
Probabilistic DomainsReinhold HeckmannFB 14 { Informatik, Prof. WilhelmUniversit�at des Saarlandes, Postfach 151150D-66041 Saarbr�ucken, Germanye-mail: heckmann@cs.uni-sb.deSeptember 16, 1997AbstractWe show the equivalence of several di�erent axiomatizations of the notion of (ab-stract) probabilistic domain in the category of dcpo's and continuous functions. Theaxiomatization with the richest set of operations provides probabilistic selection amonga �nite number of possibilities with arbitrary probabilities, whereas the poorest one hasbinary choice with equal probabilities as the only operation. The remaining theories liein between; one of them is the theory of binary choice by Graham [1].1 IntroductionA probabilistic programming language could contain di�erent kinds of language constructsto express probabilistic choice. In a rather poor language, there might be a construct x� y,whose semantics is a choice between the two possibilities x and y with equal probabilities 1=2.The `possibilities' x and y can be statements in an imperative language or expressions in afunctional language. A quite rich language could contain a construct [p1 : x1; : : : ; pn : xn],where pi are real numbers between 0 and 1 whose sum is 1. The semantics would be to selectone of the possibilities xi with probability pi.Graham [1], Jones [3], and Jones / Plotkin [4] consider an intermediate language with aconstruct x p y, which is written as p! x; y by Graham and x+p y by Jones, where p is areal number between 0 and 1. The semantics of this construct is to select x with probabilityp and y with probability 1� p.The notion of an (abstract) probabilistic domain was introduced by Graham [1] and furtherelaborated by Jones [3, 4] to describe the denotational semantics of a probabilistic languagewith the construct x p y. A probabilistic domain is a dcpo together with a continuousoperation satisfying several axioms, which is used to model the choice construct semantically.For reasons of simplicity, we denote the results of this semantic operation by x p y as well,where x and y are no longer language constructs, but members of the underlying dcpo.Jones and Plotkin de�ne a probabilistic power domain construction which produces the freeprobabilistic domain over a given base domain. This construction is a strong monad in thesense of Moggi [5, 6]. Hence the denotational semantics of probabilistic languages with a- 1 -



construct x p y can be written down schematically using this monad. Such a semantics canbe found in [3].In the paper at hand, we introduce some other notions of probabilistic domain with othersemantic operations which describe a whole range of language constructs from the binarychoice x � y over x p y till [p1 : x1; : : : ; pn : xn] with various intermediate steps. Everykind of probabilistic domain is described as a dcpo together with some continuous operationssatisfying some axioms, i.e., as a model of some algebraic theory in the category DCPO.Then, we prove that all these theories are equivalent in the sense that their categories ofmodels are equivalent. This has several consequences. First, one sees that in the categoryDCPO, all the probabilistic operations mentioned above are in fact equally expressive; eventhe multiple choice [p1 : x1; : : : ; pn : xn] can be de�ned in terms of binary choice x� y (withthe help of �xed point iteration). Next, the probabilistic power construction of [3, 4] notonly produces the free probabilistic domain with x p y, but free probabilistic domains withall other operations as well because all the categories of probabilistic domains are equivalent.Thus, one power construction can be used to describe the semantics of a whole range ofprobabilistic languages.Finding algebraic theories which are equivalent to the probabilistic theory of Graham andJones also shows how some disadvantages of that theory can be avoided. Their theory refersto the unit interval I= [0::1] of the reals with the standard Hausdor� topology and thus goesbeyond domain theory, and their axiom of associativity (in the version of Jones)if pq 6= 1, then (x p y) q z = x pq (y r z), where r = q(1�p)1�pqis a conditional axiom and contains a complex fraction which re
ects the recalculation ofprobabilities when moving the parentheses. The condition is needed to prevent the denomi-nator of this fraction to become zero. The equivalent theories presented in our paper tend toavoid these problems; many of them refer to domains (dcpo's) only, or contain only simpleunconditional axioms.After introducing the mathematical background in Section 2, we present our richest theory,Multiple Choice with Divergence (MCD), in Section 3. Its basic operations are the choiceamong n possibilities x1; : : : ; xn with probabilities p1; : : : ; pn, where Pni=1 pi � 1, for every�nite n � 0. The di�erence 1�Pni=1 pi is the probability to stay undecisive for ever, i.e., todiverge. The possibility of divergence would be odd in a real programming language, but weneed it for the purpose of our equivalence proof.The theory MCD has particularly neat axioms, which are powerful, simple, algorithmicallyintuitive, and also algebraically intuitive if the multiple choice is considered as a formal linearcombination Pni=1 pi �xi. In her thesis [3], Jones derived most parts of MCD from her theoryand used this to prove that her probabilistic power domains are free probabilistic domainsover the argument domain. However, Jones did not present a complete description of MCD,nor did she work the other way round and prove the equivalence of MCD and her theory.In Section 4, we restrict multiple choice to binary choice where the sum of the two probabilitiesis 1. The resulting operation is the original operation x p y of Graham and Jones. Wepresent four versions of the theory of Binary Choice: Theory BC-A (Binary Choice withAssociativity) is the original theory in the version of Jones with the complex conditionalassociativity axiom. In theory BC-R, associativity is replaced by two simpler unconditional- 2 -



axioms, the Rectangle axiom and the axiom of linear combination. Theory BC-P has yetanother set of axioms which contains a Product axiom. Theory BC-L has a large axiomset which contains all the three other axiom sets. Because of our main result that all thesetheories have the same models, a dcpo with binary choice satis�es all the properties listed intheory BC-L once it has been proved that it satis�es one of the three small axiom sets BC-A,BC-R, or BC-P.In Section 5, we restrict the binary choice between x with probability p and y with probability1� p to two special cases: a binary choice `�' between x and y with equal probabilities 1=2,and a choice between x with probability p and ? with probability 1�p, which can be seen asmultiplication of x by a scalar p drawn from the unit interval (with the Scott topology) andconsequently is written as p � x. These operations are similar to the operations in a vectorspace or module, where `�' plays the role of addition. Thus, we call the theories with theseoperations IM for I-module. We present two versions of this theory: a theory IM-S with asmall axiom set, and IM-L with a large axiom set. The axioms of both theories are simpleequality statements. Because of our results, it su�ces to verify the axioms of IM-S for a givenI-module structure, and then all the properties listed in IM-L hold as well.In Section 6, we even drop multiplication and obtain a theory with binary choice with equalprobabilities as the only operation. We call this theory MV (Mean Value algebra) since thiskind of choice has the algebraic properties of mean value formation. The theory MV hasthe advantage of not mentioning real numbers at all, at the expense of a complex axiom,which states that the least �xed point of the function �x: a � x is a. Computationally, thisaxiom re
ects the fact that in a recursive program x = a � x, the possibility a is chosenwith probability 1=2 + 1=4 + 1=8 + � � � = 1, whence the program is equivalent to a. Theother theories do not need this axiom explicitly since it follows from the structure of the unitinterval.The theory MV was already presented by the author in [2] as an example of a `power theory',i.e., a theory with a binary operation modeling the binary choice operator of non-deterministicprogramming languages. In that paper, we did not mention any other probabilistic theory,but only conjectured the equivalence with BC-A, the theory of Jones.In the course of presenting these more and more restricted theories, we also derive everytheory (except for MCD, of course) from a less restricted theory presented earlier. This isdone in the following order: - -MCD BC-L IM-L��	 @@RBC-A BC-R ?@@R ��	BC-P IM-S MV- -To show equivalence of all theories, we �nally have to derive the most powerful theory MCDfrom the most restricted theory MV, i.e., we have to de�ne multiple choice with arbitraryprobabilities in terms of binary choice with equal probabilities 1=2 (and joins of ascendingsequences). This is done in Section 7. - 3 -



2 Mathematical BackgroundWe use the standard de�nitions of posets, least upper bounds or joins (denoted by FA), anddirected sets. A dcpo is a poset where every directed set has a least upper bound. In thispaper, we often call dcpo's domains. A function f : X ! Y between dcpo's X and Y iscontinuous if for all directed subsets D ofX, f(FD) = F f(D) holds. The category of dcpo'sand continuous functions is called DCPO.A subset O of a dcpo X is Scott open if it is upper (x 2 O; x v y ) y 2 O), and for alldirected sets D, FD 2 O implies D \ O 6= ;. The Scott open sets of a dcpo X form atopology on X, the Scott topology. A function f : X ! Y between dcpo's is continuous inthe sense of the previous paragraph i� f�1V is Scott open in X for every Scott open set V ofY. Thus, DCPO can be considered as a full subcategory of the category T OP of topologicalspaces, and it makes sense to speak of the continuity of a function from a space to a dcpo,as it will be done in the description of the BC theories.The unit interval I is the set of real numbers r with 0 � r � 1. We can either consider it asa dcpo ordered by `�' and equip it with the Scott topology, or topologize it by the standardHausdor� topology. The two possibilities are connected by the following lemma:Lemma 2.1 A function f : I! Y from the unit interval to a dcpo Y is continuous w.r.t.the Scott topology on I if and only if it is monotonic w.r.t. the standard order of Iandcontinuous w.r.t. the Hausdor� topology of I.3 Multiple Choice with DivergenceIn this section, we present the probabilistic theory with the most powerful operations: thetheory MCD of multiple choice with divergence. The basic operation of MCD is choicebetween n possibilities x1; : : : ; xn with probabilities p1; : : : ; pn, whose sum is at most 1.In the following table as well as in all subsequent ones, we assume that the probabilisticdomain to be described is a dcpo called X .Operations: Continuous functions rn �Xn ! X for every n � 0, wherern = f(p1; : : : ; pn) 2 In j p1 + � � �+ pn � 1gare dcpo's, i.e., equipped with the Scott topology. The result of applying the operationof degree n to (p1; : : : ; pn) in rn and (x1; : : : ; xn) in Xn is written [p1 : x1; : : : ; pn : xn].Homomorphisms are continuous functions h withh [p1 : x1; : : : ; pn : xn] = [p1 : h x1; : : : ; pn : h xn]:Axioms: The axioms are those of linear combinations Pni=1 pi � xi, namely:Permutation P : For every permutation � of f1; : : : ; ng,[p�1 : x�1; : : : ; p�n : x�n] = [p1 : x1; : : : ; pn : xn]1 law: [1 : x] = x0 law: [0 : x; p1 : y1; : : : ; pn : yn] = [p1 : y1; : : : ; pn : yn]Addition +: [p : x; q : x; r1 : y1; : : : ; rn : yn] = [p+ q : x; r1 : y1; : : : ; rn : yn]Substitution S: [p : [q1 : x1; : : : ; qk : xk ]; r1 : y1; : : : ; rn : yn]= [p q1 : x1; : : : ; p qk : xk; r1 : y1; : : : ; rn : yn]- 4 -



For simplicity, we have omitted the universal quanti�cation, which for instance for substitu-tion should be: for all k � 0 and n � 0, x1, : : :xk , y1, : : : yn in X , (q1; : : : ; qk) in rk, and(p; r1; : : : ; rn) in rn+1. Thus, the axioms are not conditional, although they can be appliedonly to real numbers satisfying certain conditions.4 Binary Choice without DivergenceIn this section, we present our four versions of the theory of binary choice without divergenceBC, and derive them from MCD. The binary choice x p y introduced here correspondsto [p : x; 1� p : y] from the previous section. Whereas MCD refers to rn with the Scotttopology, the BC theories refer to Iwith the Hausdor� topology.Operations: A constant 0 : X and an operation � : I�X �X ! X , which is continuous ineach argument separately, if I is equipped with the standard Hausdor� topology. Wewrite x p y instead of �(p; x; y).Homomorphisms are continuous functions h withh (0) = 0 and h (x p y) = hx p hy.Axioms, version L (large axiom set):? Least element: 0 v x for all x in X .C Commutativity: x p y = y 1�p x.0 Zero law: x 0 y = y.1 One law: x 1 y = x.I Idempotence: x p x = x.D Distributivity: x p (y q z) = (x p y) q (x p z).P Product law: (x p y) q y = x pq y.L Linear combination:(x p y) r (x q y) = x s y where s = rp+ (1� r)q.R Rectangle law: (x q y) p (u q v) = (x p u) q (y p v).A Associativity:If pq 6= 1, then (x p y) q z = x pq (y r z), where r = q(1�p)1�pq .Axioms, version A (with associativity):Axioms ?, C, 1, I , and A from the list above.Axioms, version R (with rectangle law):Axioms ?, 0, 1, L, and R from the list above.Axioms, version P (with product law):Axioms ?, 0, 1, I , P , L12 , and R12 , where L12 is the instance of L with r = 1=2, andR12 is the instance of R with p = q = 1=2.The wording `� is continuous in each argument separately' means that the functions�p: �(p; x; y) : I! X are continuous for every �xed x and y, and analogously for thesecond and third argument. Within DCPO, such a separate continuity would be equivalentto the continuity of � itself; this is why we did not postulate it explicitly in case of MCD.- 5 -



Jones [3] has a more complex continuity requirement for � which is more restrictive in generalthan ours, but equivalent for the important case of a continuous domain X . We relaxed thecontinuity requirement because with the stronger version, equivalence of BC-A to the otherprobabilistic theories cannot be proved.The rectangle law is named because of the following rectangular scheme:x p yqj jqu p vOn the left hand side of R, choice is �rst performed within the two rows, then the results ofthe rows are combined. On the right hand side, choice is �rst done in the two columns, thenthe results of the columns are combined.We presented theory BC in four versions because the equivalence of the respective sets ofaxioms is by no means obvious. For instance, we have no idea how to prove associativity fromthe axioms of BC-R directly, without reconstructing MCD as we have done in the paper athand.Theory BC-L comprises all interesting equalities we know of, BC-A is the theory of Grahamand Jones, BC-R is the nicest theory in our view since it consists of simple unconditionalaxioms only, and BC-P consists of just the properties we need to derive IM-S in the nextsection (which in turn consists of just the properties we need to derive MV).Derivation of BC-L from MCDThe constant 0 of BC is case n = 0 of MCD, i.e., 0 = [ ]; and �(p; x; y) = x p y is de�nedby [p : x; 1� p : y]. Continuity of � in the second and third argument is immediate, andcontinuity in the �rst argument holds since ' : IH ! r2 with ' (p) = (p; 1�p) is continuous,where IH is the unit interval with the Hausdor� topology, and r2 has the Scott topology.Next, we show that 0 is the least element: 0 = [ ] = [0 : x] holds by the 0 law of MCD. Bycontinuity and hence monotonicity of the operation of MCD, [0 : x] v [1 : x] follows. By the1 law, the latter term equals x.The equational axioms of BC-L can be shown by the following strategy: translate both sidesinto MCD by x p y = [p : x; 1� p : y], then 
atten them using substitution, delete entries0 : x using the 0 axiom of MCD, combine multiple entries with the same dcpo element usingthe + axiom, and then compare both sides of the equality. For instance, the proof of L looksas follows:We have to show (x p y) r (x q y) = x s y where s = rp+ (1� r)q. Translating the lefthand side into MCD yields:(x p y) r (x q y) = [r : [p : x; 1� p : y]; 1� r : [q : x; 1� q : y]]With substitution and addition, we obtain [s : x; s0 : y], where s = rp+ (1� r)q as required,and s0 = r(1� p) + (1� r)(1� q), which is 1� s as required (check s+ s0 = 1).Derivation of BC-P from BC-RWe have to deduce I and P from 0, 1, L, and R.I : x p x 1= (x 1 x) p (x 1 x) L= x s xwhere s = p � 1 + (1� p) � 1 = 1. By 1, x s x = x follows.- 6 -



P : (x p y) q y 0= (x p y) q (x 0 y) L= x s ywhere s = q � p+ (1� q) � 0 = pq.Derivation of BC-P from BC-AWe have to deduce 0, P , L12 , and R12 from C, 1, I , and A.Axiom 0: x 0 y C= y 1 x 1= yFor P , we have to distinguish two cases: if pq = 1, then p = q = 1, and (x 1 y) 1 y = x =x 1 y holds by the 1 law. Otherwise, axiom A can be applied:(x p y) q y A= x pq (y r y) I= x pq yFor L12 , we have to show (x p y) 1=2 (x q y) = x (p+q)=2 y. Applying A to the lefthand side, we obtain x p=2 (y r (x q y)) with r = (1�p)=21�p=2 = 1�p2�p . Applying C yieldsx p=2 ((x q y) r0 y) with r0 = 1 � r = 12�p . Applying P (which is already proved) yieldsx p=2 (x qr0 y). Now, we apply C twice, then P , and �nally C again, which gives x s y withs = 1� (1� q2�p)(1� p2) = 1� 2�p�q2�p � 2�p2 = (p+ q)=2.For R12 , we have to show (x 1=2 y) 1=2 (u 1=2 v) = (x 1=2 u) 1=2 (y 1=2 v). This is done by thefollowing chain of equations:(x 1=2 y) 1=2 (u 1=2 v) A= x 1=4 (y 1=3 (u 1=2 v)) C= x 1=4 ((u 1=2 v) 2=3 y)A= x 1=4 (u 1=3 (v 1=2 y)) A= (x 1=2 u) 1=2 (v 1=2 y) C= (x 1=2 u) 1=2 (y 1=2 v)5 I-ModulesIn this section, we introduce the theory IM of I-modules. Its `addition' is binary choice withequal probabilities 1=2, and its `multiplication' is choice between a point and 0. The axiomsare very much like those of a module, hence the name.Theory IM comes up in two versions: IM-L has a large set of axioms which includes all usefulproperties we know of, and IM-S has a small subset thereof, just enough to derive theory MVin the next section.Again, we do not know how all axioms of IM-L can be proved from those of IM-S directly,without reconstructing MCD as done in this paper.Operations: A constant 0 : X , a continuous operation � : X �X ! X, and a contin-uous operation � : I�X ! X , where I is considered as a dcpo (Scott topology).Homomorphisms are continuous functions h withh(0) = 0, h(x� y) = hx � hy, and h(p � x) = p � hx.Axioms, version L (large axiom set):? Least element: 0 v x for all x in X .C Commutativity: x� y = y � x.I Idempotence: x� x = x.R Rectangle law: (x� y)� (u� v) = (x� u)� (y � v).R0 Right zero: p � 0 = 0.RD Right distributivity: p � (x� y) = p � x� p � y.- 7 -



L0 Left zero: 0 � x = 0.LD Left distributivity: (p� q) � x = p � x� q � x, where p� q = (p+ q)=2 in I.1 One law: 1 � x = x.PA Product associativity: p � (q � x) = (p � q) � x.Axioms, version S (small axiom set):Axioms R, L0, LD, and 1 from the list above.Surprisingly, idempotence and commutativity of `�' do not show up as axioms of IM-S.Nevertheless, they hold in every IM-S algebra by the main result of our paper.Derivation of IM-S from BC-PWe de�ne: x� y = x 1=2 y, and p � x = x p 0.The operation � = �(x; y): �(1=2; x; y) : X � X ! X is continuous in its two argumentsseparately, since � is continuous in its second and third argument separately. Within DCPO,this separate continuity is equivalent to the continuity of `�' itself.The function � = �(p; x): �(p; x; 0) : I�X ! X is continuous in its second argument since �is. For continuity in the �rst argument, we apply Lemma 2.1, i.e., we have to show that for�xed x, the function �p: p � x is monotonic.Let p � q in I. We have to show x p 0 v x q 0. Because of p � q, there is r in Isuch thatp = r � q. Applying the product law P of BC-P, we obtain x p 0 = (x r 0) q 0. From0 v x, x r 0 v x r x I= x follows, whence x p 0 v x q 0.R: The rectangle law of IM is R12 of BC-P.L0: 0 � x = x 0 0 0= 0.LD: Left distributivity of IM is the instance of L12 of BC-P with y = 0.1: 1 � x = x 1 0 1= x.Derivation of IM-L from BC-LWhen expressed in the language of BC, all the axioms of IM-L but RD become instances ofaxioms of BC-L. Right distributivity becomes(x 1=2 y) p 0 = (x p 0) 1=2 (y p 0);with follows from distributivity D of BC-L with commutativity.6 Mean ValuesThe probabilistic theory with the weakest operations is MV, the theory of mean values.It results from IM by dropping multiplication. Thus, MV does not mention real numbersexplicitly.Operations: A constant 0 : X , and a continuous operation � : X �X ! X .Homomorphisms are continuous functions h withh(0) = 0 and h(x� y) = hx� hy.Axioms: Commutativity: x� y = y � x,Rectangle law: (x� y)� (u� v) = (x� u)� (y � v),- 8 -



Least element: 0 v x,Fixed point axiom: The least �xed point of �x: a� x is a.For the �xed point axiom, remember that the carrier X is a dcpo. The �xed point axiommay alternatively be written as idempotence a � a = a, which means that a is a �xed pointof �x: a � x, plus the conditional axiom a � b = b) a v b, which means that a is the least�xed point. Yet another formulation follows from making the �xed point iteration explicit:if a0 = 0 and an+1 = a� an, then Fn�0 an = a. From this statement, a slightly stronger onecan be easily deduced: if b0 v a and bn+1 = a� bn, then Fn�0 bn = a. It is this last versionwhich is needed for the derivation of MCD from MV at the end of this paper.Now let us derive the axioms of MV from those of IM-S. The rectangle law is immediate. Theleast element property of 0 holds since 0 = 0 �x v 1 �x = x. For the �xed point axiom, we haveto consider the sequence de�ned by a0 = 0 and an+1 = a � an. We claim an = (1� 2�n) � afor all n; the equation Fn�0 an = a then follows from continuity of multiplication and theproperty 1 � a = a. The equality a0 = (1 � 2�0) � a holds since 0 � a = 0. For the inductivestep, we have an+1 = a � an = 1 � a� (1� 2�n) � a = (1 + 1� 2�n)=2 � a = (1� 2�(n+1)) � a.For commutativity, �x two members a and b of X . We start with some auxiliary statements.In the proof of the third, we may use idempotence because it follows from the �xed pointaxiom, which is already validated. (It could also be shown directly by x�x = 1 �x� 1 �x =1 � x = x.)(1) a� p � a = p � a � aProof: a� p � a = 1 � a� p � a = (p+ 1)=2 � a, and same for p � a � a.(2) a� 0 = 0� aProof: From (1) with p = 0.(3) a� c = c� a ) a� (b� c) = (c� b)� aProof: a� (b�c) I= (a�a)� (b�c) R= (a�b)� (a�c) = (a�b)� (c�a) R= (a�c)� (b�a) =(c� a)� (b� a) R= (c� b)� (a� a) I= (c� b)� a.Now we de�ne c0 = 0 and cn+1 = b� cn. From the proof of the �xed point axiom, we knowcn = (1 � 2�n) � b. By (1), b � cn = cn � b follows. Thus, cn+1 = cn � b also holds. Byinduction, we can show a � cn = cn � a for all n; the start holds by (2), and the inductivestep follows from (3). We already know Fn�0 cn = b. Continuity of `�' yields a� b = b� aas required.7 The Big Step: From MV to MCDIn the previous sections, we started from the theory MCD, which has a rich set of operations,and restricted its operations until only binary choice with equal probabilities was left. In thissection, we go all the way back: we assume an MV algebra X as given, and prove that it isan MCD algebra as well. To this end, we have to reconstruct multiple choice with arbitraryprobabilities from binary choice with probabilities 1=2. We �rst consider multiple binarychoice, then multiple choice with dyadic rationals as probabilities, and �nally apply directedjoins and continuity arguments to reach all reals in the unit interval.Multiple Binary Choice - 9 -



Let X be an MV algebra. For every n, we de�ne an operator Ln : X2n ! X which takes 2narguments from X .� L0(x) = x.� Ln+1(xi j i = 1 :: 2n+1) = Ln(xi j i = 1 :: 2n)�Ln(xi j i = 2n + 1 :: 2n+1).Thus, Ln(x1; : : : ; x2n) is obtained by evaluating a complete binary tree of depth n, whoseinner nodes are marked by `�' and whose leaves are x1 through x2n . Complete binary treescan be pasted into each other:Proposition 7.1Ln(Lm(xij j j = 1 :: 2m) j i = 1 :: 2n) = Ln+m(xij j i = 1 :: 2n; j = 1 :: 2m)(The 2n sequences (xij j j = 1 :: 2m) are concatenated.)Proof: Induction by n. 2From commutativity and the rectangle law, we can conclude:Proposition 7.2 The operands of Ln can be arbitrarily permuted.Proof: Induction on n. Case n = 0 is obvious, and case n = 1 holds by commutativity.For n > 1, let � = (xi j i = 1 ::2n) be the sequence of arguments, and let � be its �rst quarter,� the second, 
 the third, and � the last.It su�ces to show that two adjacent operands xk and xk+1 can be transposed. If k 6= 2n�1,then the pair to be transposed is contained in the �rst half �� or in the second 
�. Becauseof Ln(�) =Ln�1(��)�Ln�1(
�), the pair can be transposed by induction.The di�cult case is k = 2n�1, i.e., the last item of � has to be transposed with the �rst itemof 
. By de�nition,Mn (�) = (Mn�2(�)�Mn�2(�))� (Mn�2(
)�Mn�2(�))holds. Applying commutativity to the right subexpression and then the rectangle law to thewhole expression yields(Mn�2(�)�Mn�2(�))� (Mn�2(�)�Mn�2(
)) = Mn�1(��)�Mn�1(�
)Then the induction hypothesis can be applied, and the expression can be transformed back.2In the sequel, we shall use an abbreviation: if an argument of Ln occurs k times, we shallwrite k � x, e.g., L2(3 � x; 1 � y; 0 � z) =L2(x; x; x; y).Multiple Choice with Dyadic RationalsNow, we construct values corresponding to multiple choice [p1 : x1; : : : ; pr : xr] with pi =ki=2n where ki and n are non-negative integers. For simplicity, the exponent of the denomi-nator is written as an index, i.e., we de�ne valueshk1 : x1; : : : ; kr : xrinwhere r � 0, xi in X , n and ki are non-negative integers with k1 + � � �+ kr � 2n.The de�nition of these values is in terms of Ln, where the necessary number of argumentsis obtained by �lling up with 0.hk1 : x1; : : : ; kr : xrin = Mn (k1 � x1; : : : ; kr � xr; (2n � rXi=1 ki) � 0)- 10 -



In the sequel, we show that the dyadic choice expressions de�ned above satisfy close ana-logues of the axioms of MCD. For simplicity, we shall often use abbreviations such ashki : xi; l : y; mj : zjinfor hk1 : x1; : : : ; kr : xr; l : y; m1 : z1; : : : ; ms : zsin:Proposition 7.3(1) The entries in a dyadic choice expression may be arbitrarily permuted.(2) For ki with Pi ki � 2n: h0 : x; mi : yiin = hmi : yiin(3) For k, l, and mi with k + l +Pimi � 2n:hk : x; l : x; mi : yiin = hk + l : x; mi : yiin(4) For ki and li with Pi ki � 2n and Pi li � 2n:hki : xiin � hli : xiin = hki + li : xiin+1(5) For ki with Pi ki � 2n: hki : xiin = h2ki : xiin+1(6) For k and si with k +Pi si � 2n and lj with Pj lj � 2m:hk : hlj : xjim; si : yiin = hk lj : xj ; 2msi : yiin+m(7) For k and li with k + 1 +Pi li � 2n:hk : x; li : yiin v hk + 1 : x; li : yiinProof: Most proofs are straightforward. We give a few hints:(5) follows from (4) and idempotence.(6) is shown by applying Prop. 7.1 and the fact yi =Lm(2m � yi).(7) After the transformation intoLn expressions, the two sides only di�er in that one of the2n operands is 0 on the left hand side, and x on the right hand side. The operation `�'is continuous, whence monotonic, and 0 v x holds in every MV algebra. 2Multiple Choice with Real Coe�cientsIn this subsection, we use the dyadic choice expressions of the previous subsection to de�nechoice expressions with real numbers as coe�cients.The unit interval I is a continuous domain, and the dyadic rationals form a basis of thisdomain. The way-below relation on Iis given by p� q i� p = 0 or p < q. It has the propertythat for all directed sets D of I, p� FD holds i� there is d in D with p � d. Every p in Iis a directed join of all dyadic rationals d with d� p.For every p in I, we de�ne p(n) to be the greatest non-negative integer k with k=2n � p. Weshow several properties of this notion:Proposition 7.4(1) 0(n) = 0 for all n.(2) If p � q, then p(n) � q(n).(3) 2p(n) � p(n+1).(4) If k 6= 0 and m � n, then (k=2n)(m) = 2m�n � k � 1.Proof:(1) is obvious, and (2) holds since p(n)=2n � p � q.- 11 -



(3) p(n)=2n � p implies 2p(n)=2n+1 � p, whence 2p(n) � p(n+1).(4) The statement l=2m � k=2n is equivalent to l � 2m�n � k. Since the right hand side isnot 0, this is in turn equivalent to l < 2m�n � k, or l � 2m�n � k � 1. 2We now de�ne arbitrary choice as follows:[p1 : x1; : : : ; pr : xr] = Gn�0 hp(n)1 : x1; : : : ; p(n)r : xrinThe dyadic choice expressions in this de�nition are well-de�ned since Pi pi � 1 impliesPi p(n)i � Pi pi � 2n � 2n. The join is well-de�ned because it is directed. For, hp(n)i : xiinequals h2p(n)i : xiin+1 by Prop. 7.3 (5), which by Prop. 7.4 (3) and Prop. 7.3 (7) is belowhp(n+1)i : xiin+1.By Prop. 7.3 (1), the entries in a multiple choice expression may be arbitrarily permuted, i.e.,the permutation axiom of MCD is satis�ed. By Prop. 7.4 (1) and Prop. 7.3 (2), the expressionssatisfy the 0 axiom of MCD. The proof of the remaining MCD axioms is postponed.The expressions [pi : xi] are continuous in every argument xi as a directed join of continuousfunctions. Continuity in pi is a bit more complex. Thanks to the permutation rule, it su�cesto show continuity in the �rst argument. We claim: If D is a directed set in Iwith FD = p,then Fd2D[d : x; qi : yi] = [p : x; qi : yi].The relation `v' holds by monotonicity (Prop. 7.4 (2) and Prop. 7.3 (7)). For the oppositerelation, p(n)=2n � p = FD implies the existence of some dn in D such that p(n)=2n � dn,whence p(n) � d(n)n . Then[p : x; qi : yi] = Fn hp(n) : x; q(n)i : yiinv Fn hd(n)n : x; q(n)i : yiinv FnFd2D hd(n) : x; q(n)i : yiin= Fd2DFn hd(n) : x; q(n)i : yiin= Fd2D[d : x; qi : yi]This completes the proof of the continuity of the multiple choice operation.Finally, we show that a multiple choice with coe�cients which happen to be dyadic rationalscoincides with the dyadic choice introduced earlier.Proposition 7.5 [k1=2n : x1; : : : ; kr=2n : xr] = hk1 : x1; : : : ; kr : xrinProof: By applying Prop. 7.3 (2), we may assume without restriction that all ki are strictlypositive. Using Prop. 7.4 (4), we have to showGm�n h2m�n � ki � 1 : xiim = hki : xiin:Renaming m� n into m, this is equivalent to Fm�0 h2m � ki � 1 : xiin+m = hki : xiin.We apply the last version of the �xed point axiom of MV (Section 6), which says: if b0 v aand bm+1 = bm � a, then Fm�0 bm = a. Of course, we set a = hki : xiin and bm =h2mki � 1 : xiin+m. The relation b0 v a holds by Prop. 7.3 (7) and (5). Next, we computebm � a.bm � a = h2mki � 1 : xiin+m � hki : xiin7:3 (5)= h2mki � 1 : xiin+m � h2mki : xiin+m7:3 (4)= h2mki � 1 + 2mki : xiin+m+1 = bm+1 2- 12 -
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