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Abstract

The Bologna Optimal Higher-order Machine (BOHM) is a prototype implementation of the core of a
functional language based on (a variant of) Lamping’s optimal graph reduction technique [Lam90, GAL92a,
As94]. The source language is a sugared �-calculus enriched with booleans, integers, lists and basic
operations on these data types (following the guidelines of Interaction Systems [AL94, AL93b, Lan93]). In
this paper, we shall describe BOHM’s general architecture (comprising the garbage collector), and we shall
give a large set of benchmarks and experimental results.
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1 Introduction

Thispaperdescribes themainarchitectureof theBolognaOptimalHigher-orderMachine (BOHM).
BOHMis a prototype implementationof an extension of Lamping’s optimalgraph reduction tech-
nique [Lam90] for reducing �-expressions. The source language is a sugared �-calculus enriched
with booleans, integers, lists and basic operations on these data types. The extension of Lamp-
ing’s techniques to this language is essentially based onAsperti and Laneve’s work on Interaction
Systems [AL94, AL93b, Lan93]. In particular, all syntactical operators are represented as nodes
in a graph. These nodes are divided into constructors and destructors, and reduction is expressed
as a local interaction (graph rewriting) between constructor-destructor pairs.
BOHMis just a high level interpreterwritten inC. Its purposewas not to be a real implementation,
but to provide some empirical evidence about the feasibility of Lamping’s technique (that, in our
opinion, looks very promising). From this respect, some care has been devoted in supporting the
user with a large set of data relative to the computation of each term (user and system time,
number of interactions, storage allocation, garbage collection, and so on). The source code is
available by anonymous ftp at ftp.cs.unibo.it, in the directory /pub/asperti, under the
name BOHM.tar.Z (compressed tar format).
In this paper, we shall describe in some detail the general architecture of BOHM (comprising the
garbage collector), and we shall give a large set of benchmarks and experimental results. No
theoretical topic is discussed; in particular, we shall not address the correctness and optimality
issues, since they have been already proved in [AL93b].
The structure of the paper is the following.
In the next section we introduce the problem of optimal reduction of �-terms, and Lamping’s
graph reduction technique. This section is rather sketchy; the paper requires some knowledge
of the problem and of Lamping’s algorithm. Section 3 is devoted to an introduction to Inter-
action Systems, which provide the starting point for the generalization of Lamping’s technique
to a richer source language. In section 4, we define BOHM’s source language, its operational
semantics in the form of an Interaction System, the initial graph encoding of each term and the
graph reduction rules corresponding to the rewriting rules of the Interaction System. Section 5
discusses the crucial notion of safe operator, that allows to introduce some essential optimizations
in the machine. Section 6 is devoted to the garbage collector. Finally, in section 7, we present a
large number of experimental results about BOHM’s performance and its garbage collector.

2 Optimal Reduction

The problem of optimal reduction of the �-calculus was defined by J.J. Lévy in [Le78]. The idea
was that of formalizing the intuitive notion of “optimal sharing” of reducible expressions, implic-
itly defining a lower bound to the “intrinsic complexity” of �-term reduction.
Lèvy approached the problem of sharing from many different perspectives (copy-relation, la-
beling, extraction), all of them leading to the unique and crucial notion of redex family (see also
[Le80, AL93a]). Two redex are “sharable” if and only if they belong to a same family. So, a redex
family is composed by “copies” of a same redex and could be conceptually represented by a
unique object. In this sense, the lenght of the family reduction, i.e. the “parallel” reduction where
at each step a whole redex family is reduced, would provide the above mentioned lower bound
to the complexity of �-term reduction, in any possible implementation.
The first and natural problem raised by Levy’s thesis was that of getting some empirical evi-
dence that his abstract notion of sharing could be feasible: as a matter of fact, no “traditional”
implementation of �-calculus (supercombinators, environment machines, etc...) is able to share
all redexes in Levy’s families. The problem challenged the functional community for other ten
years, before Lamping [Lam90] proposed a solution based on a complex graph rewriting tech-
nique. However, Lamping did not establish any relation between the complexity of his reduction
technique and the lenght of the family reduction. This looks as a quite different problem, since
wemust obviously take into account both the computational overhead introduced for the correct
handling of optimal sharing, and the fact that in any case �-reduction is not an atomic operation
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and thus any complexity mesure based on this notion could be eventually misleading. So, the
very abstract problem of establishing a concrete mesure for the intrinsic complexity of �-term
reduction is still far from being solved.
Unfortunately, Lamping did not even provide any computational result or benchmark of his
implementation,making impossible to evaluate the practical interest of his technique w.r.t. more
traditional implementation architectures. The first empirical results about (a slight variant of)
Lamping’s technique have appeared in [As95]. However, those empirical results (that looked
very promising) suffered from the big limitation to be relative to pure �-terms, and could not be
seriously considered as real “benchmarks” for a full functional language.
For this reason,we decided to extend the prototype in [As95] to a reacher source language, adding
some primitive data types (boolean, integers, lists) equipped by the usual set of operations, and
a few more control structures (if-then-else, letrec, etc.). BOHM is the result of this extension.
Although BOHM’s source language is still very limited, it contains the full core of a “real” func-
tional language. In this sense, BOHM can be considered as the first empirical and practical test
for optimal implementation techniques.

2.1 Graph reduction

The aim of an optimal reduction technique is that of avoiding, during the computation of a term,
any duplication of reducible expressions (thatwould obviously implies duplication of work). The
main problem is that, in higher order languages, redexes are created along the reduction in a quite
complex way. So, the problem amounts not only to avoid the duplication of “actual” redexes
at a given stage of the computation, but also the duplication of all those substructures that are
not still a redex, but may become a redex later on, due to an arbitrary long sequence of reductions
(“virtual” redexes).
Since for optimal reduction we must obviously get some notion of phisical sharing of substruc-
tures, it seems natural to look for some graph representation of �-terms. The first work in such
direction wasdue toWadsworth [Wa71], where �-terms are represented as directed acyclic graphs
(essentially representing their abstract syntax tree, plus the sharing information for variables).
Unfortunately, Wadsworth technique is not optimal. The problem is that, every time you have a
redex r = (�x:M )N , you should start with duplicating the functional part F = �x:M . Indeed, F
could be shared by other terms, and since it will be instantiated by the �-reduction r, we must
eventually work on a new copy (see [Pe87]). Even if you normalize F before its duplication, you
can eventually loose sharing, at this point. Suppose for instance to have in F a subterm like (yP ),
where y is bound externally to r. The subterm (yP ) is not a redex, but its duplication can be as
useless and expensive as the duplication of an actual redex.
Lévy proved that this problem cannot be solved by the choice of a suitable reduction strategy. As
a matter of fact, there are terms where every order of reduction would duplicate work. Consider
for instance the following term ([Le78], p.15):P = (�x: xIx : : :x) �y: ((�x: x : : :x) (y a))
where a is some constant, and the two sequences of x have both length n. P has two redexes. If
the outermost is reduced first, we eventually create n residuals of the inner one. Conversely, if
we start reducing the innermost redex, n copies of (y a) are created, and this will duplicate work
later on, when I is passed as a parameter to y. In conclusion, any reduction strategy is at least
linear in n whilst we just have exactly four redex families in this example!

2.2 Lamping’s solution

In [AL93a], it has been clarified that all redexes in a same family define a unique common path
in the initial term of the derivation. In a sense, these paths are the “phisical” informations
that must be shared in optimal reduction systems. Lamping’s idea was to define a set of local
rewriting rules, on a suitable graph representation of �-terms, that avoided duplications of these
paths without preventing the reduction of the term to its normal form. Roughly, in Lamping’s
system, the duplication of a given term M is performed in a sort of “lazy” way, by propagating
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a duplication operator (a fan) along the graph structure of M , and stopping this propagation at
suitable “critical” places (typically, just before the applications in M ). Suppose for instance to
have the following configuration, where a duplication operator is applied toM = �x:(yx).�@? ��x

@� @y x
The duplication is done step by step, following the connected structure ofM . The first syntactical
form traversed by the fan is the binder for x. Note that the duplication of the binder implies the
duplication of the bound variable (otherwisewewould not know towhich of the two binders we
should refer). So we obtain the following term.�x0 �x00�@? �

@� @�y x00x0? �
This term is in normal form. No one of the two fan operators can be propagated any further, untily will be instantiated to a functional term, and the corresponding redex will be fired. Note that
the “virtual” redex between the application and the unbound variable y is kept shared by this
representation, while the two � of the two instances ofM have been put in evidence by the partial
duplication we have performed so far, and they can now possibly interact with the sorrounding
context.
As remarked above, when a fan interacts with a �, a new fan (a fan-out) appears on the edge
representing the bound variable. In order to get a simple implementation of this rule it is
convenient to have a direct connection through an explicit link between the bound variable and
its binder. So, � becomes now a ternary node, with two sons respectively pointing to the body
and the bound variable. With this representation (that goes back to Bourbaki), the interaction
between a � and a fan is expressed by the following rewriting rule:

*

* *

λ

λλ

Figure 1. fan-lambda interaction

Note that both � and applicationnodes (forms) have a unique and distinguished “active” position
where they could possibly interact with other nodes. This position (in Lafont’s notation) is called
the principal port of the form. All other ports of the form are called auxiliary. The main law behind
the optimal implementation strategy is the following:

(main law) a fanmay duplicate a form if and only if it reaches the form at its principal
port.

We already provided the duplication rule for �; here is the analogous rule for application.
UBLCS-95-9 4



*

*@

*

@ @

Figure 2. fan-application interaction

2.3 The problem of fans

The only problemwith fans is to understand what happens when they meet “face to face” during
the reduction. Two reductions seem to be possible, in this case:? �5? �4 =) ? �5? �4 =) ? �5 ? �5? �4 ? �4��@@
By the left rule, the effacement of the two fans “completes” the duplication; this rule should be
only applied when the two fans belong to a same “duplication process” (i.e. the two fans are
residual of a same duplication operator created by its interaction with a �-abstraction). In all the
other cases, fans should “mutually duplicate” each other, according to the right rule, above.
Unfortunately, there does not seem to exist a simple way to solve the above ambiguity. At the
actual state of the art, the solution is that of associating an integer with each fan, denoting its
sharing-level or, if you like, the “duplication process” it belongs to. When two fans meet face to
face, theywill reduce according to the first rule above if they belong to a same level, and according
to the second rule, if their levels are different.
Matters are furtherly complicated by the fact that levels may change dynamically during the
computation. This requires the introduction of two more (indexed) control operators (brackets
and croissants) for increasing and decreasing levels along the computation. The idea is that
brackets and croissants define the “interaction context” of a fan in such a way two fans in
different contexts will never be paired. From this point of view the integer associated with each
form represents the nesting level of the context; a croissant indicates that we are entering a new
context and the square bracket that we are exiting from it. Operationally, we need two different
operators to this purpose, since they propagates in opposite directions.

3 Interaction Systems

The main problem in extending Lamping’s optimal graph reduction technique from �-calculus
to a richer source language is posed by themain rule of section 2.2. As a matter of fact, in order to
have a clean and local rewriting system for optimal reduction, we need that all syntactical forms
of our generalized source language preserve the property of having a distinguished principal port,
where they can possibly interact with other forms (what is called “local sequentiality” by Lafont).
To this purpose, Asperti and Laneve introduced the notion of Interaction Systems (IS’s) [AL93b,
AL94, Lan93].
Formally, there are two possible ways to understand Interaction Systems (IS’s) [AL93b, AL94,
Lan93]. From one side they are the intuitionistic generalization of Lafont’s Interaction Nets
[Laf90], from which they borrow the logical setting, the bipartition of operators into constructors
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and destructors, and the principle of binary interaction. From the other side, Interaction Systems
can be seen as a subclass of Klop’s Combinatory Reduction Systems (CRS’s) [Kl80] where pattern
matching in the left hand side of a higher order rewriting rule is restricted to a very specific and
simple form of binary interaction between dual syntactical forms. As a main corollary of this
assumption, we can immediately generalize the Curry-Howard (Proofs as Propositions) analogy
from lambda calculus to an arbitrary Interaction System. This means that wemay associate every
IS with a suitable “intuitionistic” system: constructors and destructors respectively correspond
to right and left introduction rules, interaction is cut, and computation is cut-elimination. As a
consequence, Interaction Systems have a nice locally sequential nature: in particular, the leftmost
outermost reduction strategy only reduces needed redexes.
Due to their logical (intuitionistic) nature, IS’s are particularly suited to a generalization of Lamp-
ing’s technique.
As a matter of fact, from [GAL92a, GAL92b], it was clear that the “core” of Lamping’s algorithm
(fans, croissants, brackets and theirmutual interactions) provided a very abstract set of operations
for implementing the structural part of Intuitionistic Systems (i.e., via the Curry-Howard analogy,
the part charged with the management and sharing of resources in functional languages). This
becomes particularly clear when we consider logical systems such as Linear Logic [Gi86] where
we have a neat distinction between the logical and the structural part. The only purpose of Lamp-
ing’s control operators is that of providing a completely local (and optimal) implementation of
the structural operations relative to the box of Linear Logic. Then, the natural idea behind IS’s was
that of replacing the logical part of Intuitionistic Logic (namely, abstraction, application and their
interaction through �-reduction), with a richer collection of dual operators, binarily interacting
via cuts. In other words, we had to replace linear �-calculus with a richer linear calculus, that was
naturally provided by Lafont’s Interaction Nets. In this way, we could keep Lamping’s core, just
adding the new “logical” rules proper to the system. Interfacing “structural” and “logical” rules
is then a trivial task.

3.1 The Formal Definition

An Interaction System is defined by a signature � and a set of rewriting rules R. The signature� consists of a denumerable set of variables and a set of forms. Forms are partitioned into two
disjoint sets�+ and ��, representing constructors (ranged over by c) and destructors (ranged over
by d). Variables will be ranged over by x; y; z; � � �, possibly indexed. Vectors of variables will be
denoted by ~xi where i is the length of the vector (often omitted).
Each form of the syntax can be a binder. In the arity of the form we must specify not only the
number of arguments, but also, for each argument, the number of bound variables. Thus, the arity
of a form f, is a finite (possibly empty) sequence of naturals. Moreover, we have the constraint that
the arity of every destructor d 2 �� has a leading 0 (i.e., it cannot bind over its first argument).
The reason for this restriction is that, in Lafont’s notation [Laf90], at the first argument we find
the principal port of the destructor, that is the (unique) port where we will have interaction (local
sequentiality).
Expressions, ranged over by t; t1; � � �, are inductively generated as follows:a: every variable is an expression;b: if f is a form of arity k1 � � �kn and t1; � � � ; tn are expressions thenf (~x1k1

: t1; � � � ; ~xnkn : tn) is an expression.

Free andbound occurrences ofvariables are defined in the obviousway. As usual, wewill identify
terms up to renaming of bound variables (�-conversion).
Rewriting rules are described by using schemas or metaexpressions. A metaexpression is an
expression with metavariables, ranged over by X; Y; � � �, possibly indexed (see [Ac78] for more
details). Metaexpressions will be denoted by H;H1 � � �.
A rewriting rule is a pair of metaexpressions, written H1 ! H2, where H1 (the left hand side of the
rule, lhs for short) has the following formatd(c(~x1k1

: X1; � � � ; ~xmkm: Xm); � � � ; ~xnkn: Xn)
UBLCS-95-9 6



and i 6= j implies Xi 6= Xj (left linearity). The arity of d is 0km+1 � � �kn and that of c is k1 � � �km.
The right hand side H2 (rhs, for short) is every closed metaexpression, whose metavariables are
already in the lhs and built up by the following syntaxH ::= x j f (~x 1a1

:H1; � � � ; ~x jaj :Hj) j Xi[H1=xi
1
; � � � ;Hki =xiki ]

The expression X[H1=x1 ; � � � ;Hn =xn ] denotes a meta-operation of substitution, as in �-calculus,
and defined in the obvious way.
Finally, the set of rewriting rules must be non-ambiguous, i.e. there exists at most one rewriting
rule for each pair d-c.
Interaction Systems are a subsystem of Klop’s (Orthogonal) Combinatory Reduction Systems
[Kl80, Ac78]. We just added a bipartition of operators into constructors and destructors, and
imposeda suitable constraint on the shape of the lhs of each rule. As a subclass of non ambiguous,
left-linear CRS’s, Interaction Systems inherit all good properties of the formers (Church Rosser,
finite development, : : : ).
Example 3.1 (The �-calculus) The application @ is a destructor of arity 00, and � is a constructor
of arity 1. The only rewriting rule is �-reduction:

@(�(x:X); Y ) ! X[Y =x]:2
Example 3.2 (Booleans) Booleans are defined by two constructors T and F of arity " (two con-
stants). Then you may add your favorite destructors. For instance the logical conjunction is a
destructor and of arity 00, with the following rewriting rules:

and(T; X) ! X and(F; X) ! F

Another typical destructor is the if-then-else operator ite, of arity 000:

ite(T; X; Y )! X ite(F; X; Y )! Y2
Example 3.3 (Lists) Lists are defined by two constructors nil and cons of arity " and 00, respec-
tively. The typical destructors hd, tl and isnil (all of arity 0) may be defined by the following
rules:

hd((cons(X;Y ))! X tl((cons(X;Y ))! Y
isnil(nil)! T isnil((cons(X;Y ))! F2

Example 3.4 (Integers) For arithmetics, we consider each integer n as a distinguished constructor
n. Then, we may define arithmetical operations in constant time. The only problem is the strictly
sequential nature of IS’s, that imposes interaction on a distinguished port of the form. For
instance, we may define

add(m; X)! addm(X) addm(n)! k

where k = n+m. Note that we have an infinite number of forms, and also an infinite number of
rewriting rules. 2
UBLCS-95-9 7



Example 3.5 (General Recursion) The recursion operator �x:M ! M [�x:M=x] is a bit problem-
atic, since IS’s are based on a principle of binary interaction. The obvious idea is to introduce
a suitable “dummy” operator interacting with �. This “dummy” operator may be indifferently
regarded as a constructor or a destructor, yielding the two following encodings for �:

d�(�(x:X)) ! X[d�(�(x:X))=x]�(c�; x:X) ! X[�(c�; x: X)=x]
In other words, we should look at � as a constructor-destructor pair, permanently interacting
with itself. 2
3.2 The Intuitionistic Nature of Interaction Systems

In this section we shall recall the logical, intuitionistic nature of Interaction Systems, and their
relation with Lafont’s Interaction Nets. The aim of this section is to introduce and clarify some
essential notions of IS-forms (polarities, principal and auxiliary ports, bound ports, inputs and
outputs, : : : ).
3.2.1 Statics

An Intuitionistic System, in a sequent calculus presentation (à la Gentzen) (see [GLT89]), consists
of expressions, named sequents, whose shape is A1; � � � An ` B where Ai and B are formulas.
Inference rules are partitioned into three groups (in order to emphasize the relationships with
IS’s, we write rules by assigning terms to proofs):

Structural Rules (Exchange ) �; x : A; y : B; � ` t : C�; y : B; x : A; � ` t : C(Contr :) �; x : A; y : A ` t : C�; z : A; � ` t[z=x;z =y] : C (Weak :) � ` t : C�; z : A ` t : C
Identity Group(Identity) x : A ` x : A (Cut) � ` t : A �; x : A ` t0 : B�; � ` t0[t=x] : B
Logical Rules
These are the “peculiar” operations of the systems, that allow us to introduce new formulae (i.e.
new types) in the proof. The unique new formula P introduced by each logical rule is called the
principal formula of the inference. If the principal formula is in the rhs of the final sequent, the
inference rule is called right, and left otherwise. Right and left introduction rules respectively
correspond with constructors and destructors in IS’s. The shape of these rules is:�1; ~x 1 : ~A 1 ` t1 : B1 � � � �n; ~xn : ~An ` tn : Bn�1; � � � ; �n ` c(~x 1: t1; � � � ; ~xn: tn) : P
for right introduction rules (constructors), and�1; ~x 1 : ~A 1 ` t1 : B1 � � � �m; ~xm : ~Am ` tm : Bm �; z : C ` t : D�1; � � � ; �m; � ; y : P ` t[d(y;~x 1: t1; ���; ~xm: tm)=z] : D
for left introduction rules (destructors). The contexts �i are pairwise different.

UBLCS-95-9 8



A canonical example is implication, that gives the expressions of typed �-calculus:(! left) � ` t : A z : B; � ` t0 : C�; y : A!B; � ` t0[@(y;t)=z] : C (! right) �; x : A ` t : B� ` �(x: t) : A!B
An immediate consequence of the above construction is that every proof of an Intuitionistic
Systemmay be described by an IS-expression.
Following Lafont, we may provide a graphical representation of IS-forms. This will explain some
important relations between the arity of the forms and the way they link upper sequents in a
proof. In the notation of Interaction Nets, a proof of a sequent A1; : : : ; An ` B is represented as
a graph with n + 1 conclusions, n with a negative type (the inputs) and one with a positive type
(the output). In particular, an axiom is just a line with one input and one output.
Every logical rule is represented by introducing a new operator in the net (a new labeled node
in the graph). The operator has a principal (or main) port, individuated by an arrow, that is
associated with the principal formula of the logical inference. For instance, the two logical rules
for implications are illustrated in Figure 3.P 0 P 00@@@ ���r ����@?A!B� rA+�� B� �� C+ P@@@ ���r �����?A!B+ rA� �� B+

Figure 3. The graphical representation of @ and �.
The principal port of each operator may be either an input or an output. In the first case it
corresponds to a new logical assumption in the left hand side of the sequent (as for @), and the
operator is a destructor; in the second case it corresponds to the right hand side of the sequent
(as for �), and the operator is a constructor. The other ports of the agents are associated with the
auxiliary formulae of the inference rule, that is the distinguished occurrences of formulae in the
upper sequents of the rule. In the two rules above, the auxiliary formulae are A and B.
The auxiliary ports of an agent may be either inputs or outputs, independently from the fact
that it is a constructor or a destructor. Actually, in the general theory of Interaction Nets, which
is inspired by classical (linear) logic, there is a complete symmetry between constructors and
destructors, and no restriction at all is imposed on the type of the auxiliary ports (in other words,
there is a complete symmetry between inputs and outputs). On the contrary, the fact of limiting
ourselves to the intuitionistic case, imposes some obvious “functional” constraints.
Note first that auxiliary formulae may come from different upper sequents or from a single one.
For instance, the auxiliary ports of @ are in different upper sequents, while those of � are in a
same one. Lafont expresses this fact by defining partitions of auxiliary ports. So, in the case of
@, A and B are in different partitions, while in the case of � they are in the same partition. Note
that the concept of partition is obviosuly related to that of binding. In particular, a partition is
a singleton if and only if the arity of the form for that port is 0. Moreover, the polarity of an
auxiliary port is the opposite of the polarity of the conclusion it has to be matched against. Then,
the intuitionistic framework imposes the following constraints:� In every partition there is at most one negative port. If a negative port exists, we shall call

it an input partition; otherwise it is an output. The positive ports of an input partition are
called bound ports of the form (they are the ports connected to bound variables). partition.� Every agent has exactly “one output” (functionality). In particular, if the agent is a construc-
tor, the principal port is already anoutput, and all the partitionsmust be inputs. Conversely,
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in the case of destructors, we have exactly one output partition among the auxiliary ports,
and this partition has to be a singleton.

If k1 : : :kn is the arity of a form, every ki denotes the number of positive ports in the i-th input
partition. In the case of a destructor,one input partitionmust be a singleton (since it corresponds to
the principal port), so its arity is 0. By convention, in the concrete syntax of IS’s, we have supposed
that this is always the first partition of the destructor (this assumption is absolutely irrelevant).
Summing up, a form with arity k1 : : :kn is associated with an operator with 1 +Pni=1(ki + 1)
ports.

3.2.2 Dynamics

Dynamics, in logical systems, is given by the cut elimination process; the idea is that every
proof ending into a cut can be simplified into another one by means of some mechanism that is
characteristic of that cut (providing, in this way, a rewriting system over proofs). In particular,
there exist essentially two kinds of cuts. The most interesting case is the logical cut, i.e. a cut
between two dual (left-right) introduction rules for the same principal formula. The way such a
cut should be eliminated is obviously peculiar to the system, and to the intended semantics of
the formula. In all the other cases (structural cuts), Intuitionistic Systems “eliminate” the cut by
lifting it in the premise(s) of one of the rules preceding the cut (that becomes the last rule of the
new proof). As in the case of �-calculus, these kind of cuts are essentially “unobservable” in IS’s
(they are dealt with in the metalevel definition of substitution). So, let us concentrate on logical
cuts only.
A typical case of logical cut is that for implication in Intuitionistic Logic.�; x : A ` t : B� ` �(x: t) : A!B � ` t0 : A y : B;� ` t00 : C�; z : A!B;� ` t00[@(z;t0)=y] : C�;�;� ` t00[@(z;t0)=y][�(x:t)=z] : C
The elimination of the above cut consists in introducing two cuts of lesser grade (see [GLT89]).
The rewritten proof is:� ` t0 : A �; x : A ` t : B y : B;� ` t00 : C�; x : A;� ` t00[t=y] : C�;�;� ` t00[t=y][t0=x] : C
Since by assumption t00[@(z;t0)=y][�(x:t)=z] = t00[t=y][t0=x]
this meta-operation on proofs obviously induces the beta-reduction rule in the underlying IS.
Graphically, the above cut elimination rule can be represented as follows:P 0 P 00@@@ ���r ����@?(A!B)� rA+�� B� �� C+P@@@ ���r �����?(A!B)+ rA� �� B+
reduces to:
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P 0 P 00r rA+�� B� �� C+Pr rA� �� B+
In general, letL andR be the left and right sequent in the cut-rule, respectively. During the process
of cut-elimination, the proofs ending into the premises of L and Rmust be considered as “black
boxes” (only their “interfaces”, that is their final sequents are known). During cut-elimination,
one can build new proofs out of these black boxes. The unique constraint is the prohibition of
having new hypotheses in the final sequent of rewritten proof. This has two implications:

1. the variables bound by L or R (i.e. the auxiliary formulae of the rules) must be suitably
filled in (typically with cuts or introducing new rules binding them);

2. if a new axiom is introduced by the rewriting, then the hypothesis in the lhs must be
consumed (with a cut or by binding it via a logical rule) inside the rewritten proof.

According to statics, a cut in an intuitionistic proof system corresponds to a term of the kindd(c(~x 1: X1; � � � ; ~xm: Xm); � � � ; ~xn: Xn):
that is just an IS’s redex. The Xi represent the proofs ending into the upper sequents of L andR (the “black boxes” above), and the above conditions on the rewritten proof are obviously
reflected in IS’s by left linearity and the assumption that right hand sides of rules must be closed
expressions.

Example 3.6 (Naturals) If we do not like to introduce all naturals as explicit constructors, we
could just work with two constructors 0 and succ, respectively associated with the following
right introduction rules:(nat; right0) ` 0 : nat (nat; rightS) �;` n : nat� ` succ(n) : nat
A typical destructor is add.(nat; leftadd) � ` p : nat �; y : nat ` t : A�;�; x : nat ` t[add(x;p)=y] : A
where A can be any type. The following is an example of cut:` 0 : nat � ` p : nat y : nat;� ` t : A�; x : nat;� ` t[add(x;p)=y] : A�;� ` t[add(x;p)=y][0=x] : A
that is simplified into: � ` p : nat y : nat;� ` t : A�;� ` t[p=y] : A
The above elimination induces the IS-rule add(0; X) ! X, corresponding to the equationt[add(x;p)=y][0=x] = t[p=y]. Graphically:
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P 0 P 00@@@ ���r ����add?nat� rnat+�� nat� �� A+����0?nat+
reduces to: P 0 P 00r rnat+�� nat� �� A+2
Example 3.7 (Lists) Lists are defined by means of two constructors cons and nil of arity 00 and", respectively. The typical destructors are hd and tl of arity 0. In the case of lists of integers, we
may write the following introduction rules for the type natlist:(natlist; rightnil) ` nil : natlist(natlist; rightcons) � ` n : nat � ` l : natlist�; � ` cons(n; l) : natlist(natlist; lefthd) �; y : nat ` t : A�; x : natlist ` t[hd(x)=y] : A(natlist; lefttl) �; y : natlist ` t : A�; x : natlist ` t[tl(x)=y] : A
A typical cut is:� ` n : nat � ` l : natlist�;� ` cons(n; l) : natlist �; y : nat ` t : A�; x : natlist ` t[hd(x)=y] : A�;�;� ` t[hd(x)=y][cons(n;l)=x]
In this case, the cut would be eliminated in the following way� ` n : nat �; y : nat ` t : A�;� ` t[n=y] : A
corresponding to the reduction rule hd(cons(X; Y ))! X. Graphically:P P 0bbbb """"r ����cons?natlist+ rnat+�� �� natlist+ P 00r����hd?natlist+ r�+ nat� A+
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reduces to: P rnat+�� P 00r�+ nat� A+
Note here, by the way, the phenomenon of garbage creation (P’). 2
4 BOHM’s Source Language

As we already mentioned, it is possible to generalize Lamping’s optimal implementation tech-
nique from �-calculus to an arbitrary Interaction System. This means that

1. it is possible to translate an arbitrary IS-expression into a suitable graph representation that
involves Lamping control operators for representing the structural information (sharing),
and new graphical form for the logical part of the system (in particular, we shall have a new
graphical form for each operator of the signature);

2. any Is-rewriting rule has an associated graph rewriting rule, corresponding to the local
interaction of two forms at their principal ports;

3. the graph rewriting rules are correct and optimal w.r.t. the given Interaction System.
All three facts above have been already proved in [AL94, AL93b], and we shall not come back
again on these results in this paper. We shall merely apply those theoretical results to a particular
case, studying the implementation of a reasonable core of a functional language. In particular,
we shall present the translation and graph reduction rules for the given source language, without
ever tackling the correctness and optimality issues. On the other side, we shall discuss in some
details their practical implementation in BOHM.
The source language we have considered is a sugared �-calculus enriched with some primitive
data types (booleans, integers, lists) equipped by the usual operations, and twomore control flow
constructs: an explicit fixpoint operator (letrec) and and a conditional if-then-else statement.
In this section, we shall start giving the formal syntax of the language. Then we shall define its
operational semantics in the form of an Interaction System. Next we give the graph encoding of
each term, according to the general paradigm described in [AL93b]. Finally, we show the full set
of graph reduction rules.

4.1 Syntax

The formal syntax of the language accepted by BOHM is the following:hexpri ::= truej falsej hnum constij hidentifierij (happlisti )j n hidentifieri:hexprij let hidentifieri = hexpriinhexprij letrec hidentifieri = hexprij if hexprithenhexprielsehexprij hexpriandhexprij hexpriorhexprij nothexprij hexpri < hexprij hexpri == hexprij hexpri > hexprij hexpri <= hexpri
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j hexpri >= hexprij hexpri <> hexprij hexpri + hexprij hexpri � hexprij hexpri � hexprij hexpridivhexprij hexprimodhexprij hlistij cons(hexpri; hexpri)j head(hexpri)j tail(hexpri)j isnil(hexpri)hlisti ::= nilj [hexprlisti]hexprlisti ::= hexprij hexpri; hexprlistihapplisti ::= hexprij happlistihexpri
4.2 Reduction

In this section we shall provide the formal operational semantics of the language, in the form of
an Interaction system. In particular, all rewriting rules will be written as destructor-constructor
interactions. In some cases this will require the introduction of a few auxiliary destructors. The
full list of constructors, destructors, and their respective aritites is listed below.

constructors � : 1; true : "; false : ";m : ", for each integerm; nil : "; cons : 00.
destructors @ : 00; + : 00; +m : 0; � : 00; �m : 0; � : 00; �m : 0; div : 00; divm : 0; mod : 00;modm : 0; and : 00; or : 00; not : 0; ==: 00; == m : 0; >: 00; >m: 0; <: 00; <m: 0; >=: 00;>=m: 0; <=: 00;<=m: 0; <>: 00; <>m: 0; head : 0; tail : 0; if then else : 000.
As we already remarked, letrec should be considered as a constructor-destructor pair.
Here are the proper interactions of the rewriting system:� Beta-reduction(�x:MN ) ! M [N=x]� Recursive Definition

letrec x = M ! M[letrec x = M/x]� Arithmetical Operatorsm+M ! +m(M )+m(n) ! p, where p is the sum of m and nm �M ! �m(M )�m(n) ! p, where p is the difference of m and nm �M ! �m(M )�m(n) ! p, where p is the product of m and nm div M ! divm(M )divm(n) ! p, where p is the quotient of the division of m by nmmodM ! modm(M )modm(n) ! p, where p is the rest of the division of m by n� Boolean Operators
true and M ! M
false and M ! false
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true or M ! true
false or M ! M
not false ! true
not true ! false� Relational Operatorsm == M ! ==m (M )==m (m) ! true==m (n) ! false, if n 6=mm < M ! <m (M )<m (n) ! true, if m is less than n<m (n) ! false, if m is not less than nm > M ! >m (M )>m (n) ! true, if m is greater than n>m (n) ! false, if m is not greater nm <= M ! <=m (M )<=m (n) ! true, if m is not greater than n<=m (n) ! false, if m is greater than nm >= M ! >=m (M )>=m (n) ! true, if m is not less than n>=m (n) ! false, if m is less than nm <> M ! <>m (M )<>m (m) ! false<>m (n) ! true, if n 6=m� Operator for list manipulation
head(cons(M,N)) ! M
tail(cons(M,N)) ! N
tail(nil) ! nil
isnil(cons(M,N)) ! false
isnil(nil) ! true� The control flow operator if-then-else
if true thenM elseN ! M
if false thenM else N ! M

4.3 Graph Encoding

In this section we shall define the translation rules for transforming the input term in its initial
graphical representation.
Any termN with n free variables will be represented by a graph with n+ 1 entries (free edges): n
for the free variables (the inputs), and one for the “root” of the term (the output). The three main
operators of Lamping (fan, croissant and brackets) are used for representing sharing.
Again, the rules below are a mere specialization to our particular source language of a general
translation method for Interaction Systems described in [AL93b]. The main difference with
respect to [AL93b] are the following:

1. we shall followAsperti’s translationschema [As94] insteadogGonthier’s one; for the formal
relation between these different approaches see [AL95].

2. the tranlsationhasbeenoptimized inseveralplaces, to takeadvantageof the linearbehaviour
of most part of interaction rules (see remark 7.6 in [AL93b]).
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In all the previous rules, when the topmost form has more than one son, all common variables
in these sons are supposed to be shared by means of fans (with a level equal to the index of
translation function). For simplicitly, this has been explicitly described only in the case of the
application.

4.3.1 Implementation Issues

The graph created by the previous rules is unoriented (you should not confuse the arrow denoting
the principal port of a formwith an oriented edge). For this reason, and in order to facilitate graph
rewriting, all edges will be represented by a double connection between nodes. In particular, for
each port of a syntactical form F we must know the other form F 0 which is connected with it at
that port, and also to which port of F 0 it is connected to.
Obviously, each form has also a name (FAN, APP, ADD, : : : ), and an index. The typical represen-
tation of a ternary form may be thus described by the following Struct type in C.

typedef struct form
{
int name,

/* name of the form */
/* (FAN, APP, ADD, */
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/* SUB, EQ, ...) */
index;

/* index of the form */
int nport[3];

/* numbers of the ports of adjacent */
/* forms where the three ports */
/* of this form are connected to */

struct form *nform[3];
/* pointers to the forms */
/* where the three ports */
/* of this form are connected to */

} FORM;

Given a pointer f to a form, the field f->nform[i] will denote the next form g connected
with f at port i. Similarly, f->nport[i] says to which port of g f is connected to. Note that, if
f->nport[i] is j, then eventually g->nport[j] == i and g->nform[j] == f.
Remark By convention, the principal port of a form is the port with number 0.

Even if the previous implementation introduces some redundancy, it allows us to navigate in
the graph in a very easy way3.
As a simple example, let us see the function that connects together two forms at two specified
ports (this is the most frequently used function of BOHM; each atomic interaction calls connect
3-4 times, in average).

/* the following function connects together the port portf1 of */
/* form1 to the port portf2 of form2 */
connect(form1,portf1,form2,portf2)

FORM *form1;
int portf1;
FORM *form2;
int portf2;

{
form1->nport[portf1] = portf2;
form1->nform[portf1] = form2;
form2->nport[portf2] = portf1;
form2->nform[portf2] = form1;

}

4.3.2 Global Definitions

The syntactical construct def h identifier i = h expr i allows the user to declare an expression as a
global definition, binding it with an identifier name.
Every time we have a new global definition, the graph corresponding to the term is built up and
closed with a ROOT form that is pointed to by the identifier in the symbol table.
When we use a previously defined global expression, we simply attach a FAN at the top of the
correspondent graph, implicitly creating a new instance of the expression. In this way, the global
definition is shared by all its instances. Since a global expression is a sharable data, its graph
must be created starting from level 1, and not 0 as for usual expressions. This handling of global
definitions is responsible for an odd operational behavior of the machine: actually, the second
timewe evaluate a same expression containing global identifiers, the reduction time can be much
smaller than the first time. The reason is that we are sharing with the previous call all partial
evaluations which have been already performed on global expressions. So, this choice allows us
to profit of all the sharing of terms and of their reductions following the philosophy of optimal
reduction. However, in some case, it also introduces a trade off from the point of view of the

3. It seems possible to avoid a systematic use of bi-links, restricting them to particular edges of the graphs (typically,
those representing cut or axioms). Although this solution could reasonably save some space and could also improve the
performance of the system, it looks more complex to implement, and we finally rejected it in the design of our prototype.
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memory allocation. In fact, the partially evalutated global expression may usually need more
space than the original term.

4.4 Graph Reduction

Once the graph representig an expression has been built, the reduction proceeds according to the
following graph rewriting rules. Again, these rules are a special case of a general paradigm for
Interaction Systems developed in [AL93b, AL94], so we shall not prove their correctness here. As
a matter of fact, most part of them are quite intuitive.
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The rule for the recursion operatorMU (the last rule above) should probably deserve a fewwords.
trivial). Let us recall that it corresponds to the reduction rule letrec x = M !M[letrec x = M/x].
The idea is that, in order to preserve optimality, the two occurences of the body M in the right
hand side of the reduction rule must be shared. The best way to undestand the graph rewriting
rule is by “reading back” the graph in the right hand side. Obviously we start from the root, and
we immediately meet the first occurence of M; note that we are entering this occurence from the
*-side of the fan-in. If travelling along Mwe reach the variable x, according to Lamping’s context
semantics we must exit from the *-branch of the fan-out (that is matching the initial fan-in). Now,
we get a newMU operator, whose body is nothing else that another instance of M. Note that this
timewe are entering this instance from the o-side of the fan-in. Whenwe shall exit again through
the variable x, we shall now discover that this variable is bound by the new MU operator.
Square brackets and croissant are put in such a way as to guarantee the correct matching of the
new introduced fan nodes, and to avoid any interference between them and other possible fans
in the graph (see [AL94] for a formal correctness proof).
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Once having defined the proper graph rewriting rules, i.e. those rules that correpond to inter-
actions between syntactical operators, we should finally add the rules relative to the interaction
between proper forms and control nodes (or control nodes alone). Luckily, these rules have a
high degree of parametricity. The idea is that, in these interactions, one operator is active, and the
other one is passive. The active operator is that with the lower index (in Gonthier’s translation,
the situationwould be dual). If the active operator is a fan, it duplicates the form it is traversing,
if it is a croissant it decrements the level of the form it traverses, and if it is a square bracket, it
increments it. When two control operators with a same index meet together, they mutually erase
each other.
According to the main law of optimal reduction, the interaction between a fan and a syntactical
form must be restricted to the case the fan reaches the form at its principal port. By analogy, this
rule can be extended to all graphical forms (as it was proved in [GAL92a]), and we followed this
“minimal” approach in BOHM. Note however that, for brackets and croissant, this is not stricly
necessary from the optimality point of view. As a matter of fact, Lamping permitted a “rapid
propagation” of brackets and croissant no matter at which port they were interacting with. The
practical relevance of this rapid propagation is still a matter for further investigation.
BOHM’s “control rules” are shown in Figure 4.
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Figure 4. Control rules

4.4.1 Implementation Issues

BOHM is a lazy (weak) machine. It does not perform the full reduction of a term, but it stops
reducing when the topmost operator in the graph becomes a constructor. This halting situation
is easily recognised, since it means that the root of the term becomes directly connected to some
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operator f at its principal port (i.e., by convention, the port with number 0). In this case, the name
of f is assumed to be the result of the computation.
Reduction proceeds according to the following idea. We start looking for the leftmost outermost
redex. In particular, starting from the root of the term, we traverse any operator that we reach at
an auxiliary port, always exiting from its principal port, until we reach an operator f at its principal
port. Now two cases are possible: either the previous operator was the root node (and this is the
halting case), or eventually we have found a redex (since the two last operators are eventually
connected at their principal ports). In this case, the redex is fired by applying the associatedgraph
reduction rule, and we start the process again.
In order to avoid to rescan the term from the root every time, it is convenient to push all operators
leading to the first redex on a stack (similar to the stack of the G-machine). After firing a redex it
is enough to pop the last element from this stack, and start searching for the next redex from this
node.
The following piece of code is the main loop of the reduction machine:

reduce_term(root)
FORM *root;

{
FORM *f1,

*f2,
*erase;

int type_error;

type_error = FALSE;
f1 = lo_redex(root);
f2 = f1->nform[0];
while ((f1 != root) && (!type_error))

{
if (f1->index <= f2->index)

reduce_redex(f1,f2);
else

reduce_redex(f2,f1);
f1 = lo_redex(pop());
f2 = f1->nform[0];

}
if(!type_error) rdbk(root);

}

where lo_redex is defined as follows:

FORM *lo_redex(f)
FORM *f;

{
FORM *temp;

temp = f;
while (temp->nport[0] != 0)

{
push(temp);
temp = temp->nform[0];

}
return temp;

}

reduce_redex(f1,f2) is just a big switch based on the name of f1 and f2. For example, let
us see the code corresponding to a couple of typical interactions. This is the piece of code in the
case the first form f1 is AND:
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case AND:
switch(f2->name)

{
case F:

connect(f1->nform[1],
f1->nport[1],
f2,
0);

myfree(f1);
break;

case T:
connect(f1->nform[1],

f1->nport[1],
f1->nform[2],
f1->nport[2]);

myfree(f1);
myfree(f2);
break;

default:
printf("---> type error\n");
type_error = TRUE;
break;

}

This is the complex case of MU (the most complex reduction in BOHM):

case MU:
allocate_form(&new1,CROISSANT,f1->index);
allocate_form(&new2,FAN,f1->index);
allocate_form(&new3,SQUARE,f1->index);
allocate_form(&new4,CROISSANT,f1->index);
allocate_form(&new5,FAN,f1->index);
allocate_form(&new6,SQUARE,f1->index);

connect(new1,1,f1->nform[0],f1->nport[0]);
connect(new1,0,new2,1);
connect(new3,0,new2,2);
connect(new2,0,f1->nform[1],f1->nport[1]);
connect(new5,0,f1->nform[2],f1->nport[2]);
connect(new5,1,new4,0);
connect(new5,2,new6,0);
connect(new6,1,f1,2);
connect(new3,1,f1,1);
connect(new4,1,f1,0);
f1->index++;

5 Safe Operators

Thenotionof safe operatorhasbeen introduced for thefirst time in [As95]. Fromthe implementative
point of view, the main problem of Lamping-Gonthier’s optimal reduction technique is the
accumulation of control operators that can easily clutter the graph leading to an exponential
explosion of the reduction time. The general idea is that there are some “safe” cases where
particular sequences of control operators can be reduced to simpler configurations. The relevance
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of safe operators and of the associated rules has been already proved in [As95] by means of
empirical results: in many typical cases, adding these rules we can pass from an exponential to a
linear or polynomial reduction time (that is something more than a mere “optimization”).
The idea of safe operator and their associated reduction rules where originally inspired by the
categorical interpretation of optimal reduction passing through Linear Logic described in [As94].
Actually, the “safe rules” are nothing else that the natural counterpart in sharing graphs of the
three comonads equations associated with the comonad “!” (the box) of Linear Logic.
In this paper we shall try to avoid any reference to category theory or linear logic, providing a
completely operational understanding of the problem.

5.1 Accumulation of control operators

Consider the following sequence of control operators:�n+1 An
We immediately realize two important properties of such a configuration:

1. the pair of control operators may be always propagated together through other operators
(i.e., they can be seen as a unique “compound” operator);

2. the total control effect of this “compound” operator on the nodes they are propagated
through is just null.

Recall now that the only problem of the optimal reduction technique is that to guarantee the
correct matching of fan nodes (actually, brackets and croissants are just introduced with this
purpose). Since the above “compund configuration” has no total control effect on the mutual
level of fans, the natural idea would be to reduce the above configuration to an identity, i.e. a
straight line:

(*) �n+1 An ;
Unfortunately, this is not possible in general. The problem is very simple: we forgot to take into
account a possible annihilation of the innermost operator, as described by the following critical
pair: �n+1 An @n ; �n+1; @n
Obviously, only the the first reduction is correct, while the second one can easily lead towrong and
irreducible configurations (deadlocks). If it could be possible to exclude the possibility of such
an annihiliation (i.e. the existence, at a given time, of “out-forms” matching a given “in-form”),
the (*)-rule above would be completely (and obviously) correct. This is exactly the idea behind a
“safe” operator.
Let us prove with an example that the above case of annihilation can actually occur, in practice
(this is not completely obvious). Consider the term�x:I(I(x P )) I
where I is the identity and P is any term. If you reduce this term according to a leftmost outermost
strategy in the system enriched by (*), after four beta reductions you are left with the following
row of control operators leading to P:�0 �1 A0 �1 @0 P
Now, the correct final configuration would be:�0 �1 �2 P
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but pursuing a leftmost outermost reduction you would get instead the following deadlock
situation: �0 @0 �2 P
A completely analogous problem concerns fan and garbage nodes (see section 6).

5.2 Safe operators

Safe operators are control operators which have a sort of “global status” in the graph. This means
no residual of their information is still (or yet) propagating inside the graph. In other words,
you may look at a safe operator as a sort of “fresh” node; note in particular that, generalizing
Lamping’s distinction between fan-in and fan-out to all control operators, safe operators are
eventually “in”-forms.
Precisely,

1. all control operators are safe in the initial graph;
2. an operator becomes unsafe when some rule creates “out”-residuals of its information. This

can merely happen when the safe operator interacts with a (constructor-)binder of higher
index than its own.

3. an (unsafe) operator of index n that, during its broadcasting, reaches (at their auxiliary
ports) either a safe bracket of index n or n� 1 or a safe fan of index n becomes safe again.

From the implementative point of view, it is sufficient to add a tag to each node, expressing its
“safeness”. The tag is modified in the obvious way, according to the above mentioned rules.
It is possible to prove that a residual of a safe operator (created by its broadcasting) may be
only annihilated by another residual of the same operator (the residual relation is defined in the
obvious way). Note in particular that rule 3. above is operationally justified by the fact that, in
the described configurations, the only possibility to annihilate the “outermost” formwould be to
annihilate the “innermost” form, first (the “direction” is implicitly defined by the fact that all safe
operators are in-forms).
Remark Untilwedonot allowa“rapid”propagationofbrackets andcroissants throughauxuliary
ports of proper forms (that does not invalidate optimality, and is completely correct) case 3. above
never happens, in practice. The reason is that the propagation of control operators is interrupted
too soon inside the box, and theywill never reach its extremity. As a matter of fact, this rule is not
implemented in the current version of the BOHM;we just reported it for the sake of completeness.

Theorem 5.1 The following “comonad” rules�n+1 An ;�n An ;An+1 An ; An An
are correct between safe operators.

Proof. An easy consequence of the following considerations:
1. all pairs of control operators in the left hand side of a comonad equation may be always

propagated together (i.e., they can be seen as a unique operator);
2. the total control effect of this “compound” operator on the nodes they are propagated

through is equal to the control effect of the right hand side of the rule (i.e. it is null for the
two first equations, and it amounts to a double level shift for the third equation);

3. if the innermost form of (a residual of) the pair is annihilated, then the outermost form can
be annihilated at the next step. Indeed, the two operators are residuals of a “compound”
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safe operator, and they can be only annihilated by other residuals of the same “compound”
configuration.2

As we already remarked in the previous section, point 3. in the previous proof generally fails for
unsafe operators.
Remark According to our experimental results, only the first rule above seems to be really
essential, in practice. This fact may be intuitively explained by noticing that, while the first
comonad rule is a sort of “�-conversion”, the other rules are more akin to “�-conversions”.
6 Garbage Collection

In pure �-calculus, the creation of garbage is related to the presence of abstraction nodes whose
bound variable does not appear in the body.
Such situations are represented introducing a new node type, called erase operator, which is
connected to the bound port of the �-node.
Consider the term (�x:N )M , where x does not appear in N :

M

N

λ

i@

N M
i

Figure 5. Creation of garbage

As shown in the figure above, after the �-reduction, the term M appears disconnected from the
main graph, becoming garbage.
Actually, things are usually more complex, since M may share some subterms with the main
graph, and these subterms cannot be regarded as garbage; moreover, the whole term M would
remain connected to the main graph through the shared subterms.
As far as we consider pure lambda calculus, garbage collection is not really impelling; on the
contrary it becomes of dramatical importance in the enriched language of BOHM. As a matter of
fact, a lot of BOHM’s rewriting rules create garbage.
Here are a couple of typical examples:

In the first case, the condition of the if then else construct is true, so the subtermN , corresponding
to the “else branch” becomes garbage. In the second case, the evaluation of the boolean expression
reduces immediately to false, and the remaining part of the expression is useless.
Other important cases concern lists; for instance, after an application of the operator CAR, which
selects the first element of a list, the tail of the list can be discarded.

In the context of optimal reduction, it looks difficult to implement an efficient garbage collection
procedure using “classical” algorithms (we mean “marking active elements - collecting garbage
elements”), for the following reasons:

1. marking the active elements would require a complex visit of the graph, based on the so
called context semantics, and the complexity of such a visit could be exponential in the size
of the graph;

2. we could limit collection of garbage to phisically disconnet subgraph; however, particularly
with BOHM’s weak reduction strategy, garbage collection would be dealyed very far in the
reduction of the term, causing a possible explosion of the garbage.
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Figure 6. Creation of garbage

The second point above should probably deserve some more words. Consider for instance the
case of a shared list (a fan over a cons). Suppose moreover that one branch of the fan has become
garbage (i.e. we have a garbage operator at one auxiliary port of the fan). This situation occurs
very often,with BOHM’s rules. Obviouslywewould just like to eliminate the fan and the garbage
operator, and attach the list to the active branch of the fan. Adopting the policy in point 2 above,
we could not collect any garbage until we finished duplicating the whole list. In other words, in
optimal reduction, garbage should always be collected as soon as possible.
As pointed out by Lamping, an efficient way to integrate a garbage collector in the optimal graph
reduction technique is based on local interactions of erase operators (
). The basic idea is that the
erase operators are propagated along the graph, collecting every node encountered during their
walk.
In BOHM, all eraseoperators aremantained in an appropriate data structure (a list); whengarbage
collection is activated each of them proceeds interacting (i.e. erasing) the forms it encounters and
adding new erase operator to the list, until possible.
Note that there are some situation in which no interaction is allowed; typically when an erase
operator reaches the bound port of an abstraction, or an auxiliary port of an unsafe fan. This latter
case is particularly important. Actually, when a garbage operator reaches a fan at an auxiliary
port, one would be tempted to apply the following rule:

i

Figure 7. Garbage-fan interaction

Indeed, one of the two branches of the information shared by the fan has becomegarbage, and the
obvious solution would seem to simply drop this branch. Unfortunately, this rule is not correct
in general, due the problem described in the following picture:
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That is, if we allow a fan-in(-out) to interact with an erase operator according to the rule in Figure
7, we could preclude to some “paired” fan-out(-in) the possibility to annihilate itself. Luckily, the
rule is perfectly correct for safe fan (for the trivial reason that no “paired” fan-out could possibly
exist, in this case).
Another interesting point is the choice of an appropriate strategy for activating the garbage
collection procedure. Our empirical studies seem to suggest that the best strategy is to attempt
garbage collection every time some reduction rule generates new garbage, i.e. as soon as the
garbage is created. Operating in this way, we obtain two important advantages:� the size of the graph is always kept to a minumun along the reduction;� collecting garbage as soon as possible prevents that it becomes involved in useless interac-

tions, resulting in a sensible improvement in performance.

The following figure contains the whole set of garbage rules for pure lambda calculus.

@ i

iiii

λ iiλ

@ i

isafe iisafe

@ i

Figure 8. Garbage collection rules
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They are generalized in the obvious way to the other forms of the syntax. In particular, a
garbage operator can efface any syntactical form, no matter at which port it reaches the form,
unless it is a bound port. In this case it stops there. After collecting the form, we broadcast the
garbage operator to all other ports of it, and start the process again.
Note that the erase node has no index, and its interactions are independent from the index of the
adjacent node.
Note also that the first two rules for fans may be only applied in case the fan is safe, otherwise no
interaction is possible, and the erase operator is stopped.

6.1 Implementation Issues

To improve the efficiency of the garbage collection procedure, four new nodes have been intro-
duced. They do not represent neither new syntactical elements, nor new control operators; these
new forms are a sort of abbreviation for particular configurations of other forms. In particular:

iunsafe uns_fan1 i iunsafe uns_fan2 i

unb
i

λλ i

unb
i

iµ µ

Figure 9. New auxiliary forms� The form UNS FAN1 represents a configuration where an erase operator is “blocked” on
the “first” auxiliary port of an unsafe fan.� UNS FAN2 is similar to the previous one, but relative to the “second” auxiliary port.� The form LAMBDAUNB represents an abstraction node connected at its bound port with
an erase.� MU UNB is similar to the previous case, but relative to the fixed point operator.

The introduction of these new forms has two important advantages:� All erase nodes which cannot be propagated any further are merged into their adjacent
nodes, so it is easy to recognize when garbage collection is possible: an erase operator is
phisically present in the graph if and only if it is “active”.� The forms UNS FAN1 and UNS FAN2 prevent many useless duplication operations in the
graph. Suppose X is an arbitrary operator that can interact with the fan in the following
figure; without the four new forms, things would work this way:
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X
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X
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Collection
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Figure 10. Reduction without new forms

First X is duplicated by the fan, and then eventually deleted by the garbage collection procedure.
Using the operator UNS FAN2 no duplication is performed:

X

i
X

uns_fan2
i

Figure 11. Reduction with new forms

Another annoying problem with the garbage collector is that it could inadvertedly erase some
operators in the leftmost-outermost-redex stack (see section 4.3.1). Our solutionhas been to intro-
duce a new tag for each form denoting if it is either in or out the stack. Then, the garbage collector,
instead of erasing forms which are in the stack, will simply mark such elements as “collected”;
the form will be phisically disposed of when it will be eventually popped from the stack.

To evaluate the performance of the garbage collector, BOHM is enriched with some menus
to select the desired collecting strategy. The possibilities are:

1) MAXIMUM GARBAGE COLLECTION: The procedure is activated as soon as possible.
2) GARBAGE COLLECTION DEPENDING ONMEMORY OCCUPATION: The procedure is

attemptedwhen the total number of allocated operators reaches a certain limit fixed by the
user.

3) NO GARBAGE COLLECTION: Garbage collection is not active.
The menus are shownby calling the programwith option -s or by typing the directive #option;;

in the interactive environment.

7 Examples and Benchmarks

In this section we shall discuss several examples of computations, in order to give some concrete
mesure of BOHM’s performance. In particular, in order to give the gist of optimality and its
actual power, we shall compare the performance of our systemwith a different, fully developed,
and largely diffused implementation: CamlLight4. CamlLight [LM92] is a small, portable imple-
mentation of theML language (about 100K for the runtime system, and another 100K of bytecode
for the compiler) developed at INRIA-Rocquencourt. In spite of its limited dimension (versions
for Macintosh and IBM PC are also available), the performance of CamlLight is quite good for a
bytecoded implementation: five to ten times slower than SML-NJ.

4. We had no special reason for choosing CamlLight instead of some other functional language. We just wished to offer
a comparitive example.
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Obviously, we choosed a set of example particularly suited to the optimal reduction technique.
However, it is not at all our intention to keep any dark secret about BOHM’s actual performance
(that anyway you could easily discover just running the program). In total absence of sharing,
BOHM is substantially slowler than CamlLight: approximately ten times for pure lambda calcu-
lus, and even worse (up to fifty times!) for pretty numerical computations.
Recall however that:

1. BOHM is just an interpreter at a very high level (the graph is a real graph in C, and we are
continuously allocating and deallocating nodes from the heap!);

2. numerical computations are obviously slow, due to the quite cumbersome handling of
arithmetics;

3. the slowdown of BOHMw.r.t. CamlLight is constant, while in many cases CamlLight is just
exponential w.r.t BOHM.

The main problem of optimal reduction is that, in order to get a sufficient amount of sharing, you
should heavily use higher-order features in your program (like, say, iterating a higher order, non
linear functional). In other words, functions should become the real object of the computation
(unfortunately, this does not seem to be often the case, in practice).
However, optimality is not the only advantage of BOHM. As a matter of fact, another essential
feature of BOHM is that it joins all the advantages of lazy and strict reduction. In a sense, you
could (and should) write your programs in BOHM (that is a lazy machine) thinking as if it was
a strict machine, with full evaluation of the argument (i.e. pursuing reduction under the lambda).
The example of Tartaglia’s (Pascal’s) triangle should be illuminating, in this respect (see below).
All the examples discussed here can be found in BOHM tar file, in the subdirectory examples.
The tests have been performed on a Sparc Station 5.

7.1 Reduction

Example 1
Our first example is a function for computing prime numbers based on Erathostenes’ sieve. In
particular, (primenm) is 1 ifm is primewith respect to the n first prime numbers, and 0 otherwise.
In other words, (prime n) is the n-th approximation function in Erathostenes’ sieve.

{The following program computes Erathostenes’ sieve.}

{starting approximation function}
def constOne = \n.1;;

{(min g n m) is the n-th input value k of g (larger than m)
such that (g k)<>0 }
def min = letrec mi

= \g.\n.\m. if ((g m) <> 0)
then if n == 0 then m

else (mi g (n-1) (m+1))
else (mi g n (m+1));;

{(minIn g n) is the n-th input value k of g such that (g k) <> 0}
def minIn = \g.\n. (min g n 1);;

{criv computes the next approximation function in Erathostenes’ sieve}
def criv = \n.\g.\x. let a = (minIn g n) in

if ((x mod a) <> 0 or (x == a))
then (g x)
else 0;;

{(iterate n g f) = (g n (g n-1 (g n-2 (.... (g 1 f)...))))}
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def iterate = letrec it
= \n.\g.\f. if n == 0 then f

else (g n (it (n-1) g f));;

{(prime n x) is 1 if x is prime w.r.t. the n first prime numbers,
and 0 otherwise}
def prime = \n. (iterate n criv constOne);;

Some examples of computation are shown in Figure 12.

Input Caml Light BOHM

(prime 2 7) 0.00 s 0.00 s
1952 interac.

125 proper interac.
(prime 2 50) 0.00 s 0.00 s

655 interac.
92 proper interac.

(prime 4 15) 0.12 s 0.08 s
5601 interac.

425 proper interac.
(prime 5 3500) 1.15 s 0.05 s

7904 interac.
755 proper interac.

(prime 6 20) 16.30 s 0.13 s
11937 interac.

1228 proper interac.
(prime 7 49) explodes 0.23 s

16990 interac.
1934 proper interac.

(prime 10 50) 0.78 s
43463 interac.

5594 proper interac.

Figure 12. Erathostenes’ sieve

For BOHM, we respectively give the user time required for the reduction, the number of proper
interactions (i.e. interactions between syntactical operators), and the total number of interactions
(i.e. proper interactions plus pcontrol interactions). In the case of CamlLight, we just give the
user time.

Example 2
The second example concerns the computation of the transitive closure of a graph using Roy-
Warshall algorithm. Nodes are supposed to be integers, and the graph is represented by the
characteristic function g of its edges, i.e. g m n = 1 iff there exists an arch fromm to n, 0 otherwise.
Note that, with this representation, (g a) is the successor function of node a in the graph. Roy-
Warshall algorithm is based on the iteration over all nodes n of the graph of a function (phi n g)
that connects the nodes a and b if and only if a is connected to n and n is connected to b.

{(iterate n g f) = (g n (g n-1 (g n-2 (... (g 1 f))))) }
def iterate = letrec it = \n.\g.\f. if n == 0

then f else (g n (it (n-1) g f));;

{Roy-Warshall’s function phi}
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def phi = \n.\g.\a.\b. let ga = (g a) in
if (((ga n) == 1) and ((g n b) == 1))

then 1 else (ga b);;

{transitive closure of a graph with n nodes}
def transclos = \n. (iterate n phi);;

As input graph, we take a graph g where each node n is connected to its predecessor n-1:
def g = \n.\m. if (n == (m+1)) then 1 else 0. The results of some significative
computations are illustrated in Figure 13.

Input Caml Light BOHM

(transclos 5 g 3 2) 0.02 s 0.03 s
2439 interac.

192 proper interac.
(transclos 5 g 5 4) 0.00 s 0.02 s

1726 interac.
192 proper interac.

(transclos 10 g 2 6) 0.13 s 0.03 s
4212 interac.

274 proper interac.
(transclos 15 g 5 10) 6.58 s 0.10 s

8818 interac.
662 proper interac.

(transclos 18 g 17 18) 57.67 s 0.22 s
17901 interac.

1406 proper interac.
(transclos 20 g 5 15) explodes 0.18 s

11709 interac.
864 proper interac.

(transclos 20 g 20 1) 0.23 s
20531 interac.

1590 proper interac.

Figure 13. Transitive closure of a graph

Example 3
Suppose to represent an array as a function, considering the index as an argument. The following
code contains a mergesort algorithm for this representation of arrays. The integer 9999 is used as
a marker for the end of the array.
Here is the source code:

{merge of two "arrays"}
def merge = letrec merge1

= \f1.\f2.\i.
let f11 = (f1 1) in
let f21 = (f2 1) in
if f11 < f21 then

if i == 1 then f11
else (merge1 \x.(f1 x+1) f2 i-1)

else
if i == 1 then f21

else (merge1 f1 \x.(f2 x+1) i-1)
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{mergesort}
def mergesort = letrec mergesort1

= \f.\m.\n.
if m == n then \x.if x == 1 then (f m) else 9999

else let half = (m+n) div 2 in
let f1 = (mergesort1 f m half) in
let f2 = (mergesort1 f half+1 n)

(merge f1 f2);;

As inputs, we consider arrays of different dimensions, all of them initially ordered in a reversed
way.

{examples of "arrays".}
def venti = \x.21-x;;
def quaranta = \x.41-x;;
def cinquanta = \x.51-x;;
def sessanta = \x.61-x;;

Some examples of computations can be found in Figure 14.

Input Caml Light BOHM

(mergesort venti 1 20 10) 0.30 s 0.30 s
25247 interac.

1890 proper interac.
(mergesort venti 1 20 20) 1.43 s 0.53 s

43788 interac.
3719 proper interac.

(mergesort quaranta 1 40 15) 3.73 s 0.58 s
46955 interac.

3857 proper interac.
(mergesort quaranta 1 40 30) 26.22 s 1.35 s

109244 interac.
9335 proper interac.

(mergesort quaranta 1 40 40) 50.60 s 1.88 s
126713 interac.

11957 proper interac.
(mergesort cinquanta 1 50 25) 32.37 s 1.35 s

105937 interac.
8957 proper interac.

(mergesort cinquanta 1 50 40) 106.12 s 2.15 s
146007 interac.

13408 proper interac.
(mergesort cinquanta 1 50 50) 179.80 s 3.13 s

216234 interac.
20327 proper interac.

(mergesort sessanta 1 60 60) explodes 4.65 s
293919 interac.

28406 proper interac.

Figure 14. Mergesort
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Example 4
Our last example about BOHM’s performance is a program for computing Tartaglia’s triangle
(also and improperly known as Pascal’s triangle). The n-th element of the m-th row of this
triangle is the n-th coefficient of the m-th power of a binomial. The code is straightforward. We
just remark the use of the function “eval” to “force” the explicit evaluation of each row. This is
needed in order to share this computation at later steps.

{row 0}
def init = \x. if x == 1 then 1 else 0;;

{"eval" evaluates an input function f in the interval 0-n}
def eval = \f.\x. letrec evalaux = \n.

if n == 0 then 0 else
if x == n then (f n) else (evalaux (n-1));;

{next row in tartaglia’s triangle}
def next = \f.\x. (f (x-1))+(f x);;

{tartaglia m n gives the n-th element in the m-th row of
tartaglia’s triangle}
def tartaglia = letrec tartaux = \m. if m == 0 then init else

\x.(eval (next (tartaux (m-1))) x (m+1));;

Input Caml Light BOHM
(tartaglia 9 5) 0.02 s 0.27 s

33053 interac.
884 proper interac.

(tartaglia 13 7) 0.38 s 0.62 s
81732 interac.

1841 proper interac.
(tartaglia 17 9) 5.25 s 1.12 s

163345 interac.
3280 proper interac.

(tartaglia 20 10) 37.60 s 1.88 s
264865 interac.

4850 proper interac.
(tartaglia 23 12) explodes 2.78 s

366833 interac.
6558 proper interac.

(tartaglia 35 18) 8.75 s
1172111 interac.

18357 proper interac.
(tartaglia 40 20) 14.73 s

1758878 interac.
26197 proper interac.

Figure 15. Tartaglia’s triangle

7.2 Garbage Collection

In this sectionweprovide someresults about the performance of thegarbage collection procedure.

Maximum allocation of nodes
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In the following table we show the maximum dimension reached during the reduction of a same
initial graph (themaximumnumber of nodes allocated at a given time) with andwithout garbage
collection.
We start with some examples in pure �-calculus. In particular, we consider two “primitive recur-
sive” versions of the factorial and fibonacci functions on Church integers. Since the computation
stops at weak head normal form, we shall supply some extra-parameters (identities), in order to
get an interesting computation.
Here is the source code:

def I = \x.x;;
def zero = \x.\y.y;;
def one = \x.\y.(x y);;
def two = \x.\y.(x (x y));;
...
def Pair = \x.\y.\z.(z x y);;
def Fst = \x.\y.x;;
def Snd = \x.\y.y;;

def Succ = \n.\x.\y.(x (n x y));;
def Add = \n.\m.\x.\y.(n x (m x y));;
def Mult = \n.\m.\x.(n (m x));;

def Next1 = \p.let n1 = (p Fst) in
let n2 = (Succ (p Snd)) in
(Pair (Mult n1 n2) n2);;

def Nextfibo = \p.let n1 = (p Fst) in
let n2 = (p Snd) in
(Pair (Add n1 n2) n1);

def Factprim = \n.(n Next1 (Pair one zero) Fst);;

def Fiboprim = \n.(n Nextfibo (Pair zero one) Fst);;

The previous definitions can be found in the file examples/purelambda in BOHM’s main
directory. Loading this file will cause the initial allocation of 1030 nodes which obviously cannot
be erased.
The behaviour of the garbage collector is shown in Figure 16.

Final Number of Nodes
The next table (Figure 17) shows, for the same terms as before, the dimension of the graph at the
end of reduction, and the total number of garbage-interactions performed by the G.C.
The performance of the garbage collection procedure is, in some cases, suprisingly good.
Consider for example the case of the �-term (factprim (add ten ten) I I); if the G.C. is active, the
remaining nodes after the reduction are only 1113 against a final allocation of over 70000 nodes.
Moreover, and this is particularly interesting, this result is obtained by performing only 838
garbage collecting operations!! (the reason is that garbage could be duplicated along the reduc-
tion).

Extended �-calculus
Let us now consider an example involving some syntactical constructs of the extended source
language. In particluar, we consider a quicksort algorithm for lists of integers. The function
genlist takes an integer n and returns the list of the first n integers in inverse order.

{lenght of a list}
def lenght = letrec l = \x.if isnil(x) then 0
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G.C. off G.C. on

(factprim one I I) 1188 1178
(factprim two I I) 1242 1219
(factprim three I I) 1303 1276
(factprim five I I) 1515 1383
(factprim ten I I) 4544 1797
(factprim (add ten five) I I) 20029 2452
(factprim (add ten ten) I I) 73661 3226
(fiboprim one I I) 1220 1209
(fiboprim two I I) 1247 1234
(fiboprim three I I) 1296 1283
(fiboprim five I I) 1418 1381
(fiboprim ten I I) 2439 1763
(fiboprim (add ten five) I I) 26984 6228
(fiboprim (add ten ten) I I) 288003 57269

Figure 16. Maximum allocation during reduction

G.C off G.C. on Garbage Op.

(factprim one I I) 1128 1112 10
(factprim two I I) 1146 1095 27
(factprim three I I) 1199 1077 55
(factprim five I I) 1454 1077 100
(factprim ten I I) 4447 1077 265
(factprim (add ten five) I I) 19812 1109 523
(factprim (add ten ten) I I) 73274 1113 838
(fiboprim one I I) 1156 1141 8
(fiboprim two I I) 1144 1101 33
(fiboprim three I I) 1172 1101 43
(fiboprim five I I) 1302 1101 88
(fiboprim ten I I) 3415 1101 623
(fiboprim (add ten five) I I) 26957 1097 6117
(fiboprim (add ten ten) I I) 287972 1101 66423

Figure 17. Final allocation space.
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else 1 + (l tail(x));;

{listIt f l e applies function f to all the elements of list l}
def listIt = letrec lIt =

\f.\l.\e.if isnil(l) then e
else (f head(l) (lIt f tail(l) e));;

{split a list in two sublists according the specified criterion t}
def partition = \t.\l.let switch =

\e.\l2.if (t e) then [head(l2),cons(e,head(tail(l2)))]
else [cons(e,head(l2)),head(tail(l2))]

in (listIt switch l [nil,nil]);;

{appends two lists}
def append = letrec a =

\l1.\l2.if isnil(l1) then l2
else cons(head(l1),(a tail(l1) l2));;

{generates a list of n integers in inverted order (from n to 1)}
def genlist = letrec gen = \n.if n == 0 then nil

else cons(n,(gen n-1));;
{returns the sorted list}
def quicksort = letrec qs =

\l.if isnil(l) then nil else
if (lenght l) == 1 then l else

let l1 = head((partition \x.head(l) <= x tail(l))) in
let l2 = head(tail((partition \y.head(l) < y tail(l))))

in (append (qs l1) cons(head(l),(qs l2)));;

The next table (Figure 18) gives the maximum dimension of the graph and the number of G.C.
interactions.

G.C. off G.C. on Garbage Op.

(quicksort (genlist 5)) 3109 2542 359
(quicksort (genlist 10)) 9442 6762 1259
(quicksort (genlist 15)) 20627 13557 2684
(quicksort (genlist 20)) 37912 23427 4634
(quicksort (genlist 25)) 62547 36872 7109
(quicksort (genlist 30)) 95782 54392 10109

Figure 18. Maximum allocation space

The following table allows you to compare the total number of interactions with and without
G.C.
As remarked above, the immediate elimination of garbage generally avoids a lot of useless
operations. More precisely, this depends from the elimination of safe fans, that prevents the
duplication of garbage.
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G.C. off G.C. on

(quicksort (genlist 5)) 5551 5393
(quicksort (genlist 10)) 18446 17403
(quicksort (genlist 15)) 40091 36813
(quicksort (genlist 20)) 72111 64623
(quicksort (genlist 25)) 116131 101833
(quicksort (genlist 30)) 173776 149443

Figure 19. Total number of interactions

8 Conclusions

In this paper, we presented the main architecture of the Bologna Optimal Higher-order Machine
(BOHM). BOHM is the first prototype implementation of Lamping’s optimal graph reduction
technique extended to a reasonable core of a typical functional language. BOHM is just a high
level interpreter written in C; it was not meant to be a real implementation, but just to be effective
enough to provide some useful results about the actual performance of Lamping’s technique.
These tests and benchmarks, partially reported in this paper, look very promising.
A lot of work is obviously left, especially in optimizing the design of Lamping’s algorithm and
the architecture of the abstract machine. In particular, the following topics look particularly
interesting:

1. studying the actual relevance of “fast propagation rules” for brackets and croissants;
2. getting a better understanding and theoretical status for “safe” operators;
3. investigating the possibility of collapsing long sequences of control (safe) operators into a

single object.
On the other side, the obvious (and straighforward) idea of passing from an interpreter to a
compiler into native assembly code looks a bit premature, at the actual state of the art.
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