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Abstract

In this paper we look at a number of approaches being investigated in the Center for Research
on Parallel Computation (CRPC) to develop linear algebra software for high-performance com-
puters. These approaches are exemplified by the LAPACK, templates, and ARPACK projects.
LAPACK is a software library for performing dense and banded linear algebra computations, and
was designed to run efficiently on high performance computers. We focus on the design of the
distributed memory version of LAPACK, and on an object-oriented interface to LAPACK. The
templates project aims at making the task of developing sparse linear algebra software simpler
and easier. Reusable software templates are provided that the user can then customize to modify
and optimize a particular algorithm, and hence build a more complex applications. ARPACK
is a software package for solving large scale eigenvalue problems, and is based on an implicitly
restarted variant of the Arnoldi scheme. The paper focuses on issues impacting the design of

scalable libraries for performing dense and sparse linear algebra computations on multicomputers.
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1 Introduction

Linear algebra lies at the heart of the research program of the Center for Research into Parallel
Computation (CRPC). It provides critical underpinning for much of the work on higher-level
optimization algorithms and the numerical solution of partial differential equations. It has proved
to be a rich source of basic problems for work on compiler management of memory hierarchies
and compiling for distributed-memory machines. Finally, it is serving as a testbed for our ideas

on how to design, build, and distribute libraries of scalable mathematical software.

In this paper we present a survey of our research into the design, development, and use of
software libraries for performing linear algebra computations on distributed memory concurrent
computers. This research is being conducted under CRPC auspices by collaborating groups at

Rice University, the University of Tennessee at Knoxville, and Oak Ridge National Laboratory.

In Section 2, we begin by looking at our framework for library design. The rest of the paper
focuses on three main topics: LAPACK, templates, and ARPACK. Section 3 presents key ideas in
the design of LAPACK, a widely-used software library for performing dense and banded matrix
computations on high performance computers. The design and performance of a distributed
memory version of the LAPACK software library is discussed, and an object-oriented interface
to this package is described. In Section 4, we present an approach to solving sparse linear
algebra problems with reusable software templates. Templates describe the essential features
of an algorithm, while allowing users to customize the code for their own particular use. The
ARPACK software package for performing large scale eigenanalysis is described in Section 5,
and is based on a new variant of the Arnoldi process. Some concluding remarks, and directions
for future work, are presented in Section 6. The Appendix explains how to obtain the software

described in this paper using netlib and znetlib.

2 Framework for Library Development on Advanced Ar-

chitectures.

The design and implementation of a library of scalable mathematical software is critical to the
success of our efforts to make parallel computers truly useful to scientists and engineers. We
are building a prototype library of scalable methods for solving the major problems of numerical

linear algebra.

We are investigating three approaches in the design of such a library.

1. The first approach is to take existing well tested software, in this case LAPACK, and make
small modifications to the software to develop distributed memory implementations. In
this way, we can quickly develop a core set of routines, leveraging existing software as

much as possible. This approach is described in Section 3.



2. The second approach is a long-term algorithmic research project aimed at developing opti-
mal strategies tailored to various parallel architectures. This will include both SIMD and
MIMD machines. This may require that we abandon our existing algorithm and software
base and develop completely new approaches. The research into software templates and
ARPACK, described in Sections 4 and 5 respectively, are examples of this type of research

project.

3. The third approach is to take High Performance Fortran (HPF) as a base language and
develop a library that relies on the compiler to perform much of the machine mapping.
Here, the design goal is to construct algorithms that are blockable and distributable across
a variety of architectures and to encode enough information into the HPF specification to

allow translation into eflicient code.

By pursuing all three approaches, we expect to gain a deep understanding of the issues involved
in designing and building libraries of scalable mathematical software, while exercising the HPF
technology developed within CRPC. As a goal, we hope to produce libraries that provide a clean,

architecture-independent interface to the end user.

This paper will only be concerned with the first two of these approaches. We are currently
considering the development of an HPF version of LAPACK that will make use of the compiler’s
knowledge of data distribution, and thereby relieve the user of the need to explicitly pass data
distribution information into each LAPACK routine. This work is ongoing, and will be described

elsewhere in the future.

3 LAPACK on Concurrent Supercomputers

The LAPACK project started in 1987 to design a linear algebra library for conventional su-
percomputers and high performance workstations. ScaLAPACK was a follow-on project whose
original aim was to provide for users of MIMD distributed memory concurrent computers the
same functionality as that provided by LAPACK for shared-memory architectures. We now be-
lieve that it is possible to make ScalLAPACK fully compatible with LAPACK, so that the calling
syntax of both libraries is identical, thereby allowing the transparent migration of applications
between shared memory and distributed memory architectures. Thus, the distinction between
ScaLAPACK and LAPACK is essentially historical, with the former being originally developed for
distributed memory, and the latter for shared memory machines. When it is necessary to distin-
guish the shared memory and distributed memory versions we shall use the terms LAPACK-SM
and LAPACK-DM, respectively; otherwise, we shall use LAPACK to refer generically to both

versions.

The development of sparse matrix algorithms is an area of intense research activity, largely

because of their importance in the numerical solution of partial differential equations. Dense



matrix computations are less pervasive, but also have important applications, as discussed in
a recent survey by Edelman (Edelman 1993). A major source of large dense linear systems is
the solution of problems by the boundary element method. In this method integral equations
defined on the boundary of a region of interest are used to compute some final desired quantity
in three-dimensional space. The dense linear systems generated are commonly solved using LU
factorization. Electromagnetic scattering studies make use of the boundary element method,
which is usually referred to as the method of moments in this context (Harrington 1990; Wang
1991). This approach is used in the design of aircraft with small radar cross-sections, and in the
design of satellite antennae. Boundary element methods are also used in the study of fluid flows,
and here the variant of the boundary element method used is called the panel method (Hess 1990;
Hess and Smith 1967).

3.1 LAPACK on NUMA Machines

Modern supercomputers may be classified as non-uniform memory access (NUMA) machines.
That is, they possess hierarchical memories in which the different levels in the hierarchy are
characterized by different access times. Registers are the upper level of memory for which the
access time is least. Caches are an intermediate level in the memory hierarchy. In shared memory
machines the lowest level in the memory hierarchy is the shared memory. In distributed memory
machines each processor has its own local memory, and so the aggregate off-processor memory
of all other processors forms the lowest level of the memory hierarchy. LAPACK attains high
performance on NUMA machines by maximizing the reuse of data in the upper levels of memory,
so that time-consuming accesses to the lower levels are minimized. This is done using a two-fold
approach. First, the frequency of data movement between the lower and intermediate levels of
memory is controlled by recasting the numerical algorithms in block-partitioned form. This ap-
proach ensures that memory accesses are localized (“locality of reference”) and can be deferred
so that data are moved between the lower and intermediate levels in blocks. On shared memory
machines the use of block-partitioned algorithms minimizes the frequency of data movement be-
tween shared memory and cache, while on distributed memory machines it reduces the frequency
of communication between processors. Second, the movement of data between the intermediate
and upper levels of the memory hierarchy is controlled by using optimized assembly code for the
most heavily-used, compute-intensive parts of an algorithm. Fortunately, in the block-partitioned
algorithms used in LAPACK these correspond to Level 3 BLAS routines, optimized assembly

code versions of which exist for the processors comprising most modern supercomputers.

Maximizing data reuse in the upper levels of memory through the use of block-partitioned al-
gorithms, is the cornerstone of the successful implementation of LAPACK on shared and dis-
tributed memory supercomputers. Optimized, concurrent Level 3 BLAS routines are used as
building blocks for the LAPACK routines. The approach taken to parallelizing concurrent Level

3 BLAS routines differs for shared memory and distributed memory machines. On shared mem-



ory machines, the assignment of work to processors is determined by the compiler, typically
by parallelizing the outermost loop(s) over blocks. The innermost loops are written in assembly
code. One of the aims of High Performance Fortran (HPF) is to provide a similar level of compiler
support for distributed memory machines. However, in developing distributed memory versions
of the Level 3 BLAS we seek to optimize performance by manually parallelizing the appropriate
loops. In addition, the data distribution is specified through subroutine calls, rather than by

data distribution directives, as in HPF.

3.2 Distributed Matrices

In many linear algebra algorithms the distribution of work may become uneven as the algorithm
progresses, as in LU factorization in which rows and columns become eliminated from the compu-
tation. LAPACK-DM, therefore, makes use of the block cyclic data distribution in which matrix
blocks separated by a fixed stride in the row and column directions are assigned to the same
processor. A number of researchers have made use of the block cyclic data distribution in parallel
dense linear algebra algorithms (Choi et al. 1992; Choi et al. 1993a; Dongarra and Ostrouchov
1990; Dongarra et al. 1992; Lichtenstein and Johnsson 1993). The block cyclic data distribution
is parameterized by the four numbers P, @), r, and ¢, where P x () is the processor template and
r X ¢ is the block size. All LAPACK-DM routines work for arbitrary values of these parameters,
subject to certain “compatibility conditions.” Thus, for example, in the LU factorization routine
we require that the blocks be square, since nonsquare blocks would lead to additional software
complexity and communication overhead. When multiplying two matrices, C' = AB, we require
that all three matrices are distributed over the same P x () process template; rectangular blocks
are permitted, but we require that if the blocks of matrix A are r x ¢, then those of B and C
must be ¢t X ¢ and r X ¢, respectively, so it is possible to multiply the individual blocks of A and
B to form blocks of C.

In the block cyclic data distribution the mapping of a global index, m, can be expressed as
m + (p, b, 1), where p is the logical process number, b is the block number in process p, and ¢ is
the index within block b to which m is mapped. Thus, if the number of data objects in a block

is r, the block cyclic data distribution may be written,

m e Q%OMJ {%J,mmodr) (1)

where T' = r P, and P is the number of processes. The distribution of a block-partitioned matrix
can be regarded as the tensor product of two such mappings, one that distributes the rows of the
matrix over P processes, and another that distributes the columns over () processes. It should
be noted that Eq. 1 reverts to the cyclic distribution when r = 1, with local index ¢ = 0 for all
blocks. A block distribution is recovered when r = [M/P], in which case there is a single block



in each process with block number b = 0. Thus, we have

m s (m mod P, [m/P),0) 2)
for a cyclic data distribution, and

s (lm/L),0,mmod L), )

for a block distribution, where L = [M/FP]. A subtle distinction between the block distribution
given by Eq. 3 and that often used elsewhere (see for example (Fox et al. 1988; Van de Velde
1990)) should be noted. Consider the block distribution of 6 items over 4 processes. This is
commonly distributed as (2,2,1,1), i.e., 2 items in two of the processes and 1 item in the other
two processes. The block distribution given by Eq. 3 results in the distribution (2,2,2,0), so
that one of the processes contains no data items. Clearly, since the load imbalance is measured
by the difference between the maximum and the average loads, both distribution schemes have
the same degree of load imbalance. We prefer the block distribution given by Eq. 3 because
the arithmetic needed to convert between global and local indices is simpler, and because of the
symmetry between the equations for the block and cyclic distributions (compare Eqgs. 2 and 3).
There appear to be no other compelling reasons why one of the above forms of block distribution

should be preferred to the other in all cases.

The form of the block cyclic data distribution given by Eq. 1 ensures that the block with global
index 0 is placed in process 0, the next block is placed in process 1, and so on. However, it is
sometimes necessary to offset the processes relative to the global block index so that, in general,
the first block is placed in process pg, the next in process pg + 1, and so on. For example, in the
parallel, block LU factorization algorithm described in (Dongarra et al. 1994) a rank-r update
is applied to the unfactored portion of the matrix, £, in each step by multiplying a column of
blocks, Ly, by a row of blocks, Uy, i.e., ¥ = E — LiU;. Here r is the block size. The three
matrices involved in this update each have their (0,0) block in a different location of the process
template. We, therefore, generalize the block cyclic data distribution by replacing m on the
righthand side of Eq. 1 by m’ = m + rpg to give,

] e
_ (Q%‘MJ +p0) mod P, {%J _m mod r) . (4)

The inverse mapping is given by
(p:,1) = Br+i=(p—po)r + b+ (5)

where the global block number is given by B = (p — po) + bP.
The block cyclic data distribution is the only data distribution supported by the LAPACK-DM

routines, and in its most general form is parameterized by P, (), r, ¢, pg, and ¢o, where P x () is the

5



size of the process template, r X ¢ is the block size, and (po, ¢o) is the location in the template of
the (0,0) block of the matrix. The block cyclic data distribution can reproduce most of the data
distributions used in linear algebra computations. For example, one-dimensional distributions
over rows or columns are obtained by choosing ) or P to be 1. Similarly, an M x N matrix
can be decomposed into (nonscattered) blocks by choosing r = [M/P| and ¢ = [N/Q]. In
algorithms, such as LU factorization, in which the distribution of work becomes uneven, a larger
block size results in greater load imbalance, but reduces the frequency of communication between
processors. There is, therefore, a tradeoff between load imbalance and communication startup

cost which can be controlled by varying the block size.

In addition to the load imbalance that arises as distributed data are eliminated from a compu-
tation, load imbalance may also arise due to computational “hot spots” where certain processes
have more work to do between synchronization points than others. This is the case in the LU
factorization algorithm in which partial pivoting is performed over rows, and only a single col-
umn of the process template is involved in the pivot search while the other processes are idle
(Dongarra et al. 1994). Similarly, the evaluation of each block row of the U/ matrix requires the
solution of a lower triangular system that involves only processes in a single row of the process
template. The effect of this type of load imbalance can be minimized through the choice of P
and (). Another factor to be considered in choosing P and () is the performance of collective
communication routines, such as reduction and broadcast operations, that may be performed

over the rows and columns of the process template.

3.3 Building Blocks for LAPACK-DM

The LAPACK-DM routines are built out of a small number of modules. The most fundamental
of these are the Basic Linear Algebra Communication Subprograms (BLACS) (Dongarra 1991;
Dongarra and van de Geijn 1991), that perform common matrix-oriented communication tasks,
and the sequential Basic Linear Algebra Subprograms (BLAS) (Dongarra et al. 1990; Dongarra
et al. 1988; Lawson et al. 1979), in particular the Level 3 BLAS. LAPACK-DM can be ported
with minimal code modification to any machine on which the BLACS and the BLAS are available.
The distributed Level 3 BLAS (Choi et al. 1993b; Choi et al. 1994b) and the Parallel Block BLAS
(PB-BLAS), described in more detail below, are intermediate-level routines based on the BLACS
and sequential BLAS. The BLACS, the sequential BLAS, the distributed Level 3 BLAS, and the
PB-BLAS are the modules from which the higher level LAPACK-DM routines are built. Thus,
the entire LAPACK-DM package contains modules at a number of different levels. For many
users the top level LAPACK-DM routines will be sufficient to build applications. However, more
expert users may make use of the lower level routines to build customized routines not provided

in LAPACK.
The BLACS package attempts to provide the same ease of use and portability for MIMD message-

passing linear algebra communication that the BLAS provide for linear algebra computation.

6



Therefore, future software for dense linear algebra on MIMD platforms could consist of calls to
the BLAS for computation and calls to the BLACS for communication. Since both packages will
have been optimized for each particular platform, good performance should be achieved with

relatively little effort.

In the LAPACK-DM routines all interprocessor communication takes place within the distributed
BLAS and the BLACS, so the source code of the top software layer of LAPACK-DM looks very
similar to that of LAPACK-SM. The BLACS have been implemented for the Intel family of
computers, the TMC CM-5, the Cray T3D, the IBM SP-1, and for PVM.

The PB-BLAS are distributed Level 2 and 3 BLAS routines in which at least one of the matrix
sizes is limited to the block size. That is, at least one of the matrices consists of a single row or
column of blocks, and is located in a single row or column of the process template. An example
of a PB-BLAS operation would be the multiplication of a matrix of M x N blocks by a “vector”
of N blocks. The PB-BLAS make use of calls to the sequential BLAS for local computations,
and calls to the BLACS for communication. The PB-BLAS are used, for example, to perform
block-oriented matrix/vector multiplications when reducing a column of blocks in the parallel
Hessenberg reduction algorithm (Choi et al. 1994a).

3.4 Performance of LAPACK-DM

The LAPACK-DM routines for performing LU, QR, and Cholesky factorizations of dense matrices
have been extensively tested and benchmarked. Routines for reducing matrices to Hessenberg,
tridiagonal, and bidiagonal form have also been developed. The main platform for testing these
codes was a 128-node Intel iPSC/860 hypercube, although some of them have also been run on
the Intel Delta and Paragon systems and the Thinking Machines” CM-5. A PVM version of
the LU factorization code has been run over a network of workstations. Details of the parallel
factorization algorithms are given in (Dongarra et al. 1994), together with performance results
and models. A similar paper on the reduction routines is in preparation (Choi et al. 1994a).
Here we shall just present results from a small sample of the runs we have done on the Intel
iPSC/860 hypercube to demonstrate the efficiency and scalability of the LAPACK-DM routines.
Figure 1 shows isogranularity plots for the LU, QR, and Cholesky (L L) factorization routines.
These plots show the variation in performance as a function of the number of processors, while
keeping the matrix size per processor fixed at 5 Mbytes/processor. If the factorization codes were
perfectly scalable these plots would all be linear. The fact that the curves deviate only mildly
from linearity shows that the algorithms exhibit good scalability on the Intel iPSC/860, especially
since less than half the memory available for applications is being utilized. Isogranularity plots
for the Hessenberg, tridiagonal, and bidiagonal reduction routines are shown in Figure 2, again
for a granularity of 5 Mbytes/processor. For the reduction routines the deviation from linearity

appears a little more pronounced than for the factorization routines, but is still fairly small.
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Figure 1: Isogranularity plots for the dense LU, QR, and Cholesky factorization routines on the
Intel iPSC/860 hypercube. The matrix size per processor is fixed at 5 Mbytes.

| | | |

30 | |
Reduction Routines on the Intel iPSC/860 (5 Mbytes/node)

Gflops

0.0 T T T T T T
0 20 40 60 80 100 120 140

Number of Processors

Figure 2: Isogranularity plots for the Hessenberg (HRD), tridiagonal (TRD), and bidiagonal
reduction (BRD) routines on the Intel iPSC/860 hypercube. The matrix size per processor is

fixed at 5 Mbytes.



3.5 An Object Oriented Interface to LAPACK

Our research activities in object-oriented extensions of LAPACK stems from two driving forces:
one pulling, the other pushing. The pull comes from an increasing demand from the scientific
computing community for C and C++ interfaces for numerical linear algebra libraries. A recent
LAPACK survey revealed this to be one of the most common feature users would like to see in
future versions of LAPACK. The push stems from the ability of object-oriented software designs
in C++ to naturally encapsulate the complex data structures describing distributed matrices.
These same mechanisms also help solve the “data distribution compatibility” problem often
encountered when integrating distributed memory libraries. LAPACK-DM++ solves this by
exploiting the inheritance and dynamic-binding capabilities of C+4. The result is that only
one version of a library algorithm, such as the right-looking block LU factorization, need be

maintained. This library code will work correctly with any matrix data distribution scheme.

Decoupling the matrix operations from the details of the data distribution provides two important
benefits: it simplifies the description of a high-level algorithm and it allows the possibility of
postponing the data distribution until runtime. This is crucial in providing truly integrable
numerical libraries since the appropriate matrix data distribution is strongly dependent on how

the data are utilized in other sections of the driving application.

In Figure 3 we illustrate the design hierarchy of LAPACK-DM++4. A parallel SPMD application
will utilize LAPACK-DM++ kernels to perform distributed linear algebra operations. Each node
of a multicomputer runs a similar C++ program with calls to the LAPACK-DM++ interface.
At this level distributed matrices are seen as a single object. The LAPACK-DM++ kernel, in
turn, is built upon two important constituents: the basic algorithms of LAPACK++, and a
parallel implementation of lower-level computational kernels (BLAS). Since the code parallelism
is embedded in the low level BLAS kernels, the driving routines which employ block matrix
operations will look the same. Thus, the essential differences between LAPACK-SM++ and
LAPACK-DM++ codes are simply in the declarations of the matrix objects supported.

The overhead introduced by the C4+ interface is minimal because there is no extra data copying,
nor is the function-call overhead significant, particularly when compared to the granularity of
communication routines in message-passing architectures. For single node performance, we have
tested various prototype LAPACK++ (Dongarra et al. 1993) modules on several architectures
and found that they achieve competitive performance with similar optimized Fortran LAPACK
routines. Figure 4, for example, illustrates the performance of the LU factorization routine on
an IBM RS/6000 Model 550 workstation. Three versions are compared: the native Fortran code
with optimized BLAS, a C++ shell to this code, and the LU algorithm itself written in C++
with optimized BLAS. This implementation used GNU g+4 v. 2.3.1 and utilized the Level 3
BLAS routines from the native ESSL library. The performance results are nearly identical with

those of optimized Fortran calling the same library.

LAPACK-DM++ includes support for the general, two-dimensional, block-cyclic matrix data
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Figure 3: Design Hierarchy of LAPACK-DM++. In an SPMD environment, components above
the horizontal reference line, represent a global viewpoint (a single distributed structure), while

elements below represent a per-node local viewpoint of data.
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Figure 4: Performance of LAPACK4+4 LU factorization on the IBM RS/6000 Model 550 work-
station, using GNU g++4 v. 2.3.1 and BLAS routines from the IBM ESSL library. Three versions
are compared: the native Fortran code with optimized BLAS, a C++ shell to this code, and the
LU algorithm itself written in C++ with optimized BLAS.

distribution described in Section 3.2. However, its major advantage is that the library code for
the LU algorithm will work correctly with any matrix data distribution. All we need to supply
with each new matrix data distribution is a matching parallel BLAS library that can perform
the basic functions. The key point here is that describing a new BLAS library is much simpler
than specifying a new LAPACK library.

In short, the design of LAPACK-DM++ allows one to describe parallel, dense, linear algebra
algorithms in terms of high level primitives that are independent of distribution of matrices over
the physical nodes of a multicomputer. Decoupling the matrix algorithm from a specific data
distribution provides three important attributes: (1) it results in simpler code that more closely
matches the underlying mathematical formulation, (2) it allows for one “universal” algorithm,
rather than supporting one version for each data distribution needed, and (3) it allows one to

postpone the data distribution decision until runtime.

4 Templates for Large Sparse Systems of Linear Equa-

tions

A new generation of even more massively parallel computers will soon emerge. Concurrent with
the development of these more powerful parallel systems is a shift in the computing practices

of many scientists and researchers. Increasingly, the tendency is to use a variety of distributed
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computing resources, with each individual task assigned to the most appropriate architecture,
rather than to use a single, monolithic machine. The pace of these two developments, the emer-
gence of highly parallel machines and the move to a more distributed computing environment,
has been so rapid that software developers have been unable to keep up. Part of the problem has
been that supporting system software has inhibited this development. Consequently, exploiting
the power of these technological advances has become more and more difficult. Much of the
existing reusable scientific software, such as that found in commercial libraries and in public
domain packages, is no longer adequate for the new architectures. If the full power of these new
machines is to be realized, then scalable libraries, comparable in scope and quality to those that

currently exist, must be developed.

One of our goals as software designers is to communicate to the high-performance computing
community algorithms and methods for the solution of system of linear equations. In the past
we have provided black-box software in the form of a mathematical software library, such as

LAPACK, LINPACK, NAG, and IMSL. These software libraries provide for:

e Easy interface with hidden details
e Reliability; the code should fail as rarely as possible

o Speed.

On the other hand, the high-performance computing community, which wants to solve complex,

large-scale problems as quickly as possible, seems to want

e Speed
e Access to internal details to tune data structures to the application

o Algorithms that are fast for the particular application even if not reliable as general meth-

ods.

These differing priorities make for different approaches to algorithms and software. The first
set of priorities leads us to produce “black boxes” for general problem classes. The second set
of priorities seems to lead us to produce “template codes” or “toolboxes” where the users can
assemble, modify and tune building blocks starting from well-documented subparts. This leads
to software which is not going to be reliable on all problems, and requires extensive user tuning

to make it work. This is just what the block-box users do not want.

In scientific high-performance computing we see three different computational platforms emerg-
ing, each with a distinct set of users. The first group of computers contains the traditional

supercomputer. Computers in this group exploit vector and modest parallel computing. They
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are general purpose computers that can accommodate a large cross section of applications while
providing a high percentage of their peak computing rate. They are the computers typified
by the Cray Y-MP €90, IBM ES/9000, and NEC SX-3; the so-called general purpose vector

supercomputers.

The second group of computers are the highly parallel computers. These machines often contain
hundreds or even thousands of processors, usually RISC in design. The machines are usually
loosely coupled having a switching network and relatively long communication times compared
with computation times. These computers are suitable for fine-grain and coarse-grain parallelism.
As a system, the cost is usually less than the traditional supercomputer and the programming
environment is very poor and primitive. There is no portability since user’s programs depend

heavily on a particular architecture and on a particular software environment.

The third group of computers are the clusters of workstations. Each workstation usually contains
a single very fast RISC processor. Each workstation is connected through a Local Area Network,
or LAN, and as such the communication time is very slow, making this setup not very suitable
for fine-grain parallelism. They usually have a rich software environment and operating system
on a workstation node, usually UNIX. This solution is usually viewed as a very cost-effective

solution compared to the vector supercomputers and highly-parallel computers.

Users are in general not a monolithic entity, but in fact represent a wide diversity of needs.
Some are the sophisticated computational scientists who eagerly move to the newest architecture
in search of ever-higher performance. Others want only to solve their problems with the least

change to their computational approach.

We hope to satisty the high-performance computing community’s needs by the use of reusable
software templates. With the templates we describe the basic features of the algorithms. These
templates offer the opportunity for whatever degree of customization the user may desire, and
also serve a valuable pedagogical role in teaching parallel programming and instilling a better
understanding of the algorithms employed and results obtained. While providing the reusable

software templates we hope to retain the delicate numerical details in many algorithms.

We believe it is important for users to have trust in the algorithms, and hope this approach
conveys the spirit of the algorithm and provides a clear path for implementation where the
appropriate data structures can be integrated into the implementation. We believe that this
approach of templates allows for easy modification to suit various needs. More specifically, each

template should have:

o Working software for matrices as general as the method allows.
e A mathematical description of the flow of the iteration.

e Algorithms described in a Fortran-77 program with calls to BLAS (Dongarra et al. 1990;
Dongarra et al. 1988; Lawson et al. 1979), and LAPACK routines (Anderson et al. 1992).

13



e Discussion of convergence and stopping criteria.

e Suggestions for extending a method to more specific matrix types (for example, banded

systems).

e Suggestions for tuning (for example, which preconditioners are applicable and which are
not).

e Performance: when to use a method and why.
e Reliability: for what class of problems the method is appropriate.

o Accuracy: suggestions for measuring the accuracy of the solution, or the stability of the
method.

An area where this will work well is with sparse matrix computations. Many important practical
problems give rise to large sparse systems of linear equations. One reason for the great inter-
est in sparse linear equations solvers and iterative methods is the importance of being able to
obtain numerical solutions to partial differential equations. Such systems appear in studies of
electrical networks, economic-system models, and physical processes such as diffusion, radiation,
and elasticity. Iterative methods work by continually refining an initial approximate solution so
that it becomes closer and closer to the correct solution. With an iterative method a sequence
of approximate solutions {z(®} is constructed which essentially involve the matrix A only in the
context of matrix-vector multiplication. Thus the sparsity can be taken advantage of so that

each iteration requires O(n) operations.

Many basic methods exist for iteratively solving linear systems and finding eigenvalues. The
trick is finding the most effective method for the problem at hand. The method that works well
for one problem type may not work as well for another. Or it may not work at all. We have
written a book on templates for large sparse linear systems (Barrett et al. 1994) to help address

the needs of users of high performance computers.

5 Software for Large Scale Eigenanalysis

We have been developing mathematical software for large scale eigenvalue problems based upon
a new variant of of the Arnoldi process. Since this is a new algorithm we go into more algorithmic
detail than in the sections on dense linear algebra, where the basic algorithms are well-known.
This new variant of the Arnoldi process employs an implicit restarting scheme that may be viewed
as a truncation of the standard implicitly shifted QR-iteration for dense problems. Numerical
difficulties and storage problems normally associated with Arnoldi and Lanczos processes are

avoided. The algorithm is capable of computing a few eigenvalues with user specified features such
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as largest real part or largest magnitude using a predetermined storage requirement proportional

to matrix order times the desired number of eigenvalues .

The ARPACK software, that is based upon an implementation of this algorithm, has been
designed to be efficient on a variety of high performance computers. Parallelism within the scheme
is obtained primarily through the matrix-vector operations that comprise the majority of the work
in the algorithm. The software is capable of solving large scale symmetric, nonsymmetric, and

generalized eigenproblems from significant application areas.

5.1 Large Sparse Eigenvalue Software

The most general problem addressed by this software is the generalized eigenproblem
Az =AMz, (6)

where both A and M are real n x n matrices and M is symmetric. We assume that the pair
(A, M) is a regular definite pencil if A is also symmetric or that M is positive semi-definite if A

1s nonsymmetric.

Arnoldi’s method is a Krylov subspace projection method. It obtains approximations to eigenval-
ues and corresponding eigenvectors of a large matrix A by constructing the orthogonal projection
of this matrix onto the Krylov subspace Span{v, Av, ..., A*¥~'v}. The Arnoldi process begins with
the specification of a starting vector v and in k steps produces the decomposition of an n x n

matrix A into the form

AV =VH + fel, (7)

where v is the first column of the matrix V € R™*, VIV = [; H € R** is upper Hessenberg,
f € R" with 0 = VT f and e, € R* the kth coordinate basis vector. The vector f is called the
residual. This factorization may be advanced one step at the cost of a (sparse) matrix-vector
product involving A and two dense matrix vector products involving V1 and V. The dense
products may be accomplished using level 2 BLAS. The new column of V will be vy = /3
where 3 = ||f|| , and 8 will become the next subdiagonal element of H.

The columns of V form an orthonormal basis for the Krylov subspace and H is the orthogo-
nal projection of A onto this space. Eigenvalues and corresponding eigenvectors of H provide

approximate eigenvalues and eigenvectors for A. If
Hy =yf, and we put = =Vy.
Then x, @ is an approximate eigenpair for A with
[Az — 0] = || flllex yl,

and this provides a means for estimating the quality of the approximation.

15



The information obtained through this process is completely determined by the choice of the
starting vector. Eigen-information of interest may not appear until & gets very large. In this
case it becomes intractable to maintain numerical orthogonality of the basis vectors V' and
it also will require extensive storage. Failure to maintain orthogonality leads to a number of
numerical difficulties. Our method provides a means to extract interesting information from
very large Krylov subspaces while avoiding the storage and numerical difficulties associated with
the standard approach. It does this by continually compressing the interesting information into
a fixed size k dimensional subspace. This is accomplished through the implicitly shifted QR
mechanism. An Arnoldi factorization of length k& + p is compressed to a factorization of length

k by applying p implicit shifts resulting in
AVk—I-_I—p = Vk-l-—I-lej—-I-p + fk"‘pezﬂ?Q’ (8)

where Vk+p = V;H_pQ, k—l—p = Q Hk_|_pQ, and Q 1@z - Qp, with ); the orthogonal matrix
associated with the shift y;. It may be shown that the first £ — 1 entries of the vector e;‘f_l_pQ are
zero. Equating the first k£ columns on both sides yields an updated k—step Arnoldi factorization

AV = VIPHE + feg, (9)

with an updated residual of the form f7 = %ipek+1ﬂk + fi4p0. Using this as a starting point it
is possible to use p additional steps of the Arnoldi process to return to the original form. Each
of these applications implicitly applies a polynomial in A of degree p to the starting vector. The
roots of this polynomial are the shifts used in the () R process and these may be selected to filter
unwanted information from the starting vector and hence from the Arnoldi factorization. Full

details may be found in (Sorensen 1992).

The resulting software ARPACK based upon this mechanism provides several features which are

not present in existing (single vector) codes to our knowledge:

e Reverse communication interface

o Ability to return k eigenvalues which satisty a user specified criterion such as largest real

part, largest absolute value, largest algebraic value (symmetric case), etc.

o A fixed pre-determined storage requirement suffices throughout the computation. Usually
this is n * O(2k) + O(k*) where k is the number of eigenvalues to be computed and n is
the order of the matrix. No auxiliary storage or interaction with such devices is required

during the course of the computation.

e Eigenvectors may be computed on request. The Arnoldi basis of dimension £ is always
computed. The Arnoldi basis consists of vectors which are numerically orthogonal to

working accuracy.
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o Accuracy: The numerical accuracy of the computed eigenvalues and vectors is user specified
and may be set to the level of working precision. At working precision, the accuracy of
the computed eigenvalues and vectors is consistent with the accuracy expected of a dense
method such as the implicitly shifted QR iteration.

e Multiple eigenvalues offer no theoretical or computational difficulty other than additional
matrix vector products required to expose the multiple instances. This cost is commensu-

rate with the cost of a block version of appropriate blocksize.

5.2 Applications of ARPACK

ARPACK has been used in a variety of challenging applications, and has proven to be useful
both in symmetric and nonsymmetric problems. It is of particular interest when there is no

opportunity to factor the matrix and employ a “shift and invert” form of spectral transformation,
A (A—ocl)™". (10)

Existing codes often rely upon this transformation to enhance convergence. Extreme eigenvalues
{p} of the matrix A are found very rapidly with the Arnoldi/Lanczos process and the corre-
sponding eigenvalues {A} of the original matrix A are recovered from the relation A = 1/u + 0.
Implementation of this transformation generally requires a matrix factorization. In many im-
portant applications this is not possible due to storage requirements and computational costs.
The implicit restarting technique used in ARPACK is often successful without this spectral

transformation.

One of the most important classes of application arise in computational fluid dynamics. Here the
matrices are obtained through discretization of the Navier-Stokes equations. A typical application
involves linear stability analysis of steady state solutions. Here one linearizes the nonlinear
equation about a steady state and studies the stability of this state through the examination of
the spectrum. Usually this amounts to determining if the eigenvalues of the discrete operator
lie in the left halfplane. Typically these are parametrically dependent problems and the analysis
consists of determining phenomena such as simple bifurcation, Hopf bifurcation (an imaginary
complex pair of eigenvalues cross the imaginary axis), turbulence, and vortex shedding as this
parameter is varied. Our method is well suited to this setting as it is able to track a specified set
of eigenvalues while they vary as functions of the parameter. Our software has been used to find
the leading eigenvalues in a Couette-Taylor wavy vortex instability problem involving matrices
of order 4000. One interesting facet of this application is that the matrices are not available
explicitly and are logically dense. The particular discretization provides efficient matrix-vector

products through Fourier transform. Details may be found in (Edwards et al. 1993).

Alvarez-Cohen and McCarty have studied a groundwater remediation problem through a large

nonsymmetric eigenanalysis (Alvarez-Cohen and McCarty 1991). They use a pore-scale model
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to understand macroscopic groundwater transport phenomena. Convection, diffusion, and bio-
chemical reactions occur at the pore level. The equations model flow through a single pore,
whose lining reacts with the flowing solute. Boundary conditions are periodic. The eigenvalues
of this boundary value problem provide useful information about the flow through an aggregate
of pore cells. Solution of the eigenproblem is discussed in (Dykaar 1993). Preliminary compu-
tational studies indicate that ARPACK can provide a means to extract a number of interesting
eigenvalues and eigenvectors more efficiently than the inverse power method that is currently
employed.

Our software has been used to study the stability of the core of a civil nuclear power plant,
as modeled by the two-group neutron diffusion equation. Vaudescal (Vaudescal 1993) reports
improved performance using ARPACK over results obtained in (Jaffre and Vaudescal 1993) using
explicitly restarted Arnoldi.

Very large symmetric generalized eigenproblems arise in structural analysis. One example that
we have worked with at Cray Research through the courtesy of Ford motor company involves
an automobile engine model constructed from 3D solid elements. Here the interest is in a set of
modes to allow solution of a forced frequency response problem (K — AM)x = f(t), where f(t)
is a cyclic forcing function which is used to simulate expanding gas loads in the engine cylinder
as well as bearing loads from the piston connecting rods. This model has over 250,000 degrees
of freedom. The smallest eigenvalues are of interest and the ARPACK code appears to be very
competitive with the best commercially available codes on problems of this size. For details see
(Sorensen et al. 1993).

Nonlinear eigenvalue problems also arise in structural analysis. We are collaborating with re-
searchers at Stanford University in this area. In (Smith et al. 1993) we present an implicitly
restarted Lanczos-based eigensolution technique for evaluating the natural frequencies and modes
from frequency dependent eigenproblems in structural dynamics. The new solution technique
is used in conjunction with a mixed finite element modeling procedure which utilizes both the
polynomial and frequency dependent displacement fields in formulating the system matrices.
The method is well suited to the solution of large scale problems. The solution methodology pre-
sented in (Smith et al. 1993) is based upon the ability to evaluate a specific set of parameterized
nonlinear eigenvalue curves at given values of the parameter using the symmetric generalized
eigensolvers available in ARPACK. Numerical examples illustrate that the implicitly restarted
Lanczos method with secant interpolation accurately evaluates the exact natural frequencies and
modes of the nonlinear eigenproblem and verifies that the new eigensolution technique coupled
with the mixed finite element modeling procedure is more accurate than the conventional finite
element models. In addition, the eigenvalue technique presented here is shown to be far more
computationally efficient on large scale problems than the determinant search techniques tradi-
tionally employed for solving exact vibration problems. These techniques are being extended to

solve damped problems (which are nonsymmetric) and interior eigenvalue problems.
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Computational chemistry provides a rich source of problems. ARPACK is being used in two ap-
plications currently and holds promise for a variety of challenging problems in this area. We are
collaborating with researchers at Ohio State on large scale three-dimensional reactive scattering
problems. The governing equation is the Schroedinger equation and the computational tech-
nique for studying the physical phenomena relies upon repeated eigenanalysis of a Hamiltonian
operator consisting of a Laplacian operator discretized in spherical co-ordinates plus a surface
potential. The discrete operator has a tensor product structure from the discrete Laplacian plus
a diagonal matrix from the potential. The resulting matrix has a block structure consisting
of m x m blocks of order n . The diagonal blocks are dense and the off diagonal blocks are
scalar multiples of the order n identity matrix. It is virtually impossible to factor this matrix
directly because the factors are dense in any ordering. We are using a distributed memory par-
allel version of ARPACK together with some preconditioning ideas to solve these problems on
distributed memory machines. Encouraging computational results have been obtained on Cray
Y-MP machines and also on the Intel Delta. The code is currently being ported to the CM-5.
See (Hayes et al. 1993), (Sorensen et al. 1993) for further details.

Nonsymmetric problems also arise in quantum chemistry. Researchers at University of Wash-
ington have used the code to investigate the effects of the electric field on InAs/GaSb and
GaAs/Al,Ga;_, as quantum wells. ARPACK was used to find highly accurate solutions to these
nonsymmetric problems which couldn’t be solved by other means. See (Li and Kuhn 1993) for
details.

Another source of problems arise in magnetohydrodynamics (MHD) involving the study of the
interaction of a plasma and a magnetic field. The MHD equations describe the macroscopic be-
havior of the plasma in the magnetic field. These equations form a system of coupled nonlinear
PDE. Linear stability analysis of the linearized MHD equations leads to a complex eigenvalue
problem. Researchers at the Institute for Plasma Physics and Utrecht University in the Nether-
lands have modified the codes in ARPACK to work in complex arithmetic and are using the
resulting code to obtain very accurate approximations to the eigenvalues lying on the Alfven
curve. The code is not only finding extremely accurate solutions, it is doing so far more effi-
ciently than the existing method of choice. Currently problems of order 3216 are being solved.
The complex version of ARPACK produced 45 good approximations of eigenvalues in 27 seconds
of Cray Y-MP CPU time while the method currently in use needed 32 seconds to find 25 poorly

converged approximations. See (Kooper et al. 1993) for details.

There are many other applications. In addition to the examples just mentioned, ARPACK has
been used to solve large scale problems in the optimal design of a membrane and in the design
of dielectric waveguides. It may also be used to to compute the singular value decomposition
(SVD) of large matrices. There are many important applications of the SVD including analysis
and enhancement of digital images. Several applications of this technology arise in Computational
Biology as well as many other fields. As we gain experience with the ARPACK software, we find

an increasing number of new interesting and challenging applications. The dramatic increase in
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modern computing power combined with the new algorithms available in the ARPACK software

can provide solutions to eigenproblems that were previously intractable.

6 Conclusions

Linear Algebra is an important part of the research of the CRPC. It impacts almost every part
of the effort. The focus of our work is on issues impacting the design of scalable libraries for
performing dense and sparse linear algebra computations on multicomputers. The activities
provide critical underpinning for much of the work on higher-level optimization algorithms and
numerical solution of partial differential equations. The research has proved to be a rich source
of basic problems for work on compiler management of memory hierarchies and compiling for
distributed-memory machines. Parallelizing compilers should ultimately be able to restructure
loops in sequential codes to reproduce the loops of our hand-optimized parallelized codes. Finally,
the work has served as a testbed for our ideas on how to design, build, and distribute libraries

of scalable mathematical software.

One important factor that has hindered our development of software for distributed memory
concurrent computers has been the lack of a widely-accepted message passing standard. This
led to our initiation of, and involvement in, an effort in the parallel computing community to
develop such a standard called the Message Passing Interface (MPI). The MPI standardization
effort involves about 60 people. Most of the major vendors of concurrent computers are involved
in MPI, along with researchers from universities, government laboratories, and industry. The
CRPC sponsored the first workshop leading to the development of the MPI draft standard
in April 1992 (Walker 1992), and a preliminary draft proposal was put forward by Dongarra,
Hempel, Hey, and Walker to foster discussion (Dongarra et al. 1993). A standard message
passing interface is a key component in building a concurrent computing environment in which
applications, software libraries, and tools can be transparently ported between different machines.
MPI provides a number of features that are useful in the design of parallel software libraries.
These include support for process groups, application topologies, communication contexts, and
general datatypes for messages. For details the reader is referred to the draft MPI standard
document (MPI Forum 1993a) and related papers (MPI Forum 1993b; Walker 1994). We intend
to develop MPI versions of the BLACS in the near future.

Appendix: the Availability of Software

A large body of numerical software is freely available 24 hours a day via an electronic service
called netlib. In addition to the software discussed here, there are dozens of other libraries, tech-

nical reports on various parallel computers and software, test data, facilities to automatically
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translate Fortran programs to C, bibliographies, names and addresses of scientists and mathe-
maticians, and so on. One can communicate with netlib in one of two ways, by email or (much
more easily) via an X-window interface called znetlib. Using email, one sends messages of the
form ‘send subroutine_name from library_name’ or ‘send index for library name’ to the address
‘netlib@ornl.gov’ or ‘netlib@research.att.com’. The message will be automatically read and the
corresponding subroutine mailed back. Xnetlib (which can be obtained and installed by sending
the message ‘send xnetlib.shar from xnetlib’ to netlib@ornl.gov) is an X-window interface which
lets one point at and click on subroutines, which are then automatically transferred back into

the user’s directory. There are also index search features to help find the appropriate subroutine.

To get started using netlib, send the one-line message ‘send index’ to netlib@ornl.gov. A descrip-
tion of the overall library should be sent to you within minutes (providing all the intervening
networks as well as netlib server are up).

Interested parties may obtain the software discussed in this paper by sending email to netlib@ornl.gov
and in the email message typing ‘send index from scalapack’. Experience with applications is
very important to the authors and we welcome the opportunity to work with researchers who

want to use the codes.
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