
Fault Diagnosis in Scan-Based BIST Using Both Time and Space Information

Jayabrata Ghosh-Dastidar, Debaleena Das, and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX  78712-1084

E-mail:  {dghosh, ddas, touba}@cat.ece.utexas.edu

Abstract

A new technique for diagnosis in a scan-based BIST
environment is presented.  It allows non-adaptive
identifi cation of both the scan cell s that capture errors
(space information) as well as a subset of the faili ng test
vectors (time information).  Having both space and time
information allows a faster and more precise diagnosis.
Previous techniques for identifying the faili ng test vectors
during BIST have been limited in the multipli city of errors
that can be handled and/or require a very large hardware
overhead.  The proposed approach, however, uses only
two cycling registers at the output of the scan chain to
accurately identify a subset of the faili ng BIST test
vectors.  This is accomplished using some novel pruning
techniques that efficiently extract information from the
signatures of the cycling registers.  While not all the
faili ng BIST test vectors can be identified, results indicate
that a signifi cant number of them can be.  This additional
information can save a lot of time in failure analysis.

1. Introduction

Fault diagnosis in a built -in self-test (BIST)
environment is an important problem for current
technologies.  As feature sizes continue to shrink and
integration densities continue to increase, more powerful
diagnostic tools are needed to reduce the time for failure
analysis.  BIST allows a large number of test vectors to
be applied to the circuit-under-test (CUT) at-speed.  The
output response of the circuit is compacted using a
signature analyzer.  If the final signature is incorrect, then
the circuit is known to be faulty.  The problem being
addressed here is how to rapidly diagnose the cause of the
faulty behavior.

There are two pieces of information in BIST diagnosis
that will be referred to here as time information and space
information.  Time information is which test vectors
applied during the BIST session produced a faulty

response (i.e., the vectors for which the CUT failed).
Space information is which scan cell s in the CUT
captured a faulty response during the BIST session.  For
example, consider the case where 10,000 vectors are
applied during the BIST session to a CUT with 200 scan
cells.  Time information would refer to which of the
10,000 vectors failed, and space information would refer
to which of the 200 CUT scan cell s captured a faulty
response.  This paper presents a low-cost approach to
obtain both time and space information for diagnosis in a
scan-based BIST environment.

In a scan-based BIST environment, the output
response of the CUT is shifted out of the scan chain and
into a serial signature register (or multiple-input signature
register, MISR, if there are multiple scan chains).  The
final signature at the end of the BIST session is so highly
compacted that it provides very littl e time or space
information for diagnosis unless the number of errors is
only one or two (which is very unli kely).  In general,
there is no bound on the multipli city of errors during
BIST since a single defect can cause a large number of
vectors to produce faulty responses.  Thus the only way to
obtain useful time or space information for diagnosis
without any assumptions on the multipli city of errors is to
add additional hardware and/or get more signatures.

Obtaining space information for BIST diagnosis is
much easier than obtaining time information.  This is
because the number of CUT scan cell s is usually much
smaller than the number of vectors applied during the
BIST session.  Recently, two low-cost schemes have been
proposed for obtaining space information for BIST
diagnosis with no assumptions on the multipli city of
errors.  Wu and Adham [Wu 96] proposed a technique
that uses a programmable MISR to collect multiple
signatures.  The MISR is programmed with different
polynomials, and the BIST session is repeated for each
polynomial to produce a signature.  A set of non-linear
equations is then solved to identify the set of scan cell s
that had faulty responses.  Rajski and Tyszer [Rajski 97]



proposed a technique that uses an LFSR to pseudo-
randomly mask out different sets of scan cell responses
when collecting multiple signatures.  The BIST session is
repeated and each time a different set of scan cell
responses are pseudo-randomly masked out.  By
analyzing the signatures, the scan cell s that had faulty
responses can be identified.  With both techniques, the
maximum number of scan cell s with faulty responses that
can be identified depends on how many signatures are
collected.  Neither technique provides any time
information for BIST diagnosis.  They can only locate the
cone of logic where the fault exists.  Having time
information would allow a much faster and more precise
diagnosis.

Previously proposed techniques that can provide time
information for BIST diagnosis either are limited in the
multipli city of errors that can be handled [Savir 88],
[Stroud 95], or require a very large overhead [Aitken 89],
[Karpovsky 93], [Damarla 95].  Identification of the
faili ng test vectors or time diagnosis is a challenging
problem due to the large number of test vectors applied
and the high degree of test response compaction.  The
number of error sequences that can map to any given
faulty signature is well beyond milli ons in practice
[Wu 96].  LFSRs have been used to extract information
about faili ng vectors.  [McAnney 87] gives a technique
using a single LFSR that guarantees correct diagnosis of
single error sequences, [Savir 88] and [Stroud 95] use two
LFSRs to diagnose single and double error sequences.
[Damarla 95] proposes a method based on error
correcting codes (a r-error correcting BCH code is used).
The hardware associated with error correcting codes is
high and r has to be usually kept to 4 or less
[Damarla 95].  Thus, there is no effective method for
practical time diagnosis.  In this paper, we propose a
technique which provides a practical solution for the
problem.

A low-cost technique that provides both time and
space information is presented here.  Several techniques
for correlating the time information to derive an accurate
subset of faili ng test vectors with a high degree of
confidence are described in the paper.  Given the set of
scan cell s that fail and a subset of the faili ng vectors,
standard combinational circuit diagnostic procedures can
then be used to precisely locate the fault.

The paper is organized as follows:  an overview of the
proposed scheme is given in Sec. 2.  Detail s of the time
diagnosis scheme are presented in Sec. 3.  Section 4
presents experimental results for practical circuits, and
Sec. 5 concludes the paper.

2. Proposed Scheme

In this section we present the overall scheme for fault
diagnosis.  Time diagnosis of each output (scan cell ) is
done using cycling registers as will be explained in detail
in Sec. 3.  The cycling register signatures are scanned out
and the diagnostic computation is done off- line.  Time
diagnosis based on cycling registers was proposed by Savir
and McAnney in [Savir 88].  However, the diagnostic
aliasing in [Savir 88] can be very large.  In the next
section, we propose techniques to substantiall y reduce
diagnostic aliasing and make the approach practical.

A block diagram illustrating the scheme is shown in
Fig. 1.  One serial signature register and two cycling
registers of different sizes are placed at the output of the
scan chain.  Consider the output response as a matrix
where each row corresponds to the output response for
one scan vector (i.e., is one scan out) and each column
corresponds to a scan cell i n the scan chain.  Our strategy
is to do time diagnosis one column at a time.  The
response for only one scan cell (selected by a column
counter) is shifted into the cycling registers.  When the
BIST session is finished, the cycling registers contain a
signature for only one scan cell .  Time information for
that scan cell can be extracted from the signature with
some diagnostic aliasing (i.e., different sets of errors
responses will map to the same signature).

Scan Chain &

 Select k Consecutive Columns

Signature Reg.

Cycling Reg.

Cycling Reg.

&

Select Single Column Based
on Column Counter

CUT

LFSR

Figure 1.  Block Diagram of Diagnosis Scheme

For long scan chains, the number of BIST sessions
may be too large if time diagnosis is done for all the scan
cells.  A “ lookahead”  register can be used to control the
number of BIST sessions required.  The response for a
small number k of consecutive scan cell s in the scan chain
is shifted into the serial signature register during each
scan out (e.g., k could be 8).  The serial signature register
contains space information for the next k scan cell s.  It
serves as a “ lookahead”  indicating if any of the next k
scan cell s need to be analyzed.  The signature is
compared with the corresponding fault-free signature



stored on-chip.  If it is incorrect, then the column counter
is incremented by one and time diagnosis is done for each
of the k consecutive columns, otherwise it is incremented
by k to jump ahead to the next set of k columns.  The
BIST session is then repeated to collect the next set of
signatures.  This process continues until a signature in the
cycling register has been obtained for each of the scan
cells containing errors.

An example is given to ill ustrate the tradeoff between
on-chip signature storage requirements and the number of
BIST sessions based on k.  Consider a circuit with 120
output bits.  Assume that an internal fault causes errors in
bits 12 and 118.  The cases are arranged in increasing
amount of hardware overhead and corresponding decrease
in amount of test application time.
Case 1:  No “ lookahead”  signature register is used.  Time

diagnosis is done for all the output bits.  Thus, the
number of BIST sessions is 120.

Case 2:  k = 20.  The number of signatures to be stored
for space diagnosis is 120/20 = 6.  Time diagnosis has
to be done for 2k + N/k output bits.  Thus, the number
of BIST sessions is 40 + 6 = 46.

Case 3:  k = 8.  The number of signatures to be stored for
space diagnosis = 120/8 = 15. Time diagnosis has to
be done for 2k + N/k output bits.  Thus, the number of
BIST sessions is 16 + 15 = 31.
Note that the extra BIST sessions are only necessary

when performing diagnosis.  The normal production test
procedure would involve only one BIST session as usual.

3. Identification of Failing Test Vectors

In the previous section, we presented the overall
scheme for collecting data for fault diagnosis.  In this
section, we explain the procedure for time diagnosis of
each faulty scan cell .  Identification of faili ng test vectors
with cycling registers as in [Savir 88] is explained briefly.
The advantage of this method is that it requires relatively
low area overhead compared to other methods, the
disadvantage lies in the high diagnostic aliasing.  We
propose two elegant techniques for pruning the solution
space of the cycling registers such that diagnostic aliasing
is significantly reduced.

3.1  Time Diagnosis with Cycling Registers
A cycling register is a LFSR whose only feedback is

from the last stage to the first stage [Savir 88].  The error
sequence from an output is fed into two such registers of
length m and n, where m and n are relatively prime.
Further, the product m n has to be greater than the total
test length.  The error signature polynomial in the cycling
register is equal to the actual error sequence modulo

(1+xn).  The error positions (or faili ng vectors) are
identified as follows [Savir 88]:  Let M = (m1, m2,…,  mu)
and N = (n1, n2,…, nv) be the error positions in the
m-register and n-register respectively.  Then the following
equation has to be solved for all pairs (i, j) where i  ∈ M
and j  ∈ N:

T – σ m  – i = T – τ n – j                     (1)
T is the total test length.  σ and τ are any two non-
negative numbers upper bounded by N/m and N/n
respectively.

The intuition behind the solution is as follows.
Consider any one error position, mi, in the m-register.

This error could have been caused by the (N-mi)th faili ng

vector or any vector at distance of multiples of m from
this vector.  Thus, every error position in the m-register
corresponds to a set of possible faili ng vectors.  Similarly
every error position in the n-register corresponds to a set
of possible faili ng vectors.  Eq. (1) yields the intersection
of the two sets which is the set of “suspect vectors” .  Note
that some vectors in this suspect set may not actuall y be
failing vectors.

The diagnosis solution is ill ustrated with an example.
Fig. 2 gives the pictorial representation of the example.
Let the test length, T, be 35 and m and n are chosen as 9
and 8 respectively (m n > T).  Let the error sequence
entering the cycling registers be such that the faili ng test
vectors are at 1, 6, 8, 13, 19, 20, 28, 32, and 35.  Let the
error positions in the signature of the m-register be at e1,
e2, e3, e4, and e5 and in the n-register be at e6, e7, and e8.
Eq. (1) is solved with these (i, j) pairs to generate the
solution space of suspect vectors.  Henceforth, we shall
refer to this solution space of suspect vectors as S.  For
this example S = { 1, 5, 6, 13, 14, 29, 22, 33} .  There are
three correctly identified faili ng test vectors out of a total
of seven.
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Figure 2. Block Diagram of Time Diagnosis Computation



Fig. 2 ill ustrates the computation of S. The error
positions in the signature of the m-register and n-register
are marked on the block diagram of the m-register and
n-register respectively.  The (i, j) pairs, where i  ∈ M and
j  ∈ N, that yield a solution from eq. (1) have been shown
linked.  The diagnosed test vector corresponding to the
(i, j) pair is shown adjacent to the line linking the (i, j)
pair.

Two kinds of aliasing can occur:  non-faili ng vectors
may be included in the suspect set (e.g. 5, 14, 22, 29, and
33) and faili ng vectors may be missing from the suspect
set (e.g. 8, 19, 20, 28, 32, and 35).  In this paper, we
propose methods to minimize the former kind of aliasing.
Our aim is to generate a set of suspect vectors that are
with very high probabilit y faili ng vectors.  We can afford
to miss some faili ng vectors since identifying even a few
faili ng vectors correctly can greatly aid fault diagnosis.
The solution space of suspect vectors generated by eq. (1)
is large.  Many non-faili ng test vectors are often
contained in this solution space of suspect vectors.  We
have implemented elegant pruning techniques to
significantly decrease the number of non-faili ng vectors
included among the suspects.

3.2  Pruning Technique:  Step I
The pruning techniques are based on properties of the

solution space.  Consider any pair (i, j) where i  ∈ M and
j  ∈ N.  Solving eq. (1) yields a solution for this pair as the
faili ng vector Tj.  Similarly another pair (i, k) yields the
solution as Tk.  Now, the error position i could have come
from only one faili ng test vector.  Thus, only one of Tj or
Tk is the correct solution, the other one is a spurious
solution.  Consider the example in Fig. 2.  (e1, e6 ) yields
the test vector 33 and (e5, e6 ) yields the test vector 1.
Therefore either 33 or 1 is a failing vector but not both.

The above observation can be formally stated as
follows.  Consider a bipartite graph where the error
positions in sets M and N correspond to the two disjoint
sets of vertices.  Any error position in M should be
matched to a unique error position in N and vice versa,
i.e., we need to find a “maximum matching”  in the
bipartite graph [Cormen 90].  In our experiments we have
observed that there is usually more than one maximum
matching possible.  One possible maximum matching in
Fig. 2 is (e1, e7), (e4, e8) and (e5, e6).  Yet another solution
is (e1, e7), (e3, e8) and (e5, e6).  We use the maximum
matching algorithm to generate a subset of S, which will
be referred to as the set P, that contains diagnosed faili ng
test vectors that have been correctly identified as faili ng
with a high probabilit y.  Computation of P is explained
next.

Consider the example in Fig. 2.  Error positions e4 and
e5 in the m-register have unique matching with error
positions e8 and e6 in the n-register, respectively.  Test
vector 1 is a solution from (e5, e6) and 29 is a solution
from (e4, e8).  Thus, P = { 1, 29} .  Aliasing can cause
spurious results since an entry in M may have a unique
matching with an entry in N and yet the matching may be
wrong due to the correct matching having been aliased
out.  This is the case with test vector 29.  The correct
error position in the n-register corresponding to error
position e4 in the m-register has been aliased out (due to
one error feeding back around in the cycli cal register just
as another error is entering in such that they are
exclusive-ORed together and cancel out).  This leads to
the erroneous conclusion that 29 is a highly probable
failing vector.

The first pruning step yields P = { 1,29} .  For larger
examples, the cardinalit y of P may be very large.  Note
that if there is no aliasing, P will contain no spurious
results.  The diagnosed test vectors in P will be correctly
diagnosed ones.

3.3  Pruning Technique:  Step II
The second pruning step is based on aliasing

properties.  Note that test vectors that are at a distance of
multiples of m or n would alias out in one of the cycling
registers and thus the solution space should not contain
any faili ng test vectors that are separated by multiples of
m or n.  The pruning based on the maximum matching
algorithm yields the set P.  P represents the set of
diagnosed faili ng vectors that have been diagnosed
correctly with a high probabilit y.  The second pruning
step is therefore to prune out all test vectors in S that are
separated by multiples of either m or n from the test
vectors in P.
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Figure 3.  Solution Space After Pruning



Table 1.  Experimental Results for Pruning Techniques

Without Pruning:  [Savir 88] With Pruning

Circuit
Number of

Suspect Vectors
S

Failing
Vectors in

S
Non-Failing
Vectors in S

Number of
Suspect Vectors

S
Failing

Vectors in S
Non-Failing
Vectors in S

S5378 18 14 4 13 13 0
25 20 5 20 19 1

S9234 39 28 11 27 24 3
44 26 18 24 22 2

S13207 35 22 13 25 22 3
57 36 21 34 30 4

S15850 37 26 11 22 22 0
34 23 11 20 18 2

S38417 26 20 6 20 20 0
46 34 12 31 28 3

Consider the example in Fig. 2.  P = { 1, 29} , S = { 1,
5, 6, 13, 14, 22, 29, 33} .  33 would be pruned out because

(33-1=4∗8).  Now the error position e1 in the m-register
has a unique matching with the error position e7 in the
n-register.  This corresponds to the test vector 6.
Therefore P is updated to { 1, 6, 29} and S to { 1, 5, 6, 13,
14, 22, 29} .  Inclusion of 6 in P prunes out 14 and 22.
Now P = { 1, 6, 29} and S = { 1, 5, 6, 13, 29} .  Fig. 3
ill ustrates the modified solution space from the cycling
registers after the two pruning steps.

Applying a final iteration of the maximum matching
algorithm can further modify the solution space.  Earlier
iterations of the maximum matching algorithm were used
to add elements to P; no elements were pruned from S.
This final iteration step will prune out all test vectors in S
that have common error positions in the m or n cycling
registers with the set P = { 1, 6, 29} .  This prunes out 5
and 13.  Note that 13 is actuall y a faili ng test vector.  It
gets pruned out due to the initial erroneous inclusion of
29 in P.  The test vectors remaining in S after this final
pruning constitute our solution space for faili ng test
vectors.  In this example, the pruning steps have resulted
in the equalit y of sets S and P but this may not happen in
the general case.

The example is summarized below.  Correctly
identified failing vectors are indicated in bold:

Failing test vectors:  1, 6, 8, 13, 19, 20, 28, 32, and 35.

Initial step:  S = {1, 5, 6, 13, 14, 22, 29, 33}, P = ∅.

Before the final pruning by the maximum matching
algorithm:  S = {1, 5, 6, 13, 29}, P = {1,6,29}.

After the final pruning by the maximum matching
algorithm:  S = P = {1, 6, 29}.

3.4  Pruning:  Experimental Results
Table 1 presents experimental results for the case

where a single random stuck-at fault was injected in the
circuit.  Time diagnosis was done for the first faulty
output bit encountered.  The second column gives the
total number of vectors obtained from eq. (1), i.e., the
cardinalit y of the initial solution set of suspect vectors S.
The third and fourth columns give respectively the
number of faili ng vectors and non-faili ng vectors in the
initial set S.  The fifth column gives the cardinalit y of the
final solution set of suspect vectors S, i.e., the set S after
the pruning steps. The sixth and seventh columns give
respectively the number of faili ng vectors and non-faili ng
vectors in the final solution set S.

Recall that our aim was to generate a set of suspect
vectors that are with very high probabilit y faili ng test
vectors.  Table 1 clearly indicates that the number of
non-faili ng vectors in S is greatly reduced by the pruning
steps.  The average number of non-faili ng vectors in S
after pruning (column seven) is around 2 whereas the
number of non-faili ng vectors in S before pruning
(column four) is around 12.

4. Practical Solution For Minimizing Aliasing

If the number of faili ng test vectors is large, then
errors will cancel out in the cycling registers resulting in a
lot of aliasing.  In this section, we describe a practical
approach for avoiding this problem.

Faults differ widely in their error responses.  Easy to
detect faults will cause erroneous output values for a large
number of test vectors whereas other faults will get
activated and propagate to the output for only a few test
vectors.  There are two extreme cases:  a fault at the



primary output will be detected by any test vector that
causes an opposite value at the output from the fault type,
whereas a random-pattern-resistant fault may get detected
only once in the entire test set.  Because the number of
errors is unpredictable and ranges widely, the average
performance of any method (LFSRs, cycling registers,
error correction codes) to identify faili ng test vectors will
be poor.  Our proposed strategy is to bound the number of
failing test vectors that have to be analyzed.

The idea is to take two sets of signatures per output bit
being analyzed.  One set of signatures is generated for all
the test vectors, and one set of signatures for only the first
t1 test vectors, where t1 is a parameter that can be chosen
based on the circuit-under-test.  Our experiments have
been performed with t1 = 250.  

Truncation of the BIST test set can be done using very
simple circuitry.  A control signal that is generated when
t1 test vectors have been applied to the circuit-under-test
can be used to stop the BIST session after the application
of t1 test vectors.  Alternatively, the control signal can be
used to mask out the data entering the cycling registers
after the t1-th BIST clock cycle.  Instead of directly
connecting the scan element to be diagnosed to the
cycling registers, the AND of the scan element and the
control signal is connected to the cycling registers.  This
is illustrated in Fig 4.

Scan Chain &

 Select k Columns

Signature Reg.

Cycling Reg.

Cycling Reg.

&

Select Single Column Based
on Column Counter

Control Signal to
Truncate BIST

Figure 4.  Collecting Signatures for Only t1 Vectors

This scheme is very effective in reducing aliasing as
will be shown in the experimental results.  The reasoning
behind the scheme is as follows.  An easy-to-detect fault
will very li kely be detected in the first t1 test vectors
applied.  Thus, the signature from t1 test vectors can be
used for diagnosis.  However, a fault that does not get
detected within the first t1 test vectors is hard-to-detect,
and hence will cause relatively few errors.  In this case,
signatures from the total test set can thus be used for
diagnosis without excessive aliasing.

5. Experimental Results

Experiments using the techniques described in this
paper were performed for some of the ISCAS 89
benchmarks circuits [Brglez 89].  Table 2 shows results
where a single random fault was injected in the circuit-
under-test in each case. The BIST test length was 10,000
vectors.  Two cycling registers of size 101 and 107 were
used.  Note that one set of cycling registers can be reused
when diagnosing each of the scan chains on a chip to save
hardware (each scan chain need not have its own set of
cycling registers).  One possible way to further reduce
overhead would be to configure the boundary scan chains
to perform as the cycling registers.

Of the 10,000 vectors that were applied, the number
of faili ng vectors (vectors for which the fault caused an
error in at least one of the scan cell s) is noted in
column 2.  We have incorporated in our results faults that
cause errors in the scan cell s a small number of times,
moderate number of times, and large number of times.
Each row in the table corresponds to a different fault.
Column 3 gives the size of the suspect set without any
pruning when 10,000 vectors where applied. Column 4
and 5 respectively give the number of faili ng and non-
faili ng vectors present in the suspect set of column 2.
Column 6 gives the suspect set size after the pruning
techniques were applied on the suspect set of column 4.
Column 7 and 8 respectively give the number of faili ng
and non-faili ng vectors present in the suspect set of
column 6. Note here that even after pruning the number
of non-failing vectors in the suspect set is often large.

To get much better diagnostic accuracy, we collect
signatures for two cases as was described in the previous
section.  Once for the full BIST session and once for a
truncated BIST session.  Column 9 gives the size of the
suspect set generated after application of 250 vectors and
using our pruning techniques. Column 10 and 11
respectively give the number of faili ng and non-faili ng
vectors in the suspect set.  For example, the second row
for ISCAS 89 benchmark circuit s13207 shows that the
inserted fault caused a scan cell to fail for 286 vectors.
The suspect set without pruning had a size of 2395 out of
which only 72 where actuall y faili ng vectors and after
pruning the size of the suspect set reduced to 50 out
which 3 were actuall y faili ng vectors. The next column
shows that the size of the suspect set after using the first
250 vectors and our pruning strategy had a size of 11, all
of which were faili ng vectors.  Though the number of
vectors that caused an error in the output was 286, our
final solution had only 11 of them. However, it is



Table 2.  Experimental Results With Two Sets of Signatures

Without Pruning With Pruning

No. of
Diagnostic Resolution with

Test Length = 10,000
Diagnostic Resolution with

Test Length = 10,000
Diagnostic Resolution with

Test Length = 250
Circuit Failing

Vectors
in 10,000

No. of
Suspect
Vectors

S

Failing
Vectors
in S

Non-
Failing
Vectors
in S

No. of
Suspect
Vectors

S

Failing
Vectors
in S

Non-
Failing
Vectors
in S

No. of
Suspect
Vectors

S

Failing
Vectors
in S

Non-
Failing
Vectors
in S

S5378 46 836 29 807 28 1 27 3 3 0
151 2173 45 2128 49 4 45 5 5 0
794 2637 211 2426 51 6 45 8 7 1
1012 2215 235 1980 48 5 43 20 19 1

S9234 2 4 2 2 2 2 0 0 0 0
442 2509 108 2401 47 1 46 6 5 1
911 2388 256 2132 51 8 43 18 18 0
1818 2450 453 1997 49 9 40 25 23 2

S13207 2 3 2 1 1 1 0 0 0 0
286 2395 72 2323 50 3 47 11 11 0
602 2988 206 2782 56 3 53 15 15 0
3577 1602 594 1008 41 21 20 21 18 3

S15850 27 547 23 524 23 2 21 1 1 0
128 1982 31 1951 40 2 38 5 5 0
1190 2074 246 1828 44 2 42 20 19 1
2371 2640 685 1955 53 12 41 22 22 0

S38417 1 1 1 0 1 1 0 0 0 0
43 1142 31 1111 35 1 34 2 2 0
342 1876 73 1803 42 2 40 13 12 1
1268 2140 265 1875 46 7 39 20 20 0

important to note here that it is not necessary to identify
all the faili ng vectors. Correctly identifying even a
portion of the faili ng vectors for every fault present is
very helpful. It allows further analysis using fault-
simulation or criti cal path tracing [Abramovici 83], to
more precisely locate the fault site. This saves a lot of
time by reducing the search space for direct probing
techniques li ke E-beam probing. So our objective has
been to reduce the number of non-faili ng vectors in the
suspect set as much as possible so that the efforts in
identifying the actual defect is minimized and well
directed.

6. Conclusion

In this paper we have presented a new approach for
scan-based BIST diagnosis that provides time information
in addition to providing space information.  The time
information comes in the form of a subset of the faili ng
test vectors.  Knowing some of the actual BIST vectors
that fail enables a faster and more precise diagnosis.

The proposed technique for diagnosis is non-adaptive.
No intermediate signatures have to be collected for on-
tester decision making.  Thus, this approach can be used
for field diagnosis where the signatures are analyzed
elsewhere.  Further, the proposed approach requires small
hardware overhead.  Only two cycling registers are
required for time diagnosis.  The BIST session has to be
run twice per scan cell i f time diagnosis is done for all the
scan cell s.  If the BIST running time is an issue, the
“ lookahead”  operation with the serial signature register
can be used to reduce test time.  This will require some
additional hardware overhead to store signatures on chip.

The proposed technique for time diagnosis can also be
used with any of the existing techniques for identifying
faulty scan cell s.  In this scenario, the diagnosis scheme
would be adaptive.  Information about the faulty scan
cells would be passed on to the time diagnosis step.  Time
diagnosis could then be done only for the faulty scan
cells.
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