
Towards an Optimal Bit-Reversal Permutation Program

Larry Carter and Kang Su Gatlinfcarter, kgatlin g@cs.ucsd.edu
Department of Computer Science and Engineering, UCSD

9500 Gilman Drive, La Jolla, CA, 92093-0114

Abstract

The speed of many computations is limited not by the
number of arithmetic operations but by the time it takes to
move and rearrange data in the increasingly complicated
memory hierarchies of modern computers. Array trans-
pose and the bit-reversal permutation – trivial operations
on a RAM – present non-trivial problems when designing
highly-tuned scientific library functions, particular for the
Fast Fourier Transform. We prove a precise bound for Ro-
Col, a simple pebble-type game that is relevant to imple-
menting these permutations. We use RoCol to give lower
bounds on the amount of memory traffic in a computer with
four-levels of memory (registers, cache, TLB, and memory),
taking into account such “messy” features as block moves
and set-associative caches. The insights from this analysis
lead to a bit-reversal algorithm whose performance is close
to the theoretical minimum. Experiments show it performs
significantly better than every program in a comprehensive
study of 30 published algorithms.

1. Background and related work

Given binary stringsa and b, let ab denote their
concatenation andr(a) denote the reversal of a.

Copyright 1998 IEEE. Published in the Proceedings of
FOCS’98, 8-11 November 1998 in Palo Alto, CA. Per-
sonal use of this material is permitted. However, per-
mission to reprint/republish this material for advertising
or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other
works, must be obtained from the IEEE. Contact: Man-
ager, Copyrights and Permissions / IEEE Service Center
/ 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-
1331, USA. Telephone: + Intl. 732-562-3966.

Thus, for instance,r(01101) = 10110 , andr(ab) =
r(b)r(a) .

Arrays will be indexed by binary strings. The pseudo-
code statement “for i = 0 to N-1 ” means thati it-
erates through all binary strings of length lg(N), where lg
represents log base two.

Consider the following three programs, whereN is a
power of 2,N = N1�N2, andA andB are arrays of length
N:

Copy(A,B):
for i = 0 to N-1

B[i] = A[i]

Transpose(A,B):
for i = 0 to N1-1

for j = 0 to N2-1
B[j,i] = A[i,j]

BitReverse(A,B):
for i = 0 to N-1

B[r(i)] = A[i]

In the Random Access Machine (RAM) model of com-
putation [AHU74], all three programs have the same com-
plexity,�(N). If we only count the cost of Loads and Stores
of array elements (i.e., we assume that all addressing and
looping computations are free) then each of these permuta-
tions has complexity exactly 2N.

Yet in practice, in the minds of people who write high-
performance programs, these three permutations have very
different costs.Copy is very fast.Transpose is likely to
be slow because of the computer’s memory hierarchy (e.g.
the data cache), but with a little bit of work, it can be rewrit-
ten to be about as fast asCopy. But BitReverse has so
many performance problems, due to architectural features
such as cache and TLB associativity, that it is best avoided
if at all possible.

1



0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

BitReverse
Permutation

4 Stage FFT Butterfly

Figure 1. The “standard” picture of a FFT net-
work, followed by the BitReverse permuta-
tion.

Our interest in very accurate analyses ofTranspose
and BitReverse comes from our interest in high-
performance library programs for the Fast Fourier Trans-
form (FFT). Figure 1 shows a directed acyclic graph (DAG)
representation of a 16-point FFT, assuming all edges go
from left to right. The right-most stage of the DAG is
a BitReverse . This stage is necessary in practice so
that repeated applications of the FFT can swap between the
“time domain” and “frequency domain”.

It is difficult to program a FFT that gets anywhere near
the advertised “peak MFLOP/sec speed” of a modern work-
station. For example, without any tuning, the 3-D FFT
of the NPB 1.0 FT benchmark program runs on our desk-
top computer (a 60 MHz SPARCstation 20) at about 3.7
MFLOP/sec. It turns out thatfftz1 , the subroutine that
actually does the “real work” of multiplying and adding
floating point numbers, runs at a slightly more respectable
17 MFLOP/sec, but 78% of the runtime is “wasted” trans-
posing arrays and copying data into contiguous memory lo-
cations so thatfftz1 can run without memory hierarchy
problems.

This example highlights that a major difficulty with
programming FFT’s efficiently is choreographing the data
movement. Because of the tremendous importance of

FFT’s,1 many papers and books (e.g. [V-L92]) deal exten-
sively with this question.

In practice, most FFT implementations avoid bit rever-
sals, using “autosort” methods instead, which weave the
bit reversal into the rest of the computation. One of the
more popular algorithms is the “Four Step” FFT [GS66],
advocated by Bailey [B90] particularly for computers with
hierarchical memories. The algorithm performs a one-
dimensional FFT by storing the data in a 2-D array in col-
umn major order, performing FFT’s on the rows of the ar-
ray, transposing the array (simultaneously multiplying the
elements by appropriate “twiddle factors”), and finally per-
forming FFT’s on the rows of the transposed array.

Under a Uniform Memory Hierarchy model of com-
putation [ACFS94], which models the hierarchical na-
ture of computer memory, a recursively-implemented Four
Step FFT is�(N lg(N) lg lg(N)). Alpern et al also
develop a communication-efficient FFT with complexity�(N lg(N)). The elimination of thelg lg(N) term is due to
the replacement of the recursive transposes of the Four Step
FFT by a single BITREVERSE. This result has provoked
our interest in developing a highly-tuned implementation of
BITREVERSE.

In a later section, we will describe the features of modern
computers that affect the performance of these programs.
Here, we discuss some theory whose goal is to provide more
accurate modeling of the cost of computing permutations.

It is natural to consider a two-level memory model, in
which data must be moved from a large, slow memory to a
small, fast memory for processing. Permutations involve no
re-use of data (each element is used only once) so models
(such as the Red-Blue pebble game [HK81]) that ignore the
spatial structure of memory don’t provide any insight.

However, a two-level model becomes relevant when
there is an added restriction that only contiguousblocksof
data can be moved between the two levels. Floyd [F72]
shows that if the small memory can hold only two blocks,
each of sizeB elements, andB � min(N1; N2), then
transposing aN1�N2 array requires exactly2(N=B) lg(B)
block moves between the two level, whereN = N1N2.
Aggarwal and Vitter [AV88] extend this result to show that
if the small memory can holdK � 2 blocks, then transpose
requires �((N=B) lg(min(KB;N1; N2; N=B))= lg(K))
block moves. In practice, when the two levels being
modeled are disk and memory, or memory and cache,
thenK will be at leastB. In this case, the above reduces
to what has been known in practice since the earliest
computers; that “tiling” an array into subarrays of sizeB � B, and processing one tile at a time, allows transpose

1It has been estimated [JJ97] that in 1990, 40% of all CPU cycles exe-
cuted by Cray Research supercomputers were devoted to FFT’s.

2



to be computed with each data element making only one
trip into the smaller memory. For some other architectural
scenarios (narrow TLB’s or cache associativity problems),K is smaller thatB. In this case, the the result can be
interpreted as saying that at mostO(logK(B)) passes
through the data are needed.

Our interest is in designing programs that perform opti-
mally in practice, and proving their optimality. Doing this
requires even more realistic models. A two-level analysis
assumes that once a block of data is brought into the smaller
memory, any permutation can be performed on the data at
zero cost. This model is appropriate when the input and
output arrays are stored on disk storage, since the cost of
moving a block between disk and memory dominates all
other costs. However, when the arrays are in main memory,
the cost of moving data from memory to cache, for instance,
has the same order of magnitude as moving data from cache
to registers. Modeling this accurately enough to determine
the constants requires a hierarchical model of memory.

In the Block Transfer (BT ) model of hierarchical mem-
ory [ACS87], copying a block of consecutive locations
takes one unit of time per element, after an initial access
time that is a function of the source and target locations.
The cited paper provides results for a variety of smooth ac-
cess time cost functions. Unfortunately, there is no obvious
way to translate these asymptotic analyses to specific results
for the step-wise functions that occur in practice.

A particularly provocative result in [AC88] is that when
block transfers in a certainBT model2 are controlled by
a virtual memory system, then any transpose program that
moves each element of the source array directly to its final
destination has cost
(n5=4). Nevertheless, there is a re-
cursive algorithm that costs only�(nlog2n). Although the
assumptions correspond to unrealistically large costs, this
result gives theoretical support to the idea that “unneces-
sary” data movement can result in a faster algorithm.

The Memory Hierarch model [ACF90, ACFS94] rep-
resents the memory of a single-processor computer as a
sequence of progressively smaller modules, where theith
module can holdki blocks of sizebi elements. Transfer-
ring a block between a module and the next larger module
requires timeti. It is shown, assumingki � bi for each
module and thatti = bi (i.e., each bus is unit-bandwidth),
transposing a “nicely-aligned” array requires only(2+ �)N
cycles (where� depends on the exact model, but is very
small). Unfortunately, the assumption thatki � bi doesn’t
hold for the problematic architectural scenarios. Further,
many computers cannot overlap communication as required
by the model.

2The specific model here assumes the initial access time of a block at
addressx is x.

Savage [S95] presents a multilevel pebble game and
briefly suggests an extension that can model block moves,
but his results don’t apply to the issues we address in this
paper.

The rest of the paper is organized as follows. First (to
appeal to the theoretically-inclined reader) we introduce the
game of RoCol and prove an exact bound. Section 3 then
presents the unavoidable architectural details that affect the
speed of real permutation programs. Section 4 applies Ro-
Col to our permutation problems, making the following
arguments for largeBitReverse problem instances and
very largeTranspose instances:� There is a trade-off between how often data is moved

into cache and how often it is moved into registers. It is
necessary either to move most elements into registers
twiceor into cachemultiple times. For typical comput-
ers, it’s better to optimize for cache.� Given that each element is brought into cache only
once, each page must be brought into TLB nearlyb2=p2b1k1 times.

The final section presents an optimizedBitReverse
program, and shows it is better than any other known
method. This last task is made easier since a comprehensive
study [K96] shows that Alan Karp’s “Hybrid” bit reversal is
superior to the29 other algorithms he found in a thorough
literature search. Our program beats Hybrid significantly.

2. The RoColTM pebble game

EQUIPMENT:
Two buckets, labeledA andB.N pebbles (initially inA.)
An (infinitely large) “Go” board.
An integerK.

OBJECT OF THE GAME:
To move all the pebbles fromA to B in as few moves as

possible.

RULES:

1. Initially, all the pebbles are inA.

2. At mostK pebbles can be on the Go board at any time.

3. There are two types of moves:� ROW move: Choose a row of the Go board. Place
as many stones fromA as desired (subject to the
limit of rule 2) on that row, in any positions (but
only one pebble per position).

3



� COLUMN move: Choose a column of the Go
board, and move as many pebbles as desired from
that column to bucketB.

4. The game is over when all the pebbles are in bucketB.
The score is the number of moves. The goal is to use
as few moves as possible.

STRATEGY:
A poor strategy would be to repeatedly make one ROW

move to placeK pebbles on one row of the board, and then
to makeK COLUMN moves to pick them up one at a time.
This strategy would requiredN(1 + 1=K)emoves.

6 COL Moves

6 ROW Moves

Figure 2. The “square” strategy for RoCol
with K = 36. Six ROW moves create a square,
then six COLUMN moves remove the 36 peb-
bles. It is optimal when N = K
A much better strategy is illustrated in figure 2 for the

game withK = 36. For simplicity we assumeK = H2.
FirstH ROW moves are made to create anH�H square of
pebbles, and thenH COLUMN moves empty the board into
bucketB. This strategy has an average “bandwidth” fromA
to B of

pK=2 pebbles per move, that is, assumingN is a
multiple ofK, the score will be2N=pK.

However, there is a still better strategy, as illustrated in
figure 2 withK = 36. AssumeK is a triangular num-
ber, i.e.K = H(H + 1)=2. An initial H ROW moves are
made to create a right triangle with legs of lengthH . There-
after, we alternate one COLUMN move placingH pebbles
in bucketB with one ROW move ofH pebbles, restoring
the triangle to its full size. The asymptotic “bandwidth” of
this strategy isH=2 = (p1 + 8K�1)=4 pebbles per move,
which is nearly

p2 better than the previous strategy.

Represents the next ROW move

COL move

Figure 3. The optimal “triangle” strategy for
RoCol with K = 36. Moves alternate remov-
ing a column of 8 pebbles and adding a row,
restoring the triangle.

We will now prove that the triangle strategy is optimal
within an additive constant.

DefineT (h) = h(h + 1)=2 on the positive real num-
bers, and letT�1 to be the inverse ofT (i.e. T�1(k) =(p1 + 8k � 1)=2.)

Given a “board position”G of pebbles on the Go board,
let rj denote the number of pebbles on thej-th row andcj
the number on thej-th column. Define the potentialP of
positionG as:P (G) =Xj T (cj)�Xj T (rj)P can be thought of as a measure of the “vertical-ness”
of the arrangement of pebbles — a lot of pebbles in a small
number of columns will result in a largeP . A largeP sug-
gests there are a number of good COLUMN moves available.

LetGi denote the board position afteri moves have been
made. Note that in a game ofm moves,G0 andGm are the
empty board position.

We first give a bound on how much the potential of a
position can change in one move, then use that to bound the
“bandwidth” of an entire game.
Lemma 1: P (Gi) � P (Gi�1) � K � T (ki), whereki is
the number of pebbles involved in movei.

4



Proof:
Case 1: Movei is a ROW move.

For a given j, the termT (cj) in the first summation in the
definition of P (Gi) can be visualized as the number of
edges (including one self-edge) that can be drawn between
pebbles in thej-th column. Thus, adding at most one pebble
per column will increase this first summation by at most K
(the maximum number of pebbles that can be on the board),
since there will be one new edge per pebble in each column
that gets a new stone.3 The second summation increases by
at leastT (ki), even more if pebbles were placed on a row
that already had some pebbles.

Case 2: Movei is a COLUMN move.
The proof is similar. (If you transpose the board and run
time backwards, a COLUMN move becomes a ROW move.)}
Lemma 2: In a game ofm moves,

Pmi=1 T (ki) � mK.
Proof: Rewrite Lemma 1 asT (ki) � K + P (Gi�1) �P (Gi). Summing over alli from 1 to m and telescoping
the interior terms yields

Pmi=1 T (ki) � mK + P (G0) �P (Gn) = mK.}
Lemma 3:

Pmi=1 ki � mT�1(K)
Proof: Let S =Pmi=1 T (ki). Suppose we allow theki’s to
be arbitrary non-negative reals (rather than restricting them
to the integers). It follows from the fact that the second
derivative ofT is positive that

P ki is maximized, subject
to the constraint that

PT (ki) = S, when theki’s are all
the same value, call itko.4

We can calculateko by observing that S =Pmi=1 T (ki) = mT (ko), so ko = T�1(S=m). Thus, the
maximum value of

Pmi=1 ki ismT�1(S=m).
It follows that foranyset ofki’s that satisfy

PT (ki) =S, in particular for the game of interest,
P ki �mT�1(S=m). We also know from Lemma 2 thatS �mK, and sinceT is an increasing function, it follows thatPmi=1 ki � mT�1(K).}

The above lemma leads to:
Theorem 1: A game of RoCol that allows at mostK peb-
bles on the board at a time requires at least2N=H moves to
transferN pebbles fromA to B, whereH = T�1(K) (i.e.K = H(H + 1)=2).

3An alternate algebraic proof follows simply fromT (cj) � T (cj �1) = cj .
4Proof: suppose to the contrary thatk1 6= k2. Let k01 = k02 =(k1 + k2)=2, andk0i = ki for i > 2. We then have

Pk0i = Pki
but
PT (k0i) <PT (ki). We could now increasek01 to satisfy the con-

straint
PT (ki) = S, resulting in a larger value of the objective functionPki.

Proof: A complete game ofm moves involves moving allN pebbles out of bucketA and movingN pebbles intoB,
so the total number of pebble-moves,

Pmi=1 ki, is 2N . The
theorem follows immediately from Lemma 3.}
Theorem 2: If H = T�1(K) is an integer, then a game of
RoCol that allows at mostK pebbles on the board at a time
can moveN pebbles fromA to B in at most2N=H+2(H�1) moves.
Proof: The triangle strategy described earlier requiresH �1 ROW initial moves to set up the triangle andH � 1 to
COLUMN moves to clear it at the end. The remaining moves
proceed at a “bandwidth” ofH pebbles per move. (Even ifN is not a multiple ofH , enough pebbles are moved during
the initialization and final moves to handle the remainder.)}

The reader is undoubtedly wondering what RoCol has to
do with TRANSPOSEand BITREVERSE. The short answer
is, the buckets model a large memory module, the ROW and
COLUMN moves correspond to moving blocks of data into a
smaller module, and theK pebbles represent the total mem-
ory available in a still smaller module. Thus, RoCol models
the relationship amongthree levels of the memory hierar-
chy. But before this can be made clearer, we must describe
the relevant architectural features.

3. A primer of architecture

A simplified description of the architectural features of
modern PC’s and workstations that most affect the perfor-
mance of these programs, along with some sizes suitable for
“back-of-the-envelop” intuition, follows:� The computer’s memory is partitioned into blocks of

contiguous storage calledpages. Typically, a page
holds 1024 (4-Byte) array elements. Before the pro-
cessor can access data in a page, the page must “be
moved into the TLB”.5 The TLB can hold only a lim-
ited number of pages, say 64. Moving a page into
the TLB might take 15 or 50 cycles, depending on the
computer.� Depending on assorted details6 there may be restric-
tions on which pages can be in the TLB simultane-
ously. This so called “associativity problem” can be
particularly acute when the addresses of the pages dif-
fer by multiples of a large power of two, as often hap-
pens withBitReverse andTranspose .

5This phrase describe something that is a bit more complicated. You
don’t want to know the details.

6They include the associativity of the TLB and whether the TLBmap-
ping is randomized. You don’t want to know.

5



� Pages in TLB are partitioned into blocks of contiguous
storage calledcachelines. Typically, a cacheline holds
between 8 and 32 array elements (depending on the
machine). Before the processor can can access data
in a cacheline, it must be moved into cache. The cache
can hold only a limited number of cachelines, say 64 or
1024 (depending on the machine). Moving a cacheline
into cache takes perhaps 20 cycles.� Depending on even more details7 there are limitations
on which cachelines can be in cache simultaneously.
The cache associativity problem is particularly acute
for Transpose on large arrays (where the number of
rows or columns is a multiple of the cache size), or for
BitReverse on even modest-sized arrays. Having
an associativity problem means that all cachelines ofA
that contain data destined for contiguous locations in
B are in the same “associativity class”, and the archi-
tecture allows only some small number (depending on
the machine) of these cachelines ofA to be in cache at
the same time.� There may actually be two or three levels of cache. We
don’t consider multiple levels of cache in this paper.� The processor has a number ofregisters(typically 32)
and perhaps half can hold array elements (the remain-
der are needed for addresses, system pointers, etc.)
One or two array elements can move between cache
and registers per cycle.

4. Lower bounds on permutations

In this section, we use RoCol to derive lower bounds on
the number of times data must be brought into TLB, cache,
and registers. We will focus on programs that implement
Transpose , since the exposition is easier, but the theo-
rems apply to equally toBitReverse .

We always assume thatN1 andN2, the dimensions ofA,
are multiples ofb2, the size of a page. This implies they
are also multiples ofb1 the size of a cacheline, since all
hardware parameters are powers of two. We also assume
the data are “nicely aligned”, that is, every cacheline and
page lies entirely within a single row ofA or B.

PartitionAandB into subarrays of sizeb1�b1. A perfor-
mance problem withTranspose is that (for sufficiently
large arrays) theb1 cachelines that hold one such subarray
of A are all in the same associativity class and cannot all
co-reside in cache. Yet these lines hold elements that are

7They include the cache associativity, whether cache is physically or
virtually addressed, and even how memory was allocated at runtime. You
really don’t want to know.

destined to be moved to a single cacheline ofB. In fact,
each of theb1 cachelines in the corresponding subarray of
B gets one element from each of the lines inA’s subarray.
It gets worse: the cachelines of the subarray ofB are in the
same associativity class.8

This situation leads to a trade-off between how often data
is moved into cache and how often it is moved into regis-
ters. Suppose we restrict our implementation of transpose
to programs that move each array element into a register
only once during the execution of the program. The follow-
ing theorem is applicable whereA now represents a sub-
array whose elements are all in a single cache associativ-
ity class, andB’s elements are also in a single associativity
class (thoughB’s class can be different fromA’s.) The pa-
rameterZ is the “cache associativity”. The theorem applies
to each pair of subarrays separately, and then carries for-
ward to the original (large) arrays.
Theorem 3: Given a computer withK registers and a cache
that allows at mostZ cachelines ofA andZ cachelines of
B in cache at a time. LetN be the size ofA. Then any pro-
gram that computesTranspose(A,B) by bringing each
element into a register only once during the program must
have at leastN=(Z + T�1(K)=2) cachelines moves during
its execution.
Proof: Corresponding to the given program is ascheduleof
data movement. This schedule is a sequence of operations
of the following types:� Encache(X) (where X is either A[i,j] or

B[j,i] , for some i and j), which brings the cache-
line containing the elementX into cache.� Evict(X) , which moves the cacheline containingX
out of cache, freeing up space for a different cacheline
to be cached.� Load(A[i,j],Rk) (where0 � k < K), which
movesA[i,j] into the registerRk. The cacheline
containingA[i,j] must currently reside in cache.� Store(Rk,B[j,i]) (where0 � k < K), which
moves the element inRk into its final position in the
B array. The cacheline containingB[j,i] must cur-
rently reside in cache.� Copy(A[i,j],B[j,i]) , which has the effect of a
Load immediately followed by aStore , but doesn’t
require naming the register. BothA[i,j] ’s and
B[j,i] ’s cachelines must currently reside in cache.

8Occasionally it will be the same associativity class asA’s subarray,
making things a little worse still.

6



We assume the initial schedule doesn’t contain any
Copy’s; they are introduced to facilitate our analysis. By
the theorem’s assumptions, for eachi and j , there is ex-
actly one Load(A[i,j]) and oneStore(B[j,i])
operation.

We will rearrange the schedule into a canonical form.
First, we search the schedule for any instant of time when,
for somei and j , both A[i,j] ’s andB[j,i] ’s cache-
line are in cache. For each such occurrence, we remove
theLoad(A[i,j],Rk) and theStore(Rk,B[j,i])
from the schedule, and instead, at the earliest point in
the schedule where both lines are in cache, insert a
Copy(A[i,j],B[j,i]) operation. Note that this will
be immediately after aEncache operation. For accounting
purposes, we “charge” theCopy to theEncache operation
it immediately follows.

After introducing as manyCopy’s as possible, each
Encache operation will have at mostZ Copy’s charged
to it, since there can be at most one for each cacheline of
the opposite array that that is resident at the time of the
Encache operation.

We now show how the schedule (ignoring theCopy’s)
corresponds to a game of RoCol, where there is one pebble
for each register, where the(i,j) pairs are the positions
on the playing board, and where eachEncache operation
is a RoCol move.

Consider anEncache(A[i,j]) operation and the
set of subsequentLoad ’s from the cacheline containing
A[i,j] that occur before the correspondingEvict oper-
ation. For each suchLoad , the correspondingStore must
occurafter theEvict , since otherwise we would have re-
placed theLoad-Store pair with aCopy. Thus, it is le-
gal to move all suchLoad ’s down to just before theEvict ,
without needing to change any register names. We will bun-
dle this set ofLoad ’s together and call it a ROW move.

Similarly, for eachEncache(B[j,i]) operation, we
consider theStore operations on that cacheline before it
is nextEvict -ed. TheseStore ’s can be moved up to just
after theEncache , and designated a COLUMN move.

Let c be the number ofEncache operations. By our
accounting method, we know that mostcZ elements will be
transposed byCopy moves. There remainN�cZ elements
to be moved in the RoCol game. Theorem 1 says thatc �2(N � cZ)=T�1(K). The theorem follows after a little
algebra.}

The significance of this theorem is more intuitive when
expressed in terms of “roundtrips per element”. A roundtrip
means moving a 4-Byte array element into the smaller
memory and back out again. For instance, a regis-
ter roundtrip requires a load and a store, while a cache

roundtrip involves two cache misses, one on each of theA
andB arrays. Using this terminology, we can restate Theo-
rem 3 as:
Corollary : Given a computer withK registers, a cache-
line length of L and a cache associativity ofZ, then
Transpose with one register roundtrip per element will
require at leastL=(2Z + T�1(K)) cache roundtrips per el-
ement.
Proof: Each cacheline move corresponds to a one-way trip
for oneL elements. To get the average number of roundtrips
made by each element, we multiply the result of the theorem
byL=(2N)}

The 66-MHz IBM Power2 processors used in our later
experiments hasZ = 4 andL = 32 (measured in 4-Byte
elements). The corollary says that even if we could use
all K = 32 registers (soT�1(K) � 7:5), an algorithm
with one register roundtrip per element must average at least32=15:5 � 2:06 cache roundtrips per element.

An important observation is,exactly the same analysis
applies to the TLB. For the Power2’s TLB,Z = 2 andL = 1024; hence an algorithm with one register roundtrip
per element must average at least1024=11:5 � 89 TLB
roundtrips per element.

Is it worth having this much cache and TLB traffic, just
so an algorithm can make optimum usage of register traf-
fic? The answer depends on the relative costs, and the pos-
sible alternative algorithms. Table 1 provides the answer
for the Power2. The cost of a register roundtrip is1, since
the Power2 can execute two memory operations (load’s or
store’s) per cycle. The cache cost assumes that 25-cycles
are required for a 32-element cacheline, i.e. a steady-state
of 25 cycles for 16 roundtrips, or 1.56 cycles per roundtrip.
The TLB on the Power2 is uncommonly fast – 15 cycles
per 1024-element page. An alternative algorithm, shown in
the last column, is COBRA, theBitReverse program9

described in the next section. COBRA has two register
roundtrips per element, but only one cache roundtrip and
(on the Power2) 16 TLB roundtrips.

This figure suggest that the COBRA algorithm has a
significant advantage. In practice, it is impossible to de-
sign a register-efficient algorithm that has only 2.06 cache
roundtrips per element; 4 is a more realistic number. Nev-
ertheless, the projected costs of the COBRA algorithm are
close to those of our actual experiment.

Thus, it is better to have a cache-efficient algorithm (one
that makes only one cache roundtrip per element), than a
register-efficient one.

9Recall our assertion that in theory, bit-reversals and transpose have
the same analysis. In practice, bit-reversals have more overhead and other
problems.

7



Memory level Register-efficient COBRA
(cycles/rt) rt’s cost rt’s cost

TLB (0.03) 89 2.60 16 0.47
Cache (1.56) 2.06 3.21 1 1.56
Reg (1.00) 1.00 1.00 2 2.00

Total cost 6.81 4.03

Table 1. Comparison of the theoretical
lower bound cost, in cycles/element, for a
BitReverse that is constrained to one reg-
ister roundtrip (rt) per element, compared to
the data movement cost of the COBRA algo-
rithm, which has two register roundtrips per
element. All costs are computed for the IBM
Power2 processor.

We now focus on lower bounds for cache-efficient trans-
pose and bit-reversal algorithms. First we give a lower
bound on the number of register roundtrips that must be
made.
Theorem 4: Suppose our computer hasK registers and
a cache that allows at mostZ cachelines ofA and Z
cachelines ofB in cache at a time, where each cache-
line is of lengthL. Then any program that computes
Transpose(A,B) with one cache roundtrip per element
must have an average of at least2 � (2Z + T�1(K))=L
register roundtrips per element.
Proof: Since the program is cache-efficient, it has exactly2M=L cacheline moves, whereM is the size of each ar-
ray. Consider the schedule of data movement as described
in the proof of Theorem 3. If we remove from this sched-
ule all Load ’s andStore ’s of elements that make more
than one roundtrip into registers, what remains will be the
schedule of a program that transposes a sparse array. Theo-
rem 3 asserts that this program (which we know has2M=L
cacheline moves) has at leastN=(Z + T�1(K)=2) cache-
lines moves, whereN is the number of elements in the
sparse array. Thus,2M=L � N=(Z + T�1(K)=2), and
soN=M � (2Z + T�1(K))=L. Note thatN=M is the
fraction of elements that require only one register roundtrip;
the remaining1�N=M require at least two. Thus, the av-
erage number of register roundtrips per element is at least2� (2Z + T�1(K))=L.}

When applied to COBRA on the Power2, Theorem 4
says there must be at least2 � (8 + 7:5)=32 = 1:52 reg-
ister roundtrips per element on average. Thus, it might be
possible to save a half-cycle per element, thought at the cost
of making the program more complicated.

Finally, we give a lower bound on the number of TLB
roundtrips required by a cache-efficient program.
Theorem 5: Suppose our computer can holdK elements in
cache and registers combined, and it has TLB associativity
of Z and page lengthL elements. Assuming that at mostZ
pages ofA andZ pages ofB can be in the TLB at a time,
any program that computesTranspose(A,B) with only
one cache roundtrip per element must have an average of at
leastL=(2Z + T�1(K)) TLB roundtrips per element.
Proof: The proof is essentially the same as the proof of The-
orem 3 and its corollary, with “TLB pages” playing the role
of cachelines, and with “cache” playing the role of registers.

We construct a schedule withEncache andEvict op-
erations corresponding to pages moved into and out of the
TLB. When a cacheline ofA is moved from memory into
cache, aLoad operation is put into the schedule for each el-
ement of the cacheline. When a cacheline ofB is moved out
of cache, aStore for each element of the line is put into
the schedule. All other data movement into registers or from
one location to another in cache are ignored in the schedule.
Reasoning as in Theorem 3, at leastN=(Z + T�1(K)=2)
pages must be moved into TLB during the execution of
the program, whereN is the number of elements inA. To
get the number of roundtrips per element, we multiply byL=(2N).}

Applying Theorem 5 to the Power2 (which can hold
32800 elements in cache and registers combined), there
must be at least1024=(4 + T�1(32800)) = 1024=259:6 =3:94 TLB roundtrips per element on average. Combined
with the result from Theorem 4, the theoretical lower bound
on any cache-efficientTranspose or BitReverse on
the Power2 is 3.20 cycles/element.

5. An efficient bit-reversal

We now give a BitReverse algorithm that is cache-
efficient and also has good TLB efficiency. It uses the
square strategy of Figure 2, which is easier to implement
and almost as efficient as the triangle strategy of Figure 3.
The Cache Optimal BitReverse Algorithm (COBRA) that
we present will also be the subject of the experiments pre-
sented in section 6.

The length of a binary stringa is denotedjaj (e.g.j0100j = 4). We represent the indices of the array we wish
to BitReverse , A, with binary strings of the formabc ,
wherea andc are of lengthq, whereq is chosen to be at
least lg of the size of a cacheline. Thus ifjabc j = lgN
thenjbj = lgN � 2q.

The pseudocode for COBRA is in figure 4. In COBRA,

8



for b = 0 to 2ˆ(lgN-2q)-1
b’ = r(b)
for a = 0 to 2ˆq-1
a’ = r(a)

for c = 0 to 2ˆq-1 [1]
T[a’c] = A[abc]

for c = 0 to 2ˆq-1
c’ = r(a)
for a’ = 0 to 2ˆq-1 [2]

B[c’b’a’] = T[a’c]

Figure 4. Pseudocode for COBRA.

for a givenb, all data of the formA[*b*] is copied,10 one
cacheline at a time, to the temporary arrayT, which should
reside completely in cache (this is all done in loop [1]). To
ensure thatT remains in cache,22q should be smaller than
the size of cache (in most cases making it50% � 75% of
the size of cache is effective to minimize conflict with other
data that also sits in cache). In loop [2], the data are moved
from T to the destination arrayB. Again, the data are moved
into a cacheline ofB at a time, avoiding associativity prob-
lems onB. The non-sequential references toT don’t hurt,
since the entireT array remains in cache.

Note that the inner loops of COBRA are very efficient.
In loop [1], iterating onc results in “stride one” (i.e. se-
quential) accesses overA andT. In loop [2] iterating ona’
gives stride one accesses overB and stride2q overT. The
constant stride accesses make indexing efficient.

Thrashing can occur on loop [1] for certain values ofb
whereA[abc] andT[a’c] become cache aligned. We
minimize this effect in our implementation by unrolling the
inner loop four times and scalarizing (loading four elements
into registers and then storing the elements from the four
registers into memory locations) in the unrolled loop.

Lastly, we note that the above pseudocode is for an out-
of-placeBitReverse . An in-placeBitReverse (one
that rearranges the elements but leaves the results in the
same array) using the same principles is not hard to design.

6. Experimental results

COBRA was implemented on two computers, an IBM
Power2 and a DEC Alpha 21164. The Power2 was de-
scribed earlier. The Alpha has a one-way set associative 8-
KByte primary (L1) data cache, where each cacheline holds
32 Bytes. It also has a 3-way set associative 96-KByte sec-

10Each ‘*’ represents all binary strings of lengthq.

ondary (L2) cache with 64-Byte cachelines. The L1 cache
has a 6-cycle miss penalty when the data are in L2, and
an approximately 50-cycle additional cost (according to our
experiments) when the data must be fetched from memory.
The TLB has associativity 64 (it is fully-associative), each
page is 8 KBytes, and a TLB miss costs about 75 cycles.

Figures 5 and 6 compare COBRA to the Hybrid pro-
gram developed by Alan Karp. Karp’s experiments [K96]
demonstrate that on a wide variety of architectures, Hybrid
is consistently either the best performing or near the best
performing code, compared to 29 other methods he found
in a thorough literature search.

The size we selected forjaj andjc j were dependent on
the size of cache. On the IBM Power2 with its large cache,
we foundjaj = jc j = 6 was best. On Alpha,jaj = jc j = 5
was better, probably due to the smaller L1 cache.

Bit Reversals on the Power2

0

2

4

6

8

10

12 13 14 15 16 17 18 19 20 21 22

Bit reversal size (lg N)

C
yc

le
s/

E
le

m
en

t

Karp
6-6 Code

Figure 5. Performance of COBRA and Alan
Karp’s Hybrid bit-reversal programs on the
Power2.

These figures show the near-linear performance of CO-
BRA on both machines. COBRA is faster than Hybrid for
almost all problem sizes. On the Power2, COBRA is nearly
twice as fast as Hybrid on large arrays, and on the Alpha, it
is more than 4 times as fast. We suspect the poorer scala-
bility of Hybrid on the Alpha (compared to the Power2) is
due to two factors: the Alpha has a smaller L1 cache than
the Power2, requiring Hybrid to make more passes over the
data, and the miss penalties on the Alpha are significantly
greater than on the Power2.

9



Bit Reversals on the Alpha 21164

0

20

40

60

80

100

12 13 14 15 16 17 18 19 20

Bit reversal size (lg N)

C
yc

le
s/

E
le

m
en

t

Karp
5-5 Code

Figure 6. Comparison of COBRA and Hybrid
on the Digital Alpha 21164.

7. Future work

Our goal is to eliminate the gap between the time
required by FFT programs and the analyses that give
lower bounds on this time. Having a nearly op-
timal BitReverse program gives us hope that the
communication-efficient FFT of [ACFS94] can be made to
out-perform existing implementations of other algorithms.
What is needed next is a study of the “messy details” not
modeled in by the UMH (particularly cache associativity)
that are important to the performance of the remaining steps
of the FFT algorithm.

8. Acknowledgements

Alan Karp kindly provided a copy of the programs used
in his experiments. This greatly facilitated our experiments.

We also thank Ashok Chandra for a suggestion that
sharpened Lemma 1 and cleaned up some messy details.

References

[ACS87] Aggarwal, A., A. K. Chandra, and M. Snir, “Hi-
erarchical Memory with Block Transfer,”Proc 28th
Symp. on Foundations of Comp. Sci., October 1987,
pp. 204-216.

[AC88] Aggarwal, A., A. K. Chandra, “Virtual Memory
Algorithms,” Proc. 20th. Symp. on Theory of Comp.,
May 1988, pp. 173-185.

[AV88] Aggarwal, A. and J. Vitter, “IO Complexity of
Sorting and Related Problems,”CACM, September
1988, pp. 305-314.

[AHU74] Aho, A., J. Hopcroft, and J. Ullman,The De-
sign and Analysis of Computer Algorithms, Addison-
Wesley, Reading, Massachusetts, 1974.

[ACF90] Alpern, B., L. Carter, and E. Feig, “Uniform
Memory Hierarchies,”IEEE Conference on Founda-
tions of Computer Science, October, 1990.

[ACFS94] Alpern, B., L. Carter, E. Feig, and T. Selker,
“The Uniform Memory Hierarchy Model of Com-
putation,” Algorithmica, Volume 12, Number 2-3
(August–September 1994).

[B90] Bailey, D. H., “FFTs in External or Hierarchical
Memory,” The Journal of Supercomputing, v. 4, pp.
23-35, 1990.

[F72] Floyd, R. W., “Permuting Information in Idealized
Two-Level Storage,”Complexity of Computer Compu-
tations, Plenum Press, New York, 1972, pp. 105-109.

[GS66] Gentleman, W.M. and Sande, G., “Fast Fourier
Transforms - For Fun and Profit,” AFIPS Proceedings,
vol. 29, pp. 298-309 (1966).

[HK81] Hong, J-W. and H. T. Kung, “I/O Complexity: The
Red-Blue Pebble Game,”Proc. 13th. Symp. on Theory
of Comp., May 1981.

[JJ97] Johnson, J.R. and R.W. Johnson, “Challenges of
Computing the Fast Fourier Transform,” DARPA Con-
ference, June 1997.

[K96] Karp, A.H., “Bit Reversal on Uniprocessors,” SIAM
Review, Vol 38, No. 1, pp 1-26, March 1996.

[S95] Savage, J.E., “Extending the Hong-Kung Model
to Memory Hierarchies,”Computing and Combina-
torics (Proceedings from COCOON ’95), LNCS 959,
pp.270-281, Springer-Verlag, 1995.

[V-L92] Van Loan, C.,Computational Frameworks for the
Fast Fourier Transform, SIAM, Philidelphia, 1992.

10


