Benign transformation tendency of malignant tumour cells for intrauterine transplantation

Fang Ma

To the Editor: Troeger et al. [1] have reported that similar early homing of allogeneic and xeno-
geneic stem cells and reasonable early en-
grafment of allogeneic murine foetal liver cells (17.1% donor cells in peripheral blood 4 weeks after intrauterine transplantation (IUT)), whereas xenogeneic HSC are rapidly diminished due to non-self-renewal and low differ-
centiation capacities in the host’s mi-
croenvironment.

IUT, as promising treatment for foetal defects, is concerned with the rapid growth and immature immune system of the foetus, which may provide an opportunity for en-
grafment expansion of foreign tissues chiefly including some stem cells [2] such as haematopoietic stem cells (HSCs), embryo stem cells (ESCs) and MSCs. Nevertheless, there are potential hurdles to be overcome in IUT of stem cells, the first being the risk of uncontrolled proliferation and malignant transformation [3].

Striking parallels can be found between stem cells and cancer cells: similar signalling pathways may regulate self-renewal in stem cells and cancer cells, and cancer cells may include cancer stem cells – rare cells with indefi-
dine potential for self-renewal which drive tumorigenesis [4]. However, cancer stem cells may display some similarity and distinctive features compared with HSCs, ESCs and MSCs. To explore what happens when malignant tumour cells introduced into the mouse embryo environment at D14- D16 by IUT, Astigiano et al. [5] and our pri-
mary research demonstrated that the malig-
nant cells, including some embryonic cancer (EC) cells, H2 and S360 cells (the H2 cell line was originated from hepatoma, the S360 cell line from sarcoma) were not capable of caus-
ing tumours, remained latent and could be tracked in tissues during adulthood as benign cells as is the fate of normal stem cells. Further, the malignant tumour cells for IUT showed a differentiation trend to be-
ign cells, fluorescence analysis revealing that expression of protein kinase C (PKC) was markedly reduced in the H2 cells transplanted into the mouse foetal abdominal cav-
ity by IUT after injection at 24h, 48h, and 72h of GFP-expressing H2 cells and laser confocal microscopy analysis in our research.

Recent investigation of malignant tumour cells for IUT has shown that there is benign transformation of the malignant phe-
notype of tumour cells, including prolifera-
tion and differentiation. This suggests we may be able to allay concerns about the risk

References

Authors’ reply

Carolyn Troeger, Irina Perahud, Wolfgang Holzgreve

In-utero transplantation of adult progenitor cells (e.g. haematopoietic or mes-
enchymal stem cells) is probably not associ-
ated with uncontrolled proliferation or ma-
lignant transformation, as is an issue after transplantation of embryonic stem cells into adult recipients [1]. Also, tumour formation at the injection site has been observed after in-utero transplantation of embryonic stem cells [2]. Fang Ma reports the opposite, a transformation of embryonic malignant tumour cells into benign cells after in-utero transplantation, and speculates that the spec-
ific foetal milieu causes this development.

This preliminary observation needs further research on the distinct gene expression pat-
tern in these cells over time.

However, even if the foetus was pro-
tected against malignant tumour formation by its specific environment, the adult host mother is not. It is known that foetal cells cross the placenta throughout gestation, per-
sist for decades and may cause autoimmune-like conditions [3, 4]. Obviously not only ma-
ture cells but also stem cells traffic into vari-

Figure 1
Cryostat section of the maternal scar and muscle tissue of the abdominal wall one week after deliv-
ery of pups who received eGFP+ MSC by in-utero transplantation. Nuclei are stained using DAPI (blue dye). One cell is eGFP positive (green).
ous tissues of the mother, being mainly trapped by the lungs [5]. Interestingly, these cells are abundant in maternal injury sites after in-utero transplantation. We have transplanted GFP+ murine foetal liver-derived MSC in-utero into C57BL/6 foetuses at gestation day 13.5. Briefly, pregnant mice were anaesthetised using an isoflurane, the uterus was exposed by performing a lower abdominal midline incision and 105 MSC in 5 μl PBS were injected into the abdominal cavity of the mouse foetuses using a pulled glass capillary. The abdominal wound was closed in two layers. About half of the transplanted pups were delivered. One week after delivery pups and mother mice were sacrificed and organs including scar tissue of the abdominal wall were analysed by fluorescence microscopy. We detected GFP+ single cells at the laparotomy scar of the host mother (see figure 1). This observation is in agreement with other authors who mated GFP+ male mice with wild-type female mice and observed a relevant traffic of foetal GFP+ cells into a chemical, but not surgical, liver injury site [6]. In contrast to these experiences in pregnant mice, adult surgical wound models revealed that injected GFP+ bone marrow-derived stem cells were found in surgical skin wounds, which is in accordance with our findings [7]. It may be speculated that embryonic stem cells would, accordingly, traffic into the mother after in-utero transplantation. Whether these cells have implications for the mother's health status remains unclear. However, on the basis of experience in adults tumour formation in the host mother is a serious issue and needs further attention before embryonic stem cell transplantation to treat foetal diseases.

References
The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:

- SMW’s impact factor has been steadily rising. The 2005 impact factor is 1.226.
- Open access to the publication via the Internet, therefore wide audience and impact.
- Rapid listing in Medline.
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed).
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment.
- Peer review based on a broad spectrum of international academic referees.
- Assistance of our professional statistician for every article with statistical analyses.
- Fast peer review, by e-mail exchange with the referees.
- Prompt decisions based on weekly conferences of the Editorial Board.
- Prompt notification on the status of your manuscript by e-mail.
- Professional English copy editing.
- No page charges and attractive colour offprints at no extra cost.

International Advisory Committee
Prof. K. E. Juhani Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch