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Abstract

We show the equivalence of several different axiomatizations of the notion of (ab-
stract) probabilistic domain in the category of depo’s and continuous functions. The
axiomatization with the richest set of operations provides probabilistic selection among
a finite number of possibilities with arbitrary probabilities, whereas the poorest one has
binary choice with equal probabilities as the only operation. The remaining theories lie
in between; one of them is the theory of binary choice by Graham [1].

1 Introduction

A probabilistic programming language could contain different kinds of language constructs
to express probabilistic choice. In a rather poor language, there might be a construct = @ y,
whose semantics is a choice between the two possibilities x and y with equal probabilities 1/2.
The ‘possibilities’ & and y can be statements in an imperative language or expressions in a
functional language. A quite rich language could contain a construct [py : @1, ..., Py : @4),
where p; are real numbers between 0 and 1 whose sum is 1. The semantics would be to select
one of the possibilities z; with probability p;.

Graham [1], Jones [3], and Jones / Plotkin [4] consider an intermediate language with a
construct # £y, which is written as p — x,y by Graham and z +, y by Jones, where p is a
real number between 0 and 1. The semantics of this construct is to select # with probability
p and y with probability 1 — p.

The notion of an (abstract) probabilistic domain was introduced by Graham [1] and further
elaborated by Jones [3, 4] to describe the denotational semantics of a probabilistic language
with the construct z £~ y. A probabilistic domain is a dcpo together with a continuous
operation satisfying several axioms, which is used to model the choice construct semantically.
For reasons of simplicity, we denote the results of this semantic operation by z £ y as well,

where 2 and y are no longer language constructs, but members of the underlying depo.

Jones and Plotkin define a probabilistic power domain construction which produces the free
probabilistic domain over a given base domain. This construction is a strong monad in the

sense of Moggi [5, 6]. Hence the denotational semantics of probabilistic languages with a



construct £~y can be written down schematically using this monad. Such a semantics can

be found in [3].

In the paper at hand, we introduce some other notions of probabilistic domain with other
semantic operations which describe a whole range of language constructs from the binary
choice z @ y over @ £ y till [py : 21, ..., pn : x,] with various intermediate steps. Every
kind of probabilistic domain is described as a dcpo together with some continuous operations
satisfying some axioms, i.e., as a model of some algebraic theory in the category DCPO.
Then, we prove that all these theories are equivalent in the sense that their categories of
models are equivalent. This has several consequences. First, one sees that in the category
DCPO, all the probabilistic operations mentioned above are in fact equally expressive; even
the multiple choice [py : @1, ..., p, : @] can be defined in terms of binary choice = & y (with
the help of fixed point iteration). Next, the probabilistic power construction of [3, 4] not
only produces the free probabilistic domain with £y, but free probabilistic domains with
all other operations as well because all the categories of probabilistic domains are equivalent.
Thus, one power construction can be used to describe the semantics of a whole range of
probabilistic languages.

Finding algebraic theories which are equivalent to the probabilistic theory of Graham and
Jones also shows how some disadvantages of that theory can be avoided. Their theory refers
to the unit interval I = [0..1] of the reals with the standard Hausdorff topology and thus goes
beyond domain theory, and their axiom of associativity (in the version of Jones)

if pg# 1, then (v Zy)L 2 = 22 (y = 2), where r = qll_;z

is a conditional axiom and contains a complex fraction which reflects the recalculation of
probabilities when moving the parentheses. The condition is needed to prevent the denomi-
nator of this fraction to become zero. The equivalent theories presented in our paper tend to
avoid these problems; many of them refer to domains (dcpo’s) only, or contain only simple

unconditional axioms.

After introducing the mathematical background in Section 2, we present our richest theory,
Multiple Choice with Divergence (MCD), in Section 3. Its basic operations are the choice
among n possibilities x4, ..., @, with probabilities py, ..., p,, where 3", p; < 1, for every
finite n > 0. The difference 1 — 3"7  p; is the probability to stay undecisive for ever, i.e., to
diverge. The possibility of divergence would be odd in a real programming language, but we

need it for the purpose of our equivalence proof.

The theory MCD has particularly neat axioms, which are powerful, simple, algorithmically
intuitive, and also algebraically intuitive if the multiple choice is considered as a formal linear
combination Y1, p; - @;. In her thesis [3], Jones derived most parts of MCD from her theory
and used this to prove that her probabilistic power domains are free probabilistic domains
over the argument domain. However, Jones did not present a complete description of MCD,

nor did she work the other way round and prove the equivalence of MCD and her theory.

In Section 4, we restrict multiple choice to binary choice where the sum of the two probabilities
is 1. The resulting operation is the original operation # £ y of Graham and Jones. We
present four versions of the theory of Binary Choice: Theory BC-A (Binary Choice with
Associativity) is the original theory in the version of Jones with the complex conditional
associativity axiom. In theory BC-R, associativity is replaced by two simpler unconditional



axioms, the Rectangle axiom and the axiom of linear combination. Theory BC-P has yet
another set of axioms which contains a Product axiom. Theory BC-L has a large axiom
set which contains all the three other axiom sets. Because of our main result that all these
theories have the same models, a dcpo with binary choice satisfies all the properties listed in
theory BC-L once it has been proved that it satisfies one of the three small axiom sets BC-A,
BC-R, or BC-P.

In Section 5, we restrict the binary choice between x with probability p and y with probability
1 — p to two special cases: a binary choice ‘@’ between 2 and y with equal probabilities 1/2,
and a choice between x with probability p and — with probability 1 — p, which can be seen as
multiplication of # by a scalar p drawn from the unit interval (with the Scott topology) and
consequently is written as p - x. These operations are similar to the operations in a vector
space or module, where ‘@’ plays the role of addition. Thus, we call the theories with these
operations IM for I-module. We present two versions of this theory: a theory IM-S with a
small axiom set, and IM-L with a large axiom set. The axioms of both theories are simple
equality statements. Because of our results, it suffices to verify the axioms of IM-S for a given

I-module structure, and then all the properties listed in IM-L hold as well.

In Section 6, we even drop multiplication and obtain a theory with binary choice with equal
probabilities as the only operation. We call this theory MV (Mean Value algebra) since this
kind of choice has the algebraic properties of mean value formation. The theory MV has
the advantage of not mentioning real numbers at all, at the expense of a complex axiom,
which states that the least fixed point of the function Az.a @ z is . Computationally, this
axiom reflects the fact that in a recursive program z = a @ z, the possibility « is chosen
with probability 1/2 4+ 1/4 + 1/8 + --- = 1, whence the program is equivalent to a. The
other theories do not need this axiom explicitly since it follows from the structure of the unit
interval.

The theory MV was already presented by the author in [2] as an example of a ‘power theory’,
i.e., a theory with a binary operation modeling the binary choice operator of non-deterministic
programming languages. In that paper, we did not mention any other probabilistic theory,
but only conjectured the equivalence with BC-A, the theory of Jones.

In the course of presenting these more and more restricted theories, we also derive every
theory (except for MCD, of course) from a less restricted theory presented earlier. This is
done in the following order:

MCD BC-L IM-L
N\
BC-A BC-R
N/
BC-P IM-S MV

To show equivalence of all theories, we finally have to derive the most powerful theory MCD
from the most restricted theory MV, i.e., we have to define multiple choice with arbitrary
probabilities in terms of binary choice with equal probabilities 1/2 (and joins of ascending
sequences). This is done in Section 7.



2 Mathematical Background

We use the standard definitions of posets, least upper bounds or joins (denoted by | | A), and
directed sets. A dcpo is a poset where every directed set has a least upper bound. In this
paper, we often call depo’s domains. A function f : X — Y between dcpo’s X and Y is
continuous if for all directed subsets D of X, f([|D) = || f(D) holds. The category of dcpo’s
and continuous functions is called DCPO.

A subset O of a decpo X is Scott open if it is upper (z € O, 2 C y = y € O), and for all
directed sets D, | |D € O implies D N O # (. The Scott open sets of a depo X form a
topology on X, the Scott topology. A function f: X — Y between dcpo’s is continuous in
the sense of the previous paragraph iff f=1V is Scott open in X for every Scott open set V' of
Y. Thus, DCPO can be considered as a full subcategory of the category 7 OP of topological
spaces, and it makes sense to speak of the continuity of a function from a space to a dcpo,
as it will be done in the description of the BC theories.

The unit interval T is the set of real numbers r with 0 < r < 1. We can either consider it as
a depo ordered by ‘<’ and equip it with the Scott topology, or topologize it by the standard
Hausdorff topology. The two possibilities are connected by the following lemma:

Lemma 2.1 A function f:T— Y from the unit interval to a dcpo Y is continuous w.r.t.
the Scott topology on T if and only if it is monotonic w.r.t. the standard order of T and
continuous w.r.t. the Hausdorfl topology of T.

3 Multiple Choice with Divergence

In this section, we present the probabilistic theory with the most powerful operations: the
theory MCD of multiple choice with divergence. The basic operation of MCD is choice
between n possibilities zq, ..., x, with probabilities py, ..., p,, whose sum is at most 1.

In the following table as well as in all subsequent ones, we assume that the probabilistic
domain to be described is a depo called X.

Operations: Continuous functions V,, x X™ — X for every n > 0, where
are dcpo’s, i.e., equipped with the Scott topology. The result of applying the operation
of degree n to (p1, ..., pn)in Vy and (21, ..., ,) in X™is written [py : @1, ..., pp © Ty

Homomorphisms are continuous functions h with

hipr:ay, «coupniap] = [prihay, oo, py ot hay).
Axioms: The axioms are those of linear combinations ) 7, p; - ;, namely:

Permutation P: For every permutation 7 of {1, ..., n},

[Pr1 2 @ty o vvs Prn t Ton] = [P12 %1, « vy Pt Ty
lTlaw: [1:2] = =z
Olaw: [0:a, p1: Yty ovs P Un] = [PL:ULs o vvy Pnt Un)
Addition 4: [pra,q:a, r iy, ooy ot Yn] = [PH G, L YL, ey Th YR
Substitution St [p: g1t @1, - ey Gk P TR TL YLy ooy T Yn)

= [pPqu:iae, o PR Ty TL YLy -y Tt Yn)



For simplicity, we have omitted the universal quantification, which for instance for substitu-
tion should be: for all £ > 0 and n > 0, 21, ... 2%, Y1, ... Yo in X, (q1, ..., q&) in Vi, and
(p, 71, -+, ) in V1. Thus, the axioms are not conditional, although they can be applied
only to real numbers satisfying certain conditions.

4 Binary Choice without Divergence

In this section, we present our four versions of the theory of binary choice without divergence
BC, and derive them from MCD. The binary choice # £ y introduced here corresponds
to [p:a, 1 —p:y] from the previous section. Whereas MCD refers to V,, with the Scott
topology, the BC theories refer to T with the Hausdorfl topology.

Operations: A constant 0: X and an operation §:1x X x X — X, which is continuous in
each argument separately, if T is equipped with the standard Hausdor{T topology. We
write z 2~ y instead of 8(p, z, y).

Homomorphisms are continuous functions h with
h(0)=0and h(z £ y) = ha £ hy.

Axioms, version L (large axiom set):

— Least element: 0 C 2 for all z in X.

C Commutativity: = Ly =y =r .

0 Zero law: 2 %y = y.

1 One law: 2 Ly = .

I Idempotence: z £ 2 = z.

D Distributivity: @ 2 (y L 2) = (¢ L y) L (z L 2).

P Product law: (z L y) L y=a 2 y.

L Linear combination:

(z L y) (2L y)=2->y where s=rp+ (1 —1)qg.

R Rectangle law: (z L y) 2 (u-Lv) = (2 2 u) L (y L)

A Associativity:

Py Ly g PL(y — 2(1-p)
If pg # 1, then (¢ —y) L2z =2 (y — z), where r = TR

Axioms, version A (with associativity):
Axioms —, (', 1, I, and A from the list above.

Axioms, version R (with rectangle law):
Axioms —, 0, 1, L, and R from the list above.

Axioms, version P (with product law):
Axioms —, 0, 1, I, P, L%, and R%, where L% is the instance of L with » = 1/2, and
R% is the instance of R with p = ¢ = 1/2.
The wording ‘8 is continuous in each argument separately’ means that the functions
Ap. B(p, x,y) : T — X are continuous for every fixed z and y, and analogously for the
second and third argument. Within DCP O, such a separate continuity would be equivalent

to the continuity of 3 itself; this is why we did not postulate it explicitly in case of MCD.



Jones [3] has a more complex continuity requirement for 5 which is more restrictive in general
than ours, but equivalent for the important case of a continuous domain X. We relaxed the
continuity requirement because with the stronger version, equivalence of BC-A to the other
probapbilistic theories cannot be proved.

The rectangle law is named because of the following rectangular scheme:

x Loy
q| |q
v 2 v

On the left hand side of R, choice is first performed within the two rows, then the results of
the rows are combined. On the right hand side, choice is first done in the two columns, then

the results of the columns are combined.

We presented theory BC in four versions because the equivalence of the respective sets of
axioms is by no means obvious. For instance, we have no idea how to prove associativity from
the axioms of BC-R directly, without reconstructing MCD as we have done in the paper at

hand.
Theory BC-L comprises all interesting equalities we know of, BC-A is the theory of Graham

and Jones, BC-R is the nicest theory in our view since it consists of simple unconditional
axioms only, and BC-P consists of just the properties we need to derive IM-S in the next
section (which in turn consists of just the properties we need to derive MV).

Derivation of BC-L from MCD

The constant 0 of BC is case n = 0 of MCD, i.e., 0 = []; and 8(p,z,y) = @ =y is defined
by [p:x,1—p:y]. Continuity of § in the second and third argument is immediate, and
continuity in the first argument holds since ¢ : Iy — V; with ¢ (p) = (p, 1 — p) is continuous,
where Ty is the unit interval with the Hausdorff topology, and V5 has the Scott topology.
Next, we show that 0 is the least element: 0 = [] = [0 : 2] holds by the 0 law of MCD. By
continuity and hence monotonicity of the operation of MCD, [0 : z] C [1 : ] follows. By the
1 law, the latter term equals x.

The equational axioms of BC-L can be shown by the following strategy: translate both sides
into MCD by # -y = [p:2, 1 — p:y], then flatten them using substitution, delete entries
0 : z using the 0 axiom of MCD, combine multiple entries with the same decpo element using
the 4+ axiom, and then compare both sides of the equality. For instance, the proof of L looks
as follows:

We have to show (¢ £ y) = (2 L y) = v =y where s = rp+ (1 — r)¢. Translating the left

hand side into MCD yields:
(eLy)=(eLy)=[r:[pra,1—pryl,1-r:fg:a,1-q:y]]

With substitution and addition, we obtain [s: z, s’ : y], where s = rp+ (1 — 7)q as required,

and s" = r(1—p)+ (1 —r)(1—q), which is 1 — s as required (check s + s = 1).

Derivation of BC-P from BC-R

We have to deduce I and P from 0, 1, L, and R.

I atal Gl alalas,

where s=p-1+(1—-p)-1=1. By 1, 2 =2 = z follows.



Pro(aly) Ly & @ty L(ely) £ oy
where s=¢-p+(1—¢)-0=pq.
Derivation of BC-P from BC-A

We have to deduce 0, P, L%, and R% from C, 1, I, and A.

Axiom 0: 22y g Yy L Y

For P, we have to distinguish two cases: if pg = 1, then p = ¢ =1, and (z L ) Ly =2 =
x -y holds by the 1 law. Otherwise, axiom A can be applied:

(z2y) Ly d g2y

For L1, we have to show (

I
y)zwpqy
1

y) L ( L y) =2 (p+a)/2 y. Applying A to the left
— (2

y)) with r = tz/; = %%g. Applying C' yields
1

x P2 (2 L y) T y) with 7 =1—-r = = Applying P (which is already proved) yields

hand side, we obtain # == (

P2 (z ar’ y). Now, we apply C twice, then P, and finally C' again, which gives z = y with

=1 (1 E)(1- B =1 5 2 = ()2,

For R, we have to show (x ok ) ok (u ok v) = (z ok w) ok (y ok v). This is done by the
following chain of equations:

(2 y) 2w 0) 2 0 (B @ ) S e B () B y)

2 BBy 2 @R PRy £ @ Py

5 1-Modules

In this section, we introduce the theory IM of T-modules. Its ‘addition’ is binary choice with
equal probabilities 1/2, and its ‘multiplication’ is choice between a point and 0. The axioms

are very much like those of a module, hence the name.

Theory IM comes up in two versions: IM-L has a large set of axioms which includes all useful
properties we know of, and IM-S has a small subset thereof, just enough to derive theory MV

in the next section.

Again, we do not know how all axioms of IM-L can be proved from those of IM-S directly,

without reconstructing MCD as done in this paper.

Operations: A constant 0 : X, a continuous operation ¢ : X x X — X, and a contin-
uous operation - : I x X — X, where I is considered as a dcpo (Scott topology).

Homomorphisms are continuous functions h with
h(0) =0, h(z B y) = ha & hy, and h(p-z) = p- hz.

Axioms, version L (large axiom set):

— Least element: 0 C 2 for all z in X.

¢ Commutativity: z §y =y &b z.

I Idempotence: =z ® = = z.

R Rectangle law: (z @ y) B (v v)= (xS u) P (ydv).

RO Right zero: p-0=0.

RD Right distributivity: p- (e B y)=p-2Dp-y.



L0 Left zero: 0-2 = 0.

LD Left distributivity: (p®¢)-z2=p-xPq-x, where pBg=(p+¢)/2in L.
1 One law: 1-2 = z.

PA Product associativity: p-(¢-2)=(p-q)-z.

Axioms, version S (small axiom set):
Axioms R, L0, LD, and 1 from the list above.

Surprisingly, idempotence and commutativity of ‘@’ do not show up as axioms of IM-S.
Nevertheless, they hold in every IM-S algebra by the main result of our paper.

Derivation of IM-S from BC-P

We define: 2y = wlﬁy, and p-z = z-20.

The operation & = A(z, y). 5(1/2, z,y) : X X X — X is continuous in its two arguments
separately, since 3 is continuous in its second and third argument separately. Within DCP O,
this separate continuity is equivalent to the continuity of ‘@’ itself.

The function - = A(p, ). 8(p, z, 0) : Ix X — X is continuous in its second argument since 3
is. For continuity in the first argument, we apply Lemma 2.1, i.e., we have to show that for
fixed z, the function Ap. p -z is monotonic.

Let p < ¢ in I. We have to show z £~ 0 C 2 -+ 0. Because of p < ¢, there is r in I such that

r

p = r-q. Applying the product law P of BC-P, we obtain z =~ 0 = (2 = 0) -~ 0. From
0Ca,z2-0C2"=z L, follows, whence z £ 0 C z -+ 0.

R: The rectangle law of IM is R% of BC-P.

L0: 0-2 = 220 2 0.

LD: Left distributivity of IM is the instance of L% of BC-P with y = 0.
1.2 =2L1022
Derivation of IM-L from BC-L

When expressed in the language of BC, all the axioms of IM-L but RD become instances of
axioms of BC-L. Right distributivity becomes

(22 y) L0 = (x20) (5 2 0),
with follows from distributivity D of BC-L with commutativity.

6 Mean Values

The probabilistic theory with the weakest operations is MV, the theory of mean values.
It results from IM by dropping multiplication. Thus, MV does not mention real numbers
explicitly.
Operations: A constant 0: X, and a continuous operation @ : X x X — X.
Homomorphisms are continuous functions h with

h(0) =0 and h(z & y) = ha & hy.
Axioms: Commutativity: z $y =y &P «,

Rectangle law: (2 @ y) P (udv) = (2D u) S (y B v),



Least element: 0 C z,
Fixed point axiom: The least fixed point of Az.a & z is a.

For the fixed point axiom, remember that the carrier X is a dcpo. The fixed point axiom
may alternatively be written as idempotence ¢ & a = a, which means that « is a fixed point
of Az.a & z, plus the conditional axiom a $ b = b = a C b, which means that a is the least
fixed point. Yet another formulation follows from making the fixed point iteration explicit:
if ap =0 and ap41 = a @ a,, then ||, ~ya, = a. From this statement, a slightly stronger one
can be easily deduced: if by C ¢ and 5n-|—1 =a® by, then | |+, = a. It is this last version
which is needed for the derivation of MCD from MV at the end of this paper.
Now let us derive the axioms of MV from those of IM-S. The rectangle law is immediate. The
least element property of 0 holds since 0 = 0-2 C 1.2 = z. For the fixed point axiom, we have
to consider the sequence defined by ap = 0 and a,41 = a & a,,. We claim a,, = (1 -27")-«q
for all n; the equation | |,,~g @, = a then follows from continuity of multiplication and the
property 1-a = a. The eq_uality ap = (1 —27Y%) - @ holds since 0-a = 0. For the inductive
step, we have appy =a@a, =1-a@(1-2"")-a=(14+1-2"")/2-a=(1-2""t)). 4,
For commutativity, fix two members a and b of X. We start with some auxiliary statements.
In the proof of the third, we may use idempotence because it follows from the fixed point
axiom, which is already validated. (It could also be shown directly by s2 = 1-2@&1-2 =
l-z = z.)

(1) adp-a=p-ada
Proof: adp-a=1-adp-a=(p+1)/2-a, and same for p-a & a.

(2) a®0=0%a
Proof: From (1) with p = 0.

(3) ade=cha => ad(bde)=(cDb)Da
Proof: a&® (b&¢) L (adBa)P(bedc) £ (a®b)B(aPc)=(adb)B(cHa) B (aBc)P(bPa)=
(cqa)s(bda)E(cab)d(ada)L (cdb) P a
Now we define ¢g = 0 and ¢,+1 = b $ ¢,. From the proof of the fixed point axiom, we know
cp = (1 =27")-b. By (1), b® ¢, = ¢,, ® b follows. Thus, ¢,41 = ¢, & b also holds. By
induction, we can show a & ¢, = ¢, & a for all n; the start holds by (2), and the inductive
step follows from (3). We already know | |, ¢, = b. Continuity of ‘@’ yields a b =0b@ a

as required.

(I~

7 The Big Step: From MV to MCD

In the previous sections, we started from the theory MCD, which has a rich set of operations,
and restricted its operations until only binary choice with equal probabilities was left. In this
section, we go all the way back: we assume an MV algebra X as given, and prove that it is
an MCD algebra as well. To this end, we have to reconstruct multiple choice with arbitrary
probabilities from binary choice with probabilities 1/2. We first consider multiple binary
choice, then multiple choice with dyadic rationals as probabilities, and finally apply directed
joins and continuity arguments to reach all reals in the unit interval.

Multiple Binary Choice



Let X be an MV algebra. For every n, we define an operator @, : X?" — X which takes 2"

arguments from X.

o Dolz) = .
e D q(zili=1.2"") = P (x| i=1..2") DB, (z; |1 =2"+ 1.2,
Thus, @,,(21, ..., x2n) is obtained by evaluating a complete binary tree of depth n, whose

inner nodes are marked by ‘@’ and whose leaves are z1 through zon. Complete binary trees

can be pasted into each other:

Proposition 7.1

B, (B, (x| j=1..2")]i=1.2") = P qn(r;li=1..2"57=1.27)
(The 2" sequences (z;; | j = 1..2™) are concatenated.)

Proof: Induction by n. a
From commutativity and the rectangle law, we can conclude:
Proposition 7.2 The operands of €,, can be arbitrarily permuted.

Proof: Induction on n. Case n = 0 is obvious, and case n = 1 holds by commutativity.
Forn > 1,let £ = (a; | i = 1..2") be the sequence of arguments, and let a be its first quarter,
[ the second, v the third, and é§ the last.
It suffices to show that two adjacent operands x and w4 can be transposed. If k # 2771
then the pair to be transposed is contained in the first half a3 or in the second 6. Because
of @, (£) =B,,_(af) B D,,_(76), the pair can be transposed by induction.
The difficult case is k = 277!, i.e., the last item of 3 has to be transposed with the first item
of v. By definition,

D) = (Dla)aPi) e (DO o D)

n n—2 n—2 n—2 n—2

holds. Applying commutativity to the right subexpression and then the rectangle law to the
whole expression yields

(Dle)e D) e (DB)e D) = Dlad) & DBy

n—2 n—2 n—1 n—1

Then the induction hypothesis can be applied, and the expression can be transformed back.O

In the sequel, we shall use an abbreviation: if an argument of ,, occurs k times, we shall
write k-2, eg., @y(3-2,1-y,0-2) = Py(x, z, z, y).
Multiple Choice with Dyadic Rationals

Now, we construct values corresponding to multiple choice [py : 2y, ..., p, : @,] with p; =
k; /2™ where k; and n are non-negative integers. For simplicity, the exponent of the denomi-

nator is written as an index, i.e., we define values
(kv ca, oo ket
where r > 0, z; in X, n and k; are non-negative integers with ky + ---+ k, < 2",

The definition of these values is in terms of €, , where the necessary number of arguments
is obtained by filling up with 0.

(kicai, oo ke iy, = @(k1-$1, ceny by, (2”—21@)-0)
=1

n

- 10 -



In the sequel, we show that the dyadic choice expressions defined above satisfy close ana-
logues of the axioms of MCD. For simplicity, we shall often use abbreviations such as
(ki Loy, myz;),
for (kytaq, .., kprap, Loy, my t2q, o0, Myt 2g),.
Proposition 7.3
(1) The entries in a dyadic choice expression may be arbitrarily permuted.
(2) For k; with 3, k; < 2™ (02, m; ), = (m; 1y,
(3) For k, I, and m; with k+ 143>, m; < 2™
(kra,liz,miy), =(k+1liz,my),
(4) For k; and [; with >~ k; < 2" and >, 1; < 2™
(ki vag), @ (licag), = (ki+ 1 90i>n_|_1
(5) For k; with 37, k; < 2% (ki s ay), = (2ki 1 24), 4
(6) For k and s; with k +37;s; < 2" and [; with 7, 1; <2™:
(k:(lyrag), sy, = (kljray, 2%si vy,
(7) For k and [; with k+ 1+ >, 1, < 2™
(kea, licy), Ch+1loa, by,
Proof: Most proofs are straightforward. We give a few hints:
(5) follows from (4) and idempotence.
(6) is shown by applying Prop. 7.1 and the fact y; = @,,(2™ - y;).

(7) After the transformation into €,, expressions, the two sides only differ in that one of the
2™ operands is 0 on the left hand side, and x on the right hand side. The operation ‘@’
is continuous, whence monotonic, and 0 C 2z holds in every MV algebra. a

Multiple Choice with Real Coefficients

In this subsection, we use the dyadic choice expressions of the previous subsection to define
choice expressions with real numbers as coefficients.

The unit interval T is a continuous domain, and the dyadic rationals form a basis of this
domain. The way-below relation on Tis given by p < ¢ iff p = 0 or p < ¢. It has the property
that for all directed sets D of I, p < | | D holds iff there is d in D with p < d. Every pin 1
is a directed join of all dyadic rationals d with d < p.

For every p in I, we define p{™ to be the greatest non-negative integer k with k/2" < p. We
show several properties of this notion:

Proposition 7.4

(1) 00 = 0 for all n.

(2) If p < ¢, then p(™) < (™),

(3) 2p(™ < pln ),

(4) If k # 0 and m > n, then (k/2%)0™) = 2m—7 | — 1.
Proof:
(1) is obvious, and (2) holds since p{™) /2" < p < ¢.
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(4) The statement {/2™ < k/2" is equivalent to [ < 2™~™ - k. Since the right hand side is

not 0, this is in turn equivalent to [ < 2™~ " -k or [ < 2™ " .k — 1. a
We now define arbitrary choice as follows:
[pl Ly ey Pr :x”/’] = |_| <p§n) $, 7p£n) :$T>n
n>0

The dyadic choice expressions in this definition are well-defined since ) . p;, < 1 implies
> pgn) < Yoipi - 27 < 27 The join is well-defined because it is directed. For, <p£n) Lxg),

equals <2p£n) : @)1 by Prop. 7.3 (5), which by Prop. 7.4 (3) and Prop. 7.3 (7) is below

<P£n+1) : $i>n+1'

By Prop. 7.3 (1), the entries in a multiple choice expression may be arbitrarily permuted, i.e.,
the permutation axiom of MCD is satisfied. By Prop. 7.4 (1) and Prop. 7.3 (2), the expressions
satisfy the 0 axiom of MCD. The proof of the remaining MCD axioms is postponed.
The expressions [p; : ;] are continuous in every argument z; as a directed join of continuous
functions. Continuity in p; is a bit more complex. Thanks to the permutation rule, it suffices
to show continuity in the first argument. We claim: If D is a directed set in T with | | D = p,
then [lepld:z, ¢yl =1[p:2, ¢ il
The relation ‘C” holds by monotonicity (Prop. 7.4 (2) and Prop. 7.3 (7)). For the opposite
relation, p(”)/Q” < p = || D implies the existence of some d,, in D such that p(”)/Q” < dy,
whence p(® < d%”). Then

e qiiy] = U, (" e, qZ L),
L, (d") -z, qz LY
L, Ugep (@) - 2, " i),
Lsep U, (4 : g : Yi),

= Lenld: @, ¢i 1 i)

This completes the proof of the continuity of the multiple choice operation.

3

I 1

Finally, we show that a multiple choice with coefficients which happen to be dyadic rationals
coincides with the dyadic choice introduced earlier.

Proposition 7.5 (k1/2% e, oo ke /20 ray] = (B, oo byt ey,

Proof: By applying Prop. 7.3 (2), we may assume without restriction that all k; are strictly
positive. Using Prop. 7.4 (4), we have to show

|_| <2m_n k=1 $Z>m = <kl : $Z>n

m>n
Renaming m — n into m, this is equivalent to [ |,,5q (2" - k; — 1 : 2,

= (ki:ag),.

Dt
We apply the last version of the fixed point axiom of MV (Section 6), Wthh says: if bg C a

and b,41 = b, @ a, then |—|m20 by, = a. Of course, we set a = (k;:2;), and b, =
(2™k; — 1:2:),,,,- The relation by C a holds by Prop. 7.3 (7) and (5). Next, we compute
b, D a.
b, Da = 2%k — 1wy, @ (ki)
73(5) 2%k = Lrag), O 27k 2
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Now we are ready to prove the axioms of MCD. Permutation and the 0 law were already
handled above. The 1 law holds, since [1:z] equals (1:z), by Prop. 7.5, which in turn
equals z by definition. The addition law is left to the reader. For substitution, we have to
show [p:[rj:x;], ¢yl =[prj:x), q syl

Because of continuity of multiple choice, it suffices to prove this equation for dyadic rationals.

n m n 7.5
[p/2% o [rj/2™ syl /2" ] = (pi(ryiag),,, @iy,
7.3:(6) <p i, quZ . y2>n+m

7.5

[(p/27)(ri/27) s @55 qi /2" < yi]
This completes the derivation of MCD from MV.

Going Back and Forth

The derivation of MV from MCD and vice versa are inverse to each other. If we start with
an MV algebra and construct multiple choice, then [1/2: 2, 1/2:y] equals (1:2,1:y), by
Prop. 7.5, which in turn equals @4(z, y) = @ & y by definition. This means that we get back
the original MV algebra by restriction.

Conversely, if we start with a multiple choice operator, restrict it to the special case z §y =
[1/2: 2, 1/2:y], and then reconstruct multiple choice following the lines of this section, then
we obtain the original multiple choice back. The proof of this fact is not particularly difficult
and hence omitted.

Also, we never considered homomorphisms. The proofs that the homomorphisms of one
theory are also homomorphisms of all other theories are straightforward and omitted.
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