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CRPC RESEARCH INTO LINEAR ALGEBRA SOFTWARE FOR HIGHPERFORMANCE COMPUTERSJaeyoung ChoiJack J. DongarraRoldan PozoDanny C. SorensenDavid W. WalkerAbstractIn this paper we look at a number of approaches being investigated in the Center for Researchon Parallel Computation (CRPC) to develop linear algebra software for high-performance com-puters. These approaches are exempli�ed by the LAPACK, templates, and ARPACK projects.LAPACK is a software library for performing dense and banded linear algebra computations, andwas designed to run e�ciently on high performance computers. We focus on the design of thedistributed memory version of LAPACK, and on an object-oriented interface to LAPACK. Thetemplates project aims at making the task of developing sparse linear algebra software simplerand easier. Reusable software templates are provided that the user can then customize to modifyand optimize a particular algorithm, and hence build a more complex applications. ARPACKis a software package for solving large scale eigenvalue problems, and is based on an implicitlyrestarted variant of the Arnoldi scheme. The paper focuses on issues impacting the design ofscalable libraries for performing dense and sparse linear algebra computations on multicomputers.
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1 IntroductionLinear algebra lies at the heart of the research program of the Center for Research into ParallelComputation (CRPC). It provides critical underpinning for much of the work on higher-leveloptimization algorithms and the numerical solution of partial di�erential equations. It has provedto be a rich source of basic problems for work on compiler management of memory hierarchiesand compiling for distributed-memory machines. Finally, it is serving as a testbed for our ideason how to design, build, and distribute libraries of scalable mathematical software.In this paper we present a survey of our research into the design, development, and use ofsoftware libraries for performing linear algebra computations on distributed memory concurrentcomputers. This research is being conducted under CRPC auspices by collaborating groups atRice University, the University of Tennessee at Knoxville, and Oak Ridge National Laboratory.In Section 2, we begin by looking at our framework for library design. The rest of the paperfocuses on three main topics: LAPACK, templates, and ARPACK. Section 3 presents key ideas inthe design of LAPACK, a widely-used software library for performing dense and banded matrixcomputations on high performance computers. The design and performance of a distributedmemory version of the LAPACK software library is discussed, and an object-oriented interfaceto this package is described. In Section 4, we present an approach to solving sparse linearalgebra problems with reusable software templates. Templates describe the essential featuresof an algorithm, while allowing users to customize the code for their own particular use. TheARPACK software package for performing large scale eigenanalysis is described in Section 5,and is based on a new variant of the Arnoldi process. Some concluding remarks, and directionsfor future work, are presented in Section 6. The Appendix explains how to obtain the softwaredescribed in this paper using netlib and xnetlib.2 Framework for Library Development on Advanced Ar-chitectures.The design and implementation of a library of scalable mathematical software is critical to thesuccess of our e�orts to make parallel computers truly useful to scientists and engineers. Weare building a prototype library of scalable methods for solving the major problems of numericallinear algebra.We are investigating three approaches in the design of such a library.1. The �rst approach is to take existing well tested software, in this case LAPACK, and makesmall modi�cations to the software to develop distributed memory implementations. Inthis way, we can quickly develop a core set of routines, leveraging existing software asmuch as possible. This approach is described in Section 3.



2. The second approach is a long-term algorithmic research project aimed at developing opti-mal strategies tailored to various parallel architectures. This will include both SIMD andMIMD machines. This may require that we abandon our existing algorithm and softwarebase and develop completely new approaches. The research into software templates andARPACK, described in Sections 4 and 5 respectively, are examples of this type of researchproject.3. The third approach is to take High Performance Fortran (HPF) as a base language anddevelop a library that relies on the compiler to perform much of the machine mapping.Here, the design goal is to construct algorithms that are blockable and distributable acrossa variety of architectures and to encode enough information into the HPF speci�cation toallow translation into e�cient code.By pursuing all three approaches, we expect to gain a deep understanding of the issues involvedin designing and building libraries of scalable mathematical software, while exercising the HPFtechnology developed within CRPC. As a goal, we hope to produce libraries that provide a clean,architecture-independent interface to the end user.This paper will only be concerned with the �rst two of these approaches. We are currentlyconsidering the development of an HPF version of LAPACK that will make use of the compiler'sknowledge of data distribution, and thereby relieve the user of the need to explicitly pass datadistribution information into each LAPACK routine. This work is ongoing, and will be describedelsewhere in the future.3 LAPACK on Concurrent SupercomputersThe LAPACK project started in 1987 to design a linear algebra library for conventional su-percomputers and high performance workstations. ScaLAPACK was a follow-on project whoseoriginal aim was to provide for users of MIMD distributed memory concurrent computers thesame functionality as that provided by LAPACK for shared-memory architectures. We now be-lieve that it is possible to make ScaLAPACK fully compatible with LAPACK, so that the callingsyntax of both libraries is identical, thereby allowing the transparent migration of applicationsbetween shared memory and distributed memory architectures. Thus, the distinction betweenScaLAPACK and LAPACK is essentially historical, with the former being originally developed fordistributed memory, and the latter for shared memory machines. When it is necessary to distin-guish the shared memory and distributed memory versions we shall use the terms LAPACK-SMand LAPACK-DM, respectively; otherwise, we shall use LAPACK to refer generically to bothversions.The development of sparse matrix algorithms is an area of intense research activity, largelybecause of their importance in the numerical solution of partial di�erential equations. Dense2



matrix computations are less pervasive, but also have important applications, as discussed ina recent survey by Edelman (Edelman 1993). A major source of large dense linear systems isthe solution of problems by the boundary element method. In this method integral equationsde�ned on the boundary of a region of interest are used to compute some �nal desired quantityin three-dimensional space. The dense linear systems generated are commonly solved using LUfactorization. Electromagnetic scattering studies make use of the boundary element method,which is usually referred to as the method of moments in this context (Harrington 1990; Wang1991). This approach is used in the design of aircraft with small radar cross-sections, and in thedesign of satellite antennae. Boundary element methods are also used in the study of 
uid 
ows,and here the variant of the boundary element method used is called the panel method (Hess 1990;Hess and Smith 1967).3.1 LAPACK on NUMA MachinesModern supercomputers may be classi�ed as non-uniform memory access (NUMA) machines.That is, they possess hierarchical memories in which the di�erent levels in the hierarchy arecharacterized by di�erent access times. Registers are the upper level of memory for which theaccess time is least. Caches are an intermediate level in the memory hierarchy. In shared memorymachines the lowest level in the memory hierarchy is the shared memory. In distributed memorymachines each processor has its own local memory, and so the aggregate o�-processor memoryof all other processors forms the lowest level of the memory hierarchy. LAPACK attains highperformance on NUMAmachines by maximizing the reuse of data in the upper levels of memory,so that time-consuming accesses to the lower levels are minimized. This is done using a two-foldapproach. First, the frequency of data movement between the lower and intermediate levels ofmemory is controlled by recasting the numerical algorithms in block-partitioned form. This ap-proach ensures that memory accesses are localized (\locality of reference") and can be deferredso that data are moved between the lower and intermediate levels in blocks. On shared memorymachines the use of block-partitioned algorithms minimizes the frequency of data movement be-tween shared memory and cache, while on distributed memory machines it reduces the frequencyof communication between processors. Second, the movement of data between the intermediateand upper levels of the memory hierarchy is controlled by using optimized assembly code for themost heavily-used, compute-intensive parts of an algorithm. Fortunately, in the block-partitionedalgorithms used in LAPACK these correspond to Level 3 BLAS routines, optimized assemblycode versions of which exist for the processors comprising most modern supercomputers.Maximizing data reuse in the upper levels of memory through the use of block-partitioned al-gorithms, is the cornerstone of the successful implementation of LAPACK on shared and dis-tributed memory supercomputers. Optimized, concurrent Level 3 BLAS routines are used asbuilding blocks for the LAPACK routines. The approach taken to parallelizing concurrent Level3 BLAS routines di�ers for shared memory and distributed memory machines. On shared mem-3



ory machines, the assignment of work to processors is determined by the compiler, typicallyby parallelizing the outermost loop(s) over blocks. The innermost loops are written in assemblycode. One of the aims of High Performance Fortran (HPF) is to provide a similar level of compilersupport for distributed memory machines. However, in developing distributed memory versionsof the Level 3 BLAS we seek to optimize performance by manually parallelizing the appropriateloops. In addition, the data distribution is speci�ed through subroutine calls, rather than bydata distribution directives, as in HPF.3.2 Distributed MatricesIn many linear algebra algorithms the distribution of work may become uneven as the algorithmprogresses, as in LU factorization in which rows and columns become eliminated from the compu-tation. LAPACK-DM, therefore, makes use of the block cyclic data distribution in which matrixblocks separated by a �xed stride in the row and column directions are assigned to the sameprocessor. A number of researchers have made use of the block cyclic data distribution in paralleldense linear algebra algorithms (Choi et al. 1992; Choi et al. 1993a; Dongarra and Ostrouchov1990; Dongarra et al. 1992; Lichtenstein and Johnsson 1993). The block cyclic data distributionis parameterized by the four numbers P , Q, r, and c, where P �Q is the processor template andr� c is the block size. All LAPACK-DM routines work for arbitrary values of these parameters,subject to certain \compatibility conditions." Thus, for example, in the LU factorization routinewe require that the blocks be square, since nonsquare blocks would lead to additional softwarecomplexity and communication overhead. When multiplying two matrices, C = AB, we requirethat all three matrices are distributed over the same P �Q process template; rectangular blocksare permitted, but we require that if the blocks of matrix A are r � t, then those of B and Cmust be t� c and r� c, respectively, so it is possible to multiply the individual blocks of A andB to form blocks of C.In the block cyclic data distribution the mapping of a global index, m, can be expressed asm 7! (p; b; i), where p is the logical process number, b is the block number in process p, and i isthe index within block b to which m is mapped. Thus, if the number of data objects in a blockis r, the block cyclic data distribution may be written,m 7!  $m mod Tr % ; �mT � ; m mod r! (1)where T = rP , and P is the number of processes. The distribution of a block-partitioned matrixcan be regarded as the tensor product of two such mappings, one that distributes the rows of thematrix over P processes, and another that distributes the columns over Q processes. It shouldbe noted that Eq. 1 reverts to the cyclic distribution when r = 1, with local index i = 0 for allblocks. A block distribution is recovered when r = dM=P e, in which case there is a single block4



in each process with block number b = 0. Thus, we havem 7! (m mod P; bm=P c; 0 ) (2)for a cyclic data distribution, andm 7! ( bm=Lc ; 0;m mod L ) ; (3)for a block distribution, where L = dM=P e. A subtle distinction between the block distributiongiven by Eq. 3 and that often used elsewhere (see for example (Fox et al. 1988; Van de Velde1990)) should be noted. Consider the block distribution of 6 items over 4 processes. This iscommonly distributed as (2,2,1,1), i.e., 2 items in two of the processes and 1 item in the othertwo processes. The block distribution given by Eq. 3 results in the distribution (2,2,2,0), sothat one of the processes contains no data items. Clearly, since the load imbalance is measuredby the di�erence between the maximum and the average loads, both distribution schemes havethe same degree of load imbalance. We prefer the block distribution given by Eq. 3 becausethe arithmetic needed to convert between global and local indices is simpler, and because of thesymmetry between the equations for the block and cyclic distributions (compare Eqs. 2 and 3).There appear to be no other compelling reasons why one of the above forms of block distributionshould be preferred to the other in all cases.The form of the block cyclic data distribution given by Eq. 1 ensures that the block with globalindex 0 is placed in process 0, the next block is placed in process 1, and so on. However, it issometimes necessary to o�set the processes relative to the global block index so that, in general,the �rst block is placed in process p0, the next in process p0 + 1, and so on. For example, in theparallel, block LU factorization algorithm described in (Dongarra et al. 1994) a rank-r updateis applied to the unfactored portion of the matrix, E, in each step by multiplying a column ofblocks, L1, by a row of blocks, U1, i.e., E = E � L1U1. Here r is the block size. The threematrices involved in this update each have their (0; 0) block in a di�erent location of the processtemplate. We, therefore, generalize the block cyclic data distribution by replacing m on therighthand side of Eq. 1 by m0 = m+ rp0 to give,m 7!  $m0 mod Tr % ; $m0T % ; m0 mod r!=   $m mod Tr %+ p0! mod P; �m+ rp0T � ; m mod r! : (4)The inverse mapping is given by(p; b; i) 7! Br + i = (p � p0)r + bT + i (5)where the global block number is given by B = (p � p0) + bP .The block cyclic data distribution is the only data distribution supported by the LAPACK-DMroutines, and in its most general form is parameterized by P , Q, r, c, p0, and q0, where P�Q is the5



size of the process template, r� c is the block size, and (p0; q0) is the location in the template ofthe (0; 0) block of the matrix. The block cyclic data distribution can reproduce most of the datadistributions used in linear algebra computations. For example, one-dimensional distributionsover rows or columns are obtained by choosing Q or P to be 1. Similarly, an M � N matrixcan be decomposed into (nonscattered) blocks by choosing r = dM=P e and c = dN=Qe. Inalgorithms, such as LU factorization, in which the distribution of work becomes uneven, a largerblock size results in greater load imbalance, but reduces the frequency of communication betweenprocessors. There is, therefore, a tradeo� between load imbalance and communication startupcost which can be controlled by varying the block size.In addition to the load imbalance that arises as distributed data are eliminated from a compu-tation, load imbalance may also arise due to computational \hot spots" where certain processeshave more work to do between synchronization points than others. This is the case in the LUfactorization algorithm in which partial pivoting is performed over rows, and only a single col-umn of the process template is involved in the pivot search while the other processes are idle(Dongarra et al. 1994). Similarly, the evaluation of each block row of the U matrix requires thesolution of a lower triangular system that involves only processes in a single row of the processtemplate. The e�ect of this type of load imbalance can be minimized through the choice of Pand Q. Another factor to be considered in choosing P and Q is the performance of collectivecommunication routines, such as reduction and broadcast operations, that may be performedover the rows and columns of the process template.3.3 Building Blocks for LAPACK-DMThe LAPACK-DM routines are built out of a small number of modules. The most fundamentalof these are the Basic Linear Algebra Communication Subprograms (BLACS) (Dongarra 1991;Dongarra and van de Geijn 1991), that perform common matrix-oriented communication tasks,and the sequential Basic Linear Algebra Subprograms (BLAS) (Dongarra et al. 1990; Dongarraet al. 1988; Lawson et al. 1979), in particular the Level 3 BLAS. LAPACK-DM can be portedwith minimal code modi�cation to any machine on which the BLACS and the BLAS are available.The distributed Level 3 BLAS (Choi et al. 1993b; Choi et al. 1994b) and the Parallel Block BLAS(PB-BLAS), described in more detail below, are intermediate-level routines based on the BLACSand sequential BLAS. The BLACS, the sequential BLAS, the distributed Level 3 BLAS, and thePB-BLAS are the modules from which the higher level LAPACK-DM routines are built. Thus,the entire LAPACK-DM package contains modules at a number of di�erent levels. For manyusers the top level LAPACK-DM routines will be su�cient to build applications. However, moreexpert users may make use of the lower level routines to build customized routines not providedin LAPACK.The BLACS package attempts to provide the same ease of use and portability for MIMDmessage-passing linear algebra communication that the BLAS provide for linear algebra computation.6



Therefore, future software for dense linear algebra on MIMD platforms could consist of calls tothe BLAS for computation and calls to the BLACS for communication. Since both packages willhave been optimized for each particular platform, good performance should be achieved withrelatively little e�ort.In the LAPACK-DM routines all interprocessor communication takes place within the distributedBLAS and the BLACS, so the source code of the top software layer of LAPACK-DM looks verysimilar to that of LAPACK-SM. The BLACS have been implemented for the Intel family ofcomputers, the TMC CM-5, the Cray T3D, the IBM SP-1, and for PVM.The PB-BLAS are distributed Level 2 and 3 BLAS routines in which at least one of the matrixsizes is limited to the block size. That is, at least one of the matrices consists of a single row orcolumn of blocks, and is located in a single row or column of the process template. An exampleof a PB-BLAS operation would be the multiplication of a matrix of M �N blocks by a \vector"of N blocks. The PB-BLAS make use of calls to the sequential BLAS for local computations,and calls to the BLACS for communication. The PB-BLAS are used, for example, to performblock-oriented matrix/vector multiplications when reducing a column of blocks in the parallelHessenberg reduction algorithm (Choi et al. 1994a).3.4 Performance of LAPACK-DMThe LAPACK-DM routines for performing LU, QR, and Cholesky factorizations of dense matriceshave been extensively tested and benchmarked. Routines for reducing matrices to Hessenberg,tridiagonal, and bidiagonal form have also been developed. The main platform for testing thesecodes was a 128-node Intel iPSC/860 hypercube, although some of them have also been run onthe Intel Delta and Paragon systems and the Thinking Machines' CM-5. A PVM version ofthe LU factorization code has been run over a network of workstations. Details of the parallelfactorization algorithms are given in (Dongarra et al. 1994), together with performance resultsand models. A similar paper on the reduction routines is in preparation (Choi et al. 1994a).Here we shall just present results from a small sample of the runs we have done on the InteliPSC/860 hypercube to demonstrate the e�ciency and scalability of the LAPACK-DM routines.Figure 1 shows isogranularity plots for the LU, QR, and Cholesky (LLT ) factorization routines.These plots show the variation in performance as a function of the number of processors, whilekeeping the matrix size per processor �xed at 5 Mbytes/processor. If the factorization codes wereperfectly scalable these plots would all be linear. The fact that the curves deviate only mildlyfrom linearity shows that the algorithms exhibit good scalability on the Intel iPSC/860, especiallysince less than half the memory available for applications is being utilized. Isogranularity plotsfor the Hessenberg, tridiagonal, and bidiagonal reduction routines are shown in Figure 2, againfor a granularity of 5 Mbytes/processor. For the reduction routines the deviation from linearityappears a little more pronounced than for the factorization routines, but is still fairly small.7
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Figure 1: Isogranularity plots for the dense LU, QR, and Cholesky factorization routines on theIntel iPSC/860 hypercube. The matrix size per processor is �xed at 5 Mbytes.
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Figure 2: Isogranularity plots for the Hessenberg (HRD), tridiagonal (TRD), and bidiagonalreduction (BRD) routines on the Intel iPSC/860 hypercube. The matrix size per processor is�xed at 5 Mbytes. 8



3.5 An Object Oriented Interface to LAPACKOur research activities in object-oriented extensions of LAPACK stems from two driving forces:one pulling, the other pushing. The pull comes from an increasing demand from the scienti�ccomputing community for C and C++ interfaces for numerical linear algebra libraries. A recentLAPACK survey revealed this to be one of the most common feature users would like to see infuture versions of LAPACK. The push stems from the ability of object-oriented software designsin C++ to naturally encapsulate the complex data structures describing distributed matrices.These same mechanisms also help solve the \data distribution compatibility" problem oftenencountered when integrating distributed memory libraries. LAPACK-DM++ solves this byexploiting the inheritance and dynamic-binding capabilities of C++. The result is that onlyone version of a library algorithm, such as the right-looking block LU factorization, need bemaintained. This library code will work correctly with any matrix data distribution scheme.Decoupling the matrix operations from the details of the data distribution provides two importantbene�ts: it simpli�es the description of a high-level algorithm and it allows the possibility ofpostponing the data distribution until runtime. This is crucial in providing truly integrablenumerical libraries since the appropriate matrix data distribution is strongly dependent on howthe data are utilized in other sections of the driving application.In Figure 3 we illustrate the design hierarchy of LAPACK-DM++. A parallel SPMD applicationwill utilize LAPACK-DM++ kernels to perform distributed linear algebra operations. Each nodeof a multicomputer runs a similar C++ program with calls to the LAPACK-DM++ interface.At this level distributed matrices are seen as a single object. The LAPACK-DM++ kernel, inturn, is built upon two important constituents: the basic algorithms of LAPACK++, and aparallel implementation of lower-level computational kernels (BLAS). Since the code parallelismis embedded in the low level BLAS kernels, the driving routines which employ block matrixoperations will look the same. Thus, the essential di�erences between LAPACK-SM++ andLAPACK-DM++ codes are simply in the declarations of the matrix objects supported.The overhead introduced by the C++ interface is minimal because there is no extra data copying,nor is the function-call overhead signi�cant, particularly when compared to the granularity ofcommunication routines in message-passing architectures. For single node performance, we havetested various prototype LAPACK++ (Dongarra et al. 1993) modules on several architecturesand found that they achieve competitive performance with similar optimized Fortran LAPACKroutines. Figure 4, for example, illustrates the performance of the LU factorization routine onan IBM RS/6000 Model 550 workstation. Three versions are compared: the native Fortran codewith optimized BLAS, a C++ shell to this code, and the LU algorithm itself written in C++with optimized BLAS. This implementation used GNU g++ v. 2.3.1 and utilized the Level 3BLAS routines from the native ESSL library. The performance results are nearly identical withthose of optimized Fortran calling the same library.LAPACK-DM++ includes support for the general, two-dimensional, block-cyclic matrix data9
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computing resources, with each individual task assigned to the most appropriate architecture,rather than to use a single, monolithic machine. The pace of these two developments, the emer-gence of highly parallel machines and the move to a more distributed computing environment,has been so rapid that software developers have been unable to keep up. Part of the problem hasbeen that supporting system software has inhibited this development. Consequently, exploitingthe power of these technological advances has become more and more di�cult. Much of theexisting reusable scienti�c software, such as that found in commercial libraries and in publicdomain packages, is no longer adequate for the new architectures. If the full power of these newmachines is to be realized, then scalable libraries, comparable in scope and quality to those thatcurrently exist, must be developed.One of our goals as software designers is to communicate to the high-performance computingcommunity algorithms and methods for the solution of system of linear equations. In the pastwe have provided black-box software in the form of a mathematical software library, such asLAPACK, LINPACK, NAG, and IMSL. These software libraries provide for:� Easy interface with hidden details� Reliability; the code should fail as rarely as possible� Speed.On the other hand, the high-performance computing community, which wants to solve complex,large-scale problems as quickly as possible, seems to want� Speed� Access to internal details to tune data structures to the application� Algorithms that are fast for the particular application even if not reliable as general meth-ods.These di�ering priorities make for di�erent approaches to algorithms and software. The �rstset of priorities leads us to produce \black boxes" for general problem classes. The second setof priorities seems to lead us to produce \template codes" or \toolboxes" where the users canassemble, modify and tune building blocks starting from well-documented subparts. This leadsto software which is not going to be reliable on all problems, and requires extensive user tuningto make it work. This is just what the block-box users do not want.In scienti�c high-performance computing we see three di�erent computational platforms emerg-ing, each with a distinct set of users. The �rst group of computers contains the traditionalsupercomputer. Computers in this group exploit vector and modest parallel computing. They12



are general purpose computers that can accommodate a large cross section of applications whileproviding a high percentage of their peak computing rate. They are the computers typi�edby the Cray Y-MP C90, IBM ES/9000, and NEC SX-3; the so-called general purpose vectorsupercomputers.The second group of computers are the highly parallel computers. These machines often containhundreds or even thousands of processors, usually RISC in design. The machines are usuallyloosely coupled having a switching network and relatively long communication times comparedwith computation times. These computers are suitable for �ne-grain and coarse-grain parallelism.As a system, the cost is usually less than the traditional supercomputer and the programmingenvironment is very poor and primitive. There is no portability since user's programs dependheavily on a particular architecture and on a particular software environment.The third group of computers are the clusters of workstations. Each workstation usually containsa single very fast RISC processor. Each workstation is connected through a Local Area Network,or LAN, and as such the communication time is very slow, making this setup not very suitablefor �ne-grain parallelism. They usually have a rich software environment and operating systemon a workstation node, usually UNIX. This solution is usually viewed as a very cost-e�ectivesolution compared to the vector supercomputers and highly-parallel computers.Users are in general not a monolithic entity, but in fact represent a wide diversity of needs.Some are the sophisticated computational scientists who eagerly move to the newest architecturein search of ever-higher performance. Others want only to solve their problems with the leastchange to their computational approach.We hope to satisfy the high-performance computing community's needs by the use of reusablesoftware templates. With the templates we describe the basic features of the algorithms. Thesetemplates o�er the opportunity for whatever degree of customization the user may desire, andalso serve a valuable pedagogical role in teaching parallel programming and instilling a betterunderstanding of the algorithms employed and results obtained. While providing the reusablesoftware templates we hope to retain the delicate numerical details in many algorithms.We believe it is important for users to have trust in the algorithms, and hope this approachconveys the spirit of the algorithm and provides a clear path for implementation where theappropriate data structures can be integrated into the implementation. We believe that thisapproach of templates allows for easy modi�cation to suit various needs. More speci�cally, eachtemplate should have:� Working software for matrices as general as the method allows.� A mathematical description of the 
ow of the iteration.� Algorithms described in a Fortran-77 program with calls to BLAS (Dongarra et al. 1990;Dongarra et al. 1988; Lawson et al. 1979), and LAPACK routines (Anderson et al. 1992).13



� Discussion of convergence and stopping criteria.� Suggestions for extending a method to more speci�c matrix types (for example, bandedsystems).� Suggestions for tuning (for example, which preconditioners are applicable and which arenot).� Performance: when to use a method and why.� Reliability: for what class of problems the method is appropriate.� Accuracy: suggestions for measuring the accuracy of the solution, or the stability of themethod.An area where this will work well is with sparse matrix computations. Many important practicalproblems give rise to large sparse systems of linear equations. One reason for the great inter-est in sparse linear equations solvers and iterative methods is the importance of being able toobtain numerical solutions to partial di�erential equations. Such systems appear in studies ofelectrical networks, economic-systemmodels, and physical processes such as di�usion, radiation,and elasticity. Iterative methods work by continually re�ning an initial approximate solution sothat it becomes closer and closer to the correct solution. With an iterative method a sequenceof approximate solutions fx(k)g is constructed which essentially involve the matrix A only in thecontext of matrix-vector multiplication. Thus the sparsity can be taken advantage of so thateach iteration requires O(n) operations.Many basic methods exist for iteratively solving linear systems and �nding eigenvalues. Thetrick is �nding the most e�ective method for the problem at hand. The method that works wellfor one problem type may not work as well for another. Or it may not work at all. We havewritten a book on templates for large sparse linear systems (Barrett et al. 1994) to help addressthe needs of users of high performance computers.5 Software for Large Scale EigenanalysisWe have been developing mathematical software for large scale eigenvalue problems based upona new variant of of the Arnoldi process. Since this is a new algorithm we go into more algorithmicdetail than in the sections on dense linear algebra, where the basic algorithms are well-known.This new variant of the Arnoldi process employs an implicit restarting scheme that may be viewedas a truncation of the standard implicitly shifted QR-iteration for dense problems. Numericaldi�culties and storage problems normally associated with Arnoldi and Lanczos processes areavoided. The algorithm is capable of computing a few eigenvalues with user speci�ed features such14



as largest real part or largest magnitude using a predetermined storage requirement proportionalto matrix order times the desired number of eigenvalues .The ARPACK software, that is based upon an implementation of this algorithm, has beendesigned to be e�cient on a variety of high performance computers. Parallelismwithin the schemeis obtained primarily through the matrix-vector operations that comprise the majority of the workin the algorithm. The software is capable of solving large scale symmetric, nonsymmetric, andgeneralized eigenproblems from signi�cant application areas.5.1 Large Sparse Eigenvalue SoftwareThe most general problem addressed by this software is the generalized eigenproblemAx = �Mx; (6)where both A and M are real n � n matrices and M is symmetric. We assume that the pair(A;M) is a regular de�nite pencil if A is also symmetric or that M is positive semi-de�nite if Ais nonsymmetric.Arnoldi's method is a Krylov subspace projection method. It obtains approximations to eigenval-ues and corresponding eigenvectors of a large matrixA by constructing the orthogonal projectionof this matrix onto the Krylov subspace Spanfv;Av; :::;Ak�1vg. The Arnoldi process begins withthe speci�cation of a starting vector v and in k steps produces the decomposition of an n � nmatrix A into the form AV = V H + feTk ; (7)where v is the �rst column of the matrix V 2 Rn�k, V TV = Ik; H 2 Rk�k is upper Hessenberg,f 2 Rn with 0 = V Tf and ek 2 Rk the kth coordinate basis vector. The vector f is called theresidual. This factorization may be advanced one step at the cost of a (sparse) matrix-vectorproduct involving A and two dense matrix vector products involving V T and V . The denseproducts may be accomplished using level 2 BLAS. The new column of V will be vk+1 = f=�where � = kfk , and � will become the next subdiagonal element of H.The columns of V form an orthonormal basis for the Krylov subspace and H is the orthogo-nal projection of A onto this space. Eigenvalues and corresponding eigenvectors of H provideapproximate eigenvalues and eigenvectors for A. IfHy = y�; and we put x = V y:Then x; � is an approximate eigenpair for A withkAx� x�k = kfkjeTk yj;and this provides a means for estimating the quality of the approximation.15



The information obtained through this process is completely determined by the choice of thestarting vector. Eigen-information of interest may not appear until k gets very large. In thiscase it becomes intractable to maintain numerical orthogonality of the basis vectors V andit also will require extensive storage. Failure to maintain orthogonality leads to a number ofnumerical di�culties. Our method provides a means to extract interesting information fromvery large Krylov subspaces while avoiding the storage and numerical di�culties associated withthe standard approach. It does this by continually compressing the interesting information intoa �xed size k dimensional subspace. This is accomplished through the implicitly shifted QRmechanism. An Arnoldi factorization of length k + p is compressed to a factorization of lengthk by applying p implicit shifts resulting inAV +k+p = V +k+pH+k+p + fk+peTk+pQ̂; (8)where V +k+p = Vk+pQ̂, H+k+p = Q̂THk+pQ̂, and Q̂ = Q1Q2 � � �Qp, with Qj the orthogonal matrixassociated with the shift �j . It may be shown that the �rst k� 1 entries of the vector eTk+pQ̂ arezero. Equating the �rst k columns on both sides yields an updated k�step Arnoldi factorizationAV +k = V +k H+k + f+k eTk ; (9)with an updated residual of the form f+k = V +k+pek+1�̂k + fk+p�. Using this as a starting point itis possible to use p additional steps of the Arnoldi process to return to the original form. Eachof these applications implicitly applies a polynomial in A of degree p to the starting vector. Theroots of this polynomial are the shifts used in the QR process and these may be selected to �lterunwanted information from the starting vector and hence from the Arnoldi factorization. Fulldetails may be found in (Sorensen 1992).The resulting software ARPACK based upon this mechanism provides several features which arenot present in existing (single vector) codes to our knowledge:� Reverse communication interface� Ability to return k eigenvalues which satisfy a user speci�ed criterion such as largest realpart, largest absolute value, largest algebraic value (symmetric case), etc.� A �xed pre-determined storage requirement su�ces throughout the computation. Usuallythis is n � O(2k) + O(k2) where k is the number of eigenvalues to be computed and n isthe order of the matrix. No auxiliary storage or interaction with such devices is requiredduring the course of the computation.� Eigenvectors may be computed on request. The Arnoldi basis of dimension k is alwayscomputed. The Arnoldi basis consists of vectors which are numerically orthogonal toworking accuracy. 16



� Accuracy: The numerical accuracy of the computed eigenvalues and vectors is user speci�edand may be set to the level of working precision. At working precision, the accuracy ofthe computed eigenvalues and vectors is consistent with the accuracy expected of a densemethod such as the implicitly shifted QR iteration.� Multiple eigenvalues o�er no theoretical or computational di�culty other than additionalmatrix vector products required to expose the multiple instances. This cost is commensu-rate with the cost of a block version of appropriate blocksize.5.2 Applications of ARPACKARPACK has been used in a variety of challenging applications, and has proven to be usefulboth in symmetric and nonsymmetric problems. It is of particular interest when there is noopportunity to factor the matrix and employ a \shift and invert" form of spectral transformation,Â (A� �I)�1 : (10)Existing codes often rely upon this transformation to enhance convergence. Extreme eigenvaluesf�g of the matrix Â are found very rapidly with the Arnoldi/Lanczos process and the corre-sponding eigenvalues f�g of the original matrix A are recovered from the relation � = 1=� + �.Implementation of this transformation generally requires a matrix factorization. In many im-portant applications this is not possible due to storage requirements and computational costs.The implicit restarting technique used in ARPACK is often successful without this spectraltransformation.One of the most important classes of application arise in computational 
uid dynamics. Here thematrices are obtained through discretization of the Navier-Stokes equations. A typical applicationinvolves linear stability analysis of steady state solutions. Here one linearizes the nonlinearequation about a steady state and studies the stability of this state through the examination ofthe spectrum. Usually this amounts to determining if the eigenvalues of the discrete operatorlie in the left halfplane. Typically these are parametrically dependent problems and the analysisconsists of determining phenomena such as simple bifurcation, Hopf bifurcation (an imaginarycomplex pair of eigenvalues cross the imaginary axis), turbulence, and vortex shedding as thisparameter is varied. Our method is well suited to this setting as it is able to track a speci�ed setof eigenvalues while they vary as functions of the parameter. Our software has been used to �ndthe leading eigenvalues in a Couette-Taylor wavy vortex instability problem involving matricesof order 4000. One interesting facet of this application is that the matrices are not availableexplicitly and are logically dense. The particular discretization provides e�cient matrix-vectorproducts through Fourier transform. Details may be found in (Edwards et al. 1993).Alvarez-Cohen and McCarty have studied a groundwater remediation problem through a largenonsymmetric eigenanalysis (Alvarez-Cohen and McCarty 1991). They use a pore-scale model17



to understand macroscopic groundwater transport phenomena. Convection, di�usion, and bio-chemical reactions occur at the pore level. The equations model 
ow through a single pore,whose lining reacts with the 
owing solute. Boundary conditions are periodic. The eigenvaluesof this boundary value problem provide useful information about the 
ow through an aggregateof pore cells. Solution of the eigenproblem is discussed in (Dykaar 1993). Preliminary compu-tational studies indicate that ARPACK can provide a means to extract a number of interestingeigenvalues and eigenvectors more e�ciently than the inverse power method that is currentlyemployed.Our software has been used to study the stability of the core of a civil nuclear power plant,as modeled by the two-group neutron di�usion equation. Vaudescal (Vaudescal 1993) reportsimproved performance using ARPACK over results obtained in (Ja�re and Vaudescal 1993) usingexplicitly restarted Arnoldi.Very large symmetric generalized eigenproblems arise in structural analysis. One example thatwe have worked with at Cray Research through the courtesy of Ford motor company involvesan automobile engine model constructed from 3D solid elements. Here the interest is in a set ofmodes to allow solution of a forced frequency response problem (K � �M)x = f(t), where f(t)is a cyclic forcing function which is used to simulate expanding gas loads in the engine cylinderas well as bearing loads from the piston connecting rods. This model has over 250,000 degreesof freedom. The smallest eigenvalues are of interest and the ARPACK code appears to be verycompetitive with the best commercially available codes on problems of this size. For details see(Sorensen et al. 1993).Nonlinear eigenvalue problems also arise in structural analysis. We are collaborating with re-searchers at Stanford University in this area. In (Smith et al. 1993) we present an implicitlyrestarted Lanczos-based eigensolution technique for evaluating the natural frequencies and modesfrom frequency dependent eigenproblems in structural dynamics. The new solution techniqueis used in conjunction with a mixed �nite element modeling procedure which utilizes both thepolynomial and frequency dependent displacement �elds in formulating the system matrices.The method is well suited to the solution of large scale problems. The solution methodology pre-sented in (Smith et al. 1993) is based upon the ability to evaluate a speci�c set of parameterizednonlinear eigenvalue curves at given values of the parameter using the symmetric generalizedeigensolvers available in ARPACK. Numerical examples illustrate that the implicitly restartedLanczos method with secant interpolation accurately evaluates the exact natural frequencies andmodes of the nonlinear eigenproblem and veri�es that the new eigensolution technique coupledwith the mixed �nite element modeling procedure is more accurate than the conventional �niteelement models. In addition, the eigenvalue technique presented here is shown to be far morecomputationally e�cient on large scale problems than the determinant search techniques tradi-tionally employed for solving exact vibration problems. These techniques are being extended tosolve damped problems (which are nonsymmetric) and interior eigenvalue problems.18



Computational chemistry provides a rich source of problems. ARPACK is being used in two ap-plications currently and holds promise for a variety of challenging problems in this area. We arecollaborating with researchers at Ohio State on large scale three-dimensional reactive scatteringproblems. The governing equation is the Schroedinger equation and the computational tech-nique for studying the physical phenomena relies upon repeated eigenanalysis of a Hamiltonianoperator consisting of a Laplacian operator discretized in spherical co-ordinates plus a surfacepotential. The discrete operator has a tensor product structure from the discrete Laplacian plusa diagonal matrix from the potential. The resulting matrix has a block structure consistingof m � m blocks of order n . The diagonal blocks are dense and the o� diagonal blocks arescalar multiples of the order n identity matrix. It is virtually impossible to factor this matrixdirectly because the factors are dense in any ordering. We are using a distributed memory par-allel version of ARPACK together with some preconditioning ideas to solve these problems ondistributed memory machines. Encouraging computational results have been obtained on CrayY-MP machines and also on the Intel Delta. The code is currently being ported to the CM-5.See (Hayes et al. 1993), (Sorensen et al. 1993) for further details.Nonsymmetric problems also arise in quantum chemistry. Researchers at University of Wash-ington have used the code to investigate the e�ects of the electric �eld on InAs/GaSb andGaAs/AlxGa1�x as quantum wells. ARPACK was used to �nd highly accurate solutions to thesenonsymmetric problems which couldn't be solved by other means. See (Li and Kuhn 1993) fordetails.Another source of problems arise in magnetohydrodynamics (MHD) involving the study of theinteraction of a plasma and a magnetic �eld. The MHD equations describe the macroscopic be-havior of the plasma in the magnetic �eld. These equations form a system of coupled nonlinearPDE. Linear stability analysis of the linearized MHD equations leads to a complex eigenvalueproblem. Researchers at the Institute for Plasma Physics and Utrecht University in the Nether-lands have modi�ed the codes in ARPACK to work in complex arithmetic and are using theresulting code to obtain very accurate approximations to the eigenvalues lying on the Alfvencurve. The code is not only �nding extremely accurate solutions, it is doing so far more e�-ciently than the existing method of choice. Currently problems of order 3216 are being solved.The complex version of ARPACK produced 45 good approximations of eigenvalues in 27 secondsof Cray Y-MP CPU time while the method currently in use needed 32 seconds to �nd 25 poorlyconverged approximations. See (Kooper et al. 1993) for details.There are many other applications. In addition to the examples just mentioned, ARPACK hasbeen used to solve large scale problems in the optimal design of a membrane and in the designof dielectric waveguides. It may also be used to to compute the singular value decomposition(SVD) of large matrices. There are many important applications of the SVD including analysisand enhancement of digital images. Several applications of this technology arise in ComputationalBiology as well as many other �elds. As we gain experience with the ARPACK software, we �ndan increasing number of new interesting and challenging applications. The dramatic increase in19



modern computing power combined with the new algorithms available in the ARPACK softwarecan provide solutions to eigenproblems that were previously intractable.6 ConclusionsLinear Algebra is an important part of the research of the CRPC. It impacts almost every partof the e�ort. The focus of our work is on issues impacting the design of scalable libraries forperforming dense and sparse linear algebra computations on multicomputers. The activitiesprovide critical underpinning for much of the work on higher-level optimization algorithms andnumerical solution of partial di�erential equations. The research has proved to be a rich sourceof basic problems for work on compiler management of memory hierarchies and compiling fordistributed-memory machines. Parallelizing compilers should ultimately be able to restructureloops in sequential codes to reproduce the loops of our hand-optimized parallelized codes. Finally,the work has served as a testbed for our ideas on how to design, build, and distribute librariesof scalable mathematical software.One important factor that has hindered our development of software for distributed memoryconcurrent computers has been the lack of a widely-accepted message passing standard. Thisled to our initiation of, and involvement in, an e�ort in the parallel computing community todevelop such a standard called the Message Passing Interface (MPI). The MPI standardizatione�ort involves about 60 people. Most of the major vendors of concurrent computers are involvedin MPI, along with researchers from universities, government laboratories, and industry. TheCRPC sponsored the �rst workshop leading to the development of the MPI draft standardin April 1992 (Walker 1992), and a preliminary draft proposal was put forward by Dongarra,Hempel, Hey, and Walker to foster discussion (Dongarra et al. 1993). A standard messagepassing interface is a key component in building a concurrent computing environment in whichapplications, software libraries, and tools can be transparently ported between di�erent machines.MPI provides a number of features that are useful in the design of parallel software libraries.These include support for process groups, application topologies, communication contexts, andgeneral datatypes for messages. For details the reader is referred to the draft MPI standarddocument (MPI Forum 1993a) and related papers (MPI Forum 1993b; Walker 1994). We intendto develop MPI versions of the BLACS in the near future.Appendix: the Availability of SoftwareA large body of numerical software is freely available 24 hours a day via an electronic servicecalled netlib. In addition to the software discussed here, there are dozens of other libraries, tech-nical reports on various parallel computers and software, test data, facilities to automatically20



translate Fortran programs to C, bibliographies, names and addresses of scientists and mathe-maticians, and so on. One can communicate with netlib in one of two ways, by email or (muchmore easily) via an X-window interface called xnetlib. Using email, one sends messages of theform `send subroutine name from library name' or `send index for library name' to the address`netlib@ornl.gov' or `netlib@research.att.com'. The message will be automatically read and thecorresponding subroutine mailed back. Xnetlib (which can be obtained and installed by sendingthe message `send xnetlib.shar from xnetlib' to netlib@ornl.gov) is an X-window interface whichlets one point at and click on subroutines, which are then automatically transferred back intothe user's directory. There are also index search features to help �nd the appropriate subroutine.To get started using netlib, send the one-line message `send index' to netlib@ornl.gov. A descrip-tion of the overall library should be sent to you within minutes (providing all the interveningnetworks as well as netlib server are up).Interested parties may obtain the software discussed in this paper by sending email to netlib@ornl.govand in the email message typing `send index from scalapack'. Experience with applications isvery important to the authors and we welcome the opportunity to work with researchers whowant to use the codes.ReferencesAlvarez-Cohen, L. M. and P. L. McCarty (1991). A cometabolic biotransformation model forhalogenated aliphatic compounds exhibiting product toxicity. Environmental Science andTechnology 25 (8), 1381{1387.Anderson, E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Ham-marling, A. McKenney, S. Ostrouchov, and D. Sorensen (1992). LAPACK User's Guide.Philadelphia, PA: SIAM.Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,C. Romine, and H. van der Vorst (1994). Templates for the Solution of Linear Systems.Philadelphia: SIAM.Choi, J., J. J. Dongarra, R. Pozo, and D. W. Walker (1992). ScaLAPACK: A scalable lin-ear algebra library for distributed memory concurrent computers. In H. J. Siegel (Ed.),Proceedings of the Fourth Symposium on Massively Parallel Computing, pp. 120{127.Choi, J., J. J. Dongarra, and D. W. Walker (1993a). The design of scalable software libraries fordistributed memory concurrent computers. In J. J. Dongarra and B. Tourancheau (Eds.),Environments and Tools for Parallel Scienti�c Computing, pp. 3{15. Proceedings of work-shop held September 7-8, 1992, in Saint Hilaire du Touvet, France.Choi, J., J. J. Dongarra, and D. W. Walker (1993b). Level 3 BLAS for distributed memoryconcurrent computers. In J. J. Dongarra and B. Tourancheau (Eds.), Environments and21
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