacency stage and the orientation stage. In the adja-

cency stage, for every pair of variables, the algorithm searches for a screen-off set and

leaves an edge (whose orientation is yet undecided) between the two if and only if no

screen-off set is found. Just as in the PC algorithm, the adjacency search in the FCI

algorithm also exploits some sort of online pruning of the space of possible screen-off

sets to improve computational (and statistical) efficiency. Part of the trick is indeed

exactly the same as one exploited in the PC algorithm. However, the PC adjacency

search alone is not enough for MAGs, and the FCI algorithm has to do extra work

with a fairly complicated rationale. Since we are not interested in improving the adja-

cency search of the FCI algorithm, which is obviously correct (and complete10) given

distribution of V satisfies the CMC and CFC with the causal DAG. But there does not seem to be
a good reason for assuming the former without the latter.

10The correctness is regarding both adjacencies and non-adjacencies, which automatically implies
completeness.
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a reliable oracle, we will ignore the details and take the correctness of the adjacency

stage for granted. Below is (an equivalent version of) the FCI algorithm from Spirtes

et al. (1999), with the details of the adjacency stage F2 omitted. (Three kinds of

edge marks are used in the algorithm: arrowhead (>), tail (−) and circle (◦). In the

presentation below, a meta-symbol, star (∗), is also used as a wildcard that denotes

any of the three marks.11 More specifically, if “∗” appears in an antecedent of an

orientation rule, that means it does not matter whether the mark at that place is an

arrowhead, or a tail, or a circle. If “∗” appears in the consequence of a rule, that

means the mark at that place remains what it was before the firing of the rule. Also,

in writing orientation rules, we use Greek letters to denote generic variables.)

FCI Algorithm

F1 Form the complete graph U on the set of variables where between every pair of

variables there is an edge ◦−−◦;

F2 For every pair of variables A and B, search in some clever way for a screen-off

set. If such as set S is found, remove the edge between A and B in U , and

record S as Sepset(A,B);

F3 Let P be the graph resulting from step F2. Execute the orientation rule:

R0 For each unshielded triple 〈α, γ, β〉 in P , orient it as a collider α∗→ γ ←∗β
iff. γ is not in Sepset(α, β).

F4 Execute the following orientation rules until none of them applies:

11By this we mean the rule in question applies no matter which of the three marks actually appears
in the position of ∗. It does not mean that all three marks can appear in that position.
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R1 If α∗→ β ◦−−∗γ, and α and γ are not adjacent, then orient the triple as

α∗→ β → γ.

R2 If α → β∗→ γ or α∗→ β → γ, and α ∗−◦ γ, then orient α ∗−◦ γ as α∗→ γ.

R3 If α∗→ β ←∗γ, α ∗−◦ θ ◦−∗ γ, α and γ are not adjacent, and θ ∗−◦ β, then

orient θ ∗−◦ β as θ∗→ β.

R4 If u = 〈θ, ..., α, β, γ〉 is a discriminating path between θ and γ for β, and

β ◦−−∗γ; then if β ∈ Sepset(θ, γ), orient β ◦−−∗γ as β → γ; otherwise orient

the triple 〈α, β, γ〉 as α ↔ β ↔ γ.12

The output of the FCI algorithm is what is called a PAG. It is clear from the

algorithm that a PAG can contain three kinds of marks: tail (−), arrowhead (>) and

circle (◦). So, by simple combinatorics, there could at most be six types of edges:

−−, →, ↔, ◦−−, ◦−−◦, ◦→. The circle is obviously intended to be an uninformative

or ambiguous mark, which indicates that the corresponding mark may be either an

arrowhead or a tail in the true causal MAG.

The question is whether all circles in the FCI output should really be ambiguous

in the sense that some MAG Markov equivalent to the true causal MAG has an

arrowhead there and some other MAG Markov equivalent to the true causal MAG

has a tail there. In other words, the question is whether the FCI output is a complete

PAG for the Markov equivalence class of the true causal MAG, as defined below

(recall that a mark in G is said to be invariant if the mark is the same in all MAGs

Markov equivalent to G):

Definition 3.2.1 (CPAG). Let [G] be the Markov equivalence class of an arbitrary

MAG G. The complete (or maximally oriented) partial ancestral graph

12See Ali et al. (2005) for an alternative and perhaps more efficient formulation of the rules that
takes on a special kind of discriminating paths.

71



(CPAG) for [G]13, PG, is a graph with (possibly) three kinds of marks (and hence six

kinds of edges: −−, →, ↔, ◦−−, ◦−−◦, ◦→), such that

i. PG has the same adjacencies as G (and hence any member of [G]) does;

ii. A mark of arrowhead is in PG if and only if it is invariant in [G]; and

iii. A mark of tail is in PG if and only if it is invariant in [G].

The difference between a CPAG and a PAG as previously employed in the litera-

ture14 is of course that the latter is not alleged to contain all invariant arrowheads or

tails. Another representation of Markov equivalence classes of MAGs is introduced

by Ali (2002), called joined graphs, which aims only to represent all invariant arrow-

heads and hence do not distinguish invariant tails from variant marks. Clearly the

most complete representation of a Markov equivalence class of MAGs regarding the

common arrowheads and tails is the CPAG.

It will become clear that the FCI algorithm does not output the CPAG for the

true causal MAG, even given a reliable oracle of conditional independence. However,

with a reliable oracle, the FCI output does satisfy (i) and (ii) in Definition 3.2.1, as

well as half of (iii). The fact that the output satisfies (i) is fairly obvious, and we

refer readers to Spirtes et al. (1999) for a rigorous demonstration.

That it also satisfies (ii), however, amounts to saying that all arrowheads contained

in the FCI output are valid in that they appear in every MAG that satisfies the CMC

and CFC with the given oracle, and also that none of the other marks in the output

could be a valid arrowhead. By ‘half of (iii)’ we mean that all tails in the FCI output

are valid, but they do not necessarily exhaust invariant tails.

13Sometimes we will also refer to it as “the CPAG for G”.
14It is worth noting that a graphical object named partially oriented inducing path graph (POIPG)

is studied in Spirtes et al. (1993/2000), which, however, can be shown to be just a PAG that is not
complete in the sense of Definition 3.2.1. See Appendix.
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All this is equivalent to saying that the orientation inference rulesR0 andR1−R4,

the latter of which are illustrated in Figure 3.4, are sound and together complete with

respect to invariant arrowheads.15 Soundness is not that hard to prove, which was

already shown in Spirtes et al. (1999). But the proof of completeness, as is usually

the case, is fairly complicated.
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Figure 3.4: Graphical illustrations of R1−R4

In order to prove soundness, we need a couple of simple facts (see, e.g., Spirtes

and Richardson (1996) for proofs):

Lemma 3.2.1. In a MAG, any unshielded triple 〈X, Y, Z〉 is a collider if and only if

all sets that m-separate X from Z do not contain Y ; it is a non-collider if and only

if all sets that m-separate X from Z contain Y .

15They are also independent in the sense that none of them can be derived from other rules.
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Lemma 3.2.2. In a MAG, if u = 〈W, · · · , X, Y, Z〉 is a path between W and Z

discriminating for Y , then the triple 〈X,Y, Z〉 is a collider if and only if all sets that

m-separate W from Z do not contain Y ; and it is a non-collider if and only if all sets

that m-separate W from Z contain Y .

Lemma 3.2.1 is obviously a generalization of Lemma 2.2.2. Lemma 3.2.2 reveals

that discriminating paths bear a similar property as unshielded triples. We now prove

the soundness of R0−R4.

Theorem 3.2.1. R0 − R4 are sound, and hence every non-circle mark in the FCI

output is an invariant mark in the true causal MAG.

Proof. Denote the (unknown) true causal MAG as GT . The soundness of R0 readily

follows from Lemma 3.2.1. For the other rules, it suffices to show that for each rule, if

a mixed graph satisfies the antecedent of the rule but contains a mark different than

what the rule requires, the graph is either not a MAG or not Markov equivalent to

GT , and hence not a member of [GT ]. (Then an inductive argument goes through.)

In every case that follows, we assume the antecedent of the rule holds in the graph

under consideration.

R1: Suppose a mixed graph, contrary to what the rule requires, has an arrowhead

at β. Then it contains an unshielded collider 〈α, β, γ〉 which is not in GT , for otherwise

it would have been picked up by R0. Hence it is not Markov equivalent to GT by

Proposition 3.1.2. Furthermore, if the mark at γ is a tail, then α∗→ β −−γ appears,

which means the graph is not ancestral by Definition 3.1.1.

R2: Suppose a mixed graph, contrary to what the rule requires, has a tail at γ.

If it is α−−γ, the graph is not ancestral because the edge between β and γ is into γ.

If it is α ← γ, then either γ is an ancestor of β and β∗→ γ, or β is an ancestor of α

and α∗→ β. In either case the graph is not ancestral.

74



R3: Suppose a mixed graph, contrary to what the rule requires, has a tail at β.

If it is θ −−β, the graph is not ancestral because the edge between α and β is into

β. Suppose it is θ ← β that appears in the graph. Notice that if the triple 〈α, θ, γ〉
is an unshielded collider in the graph, then the graph is not Markov equivalent to G.

On the other hand, if it is not a collider, then at least one of the two edges is out of

θ. Note that neither the edge between α and θ, nor the edge between γ and θ can be

undirected, for otherwise the graph is not ancestral due to the presence of θ ← β. So

either θ → α, or θ → γ; that is, β is either an ancestor of α or an ancestor of γ. In

either case, the graph is not ancestral because α∗→ β ←∗γ is present.

R4: There are two cases to consider.

Case 1: β ∈ Sepset(θ, γ). By the CFC and Lemma 3.2.2, the triple 〈α, β, γ〉 has

to be a non-collider in GT , and also, by Proposition 3.1.2, in all members of [GT ].

Suppose a mixed graph contains the triple as a non-collider, but contrary to what the

rule requires, has an arrowhead at β on the edge between β and γ. Then the edge

between β and α is out of β. If it is β −−α, then the graph is not ancestral because

there is an arrowhead at β; if it is β → α that appears in the graph, recall that by

the definition of discriminating path (Definition 3.1.7), α is a parent of γ. So β is an

ancestor of γ, which, together with our supposition, makes the graph not ancestral.

Furthermore, if the edge between β and γ is β −−γ, then the graph is not ancestral

because α is a parent of γ. Therefore, any MAG equivalent to GT has to contain

β → γ, as the rule requires.

Case 2: β ∈ Sepset(θ, γ). By the CFC and Lemma 3.2.2, the triple 〈α, β, γ〉 has

to be a collider in GT , and also, by Proposition 3.1.2, in all members of [GT ]. Also,

by the definition of discriminating path, α is a collider on the path, which means

α ↔ β ←∗γ is in any MAG equivalent to GT . Furthermore, because α → γ is
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present, α ↔ β ← γ will make the graph not ancestral. Therefore, α ↔ β ↔ γ is in

any MAG equivalent to GT .

The real challenge for this chapter, however, is to demonstrate the arrowhead

completeness of these rules, which deserves (and requires) a whole new section.

3.3 Arrowhead Completeness of the FCI Algorithm

The soundness result tells us that given a perfect oracle of conditional independence,

the FCI procedure outputs a PAG whose informative (i.e., non-circle) marks are all

valid, assuming the CMC and CFC. Henceforth we use PFCI to denote the PAG

output by FCI. We aim to show that PFCI is also arrowhead complete. For this to

be true, it has to be the case that every circle in PFCI can be oriented as a tail.

What this means is that for every circle in PFCI , there exists a MAG in the Markov

equivalent class of the true causal MAG such that the corresponding mark is a tail.

To the end of showing this we need to establish a few properties of PFCI . Certain

properties are already evident given soundness. For example, the defining properties

of ancestral graphs, i.e., (a1)-(a3) in Definition 3.1.1 all hold of PFCI , and there is no

inducing path between two non-adjacent vertices. Other lemmas are not as obvious,

and some of them require quite non-trivial demonstrations. We will present the main

argument in section 3.3.1, postponing some long proofs to 3.3.3. In section 3.3.2 we

discuss the significance of the arrowhead completeness result.

3.3.1 The Main Argument

The first lemma establishes a property crucial for the subsequent argument, which is

analogous to the one established by Meek (1995) in the context of inferring DAGs.
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We refer to the property as CP1.

Lemma 3.3.1. In PFCI , the following property holds:

CP1 for any three vertices A,B, C, if A∗→ B ◦−−∗C, then there is an edge between

A and C with an arrowhead at C, namely, A∗→ C. Furthermore, if the edge

between A and B is A → B, then the edge between A and C is either A → C

or A◦→ C (i.e., it is not A ↔ C).

Proof. See section 3.3.3.

As we shall see, the property CP1 is a defining feature of CPAGs in general, and

is of central importance in the ensuing argument. We first derive an easy corollary,

which concerns circle paths, which are defined to be paths on which every mark is a

circle, or equivalently, every edge is of the type ◦−−◦.

Lemma 3.3.2. In PFCI , for any two vertices A and B, if there is a circle path, i.e.,

a path consisting of ◦−−◦ edges, between A and B, then:

(i) if there is an edge between A and B, the edge is not into A or B.

(ii) for any other vertex C, C∗→ A if and only if C∗→ B. Furthermore, C ↔ A if

and only if C ↔ B.

Proof. We do induction on the length of the circle path. For (i), the base case is

trivial. In the inductive step, suppose the proposition holds when there is a circle

path consisting of n ◦−−◦ edges between any two vertices. Consider the case in which

the circle path between A and B has n + 1 edges. Let D be the vertex adjacent to B

on the circle path. By the inductive hypothesis, the edge between A and D, if any,

is not into D. This implies that the edge between A and B, if any, is not into B,
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otherwise CP1 does not hold of the triple A∗→ B ◦−−◦D. By symmetry, the edge

between A and B, if any, is not into A either. Hence (i) is true.

For (ii), notice that it is a direct consequence of CP1 that if A◦−−◦B, then for any

other vertex C, C∗→ A iff C∗→ B. Furthermore, if C ↔ A, then the edge between

C and B can’t be C◦→ B, for then the triple A ↔ C◦→ B would violate CP1.

Neither can it be C → B, for then C → B ◦−−◦A would violate CP1 (because C ↔ A

is present). So it has to be C ↔ B. By symmetry, C ↔ B also implies C ↔ A. Thus

the base case holds. The inductive step is similar to that in (i).

Since PFCI is sound, i.e., every non-circle mark therein is invariant in [GT ] (where

GT denotes the true causal MAG), any MAG equivalent to GT should contain the non-

circle marks in PFCI . Therefore, every MAG equivalent to G is a further orientation

of PFCI in the sense of changing circles into arrowheads or tails. Again, to prove

arrowhead completeness, we need to show that every circle can be oriented into a tail

in some MAG orientation of PFCI . We now define a general orientation operation on

general partial mixed graphs, graphs that can contain the three kinds of marks.

Definition 3.3.1 (Tail Augmentation). Let H be any partial mixed graph. Tail

augmentation of H is defined as the following set of operations on H:

• change all ◦→ edges into directed edges →;

• change all ◦−− edges into undirected edges −−;

• for any A ◦−−◦B, if there is no arrowhead into A or B, then change the edge

into an undirected edge A−−B.16

16A more radical tail augmentation that changes every circle into a tail would give us a Joined
Graph as defined by Ali (2002), who also provided a simple extension of the m-separation criterion
that can be applied to the augmented graph.
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The resulting graph is called the tail augmented graph (TAG) of H, denoted

by Htag.

Obviously the tail augmentation changes some circles in a partial mixed graph

into tails, but does not introduce any new arrowhead or affect any non-circle mark

already in the graph. Furthermore, after the tail augmentation, all remaining circles

in the graph, if any, belong to ◦−−◦ edges.

Now consider the TAG of PFCI , P tag
FCI . The next lemma establishes some impor-

tant properties of P tag
FCI .

Lemma 3.3.3. Let P tag
FCI be the TAG of PFCI . In P tag

FCI ,

(i) (a1)-(a3) (in Definition 3.1.1) and CP1 hold;

(ii) there is no inducing path between two non-adjacent vertices;

(iii) there is no such triple as A−−B ◦−−◦C; and

(iv) there is no chordless cycle consisting of ◦−−◦ edges, i.e., there is no cycle of

length 4 or more consisting of ◦−−◦ edges without an edge (chord) linking two

non-consecutive vertices on the cycle.

Proof. See section 3.3.3.

Let the circle component of any partial mixed graph be the induced subgraph

that consists of all ◦−−◦ edges in the graph. We denote the circle component of P tag
FCI

by C(P tag
FCI). A key implication of CP1 is that no matter how we orient the remaining

◦−−◦ edges (i.e., C(P tag
FCI)), no new unshielded colliders or directed cycles or almost

directed cycles would be created that involve the arrowheads already present in P tag
FCI .

This implication will be explored in the next lemma, which shows that if we orient
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C(P tag
FCI) into a directed acyclic graph with no unshielded colliders, then the resulting

graph is a maximal ancestral graph and is Markov equivalent to GT .

Lemma 3.3.4. Let P tag
FCI be the TAG of PFCI . If we further orient C(P tag

FCI), the

circle component of P tag
FCI , into a DAG with no unshielded colliders, the resulting graph

is a MAG and is Markov equivalent to G.

Proof. See section 3.3.3.

We are almost there. To orient C(P tag
FCI) into a DAG is trivial: an arbitrary

ordering over the vertices in C(P tag
FCI) would do. But that does not in general yield

a DAG with no unshielded colliders. In fact, as is well known, an undirected graph

can be oriented into a DAG with no unshielded colliders if and only if it is chordal

(see, e.g., Meek 1995). A graph is chordal (a.k.a. triangular) if there is no cycle

of length 4 or more without an edge (chord) linking two non-consecutive vertices on

the cycle (cf. (iv) in Lemma 3.3.3). As we expect, C(P tag
FCI) is indeed chordal.

Lemma 3.3.5. The circle component of P tag
FCI , C(P tag

FCI), is chordal.

Proof. Suppose for contradiction that there is a cycle 〈V0, V1, · · · , Vn−1, Vn, V0〉 in

C(P tag
FCI) such that no non-consecutive vertices on the cycle are adjacent. We ar-

gue that the cycle is also chordless in P tag
FCI , which contradicts proposition (iv) of

Lemma 3.3.3. Suppose on the contrary that in P tag
FCI there is an edge linking two

nonadjacent vertices on the cycle, say, Vi and Vj. The edge is either Vi−−Vj or is into

at least one of them. By (iii) of Lemma 3.3.3, there is no such pattern as −− ◦−−◦ in

P tag
FCI , so the former case is impossible. By Lemma 3.3.2, since there is a circle path

between Vi and Vj, the edge between Vi and Vj, if any, is not into Vi or Vj in PFCI ,

and hence is not into Vi or Vj in P tag
FCI . So the latter case is also impossible. Hence

the cycle is also chordless in P tag
FCI , a contradiction to (iv) of Lemma 3.3.3.
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Therefore, C(P tag
FCI) can be oriented into a DAG with no unshielded colliders. By

Lemma 3.3.4, there is a MAG in [GT ] — the Markov equivalence class to which GT

belongs — in which all circles except possibly ones in C(P tag
FCI) are marked as tails. So

the circles outside C(P tag
FCI) do not hide invariant arrowheads. The next lemma due

to Meek (1995) entails that the circles in C(P tag
FCI) do not hide invariant arrowheads

either.

Lemma 3.3.6 (Meek 1995). Let X and Y be any two vertices adjacent in a chordal

graph. That graph can be oriented into a directed acyclic graph with no unshielded

colliders in which the edge between X and Y is oriented as X → Y .

The main theorem of this chapter is now evident.

Theorem 3.3.1. Assuming the CMC and CFC, if a perfect oracle of conditional

independence is given as input, the FCI algorithm outputs a PAG that is both sound

and complete with respect to arrowheads.

Proof. It follows readily from Lemma 3.3.4, Lemma 3.3.5 and Lemma 3.3.6 that for

every circle in PFCI , there is a member of [GT ] in which the circle is oriented as a

tail.

3.3.2 Significance of the Arrowhead Completeness Result

The significance of Theorem 3.3.1 is not simply what it literally says, that every

invariant arrowhead in the true causal MAG is contained in the FCI output. The

further implication lies in the fact that from the sound and arrowhead complete

PAG output by the FCI algorithm, we can actually read off all valid negative causal

sentences, sentences of the form that “variable A is not a cause of variable B” or more

accurately, “there is no causal pathway from variable A to variable B in the true causal
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structure.” The way to read them off is by checking what we call potentially anterior

path. In a PAG, a path between X and Y is a potentially anterior path from X

to Y if there is no arrowhead on the path pointing towards X.17 (Similarly, a path

between X and Y in a MAG is a anterior path from X to Y if there is no arrowhead

on the path pointing towards X.) If there is no potentially anterior path in PFCI

from a variable A to another variable B, there is no anterior or partially directed path

in any member of [GT ] from A to B, and hence there cannot be any causal pathway

from A to B in the (unknown) true causal DAG. Conversely, if there is a potentially

anterior path from A to B in PFCI , our argument in this section makes it easy to

derive that in some member of [GT ] there is an anterior or partially directed path

from A to B, and hence the sentence “variable A is not a cause of variable B” is not

valid18 in the sense of being true in every model compatible with the given oracle

assuming the CMC and CFC. Therefore, the FCI algorithm, as a causal inference

system, is actually complete with respect to deriving valid negative causal sentences

from a perfect oracle of conditional independence and the two axioms.

What about positive causal sentences? We turn to this question in the next

chapter.

3.3.3 Omitted Proofs

Proof of Lemma 3.3.1

17This notion is closely related to the notion of potentially directed path defined in the next chapter.
In PFCI , they amount to the same thing as there are no such edges as ◦−− or −− in PFCI . In graphs
where ◦−− edges or −− edges are present, however, a potentially directed path is also a potentially
anterior path but not necessarily vice versa.

18Strictly speaking, if we consider the possibility of selection effect, the fact that there is a directed
path in a MAG from A to B means only that there is a causal pathway (in the underlying true DAG)
from A to either B or to some selection variable. However, it is easy to show that for such a MAG,
there is always a DAG (with possibly latent and selection variables) compatible with this MAG such
that a causal pathway from A to B is present in the DAG, though this is not necessarily true in all
DAGs compatible with the MAG.
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Proof. Let M = {Y |∃X,Z such that X∗→ Y ◦−∗Z but not X∗→ Z is in PFCI}. We

need to show that M is empty. Suppose for the sake of contradiction that M is not

empty. Let Y0 be a vertex in M such that no proper ancestor19 of Y0 in PFCI is in

M. (This specification is legitimate because there is no directed cycle in PFCI .) Let

FY0 = {X|∃Z such that X∗→ Y0 ◦−∗ Z but not X∗→ Z is in PFCI}. Since Y0 ∈ M,

FY0 is not empty. Choose X0 in FY0 such that no proper descendant of X0 in PFCI

is in FY0 . Finally, choose any Z0 such that X0∗→ Y0 ◦−∗ Z0 but not X0∗→ Z0 is in

PFCI . We will manage to derive a contradiction out of this.

Note that X0 and Z0 must be adjacent, otherwise the circle at Y0 on Y0 ◦−∗ Z0

would have been oriented by R0 or R1. Furthermore, the edge between X0 and Z0

is not out of Z0, i.e., the mark at Z0 on the edge is not a tail. The reason is this: it

is evident that no −− or ◦−− could result from applications of R0 − R4, and hence

none is present in PFCI . So if the edge between X0 and Z0 is out of Z0, then it must

be X0 ← Z0. But then Y0 ◦−−∗Z0 would have been oriented as Y0 ←∗Z0 by R2. This

is a contradiction. Hence the edge between X0 and Z0 is not out of Z0. Since by our

supposition, the edge is not into Z0 either, the mark at Z0 on the edge between X0

and Z0 has to be a circle, namely X0 ∗−−◦Z0.

Below we enumerate the ways in which the arrowhead at Y0 on X0∗→ Y0 could

have been oriented, and derive a contradiction in each case.

Case 1: X0∗→ Y0 is oriented by R0. That means there is a vertex W (distinct

from Y0 or Z0) such that W is not adjacent to X0, and X0∗→ Y0 ←∗W appears

in PFCI . This implies that Z0 and W are adjacent, for otherwise the circle at Y0

on Y0 ◦−−∗Z0 would have been oriented by either R0 or R1. Furthermore, because

X0∗−−◦Z0, it is not the case that Z0 ←∗W , otherwise the circle at Z0 would have been

oriented by R0 or R1. It follows that either Z0 ◦−−∗W or Z0 → W (again, because

19A proper ancestor of a vertex is an ancestor distinct from the vertex itself.
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no −− or −−◦ is present). In the former case, X0 ∗−−◦Z0 ◦−−∗W and X0∗→ Y0 ←∗W ,

and hence Y0 ◦−−∗Z0 should have been oriented as Y0 ←∗Z0 by R3; in the latter case,

Z0 → W∗→ Y0, and hence Y0 ◦−−∗Z0 should have been oriented as Y0 ←∗Z0 by R2.

So in either case it is a contradiction.

Case 2: X0∗→ Y0 is oriented by R1, which means that there is a vertex W

(distinct from Y0) not adjacent to Y0 such that W∗→ X0 → Y0 is in PFCI . It is

not the case that X0 ←◦Z0, otherwise Y0 ◦−−∗Z0 would have been oriented by R2

to be Y0 ←∗Z0. So X0 ◦−−◦Z0 is in PFCI . It follows that W and Z0 are adjacent,

otherwise the circle at X0 on X0 ◦−−◦Z0 would be oriented by R0 or R1. Now the

unshielded triple Y0 ◦−−∗Z0 ∗−∗W cannot be a collider, for otherwise X0 → Y0◦→ Z0,

and X0 ◦−−◦Z0 would be oriented as X0◦→ Z0 by R2. Since it is a non-collider, it

cannot be that W∗→ Z0, otherwise Y0 ◦−−∗Z0 would be oriented as Y0 ← Z0. Now

we have W∗→ X0 ◦−−◦Z0 but not W∗→ Z0 in P2. So X0 is in M and is a parent of

Y0 in PFCI , which contradicts our choice of Y0.

Case 3: X0∗→ Y0 is oriented by R2. There are two sub-cases to consider.

Case 3.1: There is a vertex W (distinct from Z0) such that X0 → W∗→ Y0

appears in PFCI . Then W and Z0 must be adjacent, for otherwise the circle at Y0 on

Y0 ◦−∗Z0 would be oriented by either R0 or R1. Furthermore, it is not the case that

W∗→ Z0, otherwise by R2, X0∗→ Z0, a contradiction. Now we have W∗→ Y0 ◦−∗Z0

but not W∗→ Z0. So W is in FY0 and is a child of X0, which contradicts our choice

of X0.

Case 3.2: There is a vertex W (distinct from Z0) such that X0∗→ W → Y0

appears in PFCI . Again, W and Z0 must be adjacent, for the same reason as in

3.1. Furthermore, it must be the case that W ◦−∗ Z0. If not, either W → Z0 or

W ←∗Z0. In the former case, R2 would dictate that X0∗→ Z0, which contradicts our

84



assumption; in the latter case, R2 would dictate that Y0 ←∗Z0, which also contradicts

our assumption. Now we have X0∗→ W ◦−∗Z0 but not X0∗→ Z0. So W is in M and

is a parent of Y0, which contradicts our choice of Y0.

Case 4: X0∗→ Y0 is oriented by R3. That means there are two non-adjacent

vertices U and V (both distinct from Z0) such that U ∗−∗X0 ∗−∗ V is a non-collider

(which, at the time X0∗→ Y0 gets oriented, is U ∗−◦ X0 ◦−∗ V as required by the

antecedent of R3), and U∗→ Y0 ←∗V is a collider in PFCI . U and V must be

adjacent to Z0, otherwise the circle at Y0 on Y0 ◦−∗Z0 would be oriented by either R0

or R1. Furthermore, since U ∗−∗X0 ∗−∗ V is a non-collider, either U ∗−◦X0 ◦−∗ V ,

or U ← X0, or X0 → V appears in PFCI . It follows that the triple 〈U,Z0, V 〉 is not a

collider, otherwise X0 ∗−◦ Z0 should be oriented as X0∗→ Z0 by R3 or R2, contrary

to our assumption. Also, neither Z0 → U nor Z0 → V is the case, otherwise Y0 ◦−∗Z0

should be oriented as Y0 ←∗Z0 by R2, contrary to our assumption. Then it must be

the case that U ∗−◦Z0 ◦−∗V . Again, by R3, Y0 ◦−∗Z0 should be oriented as Y0 ←∗Z0,

a contradiction.

Case 5: X0∗→ Y0 is oriented by R4. There are three sub-cases to consider.

Case 5.1: There is a discriminating path u = 〈U, ...,W,X0, Y0〉 for X0 in PFCI

(and X0 ∈ Sepset(U, Y0)), which orients the edge as X0 → Y0. By the definition of

discriminating path, W ←∗X0 and W → Y0 (and W 6= Z0). So W is adjacent to

Z0, otherwise the circle at Y0 on Y0 ◦−−∗Z0 would have been oriented by either R0

or R1. It is not the case that W → Z0, for otherwise X0 ∗−◦ Z0 would be oriented

as X0∗→ Z0 by R2. It is not the case that W ←∗Z0, for otherwise Y0 ◦−∗ Z0 would

be oriented as Y0 ←∗Z0 by R2, contrary to our assumption. So it has to be that

W ◦−∗ Z0. Now we have X0∗→ W ◦−∗ Z0 but not X0∗→ Z0. So W is in M and is a

parent of Y0 in PFCI , which contradicts our choice of Y0.
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Case 5.2: There is a discriminating path u = 〈U, ..., X0, Y0,W 〉 for Y0 in PFCI

(and Y0 /∈ Sepset(U,W )), which orients the triple as X0 ↔ Y0 ↔ W . It follows that

W 6= Z0. Moreover, W is adjacent to Z0; if not, the circle at Y0 on Y0 ◦−− −∗ Z0

would have been oriented by either R0 or R1. By the definition of discriminating

path, X0 is a parent of W , i.e., X0 → W . Hence it is not the case that W∗→ Z0,

otherwise X0∗→ Z0 by R2, contrary to what we established at the beginning. So we

have W ↔ Y0 ◦−∗ Z0 but not W∗→ Z0, which means W is in FY0 . But W is a child

of X0, which contradicts our choice of X0.

Case 5.3: There is a discriminating path u = 〈U, ...,W, Y0, X0〉 for Y0 in PFCI

(and Y0 /∈ Sepset(U,X0)), which orients the triple as W ↔ Y0 ↔ X0. It follows

that W 6= Z0. The contradiction in this case is the least obvious, and needs several

non-trivial steps to be revealed.

Note that Z0 is not on u because it is not the case that Z0 → X0 as we showed

at the beginning. As a first step, we show that for every vertex Q on u between U

and W (including W but not U), it is not the case that Q ←∗Z0. Otherwise, for any

such Q, u(U,Q) ⊕ Q ←∗Z0 ⊕ Z0 ◦−∗ X0 is a discriminating path for Z0. (We use

⊕ to denote the concatenation operation of paths). So the circle at Z0 on Z0 ◦−∗X0

would be oriented by R4, a contradiction.

Next, we establish that every vertex on u between U and W (including U and W )

is adjacent to Z0. Suppose not, let V be the closest vertex to Y0 on u(U,W ) that is

not adjacent to Z0. If V = W , the circle at Y0 on Y0 ◦−−∗Z0 would have been oriented

by either R0 or R1. If V 6= W , let T be the first vertex after V on u(V,W ), which is

adjacent to Z0 (because of our choice of V ). Because u is a discriminating path, the

edge between V and T is V ∗→ T . Since 〈V, T, Z0〉 is an unshielded triple, the edge

between T and Z0 is either T → Z0 or T ←∗Z0 (by either R1 or R0. Hence it is
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T → Z0, as the latter case has been ruled out in the previous step. Then we can show

that every vertex on u(T, W ) (including W ) is a parent of Z0. Otherwise, let R be the

closest vertex to T on u(T, W ) that is not a parent of Z0. Then u(V,R)⊕R ∗−∗Z0 is

a discriminating path for R (because every vertex between T and R is a parent of Z0,

by our choice of R). Since it is not the case that R → Z0, the edge between R and

Z0 must be oriented as R ↔ Z0, which, however, has been shown impossible. Hence

every vertex on u(T, W ) (including W ) is a parent of Z0. Then u(V, Y0)⊕ Y0 ◦−∗ Z0

is a discriminating path for Y0, which means the circle at Y0 on Y0 ◦−∗Z0 would have

been oriented by R4, a contradiction. So every vertex on u(U,W ) (including U and

W ) is adjacent to Z0.

The contradiction we are about to carry out is on the adjacency between U and

Y0. We first argue that U is not adjacent to Y0. Suppose for contradiction that they

are adjacent. By the definition of discriminating path, U is not adjacent to X0, so

U ∗−∗ Y0 ↔ X0 is an unshielded triple. It follows that either R0 or R1 could apply

here, and it is either U ← Y0 ↔ X0 or U∗→ Y0 ↔ X0. The former case is impossible,

because that would make u an inducing path between U and X0, two non-adjacent

vertices, which contradicts the maximality of G. In the latter case, we claim that

U ∗−◦ Z0 is present. Otherwise, either U∗→ Z0 or U ← Z0. In the former case the

circle at Z0 on Z0 ◦−∗ X0 would be oriented by either R0 or R1; in the latter case,

let S be the vertex next to U on u. Then by R2, the edge between S and Z0 would

be oriented as S ←∗Z0, which we have shown to be impossible. So U ∗−◦ Z0 ◦−∗X0

is present. Now, by R3, the edge between Y0 and Z0 would be oriented as Y0 ←∗Z0,

a contradiction. Hence U and Y0 are not adjacent.

An immediate corollary of the above argument is that it is not the case that

Y0◦→ Z0. Otherwise, the edge between U and Z0 would be oriented either as U∗→ Z0
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or as U ← Z0 (because U and Y0 are not adjacent). But neither of the two cases can

be true, as shown in the above argument. It follows that Y0 ◦−◦ Z0 is present.

Now we are ready to complete the argument. We show (by induction) that every

vertex on u between W and U , and in particular U , is adjacent to Y0, which yields

a contradiction. Obviously W is adjacent to Y0. In the inductive step, we show that

if a vertex S1 between W and U on u is adjacent to Y0, then the next vertex S2 (the

one further from W ), if any (i.e., when S1 6= U), is also adjacent to Y0. Suppose

otherwise, that S1 is adjacent to Y0 but S2 is not. Because S2 ∗−∗ Z0 ◦−◦ Y0 is an

unshielded triple, it is not the case that S2∗→ Z0. Note that this further rules out

S1 → Z0, as the latter implies the former by R2. S2 ← Z0 is also impossible, for in

that case we have S1 ←∗Z0 by R2, which we have ruled out. Hence the only possible

case is S2 ∗−◦ Z0 ◦−◦ Y0. Now let us focus on the triple S2∗→ S1 ∗−∗ Y0. It is an

unshielded triple, which implies either S1 ←∗Y0 or S1 → Y0. In the former case,

we can apply R3 to orient the edge between S1 and Z0 as S1 ←∗Z0, which we have

shown to be impossible; in the latter case, since neither S1 → Z0 nor S1 ←∗Z0 can

be true, it must be S1 ◦−∗ Z0. Thus we have S2∗→ S1 ◦−∗ Z0 but not S2∗→ Z0.

Hence S1 is in M and is a parent of Y0. This contradicts our choice of Y0. So S2 is

also adjacent to Y0, and by induction U is also adjacent to Y0. Hence a contradiction,

which concludes Case 5.3.

This enumeration exhausts the possible ways that the arrowhead at Y0 on X0∗→ Y0

was oriented. Hence, the initial supposition that M is non-empty leads to contradic-

tion. Furthermore, for any A → B ◦−∗ C in PFCI , it is not the case that A ↔ C, for

otherwise the circle at B on B ◦−∗C could be oriented as an arrowhead by R2. Since

we have shown that A∗→ C appears, it is either A → C or A◦→ C. Therefore, CP1

holds of PFCI .
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Proof of Lemma 3.3.3

Proof. First we prove (i). For (a1), suppose for contradiction that there is a directed

cycle. Let c = 〈V0, · · · , Vn, V0〉 be a shortest directed cycle in P tag
FCI , that is, no other

directed cycle has fewer edges than c does. Since no directed cycle is present in PFCI ,

the corresponding cycle in PFCI must contain a ◦→ edge. That is, there exists i

such that Vi−1∗→ Vi◦→ Vi+1 is in PFCI . Because CP1 holds of PFCI , there is an

edge Vi−1∗→ Vi+1 in PFCI . The edge can’t be Vi−1 ↔ Vi+1 for the following reason:

the edge between Vi−1 and Vi is either Vi−1◦→ Vi or Vi−1 → Vi. In the former

case, the triple Vi+1 ↔ Vi−1◦→ Vi would violate CP1; in the latter case, the circle

at Vi on Vi◦ −∗ Vi+1 should have been oriented to an arrowhead by R2. So either

Vi−1◦→ Vi+1 or Vi−1 → Vi+1 is in PFCI , which means Vi−1 → Vi+1 is in P tag
FCI . But

then 〈V0, · · · , Vi−1, Vi+1, · · · , Vn, V0〉 is a shorter cycle than c is, hence a contradiction.

So there is no directed cycle in P tag
FCI .

For (a2), suppose for contradiction that there is an almost directed cycle in P tag
FCI .

Let c = 〈V0, · · · , Vn, V0〉 be a shortest one. Without loss of generality, suppose the

bi-directed edge in the cycle is V0 ↔ Vn, and 〈V0, V1, · · · , Vn〉 is a directed path from

V0 to Vn. It is obvious that V0 ↔ Vn is also in PFCI , because no extra arrowheads

are introduced in P tag
FCI . Since no almost directed cycle is present in PFCI , the corre-

sponding path between V0 and Vn in PFCI contains a ◦→ edge. If the edge between V0

and V1 is not ◦→, then there must exist 1 ≤ i ≤ n− 1 such that Vi−1∗→ Vi◦→ Vi+1 is

in PFCI . By the same argument we went through in proving (a1), there is a shorter di-

rected path from V0 to Vn and hence a shorter almost directed cycle. So it is V0◦→ V1

that appears in PFCI . Then by CP1, Vn∗→ V1 is in PFCI , which means that either

Vn → V1 or Vn ↔ V1 is in P tag
FCI . In the former case, there is a directed cycle in P tag

FCI ,
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which we have shown to be impossible; in the latter case, there is a shorter almost

directed cycle, a contradiction.

For (a3), note that any X −−Y in P tag
FCI corresponds to either X −−Y or X ◦−−◦Y

in PFCI (remember there is no ◦−− edge in PFCI). In the former case, there is no

edge into X or Y due to the soundness of PFCI ; in the latter case, the definition of

tail augmentation guarantees that there is no edge into X or Y .

For CP1, note that no extra arrowheads are introduced in P tag
FCI and hence any

pattern of ∗→ ◦−∗ in P tag
FCI is also in PFCI . Since CP1 holds of PFCI , it also holds of

P tag
FCI .

Next, we prove (ii). It is convenient to define the rank of an inducing path. By

definition (Definition 3.1.4), an inducing path is one on which every vertex (except

the endpoints) is a collider and is an ancestor of one of the endpoints. In other words,

from each interior vertex on the path there is a directed path to one of the endpoints.

Let the rank of each interior vertex on the path be the length of a shortest directed

path from that vertex to one of the endpoints. We define the rank of an inducing

path as the length of the path plus the sum of the ranks of the interior vertices.

Suppose for contradiction that in P tag
FCI there is an inducing path between two

non-adjacent vertices X and Y . Let p = 〈X = V0, V1, · · · , Vn−1, Y = Vn〉 be the one

of the lowest rank. By definition, Vi’s (1 ≤ i ≤ n − 1) are colliders on the path and

are ancestors of either X or Y . This implies that V1 is an ancestor of Y and Vn−1

is an ancestor of X, otherwise there would be a directed or almost directed cycle in

P tag
FCI , which we have shown to be absent. For the same reason, the edge between X

and V1 is X ↔ V1, and the edge between Vn−1 and Y is Vn−1 ↔ Y . So every edge on

p is bi-directed. Since no extra arrowheads are introduced in P tag
FCI , these bi-directed
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edges on p are also in PFCI .

Furthermore, note that PFCI is sound and hence should not contain any inducing

path between X and Y . It follows that not every interior vertex on p is an ancestor

of X or Y in PFCI . Let Vj (1 ≤ j ≤ n − 1) be such a vertex, that is, Vj is not an

ancestor of X or Y in PFCI . Without loss of generality, suppose in P tag
FCI , Vj is an

ancestor of Y . Let d be a shortest directed path from Vj to Y in P tag
FCI . Since d is not

a directed path in PFCI , d must contain a ◦→ edge in PFCI . Since d is a shortest one,

CP1 implies that ◦→ can only appear as the first edge on the directed path (by the

argument we have used several times above). That is, let Vj1 be the vertex adjacent

to Vj on d, then Vj◦→ Vj1 is in PFCI .

Now we argue that if Vj1 is not on p(Vj, Y ), then there is a Vk (j +1 ≤ k ≤ n− 1)

such that Vk ↔ Vj1 is in PFCI . Suppose not; we prove by induction that for every

j + 1 ≤ i ≤ n, either Vi◦→ Vj1 or Vi → Vj1 is present in PFCI . The base case is easy.

Since Vj+1 ↔ Vj◦→ Vj1 is in PFCI , by CP1, we have Vj+1∗→ Vj1. Since it is not

bi-directed by the supposition, it is either Vj+1◦→ Vj1 or Vj+1 → Vj1. In the inductive

step, suppose Vj+1, ..., Vm all satisfy the claim, we argue that Vm+1 also satisfies the

claim. Vm+1 must be adjacent to Vj1, otherwise either, for some k, Vk◦→ Vj1 will

be oriented as Vk ↔ Vj1 (j + 1 ≤ k ≤ m) by R4, or all Vk◦→ Vj1 will be oriented

into Vk → Vj1, and hence Vj◦→ Vj1 will be oriented by R4. Furthermore, the edge

between Vm+1 and Vj1 is Vm+1∗→ Vj1. This is because either Vm◦→ Vj1 or Vm → Vj1

appears. In the former case, Vm+1∗→ Vj1 by CP1; in the latter case, Vm+1∗→ Vj1

by R2. Lastly, since the edge between Vm+1 and Vj1 is not bi-directed (in the case

of Vm+1 = Y , it is not Y ↔ Vj1 by (a2) because Vj1 is an ancestor of Y in P tag
FCI), it

is either Vm+1◦→ Vj1 or Vm+1 → Vj1. This completes the induction. But then either

Y ◦→ Vj1 or Y → Vj1, which contradicts the fact that Vj1 is an ancestor of Y in P tag
FCI .
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So there is a Vk (j + 1 ≤ k ≤ n− 1) such that Vk ↔ Vj1 is in PFCI .

By essentially the same argument, we can show that if Vj1 is not on p(X, Vj),

then there is a Vh (0 ≤ h ≤ j − 1) such that Vh ↔ Vj1 is in PFCI . (The only dif-

ference is that we rule out the case X◦→ Vj1 and the case X → Vj1 not because

Vj1 is an ancestor of X, but because X cannot be an ancestor of Y in P tag
FCI , for

otherwise an almost directed cycle would be present.) Therefore, if Vj1 is not on p,

then the path 〈V0 = X, · · · , Vh, Vj1, Vk, · · · , Vn = Y 〉 (Vh could be V0) is an induc-

ing path between X and Y but is of a lower rank than p, a contradiction. On the

other hand, if Vj1 is on p, without loss of generality, suppose it is on p(X, Vj), then

〈V0 = X, · · · , Vj1, Vk, · · · , Vn = Y 〉 is an inducing path between X and Y but is of

a lower rank than p, a contradiction. Hence there is no inducing path between two

non-adjacent vertices in P tag
FCI .

It is easy to demonstrate (iii). Suppose for contradiction that there is such a triple

X−−Y ◦−−◦Z in P tag
FCI . By the definition of tail augmentation and the fact that there is

no ◦−− edge in PFCI , in PFCI the edge between X and Y is either X−−Y or X ◦−−◦Y .

In the first case, obviously there is no edge into Y or Z in PFCI , for otherwise an

arrowhead would meet an undirected edge, which contradicts the soundness of PFCI .

In the second case, since X ◦−−◦Y is changed to X −−Y in the tail augmentation,

there is no edge into Y in PFCI , which implies, by Lemma 3.3.2, that there is no edge

into Z either. Either way, Y ◦−−◦Z should be changed to Y−−Z in the tail augmentation.

Lastly we prove (iv). (iv) is actually obvious given a rule to be presented in the

next chapter. Just notice that if there is any chordless cycle consisting of ◦−−◦ edges

in P tag
FCI , which would of course also be present in PFCI , then every edge on that
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cycle should be undirected edges in the true causal MAG, as otherwise a directed

cycle or an almost directed cycle should result in the MAG in light of R1, which is a

contradiction. Since PFCI is sound, it follows that no edge is into any vertex on that

cycle in PFCI . So the tail augmentation should have changed every ◦−−◦ on that cycle

into undirected edges.

Proof of Lemma 3.3.4

Proof. Let H denote the resulting graph. We first show that H is a MAG. Since H is

obviously a mixed graph, we only need to check that (a1) − (a3) in Definition 3.1.1

hold, and that there is no inducing path between two non-adjacent vertices. The

argument is very similar to the one we saw in the previous lemma, so we will only

highlight the strategy.

There is no directed cycle in H. Otherwise let c be a shortest one. The corre-

sponding cycle in P tag
FCI must contain → ◦−−◦, because there is no directed cycle in

P tag
FCI (Lemma 3.3.3) and by assumption C(P tag

FCI) is oriented into a DAG. Then CP1

of P tag
FCI implies that there is a even shorter directed cycle in H, a contradiction.

For almost the same reason, there is no almost directed cycle in H.

For any X−−Y in H, it is also in P tag
FCI , because no new undirected edge is created

in H. We have shown in Lemma 3.3.3 that there is no edge into X or Y in P tag
FCI ,

and that there is no ◦−−◦ edge incident to X or Y in P tag
FCI . It obviously follows that

there is no edge into X or Y in H.

To show that H is maximal, we will again use the rank of an inducing path as

defined in the proof of the previous lemma. Suppose for contradiction that there is

an inducing path between two non-adjacent vertices X and Y in H. Consider one

that is of the lowest rank, p = 〈V0 = X, V1, · · · , Vn−1, Vn = Y 〉. As we have shown
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in the proof of the previous lemma, every edge on p is bi-directed, which is also in

P tag
FCI , because no new bi-directed edge is created in H. We shall argue that in P tag

FCI

it is also the case that every Vi (1 ≤ i ≤ n − 1) is an ancestor of either X or Y ,

and hence p is also an inducing path in P tag
FCI , which contradicts (ii) of Lemma 3.3.3.

Here is the argument. For an arbitrary Vi (1 ≤ i ≤ n − 1), by supposition, it is an

ancestor of X or Y in H. Without loss of generality, suppose it is an ancestor of Y .

Let d be a shortest directed path from Vi to Y . Then d must also be a directed path

in P tag
FCI . Suppose not, then it contains a ◦−−◦ in P tag

FCI . Furthermore, the first edge

must be Vi ◦−−◦Vi1, for otherwise → ◦−−◦ would appear on the path and CP1 implies

there is a shorter directed path in H. Now by Lemma 3.3.2, we have Vi−1 ↔ Vi1 and

Vi+1 ↔ Vi1, which means we can replace Vi with Vi1 and create an inducing path with

a lower rank (because the directed path from Vi1 to Y is shorter than the one from

Vi to Y ). Contradiction. So d is also a directed path in P tag
FCI , which means Vi is also

an ancestor of Y in P tag
FCI . That is, p is also an inducing path between X and Y in

P tag
FCI , which contradicts the previous lemma.

Therefore H is a maximal ancestral graph.

Now that we have shown H to be a MAG, we only need to check the conditions

in Proposition 3.1.2 to demonstrate its Markov equivalence to GT . Obviously they

have the same adjacencies (because they both have the same adjacencies as PFCI),

so (e1) holds. For (e2), notice that every unshielded collider in GT is also in PFCI –

which is guaranteed by R0 – and hence is also in H. Conversely, for any unshielded

collider in H, in P tag
FCI the triple is either ∗→←∗, or ∗→ ◦−−◦, or ◦−−◦ ◦−−◦. The latter

two cases are impossible, because by CP1 ∗→ ◦−−◦ implies that the triple is shielded;

and by assumption, the circle component is oriented into a DAG with no unshielded
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colliders. So it must be the first case. Then the unshielded collider is also in PFCI

(because no arrowhead is introduced in tail augmentation), and hence also in GT .

Thus if H and GT are not Markov equivalent, it is due to a violation of (e3). That

is, there is a path u = 〈W, ..., X, Y, Z〉 that is discriminating for Y in both graphs, but

the triple 〈X, Y, Z〉 is a collider in one of the graphs but a non-collider in the other.

Note that if the triple is a collider in H, then it is easy to deduce from the definition

of discriminating path that X ↔ Y ↔ Z is in H. But every bi-directed edge in H is

also in PFCI (because neither tail augmentation nor the further orientation of P tag
FCI

creates any new bi-directed edge), so A ↔ B ↔ C is also in GT . Therefore, it can

only be the case that 〈A,B, C〉 is a collider in GT and a non-collider in H. We will

derive a contradiction from this.

First of all, we argue that if every collider on u(W,Y ) = 〈W, · · · , X, Y 〉 is present

in PFCI , then every vertex between W and X (including A) is a parent of Z in PFCI .

The argument goes by induction. Let U be the vertex next to W on u. 〈W,U,Z〉
is an unshielded triple (because by the definition of discriminating path, W and Z

are not adjacent). Since by assumption U is a collider on the path, W∗→ U is in

PFCI ; so the edge between U and Z is either oriented as U ←∗Z by R0 or U → Z by

R1. It cannot be the former case, because in GT (and in H) we have U → Z. Hence

U → Z is in PFCI . Now suppose the first n vertices after W on u are all parents of

Z in PFCI . Then the edge between the n + 1st vertex and Z can be oriented by R4.

Because it is a parent of Z in G, the edge will be oriented as a directed edge into Z in

PFCI . End of induction. Therefore, if every collider on u(W,Y ) is present in PFCI ,

u is also a discriminating path in PFCI , which means the triple 〈X, Y, Z〉 would be

oriented as a collider by R4, as is the case in GT . Then it would be a collider in H,

too, a contradiction.
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Thus some collider on u(W,Y ) is not present in PFCI . In other words, some

arrowheads on the path correspond to circles in PFCI . Note also that only the first

and/or the last collider on the path can be absent from PFCI , because bi-directed

edges in H, if any, are all in PFCI as well. Below we consider three cases separately.

Case 1: u(W,Y ) only has three vertices, 〈W,X, Y 〉. So in PFCI , it is either (a)

W ◦−−◦X ←∗Y , or (b) W∗→ X ◦−−◦Y , or (c) W ◦−−◦X ◦−−◦Y (because extra

arrowheads are only introduced in the orientation of the circle component of P tag
FCI).

In (a) and (b), by CP1, W and Y are adjacent. In (c), because 〈W,X, Y 〉 is oriented

as a collider in H, and by assumption no unshielded collider is introduced in the

orientation of C(P tag
FCI), W and Y must also be adjacent (W ◦−−◦Y ). So 〈W,Y, Z〉 is

an unshielded triple, in any case. Since 〈X, Y, Z〉 is a non-collider in H, it must be

that Y → Z, which can be easily deduced from the definition of discriminating path.

Thus 〈W,Y, Z〉 is an unshielded non-collider in H. We already showed that GT and

H have the same unshielded colliders, so 〈W,Y, Z〉 is also an unshielded non-collider

in GT . Furthermore, since 〈X,Y, Z〉 is a collider in GT , we have X ↔ Y ↔ Z in GT ,

and hence the edge between W and Y must be W ← Y (to avoid collider). But then

the path u is an inducing path between W and Z in GT , which contradicts the fact

that G is maximal.

Case 2: u(W,Y ) has four vertices, 〈W,U,X, Y 〉. So in PFCI , it is either (a)

W ◦−−◦U ↔ X ←∗Y , or (b) W∗→ U ↔ X ◦−−◦Y , or (c) W ◦−−◦U ↔ X ◦−−◦Y . In (c),

it is easy to deduce from Lemma 3.3.2 that W ↔ Y is in PFCI , and hence is in both

GT and H. But then the triple 〈W,Y, Z〉 is an unshielded collider in GT but not in

H, contrary to what we already showed. In (a), Lemma 3.3.2 implies that W ↔ X.

Hence X → Z is also present in PFCI . So the path 〈W,X, Y, Z〉 is a discriminating

path for Y in PFCI , which means, by the argument in Case 1, the edge between Y
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and Z should be the same in GT and H, contrary to the assumption. In (b), Lemma

3.3.2 implies that U ↔ Y . For the same reason as in (a), the path 〈W,U, Y, Z〉 is

a discriminating path for Y in PFCI , hence, by the argument in Case 1, the edge

between Y and Z should be the same in GT and H, contrary to the assumption.

Case 3: u(W,Y ) has more than four vertices, 〈W,U, V1, ..., V2, X, Y 〉 (V1 and V2

could be the same vertex). Again there are three cases: (a) W ◦−−◦U ↔ V1 · · ·V2 ↔
X ←∗Y , or (b) W∗→ U ↔ V1 · · ·V2 ↔ X◦−−◦Y , or (c) W ◦−−◦U ↔ V1 · · ·V2 ↔ X◦−−◦Y .

In any of the three cases, by essentially the same argument as we saw in Case 2 (or

more rigorously, an inductive argument with Case 2 as the base case), there would

be a discriminating path in PFCI for Y that ends at Z, so the edge between Y and

Z should be the same in GT and H, contrary to the assumption.

Therefore, the initial supposition of non-equivalence is false. H and GT are Markov

equivalent.
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Chapter 4

Inference of ‘Cause’: Tail

Completeness

The FCI algorithm is not only complete with respect to inferring invariant arrowheads,

it also produces a PAG that represents a maximal set of conditional independence

relations. That is, even if some circles hide invariant tails, replacing any number of

them in the resulting PAG with tails will not introduce more m-separation relations

than there already are. This observation implies that no more use can we make of

facts about conditional independence and dependence. Still, the algorithm is not yet

complete with respect to tails. Just as is the case with R1 − R3, there are more

tail inference rules that follow from acyclicity and ancestral-ness combined with the

orientation information already in the PAG. Extra tails resulting from such rules may

give us more qualitative causal information about what causes what. In this chapter

we present additional orientation inference rules to make the inference system fully

complete.

The rest of the chapter is organized as follows. Section 4.1 introduces and explains

a few more orientation rules that introduce tails. We demonstrate the soundness
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of these rules in section 4.2, and then present the long and convoluted argument of

completeness in 4.3. In section 4.4, we switch gears a little bit and exploit some results

established in 4.3 to prove a transformational relation between Markov equivalent

directed MAGs. The transformational result is analogous to the one established by

Chickering (1995) for DAGs, which has several interesting applications.

4.1 More Tail Inference Rules

To introduce the tail inference rules, we need a few more graphical notions. Recall

that we call any graph that may contain the three kinds of marks a partial mixed

graph (PMG).

Definition 4.1.1 (uncovered path). In a PMG, a path u = 〈V0, · · · , Vn〉 is said to

be uncovered if for every 1 ≤ i ≤ n− 1, Vi−1 and Vi+1 are not adjacent, i.e., every

consecutive triple on the path is unshielded.

Definition 4.1.2 (potentially directed path). In a PMG, a path u = 〈V0, · · · , Vn〉
is said to be potentially directed (abbreviated as p.d.) from V0 to Vn if for every

0 ≤ i ≤ n− 1, the edge between Vi and Vi+1 is not into Vi, nor is it out of Vi+1.

Potentially directed paths are already mentioned in the end of last chapter. Intu-

itively, a p.d. path is one that could be oriented into a directed path by changing the

circles on the path into appropriate tails or arrowheads. As we shall see, uncovered

p.d. paths play an important role in locating invariant tails. A special case of a p.d.

path is also mentioned earlier, where every edge is of the form ◦−−◦. Recall that we

call such a path, a path that consists solely of ◦−−◦ edges, a circle path.

We will present the rules in two blocks to highlight certain modularity. Here is

the first block:
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R5 For every (remaining) α ◦−−◦β, if there is a path u = 〈α, γ, · · · , θ, β〉 that is an

uncovered circle path between α and β s.t. α, θ are not adjacent and β, γ are

not adjacent, then orient α ◦−−◦β and every edge on u as undirected (−−).

R6 If α−−β ◦−−∗γ (α and γ may or may not be adjacent), then orient β ◦−−∗γ as

β −−∗ γ.

R7 If α−−◦ β ◦−−∗γ, and α, γ are not adjacent, then orient β ◦−−∗γ as β −−∗ γ.

The pictorial illustrations ofR5−R7 are given in Figure 4.1. These rules are obviously

related to undirected edges. R5 explicitly lead to undirected edges, and R6 explicitly

depend on undirected edges. So if it is known beforehand that there is no undirected

edge in the true causal MAG, the two rules are not necessary. In that case, moreover,

R7 will not get triggered at all, because neither R0 − R5 introduced earlier nor

R8−R10 to be introduced shortly can lead to −−◦ edges, which are in the antecedent

of R7.

The quantifier in R5 indicates that it will be executed once and for all (before R6

and R7), as is the case with R0. It will become clear from the proof of soundness

that R5 − R7 are primarily motivated by the third condition in the definition of

ancestral graphs ((a3) in Definition 3.1.1), namely, the restriction on the endpoints

of undirected edges.

Therefore, only when the presence of selection effects is an issue do we need to

include R5 − R7. For dealing with causal insufficiency alone or learning directed

MAGs, we need only R0−R4 plus the following rules:

R8 If α → β → γ or α−−◦ β → γ, and α◦→ γ, orient α◦→ γ as α → γ.

R9 If α◦→ γ, and u = 〈α, β, θ, · · · , γ〉 is an uncovered p.d. path from α to γ such

that γ and β are not adjacent, then orient α◦→ γ as α → γ.
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Figure 4.1: Graphical illustrations of R5−R7

R10 Suppose α◦→ γ, β → γ ← θ, u1 is an uncovered p.d. path from α to β, and u2

is an uncovered p.d. path from α to θ. Let µ be the vertex adjacent to α on u1

(µ could be β), and ω be the vertex adjacent to α on u2 (ω could be θ). If µ

and ω are distinct, and are not adjacent, then orient α◦→ γ as α → γ.

These rules are visualized in Figure 4.2. All of them are about turning partially

directed edges ◦→ into directed ones →. Such additional orientations are particularly

informative when there is no selection effect, as in that situation a directed edge, say,

A → B means that A is a cause of B whereas A◦→ B only says that B is not a cause

of A.

There are obviously cases where some of the additional rules are applicable, and

so the FCI algorithm in its present form is not complete with respect to tails. It is not

hard to show, for every rule except for R8, that there are cases where that rule alone

is applicable. So all these rules except possibly R8 are independent of each other. It
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Figure 4.2: Graphical illustrations of R8−R10

is not yet clear whether R8 can be derived from other rules.1 It is noticeable that

R5, R9 and R10, just as R4 in the FCI algorithm, involve checking special paths,

and as such are computationally more expensive than other rules.2

We present R8−R10 after R5−R7 because it is clear that any firing of R8−R10

will not trigger any extra firing of R5 − R7. Moreover, as will become clear later,

R5 − R7 are the necessary steps in transforming a PAG into a MAG in which all

bi-directed edges and undirected edges are invariant. In other words, if we would like

to turn the FCI output PAG into a representative MAG with a minimum number of

1One thing we do know is that in principle (i.e., given a perfect oracle of conditional independence)
R8 is not needed if onlyR0−R4 have been fired. In other words, given a perfect oracle of conditional
independence, just applying R0−R4 will not create an occasion where R8 alone is applicable. So
although R8 is actually included in some version of the FCI algorithm discussed in the previous
chapter, in theory it is not needed.

2The implementation details shall not concern us in this dissertation, so we simply note that the
antecedent of each rule that involves (uncovered) paths, in the worst case, can be checked in O(mn),
with m being the number of edges and n being the number of vertices in the graph. More efficient
implementation seems possible given a further elaboration of the properties of uncovered p.d. paths.
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bi-directed and undirected edges, perhaps for the purpose of fitting and scoring, as

in Spirtes et al. (1997), then we need to apply R5 − R7 but do not need to apply

R8 − R10. On the other hand, since in principle R5 − R7 are relevant only when

undirected edges may be present, they in principle will not be invoked if there is no

selection bias.3

We call the inference procedure resulting from adding R5−R10 to the step F4 of

the FCI algorithm the Augmented FCI (AFCI) algorithm. Our aim in this chapter is

to prove that AFCI is both sound and complete, assuming the CMC and CFC.

4.2 Soundness of the Additional Rules

Soundness, as usual, is not difficult to demonstrate.

Theorem 4.2.1. The tail inference rules, R5−R10, are sound.

Proof. Denote the (unknown) true causal MAG by GT . Again, for each of the rules,

we show that any mixed graph that violates the rule does not belong to [GT ].

R5: Note that the antecedent of this rule implies that 〈α, γ, · · · , θ, β, α〉 forms an

uncovered cycle that consists of ◦−−◦ edges. Suppose a mixed graph, contrary to what

the rule requires, has an arrowhead on this cycle. By our argument for the soundness

of R1, it should be clear that the cycle must be oriented as a directed cycle to avoid

unshielded colliders that are not in GT . But then the graph is not ancestral.

R6: It is clear that if any graph, contrary to what the rule requires, contains

α−−β ←∗γ, the graph is not ancestral.

3We add “in principle” here to caution that this is only true with a prefect conditional inde-
pendence oracle, which in practice may be approximated well by a sufficiently large sample. If the
sample size is small, however, there may be occasions where the firing conditions of R5 and R7 are
satisfied even though in theory they should never be invoked.
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R7: Suppose a mixed graph, contrary to what the rule requires, has an arrowhead

at β on the edge between β and γ. Then either α−−β ←∗γ is present, in which case

the graph is not ancestral; or α → β ←∗γ is present, in which case the graph contains

an unshielded collider that is not in GT .

R8: This rule is analogous to R2. Obviously if a mixed graph, contrary to what

the rule requires, contains α ↔ γ, then either an almost directed cycle is present or

there is an arrowhead into an undirected edge, and hence the graph is not ancestral.

R9: The same argument for the soundness of R5 applies here. If a mixed graph,

contrary to what the rule requires, contains α ↔ γ, then the uncovered path u must

be a directed path (from α to γ) in a graph, to avoid unshielded colliders which are

not present in GT . But then the graph is not ancestral.

R10: This rule is analogous to R3. The antecedent of the rule implies that the

triple 〈µ, α, ω〉 is not a collider in GT , which means at least one of the two edges

involved in the triple is out of α in any MAG equivalent to GT . Now, suppose a

mixed graph, contrary to what the rule requires, contains α ↔ γ. Then the edge(s)

out of α must be a directed edge for the graph to be ancestral. It follows that either

u1 or u2 is a directed path in the graph to avoid unshielded colliders which are not

in GT . In either case, α is an ancestor of γ, and hence the graph is not ancestral.

So, every tail introduced by R5 −R10 is indeed valid given what are already in

the PAG. We now turn to the most difficult part of this dissertation — to show that

the output of the AFCI algorithm is indeed the CPAG for the true causal MAG.
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4.3 Completeness of the Augmented FCI Algorithm

Let us get straight on what we need to show. Let PAFCI be the output of the AFCI

algorithm (given a perfect oracle of conditional independence). The only difference

between PFCI and PAFCI is that the latter reveals possibly more invariant tails, but

no more arrowheads. It trivially follows, for example, that property CP1 also holds of

PAFCI . Since PFCI is already arrowhead complete, we know that for every remaining

circle in PAFCI , there is a MAG Markov equivalent to GT in which the circle is turned

into a tail. What is left to show is that for every remaining circle in PAFCI , there is

also a MAG Markov equivalent to GT in which the circle is turned into an arrowhead.

Our proof of this fact, unfortunately, will be even more involved than the proof of

arrowhead completeness. The difficulty lies roughly in the following subtlety concern-

ing ◦→ edges. Recall that in showing arrowhead completeness, we can actually turn

all circles on ◦→ edges simultaneously into tails, via the operation of tail augmenta-

tion. Doing this does not take us outside the Markov equivalence class. By contrast,

it is in general not possible to turn all such circles simultaneously into arrowheads

without breaking Markov equivalence. This fact constitutes the major obstacle to

showing tail completeness, and will be dealt with in a fairly roundabout fashion.

Indeed showing that any circle on ◦−− or ◦−−◦ edges can be oriented as an arrowhead

in some Markov equivalent MAG is of comparable complexity as showing arrowhead

completeness. The argument for this part is presented in section 4.3.1. We take

a break in 4.3.2, in which we present an important corollary that follows from the

results in 4.3.1. We then pick up the really difficult task in 4.3.3 — to show that

any circle on ◦→ edges can be oriented as an arrowhead. The significance of the

completeness result is discussed in section 4.3.4. Proofs of some lemmas are to be

found in 4.3.5.
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4.3.1 Circles on ◦−− and ◦−−◦ Edges

First, quite naturally, we need an operation analogous to tail augmentation.

Definition 4.3.1 (Arrowhead Augmentation). Let H be any partial mixed graph.

Arrowhead augmentation of H is defined as the following set of operations on H:

• change all ◦→ edges into directed edges →;

• change all −−◦ edges into directed edges →.

The resulting graph is called the arrowhead augmented graph (AAG) of H,

denoted by Haag.

Note that the arrowhead augmentation and the tail augmentation are common in

their treatments of ◦→ edges. They are distinguished by their treatments of −−◦ edges:

the tail augmentation turns the circles into tails, whereas the arrowhead augmentation

turns the circles into arrowheads. Furthermore, unlike the tail augmentation, the

arrowhead augmentation does not affect any ◦−−◦ edge.

Let Paag
AFCI be the AAG of PAFCI . We will prove a lemma about Paag

AFCI analogous

to Lemma 3.3.3. For that purpose, we need to establish some properties of PAFCI

concerning −−◦ edges. The next lemma establishes a property we call CP2.

Lemma 4.3.1. In PAFCI , the following property holds:

CP2 For any two vertices A,B, if A−−◦B, then there is no edge into A or B.

Proof. Since CP1 holds of PAFCI , for any A −−◦ B in PAFCI , if C∗→ B is present,

then C∗→ A is also present. So it suffices to prove that for any A −−◦ B, there is

no edge into A. Let E = {X −−◦ Y in PAFCI |∃Z s.t. Z∗→ X is in PAFCI}. We

need to show that E is empty. Suppose for contradiction that it is not empty. Let
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X0−−◦ Y0 ∈ E be the member of E that gets oriented first in the orientation process,

that is, the tail marks on other edges in E, if any, get oriented after X0 ◦−−◦Y0 is

oriented as X0−−◦Y0. Choose any Z0 such that Z0∗→ X0 is in PAFCI . Since X0 ◦−−◦Y0

is oriented as X0 −−◦ Y0 either by R6 or R7, we consider the two cases one by one:

Case 1: It is oriented by R6. That means there is a vertex W such that W −−X0

is in PAFCI . But then Z0∗→ X0 −−W violates (a3) in the definition of ancestral

graphs, which contradicts the soundness of PAFCI .

Case 2: It is oriented by R7. That means, at the time of the orientation, there

is a vertex W such that W,Y0 are not adjacent, and there is an edge W −−◦ X0

between them. This implies that either W −−◦X0 or W −−X0 appears in PAFCI (as

no arrowhead is added by any of R5 − R10). The latter case is again ruled out by

(a3) in the definition of ancestral graphs. In the former case, since Z0∗→ X0 is in

PAFCI , by CP1, Z0∗→ W is in PAFCI , too. But then W −−◦ X0 is in E and gets

oriented before X0 −−◦ Y0 does, which contradicts our choice of X0 −−◦ Y0.

Hence the supposition that E is not empty is false. CP2 holds of PAFCI .

A path 〈V0, · · · , Vn〉 is called a tail-circle path from V0 to Vn if for every i

(0 ≤ i ≤ n− 1), the edge between Vi and Vi+1 is Vi −−◦ Vi+1.

Lemma 4.3.2. In PAFCI , the following hold:

(i) For any A−−◦B, there is an uncovered tail-circle path from an endpoint of an

undirected edge to B that ends with the edge A−−◦B.

(ii) If u is an uncovered tail-circle path, then any two non-consecutive vertices on u

are not adjacent.

Proof. Let TC be the set of −−◦ edges in PAFCI . We order the members of TC by

their order of occurrence in the orientation process. (i) can be proved by induction.
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Let X −−◦ Y be the ”first” edge in TC – that is, it gets oriented as such before

any other member of TC does (i.e., the others were still ◦−−◦ edges). Among all the

orientation rules, only R6 and R7 could yield −−◦ edges. If X−−◦Y is oriented by R6,

then obviously X is an endpoint of an undirected edge; if X −−◦Y is oriented by R7,

which means there is a vertex Z such that Z, Y are not adjacent, and Z −−◦X ◦−−◦Y
is the configuration at the point of orienting X ◦−−◦Y . If Z −−◦X remains in PAFCI ,

then it belongs to TC, and it occurs earlier than X −−◦ Y does, which contradicts

our choice of X −−◦ Y . So in PAFCI it must be Z −−X (because no orientation rule

will orient −−◦ into →). Hence in either case X is an endpoint of an undirected edge.

Then X−−◦Y is an uncovered tail-circle path from an endpoint of an undirected edge

to Y .

Now we show the inductive step. Suppose the first n edges in TC satisfy (i);

consider the n+1st edge, U −−◦W , in TC. Again, it is oriented by R6 or R7. If it is

oriented by R6, then U is an endpoint of an undirected edge, and U−−◦W constitutes

an uncovered tail-circle path from U to W ; if it is oriented by R7, then there is a

vertex V such that V, W are not adjacent, and V −−◦U ◦−−◦W is the configuration at

the point of orienting X ◦−−◦Y . If V −−◦U remains in PAFCI , then it is one of the first

n edges in TC. By the inductive hypothesis, there is an uncovered tail-circle path, T ,

from an endpoint of an undirected edge to U that includes the edge V −−◦ U . Since

V,W are not adjacent, T appended to U −−◦W constitutes an uncovered tail-circle

path from an endpoint of an undirected edge to W . If, on the other hand, V −−◦U is

not in PAFCI , then it must be V −−U , which makes U an endpoint of an undirected

edge, and U −−◦W the desired path. Therefore, for every edge in TC, the property

stated in (i) holds.
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Next we prove (ii). If u has only one edge, the proposition trivially holds, because

there is no pair of non-consecutive vertices; if u has two edges, the proposition also

trivially holds, because u is uncovered, and the only pair of non-consecutive vertices

on u are by definition non-adjacent.

Now suppose the proposition holds for those uncovered circle-tail paths that have

fewer than n edges. Consider an uncovered circle-tail path with n edges: V0 −−◦
V1 · · ·Vn−1 −−◦ Vn. By the inductive hypothesis, the only pair of non-consecutive

vertices that could be adjacent is V0 and Vn. By CP2 (Lemma 4.3.1), the edge

between V0 and Vn is not into V0 or Vn. It is not an undirected edge either, for

otherwise the circle at Vn on Vn−1−−◦Vn should have been oriented by R6. However,

〈V0, V1, · · · , Vn−1, Vn, V0〉 forms an uncovered cycle, so at least one of the ◦−−◦ edges

on the cycle should have been oriented as −− by R5 before any −−◦ edge appears,

which contradicts the fact that there is no −− edge on the cycle. So V0 and Vn are

not adjacent.

The main use we make of Lemma 4.3.2 is to establish two properties of PAFCI we

call CP3 and CP4, respectively.

Lemma 4.3.3. In PAFCI , the following property holds:

CP3 For any three vertices A,B, C, if A −−◦ B ◦−−∗C, then A and C are adjacent.

Furthermore, if A −−◦ B ◦−−◦C, then A −−◦ C; if A −−◦ B◦→ C, then A → C or

A◦→ C.

Proof. The first claim is obvious. If A−−◦B ◦−−∗C, but A, C are not adjacent, then

the circle at B on B ◦−−∗C should have been oriented by R7.

Suppose, more specifically, that A −−◦ B ◦−−◦C. Consider the edge between A

and C. Lemma 3.3.1 implies that it is not into C. Lemma 4.3.1 implies that it is not
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into A. It is not undirected either, for otherwise the circle at C on B ◦−−◦C could be

oriented by R6. Hence it is either (1) A ◦−− C; or (2) A ◦−−◦C; or (3) A−−◦ C. We

now show that (1) and (2) are impossible.

Suppose for contradiction that (1) or (2) is the case. By (i) in Lemma 4.3.2,

there is an uncovered tail-circle path u from E, an endpoint of an undirected edge,

to B that includes the edge A−−◦ B. We claim that for every vertex V on u, either

V ◦−−◦C or V ◦−− C is present. The argument goes by induction. Obviously B and

A satisfy the claim. Suppose, starting from B, the n’th vertex on u, Vn, satisfies the

claim. Consider the n + 1’st vertex on u, Vn+1. Since u is a tail-circle path, we have

Vn+1 −−◦ Vn. By the inductive hypothesis, Vn ◦−−◦C or Vn ◦−− C. So, as we have

established, Vn+1 and C must be adjacent. Again, Lemma 3.3.1 implies that the edge

between them is not into C. Lemma 4.3.1 implies that the edge between them is not

into Vn+1. The edge is not undirected either, for otherwise the circle at C on B ◦−−◦C
could be oriented by R6. Furthermore, by (ii) in Lemma 4.3.2, Vn+1 and B are not

adjacent. So the edge between Vn+1 and C can’t be Vn+1 −−◦ C, for otherwise the

circle at C on C ◦−−◦B could be oriented by R7. It follows that either Vn+1 ◦−−◦C
or Vn+1 ◦−− C. Therefore, every vertex on u, in particular the endpoint E satisfies

the claim, i.e., that either E ◦−−◦C or E ◦−− C occurs. But E is an endpoint of an

undirected edge, and hence the circle at E on E ◦−−◦C or E ◦−−C could be oriented.

Contradiction.

So neither (1) nor (2) is the case, which means A−−◦ C occurs in PAFCI .

On the other hand, if it is A−−◦B◦→ C that occurs in PAFCI , then Lemma 4.3.1

implies that the edge between A and C has an arrowhead at C (due to the arrowhead

on B◦→ C), and that there is no arrowhead at A (due to the presence of A−−◦ B).

So it is either A → C or A◦→ C.
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Lemma 4.3.4. In PAFCI , the following property holds:

CP4 For any A−−◦B, there is no tail-circle path from B to A. That is, there is no

such cycle as A−−◦B −−◦ C −−◦ · · · −−◦ A.

Proof. We first argue that if there is any such cycle in PAFCI , then there is a cycle

with only three edges, i.e., A−−◦B−−◦C−−◦A. To show this, note that for any such

cycle c = 〈V0, V1, V2, · · · , Vn, V0〉 with more than three edges, c can’t be uncovered,

otherwise every edge on c would have been oriented as −− by R5. That means there

is a consecutive triple on c which is shielded. Without loss of generality, suppose

〈V0, V1, V2〉 is shielded, i.e., V0 and V2 are adjacent. The edge between V0 and V2 can’t

contain an arrowhead, as Lemma 4.3.1 shows; it can’t be undirected, for otherwise

some circle on c should been oriented by R6; it can’t be ◦−−◦, as implied by Lemma

4.3.3 (because V0 −−◦ V1 −−◦ V2 is present). So it is either V0 −−◦ V2 or V2 −−◦ V0. In

either case, there is a shorter cycle than c that consists of −−◦ edges. Hence we have

established that for any such cycle with more than three edges, there is a shorter one.

It follows that if there is such a cycle at all, there must be one with only three edges.

So, to prove CP4, it suffices to show that A −−◦ B −−◦ C −−◦ A is impossible.

Suppose for contradiction that A−−◦B−−◦C−−◦A appears in PAFCI . By (i) in Lemma

4.3.2, there is an uncovered tail-circle path u from E, an endpoint of an undirected

edge, to B that includes the edge A −−◦ B. We claim that for every vertex V on u

between A and E (including A and E), C −−◦ V is present in PAFCI . The argument

is by induction. The vertex A, by supposition, satisfies the claim. Suppose, starting

from A, the n’th vertex on u, Vn, satisfies the claim. Consider the n+1st vertex on u,

Vn+1. Since u is a tail-circle path, we have Vn+1−−◦ Vn. By the inductive hypothesis,

C −−◦ Vn. So by Lemma 4.3.3, Vn+1 and C are adjacent. Lemma 4.3.1 implies that

the edge between them is not into either vertex. The edge is not undirected either,
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for otherwise the circle at C on B −−◦ C could be oriented by R6. Furthermore, by

(ii) in Lemma 4.3.2, Vn+1 and B are not adjacent. Since B −−◦ C, the edge between

Vn+1 and C must be oriented as C −−◦ Vn+1. Therefore, every vertex between A

and E, in particular the endpoint E, satisfies the claim. But E is an endpoint of an

undirected edge, and hence the circle at E on C −−◦ E could be oriented. This is a

contradiction.

We are now ready to prove a lemma about the arrowhead augmented graph of

PAFCI , Paag
AFCI , which is analogous to Lemma 3.3.3, the lemma about the tail aug-

mented graph of PFCI . One obvious fact is that P tag
AFCI = P tag

FCI – i.e., the tail

augmented graph of PAFCI is the same as the tail augmented graph of PFCI , which

we will use freely below.

Lemma 4.3.5. Let Paag
AFCI be the arrowhead augmented graph of PAFCI . In Paag

AFCI

(i) (a1)-(a3) (in Definition 3.1.1) and CP1 hold;

(ii) there is no inducing path between two non-adjacent vertices;

(iii) there is no such triple as A−−B ◦−−◦C; and

(iv) every unshielded collider in Paag
AFCI is also in PAFCI , i.e., arrowhead augmenta-

tion does not create any new unshielded colliders.

Proof. We first demonstrate (i). For (a1), suppose for contradiction that there is a

directed cycle in Paag
AFCI . Since there is no directed cycle in P tag

FCI or P tag
AFCI , as proved

in Lemma 3.3.3, at least one edge in the cycle must correspond to a −−◦ edge in

PAFCI (because the treatment of ◦→ edges is the same in both tail augmentation and

arrowhead augmentation). On the other hand, not all edges in the cycle correspond

to −−◦ edges in PAFCI , as implied by CP4 (Lemma 4.3.4). This means that at least
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one arrowhead in the cycle is already present in PAFCI . It follows that there will be

an arrowhead meeting a −−◦ edge in PAFCI , which contradicts CP2 (Lemma 4.3.1).

So there is no directed cycle in Paag
AFCI .

For (a2), suppose for contradiction that there is an almost directed cycle in Paag
AFCI .

Again, one edge therein must correspond to a −−◦ edge in PAFCI , since we already

showed that there is no almost directed cycle in P tag
FCI or P tag

AFCI (Lemma 3.3.3). Also,

because no new bi-directed edge is introduced by the arrowhead augmentation, the

bi-directed edge in the cycle is also in PAFCI . Then it is easy to see that there must

be an arrowhead meeting a −−◦ edge in PAFCI , which contradicts CP2. So there is

no almost directed cycle in Paag
AFCI .

For (a3), note that no new undirected edge is introduced in the arrowhead aug-

mentation, and new arrowheads are introduced only by way of changing −−◦ into →.

Since PAFCI satisfies (a3) by soundness, and no such pattern as −−◦ −− appears in

PAFCI (for otherwise the circle could be oriented by R6), it obviously follows that

(a3) holds of Paag
AFCI .

The fact that CP1 also holds of Paag
AFCI follows directly from CP3 of PAFCI

(Lemma 4.3.3) and the fact that CP1 holds of PFCI .

To see (ii) is true, it suffices to note the following: if there is an inducing path in

Paag
AFCI between two non-adjacent vertices, the path must consist of bi-directed edges

(which follows from (a1) and (a2), as we have gone through in proving Lemma 3.3.3).

Every bi-directed edge in Paag
AFCI is also in PAFCI , so every vertex on the inducing path

would have an arrowhead into it in PAFCI . It follows that no edge on any directed

path from a vertex on the path to one of the endpoints corresponds to a −−◦ edge

in PAFCI , for otherwise CP2 would be violated. So if there is any inducing path in
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Paag
AFCI between two non-adjacent vertices, it would also be present in P tag

AFCI , which

we have shown to be impossible. Therefore (ii) is true in Paag
AFCI .

(iii) is obvious given R6 because no new undirected edge is introduced in the

arrowhead augmentation.

(iv) follows from CP2 and CP3 of PAFCI . Specifically, CP2 implies that the

extra colliders produced by the arrowhead augmentation can only come from such

patterns as −−◦ ◦−− in PAFCI , but CP3 implies that they are shielded.

Lemma 4.3.5 immediately leads to the following result, analogous to Lemma 3.3.4.

Lemma 4.3.6. Let Paag
AFCI be the AAG of PAFCI . If we further orient C(Paag

AFCI),

the circle component of Paag
AFCI , into a DAG with no unshielded colliders, the resulting

graph is a MAG and is Markov equivalent to GT .

Proof. Let H be the resulting MAG. Given Lemma 4.3.5, the exact same argument

as in Lemma 3.3.4 can be used to to argue that H is a MAG.

The argument for the Markov equivalence between H and GT is also similar. (iv)

in Lemma 4.3.5 (plus the argument in Lemma 3.3.4) ensure that they have the same

unshielded colliders. So if they are not Markov equivalent, it must be that there is a

path u = 〈W, ..., X, Y, Z〉 that is discriminating for Y in both graphs, but the triple

〈X, Y, Z〉 is a collider in one of the graphs but a non-collider in the other. By the

same argument as in Lemma 3.3.4, we can show that it must be a collider in GT and

a non-collider in H.

If none of the edges on u(W,Y ) corresponds to a −−◦ edge in PAFCI , obviously the

same argument as in 3.3.4 can be applied to derive a contradiction. Suppose some

edge on u corresponds to a −−◦ edge in PAFCI . This is either the first or the last edge
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on u(W,Y ), as every other edge in between, if any, is a bi-directed edge in H (and

in GT ) and hence also a bi-directed in PAFCI . But by CP2 (Lemma 4.3.1), there is

no arrowhead into either endpoint of a −−◦ edge. It follows that there is no vertex

between W and X on u (for otherwise there exists a bi-directed edge on u, which is

already in PAFCI , and thus CP2 would be violated). Hence either W −−◦X ◦−−Y , or

W ◦−−◦X ◦−− Y , or W −−◦X ◦−−◦Y occurs in PAFCI . In the first two cases, 〈X, Y, Z〉
are non-colliders in both graphs. In the last case, by CP3 (Lemma 4.3.3), we have

W −−◦Y in PAFCI . The corresponding edge in GT must be W → Y , because 〈X, Y, Z〉
is a collider in GT (and hence it can’t be W −−Y ). We also know that Y → Z is in

H, since 〈X, Y, Z〉 is a (discriminated) non-collider in H. But then 〈W,Y, Z〉 is an

unshielded collider in GT but not in H, contrary to what we already established.

Therefore, H and GT are Markov equivalent.

Lemma 4.3.7. The circle component of Paag
AFCI , C(Paag

AFCI), is chordal.

Proof. This is guaranteed by R5.

Lemma 3.3.6, Lemma 4.3.6, Lemma 4.3.7 together imply that after R5−R7 are

done, the circles on the ◦−−◦ and −−◦ edges do not hide any invariant tails. In other

words, for any circle on ◦−−◦ or −−◦, there is a MAG belonging to [GT ] in which

the circle is marked as an arrowhead. So what is left to show is that R8 −R10 are

sufficient to pick up all the invariant tails hidden in the ◦→ edges.

4.3.2 An Important Corollary

This last step, as we hinted, is the least obvious, and our proof for it is going to be

quite convoluted. Before we delve into that complicated demonstration, we note an

important corollary that follows from the foregoing arguments. A major part of the
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corollary says that every Markov equivalence class of MAGs has a representative with

the minimum number of bi-directed edges and undirected edges, or put it differently,

a representative whose bi-directed edges and undirected edges are all invariant (and

hence appear in every member of the class).

Corollary 4.3.8. For every MAG G, there is a MAG H Markov equivalent to G such

that all bi-directed and undirected edges in H are invariant, and every directed edge

in G is also in H.

Proof. G can serve as the input oracle of conditional independence to the AFCI algo-

rithm. Let the output be PG. If follows from Lemma 4.3.6 that as long as we orient

C(Paag
G ), the circle component of Paag

G , into a DAG with no unshielded colliders, we

get a MAG Markov equivalent to G such that all bi-directed and undirected edges

therein are invariant, because no additional bi-directed edges or undirected edges are

created in the arrowhead augmentation of PG.

Let G∗ be the subgraph of G that corresponds to C(Paag
G ). It is easy to see that

all directed edges that are in G but not in G∗ are already contained in Paag
G . Hence,

to prove H as described exists, it suffices to show that C(Paag
G ) can be oriented into

a DAG with no unshielded colliders that retains all the directed edges of G∗.
This is not hard to show. Let G∗u be the undirected component of G∗. It is chordal,

otherwise it would have been oriented by R5 as undirected in PG, and hence would

not be part of C(Paag
G ). So the part of C(Paag

G ) that corresponds to G∗u can be oriented

into a DAG with no unshielded colliders. Orient it into any such DAG, D1.

The rest of C(Paag
G ) will be oriented as follows. The ancestor relationship in G∗

naturally induces a partial order over the vertices therein. Since G∗ is ancestral (as it

is a subgraph of an ancestral graph), no edge is into the vertices of G∗u, which implies

that no vertex precedes any vertex of G∗u in the partial order. Thus we can extend
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this partial order to a total order such that every vertex of G∗u precedes every vertex

not in G∗u. Orient the rest of C(Paag
G ) according to this total order, and we get a

DAG D2. D2 obviously retains all the directed edges of G∗, as it respects the partial

order induced by G∗. So every arrowhead in D2 is also in G∗, which implies that D2

does not contain any unshielded collider (for otherwise G∗ would contain unshielded

colliders too, which contradicts the fact that it is a counterpart of C(Paag
G )).

Let D denote the resulting DAG orientation of C(Paag
G ), i.e., the union of D1 and

D2. This union will not create any unshielded collider, because every edge between a

vertex in D1 and a vertex not in D1 is out of the former, by our construction of D2.

So D is the desired DAG orientation of C(Paag
G ) that has no unshielded colliders and

retains all the directed edges of G∗.

This corollary has several potential applications. One is probably related to fit-

ting and scoring MAGs. In fact, the statistical significance of a special case of this

Corollary is already explored by Drton and Richardson (2004) in the context of fitting

bi-directed Gaussian graphical models. That special case is also useful in proving a

transformational property of directed MAGs, analogous to the one for DAGs estab-

lished by Chickering (1995). We shall present that result in the last section of this

chapter. It turns out that a key lemma for proving the transformational result is also

useful for our current purpose of proving tail completeness. We thus present it here,

which gives sufficient and necessary conditions under which changing a directed edge

(→) into a bi-directed edge (↔) in a MAG preserves Markov equivalence.

Lemma 4.3.9. Let G be an arbitrary MAG, and A → B an arbitrary directed edge in

G. Let G ′ be the graph identical to G except that the edge between A and B is A ↔ B.

(In other words, G ′ is the result of simply changing the mark at A on A → B from a

tail into an arrowhead.) G ′ is a MAG and Markov equivalent to G if and only if
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(t1) A is not an endpoint of an undirected edge;

(t2) there is no directed path from A to B other than A → B;

(t3) For any C → A in G, C → B is also in G; and for any D ↔ A in G, either

D → B or D ↔ B is in G;

(t4) There is no discriminating path for A on which B is the endpoint adjacent to

A.

Proof. See section 4.3.5.

4.3.3 Circles on ◦→ Edges

We now turn to the difficult task of showing that for every ◦→ edge in PAFCI , there is a

MAG equivalent to GT in which the edge is oriented as↔. Our argument is going to be

roundabout, with two major steps. Let J◦→ K be an arbitrary ◦→ edge in PAFCI . In

the first step, we show that we can orient C(PAFCI) — the circle component of PAFCI ,

which is the same as C(Paag
AFCI), the circle component of the AAG of PAFCI — into a

DAG with no unshielded colliders that satisfies certain conditions relative to J◦→ K.

By Lemma 4.3.6, the arrowhead augmentation together with this DAG orientation

of C(PAFCI) yield a MAG equivalent to GT . In the second step, we argue that

this particular MAG can be transformed into a MAG containing J ↔ K through

a sequence of equivalence-preserving changes of → to ↔. It then follows that the

resulting MAG with J ↔ K is also equivalent to GT , which gives us what we need.

The following definitions specify the conditions we want a DAG orientation of

C(PAFCI) to satisfy.

Definition 4.3.2 (Relevance). Let J◦→ K be an arbitrary ◦→ edge in PAFCI . For

any A◦→ B in PAFCI , it is said to be relevant to J◦→ K if
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(i) A = J or there is a p.d. path from J to A in PAFCI such that no vertex on the

path (including the endpoints) is a parent of K; and

(ii) B = K or B is a parent of K (namely B → K) in PAFCI .

If A◦→ B is relevant to J◦→ K, we say that A is circle-relevant to J◦→ K, and

B is arrowhead-relevant to J◦→ K.

Informally, relevant edges are those that may have to be changed to bi-directed

edges (↔) before the edge between J and K can be so oriented. The rationale behind

the formal definition above will be revealed by the proof of Lemma 4.3.32. We use

REL(J◦→ K) to denote the set of ◦→ edges relevant to J◦→ K in PAFCI . Notice

that J◦→ K itself belongs to this set. It will also be convenient to denote the set

of circle-relevant vertices by CR(J◦→ K), and the set of arrow-relevant vertices by

AR(J◦→ K).

Definition 4.3.3. A DAG orientation of C(PAFCI) – the circle component of PAFCI

– is said to be agreeable to J◦→ K if the following three conditions hold:

C1 For any A◦→ B ∈ REL(J◦→ K) and B ◦−−◦C in PAFCI , if C /∈ AR(J◦→ K),

then B ◦−−◦C is oriented as B → C in the DAG;

C2 For any A◦→ B ∈ REL(J◦→ K) and A ◦−−◦C in PAFCI , if C is a parent of B

(namely C → B) in PAFCI , then A ◦−−◦C is oriented as A ← C in the DAG;

C3 For any A◦→ B ∈ REL(J◦→ K) and A ◦−−◦C in PAFCI , if C is not adjacent

to B in PAFCI , then A ◦−−◦C is oriented as A → C in the DAG.

Since we will henceforth refer to C1−C3 very frequently, some further explanation

of them is in order. Roughly speaking, they are all motivated as necessary for a ◦→
edge (relevant to J◦→ K) to meet the conditions in Lemma 4.3.9. This is especially
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clear in C2 and C3. Regarding a relevant edge A◦→ B (which will be A → B after

arrowhead augmentation), violation of C2 will fail condition (t2), and violation of C3

will fail condition (t3) in Lemma 4.3.9 for changing A → B into A ↔ B. For C1,

notice that if the antecedent holds, we have either A → C or A◦→ C in PAFCI , by

property CP1 (Lemma 3.3.1). In either case, A → C will appear in Paag
AFCI . So if C1

is violated, i.e., if B ◦−−◦C is oriented as B ← C, then (t2) in Lemma 4.3.9 fails. (It

will not matter, however, if C ∈ AR(J◦→ K); because in that case, as will become

clear later, A◦→ C is in PAFCI . Then A◦→ C ∈ REL(J◦→ K), which can be dealt

with before A◦→ B.)

It is far less obvious, however, that C1 − C3 suffice to ensure the existence of

a sequence of equivalence-preserving changes that can eventually turn J → K into

J ↔ K. The demonstration of this fact will be postponed until Lemma 4.3.32. Before

that, we need to establish the even less obvious fact that C(PAFCI) can be oriented

into a DAG with no unshielded colliders that satisfies C1 −C3 relative to J◦→ K.

One way to orient a chordal graph into a DAG free of unshielded colliders is via

the Meek orientation rules (Meek 1995):

Meek’s Algorithm

Input: a chordal unoriented graph U
Output: a DAG orientation of U (with no unshielded colliders)

Repeat

1. choose a yet unoriented edge A ◦−−◦B in U ;

2. orient the edge into A → B and close orientations under the following rules:4

4There is another rule in Meek (1995), which corresponds to S4(c) in the PC algorithm presented
in Chapter 2. However, the antecedent will never be met in orienting a chordal graph into a DAG
with no unshielded colliders. So we need not include that one here.
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UR1 If A → B ◦−−◦C, A and C are not adjacent, orient as B → C.

UR2 If A → B → C and A ◦−−◦C, orient as A → C.

UR3 If A → B → C, A ◦−−◦D ◦−−◦C, B ◦−−◦D, and A and C are not adjacent,

orient D ◦−−◦C as D → C.

Until every edge is oriented in H.

We now adapt the algorithm to fit our purpose. Given an arbitrary edge J◦→ K in

PAFCI , let En, n = 1, 2, 3 denote the set of ◦−−◦ edges whose orientations are required

by condition Cn in Definition 4.3.3. (Note that they are not necessarily disjoint.)

Orientation Algorithm for The Circle Component of PAFCI

Input: C(PAFCI), PAFCI , and an edge J◦→ K therein

Output: a DAG orientation of C(PAFCI) with no unshielded colliders

Let D = C(PAFCI)

Repeat

If some edge in E1 is yet unoriented in D

(a) choose such an edge A ◦−−◦B ∈ E1, and orient it as condition C1 requires;

(b) close orientations under UR1,UR2,UR3.

Else If some edge in E2 is yet unoriented in D;

(a) choose such an edge A ◦−−◦B ∈ E2, and orient it as condition C2 requires;

(b) close orientations under UR1,UR2,UR3.

Else If some edge in E3 is yet unoriented in D;
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(a) choose such an edge A ◦−−◦B ∈ E3, and orient it as condition C3 requires;

(b) close orientations under UR1,UR2,UR3.

Else

(a) choose a yet unoriented edge A ◦−−◦B in D;

(b) orient the edge into A → B and close orientations under UR1,UR2,UR3.

Until every edge is oriented in D
Return D

Given the correctness of Meek’s algorithm, this Orientation Algorithm obviously

returns a DAG orientation of C(PAFCI) with no unshielded colliders. The question

is whether it is also agreeable to J◦→ K. We answer this question affirmatively in

Corollary 4.3.29, to which we now proceed.

We begin by noting some facts about (uncovered) p.d. paths (see Definition 4.1.2)

in PAFCI .

Lemma 4.3.10. If u = 〈A, · · · , B〉 is a p.d. path from A to B in PAFCI , then some

subsequence of u forms an uncovered p.d. path from A to B in PAFCI .

Proof. We prove it by induction on the length of u. If there is only one edge on u,

then it is trivially an uncovered p.d. path from A to B. If there are two edges on u,

namely u = 〈A,C,B〉, either it is already uncovered, or it is covered so that A and B

are adjacent. In the latter case, we show that the edge between A and B constitutes

an uncovered p.d. path from A to B, or in other words, the edge between A and B

is not into A or out of B.

We first argue that it is not into A. Suppose for contradiction that the mark at A

on the edge between A and B is an arrowhead. Then the edge between A and C can’t
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have a circle mark at A, for otherwise by CP1 (Lemma 3.3.1), the edge between C and

B has an arrowhead at C, which contradicts the fact that u is potentially directed.

It follows that the edge between A and C must have a tail at A in PAFCI . Since the

edge between A and B is into A, it follows from CP2 (Lemma 4.3.1) that the edge

between A and C is A → C. Then the mark at C on the edge between C and B must

be an arrowhead, as implied by R2, a contradiction. So the edge between A and B

is not into A.

Next we argue that it is not out of B either. Suppose for contradiction that the

mark at B on the edge between A and B is a tail. Then it is either A−−B or A◦−−B.

The former implies that the edge between C and B has a tail at B by R6, which

contradicts the fact that u is potentially directed. So it must be A◦−−B. It obviously

follows, by CP1 and CP2, that there can’t be any arrowhead on u, so it is either

A ◦−−◦C ◦−−◦B, or A ◦−−◦C −−◦ B, or A −−◦ C ◦−−◦B or A −−◦ C −−◦ B. The

first three cases contradict CP3 (Lemma 4.3.3), and the last case contradicts CP4

(Lemma 4.3.4).

The inductive step is very easy. Suppose the proposition holds when the length

of u is n − 1 (n ≥ 3). Consider the case where u has n edges. Either u is already

uncovered, or there is a triple 〈X, Y, Z〉 on the path which is shielded. In the latter

case, by the foregoing argument, the edge between X and Z is not into X or out of Z.

So if we replace 〈X, Y, Z〉 with the edge between X and Z on u, we get a subsequence

of u which is a p.d. path from A to B with length n−1. By the inductive hypothesis,

a subsequence of the new path, which is also a subsequence of u, forms an uncovered

p.d. path from A to B. This concludes our argument.

Lemma 4.3.11. If u is an uncovered p.d. path from A to B in PAFCI , then

(i) if there is an ◦→ or −−◦ edge on u, then any ◦−−◦ edge on u is before that edge,
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and any → edge on u is after that edge;

(ii) u does not include both a ◦→ edge and a −−◦ edge; and

(iii) there is at most one ◦→ edge on u.

Proof. To see (i) is true, notice that since u is uncovered and potentially directed,

any edge after a ◦→ edge or a → edge on u must be oriented as → by R1. So no

◦−−◦ can appear after a ◦→ edge on u, and no → can appear before a ◦→ edge on u.

The same is true with a −−◦ edge. Since u is uncovered, any edge on u after −−◦ will

be oriented as −−◦ or → by either R7 or R1.

(ii) and (iii) are evident given the argument for (i). For (iii), just note that any

edge after a ◦→ edge on u must be oriented as a → edge. For (ii), suppose for

contradiction that u contains both a ◦→ edge and a −−◦ edge. Then the −−◦ edge

does not appear after the ◦→ edge on u, because any edge after ◦→ on u must be

oriented as → by R1. On the other hand, the ◦→ does not appear after the −−◦ edge

on u, because any edge after −−◦ on u is either −−◦ or →. This is a contradiction.

Lemma 4.3.12. In PAFCI , if there is a p.d. path from A to B, then the edge between

A and B, if any, is not into A.

Proof. By Lemma 4.3.10, there is an uncovered p.d. path u from A to B. Suppose

for contradiction that there is an edge between A and B which is into A, namely

A ←∗B is in PAFCI . There can’t be a −−◦ edge on u for the following reason: the

first −−◦ edge, if any, is either incident to A or is connected to A by a circle path,

according to Lemma 4.3.11. In either case, by Lemma 3.3.2, there is an edge into the

tail endpoint of the −−◦ edge, which contradicts CP2 (Lemma 4.3.1).

So, by Lemma 4.3.11, u is of the form: ◦−−◦ · · · ◦→→ · · · →. It takes little effort

to see that Lemma 3.3.2 entails that there is an edge between B and an ancestor of
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B which is into that ancestor. This contradicts the soundness of PAFCI .

Lemma 4.3.13. In PAFCI , if there is a p.d. path from A to B that is into B, then

every uncovered p.d. path from A to B is into B.

Proof. Suppose for contradiction that an uncovered p.d. path from A to B is not into

B. That is, the last edge on the path is not ◦→ or →. The last edge can’t be −−◦
either, because there is a p.d. path into B. So the last edge must be ◦−−◦, and hence

by Lemma 4.3.11, the path must be a circle path. Let C be the vertex adjacent to B

on the p.d. path into B, which means C∗→ B. Since there is a circle path between

A and B, it follows from Lemma 3.3.2 that C∗→ A. But there is a p.d. path from A

to C, which contradicts Lemma 4.3.12.

Corollary 4.3.14. In PAFCI , if A, B are adjacent, and there is a p.d. path from A

to B that is into B, then the edge between A and B is either A◦→ B or A → B.

Proof. By Lemma 4.3.12, the edge between A and B is not into A. It follows that it is

not out of B, because there is a path into B, which rules out the possibility of A−−B

or A ◦−− B by Lemma 4.3.1. Hence the edge between A and B is an uncovered p.d.

path from A to B. By Lemma 4.3.13, it is into B, which means it is either A◦→ B

or A → B.

Lemma 4.3.15. If there is a circle path between two adjacent vertices in PAFCI , then

the edge between the two vertices is ◦−−◦.

Proof. By Lemma 3.3.2, there is no arrowhead on the edge between the two vertices.

The edge obviously can’t be −−. If it is −−◦, then it is easy to derive a contradiction

from CP3 (Lemma 4.3.3). So the edge between the two vertices must be ◦−−◦ in

PAFCI .
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Lemma 4.3.16. Let u be an uncovered circle path in PAFCI . If A and B are two

non-consecutive vertices on u, then A and B are not adjacent in PAFCI .

Proof. It follows from Lemma 4.3.15 and the fact that C(PAFCI) is chordal.

The next couple of lemmas establish two useful facts for the endpoints of the edges

in REL(J◦→ K).

Lemma 4.3.17. For any A◦→ B ∈ REL(J◦→ K), there is an uncovered p.d. path

u from J to B in PAFCI such that for every vertex V on u other than B, there is an

edge V ◦→ K.

Proof. Obviously if A = J or B = K, the lemma is trivial. Suppose A 6= j and

B 6= K. By Definition 4.3.2, there is a p.d. path from J to A in PAFCI such that no

vertex on the path (including the endpoints) is a parent of K. B is not on this p.d.

path, for otherwise by Lemma 4.3.12 the edge between B and A should be into A.

This p.d. path concatenated with A◦→ B constitutes a p.d. path from J to B which

is into B. Lemma 4.3.10 implies that there is an uncovered p.d. path u from J to B

such that every vertex on u other than B is not a parent of K. This path, by Lemma

4.3.13, is into B. We now argue that for every vertex V on u other than B, there is

an edge V ◦→ K in PAFCI .

The base case is trivial, as J◦→ K is by assumption in PAFCI . Suppose for the

n’th vertex on u, Vn, there is an edge Vn◦→ K in PAFCI . We show that for the n+1st

vertex on u, Vn+1, if Vn+1 6= B, then there is an edge Vn+1◦→ K in PAFCI .

Suppose Vn+1 6= B. Note that since B 6= K, by Definition 4.3.2, B is a parent of

K. Hence the path u(Vn+1, B) ⊕ B → K is an uncovered p.d. path from Vn+1 to K

which is into K (note that K is not on u in view of the edge B → K and Lemma

4.3.12). Thus by Corollary 4.3.14 and by the fact that no vertex on u other than
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B is a parent of K, we can conclude that if Vn+1 is adjacent to K, then the edge is

Vn+1◦→ K. Suppose for contradiction that there is no such an edge Vn+1◦→ K in

PAFCI . If follows that Vn+1 and K are not adjacent. Let W be the closest vertex

to Vn+1 on u(Vn+1, B) that is adjacent to K. (W exists because B is adjacent to

K.) Again, by Corollary 4.3.14, the edge between W and K is either W◦→ K or

W → K. So the path u(Vn,W ) ⊕ 〈W,K〉 is an uncovered p.d. path from Vn to K

(it is uncovered because by our choice of W no vertex between Vn and W is adjacent

to K). Together with the fact that Vn+1 is not adjacent to K, this implies that the

circle at Vn on Vn◦→ K could be oriented by R9, which is a contradiction. Therefore

there is an edge Vn+1◦→ K in PAFCI .

Lemma 4.3.18. If A◦→ B ∈ REL(J◦→ K), then there is an edge A◦→ K in

PAFCI .

Proof. If A = J or B = K, there is obviously an edge A◦→ K in PAFCI . Suppose

A 6= J and B 6= K. Since A◦→ B ∈ REL(J◦→ K), by Lemma 4.3.17, there is an

uncovered p.d. path u from J to B in PAFCI such that for every vertex V on u other

than B, there is an edge V ◦→ K. By Lemma 4.3.13, we know that u is also into B.

Let X be the vertex adjacent to B on u. We have X◦→ K in PAFCI . Also, because

B 6= K, B → K is in PAFCI , so the edge between X and B can’t be X → B, for

otherwise X◦→ K could be oriented by R8. It follows that X◦→ B is in PAFCI ,

because u is into B.

Now, suppose for contradiction that A is not adjacent to K. Then the path

〈A,B, X,K〉 is a discriminating path for X (Definition 3.1.7). Hence the circle on

X◦→ K could have been oriented by R4, a contradiction. So A is adjacent to K.

By Corollary 4.3.14, the edge between A and K is either A → K or A◦→ K. But

by definition (Definition 4.3.2), A is not a parent of K, so it must be A◦→ K in
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PAFCI .

We are now ready to make important steps towards showing that in the course of

the Orientation Algorithm, no violation of C1 − C3 (Definition 4.3.3) would occur,

and hence the output DAG orientation of C(PAFCI) is agreeable to J◦→ K. For

this purpose, we assume, without loss of generality, that UR1 has priority over UR2

and UR3 in the sense that whenever two or more different rules can be fired, UR1

will always be applied first, if applicable. The following series of lemmas will amount

to showing that if we choose a ◦−−◦ edge to orient away from violation of C1 − C3

(as the Orientation Algorithm does), that orientation will not trigger any violation

of C1 − C3 by applications of UR1 alone. Notice that the stereotype of a chain of

UR1 firings is that the first edge on an uncovered circle path ◦−−◦ · · · ◦−−◦ is oriented

out of the first vertex, which triggers repeated applications of UR1 that orient the

whole circle path. That is why most of the next block of lemmas are concerned with

an uncovered circle path.

Lemma 4.3.19. For any two vertices B,C ∈ AR(J◦→ K), there is no uncovered

circle path between B and C consisting of more than one edge in PAFCI .

Proof. If one of B and C is K, it is manifest in the definition of relevance that there

is a directed edge between them, and hence there is no circle path between them, as

implied by Lemma 3.3.2. So we only need to consider the case where neither of them

is K, that is, both of them are parents of K. Suppose for contradiction that in PAFCI

there is an uncovered circle path u between B and C that includes two or more ◦−−◦
edges. It follows, by Lemma 4.3.16, that B and C are not adjacent. Let A be such

a vertex that A◦→ B ∈ REL(J◦→ K). It follows from Lemma 3.3.2 that either

A◦→ C or A → C is in PAFCI . Furthermore, because A is not a parent of K, it must

be A◦→ C. Now consider the edge A◦→ K, which is shown to be present by Lemma
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4.3.18. It could be oriented by R10, because A◦→ B is an uncovered p.d. path from

A to B, a parent of K; A◦→ C is an uncovered p.d. path from A to C, a parent of

K; B and C are not adjacent. Hence a contradiction.

Lemma 4.3.20. Suppose A◦→ B ∈ REL(J◦→ K). If A ◦−−◦C appears in PAFCI

and C is a parent of B in PAFCI (i.e. the edge A ◦−−◦C is required by condition C2

to be oriented as A ← C), then C is a parent of K in PAFCI .

Proof. If B = K, it is trivial that C is a parent of K. Suppose B 6= K. Since

A◦→ B ∈ REL(J◦→ K), B is a parent of K. By Lemma 4.3.18, A◦→ K is

present in PAFCI . It follows that C is adjacent to K, for otherwise 〈C, B, A,K〉 would

constitute a discriminating path for A in PAFCI , and the circle at A on A◦→ K could

be oriented by R4. Furthermore, the edge between C and K must be C → K, as

required by R8. Hence C is a parent of K.

Lemma 4.3.21. Suppose A◦→ B ∈ REL(J◦→ K), A ◦−−◦C and C is a parent of B

in PAFCI (i.e. the edge A◦−−◦C is required by condition C2 to be oriented as A ← C).

Then

(1) if for some D ∈ AR(J◦→ K), C ◦−−◦D is in PAFCI , then C ∈ AR(J◦→ K)

(so that the edge C ◦−−◦D is not subject to C1);

(2) If u = 〈C, A, . . .〉 is an uncovered circle path, no vertex (except possibly C) on

u is in AR(J◦→ K).

Proof. To show (1), note that if D ∈ AR(J◦→ K), then there is some vertex X

such that X◦→ D ∈ REL(J◦→ K). By CP1 (Lemma 3.3.1), X◦→ C or X → C

is in PAFCI . By Lemma 4.3.20, C is a parent of K. So it is not X → C in PAFCI ,

otherwise X◦→ K, which is shown to be present by Lemma 4.3.18, could be oriented
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as X → K by R8. So it must be X◦→ C in PAFCI . Since X◦→ D ∈ REL(J◦→ K)

and C is a parent of K, X◦→ C obviously satisfies Definition 4.3.2, which means

C ∈ AR(J◦→ K).

To prove (2), suppose for contradiction that some vertex E 6= C on u is in

AR(J◦→ K). Obviously E 6= K, otherwise A◦→ E would be present in PAFCI

by Lemma 4.3.18, which contradicts Lemma 3.3.2. So E is a parent of K. Now

consider the edge A◦→ K, which is implied to exist by Lemma 4.3.18. A ◦−−◦C
constitutes an uncovered p.d. path from A to C, a parent of K, as implied by Lemma

4.3.20; u(A,E) is an uncovered p.d. path from A to E, a parent of K. Since u is

uncovered, A◦→ K could be oriented as A → K by R10, a contradiction.

Lemma 4.3.22. For any uncovered circle path u = 〈A, · · ·E〉 in PAFCI , either the

edge incident to A is not required by C2 to be oriented out of A, or the edge incident

to E is not required by C2 to be oriented out of E.

Proof. Suppose for contradiction that the contrary is true. By Lemma 4.3.20, both A

and E are parents of K. Let B be the vertex adjacent to A on u. By our supposition,

A ◦−−◦B is required by C2 to be oriented as A → B. This means, by Definition 4.3.3,

that there is a vertex C such that B◦→ C ∈ REL(J◦→ K) (and A is a parent of

C). Consider B◦→ K, which is shown to be present by Lemma 4.3.18. B ◦−−◦A
constitutes an uncovered p.d. path from B to A, a parent of K; u(B, E) constitutes

an uncovered p.d. path from B to E, a parent of K. Thus it is easy to see that

B◦→ K could be oriented as B → K by R10, a contradiction.

Lemma 4.3.23. If A◦→ B ∈ REL(J◦→ K), and u = 〈A,C, · · ·〉 is an uncovered

circle path such that C is not adjacent to B in PAFCI (so that the edge between A

and C is required by C3 to be oriented as A → C), then no vertex on u is a parent of

K in PAFCI .
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Proof. Since A◦→ B ∈ REL(J◦→ K), by Lemma 4.3.18, A◦→ K is present in

PAFCI . Suppose for contradiction that a vertex D (which could be C) on u is a

parent of K. By definition (Definition 4.3.2), either B = K or B is a parent of K.

We consider the two cases separately and derive a contradiction in each.

Case 1: B = K, and hence K and C are not adjacent (which means D can’t be

C in this case). So u(A, D) ⊕ D → K is a p.d. path from A to K such that the

vertex adjacent to A on the path, namely C, is not adjacent to K. Let E be the first

vertex after C on the path which is adjacent to K (there must be one, because D is

adjacent to K). The edge between E and K, by Corollary 4.3.14, is either E◦→ K

or E → K. It follows that 〈A,C, · · · , E, K〉 forms an uncovered p.d. path from A to

K such that C and K are not adjacent. Hence A◦→ K could be oriented as A → K

by R9, a contradiction.

Case 2: B → K is in PAFCI . Then u(A,D) is an uncovered p.d. path from A to

D, a parent of K, and A◦→ B is an uncovered p.d. path from A to B, a parent of

K. Since C and B are not adjacent, the edge A◦→ K could be oriented as A → K

by R10, a contradiction.

Lemma 4.3.24. Suppose A◦→ B,C◦→ D ∈ REL(J◦→ K), A 6= C and u =

〈A, · · · , C〉 is an uncovered circle path in PAFCI . Either the vertex next to A on u is

adjacent to B (so that C3 does not require orienting the edge out of A), or the vertex

next to C on u is adjacent to D (so that C3 does not require orienting the edge out

of C).

Proof. Suppose for contradiction that the vertex next to A on u (which could be C) is

not adjacent to B, and the vertex next to C on u (which could be A) is not adjacent

to D. We consider three cases separately and derive a contradiction in each.

Case 1: B = D. In this case, since D is not adjacent to the vertex next to C on
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u, u⊕ C◦→ B is an uncovered p.d. path from A to B such that the vertex adjacent

to A on the path is not adjacent to B. Hence A◦→ B could be oriented by R9 as

A → B, a contradiction.

Case 2: B 6= D and one of them is K. Without loss of generality, suppose B = K.

Since C◦→ D ∈ REL(J◦→ K), and D 6= K, by definition (Definition 4.3.2), D is

a parent of K (B). Then u ⊕ C◦→ D constitutes an uncovered p.d. path from A

to D such that the vertex adjacent to A on the path is not adjacent to B. This is

exactly the same situation as Case 1 in the proof of Lemma 4.3.23, which implies

that A◦→ B could be oriented as A → B by R9, a contradiction.

Case 3: B 6= D and neither of them is K. By definition (Definition 4.3.2), both

B and D are parents of K. Consider the edge A◦→ K, which is shown to be present

by Lemma 4.3.18. Since A◦→ B is an uncovered p.d. path from A to B, a parent of

K, u⊕ C◦→ D is an uncovered p.d. path from A to D, a parent of K, and that the

vertex next to A on u is not adjacent to B, the edge A◦→ K could be oriented as

A → K by R10, a contradiction.

In our Orientation Algorithm, some ◦−−◦ edges are explicitly oriented to satisfy one

of C1−C3. Lemmas 4.3.19, 4.3.21, 4.3.22, 4.3.23, 4.3.24 ensure that such orientations

will not at the same time violate C1 −C3 (and hence C1, C2 and C3 are consistent

in themselves and with each other). Furthermore, these lemmas imply that if we

propagate such orientations with UR1 alone, no violation of C1 − C3 would occur.

(These claims will be formally demonstrated in Lemma 4.3.25 and Lemma 4.3.28.)

However, it is not yet clear whether propagations with UR1 −UR3 together will

create violations of C1 − C3. We resolve this worry in Lemma 4.3.25 and Lemma

4.3.28, with which we establish the key fact that no violation of C1−C3 would occur

in the Orientation Algorithm. Note that if any violation were to occur, it could only
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occur by the end of the third stage of the Orientation Algorithm, namely before all

◦−−◦ edges in E1 ∪ E2 ∪ E3 get oriented. Let D∗ be the resulting graph at the end

of the third stage of the Orientation Algorithm. Clearly the ◦−−◦ edges left in D∗, if

any, do not belong to E1∪E2∪E3, and hence are not relevant to C1−C3. The next

lemma states two important properties of D∗. (We assume, without loss of generality,

that UR1 has priority over UR2 and UR3.)

Lemma 4.3.25. Let D∗ be the resulting graph at the end of the third stage of the

Orientation Algorithm.

(i) for any vertex W ∈ AR(J◦→ K), there is no edge directed into W in D∗;

(ii) for any three vertices X,Y, Z, if X◦→ Y ∈ REL(J◦→ K), X ◦−−◦Z and Z is

a parent of Y in PAFCI , then there is no edge directed into Z in D∗.

Proof. See section 4.3.5.

Corollary 4.3.26. In the course of the Orientation Algorithm, no violation of C1

occurs.

Proof. This follows trivially from (i) in Lemma 4.3.25.

Corollary 4.3.27. In the course of the Orientation Algorithm, no violation of C2

occurs.

Proof. This follows trivially from (ii) in Lemma 4.3.25.

Lemma 4.3.28. In the course of the Orientation Algorithm, no violation of C3

occurs.

Proof. See section 4.3.5.
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Let DJ◦→K be the DAG output of the Orientation Algorithm. We have thus

proved the following proposition:

Corollary 4.3.29. DJ◦→K is a DAG orientation of C(PAFCI) free of unshielded col-

liders and agreeable to J◦→ K.

Proof. It follows from Corollary 4.3.26, Corollary 4.3.27, Lemma 4.3.28 and the cor-

rectness of Meek’s algorithm.

Let HJ◦→K be the graph resulting from orienting C(Paag
AFCI) — the circle compo-

nent of the arrowhead augmented graph of PAFCI , which is the same as the circle

component of PAFCI — into DJ◦→K . By Lemma 4.3.6 and Corollary 4.3.29, HJ◦→K

is a MAG equivalent to G. Note that in HJ◦→K there is the edge J → K. As planned

earlier, what is left to show is that HJ◦→K can be transformed into a MAG where

J ↔ K appears through a sequence of equivalence-preserving changes of → into ↔
(recall Lemma 4.3.9).

First we mention two simple facts about PAFCI .

Lemma 4.3.30. For any A◦→ B in PAFCI , if there is a p.d. path u other than

A◦→ B from A to B, then some vertex on u is adjacent to both A and B.

Proof. The argument is an induction on the length of u. If u consists of two edges,

the interior vertex on u (i.e., other than A or B) is obviously adjacent to both A

and B. Suppose u consists of three edges. If it is covered, then obviously one of

the two interior vertices is adjacent to both A and B. If it is uncovered, then the

vertex adjacent to A on u must also be adjacent to B, for otherwise A◦→ B could

be oriented by R9. In the inductive step, suppose the proposition holds if u consists

of less than n edges. Consider the case where u consists of n edges. If it is covered,

then a subsequence of u constitutes a p.d. path from A to B with less than n edges,
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and hence by the inductive hypothesis, a vertex on u is adjacent to both A and B.

If u is uncovered, then the vertex adjacent to A on u must also be adjacent to B, for

otherwise A◦→ B could be oriented by R9.

Lemma 4.3.31. Suppose C ←◦A◦→ B is in PAFCI . If C and B are not adjacent,

then A◦→ B /∈ REL(J◦→ K) or A◦→ C /∈ REL(J◦→ K).

Proof. Suppose for contradiction that A◦→ B ∈ REL(J◦→ K) and A◦→ C ∈
REL(J◦→ K). By Lemma 4.3.18, A◦→ K is in PAFCI . It also follows that B 6= K

and C 6= K, for otherwise B and C would be adjacent. Then, by Definition 4.3.2,

both B and C are parents of K, which implies that A◦→ K could be oriented by

R10 because C and B are not adjacent, a contradiction.

Now we present the key lemma, of which we provide an informal explanation

here. Note that in HJ◦→K all ◦→ edges in PAFCI are oriented as →. So in particular,

all edges in REL(J◦→ K) are oriented as →. Let M be any MAG identical to

HJ◦→K except possibly that some ◦→ edges in REL(J◦→ K) are oriented as ↔
(instead of →). The lemma below shows that if not all edges in REL(J◦→ K)

are oriented as ↔ in M, then some → in M corresponding to some ◦→ edge in

REL(J◦→ K) satisfies the conditions in Lemma 4.3.9, and hence can be changed

into ↔ while preserving equivalence. As a special case, for example, in HJ◦→K some

→ edge corresponding to a ◦→ edge in REL(J◦→ K) can be changed into ↔. After

this change, some remaining → corresponding to a ◦→ edge, if any, can be further

changed to ↔ while preserving equivalence. This process can be continued until every

edge in REL(J◦→ K), and in particular J◦→ K, can be oriented as J ↔ K while

preserving the Markov equivalence with G.

Lemma 4.3.32. Let M be any MAG identical to HJ◦→K except possibly that some

◦→ edges in REL(J◦→ K) are oriented as ↔ (instead of →). Let
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RREL = {A → B in M|A◦→ B is in PAFCI and A◦→ B ∈ REL(J◦→ K)}

If RREL is not empty, then some edge therein can be changed to ↔ while preserving

Markov equivalence with M.

Proof. See section 4.3.5.

Corollary 4.3.33. GJ◦→K can be transformed via a series of equivalence-preserving

changes into a MAG where J ↔ K appears.

Proof. Using Lemma 4.3.32, a simple induction on the number of edges in REL(J◦→
K) suffices.

We thus arrive at a major result of this dissertation.

Theorem 4.3.1. Assuming the CMC and the CFC, the Augmented FCI algorithm

returns the CPAG for the true causal MAG given a perfect oracle of conditional

independence. In other words, for every circle in PAFCI , the output of the augmented

FCI algorithm, there is a MAG Markov equivalent to the true causal MAG in which

the circle is oriented as an arrowhead, and there is a MAG Markov equivalent to the

true causal MAG in which the circle is marked as a tail.

Proof. It follows readily from Lemma 4.3.6, Corollary 4.3.29 and Corollary 4.3.33,

and Theorem 3.3.1.

4.3.4 Significance of the Completeness Result

The CPAG constructed from a perfect oracle of conditional independence relations

is useful not only because it displays all commonalities among the class of Markov

equivalent MAGs that includes the true causal MAG, and hence clearly reveals what

features of the unknown true causal MAG are or are not underdetermined by the
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oracle of conditional independence relations, but also because, given the causal in-

terpretation of MAGs, we can easily read off the CPAG valid sentences about causal

relations as entailed by the CMC and CFC together with the given conditional in-

dependence facts, in particular, sentences of the form “variable A is not a cause of

variable B or any selection variable”, and sentences of the form “variable A is a cause

of variable B or some selection variable”.

The primary concern of this dissertation is about causal insufficiency, not about

selection effects. Suppose it is known that there are no selection effects, but the set

of observed variables may be causally insufficient. In this case, as we said, we do

not need R5 − R7. Moreover, the CPAG constructed by the AFCI procedure will

not contain any −− edge or ◦−− edge. As mentioned in the previous chapter, this

CPAG gives us all valid negative causal sentences by a simple criterion: the sentence

“variable A is not a cause of variable B” is valid if and only if there is no potentially

directed path from A to B in the CPAG. In other words, if there is a potentially

directed path from A to B in the CPAG, then the sentence is false in some causal

models (DAGs with latent variables) that satisfy the axioms; if there is no potentially

directed path from A to B in the CPAG, the sentence is true in all causal models

that satisfy the axioms.

The validity of positive causal sentences is more subtle. A sufficient condition for

the sentence “variable A is a cause of variable B” to be valid5 is obviously that there

is a directed path from A to B in the CPAG. It is also easy to see that the sentence

“variable A is a cause of B” is not valid if there is an edge between A and B but

the edge is not A → B. Another sufficient condition for the sentence to be invalid is

that there is no directed path and at most one partially directed path from A to B.

However, a sufficient and necessary condition for validity is not obvious. The presence

5Again, causal transitivity is assumed because the CFC is assumed.
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of a directed path in the CPAG is not necessary. For example, consider the CPAG

for four variables consisting of the following edges: C ◦−−◦A ◦−−◦D, C → B ← D.

Although there is no directed path from A to B in this CPAG, it is true that in every

MAG that belongs to the Markov equivalence class represented by the CPAG, A is

either a parent of C or a parent of D, and hence in every such MAG, A is an ancestor

of B. This means that the sentence “A is a cause of B” is valid. We thus conjecture

the following sufficient and necessary condition: the sentence “variable A is a cause

of B” is valid if and only if there is a directed path from A to B in the CPAG or

there exist two uncovered partially directed paths from A to B in the CPAG such

that the vertices adjacent to A on the two paths respectively are distinct and are not

adjacent.6

Apart from causal inference, the completeness result leads to a syntactic character-

ization of CPAGs by the orientation rules. The characterization, unlike the definition

given in 3.2.1, does not need to mention a MAG. To borrow a term from Andersson

et al. (1997), we say a non-circle mark in a partial mixed graph is protected by an

orientation rule if it could be introduced by that orientation rule, given all other

marks in the graph. The next theorem gives the necessary and sufficient conditions

for a partial mixed graph — that is, a graph consisting of →, ↔, −−, ◦→, ◦−−◦, ◦−
— to be a CPAG for some Markov equivalence class of MAGs.

Theorem 4.3.2. A partial mixed graph is a CPAG for a Markov equivalence class of

MAGs if and only if

(i) (a1)-(a3) (in Definition 3.1.1) and CP1−CP4 hold; and there is no inducing

path between two non-adjacent vertices;

(ii) the circle component is chordal;

6This is obviously related to R10.
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(iii) it is closed under R8−R107; and

(iv) every non-circle mark is protected by one of R0−R10.

Note that the characterization of essential graphs — graphs that represent Markov

equivalence classes of DAGs — given in Andersson et al. (1997) is essentially of the

same sort. A proof of the theorem is not hard to construct given what we have shown

in the last section, in particular, Lemma 4.3.6 (or Lemma 3.3.4). In particular,

we can construct a MAG by arrowhead augmenting (or tail augmenting) the given

partial mixed graph and orienting the circle component as a DAG with no unshielded

colliders. The resulting MAG is a member of the Markov equivalence class of which

the given graph is the CPAG.

4.3.5 Omitted Proofs

Proof of Lemma 4.3.9

Proof. We first show that each of the conditions is necessary (only if). Obviously if

(t1) or (t2) fails, G ′ will not be ancestral. The failure of (t3) could be due to one of

the following two cases:

Case 1: there is a vertex C which is a parent of A but not a parent of B. If B

and C are not adjacent, then there is an unshielded collider in G ′ but not in G, and

hence the two graphs are not Markov equivalent. If B and C are adjacent, then G
can’t be ancestral (unless we have C → B).

Case 2: there is a vertex C which is a spouse of A but not a parent or spouse of

B. Again, if B and C are not adjacent, the two graphs can’t be Markov equivalent

because there is an unshielded collider in G but not in G ′. If B and C are adjacent,

7Other rules are taken care of by CP1−CP4.
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the edge between them must be B → C by the supposition. But then there is an

almost directed cycle in G.

Suppose for contradiction that (t4) fails, i.e., there is a discriminating path u =

〈U, · · · , V, A, B〉 for A. If the edge between V and A is into A, then G and G ′ are

not Markov equivalent, because (e3) in Proposition 3.1.2 is violated. If, on the other

hand, the edge between V and A is not into A, then it must be A → V . By the

definition of discriminating path (Definition 3.1.7), V is a parent of B. So we have

A → V → B ↔ A in G ′, an almost directed cycle.

Next, we demonstrate the sufficiency of the conditions (if). Suppose (t1)-(t4) are

met. We first verify that G ′ is a MAG, i.e., it is both ancestral and maximal. Suppose

for contradiction that G ′ is not ancestral. Since G is ancestral, and G ′ differs from

G only regarding the edge between A and B, in G ′ the violation of the definition of

ancestral graphs (Definition 3.1.1) must involve the edge between A and B. So it

can’t be a violation of (a1), because a directed cycle would not involve A ↔ B. If

it is a violation of (a2), i.e., there is an almost directed cycle in G ′, then that cycle

includes A ↔ B, which means either A is an ancestor of B or B is an ancestor of A

in G ′. The former case contradicts (t2), and the latter case yields a directed cycle in

G. So there can’t be any violation of (a2) in G ′. Lastly, if there is a violation of (a3)

in G ′, it must be that there is an undirected edge incident to A, which contradicts

(t1). Hence G ′ must be ancestral.

To show that G ′ is maximal, suppose for the sake of contradiction that there is

an inducing path u in G ′ between two non-adjacent vertices, D and E. Then u must

include A ↔ B, otherwise u is also an inducing path in G. Furthermore, A is not

an endpoint of u, otherwise u is still an inducing path in G (in fact, there will be an
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almost directed path in G in that case). Suppose, without loss of generality, that D is

the endpoint closer to A on u than it is to B. We show that some vertex on u(D, A)

other than A is B’s spouse. Suppose not; we argue by induction that every vertex on

u(A,D), and in particular D, is a parent of B. By (t3), the vertex adjacent to A on

u(D, A) is either a parent or a spouse of B, but it is not a spouse by supposition, so it

is a parent. In the inductive step, suppose the first n vertices next to A on u(D, A) are

B’s parents, then the n+1st vertex V must be adjacent to B, otherwise the sub-path

of u between this vertex and B forms a discriminating path for A which contradicts

(t4). The edge between V and B obviously can’t be undirected. Furthermore, by

supposition, V is not a spouse of B, i.e., it is not V ↔ B. It can’t be V ← B either,

because in that case there would be an almost directed cycle in G ′ (as the vertex

before V , by the inductive hypothesis, is a parent of B), which we have shown to

be impossible. So V must be a parent of B. Thus we have shown that every vertex

on u(A,D), and in particular D, is a parent of B. Then B must be an ancestor of

E, because by the definition of inducing path (Definition 3.1.4), B is an ancestor of

either D or E. So D is an ancestor of E, and it is obvious that the vertex adjacent to

E on u must be an ancestor of D, which implies that there is an almost directed cycle

in G ′. which we have shown to be absent. Hence a contradiction. So some vertex on

u(D, A) other than A is a spouse of B. Let C be such a vertex on u(D, A). Replacing

u(C,B) on u with C ↔ B yields an inducing path between D and E in G, which

contradicts the fact that G is maximal.

Having shown that G ′ is a MAG, we now verify that G and G ′ satisfy the con-

ditions for Markov equivalence in Proposition 3.1.2. Obviously they have the same

adjacencies, and share the same colliders except possibly A. But A will not be a

collider in an unshielded triple, for condition (t3) requires that any vertex that is
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incident to an edge into A is also adjacent to B. So the only worry is that a triple

〈C, A, B〉 might be discriminated by a path, but (t4) guarantees that there is no such

path. Therefore, G ′ is Markov equivalent to G.

Proof of Lemma 4.3.25

Proof. We first demonstrate (i). Suppose for contradiction that some ◦−−◦ edge is

oriented into a vertex in AR(J◦→ K) by the end of the third stage of the Orientation

Algorithm. Let the first occurrence of such an orientation be A ◦−−◦B being oriented

as A → B, where B ∈ AR(J◦→ K). We consider all the possible ways in which this

orientation could occur and derive a contradiction in each.

Case 1: A ◦−−◦B is oriented as A → B to satisfy one of C1 −C3. Since B is in

AR(J◦→ K), C1 does not dictate this orientation. It can’t be C2, as entailed by

(2) in Lemma 4.3.21. So it must be C3, which means there is a vertex E such that

A◦→ E ∈ REL(J◦→ K) and E, B are not adjacent. Then Lemma 4.3.23 implies

that B is not a parent of K. Furthermore, by Lemma 4.3.18, A◦→ K is present in

PAFCI , which implies that B 6= K (because the edge between A and B is A ◦−−◦B in

PAFCI). It follows that B is not in AR(J◦→ K), which is a contradiction.

Case 2: A◦−−◦B is oriented as A → B by an application of UR2. That is, there is

a vertex C such that A ◦−−◦C ◦−−◦B is in C(PAFCI), and is oriented as A → C → B

before A ◦−−◦B is oriented. Then C ◦−−◦B being oriented as C → B would be an

earlier occurrence of orientation into B. This contradicts our choice of A ◦−−◦B.

Case 3: A ◦−−◦B is oriented as A → B by an application of UR3. Again, it is

easy to see that this contradicts the assumption that A → B is the first orientation

into B.

Case 4: A ◦−−◦B is oriented as A → B by an application of UR1. Then there
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is a chain of applications of UR1 (which could consist of just one application) that

leads to A → B where the first edge on the chain is not oriented by UR1. So there

are three subcases to consider:

Case 4.1: the first edge is oriented to satisfy one of C1 − C3. If it is C1, then

in C(PAFCI) there is an uncovered circle path with more than one edge between two

vertices in AR(J◦→ K), which contradicts Lemma 4.3.19. It can’t be C2, as entailed

by (2) in Lemma 4.3.21. So it must be C3, but in that case Lemma 4.3.23 implies

that B is not a parent of K and Lemma 4.3.18 implies that B 6= K, which contradict

the membership of B in AR(J◦→ K).

Case 4.2: the first edge is oriented by UR2. That is, there are three vertices X,

Y and Z (Z could be A) such that X ◦−−◦Y ◦−−◦Z is in C(PAFCI), and is oriented

as X → Y → Z, which in turn orients the edge X ◦−−◦Z as X → Z. And X → Z

initiates a chain of UR1 applications on an uncovered circle path u = 〈X,Z, · · · , B〉
that eventually leads to the orientation of A → B. Now we argue that for every

vertex V on u between Z and B, there is an edge between Y and V already oriented

as Y → V before X → Z is thus oriented. The argument is by induction. Let V1 be

the first vertex next to Z on u (V1 is B if Z is A). Y and V1 must be adjacent in

C(PAFCI), for otherwise Z ◦−−◦V1 would be oriented as Z → V1 by UR1 before X ◦−−◦Z
is oriented by UR2, according to our convention of the priority of UR1. Since X and

V1 are not adjacent (because u is uncovered), Y ◦−−◦V1 should be oriented as Y → V1

by UR1 before X → Z is thus oriented. In the inductive step, suppose Y → Vn is

oriented as such before X → Z is thus oriented, where Vn is the n’the vertex after Z

on u. Consider the n + 1st vertex Vn+1. Again, it must be adjacent to Y , otherwise

the edge Vn ◦−−◦Vn+1 should be oriented by UR1 before X ◦−−◦Z is oriented by our

convention of the priority of UR1. Furthermore, by Lemma 4.3.16, X and Vn+1 are
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not adjacent, so the edge Y ◦−−◦Vn+1 should be oriented as Y → Vn+1 by UR1 before

X ◦−−◦Z gets oriented. Hence, in particular, Y → B is already present before X ◦−−◦Z
gets oriented, and hence before A ◦−−◦B gets oriented. This contradicts our choice of

A ◦−−◦B.

Case 4.3: the first edge is oriented by UR3. That is, there are four vertices

X, Y, Z, W (Z could be A) such that W ◦−−◦Y ◦−−◦Z, W ◦−−◦X ◦−−◦Z, X ◦−−◦Y are in

C(PAFCI), and that W,Z are not adjacent. Furthermore, W ◦−−◦Y ◦−−◦Z is oriented

as W → Y → Z, which in turn orients the edge X ◦−−◦Z as X → Z. This then

initiates a chain of UR1 applications on an uncovered circle path u = 〈X,Z, · · · , B〉
that eventually leads to the orientation of A → B. Notice that W,Z are not adjacent,

so 〈W,X,Z, · · · , B〉 is also an uncovered path. By the exact same argument as in Case

4.2, we can show that for every vertex V between Z and B on u, there is an edge

between Y and V already oriented as Y → V before X → Z is thus oriented. So in

particular, Y → B is already present before X ◦−−◦Z gets oriented, and hence before

A ◦−−◦B gets oriented. This contradicts our choice of A ◦−−◦B.

Thus we have established (i).

The proof of (ii) is completely parallel to the proof of (i). The only notable

difference is that in the counterparts of Case 1 and Case 4.1, we need to cite some

different lemmas. Take Case 1 for example. We need to argue that an orientation to

satisfy one of C1−C3 will not be an orientation that violates (ii). For C1, it suffices

to cite (1) in Lemma 4.3.21; for C2, we need to cite Lemma 4.3.22; for C3, we need

Lemma 4.3.23. Other details are virtually the same as the arguments for (i).

Proof of Lemma 4.3.28

Proof. Suppose for contradiction that a violation of C3 occurs. Let the first occur-
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rence be A ◦−−◦C oriented as A ← C. This means there is a vertex B such that

A◦→ B ∈ REL(J◦→ K), but C, B are not adjacent. Again, this orientation must

occur by the end of the third stage of the Orientation Algorithm, so the following are

all the possible ways in which this orientation could occur. We derive a contradiction

in each.

Case 1: A ◦−−◦C is oriented as A ← C to satisfy one of C1 −C3. Lemma 4.3.23

implies that it is not C1 or C2. So it must be C3, which, however, contradicts Lemma

4.3.24 (note that A ◦−−◦C is the circle path relevant to the conditions of 4.3.24).

Case 2: A◦−−◦C is oriented as A ← C by an application of UR2, which means there

is a D such that C ◦−−◦D◦−−◦A is in C(PAFCI) and is already oriented as C → D → A

(before A ← C is thus oriented). Then D must be adjacent to B, otherwise A ← D

would be an earlier violation of C3. Furthermore, because D ◦−−◦A◦→ B is in PAFCI ,

the edge between D and B is either D → B or D◦→ B by Corollary 4.3.14. It can’t

be the former, for otherwise (ii) of Lemma 4.3.25 implies that there should not be

any orientation into D (by the end of the third stage of the Orientation Algorithm),

which contradicts C → D. In the latter case, we argue that D is not a parent of K,

and hence D◦→ B ∈ REL(J◦→ K). Suppose on the contrary that D is a parent

of K. Obviously A◦→ K, which is shown to be present in PAFCI by Lemma 4.3.18,

belongs to REL(J◦→ K). Since A ◦−−◦D → K , (ii) of Lemma 4.3.25 implies that

there should not be any orientation into D (by the end of the third stage of the

Orientation Algorithm), which contradicts C → D. Therefore, D is not a parent of

K, and hence D◦→ B ∈ REL(J◦→ K). But then C → D is an earlier violation of

C3 than C → A, a contradiction.

Case 3: A ◦−−◦C is oriented as A ← C by an application of UR3. That is, there

are two vertices D,E such that D ◦−−◦E ◦−−◦A, D ◦−−◦C ◦−−◦A, C ◦−−◦E are in
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C(PAFCI) and D, A are not adjacent. Furthermore, D ◦−−◦E ◦−−◦A is already oriented

as D → E → A (before A ← C is thus oriented). By the same argument as in Case

2, there must be an edge E◦→ B in PAFCI . Furthermore, D and B must be adjacent,

otherwise D → E would contradict (ii) of Lemma 4.3.23. Corollary 4.3.14 implies

that the edge between D and B is either D → B or D◦→ B. But then the edge

A◦→ B could be oriented as A → B by R9 because 〈A,C,D,B〉 is an uncovered p.d.

path from A to B such that C and B are not adjacent. Hence a contradiction.

Case 4: A ◦−−◦C is oriented as A ← C by an application of UR1. Then there

is a chain of applications of UR1 (which could consist of just one application) that

leads to C → A where the first edge on the chain is not oriented by UR1. So there

are three subcases to consider:

Case 4.1: the first edge is oriented to satisfy one of C1−C3. Lemma 4.3.23 implies

that it is not C1 or C2. So it must be C3, which, however, contradicts Lemma 4.3.24.

Case 4.2: the first edge is oriented by UR2. That is, there are three vertices X,

Y and Z (Z could be C) such that X ◦−−◦Y ◦−−◦Z is in C(PAFCI), and is oriented

as X → Y → Z, which in turn orients the edge X ◦−−◦Z as X → Z. And X → Z

initiates a chain of UR1 applications on an uncovered circle path u = 〈X,Z, · · · , A〉
that eventually leads to the orientation of C → A. By the same induction as in

Lemma 4.3.25, it is easy to show that for every vertex V on u after Z, there is an

edge Y ◦−−◦V in C(PAFCI), oriented as Y → V before X ◦−−◦Z is oriented. So

in particular, Y is adjacent to A in C(PAFCI) (and hence the edge between them is

Y ◦−−◦A in PAFCI), and the edge between them is oriented as Y → A before X ◦−−◦Z is

oriented. Then Y must be adjacent to B in PAFCI , for otherwise Y → A would be an

earlier violation of C3 than C → A. By Corollary 4.3.14, the edge between Y and B

is either Y → B or Y ◦→ B in PAFCI . If it is Y → B, then according to (ii) of Lemma
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4.3.25, there should not be any orientation into Y (by the end of the third stage of the

Orientation Algorithm), which contradicts X → Y . So it must be Y ◦→ B in PAFCI .

Furthermore, Y is not a parent of K, for otherwise there should not be any orientation

into Y by (ii) of Lemma 4.3.25 (because A◦→ K ∈ REL(J◦→ K) by Lemma 4.3.18),

which contradicts X → Y . Furthermore, since A◦→ B ∈ REL(J◦→ K), there is a

p.d. path from J to A such that no vertex on the path is a parent of K.

If this path passes Y , then the segment from J to Y is a p.d. path from J to Y

with no parent of K on it. If the path does not include Y , then the path appended to

A ◦−−◦Y is a p.d. path from J to Y with no parent of K on it. Hence, in either case,

Y ◦→ B belongs to REL(J◦→ K). This implies that X and B are adjacent in PAFCI ,

for otherwise X → Y would be an earlier violation of C3. The edge between X and

B, furthermore, is either X → B or X◦→ B by Corollary 4.3.14. Then consider the

path 〈A,C, · · · , X, B〉, which is a p.d. path from A to B such that C is not adjacent

to B and the segment between A and X is uncovered. It is easy to see that A◦→ B

could be oriented as A → B by R9, a contradiction.

Case 4.3 the first edge is oriented by UR3. That is, there are four vertices

X, Y, Z, W (Z could be C) such that W ◦−−◦Y ◦−−◦Z, W ◦−−◦X ◦−−◦Z, X ◦−−◦Y are in

C(PAFCI), and that W,Z are not adjacent. Furthermore, W ◦−−◦Y ◦−−◦Z is oriented

as W → Y → Z, which in turn orients the edge X ◦−−◦Z as X → Z. This then

initiates a chain of UR1 applications on an uncovered circle path u = 〈X,Z, · · · , A〉
that eventually leads to the orientation of C → A. Notice that W,Z are not adjacent,

so 〈W,X, Z, · · · , B〉 is also an uncovered path. The rest of the argument is extremely

similar to that of Case 4.2.

Proof of Lemma 4.3.32
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Proof. Suppose RREL is not empty. Let

W = {B|∃A s.t.A → B ∈ RREL}

Let Y be a minimal vertex in W, that is, Y ∈ W and no proper ancestor of D in

M belongs to W. Let X be a vertex such that X → Y ∈ RREL and no proper

descendant of X inM has this property. We show that X → Y satisfies the conditions

(t1)-(t4) of Lemma 4.3.9.

Suppose, contrary to (t1), that X is an endpoint of an undirected edge X −−V in

M. Since any undirected edge in M is also in HJ◦→K , X −−V is also in PAFCI (see

Definition 4.3.1). On the other hand, since X → Y ∈ RREL, X◦→ Y is in PAFCI .

But then X◦→ Y could be oriented by R6, a contradiction.

Suppose, contrary to (t2), that there is a directed path from X to Y in M that

does not contain X → Y . The corresponding path in PAFCI must be potentially

directed. It follows from Lemma 4.3.30 that some vertex Z on the path is adjacent

to both X and Y . Since M is a MAG, we have X → Z → Y in M, and so the

corresponding path 〈X, Z, Y 〉 in PAFCI is potentially directed. Notice that the edge

between Z and Y can’t be Z −−◦ Y in PAFCI according to Lemma 4.3.1, because

X◦→ Y is present. So, by the definition of p.d. path, the edge between X and Z is

either X ◦−−◦Z or X → Z or X◦→ Z or X −−◦ Z, and the edge between Z and Y

is either Z ◦−−◦Y or Z → Y or Z◦→ Y . We enumerate the possibilities below and

derive a contradiction in each:

Case 1: X ◦−−◦Z ◦−−◦Y appears in PAFCI . This contradicts property CP1 (Lemma

3.3.1) because X◦→ Y is present in PAFCI .

Case 2: X ◦−−◦Z → Y appears in PAFCI . Because X◦→ Y ∈ REL(J◦→ K),

and X ◦−−◦Z is oriented as X → Z, DJ◦→K is not agreeable to J◦→ K (C2 being

violated), which contradicts Corollary 4.3.29.
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Case 3: X ◦−−◦Z◦→ Y appears in PAFCI . If Z is not a parent of K, then obviously

Z◦→ Y ∈ REL(J◦→ K) (given the assumption that X◦→ Y ∈ REL(J◦→ K)).

But Z is a proper descendant of X in M, which contradicts our choice of X. So Z

must be a parent of K. Notice then that X◦→ K — which is shown to be present

in PAFCI by Lemma 4.3.18 — belongs to REL(J◦→ K), but X ◦−−◦Z is oriented as

X → Z, which means that DJ◦→K is not agreeable to J◦→ K (C2 being violated).

This contradicts Corollary 4.3.29.

Case 4: X → Z ◦−−◦Y appears in PAFCI . Since X◦→ K is present in PAFCI by

Lemma 4.3.18, Z 6= K. Moreover, Z is not a parent of K, for otherwise X◦→ K

could be oriented as X → K by R8. So Z /∈ AR(J◦→ K). It follows that DJ◦→K is

not agreeable to J◦→ K, because Z ◦−−◦Y is oriented as Z → Y (C1 being violated),

which contradicts Corollary 4.3.29.

Case 5: X → Z → Y appears in PAFCI . Then X◦→ Y could be oriented by R8,

a contradiction.

Case 6: X → Z◦→ Y appears in PAFCI . Then Z is not a parent of K, for

otherwise X◦→ K could be oriented by R8. It follows that Z◦→ Y ∈ REL(J◦→ K).

But Z is a proper descendant of X in M, which contradicts our choice of X.

Case 7: X◦→ Z ◦−−◦Y appears in PAFCI . Then Z /∈ AR(J◦→ K), for otherwise

X◦→ Z ∈ REL(J◦→ K), but Z is a proper ancestor of Y in M, which contradicts

our choice of Y . However, Z ◦−−◦Y is oriented as Z → Y , which means that DJ◦→K

is not agreeable to J◦→ K (C1 being violated). This contradicts Corollary 4.3.29.

Case 8: X◦→ Z → Y appears in PAFCI . We argue that Z is a parent of K

in PAFCI . This is obvious if Y = K. Suppose Y 6= K, then (by the definition of

“relevance”) Y is a parent of K in PAFCI . It follows that Z is adjacent to K, for

otherwise the edge X◦→ K (which is shown to be present by Lemma 4.3.18) could
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be oriented by R4 because 〈Z, Y, X, K〉 would constitute a discriminating path for X

in PAFCI . Furthermore, since Z → Y → K is in PAFCI , the edge between Z and K

is Z → K in PAFCI . Hence X◦→ Z ∈ REL(J◦→ K). But Z is a proper ancestor of

Y in M, which contradicts our choice of Y .

Case 9: X◦→ Z◦→ Y appears in PAFCI . If Z is not a parent of K, then

Z◦→ Y ∈ REL(J◦→ K). But Z is a proper descendant of X inM, which contradicts

our choice of X. So Z must be a parent of K. But then X◦→ Z ∈ REL(J◦→ K),

and Z is a proper ancestor of Y in M, which contradicts our choice of Y .

Case 10: X−−◦Z ◦−−◦Y appears in PAFCI . This contradicts Lemma 4.3.3, because

X◦→ Y is present.

Case 11: X −−◦ Z → Y appears in PAFCI . Then X◦→ Y in PAFCI could be

oriented as X → K by R8, a contradiction.

Case 12: X −−◦ Z◦→ Y appears in PAFCI . Z is not a parent of K, for otherwise

X◦→ K could be oriented by R8. So Z◦→ Y ∈ REL(J◦→ K). But Z is a proper

descendant of X in M, which contradicts our choice of X.

Next, we show that condition (t3) holds as well. For any W → X in M, it

corresponds to either W → X or W◦→ X or W ◦−−◦X or W −−◦X in PAFCI . We

argue that in any case W and Y are adjacent. In the former two cases, by Lemma

3.3.1, W and Y are adjacent (since there is a circle at X on X◦→ Y ). In the case

of W ◦−−◦X, since it is oriented as W → X in M, W must be adjacent to Y , for

otherwise DJ◦→K is not agreeable to J◦→ K, which contradicts Corollary 4.3.29. In

the case of W −−◦X, by Lemma 4.3.3, W and Y are adjacent. Furthermore, the edge

between W and Y must be W → Y in M, because W → X → Y is in M and M is

a MAG.

For any W ↔ X in M, it corresponds to either W ↔ X or W◦→ X or W ←◦X
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in PAFCI . In the former two cases, W and Y are adjacent by Lemma 3.3.1. In the

latter case, W ←◦X ∈ REL(J◦→ K) by our assumption about bi-directed edges in

M. It then follows from Lemma 4.3.31 that W and Y are adjacent. So W and Y

are adjacent in M. Furthermore, since M is a MAG, the edge between W and Y is

either W → Y or W ↔ Y in M.

Lastly, we show that condition (t4) in Lemma 4.3.9 is also satisfied. Suppose

otherwise, that is, in M there is a path p = (V0, V1, · · · , Vn = X,Y ) which is discrim-

inating for X. Without loss of generality, suppose p is a shortest such path. Below

we derive a contradiction by (eventually) showing that the corresponding path of p in

PAFCI is also a discriminating path in PAFCI , and hence the circle at X on X◦→ Y

could be oriented by R4.

Note first that the subpath p(V0, X) is into X in M, for otherwise there is a

directed path from X to Y other than the edge X → Y (which easily follows from

the definition of discriminating path), which contradicts the already established fact

that (t2) holds.

It follows that every edge on the subpath p(V1, X) is bi-directed in M.

We now argue that in PAFCI the edge between V0 and V1 is V0∗→ V1, i.e., the

arrowhead at V1 on this edge is already present in PAFCI . The following two facts

will be useful: (1) V1 ↔ V2 (V2 could be X) appears in M; and (2) there can’t be an

edge between V0 and V2 that is into V2 (i.e., has an arrowhead at V2) in PAFCI . For

otherwise either 〈V0, V2, · · · , Vn = X,Y 〉 constitutes a shorter discriminating path in

M (if V2 6= X), or X◦→ Y in PAFCI could be oriented as X → Y by R1 (if V2 = X),

either of which is a contradiction.

Suppose for contradiction that the arrowhead at V1 on the edge between V0 and

V1 is not present in PAFCI . Then the mark must be a circle in PAFCI , i.e., the edge
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between V0 and V1 in PAFCI is either V0 −−◦ V1 or V0 ◦−−◦V1 or V0 ←◦V1 (the mark

at V1 can’t be a tail because in M it is an arrowhead).

If V0 −−◦ V1 appears in PAFCI , then the arrowhead at V1 on V1 ↔ V2 is not in

PAFCI by Lemma 4.3.1. So the edge must be V1◦→ V2 in PAFCI . It then follows

from Lemma 4.3.3 that there is an edge V0∗→ V2 in PAFCI , which contradicts fact

(2) mentioned above. So the edge between V0 and V1 is not V0 −−◦ V1.

If the edge is V0 ◦−−◦V1, then V1 ↔ V2 is not already in PAFCI , for otherwise by

Lemma 3.3.2, there would also be an edge V0 ↔ V2 in PAFCI , which again contradicts

fact (2). By our assumption about bi-directed edges inM, either V1◦→ V2 or V1 ←◦V2

appears in PAFCI and belongs to REL(J◦→ K). In the former case (V1◦→ V2), V0

must be adjacent to V2, for otherwise the orientation of V0 ◦−−◦V1 (into V0 → V1) is

not agreeable to J◦→ K (C3 being violated). By Corollary 4.3.14, the edge between

V0 and V2 is either V0 → V2 or V0◦→ V2 in PAFCI , which contradicts fact (2). In

the latter case (V1 ←◦V2), by Lemma 3.3.2, either V0 ← V2 or V0 ←◦V2 is in PAFCI .

Now if V0 is not a parent of K, which means V0 /∈ AR(J◦→ K) (V0 6= K because Y

belongs to AR(J◦→ K) but is not adjacent to V0 by the definition of discriminating

path), then the orientation of V0 ◦−−◦V1 (into V0 → V1) is not agreeable (C1 being

violated). So V0 is a parent of K — which also implies that Y 6= K. But then the

edge V2◦→ K — which is implied to be present in PAFCI by Lemma 4.3.18 — could

be oriented as V2 → K by R10 (because V0 and Y are not adjacent, and the edge

between V2 and V0 in PAFCI constitutes an uncovered p.d. path from V2 to V0, and

the edge between V2 and Y constitutes an uncovered p.d. path in PAFCI from V2 to

Y ), a contradiction. So the edge between V0 and V1 in PAFCI is not V0 ◦−−◦V1 either.

If the edge is V0 ←◦V1 in PAFCI , the edge between them in M is V0 ↔ V1

by the definition of discriminating path. According to our assumption about bi-
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directed edges in M, V0 ←◦V1 ∈ REL(J◦→ K). It follows that both V0 and Y

are parents of K (neither of them can be K because they are not adjacent by the

definition of discriminating path), and V1◦→ K is present in PAFCI by Lemma 4.3.18.

Furthermore, notice that V1 → Y is in M by the definition of discriminating path,

which means that the edge between V1 and Y in PAFCI constitutes an (uncovered)

p.d. path from V1 to Y . Since W and Y are not adjacent, it is easy to see that

V1◦→ K could be oriented as V1 → K by R10, a contradiction. So the edge between

V0 and V1 in PAFCI is not V0 ←◦V1 either.

It follows that the edge between V0 and V1 in PAFCI is V0∗→ V1, i.e., the arrowhead

at V1 on this edge is already in PAFCI .

Now we argue that p is also a discriminating path for X in PAFCI . For this

purpose, it suffices to show that for every 1 ≤ i ≤ n−1, Vi is a collider on p in PAFCI

and is a parent of Y in PAFCI . Consider V1 for the base case. Since we have shown

that V0∗→ V1 appears in PAFCI , and V0 is not adjacent to Y , the edge between V1 and

Y is V1 → Y in PAFCI in virtue of R1. So V1 is a parent of Y in PAFCI . Suppose for

contradiction that V1 is not a collider on p in PAFCI . Since we have V0∗→ V1 in PAFCI ,

and we have V1 ↔ V2 in M, the edge between V1 and V2 must be V1◦→ V2 in PAFCI .

And by our assumption about bi-directed edges in M, V1◦→ V2 ∈ REL(J◦→ K).

Then Lemma 4.3.18 implies that there is an edge V1◦→ K in PAFCI . But either

Y = K or Y is a parent of K in PAFCI , which implies that V1 is a parent of K or can

be oriented as a parent of K by R8 in PAFCI , a contradiction. So V1 is a collider on

p in PAFCI and is a parent of Y in PAFCI .

The inductive step can be established by a very similar argument. Suppose for

all 1 ≤ i < m ≤ n− 1, Vi is a collider on p in PAFCI and is a parent of Y in PAFCI .

Consider Vm. By the inductive hypothesis, 〈V0, V1, · · · , Vm, Y 〉 is a discriminating path
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for Vm in PAFCI , and hence the edge between Vm and Y is Vm → Y in PAFCI in virtue

of R4. So Vm is also a parent of Y in PAFCI . Suppose for contradiction that Vm is not

a collider on p in PAFCI . It follows that either Vm−1 ←◦Vm or Vm◦→ Vm+1 appears in

PAFCI . Since we have Vm−1 ↔ Vm ↔ Vm+1 in M, either Vm−1 ←◦Vm or Vm◦→ Vm+1

belongs to REL(J◦→ K), by our assumption about bi-directed edges in M. Then

Lemma 4.3.18 implies that there is either an edge Vm−1◦→ K or an edge Vm◦→ K

in PAFCI . But we have established that in PAFCI both Vm−1 and Vm are parents of

Y (which in turn is either identical to K or a parent of K). So in either case we can

derive a contradiction as we did in the base case. Thus we have established that p

is also a discriminating path for X in PAFCI , which implies that the circle at X on

X◦→ Y could be oriented by R4, a contradiction.

Therefore, all the conditions in Lemma 4.3.9 are met. Thus changing X → Y to

X ↔ Y will yield a MAG Markov equivalent to M.

4.4 A Transformational Characterization of Markov

Equivalence for Directed MAGs

Markov equivalence between DAGs are characterized in various ways (e.g., Verma

and Pearl 1990, Chickering 1995, Andersson et al. 1997), all of which have been

found useful for various purposes. In particular, the transformational characterization

provided by Chickering (1995) — that two DAGs are Markov equivalent if and only if

one can be transformed to the other by a sequence of single edge reversals that preserve

DAG-ness and Markov equivalence — is very useful in deriving properties shared by

Markov equivalent DAGs. Moreover, when extended to provide a characterization

of the submodel relation between DAGs, the transformational property implies the
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asymptotic correctness of a score-based search procedure over Markov equivalence

classes of DAGs, known as the GES algorithm (Meek 1996, Chickering 2002).

MAGs, especially directed MAGs, are a generalization of DAGs, and it is natural

to expect that a characterization of Markov equivalence between DAGs can be ex-

tended to characterize Markov equivalence between MAGs. The Verma-Pearl style

characterization has indeed been generalized to MAGs (Spirtes and Richardson 1996,

Ali et al. 2004), of which Proposition 3.1.2 provides an example. But Chickering’s

transformational characterization has not seen an extension to MAGs. We fill this

gap below for directed MAGs (DMAGs). Specifically, we show that two DMAGs are

Markov equivalent if and only if one can be transformed to the other by a sequence of

single mark changes that preserve DMAG-ness and Markov equivalence. The reason

we present this transformational characterization here is that the argument is going

to depend crucially on a few results established earlier in this chapter.

One lemma that immediately stands out as relevant to this purpose is Lemma

4.3.9, which gives sufficient and necessary conditions for a kind of mark change —

turning a directed edge into a bi-directed edge — to preserve Markov equivalence of

MAGs. Obviously the same set of conditions also specifies when turning a bi-directed

edge into a directed edge preserves Markov equivalence. Notice furthermore that if

we only consider DMAGs, MAGs with no undirected edges, any single mark change

is either to turn a directed edge into a bi-directed or to turn a bi-directed edge into a

directed one. So Lemma 4.3.9 encompasses all possible kinds of single mark changes

within the class of DMAGs. We rewrite the lemma here for easy reference:

Lemma 4.4.1. Let G be an arbitrary DMAG, and A → B an arbitrary directed edge

in G. Let G ′ be the graph identical to G except that the edge between A and B is

A ↔ B. (In other words, G ′ is the result of simply changing the mark at A on A → B
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from an tail into an arrowhead.) G ′ is a DMAG and Markov equivalent to G if and

only if

(t1) there is no directed path from A to B other than A → B;

(t2) For any C → A in G, C → B is also in G; and for any D ↔ A in G, either

D → B or D ↔ B is in G;

(t3) There is no discriminating path for A on which B is the endpoint adjacent to

A.

Proof. Special case of Lemma 4.3.9.

As we said, this lemma, by symmetry, also gives conditions for dropping an ar-

rowhead from a bi-directed edge while preserving Markov equivalence. (The first

condition in Lemma 4.3.9 is not needed as we are only concerned with DMAGs.)

We say a mark change in a DMAG is legitimate when the conditions in Lemma

4.4.1 are satisfied. In Chickering’s result for DAGs, the basic unit of equivalence-

preserving transformation is (covered) edge reversal. Here we regard an edge reversal

as simply a special case of two consecutive mark changes. That is, a reversal of

A → B is simply to first add an arrowhead at A (to form A ↔ B), and then to drop

the arrowhead at B (to form A ← B). An edge reversal is said to be legitimate if

both of the two consecutive mark changes are legitimate. Given Lemma 4.4.1, it is

straightforward to check the validity of the following condition for legitimate edge

reversal. (We use PaG/SpG to denote the set of parents/spouses of a vertex in G.)

Lemma 4.4.2. Let G be an arbitrary DMAG, and A → B an arbitrary directed edge

in G. The reversal of A → B is legitimate if and only if PaG(B) = PaG(A) ∪ {A}
and SpG(B) = SpG(A).
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When there is no bi-directed edge in G, that is, when G is a DAG, the condition

in Lemma 4.4.2 is reduced to the familiar definition for covered edge, i.e., PaG(B) =

PaG(A) ∪ {A} (Chickering 1995). The condition given by Drton and Richardson

(2004) for a bi-directed edge in a bi-directed graph to be orientable as a directed edge

in either direction (SpG(B) = SpG(A)) can be viewed as another special case of the

above lemma.

Another result relevant to our current purpose is Corollary 4.3.8. Confined to

DMAGs, it becomes the following proposition:

Proposition 4.4.1. Given any DMAG G, there exists a DMAG H such that

(1) H is Markov equivalent to G;

(2) every bi-directed edge in H is invariant;

(3) every directed edge in G is also in H.

Proof. Special case of Corollary 4.3.8.

We will call H in Proposition 4.4.1 a Loyal Equivalent Graph (LEG) of G. In

general a DMAG could have multiple LEGs. A distinctive feature of the LEGs is that

they have the fewest bi-directed edges among the Markov equivalent DMAGs. Drton

and Richardson (2004) explored the statistical significance of this fact for fitting bi-

directed graphs, graphs that contain only bi-directed edges. They showed, roughly

speaking, that if the LEGs of a bi-directed graph are DAGs, then fitting is easy;

otherwise fitting is not easy (in a specific technical sense).

Another feature which is particularly relevant to our argument is that between a

DMAG and any of its LEGs, only one kind of difference is possible, namely, some

bi-directed edges in the DMAG are oriented as directed edges in its LEG. For a simple
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illustration, compare the graphs in Figure 4.3, where H1 is a LEG of G1, and H2 is

a LEG of G2.
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Figure 4.3: A LEG of G1 (H1) and a LEG of G2 (H2)

A directed edge in a DMAG is called reversible if there is another Markov equiv-

alent DMAG in which the direction of the edge is reversed. We use the fact that CP1

holds of a CPAG to establish the next helpful proposition, which concerns reversible

directed edges and invariant bi-directed edges in a DMAG.

Proposition 4.4.2. Let A → B be any reversible edge in a DMAG G. For any vertex

C (distinct from A and B), there is an invariant bi-directed edge between C and A if

and only if there is an invariant bi-directed edge between C and B.

Proof. Since A → B is reversible, which means neither of the two marks of the edge

is invariant, in PG — the CPAG of G — the edge between A and B would be A◦−−◦B.

For any C, if there is an invariant bi-directed edge between C and A in G, C ↔ A

would also appear in PG. Because CP1 holds of PG, C ↔ B must also appear in P ,

and hence is an invariant bi-directed edge in G. Conversely, if there is an invariant

158



bi-directed edge between C and B in G, the same argument shows that there would

also be an invariant bi-directed edge between C and A in G.

In particular, if H is a LEG of a DMAG, then A → B being reversible implies that

A and B have the same set of spouses, as every bi-directed edge in H is invariant.

Now we have all we need to establish the transformational characterization. We

first state two intermediate theorems. The first one says if all of the differences

between two Markov equivalent DMAGs G and G ′ are of the following sort: that a

directed edge is in G while the corresponding edge is bi-directed in G ′, then there is a

sequence of legitimate mark changes that transforms one to the other. The second one

says that if every bi-directed edge in G and every bi-directed edge in G ′ is invariant,

then there is a sequence of legitimate mark changes (edge reversals) that transforms

one to the other.

Theorem 4.4.1. Let G and G ′ be two Markov equivalent DMAGs. If every bi-directed

edge in G is also in G ′, and every directed edge in G ′ is also in G, then there is a

sequence of legitimate mark changes that transforms one to the other.

Proof. We prove that there is a sequence of transformation from G to G ′, the reverse

of which will be a transformation from G ′ to G. Specifically we show that as long as

G and G ′ are different, there is always a legitimate mark change that can eliminate a

difference between them. The theorem then follows from a simple induction on the

number of differences.

The antecedent of the theorem implies that the differences between G and G ′ are

all of the same sort: a directed edge (→) is in G while the corresponding edge in G ′

is bi-directed (↔). Let

Diff = {y| there is a x such that x → y is in G and x ↔ y is in G ′}
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It is clear that G and G ′ are identical if and only if Diff = Ø. We claim that if Diff

is not empty, there is a legitimate mark change that eliminates a difference. Choose

B ∈ Diff such that no proper ancestor of B in G is in Diff . Let

DiffB = {x|x → B is in G and x ↔ B is in G ′}

Since B ∈ Diff , DiffB is not empty. Choose A ∈ DiffB such that no proper descen-

dant of A in G is in DiffB. The claim is that changing A → B to A ↔ B in G is a

legitimate mark change.

To see this is so, let us verify the conditions stated in Lemma 4.4.1. First,

suppose condition (t1) is violated, that is, suppose there is another directed path

d = 〈A, · · · , C, B〉 from A to B besides A → B. d is not present in G ′, otherwise G ′

is not a MAG due to the presence of A ↔ B. So some edge on d in G ′ must be bi-

directed. If the edge is C ↔ B, then C belongs to DiffB, but is a proper descendant

of A in G, which contradicts our choice of A. If the edge is between another pair of

vertices, say D ↔ E (s.t. D → E is in G), then E is in Diff , but is a proper ancestor

of B in G, which contradicts our choice of B. So can’t be any directed path from A

to B in G other than A → B. Condition (t1) holds.

Next we check condition (t2). For the first part, let C be any parent of A in G.

C must also be a parent of A in G ′, otherwise A is in Diff , but is a proper ancestor

of B in G, which contradicts our choice of B. It follows that C and B are adjacent,

for otherwise 〈C,A, B〉 is an unshielded collider in G ′ but not in G, contrary to the

assumption that they are Markov equivalent. Then C must be a parent of B in G,

otherwise G is not ancestral.

For the second part, let D be any spouse of A (i.e., D ↔ A) in G. D is also

a spouse of A in G ′ by our assumption. It follows that D and B are adjacent, for

otherwise 〈D, A,B〉 is an unshielded collider in G ′ but not in G. But D cannot be
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a child of B in G, for otherwise G is not ancestral. Hence D is either a parent or a

spouse of B.

Finally, suppose condition (t3) is violated, that is, suppose there is a discriminating

path u = 〈U, · · · , V, A, B〉 for A. By the definition of discriminating path, V is a

parent of B. It follows that the edge between A and V is not A → V , for otherwise

A → V → B would be a directed path from A to B, which has been shown to be

absent. Hence the edge between V and A must be bi-directed, V ↔ A. Further note

that by our assumption about the difference between G and G ′, every arrowhead in G
is also in G ′, which implies that every collider in G is also in G ′. In particular, every

vertex between U and A on u is also a collider on u in G ′.
Now we prove by induction that every vertex between U and A on u, including A,

is a parent of B in G ′, contradicting the fact that A ↔ B is in G ′. Let W be the vertex

next to U on u. Since U and B are not adjacent by the definition of discriminating

path, 〈U,W,B〉 is an unshielded non-collider in G (because W is a parent of B in G
by the definition of discriminating path). Because G and G ′ are Markov equivalent,

〈U,W,B〉 should also be a non-collider in G ′. But W is a collider on u in G, and hence

also a collider in G ′, which means the edge between U and W is into W . Thus W → B

is in G ′, otherwise 〈U,W,B〉 would be an unshielded collider in G ′. This establishes

the base case. In the inductive step, suppose the first n vertices after U on u are all

parents of B in G ′, then we have a discriminating path for the n+1’st vertex between

D and B in both graphs. Since the two graphs are Markov equivalent, the n + 1’st

vertex must be a parent of B as well, otherwise (e3) in Proposition 3.1.2 would be

violated. This finishes our induction. So, in particular, A should be a parent of B in

G ′, a contradiction. Thus condition (t3) also obtains.

Therefore, we can always identify a legitimate mark change to eliminate a differ-

161



ence as long as G and G ′ are still different. An induction on the number of differences

between G and G ′ would do to complete the argument.

Obviously a DMAG and any of its LEGs satisfy the antecedent of Theorem 4.4.1,

so they can be transformed to each other by a sequence of legitimate mark changes.

Steps 0-2 in Figure 4.4, for example, portrait a stepwise transformation from G1 to

H1.

Theorem 4.4.2. Let G and G ′ be two Markov equivalent MAGs. If every bi-directed

edge in G and every bi-directed edge in G ′ is invariant, then there is a sequence of

legitimate mark changes that transforms one to the other.

Proof. Without loss of generality, we prove that there is a transformation from G to

G ′. It follows from the assumption that G and G ′ have the same set of bi-directed

edges, and hence all differences between G and G ′ are of the same sort: → is in G,

while ← is in G ′. Let

Diff = {y| there is a x such that x → y is in G and x ← y is in G ′}

Clearly G and G ′ are identical if and only if Diff = Ø. We claim that if Diff is not

empty, we can always identify a legitimate edge reversal (that is, two legitimate mark

changes in a row) that eliminates a difference in direction.

Suppose Diff is not empty. We can choose a vertex B ∈ Diff such that no proper

ancestor of B in G is in Diff . Let

DiffB = {x|x → B is in G and x ← B is in G ′}

Since B ∈ Diff , DiffB is not empty. Choose A ∈ DiffB such that no proper descen-

dant of A in G is in DiffB. Then changing A → B to A ← B in G is a legitimate

edge reversal.

162



To justify this claim, we verify the conditions in Lemma 4.4.2. Note that A → B,

by our choice, is a reversible edge in G (for A ← B is in G ′, which is Markov equivalent

to G). It thus follows directly from Proposition 4.4.2 (and the assumption about bi-

directed edges in G) that SpG(B) = SpG(A).

The argument for PaG(B) = PaG(A) ∪ {A} is virtually the same as Chickering’s

proof for DAGs. For any parent C of A in G, C is also a parent of A in G ′, otherwise

A is in Diff and is a proper ancestor of B in G, which contradicts our choice of B.

It follows that C is adjacent to B, otherwise 〈C, A,B〉 is an unshielded collider in G ′

but not one in G, which would contradict the Markov equivalence between G and G ′.
Then C must be a parent of B in G, otherwise G is not ancestral. Conversely, let

D 6= A be any other parent of B in G. D must be adjacent to A, otherwise 〈D, B, A〉
is an unshielded collider in G but not one in G ′. D is not a spouse of A in G, otherwise

D is a spouse of B, according to what we just showed. So D is either a parent or a

child of A in G. Suppose it is a child of A, that is, A → D → B is in G. We derive a

contradiction from this. Since A ← B is in G ′, A → D → B does not appear in G ′.
That means either A ← D or D ← B (or both) is in G ′. In the former case, D is in

Diff and is a proper ancestor of B in G, which contradicts our choice of B. In the

latter case, D is in DiffB and is a proper descendant of A in G, which contradicts

our choice of A. Hence D can’t be a child of A in G, which means it is a parent of A

in G.

Note that after an edge reversal, no new bi-directed edge is introduced, so the

assumption that every bi-directed edge is invariant still holds for the new graph.

Hence we can always identify a legitimate edge reversal to eliminate a difference in

direction as long as G and G ′ are still different. An easy induction on the number of

differences between G and G ′ would do to complete the argument.
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Since a LEG (of any MAG) only contains invariant bi-directed edges, two LEGs

that are Markov equivalent can always be transformed to each other via a sequence

of legitimate mark changes according to the above theorem. For example, steps 2-4

in Figure 4.4 constitute a transformation from H1 (a LEG of G1) to H2 (a LEG of

G2).

We are ready to prove the main result of this section.

Theorem 4.4.3. Two DMAGs G and G ′ are Markov equivalent if and only if there

exists a sequence of single mark changes in G such that

1. after each mark change, the resulting graph is also a DMAG and is Markov

equivalent to G;

2. after all the mark changes, the resulting graph is G ′.

Proof: The ”if” part is trivial – since every mark change preserves the equivalence,

the end is of course Markov equivalent to the beginning. Now suppose G and G ′

are equivalent. We show that there exists such a sequence of transformation. By

Proposition 4.4.1, there is a LEG H for G and a LEG H′ for G ′. By Theorem

4.4.1, there is a sequence of legitimate mark changes s1 that transforms G to H,

and there is a sequence of legitimate mark changes s3 that transforms H′ to G ′. By

Theorem 4.4.2, there is a sequence of legitimate mark changes s2 that transforms H
to H′. Concatenating s1, s2 and s3 yields a sequence of legitimate mark changes that

transforms G to G ′.

As a simple illustration, Figure 4.4 gives the steps in transforming G1 to G2

according to Theorem 4.4.3. That is, G1 is first transformed to one of its LEGs, H1;

H1 is then transformed to H2, a LEG of G2. Lastly, H2 is transformed to G2.
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step 4 (H2) step 5 (G2)

Figure 4.4: A transformation from G1 to G2

Theorems 4.4.1 and 4.4.2, as they are currently stated, are special cases of Theorem

4.4.3, but the proofs of them actually achieve a little more than what they claim. The

transformations constructed in the proofs of Theorems 1 and 2 are efficient in the

sense that every mark change in the transformation eliminates a difference between

the current DMAG and the target. So the transformations consist of as many mark

changes as the number of differences at the beginning. By contrast, the transformation

constructed in Theorem 4.4.3 may take some ”detours”, in that some mark changes

in the way actually increase rather than decrease the difference between G and G ′.
(This is not the case in Figure 4.4, but if, for example, we chose different LEGs for G1

or G2, there would be detours.) We believe that no such detour is really necessary,

that is, there is always a transformation from G to G ′ consisting of as many mark
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changes as the number of differences between them. But we are yet unable to prove

this conjecture.

This transformational characterization of Markov equivalence implies that no mat-

ter how different two Markov equivalent DMAGs are, there is a sequence of Markov

equivalent DMAGs in between such that the adjacent graphs differ in only one edge

(mark). It could thus simplify derivations of invariance properties across a Markov

equivalence class: in order to show two arbitrary Markov equivalent DMAGs share

something in common, we only need to consider two Markov equivalent DMAGs with

the minimal difference. Indeed, Chickering (1995) used his characterization to derive

that Markov equivalent DAGs have the same number of parameters under the stan-

dard CPT parameterization (and hence would receive the same score under the typical

penalized-likelihood type metrics). The discrete parameterization of DMAGs is cur-

rently under development8. Our results will probably be useful in showing similar

facts once the discrete parameterization is available.

The characterization, however, does not hold exactly for general MAGs. A simple

counterexample is given in Figure 4.5. Recall that when we include undirected edges,

the requirement of ancestral graphs is that the endpoints of undirected edges are

of zero in-degree. So, although the two graphs in Figure 4.5 are Markov equivalent

MAGs, M1 cannot be transformed to M2 by a sequence of single legitimate mark

changes, as adding any single arrowhead to M1 would make it non-ancestral. There-

fore, for general MAGs, the transformation may have to include a stage of changing

the undirected subgraph to a directed one in a wholesale manner.9

8Drton and Richardson (2005) provide a parameterization for bi-directed graphs with binary
variables, for which the problem of parameter equivalence does not arise because no two different
bi-directed graphs are Markov equivalent.

9As suggested by Thomas Richardson, two possible solutions are (1) to allow replacing a tail or
an arrowhead with a circle temporarily, and (2) to consider Joined Graphs introduced by Ali (2002),
which form a superclass of MAGs.
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Figure 4.5: A simple counterexample with general MAGs: M1 can’t be transformed
into M2 by a sequence of legitimate single mark changes.

The transformational characterization for Markov equivalent DAGs was general-

ized, as a conjecture, to a transformational characterization for DAG I-maps by Meek

(1996), which was later shown to be true by Chickering (2002). A graph is an I-map

of another if the set of conditional independence relations entailed by the former is

a subset of the conditional independence relations entailed by the latter. This gen-

eralized transformational property is used to prove the asymptotic correctness of the

GES algorithm, a relatively efficient score-based search procedure over the Markov

equivalence classes of DAGs. The reason we spent so much energy on the (aug-

mented) FCI algorithm, an independence-constraint-based inference procedure, but

did not say anything about the score-based approach in these two chapters is partly

because no provably correct and feasible score-based procedure for causal inference

in causally insufficient systems is yet available.10 We expect that the GES algorithm

can be extended to search over CPAGs11, and we expect that a generalization of the

transformational property just established will be useful in justifying that algorithm,

but as of now these problems are open.

10There is obviously an utterly intractable procedure that is provably correct if a consistent score
is available, i.e., to enumerate and score all possible CPAGs in the search space with a consistent
scoring metric, and choose the one with the highest score.

11For a preliminary study, see Spirtes et al. 1997.
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Chapter 5

Quantitative Reasoning with a

CPAG — Prediction of

Intervention Effects

An important practical reason for people to care about causation or causal explanation

is the need to predict effects of actions or interventions before actually carrying them

out. Sometimes we base that kind of prediction on past similar interventions or

experiments, in which case Hume’s Principle of Custom may be at work to prompt

our projection of past experimental findings into the future without, perhaps, explicit

or conscious reasoning about cause and effect. Other times, however, we do not

have access to much or any controlled experimental studies for various reasons, and

all we have are observations of a system before interventions or manipulations take

place. In these situations, there is no simple projection of the past experience into

a supposedly similar future, as the prediction is precisely about the consequences of

certain changes. What we need is to go from phenomena generated from one causal
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process to phenomena that would be generated if the causal process were intervened

to become a different one.

Let us formalize this a little bit in the language we have been using. Given a set of

random variables V whose causal structure is properly represented by a DAG – which

means at least that the set is causally sufficient and there is no feedback mechanism –

we are interested in the outcome of actively controlling some variables in the system.

Specifically, we may be interested in the probability distribution of some variables Y

(possibly conditional on some other variables Z) if a variable X were manipulated1 to

take some value in some way. Let us further assume for simplicity that we know the

probability distribution of V when X is not manipulated (which is acceptable if, for

example, every variable is observed and the number of observations is large). Is there

a link between the pre-intervention probability and the post-intervention probability?

For all we know, that link needs to be assumed, or derived from certain assump-

tions about the intervention in question. A most common assumption is that ideally

an intervention is effective and local (with no side effects). When we talk about an in-

tervention of a variable X, we mean, among other things, that the direct target of the

intervention is X. Effectiveness means that the value of X or the probability distrib-

ution of X — and if the intervention is supposed to depend on some other variables,

what variables to depend upon — are completely fixed by the intervention. Since the

intended effect of an intervention on its direct target is usually known, the assumption

of effectiveness immediately gives us the post-intervention (conditional) probability

of X. The assumption of locality, on the other hand, provides with regard to other

variables the link between pre-intervention circumstances and post-intervention cir-

cumstances. Specifically, it requires that the intervention should not directly affect

any variable other than the direct target, and more importantly, local mechanisms

1In this chapter we use intervention and manipulation interchangeably.
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for other variables should remain the same as before the intervention.2 Thus, the

intervention is merely a local surgery with respect to causal mechanisms. Remote

changes that occur to other variables after the intervention are due to propagation

via the original causal mechanisms unaffected by the intervention. In this chapter

we deal with only interventions of this kind, which we will refer to as EL (Effective

and Local) interventions.3

A formal implementation of these two requirements is given by econometricians,

most notably Strotz and Wold (1960) and Fisher (1970), and is nicely recounted in

Pearl (2000). A causal system represented by a DAG can also be represented by a

set of structural equations, in which each variable is equated with a function of its

parents in the DAG and an error term. The equations are “structural” in that they

represent mechanisms with causal direction that do not admit ordinary algebraic

transformations. Then an EL intervention on X can be simply implemented by

replacing the original equation that defines the mechanism for X with a new equation

introduced by the intervention and – this is the important part – leaving all the other

equations unchanged. In the simplest case where X is manipulated to a fixed value,

the equation for X is simply “wiped out” (or replaced by an uninteresting equation

X = c) but all other equations remain the same.

Graphically, the above operation amounts to erasing all arrows into X in the causal

DAG, and possibly putting some of them back — arrows from those of X’s parents

2The talk of local mechanisms assumes something called modularity. Modularity roughly means
that each variable in the causal system is associated with a local mechanism which can be indepen-
dently manipulated, i.e., manipulated without affecting other mechanisms (Woodward 2003).

3This restriction is surely a limitation, but just how serious this limitation is needs careful reflec-
tion. One can immediately complain that interventions in real life, for example policy interventions,
almost always encounter deviants and almost always have side effects. But what this says, on my
view, is simply that sometimes we do not know what the actual intervention is, because to individ-
ualize an intervention requires specifying what it does and what it does not affect directly. It is no
embarrassment for any theory of intervention to concede that the consequence of an intervention is
never predictable without knowing what the intervention is in the first place.
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that are conditioned on in the intervention. So in general an intervention may depend

on some direct causes of X in the original causal system, but nullify other ones. The

resulting graph is usually called the manipulated DAG. We use Ppost(X|Pa(X)) to

denote the (post-intervention) conditional distribution of X imposed by an interven-

tion or manipulation, where Pa(X) (possibly empty) is assumed to be a subset of the

set of direct causes of X before the intervention.4 So an intervention, as concerns us

here, can only eliminate some existing causal links, but does not add any. This implies

that the manipulated DAG is a subgraph of the unmanipulated causal DAG. Lastly,

an intervention on a set of variables X is usually assumed to consist of independent

interventions5 on the individual variables so that

Ppost(X|Pa(X)) =
∏

X∈X

Ppost(X|Pa(X))

Based on this understanding of interventions, several authors worked out inde-

pendently the fundamental link between the pre-intervention probability and the

post-intervention probability (Robins 1986, Spirtes et al. 1993/2000, Pearl 2000).

Here we give the formulation in Spirtes et al. (1993/2000), but instead of calling it

the Manipulation Theorem we will call it the Manipulation Principle, as to a large

extent it is a formal restatement of the restrictions on an EL intervention.

4This restriction can be relaxed. Intuitively, an intervention of X can depend on any variable that
temporally precedes X. This suggests that formally an intervention of X can condition upon any
non-descendant (rather than just parent) of X in the pre-intervention causal graph. For such more
general cases it is reasonable to posit the exact same manipulation principle to be stated shortly,
except that in these cases Pa(X) in the post-intervention causal graph may contain variables that
are not direct causes of X prior to the intervention. In other words, a conditional intervention of X
may not only delete some edges into X, but also add some edges into X (that were not present). The
theory of invariance developed in section 5.1 is based on the assumption that conditional interventions
of X will depend on only (a subset of) pre-intervention direct causes (parents) of X, which guarantees
that post-intervention causal graphs are subgraphs of the pre-intervention causal graph. Without
this assumption the theory has to be modified, but not dramatically.

5This of course is merely an assumption for convenience. In general we can have correlated
interventions as well.
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Manipulation Principle Given a causal DAG over V and a (pre-intervention)

joint distribution that factorizes according to the graph (i.e., is Markov to the

graph), the joint distribution of V after an intervention on X takes a similar

form of factorization, as follows:

Ppost(V) =
∏

X∈X

Ppost(X|Pa(X))
∏

Y ∈V\X
Ppre(Y |Pa(Y ))

Where Ppost denotes the post-intervention probability, Ppre denotes the pre-

intervention probability, and Pa denotes the parent set in the manipulated

graph (which, for Y ∈ V\X, is the same as the parent set in the original

graph).

Observe that every term in the above factorization is assumed to be known: the pre-

intervention probabilities can be consistently estimated from observational data, and

the post-intervention probabilities of X are assumed to be given. So the full joint dis-

tribution after intervention is predictable, given a causal DAG and a pre-intervention

probability over V. From the joint distribution we can calculate Ppost(Y|Z) for any

Y and Z.

Complications come in two ways. First, our central concern in this dissertation

is that the set of observed variables may be causally insufficient. Hence there may

be variables that are causally relevant but are unobserved, or even worse, are un-

observable. So even if the causal DAG (with latent variables) is fully known, we

may not be able to predict certain intervention effects because the pre-intervention

probability that we have access to is merely the marginal probability of the observed

variables instead of the joint probability of all variables in the DAG. (Much of Pearl’s

work (1995, 1998, 2000), and more recently Tian and Pearl (2004) are paradigmatic

attempts to deal with this situation.) Second, the relevant causal structure is seldom,
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if ever, fully known. Usually we have to infer the causal structure from observational

data, and the best we can hope is to discover some features of the true causal graph.

So even if a system of observed variables is known to be causally sufficient, we may

not be able to predict certain intervention effects due to the insufficiency of the causal

information that can be inferred from data (see Spirtes et al. 1993/2000). The situa-

tion, of course, becomes even more involved when the two complications go together,

which is our major concern here.

A general formulation of the problem is this: We observe a set of variables O,

and we assume the pre-intervention probability distribution of O is known. X, Y,

and Z are three subsets of O (X ∩ Y = Y ∩ Z = Ø). The quantity of interest

is Ppost(Y|Z) when X is subject to a certain EL intervention. Suppose there is no

selection effect (so that the causal MAG is directed), but we do not know if O is

causally sufficient. All we know is that O, if not causally sufficient by itself, can be

extended to a causally sufficient system O ∪ L whose causal structure is properly

represented by a DAG. Of course we do not know the structure of the DAG. In fact

we do not even know what those latent variables are. The hard question is whether

Ppost(Y|Z) is uniquely determined by the pre-intervention probability distribution of

O together with the specifics of the intervention, and if so, how to calculate it in

terms of the pre-intervention probability.

The problem is undoubtedly formidable, but not entirely hopeless. One way to

proceed is not hard to see given what we have done in the last two chapters. Assuming

the CMC and the CFC, we can infer features of the true causal DMAG (directed

MAG) from the pre-intervention condition independence relations, neatly summarized

in a CPAG (complete partial ancestral graph), which also represents the uncertainty

there is about the true DMAG. Given the CPAG6, the initial question is reduced

6Remember this means that we restrict ourselves to inferences based on conditional independence
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to the following: is Ppost(Y|Z) uniquely identifiable in terms of the pre-intervention

probability Ppre(O) given the CPAG?

How can this reduction help? After all the manipulation principle, the only thing

we can rely on to calculate post-intervention quantities, is formulated in terms of

a causal DAG. But a CPAG is far from a causal DAG. It actually represents a set

of Markov equivalent DMAGs, and each DMAG, in turn, is compatible with an

(infinite) number of causal DAGs with latent variables. For each of the DAGs, the

quantity may or may not be calculable in terms of the probability distribution over

observed variables according to the manipulation principle. And even if the quantity

is calculable relative to each compatible DAG, different DAGs may give conflicting

answers.

We will not try to contribute to the literature on conflict resolution, so we insist

on the unanimity rule: a post-intervention quantity is identifiable given a CPAG

only if it is identifiable given any causal DAG compatible with the CPAG and every

such DAG gives the same answer regarding the quantity. The task is to figure out

when this unanimity condition holds, without, of course, doing the impossible job of

checking all compatible DAGs one by one.

This chapter by no means intends to solve this problem completely. Nor can

it claim originality in providing partial solutions. The two pieces of work to be

presented are either an improvement or a generalization of earlier work. Specifically,

in section 5.1, we give graphical criteria for what is called invariance given a CPAG.

The result is in most respects parallel to the theory of invariance developed by Peter

Spirtes, Clark Glymour and Richard Scheines (1993/2000). However, their results

are formulated with respect to a partially oriented inducing path graph instead of a

CPAG (cf. Appendix), and their criteria are only sufficient but not necessary. By

relations.
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contrast, the condition we will present is both sufficient and necessary for invariance

given a CPAG. In section 5.2, we generalize Judea Pearl’s celebrated do-calculus so

that the resulting calculus is based on a CPAG rather than a single causal DAG with

latent variables. Most proofs are postponed to 5.4.

5.1 Invariance Given a CPAG

A post-intervention probability is identifiable (relative to some causal information) if

it can be expressed as a function of the pre-intervention probability and the known

post-intervention probability of the manipulated variables. The most basic identi-

fiable quantities are those that remain the same before and after intervention. A

conditional probability P (Y|Z) is said to be invariant under an intervention of X

if Ppost(Y|Z) = Ppre(Y|Z).7 In fact, a handful of pioneering work in observation

studies is targeted on precisely this concept (e.g. Pratt and Schlaifer 1988; for a good

review see Winship and Morgan 1999). Given a causal DAG, the manipulation prin-

ciple enables us to calculate a post-intervention quantity in terms of pre-intervention

probabilities and the known post-intervention probability of the direct targets of the

intervention. This in principle can tell us whether the quantity is invariant under the

intervention. The following definition thus makes sense:

7Though closely related, this notion of invariance is not to be confused with the kind of invariance
we talked about in discussing the locality of interventions, or with the notion of invariance in the
philosophical literature (most notably Woodward 2003.) As we said, the locality of an intervention
requires that causal mechanisms for variables other than the direct targets should not be changed by
the intervention and hence remain invariant. This notion of invariance applies to causal mechanisms,
which is hence more fundamental than the kind of invariance we are talking about here. The latter is
derived from the former. For example, by the invariance of mechanism for Y under an intervention
of X, we immediately know that the probability of Y conditional on its causal parents is invariant
in the sense just defined. Woodward’s notion of invariance primarily refers to the stability of the
mechanism that links the variable being manipulated to its effect. “Invariance” of other mechanisms
is referred to as modularity instead.
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Definition 5.1.1 (Invariance Given a DAG). Given a causal DAG G(O,L), and

three sets of variables X,Y,Z ⊆ O such that X ∩ Y = Y ∩ Z = Ø, P (Y|Z) is

invariant under EL interventions of X given G if for all EL intervention of X,

the manipulation principle entails that Ppost(Y|Z) = Ppre(Y|Z), no matter what the

pre-intervention probability is.

There is a simple graphical condition sufficient and necessary for invariance given a

DAG due to Spirtes et al. (1993/2000). To state the condition, we need to introduce

the now standard convention of graphically representing an EL intervention. The

convention is to introduce extra policy variables into the causal DAG, one for each

direct target variable of the intervention. A policy variable for X is simply an (extra)

parent of X but otherwise not adjacent to any other variables in the DAG.8 The

resulting graph we call the X-Policy-Augmented DAG of the original causal DAG.

We have the following proposition, originally given in Spirtes et al. (1993/2000).

Proposition 5.1.1. Let G be the causal DAG for O ∪ L, and X,Y,Z ⊆ O be three

sets of variables such that X ∩ Y = Y ∩ Z = Ø. P (Y|Z) is invariant under EL

interventions of X given G if and only if in the X-Policy-Augmented DAG of G, the

policy variables (of X) are d-separated from Y given Z.9

This proposition is easily translated into the following theorem formulated in terms

of G rather than the policy-augmented graph of G.

8Dawid (2002) refers to policy variables as regime indicators.
9Spirtes, Glymour and Scheines argue that this condition is sufficient and almost necessary for

invariance of P (Y|Z) under a specific intervention of X. It is not exactly necessary because some
intervention of X may leave some quantity invariant in virtue of certain accidental feature of the
manipulation and the pre-intervention probability. For example, in our generalized version of Mc-
Dermott’s dog-bite case discussed in chapter 2, an intervention of the variable“button pressing” from
“left hand” to “right hand” leaves the marginal probability of the variable “explosion” invariant,
even though “explosion” is not d-separated from the policy variable of “button pressing” (given
the empty set). (Such a case is regarded as a violation of faithfulness with respect to the policy-
augmented graph.) However, the condition is truly necessary for our notion of invariance given a
DAG here, as the definition quantifies over all EL interventions of X.
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Theorem 5.1.1. Let G be the causal DAG for O ∪ L, and X,Y,Z ⊆ O be three

sets of variables such that X ∩ Y = Y ∩ Z = Ø. P (Y|Z) is invariant under EL

interventions of X given G if and only if

(1) for every X ∈ X∩Z, there is no d-connecting path between X and any member

of Y given Z\{X} that is into X;

(2) for every X ∈ X ∩ (AnG(Z)\Z), there is no d-connecting path between X and

any member of Y given Z; and

(3) for every X ∈ X\AnG(Z), there is no d-connecting path between X and any

member of Y given Z that is out of X.10

(Since Z ⊆ AnG(Z), X∩Z,X∩ (AnG(Z)\Z) and X\AnG(Z) form a partition of X.)

Proof. This is really just a restatement of Proposition 5.1.1. To see this, we consider

the three cases separately:

Case 1: For every X ∈ X∩Z, we show that there is a d-connecting path between

the policy variable of X, PVX , and a member of Y, say, Y given Z in the policy-

augmented graph if and only if there is a d-connecting path between X and Y given

Z\{X} that is into X in G. Obviously if there is a d-connecting path between X

and Y given Z\{X} that is into X in G, join that path with PVX → X makes a

d-connecting path between Y and PVX given Z (because X will be a collider on that

path). Conversely, if there is a path u d-connecting PVX and Y given Z, u has to

start with PVX → X because PVX is otherwise not connected to other variables at

all. Since X ∈ Z, X is a collider on u, which means u(X, Y ) is into X. Now either

10It is not hard to see that (3) is equivalent to saying that for every X ∈ X\AnG(Z), there is no
directed path from X to any member of Y. Lemma 5.1.6 below is an immediate corollary of this
equivalent formulation.
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u(X, Y ) is a d-connecting path between X and Y given Z\{X}, or there exists a

collider on the path that is not an ancestor of Z\{X}. In the latter case, let W be

the collider closest to Y that does not have a descendant in Z\{X}. Then W must

be an ancestor of X, otherwise u would not be d-connecting given Z. Let d be a

directed path from W to X. No vertex on d is in Z\{X}, for otherwise W would be

an ancestor of Z\{X}. If no vertex on u(Y, W ) other than W is on d, then u(Y,W )

joined with d is obviously a d-connecting path between X and Y given Z\{X} that

is into X. Suppose there is a vertex on u(Y, W ) other than W that is also on d. Let

Z be such a vertex closest to Y on U . Then no vertex on u(Y, Z) other than Z is on

d(Z,X). So u(Y, Z) can be joined with d(Z, X) to form a d-connecting path between

X and Y given Z\{X} that is into X.

Case 2: For every X ∈ X∩ (AnG(Z)\Z), obviously if there is a d-connecting path

between X and Y given Z in G, then no matter whether the path is into or out of

X, joining that path with PVX → X makes a d-connecting path between PVX and

Y given Z. Conversely, if there is a d-connecting path between PVX and Y given Z,

the subpath between X and Y is also d-connecting given Z.

Case 3: For every X ∈ X\AnG(Z), if there is a d-connecting path between X

and Y given Z in G that is out of X, then joining that path with PVX → X makes

a d-connecting path between PVX and Y given Z, because X is a non-collider and is

not in Z. Conversely, if there is a d-connecting path between PVX and Y given Z, X

must be a non-collider on the path, which means that the subpath between X and

Y , while obviously d-connecting given Z, is also out of X.

Therefore, (1), (2) and (3) together are equivalent to saying that in the X-policy-

augmented graph of G, the policy variables are d-separated from Y given Z.

We will take two steps to extend this result to CPAGs. First, we consider a no-
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tion of invariance given a DMAG. Recall that a causal DAG with latent variables

corresponds to a unique causal DMAG over the observed variables. But many dif-

ferent DAGs correspond to the same MAG. So a causal DMAG actually represents

an (infinite) set of causal DAGs. We define invariance given a DMAG based on the

unanimity rule.

Definition 5.1.2 (Invariance Given a DMAG). Let M be a causal DMAG over O,

and X,Y,Z ⊆ O be three sets of variables such that X ∩Y = Y ∩ Z = Ø, P (Y|Z)

is invariant under EL interventions of X given M if for every causal DAG G
over O and (possibly) some latent variables whose MAG is M, P (Y|Z) is invariant

under EL interventions of X given G.

The question is how to judge invariance given a DMAG without checking all

DAGs represented by the DMAG. In light of Theorem 5.1.1, one natural way to

address this question is to set up connections between d-connecting paths in a DAG

and m-connecting paths in the corresponding DMAG. To this end we need to make

a distinction among directed edges in a DMAG.

Definition 5.1.3 (Visibility). Given a DMAG M, a directed edge A → B in M is

visible if there is a vertex C not adjacent to B such that there is an edge between C

and A that is into A or there is a collider path between C and A that is into A and

every vertex on the path is a parent of B. Otherwise A → B is said to be invisible.

Recall that under the causal interpretation of DMAGs, a directed edge means the

presence of a causal pathway in the true DAG causal structure, and hence indicates

a cause-effect relationship if causal transitivity is assumed (which, for one thing,

follows from the assumption of CFC). What is distinctive about a visible directed

edge between A and B in a causal DMAG is that it means more than that A is a
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cause of B. It in addition means that there is no unobserved common cause of A and

B, unless mediated by some other observed variables. This implication is obvious

given the following Lemma.

Lemma 5.1.1. Let G(O,L) be a DAG, and M be the DMAG over O that represents

the DAG. For any A,B ∈ O, if A ∈ AnG(B) and there is an inducing path between

A and B that is into A relative to L in G, then there is a directed edge A → B in M
that is invisible.

Proof. See section 5.4.

Lemma 5.1.1 implies that if A → B is visible in a DMAG, then in the true causal

DAG, no matter which one it is, there is no inducing path between A and B relative

to the set of latent variables that is into A. But if a latent variable is a common

cause of A and B, then there immediately is an inducing path into A via that latent

common cause. Therefore, a visible directed edge between two variables implies that

they do not have a latent common cause. Conversely, if a directed edge between two

variables is invisible in a DMAG, one can always construct a compatible DAG in

which there is a latent common cause of the two variables.

Lemma 5.1.2. Let M be any DMAG over a set of variables O, and A → B be any

directed edge in M. If A → B is invisible in M, then there is a DAG whose DMAG

is M in which A and B share a latent parent, i.e., there exists a latent variable LAB

in the DAG such that A ← LAB → B is a subgraph of the DAG.

Proof. See section 5.4.

The next block of lemmas, Lemmas 5.1.3-5.1.6, establish some connections be-

tween d-connecting paths in a DAG and m-connecting paths in the corresponding
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DMAG. The first one, Lemma 5.1.3, records the important result that d-separation

relations among observed variables in a DAG with latent variables correspond exactly

to m-separation relations in the corresponding DMAG.

Lemma 5.1.3. Let G(O,L) be any DAG, and M be the DMAG of G over O. For

any A,B ∈ O and C ⊆ O that does not contain A or B, there is a path d-connecting

A and B given C in G if and only if there is a path m-connecting A and B given C

in M.

Proof. This is a special case of Lemma 17 and Lemma 18 in Spirtes and Richardson

(1996), and also a special case of Theorem 4.18 in Richardson and Spirtes (2002).

Given Lemma 5.1.3, we know how to tell whether condition (2) of Theorem 5.1.1

holds in all DAGs compatible with a given DMAG. For the other two conditions in

Theorem 5.1.1, we need to take into account orientations of d-connecting paths.

Lemma 5.1.4. Let G(O,L) be any DAG, and M be the DMAG of G over O. For any

A,B ∈ O and C ⊆ O that does not contain A or B, if there is a path d-connecting A

and B given C in G that is into A, then there is a path m-connecting A and B given

C in M that is either into A or contains an invisible edge out of A.

Proof. See section 5.4.

Lemma 5.1.5. Let M be any DMAG over O. For any A,B ∈ O and C ⊆ O that

does not contain A or B, if there is a path m-connecting A and B given C in M
that is either into A or contains an invisible edge out of A, then there exists a DAG

G(O, L) whose DMAG is M such that in G there is a path d-connecting A and B

given C that is into A.

Proof. See section 5.4.
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It is easy to see that these two lemmas are related to clause (1) in Theorem 5.1.1.

The next lemma is related to clause (3).

Lemma 5.1.6. Let G(O,L) be any DAG, and M be the DMAG of G over O. For

any A,B ∈ O and C ⊆ O that does not contain B or any descendant of A in G (or

M, since G and M have the same ancestral relations among variables in O), there

is a path d-connecting A and B given C in G that is out of A if and only if there is

a path m-connecting A and B given C in M that is out of A.

Proof. See section 5.4.

We are now ready to translate Theorem 5.1.1 into a theorem about invariance

given a DMAG.

Theorem 5.1.2. Suppose M is the causal DMAG over a set of variables O. For any

X,Y,Z ⊆ O, X ∩Y = Y ∩ Z = Ø, P (Y|Z) is invariant under EL interventions of

X given M if and only if

(1) for every X ∈ X∩Z, there is no m-connecting path between X and any member

of Y given Z\{X} that is into X or contains an invisible edge out of X;

(2) for every X ∈ X∩ (AnM(Z)\Z), there is no m-connecting path between X and

any member of Y given Z; and

(3) for every X ∈ X\AnM(Z), there is no m-connecting path between X and any

member of Y given Z that is out of X.

Proof. Given Lemma 5.1.4, if (1) holds, then for every DAG represented by M, the

first condition in Theorem 5.1.1 holds. Given Lemma 5.1.3 and the fact that M and

all DAGs represented by M have the exact same ancestral relations among O, if (2)

holds, the second condition in Theorem 5.1.1 holds for every DAG represented by
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M. Moreover, given 5.1.6, if (3) holds, the third condition in Theorem 5.1.1 holds

for every DAG represented by M. So (1), (2) and (3) together imply that P (Y|Z) is

invariant under EL interventions of X given M.

Conversely, if (1) fails, then by Lemma 5.1.5, there is a DAG represented by M
in which the first condition in Theorem 5.1.1 fails. Likewise with conditions (2) and

(3), in light of Lemmas 5.1.3 and 5.1.6, and the fact that M and a DAG represented

by M have the exact same ancestral relations among O. So (1), (2) and (3) are also

necessary for P (Y|Z) to be invariant under EL interventions of X given M.

Finally, we need to further generalize the result to invariance given a CPAG. A

CPAG represents a Markov equivalence class of DMAGs, which may or may not agree

upon a judgment of invariance. We will again apply the unanimity criterion.

Definition 5.1.4 (Invariance Given a CPAG). Let P be a causal CPAG over O,

and X,Y,Z ⊆ O be three sets of variables such that X ∩Y = Y ∩ Z = Ø, P (Y|Z)

is invariant under EL interventions of X given P if for every causal DMAG

M in the Markov equivalence class represented by P, P (Y|Z) is invariant under EL

interventions of X given M.

Once again we aim to set up connections between m-connecting paths in a DMAG

and analogous paths in its CPAG. In general a path in a CPAG may contain some

vertices which cannot be unambiguously classified as colliders or non-colliders, and

others that have a definite status. Let p be any path in a CPAG. A (non-endpoint)

vertex is a definite collider on the path if both incident edges are into that vertex.

A (non-endpoint) vertex C is called a definite non-collider on the path if one of the

incident edges is out of C or it is A ∗−◦ C ◦−∗ B on the path such that A and B

are not adjacent. Likewise, a directed edge A → B in P is a definitely visible arrow

if there is a vertex C not adjacent to B such that there is an edge between C and
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A that is into A or there is a collider path between C and A that is into A and

every vertex on the path is a parent of B. Obviously these are labelled “definite”

because the available informative marks in the CPAG are enough to determine their

respective status, or what comes to the same thing, these colliders, non-colliders, or

visible directed edges appear in all DMAGs represented by the CPAG11. Similarly we

can define the following:

Definition 5.1.5 (Definite M-Connecting Path). In a partial mixed graph, a path p

between vertices A and B is definitely m-connecting relative to a set of vertices

Z (A,B /∈ Z) if every non-endpoint vertex on p is either a definite non-collider or a

definite collider and

i. every definite non-collider on p is not a member of Z;

ii. every definite collider on p is an ancestor of some member of Z.

It is obvious that a definite m-connecting path in a CPAG is a m-connecting

path in every DMAG represented by the CPAG. The following lemmas establish

some further connections between m-connecting paths in a DMAG and definite m-

connecting paths in its CPAG.

Lemma 5.1.7. Let M be a DMAG over O, and P be the CPAG that represents

[M]. For any A,B ∈ O and C ⊆ O that does not contain A or B, if there is a path

m-connecting A and B given C in M, then there is a path definitely m-connecting A

and B given C in P. Furthermore, if there is an m-connecting path in M that is into

A or out of A with an invisible directed edge, then there is a definite m-connecting

path in P that is not out of A with a definitely visible edge.

11Thus we can also call them “invariant” in line with the terminology used in Chapters 3 and 4,
but this will obviously produce unnecessary terminological confusion here.
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Proof. See section 5.4.

Lemma 5.1.8. Let P be a CPAG over O. For any A,B ∈ O and C ⊆ O that does

not contain A or B, if there is a path definitely m-connecting A and B given C in

P that is not out of A with a definitely visible edge, then there exists a DMAG M
represented by P in which there is a path m-connecting A and B given C that is either

into A or out of A with an invisible directed edge.

Proof. See section 5.4.

Lemma 5.1.9. Let M be a DMAG over O, and P be the CPAG that represents [M].

For any A,B ∈ O and C ⊆ O that does not contain B or any descendant of A in

M, if there is a path m-connecting A and B given C in M that is out of A, then

there is a path definitely m-connecting A and B given C in P that is not into A.

Proof. See section 5.4.

Lemma 5.1.10. Let P be a CPAG over O. For any A, B ∈ O and C ⊆ O that does

not contain A or B, if there is a path definitely m-connecting A and B given C in P
that is not into A, then there exists a DMAG M represented by P in which there is

a path m-connecting A and B given C that is out of A.

Proof. See section 5.4.

Given a CPAG P , call variable A a possible ancestor of variable B if there is a

potentially directed path from A to B in P . We use PossibleAnP(Z) to denote the

set of possible ancestors of members of Z. Here is the main theorem of this section.

Theorem 5.1.3. Suppose P is the causal CPAG over a set of variables O. For

any X,Y,Z ⊆ O such that X ∩ Y = Y ∩ Z = Ø, P (Y|Z) is invariant under EL

interventions of X given P if and only if
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(1) for every X ∈ X ∩ Z, every definite m-connecting path, if any, between X and

any member of Y given Z\{X} is out of A with a definitely visible edge;

(2) for every X ∈ X∩(PossibleAnP(Z)\Z), there is no definite m-connecting path

between X and any member of Y given Z; and

(3) for every X ∈ X\PossibleAnP(Z), every definite m-connecting path, if any,

between X and any member of Y given Z is into X.

Proof. We show that (1), (2) and (3) here are sufficient and necessary for the corre-

sponding conditions in Theorem 5.1.2 to hold for all DMAGs represented by P . It

follows from Lemma 5.1.7 that if (1) holds, then the first condition in Theorem 5.1.2

holds for all DMAGs represented by P . Note moreover that for every DMAG M rep-

resented by P , AnM(Z) ⊆ PossibleAnP(Z). So it again follows from Lemma 5.1.7

that if (2) holds, then the second condition in Theorem 5.1.2 holds for all DMAGs

represented by P . And it follows from Lemma 5.1.9 (and Lemma 5.1.7) that if (3)

holds, the third condition in Theorem 5.1.2 holds for all DMAGs represented by P .

Hence (1), (2) and (3) are sufficient for P (Y|Z) to be invariant under EL interventions

of X given P .

Conversely, if (1) fails, then by Lemma 5.1.8, there exists a DMAG represented

by P for which the first condition in Theorem 5.1.2 fails.

To show the necessity of (2), note that if X is a possible ancestor of a vertex Z ∈ Z

in P , then there exists a DMAG in which X is an ancestor of Z. (One way to see this

is to recall that we can orient P into a DMAG by first tail-augmenting P and then

orient the remaining circle component using Meek’s algorithm. And in the latter step

we can orient every ◦−−◦ edge incident to X to be out of X. In such a DMAG, for

any W such that there is a potentially directed path in P from X to W , a shortest

such path is oriented as a directed path from X to W .) So if (2) fails, i.e., there is a
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definite m-connecting path between a variable X ∈ X∩ (PossibleAnP(Z)\Z) and a

member of Y given Z in P , then there exists a DMAG M represented by P in which

X ∈ X∩ (AnM(Z)\Z), and there is an m-connecting path between X and a member

of Y given Z, which violates the the second condition in Theorem 5.1.2.

Lastly, if (3) fails, i.e., there is a definite m-connecting path between a variable

X ∈ X\PossibleAnP(Z) and a member of Y given Z that is not into X, then it

follows from Lemma 5.1.10 that there exists a DMAG M represented by P in which

there is an m-connecting path between X and a member of Y given Z that is out of

X. Moreover, since X ∈ X\PossibleAnP(Z), X is not an ancestor of Z in M, i.e.,

X ∈ X\AnM(Z). So M fails the third condition in Theorem 5.1.2.

Therefore, (1), (2) and (3) are also necessary for P (Y|Z) to be invariant under

EL interventions of X given P .

This theorem is analogous in style to Theorems 7.2 and 7.3 in Spirtes et al.

(1993/2000). The latter are formulated with respect to a partially oriented induc-

ing path graph (POIPG). Without delving into the advantages CPAGs possess over

POIPGs, we note a couple of improvements Theorem 5.1.3 achieves, apart from taking

CPAGs as the representation of available causal information. First, Theorem 5.1.3

gives sufficient and necessary conditions, whereas the criteria given in Theorems 7.2

and 7.3 in Spirtes et al. (1993/2000) are not necessary.12 Second, Theorems 7.2 and

7.3 are formulated in terms of possibly m-connecting paths (see the next section),

which include definite m-connecting paths as special cases. In other words, there are

in general more possibly m-connecting paths in a CPAG than definite m-connecting

paths, and hence our Theorem 5.1.3 is probably superior from a computational per-

12As noted before, Spirtes, Glymour and Scheines were considering invariance given a (specific)
EL intervention rather than invariance given any intervention. In this regard, even the criterion in
Proposition 5.1.1 is not exactly necessary. The point here, however, is that even for invariance given
any intervention, the criteria given by them are not necessary.

187



spective.

5.2 Generalization of the do-calculus

Pearl [1995] developed a do-calculus for identifying Ppost(Y|Z) given a single causal

DAG with latent variables, provided that interventions are simple in that variables

being directly manipulated are manipulated to fixed values, i.e., Ppost(X = x) = 1.13

Apparently this work may be generalized in at least two directions. One is to consider

more general EL interventions than simple EL interventions to fixed values. This

generalization, however, is unnecessary, given the following argument presented by

Pearl (2000). Suppose we are interested in Ppost(Y ) given that X is manipulated to

follow Ppost(X|Pa(X)). By the elementary probability calculus,

Ppost(Y ) =
∑

X

∑

Pa(X)

Ppost(Y,X,Pa(X))

=
∑

X

∑

Pa(X)

Ppost(Y |X,Pa(X))Ppost(X|Pa(X))Ppost(Pa(X))

Note that Ppost(X|Pa(X)) is given, and Ppost(Pa(X)) = Ppre(Pa(X)) because Pa(X)

is a subset of the original direct causes of X (and hence the marginal probability of

Pa(X) is invariant.) The only piece to consider then is Ppost(Y |X,Pa(X)). It is easy

to check that the manipulation principle entails that

Ppost(Y |X = x,Pa(X)) = P ′
post(Y |Pa(X))

whenever the conditional probabilities are defined, where P ′
post denotes the post-

intervention distribution given that X is manipulated to the fixed value x. So the

13Pearl refers to such a simple intervention on a variable atomic.

188



problem is actually reduced to a prediction problem given simple EL interventions.14

The more interesting direction is to weaken the causal assumption. Suppose we

do not have a unique causal DAG to start with, but rather a CPAG inferred from

the pre-intervention probability distribution of the observed variables. Can Pearl’s

inference rules in do-calculus be formulated relative to a CPAG? This section aims to

provide an answer.

Recall that a simple EL intervention of a variable X graphically amounts to erasing

all the edges into X in the causal graph. Pearl’s calculus is heavily based on such

surgeries on DAGs. In particular, given a DAG G and a set of vertices X, Pearl uses

GX to denote the graph resulting from deleting all edges in G that are into vertices

in X, and GX to denote the graph resulting from deleting all edges in G that are

out of vertices in X. The following proposition summarizes Pearl’s do-calculus, in

which P (Y|do(X) = x,Z) is just a neat notation for Ppost(Y|Z) under a simple EL

intervention of X to a fixed value x.

Proposition 5.2.1. Let G be the causal DAG for V, and X,Y,Z,W be disjoint

subsets of V. The following rules are valid:

1. if Y and Z are d-separated by X ∪W in GX, then

P (Y|do(X),Z,W) = P (Y|do(X),W)

2. if Y and Z are d-separated by X ∪W in GZX, then

P (Y|do(X), do(Z),W) = P (Y|do(X),Z,W)

14Note that this reduction works for Ppost(Y), but not for Ppost(Y|Z). See Shpister and Pearl
(2006) for a solution to the latter.
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3. if Y and Z are d-separated by X ∪W in GXZ′, then

P (Y|do(X), do(Z),W) = P (Y|do(X),W)

where Z′ = Z\AnG
X
(W).

Following the same strategy as in the last section, we generalize this result in two

steps. Let us first define analogous surgeries on a DMAG.

Definition 5.2.1 (Manipulations of DMAGs). Given a DMAG M and a set of vari-

ables X therein,

• the X-lower-manipulation of M deletes all those edges that are visible in M
and are out of variables in X, replaces all those edges that are out of variables

in X but are invisible in M with bi-directed edges, and otherwise keeps M as

it is. The resulting graph is denoted as MX.

• the X-upper-manipulation of M deletes all those edges in M that are into

variables in X, and otherwise keeps M as it is. The resulting graph is denoted

as MX.

We stipulate that lower-manipulation has a higher priority than upper-manipulation,

so that MYX (or MXY) denotes the graph resulting from applying the X-upper-

manipulation to the Y-lower-manipulated graph of M.

A couple of comments are in order. First, unlike the case of DAGs, the lower-

manipulation for DMAGs may introduce new edges, i.e., replacing invisible directed

edges with bi-directed edges. The reason we do this is that an invisible arrow from

A to B admits a latent common parent of A and B in the underlying DAG. If so,
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the A-lower-manipulated DAG will correspond to a DMAG in which there is a bi-

directed edge between A and B. Second, because of the possibility of introducing new

bi-directed edges, we need the priority stipulation that lower-manipulation is to be

done before upper-manipulation. The stipulation is not necessary for DAGs, because

no new edges would be introduced in the lower-manipulation of DAGs, and hence the

order does not matter.

Ideally, if M is the DMAG of a DAG G, we would like MYX to be the DMAG of

GYX, where X and Y are two (possibly empty) subsets of the observed variables. But

in general this is impossible, as two DAGs represented by the same DMAG before a

manipulation may correspond to different DMAGs after the manipulation. But we

still have the following:

Lemma 5.2.1. Let G(O,L) be a DAG, and M be the DMAG of G over O. Let X

and Y be two possibly empty subsets of O, and MG
YX

be the DMAG of GYX. For

any A,B ∈ O and C ⊆ O that does not contain A or B, if there is an m-connecting

path between A and B given C in MG
YX

, then there is an m-connecting path between

A and B given C in MYX.

Proof. See section 5.4.

This lemma shows that Definition 5.2.1 is to a large extent appropriate. It implies

that if an m-separation relation holds in MYX, then it holds in GYX for every G
represented by M. Hence the following corollary.

Corollary 5.2.2. Let M be a DMAG over O, and X and Y be two subsets of O. For

any A,B ∈ O and C ⊆ O that does not contain A or B, if A and B are m-separated

by C in MYX, then A and B are d-separated by C in GYX for every G represented

by M.
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Proof. By Lemma 5.2.1, if A and B are m-separated by C in MYX, they are also

m-separated by C in MG
YX

, for every G represented by M, which in turn implies

that A and B are d-separated by C in GYX for every G represented by M, because d-

separation relations among O in a DAG correspond exactly to m-separation relations

in its DMAG.

The converse of Corollary 5.2.2, however, is not true in general. The reason is

roughly this. Lemma 5.2.1 is true in virtue of the fact that for every G represented by

M, there is a DMAG M∗ Markov equivalent to MYX such that MG
YX

is a subgraph

ofM∗. Often times there exists a G such that the DMAG of GYX is Markov equivalent

to MYX. But sometimes there may not be any such DAG, and that is why we do

not have the converse of Lemma 5.2.1. For this limitation, however, Definition 5.2.1

is not to be blamed. Because no matter how we define MYX, as long as it is a single

graph, the converse of Corollary 5.2.2 will not hold in general. MYX, as a single

graph, can only aim to be a supergraph (up to Markov equivalence) of MG
YX

for all

G represented by M. To this end, Definition 5.2.1 is “minimal” in the following sense:

two variables are adjacent in MYX if and only if there exists a DMAG G represented

by M such that the two variables are adjacent in MG
YX

. In more plain terms, MYX

does not have more adjacencies than necessary.

To give a simplest example, consider the DMAGM in Figure 5.1(a): X ← Y → Z

(which happens to be a DAG also). The two DAGs, G1 in 5.1(b) and G2 5.1(c),

are both represented by M. By the definition of lower-manipulation, MY is the

graph X ↔ Y ↔ Z. On the other hand, G1Y is X ← L1 → Y Z; and G2Y is

X Y ← L2 → Z. Obviously, the DMAG of G1Y is X ↔ Y Z, and the DMAG of

G2Y is X Y ↔ Z, both of which are proper subgraphs of MY . So an m-separation

relation — say, X and Z are m-separated by the empty set — in MY corresponds to
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a d-separation relation in both G1Y and G2Y (and, as one can show, in GY for every G
represented by M), which is in accord with Corollary 5.2.2. By contrast, the converse

of Corollary 5.2.2 fails of M. It can be shown that for every G represented by M,

X and Z are d-separated by Y in GY , as evidenced by G1Y and G2Y . (Roughly the

reason is that a DAG in which there is both a latent direct cause of X and Y and a

latent direct cause of Y and Z is not represented by M, since in that DAG there is

an inducing path between X and Z.) However, X and Z are not m-separated by Y

in MY .

L1

X Z

(b)

Y X ZY

L2

(c)

X Y Z

(a)

Figure 5.1: A DMAG that fails the converse of Corollary 5.2.2

But this failure is not peculiar to our definition ofMY . In this simple example, one

can easily enumerate all possible directed mixed graphs over X, Y, Z and see that for

none of them are both 5.2.2 and its converse hold. Furthermore, among those graphs

of which 5.2.2 holds, MY is one of the graphs that have the fewest adjacencies.

We will not go into more details to illustrate this fact, which is not needed to

prove the following theorem.

Theorem 5.2.1 (do-calculus given a DMAG). Let M be the causal DMAG over O,

and X,Y,Z,W be disjoint subsets of O. The following rules are valid, in the sense
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that if the antecedent of the rule holds, then the consequent holds no matter which

DAG represented by M is the true causal DAG.

1. if Y and Z are m-separated by X ∪W in MX, then

P (Y|do(X),Z,W) = P (Y|do(X),W)

2. if Y and Z are m-separated by X ∪W in MZX, then

P (Y|do(X), do(Z),W) = P (Y|do(X),Z,W)

3. if Y and Z are m-separated by X ∪W in MXZ′, then

P (Y|do(X), do(Z),W) = P (Y|do(X),W)

where Z′ = Z\AnM
X
(W).

Proof. This readily follows from Proposition 5.2.1, Corollary 5.2.2, and the fact that

for every G represented by M, AnG
X
(W) ∩O = AnM

X
(W).

To generalize this result to CPAGs, we need to define relevant surgeries on CPAGs.

They are very much like manipulations of DMAGs. Given a CPAG P and a set of

variables X, PX denotes the X-upper-manipulated graph of P , resulting from deleting

all edges in P that are into variables in X, and otherwise keeping P as it is. PX

denotes the X-lower-manipulated graph of P , resulting from deleting all definitely

visible edges out of variables in X, replacing all other edges out of vertices in X with

bi-directed edges, and otherwise keeping P as it is. The priority stipulation is also

the same as before.
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Except in very rare situations, PYX is not a CPAG any more. But from PYX we

can still gain information about d-separation in MYX, where M is a DMAG in the

Markov equivalence class represented by P . For this purpose we need the following

notion, already mentioned in the end of last section.

Definition 5.2.2 (Possibly M-Connecting Path). In a partial mixed graph, a path p

between vertices A and B is possibly m-connecting relative to a set of vertices Z

(A,B /∈ Z) if

i. every definite non-collider on p is not a member of Z;

ii. every definite collider on p is a possible ancestor of some member of Z.

Compare this definition with the definition of definite m-connecting paths (De-

finition 5.1.5), and one can immediately see that the latter is a special case of the

former. Given a DMAG M and its CPAG P , it is trivial to see that a m-connecting

path in M is a possibly m-connecting path in P . This is fortunately also true for

MYX and PYX.

Lemma 5.2.3. Let M be a DMAG over O, and P the CPAG for M. Let X and

Y be two subsets of O. For any A, B ∈ O and C ⊆ O that does not contain A or

B, if a path p between A and B is m-connecting given C in MYX, then p, the same

sequence of variables, forms a possibly m-connecting path between A and B given C

in PYX.

Proof. See section 5.4.

If there is no possibly m-connecting path between A and B given C in a partial

mixed graph, we say A and B are definitely m-separated by C in the graph. Here is

the main theorem of this section:
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Theorem 5.2.2 (do-calculus given a CPAG). Let P be the causal CPAG for O, and

X,Y,Z,W be disjoint subsets of O. The following rules are valid:

1. if Y and Z are definitely m-separated by X ∪W in PX, then

P (Y|do(X),Z,W) = P (Y|do(X),W)

2. if Y and Z are definitely m-separated by X ∪W in PXZ, then

P (Y|do(X), do(Z),W) = P (Y|do(X),Z,W)

3. if Y and Z are definitely m-separated by X ∪W in PXZ′, then

P (Y|do(X), do(Z),W) = P (Y|do(X),W)

where Z′ = Z\PossibleAnP
X
(W).

Proof. It readily follows from Lemma 5.2.3, Theorem 5.2.1. The only caveat is that

in general AnM
X
(W) 6= PossibleAnP

X
(W) for an arbitrary M represented by P .

But it is always the case that AnM
X
(W) ⊆ PossibleAnP

X
(W), which means that

Z\AnM
X
(W) ⊇ Z\PossibleAnP

X
(W) for every M represented by P . So it is

possible that for rule (3), PXZ′ leaves more edges in than necessary, but it does not

affect the validity of rule (3).

The rules in this calculus are in a sense overly restrictive. Even if a rule does

not apply given a CPAG, the corresponding rule in Theorem 5.2.1 may still apply

given every DMAG represented by the CPAG. This is possible because a possibly

d-connecting path in a CPAG may not actualize as d-connecting in any DMAG rep-

resented by the CPAG, and because in general AnM
X
(W) ⊂ PossibleAnP

X
(W).
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Recall furthermore that the calculus based on a DMAG given in Theorem 5.2.1 is also

“incomplete”, as the converse of Corollary 5.2.2 does not hold. So there may well be

interesting post-intervention quantities that can be identified by Pearl’s do-calculus

given any DAG compatible with a CPAG and all these DAGs give the same answer,

but cannot be identified via our do-calculus based on the CPAG directly. We can

artificially construct such examples, but we suspect that they are encountered very

rarely in practice.

5.3 A Simple Example

We borrow an example from Spirtes et al. (1993/2000) to illustrate the invariance

criterion and the do-calculus. Suppose we are able to measure the following random

variables: Income (I), Parents’ smoking habits (PSH), Smoking (S), Genotype (G) and

Lung cancer (L) (The exact domain of each variable is not relevant for the illustration).

The data, for all we know, are generated according to an underlying mechanism which

might involve unmeasured common causes. Suppose as a matter of fact (unknown to

us) the structure of the causal mechanism is the one in Figure 5.2, where Profession

is an unmeasured common cause of Income and Smoking.

It is certainly impossible to fully recover this causal DAG from the data available,

as the data alone by no means even indicate the relevance of the variable Profes-

sion. But we can in principle learn the CPAG shown in Figure 5.3. Although the

CPAG reveals a limited amount of causal information, it is sufficient to identify some

intervention effects.

For example, regarding invariance, it can be inferred that P (L|G,S) is invariant

under any EL intervention of I, because there is no definite m-connecting path be-

tween L and I given {G,S}. P (L|G,S) is also invariant under any EL intervention of
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Income Smoking Lung Cancer

Genotype

Profession

Parents’ smoking habits

Figure 5.2: A causal DAG with a latent variable

S LI

PSH G

Figure 5.3: The CPAG of the causal DAG in Figure 5.2

S because the only definitely m-connecting path between L and S given {G} is S → L

which contains a definitely visible edge out of S. However, it is not invariant under

EL interventions of G given the CPAG because the directed edge G → L is invisible.

What this means is that there exists some DAG with latent variable compatible with

this CPAG given which P (L|G,S) is not invariant under some EL intervention of G.

Using the do-calculus presented in Theorem 5.2.2, we can infer P (L|do(S), G) =

P (L|S, G) by rule 2, because L and S are definitely m-separated by {G} in PS (Figure

5.4(a)); and P (G|do(S)) = P (G) is true by rule 3, because G and S are definitely
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m-separated in PS (Figure 5.4(b)). It follows that15

P (L|do(S)) =
∑

G

P (L,G|do(S))

=
∑

G

P (L|do(S), G)P (G|do(S))

=
∑

G

P (L|S, G)P (G)

S L S L

G
PSH PSH

II

G

(b)(a)

Figure 5.4: CPAG Surgery: PS and PS

By contrast, it is not valid in the do calculus that P (L|do(G), S) = P (L|G,S)

because L and G are not definitely m-separated by {S} in PG, which is in Figure 5.5.

(Notice the bi-directed edge between L and G.)

15The quantity P (L) is not invariant given P under interventions of S, but as shown here using do-
calculus, the post-intervention probability of L, i.e., P (L|do(S)) is identifiable in terms of quantities
that are invariant under interventions of S, i.e., P (L|S,G) and P (G). In fact, Spirtes, Glymour
and Scheines (2000) describe a prediction algorithm based on their theory of invariance that seeks
to search for an expression of a post-intervention quantity in terms of invariant quantities. The
prediction algorithm is recently shown by Grant Reaber to be incomplete, and in fact there are
quantities that are identifiable via the do-calculus but not the prediction algorithm.
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S L

G
PSH

I

Figure 5.5: CPAG Surgery: PG

5.4 Omitted Proofs

In our proofs, we will use the following lemma, which was proved in, for example,

Spirtes, Meek and Richardson (1999, pp. 243):

Lemma 5.4.1. Let G(O,L) be a DAG, and 〈V0, · · · , Vn〉 be a sequence of distinct

variables O. If (1) for all 0 ≤ i ≤ n − 1, there is an inducing path in G between

Vi and Vi+1 relative to L that is into Vi unless possibly i = 0 and is into Vi+1 unless

possibly i = n − 1; and (2) for all 1 ≤ i ≤ n − 1, Vi is an ancestor of either V0 or

Vn in G; then there is a subpath s of the concatenation of those inducing paths that

is an inducing path between V0 and Vn relative to L in G. Furthermore, if the said

inducing path between V0 and V1 is into V0, then s is into V0, and if the said inducing

path between Vn−1 and Vn is into Vn, then s is into Vn.

Proof. This is a special case of Lemma 10 in Spirtes, Meek and Richardson (1999, pp.

243). See their paper for a detailed proof. (One may think that the concatenation

itself would be an inducing path between V0 and Vn. This is almost correct, except

that the concatenation may contain a same vertex multiple times. So in general it

is a subsequence of the concatenation that constitutes and inducing path between V0

and Vn.)
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Lemma 5.4.1 gives a way to argue for the presence of an inducing path between

two variables in a DAG, and hence is very useful for demonstrating that two vari-

ables are adjacent in the corresponding DMAG. We will see several applications of

this lemma in the subsequent proofs.

Proof of Lemma 5.1.1

Proof. Since there is an inducing path between A and B relative to L in G, A and

B are adjacent in M. Furthermore, since A ∈ AnG(B), the edge between A and B

in M is A → B. We now show that it is invisible in M. To show this, it suffices

to show that for any C, if in M there is an edge between C and A that is into A

or there is a collider path between C and A that is into A and every vertex on the

path is a parent of B, then C is adjacent to B, which means that the condition for

visibility cannot be met.

Let u be an inducing path between A and B relative to L in G that is into A. For

any C, we consider the two possible cases separately:

Case 1: There is an edge between C and A in M that is into A. Then, by the

way M is constructed from G, there must be an inducing path u′ in G between A and

C relative to L. Moreover, u′ is into A, for otherwise A would be an ancestor of C,

so that the edge between A and C in M would be out of A. Given u, u′ and the fact

that A ∈ AnG(B), we can apply Lemma 5.4.1 to conclude that there is an inducing

path between C and B relative to L in G, which means C and B are adjacent in M.

Case 2: There is a collider path p in M between C and A that is into A and every

non-endpoint vertex on the path is a parent of B. For every pair of adjacent vertices

〈Vi, Vi+1〉 on p, the edge is Vi ↔ Vi+1 if Vi 6= C, and otherwise either C ↔ Vi+1 or

C → Vi+1. It follows that there is an inducing path in G between Vi and Vi+1 relative
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to L such that the path is into Vi+1, and is into Vi unless possibly Vi = C. Given

these inducing paths and the fact that every variable other than C on p is an ancestor

of B, we can apply Lemma 5.4.1 to conclude that there is an inducing path between

C and B relative to L in G, which means C and B are adjacent in M.

Therefore, the edge A → B is invisible in M.

Proof of Lemma 5.1.2

Proof. Construct a DAG from M as follows:

1. Leave every directed edge in M as it is. Introduce a latent variable LAB and

add A ← LAB → B to the graph.

2. for every bi-directed edge Z ↔ W in M, delete the bi-directed edge. Introduce

a latent variable LZW and add Z ← LZW → W to the graph.

The resulting graph we denote by G. Obviously G is a DAG in which A and B share

a latent parent. We need to show that M = MG, i.e., M is the DMAG of G. For

any pair of variables X and Y , there are four cases to consider:

Case 1: X → Y is in M. Since G retains all directed edges in M, X → Y is also

in G, and hence is also in MG.

Case 2: X ← Y is in M. Same as Case 1.

Case 3: X ↔ Y is in M. Then there is a latent variable LXY in G such that

X ← LXY → Y appears in G. Since X ← LXY → Y is an inducing path between

X and Y relative to L in G, X and Y are adjacent in MG. Furthermore, it is easy

to see that the construction of G does not create any directed path from X to Y or

from Y to X. So X is not an ancestor of Y and Y is not an ancestor of X in G. It

follows that in MG the edge between X and Y is X ↔ Y .
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Case 4: X and Y are not adjacent in M. We show that in G there is no inducing

path between X and Y relative to L. Suppose otherwise that there is one. Let p be

an inducing path between X and Y relative to L in G that includes fewest observed

variables. Let 〈X,O1, · · · , On, Y 〉 be the sub-sequence of p consisting of all observed

variables on p. By the definition of inducing path, all Oi’s (1 ≤ i ≤ n) are colliders

on p and are ancestors of either X or Y in G. Since the construction of G does not

create any new directed path from an observed variable to another observed variable,

Oi’s are also ancestors of either X or Y in M. Since O1 is a collider on p, either

X → O1 or X ← LXO1 → O1 appears in G. Either way there is an edge between X

and O1 that is into O1 in M. Likewise, there is an edge between On and Y that is

into On in M.

Moreover, for all 1 ≤ i ≤ n − 1, the path p in G contains Oi ← LOiOi+1
→ Oi+1,

because all Oi’s are colliders on p. Thus in M there is an edge between Oi and

Oi+1. Regarding these edges, either all of them are bi-directed, or one of them is

A → B and others are bi-directed. In the former case, 〈X,O1, · · · , On, Y 〉 constitutes

an inducing path between X and Y in M, which contradicts the maximality of M.

In the latter case, without loss of generality, suppose 〈A,B〉 = 〈Ok, Ok+1〉. Then

〈X, O1, ..., Ok = A〉 is a collider path into A in M. We now show by induction that

for all 1 ≤ i ≤ k − 1, Oi is a parent of B in M.

Consider Ok−1 in the base case. Ok−1 is adjacent to B, for otherwise A → B

would be visible in M because there is an edge between Ok−1 and A that is into

A. The edge between Ok−1 and B is not Ok−1 ← B, for otherwise there would be

A → B → Ok−1 and yet an edge between Ok−1 and A that is into A in M, which

contradicts the fact that M is ancestral. The edge between them is not Ok−1 ↔ B,

for otherwise there would be an inducing path between X and Y relative to L in G
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that includes fewer observed variables than p does, which contradicts our choice of p.

So Ok−1 is a parent of B in M.

In the inductive step, suppose for all 1 < m + 1 ≤ j ≤ k − 1, Oj is a parent of B

in M, and we need to show that Om is also a parent of B in M. The argument is

essentially the same as in the base case. Specifically, Om and B are adjacent because

otherwise it follows from the inductive hypothesis that A → B is visible. The edge is

not Om ← B on pain of making M non-ancestral; and the edge is not Om ↔ B on

pain of creating an inducing path that includes fewer observed variables than p does.

So Om is also a parent of B.

Now we have shown that for all 1 ≤ i ≤ k−1, Oi is a parent of B in M. It follows

that X is adjacent to B, for otherwise A → B would be visible. Again, the edge is

not X ← B on pain of making M non-ancestral. So the edge between X and B in

M is into B, but then there is an inducing path between X and Y relative to L in G
that includes fewer observed variables than p does, which is a contradiction with our

choice of p.

So our initial supposition is false. There is no inducing path between X and Y

relative to L in G, and hence X and Y are not adjacent in MG.

Therefore M = MG.

Proof of Lemma 5.1.4

Proof. Spirtes and Richardson (1996), in proving their Lemma 18, gave a construction

of an m-connecting path in M from a d-connecting path in G. We describe the

construction below.16

16Their lemma addresses the more general case where there may also be selection variables. The
construction given here is an adaptation of theirs to fit our assumption that there are no selection
variables.
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Let p be a minimal d-connecting path between A and B relative to C in G that

is into A, minimal in the sense that no other d-connecting path between A and B

relative to C that is into A is composed of fewer variables than p is.17 Construct a

sequence of variables in O in three steps.

Step 1: Form a sequence T of variables on p as follows. T[0] = A, and T[n + 1] is

chosen to be the first vertex after T[n] on p that is either in O or a (latent) collider

on p, until B is included in T.

Step 2: Form a sequence S0 of variables in O of the same length as T, which

we assume contains m variables. For each 0 ≤ n ≤ m − 1, if T[n] is in O, then

S0[n] = T[n]; otherwise T[n] is a (latent) collider on p, which, by the fact that p is

d-connecting given C, implies that there is a directed path from T[n] to a member

of C. So in this case, S0[n] is chosen to be the first observed variable on a directed

path from T[n] to a member of C.

Step 3: Run the following iterative procedure:

k:=0

Repeat

If in Sk there is a triple of vertices 〈Sk[i− 1],Sk[i],Sk[i + 1]〉 such that (1)

there is an inducing path between Sk[i − 1] and Sk[i] relative to L in G
that is into Sk[i]; (2) there is an inducing path between Sk[i] and Sk[i + 1]

relative to L in G that is into Sk[i]; and (3) Sk[i] is in C and is an ancestor

of either Sk[i−1] or Sk[i+1]; then let sequence Sk+1 be Sk with Sk[i] being

removed;

k := k+1

17In Spirtes and Richardson (1996), minimality means more than that the d-connecting path is a
shortest one, but for this proof one only need to choose a shortest path.
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Until there is no such triple of vertices in the sequence Sk.

Let SK denote the final outcome of the above three steps. Spirtes and Richardson

(1996), in their Lemma 18, showed that SK constitutes an m-connecting path between

A and B relative to C in M. We refer the reader to their paper for the detailed proof

of this fact. What is left for us to show here is that the path constituted by SK in

M is either into A or out of A with an invisible edge.

In other words, we need to show that if the edge between A = SK [0] and SK [1] in

M is A → SK [1], then this edge is invisible. Given Lemma 5.1.1, it suffices to show

that there is an inducing path between A and SK [1] relative to L in G that is into A.

This is not hard to show. In fact, we can show by induction that for all 0 ≤ k ≤ K,

there is in G an inducing path between A and Sk[1] relative to L that is into A.

In the base case, notice that either (i) S0[1] is an observed variable on p such that

every variable between A and S0[1] on p, if any, belongs to L and is a non-collider on

p, or (ii) S0[1] is the first observed variable on a directed path d starting from T[1]

such that T[1] belongs to L, lies on p and every variable between A and T[1] on p, if

any, belongs to L and is a non-collider on p. In case (i), p(A,S0[1]) is an inducing path

relative to L, which is into A, because p is into A. In case (ii), consider p(A,T[1])

and d(T[1],S0[1]). Let W be the variable nearest to A on p(A,T[1]) that is also on

d(T[1],S0[1]). (W exists because p(A,T[1]) and d(T[1],S0[1]) at least intersect at

T[1].) Then it is easy to see that a concatenation of p(A,W ) and d(W,S0[1]) forms

an inducing path between A and S0[1] relative to L in G, which is into A because p

is into A.

Now the inductive step. Suppose there is in G an inducing path between A and

Sk[1] relative to L that is into A. Consider Sk+1[1]. If Sk+1[1] = Sk[1], it is trivial

that there is an inducing path between A and Sk+1[1] that is into A. Otherwise, Sk[1]
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was removed in forming Sk+1. But given the three conditions for removing Sk[1] in

Step 3 above, we can apply Lemma 5.4.1 (together with the inductive hypothesis) to

conclude that there is an inducing path between A and Sk+1[1] = Sk[2] relative to L

in G that is into A. This concludes our argument.

Proof of Lemma 5.1.5

Proof. This lemma is fairly obvious given Lemma 5.1.2. Let u be the path m-

connecting A and B given C in M. Let D (which could be B) be the vertex next to

A on u. Construct a DAG G from M in the usual way: keep all the directed edges,

replacing each bi-directed edge X ↔ Y with X ← LXY → Y . Furthermore, if the

edge between A and D is A → D, it is invisible, so we can add A ← LAD → D to

the DAG. Then G is a DAG represented by M. It is easy to check that there is a

d-connecting path in G between A and B given C that is into A.

Proof of Lemma 5.1.6

Proof. Note that because A is not an ancestor of C, if there is a path out of A d-

connecting A and B given C in G, the path must be a directed path from A to B.

For otherwise there would be a collider on the path that is also a descendant of A,

which implies that A is an ancestor of C. The sub-sequence of that path consisting

of observed variables then constitutes a directed path from A to B in M, which is

of course out of A and also m-connecting given C in M. The converse is as easy to

show.

Proof of Lemma 5.1.7
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Proof. We will use the following fact several times.

lemma 0: If a path 〈U, · · · , X, Y, Z〉 is a discriminating path for Y in M, and the

corresponding subpath between U and Y in P is (also) a collider path, then the path

is also a discriminating path for Y in P .

proof: Given that P is a CPAG for M, all we need to show is that for every vertex

between U and Y on the path, the vertex is also a parent of Z in P . This is easy by

induction. In the base case, let V be the first vertex after U on the path. Since U

and Z are not adjacent, and the edge between U and V is into V (as by assumption

V is a collider on the path), so the edge between V and Z should be oriented (recall,

by R1) as V → Z in P (because by assumption, V → Z appears in M. Now, for

the inductive step, consider an arbitrary vertex W between U and Y . Suppose every

vertex between U and W is a parent of Z in P . It follows that there is a discriminating

path between U and Z for W in P . Hence the edge between W and Z should be

oriented (recall, by R4) as W → Z in P . Q.E.D.

For the main lemma, we first show that the presence of an m-connecting path in

M implies the presence of a definite m-connecting path in P . We break the long

argument into a couple of sub-lemmas.

lemma 1: Let p be a shortest path m-connecting A and B given C in M. Let p∗

denote the corresponding path constituted by the same sequence of variables in P .

Then every non-endpoint vertex on p∗, if any, is of a definite status, i.e., either a

definite collider or a definite non-collider.

proof: We denote the sequence of variables on p by 〈A = O0, O1, ..., On = B〉. We

first establish the following claim.

claim: For every 1 ≤ j ≤ n − 1, if Oj is not of a definite status on p∗, then

Oj+1 is a parent of Oj−1 in M, and Oj+1 is a collider on p in M.
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The claim trivially holds if every non-endpoint vertex on p∗ is of a definite status.

On the other hand, suppose there exists 1 ≤ j ≤ n− 1 such that Oj is not a definite

collider or non-collider. We demonstrate the claim by induction.

In the base case, let OK (1 ≤ K ≤ n − 1) be the one closest to A on p∗ that is

not of a definite status, and we show that the claim holds of K. Since OK is not of

a definite status, OK−1 and OK+1 must be adjacent, for otherwise 〈OK−1, OK , OK+1〉
would be an unshielded triple, and hence OK would be of a definite status on p∗.

Because p is chosen to be the shortest m-connecting path between A and B given C

in M, the path p′ = p(A,OK−1)⊕ 〈OK−1, OK+1〉 ⊕ p(OK+1, B) (i.e., the path p with

OK passed over) is not m-connecting given C in M. But the only possible vertices

to block p′ are OK−1 and OK+1, as the status of other vertices are the same as they

are on p. Below we rule out three of four possible cases for OK−1 or OK+1 to block p′

by deriving a contradiction in each.

Case 1: OK−1 is a non-collider on p but a collider on p′, and OK−1 does not have

a descendant in C in M. It follows that the edge between OK−1 and OK in M
is out of OK−1, i.e., OK−1 → OK , and the edge between OK−1 and OK+1 in M is

into OK−1, i.e., OK−1 ←∗OK+1. So the edge between OK and OK+1 in M is into

OK , i.e., OK ←∗OK+1 (for otherwise M is not ancestral). Hence OK is a collider

on p, which implies that OK is an ancestor of a member of C in M (because p is

m-connecting). This in turn implies that OK−1 is an ancestor of a member of C in

M, which contradicts the supposition that OK−1 does not have a descendent in C.

Case 2: OK+1 is a non-collider on p but a collider on p′, and OK+1 does not have

a descendant in C in M. This case is symmetric to Case 1, and the same argument

will produce a contradiction.

Case 3: OK−1 is a collider on p but a non-collider on p′, and OK−1 is in C. Note

209



that this automatically implies that OK−1 6= A. Consider OK−2, i.e., the vertex next

to OK−1 on p(A,OK−1). Since OK−1 is a collider on p but a non-collider on p′, we have

OK−2∗→ OK−1 ←∗OK and OK−1 → OK+1 in M. Since Ok is chosen to be the vertex

closest to A that is not of a definite status on p∗ in P , Ok−1 is of a definite status

on p∗, which implies that the collider, OK−2∗→ OK−1 ←∗OK , also occurs in P . It

follows that OK−2 is adjacent to OK+1. For otherwise 〈OK−2, OK−1, OK , OK+1〉 forms

a discriminating path for OK in M, and hence by lemma 0, is also a discriminating

path for OK in P , which implies that OK should be a definite non-collider or collider

on p∗ (recallR4 in FCI), a contradiction. Moreover, the edge between OK−2 and OK+1

in M is into OK+1, i.e., OK−2∗→ OK+1, which follows from OK−2∗→ OK−1 → OK+1.

Note also that the edge between OK and OK+1 in M is into OK+1, which fol-

lows from OK∗ → OK−1 → OK+1. Now, the path, p′′, resulting from replacing

p(OK−2, Z) = OK−2∗→ OK−1 ←∗OK∗→ OK+1 with OK−2∗→ OK+1 on p is shorter

than p and hence is not m-connecting. So OK−2 must block p′′ (because the marks at

OK+1 are the same). Note moreover that if the edge between OK−2 and OK−1 in M
is OK−2 → OK−1, then the edge between OK−2 and OK+1 is OK−2 → OK+1, in which

case OK−2 does not block p′′. Hence the only possibility is that OK−2 is a collider on

p, but is a non-collider on p′′, which means that OK−2 → OK+1 is in M.

Then clearly we can apply the exact same argument again to OK−3, the vertex

next to OK−2 on p(A,OK−2). Indeed an obvious and rigorous argument by induction

will establish that every vertex between A and OK on p is a collider on p in both M
and P , and is a parent of OK+1 in M. It follows that A and OK+1 are adjacent, for

otherwise, by lemma 0, p(A,OK+1) would form a discriminating path for OK in P ,

and hence OK should be a definite non-collider or collider on p∗, a contradiction.

Now consider the edge between A and OK+1 in M. It is not out of OK+1, for

210



otherwise M is not ancestral. But we have already shown that the edge between OK

and OK+1 is into OK+1, so if the edge between A and OK+1 is into OK+1, replacing

p(A,OK+1) with A∗→ OK+1 on p makes an m-connecting path between A and B

given C in M shorter than p is, which is a contradiction.

Since Cases 1, 2 and 3 are all ruled out, the only possibility is that OK+1 is a

collider on p but a non-collider on p′ (and OK+1 is in C). This obviously implies that

the edge between OK−1 and OK+1 in M is OK−1 ← OK+1, i.e., OK+1 is a parent of

OK−1 in M, and OK+1 is a collider on p in M. So the base case holds.

For the inductive step, suppose Or (1 ≤ r ≤ n − 1) is not of a definite status on

p∗ and the claim holds of r, and we need to show that for the next such vertex, say,

Or+l on p∗, the claim also holds. We now argue that the following hold: (1) the edge

between Or−1 and Or is into Or−1 in M; and (2) for every 1 ≤ j ≤ l, Or+j is a parent

of Or−1 and is a collider on p in M.

(1) follows from the fact that Or+1 is a parent of Or−1 in M (by the inductive

hypothesis). For otherwise we have Or−1 → Or in M, which in turn implies that the

edge between Or and Or+1 is Or ← Or+1. Then we can replace Or−1 → Or ← Or+1

by Or−1 ← Or+1 on p and get a shorter m-connecting path, which is a contradiction.

(The reason why the new path is also m-connecting is this: Or+1 obviously does not

block the new path, since it does not block the old path p. For Or−1, notice that it

is a non-collider on p, so it is not in C; but on the other hand, it is a parent of Or

which is a collider on p, which implies that Or−1 is also an ancestor of C. Thus it

does not block the new path either.)

The argument for (2) is naturally by induction. Note that an important supposi-

tion we can use here is that every other vertex between Or and Or+l is of a definite

status on p∗. The base case trivially holds because of the inductive hypothesis of the
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outer induction, i.e., that the claim holds of r. Suppose for all j < m it is true that

Or+j is a parent of Or−1 and is a collider on p inM. Then all these colliders also occur

in P because every vertex between Or and Or+l is of a definite status. So Om must

be adjacent to Or−1 in M, for otherwise p(Or−1, Om) would be a discriminating path

for Or in M, and by lemma 0, p∗(Or−1, Om) would also be a discriminating path for

Or in P , and hence Or would be a definite collider or non-collider, a contradiction.

Now consider the edge between Om and Or−1 in M. It is into Or−1, for otherwise M
is not ancestral (because Om−1 is a parent of Or−1 and is a collider on p). Consider

the path resulting from replacing p(Or−1, Om) with Or−1 ←∗Om on p. It is shorter

than p, so it is not m-connecting. But by (1), p(Or−1, Om) is also into Or−1, so the

only possibility is that Om would block the new path. By the same argument we have

used several times, it is easy to derive that Om is a collider on p but a non-collider

on the new path, which means Om is also a parent of Or−1. Hence (2) is established.

We are ready to finish the inductive step of the outer induction. Since Or+l is

not of a definite status on p∗, Or+l−1 is adjacent to Or+l+1. Again, either Or+l−1 or

Or+l+1 blocks the path resulting from replacing the triple Or+l−1, Or+l, Or+l+1 with

the edge between Or+l−1 and Or+l+1 on p. There are, similarly to the base case, four

possibilities to consider, and the analogous Case 1 and Case 2 can be ruled out by

the exact same argument we used in the base case. The analogous Case 3 cannot be

ruled out by the same argument we used, but can be ruled out as follows. suppose

for contradiction that Or+l−1 is a collider on p and a non-collider on the new path,

which implies that Or+l−1 is a parent of Or+l+1. It then follows, by the exact same

argument we used to argue for (1) above, that the edge between Or+l and Or+l+1 is

into Or+l+1. And in turn it follows, by the exact same argument we used to argue

for (2) above, that for every 1 ≤ j ≤ l, Or+l−j is a parent of Or+1+l and is a collider
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on p in M. This, together with (2) above, implies that p(Or−1, Or+l+1) forms an

inducing path between Or−1 and Or+l+1 in M. Because M is maximal, it follows

that Or−1 ↔ Or+l+1 occurs in M. This means we can replace p(Or−1, Or+l+1) with

Or−1 ↔ Or+l+1 and get an m-connecting path between A and B given C shorter

than p is, which is a contradiction. Therefore, the only remaining possibility is that

Or+l+1 is a collider on p but a non-collider on the new path (resulting from replacing

the triple 〈Or+l−1, Or+l, Or+l+1〉 with the edge between Or+l−1 and Or+l+1). It follows

that Or+l+1 is a parent of Or+l−1. Hence the claim holds of r + l as well.

Now that we have established the claim, we are ready to prove lemma 1. The

key is to consider the following claim:

claim*: For every 1 ≤ j ≤ n − 1, if Oj is not of a definite status on p∗, then

Oj−1 is a parent of Oj+1 in M, and Oj−1 is a collider on p in M.

Obviously claim* is symmetric to the original claim. And it takes little effort to see

that we can carry out an exactly symmetric argument by induction, this time starting

from the vertex closest to B that is not of a definite status on p∗, to establish claim*.

But obviously claim and claim* is in conflict as long as there exists 1 ≤ j ≤ n− 1

such that Oj is not of a definite status on p∗. It follows that every non-endpoint

vertex on p∗ is of a definite status, which concludes our proof of lemma 1. Q.E.D.

Given any path p m-connecting A and B given C in M, for every collider Q on p,

there is a directed path (possibly of length 0) from p to a member of C. Define the

distance-from-C of Q to be the length of a shortest directed path (possibly of length

0) from Q to C, and define the distance-from-C of p to be the sum of the distances

from C of the colliders on p.

lemma 2: Let p be a shortest path m-connecting A and B given C in M such that
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no equally short m-connecting path has a shorter distance-from-C than p does.18 Let

p∗ denote the corresponding path constituted by the same sequence of variables in P .

Then p∗ is a definite m-connecting path between A and B given C in P .

proof: Since p is a shortest m-connecting path, by lemma 1, every non-endpoint

vertex on p∗, if any, is of a definite status, i.e., either a definite collider or a definite

non-collider. Since P is a CPAG ofM, every definite non-collider on p∗ corresponds to

a non-collider on p, and hence is not in C, for otherwise p would not be m-connecting

given C in M.

Similarly, for any definite collider Q on p∗, Q is also a collider on p. Hence there

is a directed path (possibly of length 0) from Q to a member of C in M. Let d be a

shortest such path from Q to, say, C ∈ C. Let d∗ denote the corresponding path in

P . Because P is a CPAG of P , d∗ is a potentially directed path from Q to C in P .

We now show that no circle mark (◦) appears on d∗, i.e., that d∗ is (fully) directed.

Suppose for contradiction that there is a circle on d∗. Then the mark at Q on d∗

must be a circle, for otherwise, an arrowhead would meet a circle on d∗, and by the

property CP1 (recall Lemma 3.3.1), a proper subpath of d∗ would constitute a p.d.

path from Q to C, which in turn implies that there is a shorter directed path from Q

to C in M than d is, a contradiction with our choice of d.

Let Q ◦−−∗S be the first edge on Q. Suppose S is not on p∗ for the moment.

Since Q is a definite collider on p∗, we have Ql∗→ Q ←∗Qr in P , Ql, Qr being the

two vertices adjacent to Q on p∗. By property CP1, there is an edge between Ql

and S that is into S, and there is an edge between Qr and S that is into S, i.e.,

Ql∗→ S ←∗Qr in P .

Now we show that there exists a vertex W (distinct from Q) on p(A,Q) such

that (i) there is an edge between W and S in M that is into S; and (ii) in M, the

18Such an m-connecting path is named minimal in, for example, Richardson and Spirtes (2002).
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collider/non-collider status of W on p is the same as the collider/non-colllider status

of W on p(A,W )⊕ 〈W,S〉. To show this, it suffices to demonstrate that if no vertex

between A and Q on p satisfies the two conditions, then A must satisfy them. Suppose

no vertex between A and Q on p satisfies the two conditions. If Ql = A, A satisfies (i)

and (ii) trivially. Suppose Ql 6= A. We argue by induction that every vertex between

A and Q is a collider on p and is a parent of S in M.

In the base case, we already established that (i) holds of Ql. So, by our supposition,

(ii) does not hold of Ql. It follows that either Ql is a non-collider on p but a collider

on p(A,Ql)⊕Ql∗→ S, or Ql is a collider on p but a non-collider on p(A,Ql)⊕Ql∗→ S.

The former case implies that the edge between Ql and Q is Ql → Q, and the edge

between Ql and S is into Ql, which contradicts the fact that Q → S occurs in M and

M is ancestral. So only the latter case is possible, which implies that Ql is a parent

of S in M and is a collider on p.

In the inductive step, suppose Qm 6= A is a vertex between A and Ql on p, and

every vertex between Qm and Q is a collider on p and is a parent of S in M. It follows

that Qm is adjacent to S, for otherwise 〈Qm, ..., Ql, Q, S〉 forms a discriminating path

for Q in M, and, by lemma 0, also forms a discriminating path for Q in P (because

every non-endpoint vertex on p∗ is of a definite status), and hence the circle at Q on

Q ◦−−∗S should have been oriented by R4. The edge between Qm and S in M is

not out of S, on pain of making M non-ancestral. So (i) holds of Qm. Then, by our

supposition, (ii) does not hold of Qm. By the same argument we used in the base

case, Qm is a collider on p and is a parent of S in M.

Now we have established that every vertex between A and Q is a collider on p

and is a parent of S in M, it is easy to see that A is adjacent to S, for otherwise

the circle at Q on Q ◦−−∗S should have been oriented by R4 (for the same reason
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stated in the last paragraph). The edge between A and S in M is not out of S, on

pain of making M non-ancestral. So (i) holds of A. But (ii) holds of A trivially.

Thus we have established that there exists a vertex W (distinct from Q) on p(A,Q)

such that (i) there is an edge between W and S in M that is into S; and (ii) the

collider/non-collider status of W on p is the same as the collider/non-colllider status

of W on p(A,W )⊕ 〈W,S〉.
By symmetry, it follows that there exists a vertex V (distinct from Q) on p(Q,B)

such that (i) there is an edge between V and S in M that is into S; and (ii) the

collider/non-collider status of V on p is the same as the collider/non-colllider status

of V on 〈S, V 〉⊕ p(V, B). Then the path p′ = p(A,W )⊕〈W,S, V 〉⊕ p(V, B) (it could

be that A = W and/or V = B) is obviously m-connecting given C in M. It is easy

to check that either p′ is shorter than p is, or p′ is as long as p is (when W = Ql and

V = Qr) but has a shorter distance-from-C than p. Either case is a contradiction

with our assumption about p.

Finally, if S is on p, it either lies on p(A,Ql) or lies on p(Qr, B). Without loss of

generality, suppose it is on p(Qr, B). The same argument goes through to establish

that there exists a vertex W (distinct from Q) on p(A,Q) such that (i) there is an

edge between W and S in M that is into S; and (ii) the collider/non-collider status

of W on p is the same as the collider/non-colllider status of W on p(A,W )⊕ 〈W,S〉.
Then the path p(A, W )⊕W∗→ S〉p(S, B) is m-connecting given C but shorter than

p is, a contradiction.

So our supposition that there is a circle mark on d∗ is false. d∗ is directed in P as

well, and hence Q is an ancestor of C in P . Therefore, p∗ is a definite m-connecting

path between A and B given C in P . Q.E.D.

It obviously follows from lemma 2 that if there is a m-connecting path between
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A and B given C in M, then there is a definite m-connecting path between A and

B given C in P , which is the first part of Lemma 5.1.7.

To prove the second part of Lemma 5.1.7, namely that if there is an m-connecting

path between A and B given C in M that is into A or out of A with an invisible

directed edge, then there is a definite m-connecting path between A and B given C

in P that is not out of A with a definitely visible edge, the same argument almost

applies. Basically we will establish lemmas analogous to lemma 1 and lemma 2:

lemma 1’: Let p be a shortest path m-connecting A and B given C in M whose

corresponding path in P, denoted by p∗, is not out of A with a definitely visible edge.

Then every non-endpoint vertex on p∗, if any, is of a definite status, i.e., either a

definite collider or a definite non-collider.

proof: The same argument for lemma 1 applies here, except that when we derive a

contradiction by showing that there is a shorter m-connecting path, we have to argue

that the shorter path is also such that its corresponding path in P is not out of A

with a definitely visible edge. The only place in the argument where this additional

requirement is not obviously satisfied is in Case 3 of the base case of the induction.

There, an (initial) segment of p, p(A,OK+1), is replaced by an edge A∗→ OK+1. We

have to check that this edge does not correspond to a definitely visible A → OK+1 in

P . But this is not hard to show, because this replacement happens only when every

vertex between A and OK−1 on p is a collider and is a parent of OK+1 in M (and

in P). If A → OK+1 is definitely visible in P , then there is in P a vertex E not

adjacent to OK+1 such that either E∗→ A or there is a collider path between E and

A that is into A and every collider on the path is a parent of OK+1. From this it is

easy to derive that there is a discriminating path 〈E, · · · , OK−1, OK , OK+1 for OK in

P , which means that OK should be of a definite status on p∗, a contradiction. Q.E.D.
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lemma 2’: Let p be a shortest path m-connecting A and B given C in M whose

corresponding path in P, denoted by p∗, is not out of A with a definitely visible edge,

such that no equally short m-connecting path whose corresponding path in P is not

out of A with a definitely visible edge has a shorter distance-from-C than p does.19

Then p∗ is a definite m-connecting path between A and B given C in P .

proof: Again, the argument for lemma 2 applies here, except that when we derive a

contradiction by showing that there is a shorter m-connecting path or a equally long

but with a shorter distance-from-C path, we need to argue that the path is also such

that its corresponding path in P is not out of A with a definitely visible edge. This

again is not hard to verify. We leave the details to the reader. Q.E.D.

To conclude, if there is an m-connecting path between A and B given C inM that

is into A or out of A with an invisible directed edge, we know that its corresponding

path in P is not out of A with a definitely visible edge, because P is a CPAG of

M. So there exists a path that satisfies the condition in lemma 2’, and hence there

exists a definite m-connecting path between A and B given C in P that is not out of

A with a definitely visible edge.

Proof of Lemma 5.1.8

Proof. This lemma is relatively easy. A path definitely m-connecting A and B given

C in P is m-connecting in any DMAG represented by P , which is an immediate

consequence of the definition of CPAG. Let D be the vertex next to A on the definite

m-connecting path in P between A and B given C. All we need to show is that if the

edge between A and D is not a definitely visible A → D in P , there exists a DMAG

19Such an m-connecting path is named minimal in, for example, Richardson and Spirtes (2002).
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represented by P in which the edge between A and D is not a visible edge out of A.

Obviously if the edge in P is not A → D, there exists a DMAG represented in P
in which the edge is not A → D, which follows from the completeness of P . Consider

the case where the edge in P is A → D, but it is not definitely visible. Recall that we

can orient P into a DMAG by first tail augmenting (Definition 3.3.1) P and orienting

the circle component into a DAG with no unshielded colliders. Moreover, it is easy to

show that using, for example, Meek’s algorithm we can orient the circle component

into a DAG free of unshielded colliders in which every edge incident to A is oriented

out of A. Let the resulting DMAG be M. We show that A → D is invisible in M.

Suppose for contradiction that it is visible in M. Then there exists in M a vertex E

not adjacent to D such that either E∗→ A or there is a collider path between E and

A that is into A and every collider on the path is a parent of D. In the former case,

since A → D is not definitely visible in P , the edge between E and A is not into A

in P , but then that edge will not be oriented as into A by our construction of M. So

the former case is impossible.

In the latter case, denote the collider path by 〈E,E1, ..., Em, A〉. Obviously every

edge on 〈E1, ..., Em, A〉 is bi-directed, and so also occurs in P . Thus if the edge

between E and E1 is also into E1 in P , then the collider path appears in P , which

implies that every Ei (1 ≤ i ≤ m) is also a parent of D in P , and hence A → D is

definitely visible in P , a contradiction. So the edge between E and E1 is not into E1

in P , but oriented as into E1 in M. This is possible only if the edge is E ◦−−◦E1 in P .

But we also have E1 ↔ E2 (E2 could be A) in P , which, by property CP1, implies

that E ↔ E2 is in P . Obviously 〈E, E2, · · · , A〉 makes A → D definitely visible in P ,

which is a contradiction.
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Proof of Lemma 5.1.9

Proof. This is an easy lemma. Note that since A does not have a descendant in C,

an m-connecting path out of A given C in M has to be a directed path from A to B

such that every vertex on the path is not in C. Then a shortest such path has to be

uncovered, and so will correspond to a definite m-connecting path between A and B

given C in P (on which every vertex is a definite non-collider). This path is not into

A in P because P is the CPAG for M in which the path is out of A.

Proof of Lemma 5.1.10

Proof. This is again trivial. Let D be the vertex next to A on the definite m-

connecting path in P . Since the edge between A and D is not into A in P , there

exists a DMAG represented by P in which the edge is out of A (which follows from

the completeness of CPAG). Such a DMAG obviously satisfies the lemma.

Proof of Lemma 5.2.1

Proof. We first establish two facts: (1) every directed edge in MG
YX

is also in MYX;

and (2) for every bi-directed edge S ↔ T in MG
YX

, S and T are also adjacent in

MYX. The edge between S and T in MYX is either a bi-directed edge or an invisible

directed edge.

Regarding (1), note that for any P → Q in MG
YX

, P /∈ Y, for otherwise P would

not be an ancestor of Q in GYX, and hence would not be a parent of Q in MG
YX

; and

likewise Q /∈ X, for otherwise Q would not be a descendant of P in GYX, and hence

would not be a child of P in MG
YX

. Furthermore, because GYX is a subgraph of G,

any inducing path between P and Q relative to L in GYX is also present in G, and
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any directed path from P to Q in the former is also present in the latter. This entails

that P → Q is also in M, the DMAG of G. Since P /∈ Y and Q /∈ X, P → Q is also

present in MYX.

For (2), note that if S ↔ T is in MG
YX

, then there is an inducing path between

S and T relative to L in GYX that is into both S and T . This implies that S, T /∈ X,

and moreover there is also an inducing path between S and T relative to L in G that

is into both S and T . Hence there is an edge between S and T in M, the DMAG of

G. The edge in M is either S ↔ T or, by Lemma 5.1.1, an invisible directed edge

(S ← T or S → T ). Now since S, T /∈ X, if S ↔ T appears in M, it also appears in

MYX. If, on the other hand, the edge between S and T in M is directed, suppose

without loss of generality that it is S → T . Either S ∈ Y, in which case we have

S ↔ T in MYX, because S → T is invisible in M; or S /∈ Y, and S → T remains

in MYX. In the latter case we need to show that S → T is still invisible in MYX.

Suppose for contradiction that it is visible, that there is a vertex R not adjacent to

T such that either R∗→ S is in MYX or there is a collider path c in MYX between

R and S that is into S on which every collider is a parent of T . We show that S → T

is also visible in M. Consider the two possible cases separately:

Case 1: R∗→ S is in MYX. If the edge is R → S, it is also in M, because

manipulations of a DMAG do not create new directed edges. Also, R and T are not

adjacent in M either, for otherwise the edge would be R → T . Note that R /∈ Y

because otherwise R → S would be deleted or changed into a bi-directed edge; and

T /∈ X because otherwise S → T would be deleted. It follows that R → T would be

present in MYX as well, a contradiction. Hence R and T are not adjacent in M, and

so the edge S → T is also visible in M.

Suppose, on the other hand, the edge between R and S in MYX is R ↔ S. In M
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the edge is either (i) R ↔ S, or (ii) R → S. (It can’t be R ← S because then S ∈ Y

and the edge S → T would not remain in MYX.) If (i) is the case, we argue that R

and T are not adjacent in M. Since R ↔ S → T is in M, if R and T are adjacent,

it has to be R ↔ T or R → T . In the former case, R ↔ T would still be present

in MYX (because obviously R, T /∈ X), which is a contradiction. In the latter case,

R → T is invisible in M, for otherwise it is easy to see that S → T would also be

visible. So either R → T remains in MYX (if R /∈ Y), or it turns into R ↔ T (if

R ∈ Y). In either case R and T would still be adjacent in MYX, a contradiction.

Hence R and T are not adjacent in M, and so the edge S → T is also visible in M.

If (ii) is the case, then either R and T are not adjacent in M, in which case S → T

is also visible in M; or R and T are adjacent in M, in which case we now show that

S → T is still visible. The edge between R and T in M has to be R → T (in view

of R → S → T ). Since R and T are not adjacent in MYX, and R → S is turned

into R ↔ S in MYX, R → T is visible but R → S is invisible in M. So there is

a vertex Q not adjacent to T such that Q∗→ R is in M or there is a collider path

in M between Q and R that is into R on which every collider is a parent of T . But

R → S, from which it is not hard to derive that either Q∗→ S is in M or there is a

vertex P on the collider path such that P ↔ S is in M.20 In either case, S → T is

visible in M.

Case 2: There is a collider path c in MYX between R and S that is into S on

which every collider is a parent of T . We claim that every arrowhead on c, except

possibly one at R, is also inM. Because if an arrowhead is added at a vertex Q (which

could be S) on c by the lower-manipulation, then Q ∈ Y, but then the edge Q → T

would not remain in MYX, a contradiction. So c is also a collider path in M that is

into S. Furthermore, no new directed edges are introduced by lower-manipulation or

20We have seen the precise argument for this several times in Chapter 4.
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upper-manipulation, so every collider on c is still a parent of T in M.

It follows that if R and T are not adjacent in M, then S → T is visible in M.

On the other hand, if R and T are adjacent in M, it is either R ↔ T or R → T .

Note that this edge is deleted in MYX. This implies that it is not R ↔ T in M.

For otherwise the edge incident to R on c has to be bi-directed as well, and hence if

R ↔ T is deleted, either the edge incident to R on c or the edge S → T should be

deleted in MYX, which is a contradiction. So the edge is R → T in M. Since T /∈ X

(for otherwise S → T would be deleted), R ∈ Y, and R → T is visible in M. But

then it is easy to see that S → T is also visible in M.

To summarize, we have shown that if S → T is visible in MYX, it is also visible

in M. Since it is not visible in M, it is invisible in MYX as well. Thus we have

established that (1) every directed edge in MG
YX

is also in MYX; and (2) for every

bi-directed edge S ↔ T in MG
YX

, S and T are also adjacent in MYX. The edge

between S and T in MYX is either a bi-directed edge or an invisible directed edge.

We are now ready to prove the lemma. Our strategy is to show that MYX can

be transformed into a supergraph of MG
YX

via a sequence of equivalence-preserving

mark changes. We will further simplify the proof by noting that we do not need to

require the transformation to preserve DMAGness, and all we need to guarantee is

that each mark change results in an inducing path graph (IPG), which allows almost

directed cycles. Interested readers can check the Appendix on IPGs, but the point

here is that a single mark change (from → to ↔) preserves Markov equivalence if the

conditions (t2) and (t3) in Lemma 4.4.1 hold.21

Let us sketch the proof. By (1) and (2), if MYX is not yet a supergraph of

MG
YX

, it is because some bi-directed edges in MG
YX

correspond to directed edges

in MYX. For any such directed edge P → Q in MYX (with P ↔ Q in MG
YX

),

21This relaxation is unnecessary, but simplifies the proof greatly.
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(2) implies that P → Q is invisible. It is then easy to check that conditions (t2)

and (t3) in Lemma 4.4.1 hold for P → Q in MG
YX

, and thus it can be changed into

P ↔ Q while preserving Markov equivalence (though not necessarily DMAGness).

Furthermore, it is not hard to check that making this change will not make any other

such directed edge in MYX visible. It follows that MYX can be transformed into

a Markov equivalent mixed graph (actually an IPG) that is a supergraph of MG
YX

.

Denote the supergraph by I. We can immediately conclude that if there is an m-

connecting path between A and B given C in MG
YX

, the path is also m-connecting

in the supergraph of MG
YX

, I. Because MYX and I are Markov equivalent, there is

also an m-connecting path between A and B given C in MYX.

Proof of Lemma 5.2.3

Proof. It is not hard to check that for any two variables P,Q ∈ O, if P and Q

are adjacent in MYX, then they are adjacent in PYX (though the converse is not

necessarily true, because an edge not definitely visible in P may still be visible in

M). Furthermore, when they are adjacent in both MYX and PYX, every non-circle

mark on the edge in PYX is “sound” in that the mark also appears in MYX. The

lemma obviously follows.
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Chapter 6

Conclusions and Future Projects

There are, as always, many problems left untouched. Indeed, associated with every

issue raised and every problem solved in this dissertation, there are further issues and

open problems to be addressed. I will end with a review of what has been done and

a preview of what is to be done.

The main subject of my dissertation is about the extent to which probabilistic

independence and dependence relations among a set of variables can inform us about

causal relations among them, and to a lesser degree, about the extent to which a

limited amount of acquired causal information can be used to predict consequences of

interventions. The investigation is based on two popularly adopted though also widely

debated assumptions that link causality to probability, the Causal Markov Condition

and the Causal Faithfulness Condition. However, for the most part, I do not assume

that the two conditions as they are usually formulated apply directly to the set of

observed variables whose probabilistic relations are inferrable from available data.

Those variables alone may be causally insufficient. I do assume nonetheless that

there is a bigger system containing the given observed variables to which the two

conditions apply.
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The major theme is to explore the full consequences of the Causal Markov and

Faithfulness Conditions for inferring causal relations among a set of observed vari-

ables not known to be causally sufficient from facts of conditional independence and

dependence among them. The primary results on this are presented in chapters 3

and 4. In a nutshell, it is shown that the FCI inference procedure, though not com-

plete in deriving all common orientations shared by all MAGs Markov equivalent to

the (unknown) true causal MAG, is complete in deriving all valid arrowheads, and

hence statements about “non-cause”, i.e., statements of the form: “A is not a cause

of B”, given a perfect oracle of conditional independence relations. Furthermore the

FCI algorithm can be supplemented by a few additional inference rules so that the

resulting Augmented FCI algorithm is complete with respect to all common orienta-

tions, both arrowheads and tails. The results are actually obtained in a more general

setting than causal inference with possibly causal insufficiency — possible presence

of selection effects is also considered. The general results lead to a characterization

of Markov equivalence classes of ancestral graphical models, which may be significant

in its own right for statisticians interested in graphical models.

At least two related problems, however, are left open and worth further investiga-

tion. First, the completeness result is with respect to causal sentences that are true

in all causal models compatible with the Causal Markov and Faithfulness conditions

alone. So implicitly it is assumed that no prior information whatsoever about the

causal structure is available, and every causal model in a Markov equivalence class

is possibly true. This aptly captures circumstances where only passive observation

is possible, but it is not entirely adequate when some experimental control or prior

causal knowledge is also available. In the semi-experimental case, extra axioms may

be added stipulating certain constraints on causal structure, and validity should be
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judged with regard to the Causal Markov and Faithfulness conditions plus these ex-

tra axioms. If so, the Augmented FCI procedure, though obviously still sound, is

probably not complete. What further inference rules are needed is an open question.

Second, the completeness result is with respect to valid causal sentences entailed

by (conditional) independence and dependence facts. But dependence and indepen-

dence are presumably not the only sort of probabilistic ”facts” that are informative

about causation. In fact, it is well known that certain causal DAGs with latent vari-

ables entail testable constraints on the marginal probability of observed variables,

sometimes referred to as the Verma constraints (see Tian and Pearl 2002 for an illu-

minating discussion). It is both theoretically intriguing to study the nature of such

”extra” evidence and practically significant to explore methodologies that may exploit

such evidence.

As mentioned earlier, the approach the FCI procedure follows is referred to as the

independence-constraint-based approach, as contrasted to the score-based approach

(sometimes also called the Bayesian approach, though a score-based approach could

also be non-Bayesian). The constraint-based approach is clearly divided into two

parts: statistical inference from data and causal inference from probability, the latter

of which is probably of more interest to philosophers, whereas the score-based ap-

proach does not admit a clear-cut division of this sort. From a practical point of view,

however, the score-based approach is in general more stable than the constraint-based

approach on small or moderate sample sizes.1 It is thus desirable to have score-based

inference procedures developed for causal inference as well.

If the set of observed variables is known to be causally sufficient (so that the

1In addition, the score-based approach has the advantage of always returning a “legitimate”
object, unlike, for example, the PC algorithm that often returns an object with “illegitimate” bi-
directed edges or directed cycles. Also, score-based algorithms can return a set of objects of high
scores rather a single object. Both of these, however, may be achieved within the constraint-based
approach as well, I think.
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true causal structure is properly represented by a DAG), quite a few score-based

algorithms have been proposed in the literature. One that is particularly relevant here

is the Greedy Equivalence Search (GES) algorithm that, just as the PC algorithm,

also aims to infer a Markov equivalence class of DAGs and is also provably sound in

the large sample limit. There are good reasons to expect that the GES algorithm as

well as its justification can be well extended to the case of causal inference without

assuming causal sufficiency.

Theoretically, the transformational characterization of Markov equivalence for

DMAGs given in Chapter 4 is a first, though quite small, step towards justifying

a GES-style algorithm for inferring causal MAGs. A big remaining gap is to extend

the transformational result to cover not only equivalent models, but independence

sub-models as well. Practically, there is already a well-developed Gaussian parame-

terization of MAGs and an efficient algorithm to fit Gaussian MAGs using maxi-

mum likelihood estimation (Drton and Richardson 2004), so we know how to score a

Gaussian MAG. We also know how to efficiently turn a CPAG into a representative

MAG (with fewest bi-directed and un-directed edges) given the results in Chapters 3

and 4. We do not yet know, however, how to efficiently traverse the search space, a

space of CPAGs. This is an interesting and conceivably challenging project from an

algorithmic point of view.

A lot more should have been done in Chapter 5. The graphical criterion for invari-

ance by itself can only identify a special class of inferrable post-intervention probabil-

ities, i.e., those probabilities that remain the same before and after the intervention.

How to exploit that criterion to identify more general inferrable post-intervention

quantities is an interesting and important issue. In some sense, Pearl’s do-calculus

does exactly that. Upon careful inspection, the rules in do-calculus are based on
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just invariance (and probability calculus), but an iterated application of the rules

could pick out all other inferrable quantities (see Shpister and Pearl 2006, Huang and

Valtorta 2006 for proofs of the completeness of the do-calculus).

From an algorithmic point of view, however, do-calculus is far less efficient than

a largely algebraic method recently developed to identify intervention effects given a

single causal DAG with latent variables (Tian and Pearl 2004, see also Huang and

Valtorta 2006). Whether that method can be adapted to the case where only a CPAG

is given is probably worth investigating.

Although the primary attention of this dissertation was devoted to studying the

consequences of the Causal Markov and Faithfulness conditions, I did include some

discussion of the testability of the Causal Faithfulness conditions in Chapter 2. A

distinction between “(asymptotically) detectable” violations of faithfulness and “un-

detectable” violations of faithfulness can be made assuming the Causal Markov con-

dition holds. In the context of inferring causal DAGs, for example, the condition can

be decomposed into at least two parts, and one part, the Orientation-Faithfulness

condition, is in principle testable given the other, the Adjacency-Faithfulness con-

dition. This discussion by no means exhausts the issue of characterizing detectable

violations of faithfulness. Some violations of the Adjacency-Faithfulness condition,

for example, are also detectable. It is desirable to have a neat characterization of all

detectable violations of faithfulness, through which we can gain a good understand-

ing of how much an empiricist has to concede to avoid being a radical skeptic about

causal inference.

Conversely, it is also shown, albeit in a very preliminary fashion, how certain

failure of the Causal Markov condition may be mitigated if we assume the Causal

Faithfulness condition holds. I believe there is more to be said about this point,
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which may serve as a pragmatic basis for assuming the Causal Markov condition.

These theoretical results are not without practical implications. A modification

of the familiar PC algorithm suggested by the testability result was studied empiri-

cally. It turns out that the modified algorithm, called Conservative PC, significantly

improves accuracies. A conjecture for why this is the case is that the conservative

version rightly suspends judgments in close-to-unfaithful situations, which thus avoids

some errors the PC algorithm is very liable to.2

All these, however, are established in the context of causal inference with causal

sufficiency. The following question is thus unavoidable given the main concern of

this dissertation: can the results be extended to causal inference without causal suf-

ficiency? There seems to be good reason for answering “yes”. At least the con-

servative modification of the PC algorithm can be immediately carried over to the

(augmented) FCI algorithm. For example, we can modify R0 and R4 of the FCI

to the effect that the judgment of collider or non-collider relies on more conditional

independence facts and the judgment may be neither given certain combination of con-

ditional independence facts. Furthermore, the relevant Adjacency-Faithfulness and

Orientation-Faithfulness should probably be formulated in terms of MAGs. Whether

conservative FCI is sound under a weaker faithfulness condition and works empirically

better awaits careful examination.

2This seems to be related to a big issue I wish I could have spent some time on. The issue is about
what kind of reliability — in terms of the notion of consistency in statistics — is achievable in causal
inference. Robins et al. (2003) argued, based on some canonical cases, that causal inference can at
best be pointwise consistent, but not uniformly consistent under the Causal Markov and Faithfulness
conditions. Zhang and Spirtes (2003) showed that under a slightly strengthened version of faithful-
ness, which is arguably what some social scientists implicitly assume anyway, uniform consistency
is achievable in those canonical cases. However, no general uniformly consistent procedure has been
proposed. Now, if the CPC algorithm really works by placing right caution on close-to-unfaithful
cases, it seems to be (close to) a uniformly consistent procedure under the strengthened faithfulness
assumption. I thank Peter Spirtes for pointing this out.
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Appendix: Inducing Path Graphs

Much of this dissertation is rooted in the seminal work by Peter Spirtes, Clark Gly-

mour and Richard Scheines (1993/2000, chapters 6 and 7), which is based on a graph-

ical representation called inducing path graphs. This representation is not given an

independent syntactic definition, but defined via a construction relative to a DAG

(with latent variables). It is clear from the construction that this representation is

closely related to directed MAGs (DMAGs). In this appendix we specify the exact

relationship between them. In particular, we give an independent syntactic definition

of inducing path graphs, which makes it clear that syntactically the class of DMAGs

is a subclass of inducing path graphs.

An inducing path graph (IPG) is a directed mixed graph, defined relative to DAG

G(O,L) through the following construction:

Input: a DAG G over 〈O,L〉
Output: an IPG IG over O

1. for each pair of variables A,B ∈ O, A and B are adjacent in IG if and only if

there is a inducing path between them relative to L in G;

2. for each pair of adjacent vertices A,B in IG, mark the A-end of the edge as

an arrowhead if there is an inducing path between A and B that is into A,

otherwise mark the A-end of the edge as a tail.
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It can be shown that the construction outputs a mixed graph IG in which the set

of m-separation relations is exactly the set of d-separation relations among O in the

original DAG G (Spirtes and Verma 1992). Furthermore, IG encodes information

about inducing paths in the original graph, which in turn implies features of the

original DAG that bear causal significance. Specifically, we have two useful facts: (i)

if there is an inducing path between A and B relative to L that is out of A, then A is

an ancestor of B in G; (ii) if there is an inducing path between A and B relative to L

that is into both A and B, then A and B have a common ancestor in L unmediated

by any other observed variable.3 So IG, just like the MAG for G, represent both

the conditional independence relations and (features of) the causal structure among

the observed variables O. Since the above construction obviously produces a unique

graph given a DAG G, we call IG the IPG for G.

Therefore a directed mixed graph over a set of variables is an IPG if it is the IPG

for some DAG. We now show that a directed mixed graph is an IPG if and only if it

is maximal and does not contain a directed cycle.

Theorem 6.0.1. For any directed mixed graph I over a set of variables O, there

exists a DAG G over O and possibly some extra variables L such that I = IG, i.e., I
is the IPG for G if and only if

(i1) There is no directed cycle in I; and

(i2) I is maximal.

Proof. We first show that the conditions are necessary (only if). Suppose there

exists a DAG G(O,L) whose IPG is I. In other words, I is the output of the

IPG construction procedure given G. If there is any directed cycle in I, say c =

3We will not elaborate upon the exact causal interpretation of IPGs here, which is not relevant
to our purpose. See Spirtes et al. 1993/2000 for details.
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〈O1, · · · , On, O1〉, then between any pair of adjacent nodes in the cycle, Oi and Oi+1

(1 ≤ i ≤ n and On+1 = O1), there is an inducing path between them in G relative to

L, which, by one of the facts mentioned earlier, implies that Oi is an ancestor of Oi+1

in G. Thus there would be a directed cycle in G as well, a contradiction. Therefore

there is no directed cycle in I. To show that it is also maximal, consider any two

non-adjacent nodes A and B in I. We show that there is no inducing path in I
between A and B. Otherwise let p = 〈A,O1, · · · , On, B〉 be an inducing path. By the

construction, there is an inducing path relative to L in G between A and O1 that is

into O1, and an inducing path relative to L in G between B and On that is into On,

and for every 1 ≤ i ≤ i− 1, there is an inducing path relative to L in G between Oi

and Oi+1 that is into both. It is easy to check that joining all these paths together

makes an inducing path between A and B relative to L in G, and so A and B should

be adjacent in I, a contradiction. Therefore I is also maximal.

Next we demonstrate sufficiency (if). If the two conditions hold, construct a DAG

G as follows: retain all the directed edges in I, and for each bi-directed edge A ↔ B

in I, introduce a latent variable LAB in G and replace A ↔ B with A ← LAB → B.4

It is easy to see that the resulting graph G is a DAG, as in I there is no directed

cycle. We show that I = IG, the IPG for G. For any pair of variables A and B in I,

four cases to consider:

Case 1: A → B is in I. Then A → B is also in G, so A and B are adjacent in IG.
In IG, the edge between A and B is not A ← B, because otherwise B would have to

be an ancestor of A in G, a contradiction. The edge is not A ↔ B either, because

otherwise there would have to be a latent variable that is a parent of both A and B,

which by the construction of G is not the case. So A → B is also in IG.
Case 2: A ← B is in I. By the same argument as in Case 1, A ← B is also in IG.

4This is named canonical DAG in Richardson and Spirtes (2002).
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Case 3: A ↔ B is in I. Then there is a LAB such that A ← LAB → B is in G.

Then obviously 〈A,LAB, B〉 is an inducing path relative to L in G that is into both

A and B, and hence A ↔ B is also in IG.
Case 4: A and B are not adjacent in I. We show that they are not adjacent in

IG either. For this, we only need to show that there is no inducing path between A

and B relative to L in G. Suppose otherwise that there is such an inducing path p

between A and B in G. Let 〈A,O1, · · · , On, B〉 be the sub-sequence of p consisting of

all observed variables on p. By the definition of inducing path, all Oi’s (1 ≤ i ≤ n)

are colliders on p and are ancestors of either A or B. By the construction of G, it is

easy to see that Oi’s are also ancestors of either A or B in I. It is also easy to see

that either A → O1 or A ← LAO1 → O1 appears in G, which implies that there is an

edge between A and O1 that is into O1 in I. Likewise, there is an edge between On

and B that is into On in I, and there is an edge between Oi and Oi+1 that is into

both in I for all 1 ≤ i ≤ n − 1. So 〈A, O1, · · · , On, B〉 constitutes an inducing path

between A and B in I, which contradicts the assumption that I is maximal. So there

is no inducing path between A and B relative to L in G, which means that A and B

are not adjacent in IG.
Therefore I = IG, the IPG for G.

Given this theorem, it is clear that we can define IPGs in terms of (i1) and (i2).

So a DMAG is also an IPG, but an IPG is not necessarily a DMAG, as the former

may contain an almost directed cycle. The simplest IPG which is not a DMAG is

shown in Figure 6.1.

Spirtes et al. (1993/2000) uses partially oriented inducing path graphs (POIPGs

to represent Markov equivalence classes of IPGs. The idea is exactly the same as

PAGs. A (complete) POIPG displays (all) common marks in a Markov equivalence
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O1

O3O2

Figure 6.1: An IPG that is not a DMAG

class of IPGs. An obvious fact is that given a set of conditional independence facts

that admits a faithful representation by a DMAG, the Markov equivalence class of

DMAGs is included in the Markov equivalence class of IPGs. It follows that the

complete POIPG cannot contain more informative marks than the CPAG. In fact we

can be more precise about this. An arrowhead is in the complete POIPG if and only

if it is in the CPAG, and a tail is in the complete POIPG if and only if it is a visible

tail (directed edge) in the CPAG. To see the first fact, just notice that if an arrowhead

appears in the true DMAG, it must also appear in the true IPG, as a tail in the latter

would also imply an ancestral relation. It then follows that if an arrowhead is shared

by all DMAGs in an Markov equivalence class, all IPGs Markov equivalent to these

MAGs will also contain this arrowhead. To see the second fact, recall that a directed

edge A → B in a DMAG implies that there is no latent common ancestor of A and

B in any DAG represented by the DMAG if and only if the directed edge is visible.

From this we can derive that a directed edge is in every IPG in a Markov equivalence

class if and only if it is visible. We hope the idea is clear enough and will not take

further pain to present the whole rigorous argument.

Thus a CPAG can reveal invisible tails whereas a POIPG cannot. Otherwise they
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give the exact same informative marks. Notice that all arrowheads and visible tails

can be inferred from the FCI algorithm, so the FCI algorithm is complete when the

output is interpreted as a POIPG. This answers the completeness question posed in

Spirtes et al. (1993/2000) as well as in Neapolitan (2004).
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