
EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS
Earthquake Engng Struct. Dyn. (in press)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/eqe.518

Software framework for distributed
experimental–computational simulation of structural systems

Yoshikazu Takahashi1;∗;† and Gregory L. Fenves2

1Department of Urban Management; Kyoto University; Yoshida Honmachi; Sakyo-ku; Kyoto 606-8501; Japan
2Department of Civil and Environmental Engineering; University of California; Berkeley;

Berkeley; CA 94720-1710; U.S.A.

SUMMARY

Supported by the recent advancement of experimental test methods, numerical simulation, and high-speed
communication networks, it is possible to distribute geographically the testing of structural systems using
hybrid experimental–computational simulation. One of the barriers for this advanced testing is the lack
of �exible software for hybrid simulation using heterogeneous experimental equipment. To address this
need, an object-oriented software framework is designed, developed, implemented, and demonstrated
for distributed experimental–computational simulation of structural systems. The software computes the
imposed displacements for a range of test methods and co-ordinates the control of local and distributed
con�gurations of experimental equipment. The object-oriented design of the software promotes the
sharing of modules for experimental equipment, test set-ups, simulation models, and test methods. The
communication model for distributed hybrid testing is similar to that used for parallel computing to solve
structural simulation problems. As a demonstration, a distributed pseudodynamic test was conducted
using a client–server approach, in which the server program controlled the test equipment in Japan and
the client program performed the computational simulation in the United States. The distributed hybrid
simulation showed that the software framework is �exible and reliable. Copyright ? 2005 John Wiley
& Sons, Ltd.

KEY WORDS: object-oriented software; pseudodynamic test method; software framework; distributed
experimental test methods; hybrid experiments

∗Correspondence to: Yoshikazu Takahashi, Department of Urban Management, Kyoto University, Yoshida Honmachi,
Sakyo-ku, Kyoto 606-8501, Japan.

†E-mail: yos@cat�sh.kuciv.kyoto-u.ac.jp

Contract=grant sponsor: The Ministry of Education, Science, Sports and Culture, Japan; contract/grant number:
Grant-in-Aid for Young Scientists (A) 16686029

Received 17 March 2005
Revised 3 June 2005

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 14 June 2005



Y. TAKAHASHI AND G. L. FENVES

1. INTRODUCTION

Experimental testing of structural systems is essential for improving knowledge about com-
ponent and system performance in earthquakes. Shaking table testing can provide important
experimental data about critical issues such as the e�ect of component damage on system re-
sponse, collapse mechanisms, residual deformation and post-earthquake capacity. For example,
the new E-Defense facility is a 20m× 15m six degree-of-freedom (DOF) shaking table at the
National Research Institute for Earth Science and Disaster Prevention (NIED) in Japan [1] will
provide signi�cantly increased capability for structural experiments. Even with this facility,
most structural systems are too large to test at or near full-scale. Since the 1970s, experimen-
tal methods have been developed to test structural systems using strong-reaction facilities and
standard laboratory equipment such as servo-controlled hydraulic actuators, control systems,
sensors, and data acquisition systems. The pseudodynamic test method [2–4] is an experimen-
tal method that is used to deform a structural specimen as if it were responding to earthquake
ground motion using an on-line computer-controlled simulation of dynamic response. Recent
research has generalized the pseudodynamic test method to include experimental substructures
connected to a computational model through multiple DOF [5–9]. The pseudodynamic test
method can be viewed as a hybrid simulation in which one portion of a structural system
is simulated experimentally and other portions are simulated using a computational model.
The software that implements the test method assembles the experimental and computational
assemblies to determine the dynamic response of the complete system. Since hybrid simula-
tion involves communication between experimental and computational assemblies, laboratories
and computers can be geographically distributed and linked by a high-speed communication
network. Geographically distributed testing allows researchers to combine the capabilities of
two or more sites to conduct tests on structural systems that could not be performed at any
one site because of capacity limits. The concept was discussed by Campbell and Stojadinovic
[10] and also by Watanabe et al. [11]. Distributed hybrid tests have been conducted between
Japan and Korea [12] and in Taiwan [13].
In the United States, the George E. Brown, Jr Network for Earthquake Engineering

Simulation (NEES) [14] is a network of experimental sites and computing resources connected
by the NEESgrid system using Grid-based middleware [15]. Under the NEES program, the
Multi-site On-line Simulation Test (MOST) [16] demonstrated the use of NEESgrid for hybrid
simulation, and Mosqueda et al. [17] developed a continuous control method for hybrid
simulation using distributed experimental sites. MOST [15, 16] connected two experimental
sites and one or more computational sites. It showed the potential for distributed testing, but
the software architecture included a co-ordinator that resulted in an arti�cial separation between
the simulation model and the time integration procedure for solving the governing equations
of motion. Shing et al. [18] also developed a fast hybrid test (FHT) system with a Shared
Common RAM Network (SCRAMNet). They used OpenSees [19–21] for computational
simulation with a specialized integration scheme.
Even with these recent advances, structural testing has typically been conducted using

customized software that is dependent on the con�guration of an experiment and the
computational procedure for the test method. Customized software, however, is di�cult to
adapt to other experiments, particularly when multiple sites need to communicate in a dis-
tributed test. The deployment of NEES in the United States, and similar systems in other
countries, provides a timely opportunity to develop �exible and extensible software for a

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

large variety of structural test methods, specimen con�gurations, control systems, commu-
nication protocols, computational models, solution algorithms, and computing resources that
can be combined for a distributed hybrid test. To accomplish this goal, this paper presents
a software framework for distributed experimental–computational simulation. The architecture
provides a general approach for de�ning and conducting structural tests on local or distributed
experimental sites and computational resources. In this paper, the requirements for experimen-
tal methods in structural engineering are examined in order to de�ne the functions that the
software must support. Using object-oriented software design methodologies, a framework of
co-operating software classes is developed for a variety of experimental and computational
approaches, allowing mixing of computational and experimental elements with communica-
tion between the two over a network. The hybrid simulation software extends OpenSees
and it takes advantage of OpenSees support for distributed computation. The new software
framework is evaluated using a client–server application for a distributed pseudodynamic test
of a bridge system with the experimental site in Japan acting as the server and the computa-
tional client located in the United States.

2. OPEN SYSTEM FOR EARTHQUAKE ENGINEERING SIMULATION

The Open System for Earthquake Engineering Simulation, OpenSees [19–21], has been
developed by the Paci�c Earthquake Engineering Research Center (PEER) for modelling and
simulating the seismic response of structural and geotechnical systems in support of perform-
ance-based earthquake engineering methodologies. OpenSees is an object-oriented software
framework implemented in C++ [22] through an open-source development process. Most
users specify and conduct an OpenSees simulation using the Tcl scripting language [23]. As
will be demonstrated in this paper, OpenSees can be used to build other applications, such as
for distributed hybrid simulation.
The fundamental characteristic of object-oriented software is abstraction: identifying the

important software behaviour needed to solve a problem and breaking it down into compo-
nents, which are referred to as software classes. Software objects are instances of a class,
which contain the speci�cation for constructing and operating on objects constructed from the
class. An object encapsulates data and operators on the data, thus hiding the implementation
of the operators from the speci�cation. Data hiding encourages modular, �exible, and exten-
sible software. An operator is invoked by sending an object a message; the object is then
responsible for invoking the implementation of the operator based on its class. A framework
is a set of inter-related classes that can be used to develop an application to solve a problem.
For structural simulation, object-oriented methodologies were introduced in the beginning in
1990s. Fenves [24], Baugh and Rehak [25] were among those who emphasized the importance
of abstraction in engineering software development and advocated object-oriented approaches.
The �rst object-oriented analysis application was the linear and static �nite element method.
In 1990, Forde et al. [26] de�ned classes such as Node, Material, and Element, for linear
analysis. In the past decade, many researchers have developed object-oriented software for
�nite element analysis [20, 27–35].
Figure 1 shows the high-level classes in OpenSees and the relationships between them.

The �gure uses simpli�ed graphical notation of the Uni�ed Modeling Language [36, 37],
which is de�ned in the appendix. All classes have de�nitions of operators, but for clarity

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

Figure 1. High-level classes in the OpenSees software framework for computational simulation.

only selected ones are shown in the class diagrams presented herein. Relationships with a
diamond link represent aggregation of objects, which is a common software design pattern
[38] known as Composition. The high-level classes in Figure 1 are Domain, ModelBuilder,
and Analysis to represent, respectively, the data structures for a model, the methods for
creating models, and the operators for advancing the state of a model through an analysis.
An instance of Domain is an aggregation of other objects making up a simulation model,
including classes representing nodes, elements, constraints, and load patterns. As shown in
Figure 1, Element is an abstract class, and subclasses implement element formulations for
beam-column elements and continuum elements (the �gure only shows a small sample of the
elements in OpenSees). The most important function for Element is to compute the resisting
forces given speci�ed displacement and velocities at the DOF. Each subclass of Element
de�nes the operator getResistingForce(), which returns a reference (memory address) for
the vector of resisting forces. Since computational elements involve material (or constitutive)
relationships, the state information is often encapsulated in Material objects, which have
similar state determination operators.
In Figure 1, Analysis is an abstract class that is responsible for advancing the Domain

object from its current state to a new state based on one step of the LoadPattern. Subclasses
of Analysis provide the implementations for static analysis, transient analysis, or other analysis
procedures. Although not shown in the �gure, Analysis is a composition of the other objects
required for solving the governing equations, such as Integrator and SolutionAlgorithm. These
components are abstract classes, which make it possible to choose the type of analysis by
selecting appropriate subclasses. Once the Analysis object is created as a composition, the
operator analyze() advances the state of the model.
An important aspect of the OpenSees architecture is the support for parallel computing [39].

The main classes for parallel computing are Actor, Shadow, Channel and MovableObject, as
shown in Figure 2. An Actor is an object that executes asynchronously on a remote processor,
and a Shadow object represents the remote object in local memory space. A message intended
for a remote Actor is sent to the local Shadow object. The Shadow object is responsible for
sending and receiving messages to and from the remote Actor(s). The communication between

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

Figure 2. OpenSees classes for parallel computation and communication.

the Actor and the Shadow objects is conducted through a Channel object. The Channel
object provides general communication mechanisms between the two objects, and it can be
implemented using standard protocols, such as TCP/IP and MPI (message-passing-interface).
Domain objects inherited from an Actor and a Shadow, respectively, can communicate with
a Channel object.
In summary, the OpenSees object-oriented framework provides classes that can be com-

bined for speci�c models and solution procedures in a simulation. The coupling between
classes is minimized, which provides a great deal of �exibility. New classes can be developed
more easily because the interaction between classes is de�ned through interfaces (often called
application program interfaces) and there are few global data structures. The software can be
extended for other applications, such as described in the remainder of this paper for hybrid
experimental–computational simulation.

3. SOFTWARE REQUIREMENTS FOR STRUCTURAL TEST SYSTEMS

Structural testing involves imposing displacement or force boundary conditions on a specimen
according to a test method and a loading protocol. There are many types experimental set-
ups for applying boundary conditions, as shown for example in Figure 3, which illustrates
three con�gurations of actuators for two-DOF loading on a cantilever specimen. The actuators
are controlled by a control system, but most software for computing the control signals is
customized for an experimental site and test method. As a consequence of the specialized
software, it is di�cult to develop and implement new test methods, such as hybrid testing
or geographically distributed testing, or to exchange software from one laboratory to another.
Prior to developing a software architecture for structural test systems to address this problem,
the requirements for test methods are summarized.
Cyclic loading of a specimen at a slow rate with an a priori deformation history is a

basic experimental method [40]. In the quasi-static test method, the loading is selected to
represent cycles of deformation expected during an earthquake. The experimental set-up con-
sists of a specimen, servo-control hydraulic actuators, PID controllers, and control computers.
With several actuators it is possible to apply a multi-DOF loading on a specimen with an
appropriate control system. The components in the experimental set-up communicate using
proprietary or public protocols, such as GP-IB (General Purpose Interface Bus, IEEE 488).
The primary requirement is that the software must have the �exibility to interact with a variety

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

Figure 3. Possible con�gurations for two-DOF loading on a cantilever specimen.

of the components in the experimental set-up and to specify the boundary conditions through
displacements or forces in one or more actuators.
As discussed in Section 1, the pseudodynamic test method is a computer-controlled experi-

mental technique for simulating the response of structures [2]. It is an e�ective alternative
to shaking table testing because it can load specimens that exceed the size, load, or weight
limits of shaking tables using experimental set-ups similar to that for quasi-static tests. In the
pseudodynamic test method, the software is required to solve the equations of motion for the
computational model of a structural system using step-by-step time integration. An implicit
integration scheme is usually used for the non-linear equations of motion but an iterative
procedure is not desirable for testing, therefore several time integration schemes have been
proposed [41–45], and a variety of techniques have been developed to improve e�ciency and
accuracy [4, 7, 8]. By utilizing partitioning concepts, the pseudodynamic test method allows
testing a component or assembly experimentally, whereas the other portions of the structural
system are modelled computationally.
In early implementations of the pseudodynamic test method, the actuators were put on hold

while the equations of motion were solved to determine the displacement target for the next
time step. A hold time allows relaxation of a specimen’s resisting forces and other experi-
mental errors that are fed back into the solution. To mitigate these errors, continuous pseudo-
dynamic test methods have been developed [9, 17]. To generate continuous displacement sig-
nals, researchers adopted an interpolation–extrapolation procedure [46]. Since this procedure
runs fast and independently from the equation solution, it is usually implemented locally in a
digital signal processor (DSP).
The software for the pseudodynamic test method needs to provide a variety of computa-

tional models for structural systems, including non-linear material and geometric behaviour.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

In addition, the test method requires specialized time integration schemes and de�nitions of
boundary conditions for the experimental specimen. To support interpolation–extrapolation
procedures, the software must be able to communicate with the DSP in the control system.
The software should provide fault tolerance to terminate the test safely in the event of an
equipment, communication, or specimen failure.
A variety of new types of earthquake mitigation technologies have been developed for

controlling structural response. Since many of the devices, such as viscous dampers, have
velocity-dependent characteristics, they cannot be tested by the conventional pseudodynamic
test method. To test these devices, the real-time on-line test method and the substructured
shaking table test method have been developed [46–49]. The testing must occur at a faster
rate than for the pseudodynamic test method with the time scale preserved, which means the
software must solve the equations of motion at each time step in real-time. In addition, the
high rate of actuation and specimen motion introduces inertia forces that must be compensated
for. Finally, velocities must be computed accurately and imposed through the actuators. The
software needs to provide these capabilities with high-speed computation and communication.
The motivation for the distributed test method is to provide the functionality of the afore-

mentioned test methods but with specimens located at one or more experimental sites. Dis-
tributed testing allows multiple sites to collaborate on a test of a structural system that would
exceed the capacity available at a single site. In addition to the requirements for the pseudody-
namic and real-time test methods, the software must be able to control distributed experimental
sites using a communications network. The de facto communications protocol at the trans-
port and network layers is TCP/IP, but the standard protocols have inadequate security for
distributed control of experimental equipment. To support distributed control applications, the
NEESgrid Teleoperation Control Protocol (NTCP) [50] provides negotiation, execution, and
veri�cation of distributed control actions through a transaction-based protocol. The protocol
is reasonably secure through the use of Grid authentication and access control [51] and it
is also fault-tolerant in that it does not rely on the underlying transport layer (e.g. TCP) to
deliver messages reliably. The MOST project [15, 16] used NTCP for communication between
experimental and computational sites.

4. OBJECT-ORIENTED SOFTWARE FRAMEWORK FOR
EXPERIMENTAL METHODS

As described in the previous section, the software requirements for experimental systems
are to (1) compute the imposed displacements, and possibly velocity and accelerations, for
a specimen based on the test method, (2) communicate the imposed boundary conditions
to the control system for the experimental set-up, and (3) obtain the resisting forces and
displacements from the experimental set-up. To address these requirements, an object-oriented
software framework for hybrid simulation with a variety of local and distributed test methods
is developed. The approach is to de�ne the abstractions of experimental set-ups for conduct-
ing the tests, including the interfaces with the experimental equipment. The communication
between single or multiple experimental sites is handled in a uniform manner to support
distributed testing. Finally, the experimental software is designed to collaborate with compu-
tational simulation software, such as OpenSees, for solving the governing equations of motion
for a structure.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

4.1. Modelling of experimental systems

As an example of software modelling of experimental systems, Figure 4 shows the important
objects for representing experimental set-ups of the two-DOF displacement-controlled loading
on the specimen illustrated in Figure 3. The round boxes are objects and the arrows show
the �ow of the data. The experimental element is a cantilever with the two-DOF represented
by de. The software can represent a variety of set-ups for the experimental element, such as
the three alternatives, set1, set2, and set3 shown in Figure 4. In a set-up, each actuator is
controlled by displacement control signals. The software must transform the cantilever element
DOF data to the actuator displacements, which are indicated in the �gure for the three set-ups.
Two abstract classes are de�ned to provide a �exible representation of test methods. The

�rst one, ExperimentalSetup, transforms the DOF, de, for an experimental element to a vector,
sc, for the control system depending on the geometry and kinematics of the loading system.

Figure 4. Examples of ExperimentalSetup object for loading a cantilever specimen with two-DOF.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

The second class, ExperimentalControl, represents the control system and is responsible for
converting the actuator displacements needed for the DSP and PID controllers. The advantage
of this approach is that ExperimentalSetup hides the speci�cs of the experimental con�g-
uration from ExperimentalControl. Since an ExperimentalControl object is hidden from test-
ing applications, it can communicate with the hardware without consideration of the details
of the test method.
The class diagram for experimental methods is shown in Figure 5. ExperimentalSetup

is an abstract class that represents the set-up and con�guration of an experiment. Experi-
mentalControl is responsible for accessing the control system and data acquisition system.
The separation of ExperimentalSetup and ExperimentalControl allows specialization of both
classes by subclassing them independently, and the communication between the two is done
by an association named eControl. This approach is known as a Bridge software pattern [38].
The implementations in subclasses of ExperimentalSetup, such as experimental systems for
di�erent numbers and arrangements of actuators, has operators that propose a set of displace-
ments, velocities, and acceleration for the DOF, execute the proposed DOF, get the resisting
forces that result from the execution, and get the values of the DOF from the data acquisition
(DAQ) system. The important operators for ExperimentalControl subclasses are to generate
a signal for the control system, perform a control action, signal the DAQ to acquire data, and
get the data from the DAQ.
Other classes in Figure 5 provide information for the control of an experimental set-up.

The speci�cations of the experimental equipment, such as range, gain and units, are modelled
by the EquipmentSpec class. Speci�c ExperimentalControl subclasses control the equipment
according to the assigned EquipmentSpec objects. The software can represent control systems
that involve feedback loops of measured data from a data acquisition system. To do this, the
class ECMultiControl is a composition of multiple ExperimentalControl objects in which
one object controls actuators and the other ExperimentalControl object acquires experimental
data. The SignalFilter class is available for �ltering signals to deal with errors or noise in
the experimental system; a variety of �lters are implemented using subclassing.
The advantage of this software architecture is that laboratories can develop Experimen-

talControl classes for their control systems and experimental equipment. Laboratories with
similar equipment could share the software implementations. For each experimental set-up,
a subclass of ExperimentalSetup needs to be implemented for the con�guration of the

Figure 5. Principal classes for representing experimental methods.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

actuators and other details of the test set-up. Libraries of experimental set-up classes pro-
vide a starting point for sharing implementations, and because of the de�ned interfaces, all
ExperimentalSetup objects are designed to collaborate with any laboratory’s Experimental-
Control objects.
To demonstrate the �exibility of the software architecture, Figure 6 shows two con�gu-

rations for an experimental set-up object, in this case a one-DOF loading on a cantilever
specimen. The transformation in the ExperimentalSetup is simple because of the single-
DOF loading, and it is implemented as a subclass, ESOneStaticActuator. In Figure 6(a), the
actuator is driven by an analogue controller with a signal generated by an AD/DA board.
The ECadda object, an instance of a subclass of ExperimentalControl, generates the target
displacement signal based on the command vector sc and acquires analogue experimental data.
These data are packed in the vector sd and sent to the ESOneStaticActuator object. Finally,
the ESOneStaticActuator object converts the acquired data to the resisting force vector. As an
alternative, Figure 6(b) shows a set-up with a controller that uses analogue signals generated
by a program executing in a DSP. The ECdsp object communicates with the DSP, sends the
command vector sc, and gets the DAQ vector sd. As a �nal example, Figure 7 shows a test
set-up for a two-DOF loading on a cantilever specimen. For the con�guration of actuators,
a subclass ESTwoStaticActuators is introduced. The ECadda object can be reused from the

(a)

(b)

Figure 6. Quasi-static load test set-ups for single-DOF loading with two di�erent experimental control
systems: (a) analog control; and (b) digital control.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

Figure 7. Quasi-static load test set-up for two-DOF loading on a cantilever specimen.

previous example because the controllers use analogue signals generated by the AD/DA board.
These examples illustrate that the design of the software has factored the essential aspects
into independent classes. Di�erent ExperimentalControl objects can interact with the same
ExperimentalSetup object. For the control system at an equipment site, an ExperimentalCon-
trol subclass can be implemented to interoperate with any experimental set-up.

4.2. Modelling of distributed experimental sites

The software framework described in the previous subsection de�ned objects that represent the
experimental set-up, irrespective of the location of the experiment. To accommodate geograph-
ically distributed experimental set-ups, the class ExperimentalSite is introduced to provide a
representation of local or remote experimental sites in a uniform manner. Figure 8 shows the
class design to provide communication with an ExperimentalSite, either locally or remotely.
A key operator for ExperimentalSite objects is getforce() and Figure 8 shows the pseudocode
that implements it.
For local tests, an instance of the subclass LocalExprSite relates directly to an

ExperimentalSetup object. Applications communicate with the ExperimentalSetup object
through the LocalExprSite object. A request to get the restoring force for a LocalExprSite
object is passed directly as a getForce() operator to the ExperimentalSetup object. For dis-
tributed testing, however, an ExperimentalSite object needs to handle the communication
between an application that de�nes the loading, such as through a computational simulation,
and a remote experimental set-up. This situation is analogues to the distributed computing
model in OpenSees with the Actor and Shadow classes. Consequently, the class RemoteEx-
perimentalSetup is introduced as a subclass of Actor to execute on a server for the experi-
mental set-up. At another location, a client program has a representation of the experimental
site using an instance of RemoteExprSite, which is a subclass of Shadow. In a client–server

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

Figure 8. ExperimentalSite classes for communicating between local and
remote ExperimentalSetup objects.

approach, the server program waits for requests from clients using a loop operation. The
server loop is implemented in RemoteExperimentalSetup but almost all other methods are
the same as ExperimentalSetup. Therefore, RemoteExperimentalSetup is designed with an
Adapter pattern [38] of ExperimentalSetup to which is added the communication method for
the server to receive commands from the client program. The advantage of this approach is
that it uses the distributed computing model in OpenSees, and as a result the software can be
used for experimental testing, computational simulation, or a hybrid of the two.
This client–server architecture uses the communication mechanisms in OpenSees with the

client, RemoteExprSite, and the server, RemoteExperimentalSetup, communicating through
a Channel object. A variety of network communication protocols have been developed with
TCP sockets [52] one of the most widely used for the internet. TCP sockets provide end-
to-end connections between two applications using TCP/IP communication. The OpenSees
Channel may be implemented using other protocols such as MPI or NTCP [50].
The software framework for experimental test sites is de�ned by the class diagrams in

Figure 5 and Figure 8. To illustrate how the objects interact with each other, sequence
diagrams show the messages and �ow of information between objects. The sequence diagrams
for a local and distributed experimental test are shown in Figures 9 and 10, respectively. These
diagrams show three classes and three major methods: setTrialResponse(), getForce(), and

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

Figure 9. Sequence diagram for local experimental test.

getDaqData(). The method setTrialResponse() is used by the application to specify the
displacement of a specimen. The LocalExperimentalSite and ExperimentalSetup are respon-
sible for proposing and executing the action through the experimental control. The acquired
data are stored in ExperimentalSetup, as shown in Figure 5. To obtain force data, the method
getForce() is invoked by the application to get the data from the ExperimentalSetup through
the LocalExperimentalSite. The role of getDaqData() is similar to getForce() but it is
used for acquiring the current data from the data acquisition system. Comparing the sequence
diagrams for a local and distributed test, the right-hand side of the ExperimentalSetup and
ExperimentalControl objects are the same. Therefore, experimental sites can have software
interfaces for its equipment and test methods without regard to the applications or whether
the applications will be run on a local or remote computer. On the other hand, simulation
methods can be developed without regard to the experimental set-up and can combine compu-
tational and experimental elements as described in the next subsection on collaboration with
OpenSees.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

Figure 10. Sequence diagram for distributed experimental test.

4.3. Collaboration between experimental systems and OpenSees

As described in Section 3, structural test methods require the software to solve the equation
of motion for determining the next step of the loading path. To accomplish this, OpenSees is
extended to provide the computational simulation needed for structural testing either locally or
in a distributed manner. Figure 11 shows the classes for hybrid simulation, which consists of
three parts: OpenSees core, the experimental test system, and the class ExperimentalElement
to interface between the two. The OpenSees class Element has methods to compute the
resisting force vector for values of the DOF (Figure 1). In a similar manner, an experimental
object has methods to set values of the DOF and to obtain the resisting force vector.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

Figure 11. Class diagram of collaboration relationships between OpenSees and experimental test system.

An ExperimentalElement object is associated with an ExperimentalSite. Once an
ExperimentalElement object de�nes values of DOF for an ExperimentalSite object, the resist-
ing force vector is obtained through the test system. From the point of the ExperimentalSite’s
view, the ExperimentalElement object is the application. On the other hand, a simulation using
OpenSees only needs to obtain a element resisting force vector from the ExperimentalSite
object regardless of the location of the experimental site. Since the ExperimentalElement
acts as an Element from OpenSees’ view, it can be used along with computational elements
without changing OpenSees.
For time integration of the equations of motion, OpenSees has several implicit step-by-

step methods, e.g. Newmark �, Wilson � and HHT-�. One of the critical requirements for
on-line tests is to avoid load reversals during the time required to solve the implicit equations
iteratively. This can be achieved using the �-operator splitting integration method [43, 44],
which has been implemented as an Integrator object in OpenSees.
The collaboration between OpenSees and an experimental system is illustrated in

Figure 12, which is the sequence diagram for updating the state of elements in the integration
of the equations of motion. OpenSees is responsible for the integration, which co-ordinates
the process, and also the computational model. As a result, a computational simulation and

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

Figure 12. Sequence diagram for updating the state of an experimental element
in one step of time integration.

an experimental–computational simulation are conducted in an identical manner. It should be
noted that the experimental element itself could be simulated by hiding it as an implemen-
tation of an ExperimentalElement; this simulation could be done locally or remotely. This
is useful for simulating a hybrid test before the actual experimental equipment and specimen
are used, or for further distributing the computational model to take advantage of di�erent
simulation software, models, or computational resources.

5. EXAMPLE OF DISTRIBUTED PSEUDODYNAMIC TEST

To demonstrate the software framework, a distributed experimental–computational simula-
tion was carried out using the pseudodynamic test method at Kyoto University (KU), Japan,
and a computational site at the University of California, Berkeley (UCB), U.S.A. Figure 13
schematically illustrates the distributed test.

5.1. Modelling

The prototype structure is a single-column bridge pier with two lead–rubber seismic isolation
bearings supporting a girder. The weight of the girder and the pier are 2400 and 1300 kN,
respectively (Figure 13). In the hybrid simulation, the pier was modelled computationally as
a bilinear hysteresis relationship (elastic sti�ness, 35MN/m2; yield force, 2340 kN). A lead–
rubber seismic isolation bearing was tested experimentally at KU as a 1:1.78 scaled specimen
(Figure 14), and the two bearings were assumed to be identical in the model.
For the hybrid simulation, the NS component of the 1940 El Centro ground motion was

used as the horizontal support acceleration of the pier in the transverse direction. The client
program performed the simulation by solving the two DOF equations of motion using the
�-operator splitting time integration method.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

Figure 13. Schematic of distributed experimental–computational simulation of a bridge pier
with the pseudodynamic test method.

Figure 14. Experimental test set-up for seismic isolation bearing at Kyoto University.

5.2. Test system

The experimental test set-up at KU is illustrated in Figure 14. Three 400 kN Schenck actuators
were used; two applied the vertical load (294 kN) on the bearing under load-control and the

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

horizontal actuator imposed the speci�ed displacements as controlled by the server program.
The AD/DA board was a National Instruments PCI-6036e for control and data acquisition.
The test was monitored by web browsers with a network camera.
The server program for the experimental test system ran at KU using a PC with Mi-

crosoft Windows 2000. The client program was OpenSees running on a Linux workstation at
UCB. The PC and the workstation were connected to their university networks. Since Kyoto
University is a member of Super SINET (Science Information Network, Japan), the 5GB/s
international network was used for the test. The round trip communication time for packets
between KU and UCB was about 200ms.

5.3. Client–server application with the framework

A high-level diagram of the client–server application is shown in Figure 15. The C++
main programs for the experimental server and the computational client programs are given
in Figures 16 and 17, respectively. For the network communication between the two, the
TCP_Socket implementation of Channel is adopted in lines 4–5 for both the server and the
client programs.
Considering the experimental server program in Figure 16, the equipment speci�cations

are de�ned in lines 9–12 for the actuator displacement and force, and also for the
displacement transducers. These speci�cations are used for de�ning the control and data acqui-
sition equipment (lines 14–17), and constructing the experimental control object ECNIEseries
(lines 20–21). ECNIEseries is a subclass of ExperimentalControl and is implemented with

Figure 15. Client–server application for distributed pseudodynamic test of bridge pier.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

Figure 16. C++ main program for experimental server.

the NI-DAQ library [53] as the low-level functions for testing the specimen o�-line. This
controller handles one control signal for the horizontal actuator under displacement control
and three DAQ signals. Therefore, ESOneStaticActuator is the ExperimentalSetup object in
lines 24–25. In lines 28–36, the unit conversions between the prototype and experimental
model are de�ned, and in lines 38–39 the remote experimental set-up is constructed. After the
experimental system is de�ned, line 43 executes the event loop for the server. Since the server
does not depend on the client, a variety of test methods could be accommodated with this
program for the experimental set-up.
To implement the pseudodynamic test method, Figure 17 gives the client program. The

client determines the loading for the bridge pier and requests the server to obtain restor-

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

Figure 17. C++ main program for computational client.

ing force of the ExperimentalElement. In lines 12–35 of the client program, the OpenSees
Domain objects are de�ned (the usual constructors for the Domain objects in a model, i.e.
Node, are omitted in Figure 17 for clarity). For the pier, a ZeroLength element and Steel
material are used (lines 16–20). The isolation bearing is represented experimentally in this
model, so in line 27 an ExperimentalBeamColumn2d element is de�ned for the bearing

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

Figure 18. Results of distributed pseudodynamic test.

through association with the experimental site in line 24. The analysis procedure for the
hybrid simulation is de�ned in lines 37–47 using OpenSees Analysis objects with the �-
OperatorSplitting integrator (line 39). This source code is almost the same as for
a computational model with the exception of the de�nition of the element for the seismic
isolation bearing. For distributed hybrid simulation, the communication between the compu-
tational client and the experimental server is encapsulated in Channel and ExperimentalSite,
so the client is not dependent on the speci�cs of the experimental site, the test method, or
the communication protocol.

5.4. Test results

The results of the distributed pseudodynamic test for the hybrid model of the bridge pier are
shown in Figure 18. The left-hand plot is the hysteresis loop of the seismic isolation bearing,
expressed in the units for the prototype. The history plot on the right-hand side of the �gure
shows the displacement of the girder and the top of the pier with respect to the ground.
The hysteresis shows the bilinear loop and dissipation of a large amount of the energy. As a
result, the pier responded in an elastic region for the speci�ed ground motion. Since the load
on the horizontal actuator was applied at a low rate, the hybrid simulation with 500 time
steps took 30min to complete. When the physical control system of Figure 15 was replaced
by a numerical bilinear material object, the distributed simulation took 8min. This result
shows that most of the time for the hybrid simulation is to conduct the test locally be-
cause the network communication and computational speed were very fast compared with the
loading rate.

6. CONCLUSION

This paper has presented an object-oriented software framework for distributed experimental–
computational simulation of structural systems. Computational simulation is provided in the
framework to support a wide range of experimental test methods. The framework is

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

composed of three parts, an experimental test subsystem to control local and distributed test
con�gurations, OpenSees core for computing the seismic response of a structural system, and
a communication interface between the computational component and one or more experi-
mental test subsystems. OpenSees is used for the time integration of the equations of motion
and as the co-ordinator for the experimental and computational components in the hybrid
model.
Based on a requirements analysis, the experimental system is designed using software

classes for ExperimentalSetup, ExperimentalControl, and ExperimentalSite. Experimental-
Setup de�nes the interface for transforming the degrees-of-freedom for an experimental el-
ement to a vector appropriate for ExperimentalControl. ExperimentalControl represents the
control system itself and is responsible for converting the DOF data for the control system. The
ExperimentalSetup classes hide the speci�cs of the experimental con�guration from Experi-
mentalControl, and since an ExperimentalControl object is in turn hidden from applications,
they can communicate with the experimental equipment without knowledge of the speci�c
test method or specimen. The ExperimentalSite classes are responsible for the communica-
tion between the ExperimentalSetup and hybrid simulation applications. The communication
approach in OpenSees is adopted in a manner identical to the communication requirements
for parallel processing.
The �exible architecture allows collaboration between the simulation software, OpenSees,

and experimental sites. With the introduction of an element representing an experiment, Exper-
imentalElement, an experimental test subsystem can collaborate with OpenSees without any
modi�cation. The experimental system objects provide the methods to communicate with and
control the experimental system. OpenSees provides the co-ordination of the hybrid simulation
through solution of equations of motion using step-by-step integration. As a demonstration
of the software framework, a distributed pseudodynamic test was presented. Connecting sites
in the United States and Japan, the seismic response of the girder–pier system was simu-
lated with client and server programs for the computational and experimental components,
respectively.
In future work, other test methods involving mixed displacement and force control [54] and

communication methods, including NTCP, will be added into the framework. Extensions for
real-time testing will allow a broader range of experimental methods.

APPENDIX A: UML NOTATION

The �gures on object-oriented software design are described in a UML (Uni�ed Model-
ing Language [36, 37]) type of notation. The meaning of each symbol is shown as
follows.
A class is represented by a box with the name of the class at the top. A class name

in italics is an abstract class, which means that it provides a speci�cation of operators,
but the implementations are given in subclasses that are shown hierarchically with the tri-
angular symbol and link to the subclass. Subclasses are sometimes referred to as concrete
classes because they provide a speci�c implementation of the software behaviour de�ned
by the abstract class. Relationships with a diamond link represent aggregation of
objects.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

Figure A1. UML notation.

ACKNOWLEDGEMENTS

The authors thank Dr Frank McKenna of UC Berkeley for his assistance with extending OpenSees
for hybrid simulation. The development of OpenSees has been supported by the Paci�c Earthquake
Engineering Research Center under grant no. EEC-9701568 from the National Science Foundation.
The authors also gratefully acknowledge Professors Stephen A. Mahin and Bozidar Stojadinovic at UC
Berkeley for fruitful discussion on the seismic experimental test methods and comments on drafts of this
paper. Finally, Professor Hirokazu Iemura provided enthusiastic support for this research and conducting
the experiments at Kyoto University.

REFERENCES

1. Ohtani K, Ogawa N, Katayama T, Shibata H. 3-D full-scale earthquake testing facility and earthquake
engineering network. Proceedings of the 3rd World Conference on Structural Control, Como, Italy, 2002.

2. Hakuno M, Shidawara M, Hara T. Dynamic destructive test of a cantilever beam controlled by an analog-
computer. Journal of JSCE 1969; 171:1–9 (in Japanese).

3. Takanashi K, Udagawa K, Seki M, Okada T, Tanaka H. Non-linear earthquake response analysis of structures
by a computer-actuator on-lin system. Transaction of the Architectural Institute of Japan 1975; 229:77–83.

4. Iemura H. Development and future prospect of hybrid experiment. Journal of JSCE 1985; 356/I-3:1–10
(in Japanese).

5. Dermitzakis S, Mahin S. Development of substructuring techniques for on-line computer controlled seismic
performance testing. Technical Report UCB/EERC-85/04, Earthquake Engineering Research Center, University
of California, Berkeley, 1985.

6. Takanashi K, Nakashima M. Japanese activies on on-line testing. Journal of Engineering Mechanics 1987;
113(7):1014–1032.

7. Mahin SA, Shing PSB, Thewalt CR, Hanson RD. Pseudodynamic test method: current status and future
directions. Journal of Structural Engineering (ASCE) 1989; 115(8):2113–2128.

8. Shing PSB, Nakashima M, Bursi OS. Application of pseudodynamic test method to structural research.
Earthquake Spectra 1996; 12(1):29–56.

9. Magonette G. Development and application of large-scale continuous pseudo-dynamic testing techniques.
Philosophical Transactions of The Royal Society of London 2001; A(359):1771–1799.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



Y. TAKAHASHI AND G. L. FENVES

10. Campbell S, Stojadinovic B. A system for simultaneous pseudodynamic testing of multiple substructures.
Proceedings of the Sixth U.S. National Conference on Earthquake Engineering, Seattle, U.S.A., 1998.

11. Watanabe E, Sugiura K, Nagata K, Suzuka Y. Development of parallel pseudo-dynamic test system. Proceedings
of 10th Japan Earthquake Engineering Symposium, vol. 2. 1998; 2205–2210 (in Japanese).

12. Watanabe E, Yun CB, Sugiura K, Park DU, Nagata K. On-line interactive testing between KAIST and Kyoto
University. Proceedings of the 14th KKNN Symposium on Civil Engineering, Kyoto, Japan, 2001; 369–374.

13. Tsai KC, Yeh CC, Yang YC, Wang KJ, Chen PC. Seismic hazard mitigation: internet-based hybrid testing
framework and examples. International Colloquium on Natural Hazard Mitigation: Methods and Applications,
France, 2003.

14. NEES Consortium, Inc page. http://www.nees.org (13 November 2003).
15. Specner B, Finholt T, Foster I, Kesselman C. Neesgrid: a distributed collaboratory for advanced earthquake

engineering experimentation and simulation. Proceedings of 13th World Conference on Earthquake
Engineering, Vancouver, Canada, 2004; 1674. DVD-ROM.

16. Multi-site, on-line simulation test, NEESgrid. http://www.neesgrid.org/most (13 November 2003).
17. Mosqueda G, Stojadinovic B, Mahin S. Geographically distributed continuous hybrid simulation. Proceedings

of 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004; 0959. DVD-ROM.
18. Shing P, Wei Z, Jung RY, Stau�er E. NEES fast hybrid test system at the University of Colorado. Proceedings

of 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004; 3497. DVD-ROM.
19. OpenSees page. http://opensees.berkeley.edu (13 November 2003).
20. McKenna F. Object oriented �nite element analysis: frameworks for analysis algorithms and parallel computing.

Ph.D. Thesis, University of California, Berkeley, 1996.
21. Fenves GL, McKenna F, Scott MH, Takahashi Y. An object-oriented software environment for collaborative

network simulation. Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, Canada,
2004; 1492. DVD-ROM.

22. Stroustrup B. The C++ Programming Language (3rd edn). Addison-Wesley: Reading, MA, 1997.
23. Ousterhout J. Tcl and the Tk Toolkit. Addison-Wesley: Reading, MA, 1994.
24. Fenves GL. Object-oriented programming for engineering software development. Engineering with Computers

1990; 6:1–15.
25. Baugh Jr JW, Rehak DR. Data abstraction in engineering software development. Journal of Computing in Civil

Engineering (ASCE) 1992; 6(3):282–301.
26. Forde BW, Foschi RO, Stiemer SF. Object-oriented �nite element analysis. Computers and Structures 1990;

34(1):355–374.
27. Miller GR. An object-oriented approach to structural analysis and design. Computers and Structures 1991;

40(1):75–82.
28. Zimmermann T, Dubois-P�elerin Y, Bomme P. Object-oriented �nite element programming: I. governing

principles. Computer Methods in Applied Mechanics and Engineering 1992; 98:291–303.
29. Mackie RI. Object oriented programming of the �nite element method. International Journal for Numerical

Methods in Engineering 1992; 35:425–436.
30. Ishida E, Niimi K, Fukuwa N, Nakai S, Taga N. Object-oriented programming of dynamic �nite-element analysis

using substructure method. Proceedings of Symposium on Numerical Analytical Methods for Structural
Engineering, Tokyo, Japan, vol. 17. 1993; 471–476 (in Japanese).

31. Rucki MD, Miller GR. An algorithmic framework for �exible �nite element-based structural modeling. Computer
Methods in Applied Mechanics and Engineering 1996; 136:363–384.

32. Takahashi Y, Igarashi A, Iemura H. Application of object-oriented approach to earthquake engineering. Journal
of Civil Engineering Information Processing System (JSCE) 1996; 5:123–130 (in Japanese).

33. Archer G, Fenves G, Thewalt C. A new object-oriented �nite element analysis program architecture. Computers
and Structures 1999; 70:63–75.

34. Takahashi Y, Igarashi A, Iemura H. Object-oriented analysis and design of structural analysis system. Journal
of JSCE 2001; I-57(689):301–320 (in Japanese).

35. Chen HM, Archer GC. A distributed object-oriented �nite-element analysis program architecture. Computer-
Aided Civil and Infrastructure Engineering 2001; 16:326–336.

36. Booch G, Rumbaugh J, Jacobson I. The Uni�ed Modeling Language User Guide Version 1.3. Addison-Wesley:
Reading, MA, 1999.

37. Rumbaugh J, Jacobson I, Booch G. The Uni�ed Modeling Language Reference Manual. Addison-Wesley:
Reading, MA, 1999.

38. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Object-Oriented Architecture.
Addison-Wesley: Reading, MA, 1995.

39. McKenna F, Fenves GL. An object-oriented software design for parallel structural analysis. Advanced
Technology in Structural Engineering. Structural Engineering Institute, ASCE: Philadelphia, U.S.A., 2000.

40. Leon R, Deierlein G. Considerations for the use of quasi-static testing. Earthquake Spectra 1996; 12(1):
87–109.

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)



FRAMEWORK FOR DISTRIBUTED EXPERIMENTAL–COMPUTATIONAL SIMULATION

41. Thewalt CR, Mahin SA. Hybrid solution techniques for generalized pseudodynamic testing. UCB/EERC- 87/09,
University of California, Berkeley, 1987.

42. Nakashima M, Kaminosono T, Ishida M, Ando K. Integration techniques for substructure pseudo dynamic test.
Proceedings of the 4th U.S. National Conference on Earthquake Engineering, Palm Springs, U.S.A., vol. 2.
1990; 515–524.

43. Nakashima M, Akazawa T, Sakaguchi O. Integration method capable of controlling experimental error growth
in substructure pseudo dynamic test. Journal of Structural and Construction Engineering (AIJ) 1993; 454:
61–70 (in Japanese).

44. Combescure D, Pegon P. �-operator splitting time integration technique for pseudodynamic testing error
propagation analysis. Soil Dynamics and Earthquake Engineering 1997; 16:427–443.

45. Wang Y, Lee C, Yo T. Modi�ed state-space procedures for pseudodynamic testing. Earthquake Engineering
and Structural Dynamics 2001; 30:59–80.

46. Nakashima M, Masaoka N. Real-time on-line test for MDOF system. Earthquake Engineering and Structural
Dynamics 1999; 28:393–420.

47. Nakashima M, Kato H, Takaoka E. Development of real-time pseudo dynamic testing. Earthquake Engineering
and Structural Dynamics 1992; 21:79–92.

48. Horiuchi T, Inoue M, Konno T, Namita Y. Real-time hybrid experimental system with actuator delay
compensation and its application to a piping system with energy absorber. Earthquake Engineering and
Structural Dynamics 1999; 28:1121–1141.

49. Igarashi A, Iemura H, Suwa T. Development of substructured shaking table test method. Proceedings of 12th
World Conference on Earthquake Engineering 2000; 1775.

50. Pearlman L, D’Arcy M, Johnson E, Kesselman C, Plaszcak P. Neesgrid Teleoperation Control Protocol
(NTCP). NEESgrid 2004-23, NEESgrid, www.neesgrid.org, 2004.

51. Welch V, Siebenlist F, Forster I, Bresnahan J, Czajkowski K, Gawor J, Kesselman C, Meder S, Perlman L,
Tuecke S. Security for grid services. 12th IEEE International Symposium on High Performance Distributed
Computing, 2003.

52. Stevens R. UNIX Network Programming, vol. 1. (2nd edn) Prentice-Hall: Englewood Cli�s, NJ, 1998.
53. National Instruments Inc. The NI-DAQ User Manual for PC Compatibles, 2001.
54. Tomofuji H, Pan P, Nakashima M, Liu D. Substructure online test using displacement-force combined and

switching control. Journal of Structure and Construction Engineering (AIJ) 2004; (585):85–92 (in Japanese).

Copyright ? 2005 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (in press)


