Towards an Optimal Bit-Reversal Permutation Program

Larry Carter and Kang Su Gatlin
{carter, kgatlin t@cs.ucsd.edu
Department of Computer Science and Engineering, UCSD
9500 Gilman Drive, La Jolla, CA, 92093-0114

Abstract Thus, for instance(01101) = 10110 , andr(ab) =
r(b)r(a)
The speed of many computations is limited not by the Arrays will be indexed by binary strings. The pseudo-
number of arithmetic operations but by the time it takes to code statementfér i = 0 to N-1 " means thai it-

move and rearrange data in the increasingly complicated erates through all binary strings of length Ny(where Ig
memory hierarchies of modern computers. Array trans- represents log base two.

pose and the bit-reversal permutation — trivial operations Consider the following three programs, whexeis a
on a RAM - present non-trivial problems when designing power of 2,N = N1xN2, andA andB are arrays of length
highly-tuned scientific library functions, particular for the N:

Fast Fourier Transform. We prove a precise bound for Ro-

Col, a simple pebble-type game that is relevant to imple- Copy(A,B):

menting these permutations. We use RoCol to give lower for i = 0 to N-1

bounds on the amount of memory traffic in a computer with Bli] = A[i]

four-levels of memory (registers, cache, TLB, and memory),

taking into account such “messy” features as block moves Transpose(A,B):

and set-associative caches. The insights from this analysis for i = 0 to N1-1
lead to a bit-reversal algorithm whose performance is close for j = 0 to N2-1
to the theoretical minimum. Experiments show it performs B[j,il = Alijl
significantly better than every program in a comprehensive

study of 30 published algorithms. BitReverse(A,B):

for i = 0 to N-1
B[r()] = Al
1. Background and related work In the Random Access Machine (RAM) model of com-
putation [AHU74], all three programs have the same com-
Given binary stringsa and b, let ab denote their plexity, ©(N). If we only count the cost of Loads and Stores
concatenation andr(a) denote thereversal of a. of array elements (i.e., we assume that all addressing and
Copyright 1998 IEEE. Published in the Proceedings of looping computations are free) then each of these permuta-
FOCS'98, 8-11 November 1998 in Palo Alto, CA. Peér- tions has complexity exactlyN2
sonal use of this material is permitted. However, per- Yet in practice, in the minds of people who write high-
mission to reprint/republish this material for advertising performance programs, these three permutations have very
or promotional purposes or for creating new collective different costsCopy is very fast.Transpose is likely to
works for resale or redistribution to servers or lists, |or be slow because of the computer's memory hierarchy (e.g.
to reuse any copyrighted component of this work in other the data cache), but with a little bit of work, it can be rewrit-
works, must be obtained from the IEEE. Contact: Man- ten to be about as fast &opy. ButBitReverse has so
ager, Copyrights and Permissions / IEEE Service Center many performance problems, due to architectural features
/ 445 Hoes Lane / P.O. Box 1331/ Piscataway, NJ 08855- such as cache and TLB associativity, that it is best avoided
1331, USA. Telephone: + Intl. 732-562-3966. if at all possible.

0000 ® o FFT's! many papers and books (e.g. [V-L92]) deal exten-
o001 sively with this question.

0010 In practice, most FFT implementations avoid bit rever-
sals, using “autosort” methods instead, which weave the
bit reversal into the rest of the computation. One of the
more popular algorithms is the “Four Step” FFT [GS66],
oo1 advocated by Bailey [B90] particularly for computers with
o110 hierarchical memories. The algorithm performs a one-
o1t dimensional FFT by storing the data in a 2-D array in col-
umn major order, performing FFT’s on the rows of the ar-
ray, transposing the array (simultaneously multiplying the
elements by appropriate “twiddle factors”), and finally per-
1020 forming FFT’s on the rows of the transposed array.

1011 Under a Uniform Memory Hierarchy model of com-
putation [ACFS94], which models the hierarchical na-
ture of computer memory, a recursively-implemented Four
Step FFT isO(N1g(N)lglg(N)). Alpern et al also
develop a communication-efficient FFT with complexity

0001

0010

— X
or L/ IGIHX
WL/ XX

0101 A ‘ A

0110

0111

1000 1000

1001

1001

1010

1011

1100

1100

1101

1101

1110

1110

uu ’ un O(N1g(N)). The elimination of thég lg(V) term is due to
4 Stage FFT Butterfly BitReverse the replacement of the recursive transposes of the Four Step
Permutation FFT by a single BrREVERSE This result has provoked
our interest in developing a highly-tuned implementation of

Figure 1. The “standard” picture of a FFT net-
work, followed by the BitReverse permuta-
tion.

BITREVERSE

In a later section, we will describe the features of modern
computers that affect the performance of these programs.
Here, we discuss some theory whose goal is to provide more
accurate modeling of the cost of computing permutations.

Our interest in very accurate analysesToinspose It is natural to consider a two-level memory model, in
and BitReverse comes from our interest in high- which data must be moved from a large, slow memory to a
performance library programs for the Fast Fourier Trans- small, fast memaory for processing. Permutations involve no
form (FFT). Figure 1 shows a directed acyclic graph (DAG) re-use of data (each element is used only once) so models
representation of a 16-point FFT, assuming all edges go(such as the Red-Blue pebble game [HK81]) that ignore the
from left to right. The right-most stage of the DAG is spatial structure of memory don't provide any insight.
a BitReverse . This stage is necessary in practice so However, a two-level model becomes relevant when
that repeated applications of the FFT can swap between théhere is an added restriction that only contigubiecksof
“time domain” and “frequency domain”. data can be moved between the two levels. Floyd [F72]

It is difficult to program a FFT that gets anywhere near Shows that if the small memory can hold only two blocks,
the advertised “peak MFLOP/sec speed” of a modern work- €ach of sizeB elements, and3 < min(Ny, N»), then
station. For example, without any tuning, the 3-D FFT transposing &, x N, array requires exacty(N/B) 1g(B)
of the NPB 1.0 FT benchmark program runs on our desk- Plock moves between the two level, wheke = N N,.
top computer (a 60 MHz SPARCstation 20) at about 3.7 Aggarwal and Vitter [AV88] extend this result to show that
MFLOP/sec. It turns out thdftz1 , the subroutine that if the small memory can hol& > 2 blocks, then transpose
actually does the “real work” of multiplying and adding requires ©((N/B)lg(min(K B, N1, N, N/B))/1g(K))
floating point numbers, runs at a slightly more respectable block moves. In practice, when the two levels being
17 MFLOP/sec, but 78% of the runtime is “wasted” trans- modeled are disk and memory, or memory and cache,
posing arrays and copying data into contiguous memory lo-then K will be at leastB. In this case, the above reduces
cations so thafftz1 can run without memory hierarchy ~ t0 what has been known in practice since the earliest
problems. computers; that “tiling” an array into subarrays of size

This example highlights that a major difficulty with B x B, and processing one tile at a time, allows transpose

programming FFT’s efficiently is choreographing the data 1}t has been estimated [J397] that in 1990, 40% of all CPU syeke-
movement. Because of the tremendous importance ofcuted by Cray Research supercomputers were devoted to.FFT’s

to be computed with each data element making only one Savage [S95] presents a multilevel pebble game and
trip into the smaller memory. For some other architectural briefly suggests an extension that can model block moves,
scenarios (narrow TLB’s or cache associativity problems), but his results don’t apply to the issues we address in this
K is smaller thatB. In this case, the the result can be paper.
interpreted as saying that at moét(log (B)) passes The rest of the paper is organized as follows. First (to
through the data are needed. appeal to the theoretically-inclined reader) we introduce the
Our interest is in designing programs that perform opti- game of RoCol and prove an exact bound. Section 3 then
mally in practice, and proving their optimality. Doing this presents the unavoidable architectural details that affect the
requires even more realistic models. A two-level analysis speed of real permutation programs. Section 4 applies Ro-
assumes that once a block of data is brought into the smalleiCol to our permutation problems, making the following
memory, any permutation can be performed on the data atarguments for larg8itReverse problem instances and
zero cost. This model is appropriate when the input and verylargeTranspose instances:
output arrays are stored on disk storage, since the cost of
moving a block between disk and memory dominates all
other costs. However, when the arrays are in main memory,
the cost of moving data from memory to cache, for instance,
has the same order of magnitude as moving data from cache
to registers. Modeling this accurately enough to determine

the constants requires a hierarchical model of memory. « Given that each element is brought into cache only

In the Block Transfer BT') model of hierarchical mem- once, each page must be brought into TLB nearly
ory [ACS87], copying a block of consecutive locations by //2b1F; times.

takes one unit of time per element, after an initial access
time that is a function of the source and target locations. The final section presents an optimiz&itReverse
The cited paper provides results for a variety of smooth ac- program, and shows it is better than any other known
cess time cost functions. Unfortunately, there is no obvious method. This last task is made easier since a comprehensive
way to translate these asymptotic analyses to specific resultstudy [K96] shows that Alan Karp’s “Hybrid” bit reversal is
for the step-wise functions that occur in practice. superior to the29 other algorithms he found in a thorough

A particularly provocative result in [AC88] is that when literature search. Our program beats Hybrid significantly.
block transfers in a certai®7” modef are controlled by
a virtual memory system, then any transpose program that2. The RoColl'M pebble game
moves each element of the source array directly to its final
destination has cosd(n’/4). Neverthgzless, there is a re- EQUIPMENT:
cursive a_lgorlthm that costs Onﬁ(nl.og. n). Although the Two buckets, labeled andB.
assump_tlons corres_pond to unreallstlc:_;\IIy large costs, this N pebbles (initially inA.)
result gives theoretical support to the idea that “unneces-
sary” data movement can result in a faster algorithm.

The Memory Hierarch model [ACF90, ACFS94] rep-
resents the memory of a single-processor computer as &©BJECT OF THE GAME:
sequence of progressively smaller modules, wheregithe To move all the pebbles from to B in as few moves as
module can hold; blocks of sizeb; elements. Transfer- possible.
ring a block between a module and the next larger module
requires timet;. It is shown, assuming; > b; for each
module and that; = b; (i.e., each bus is unit-bandwidth),
transposing a “nicely-aligned” array requires oy ¢) N
cycles (wheree depends on the exact model, but is very 2. At mostK pebbles can be on the Go board at any time.
small). Unfortunately, the assumption that> b; doesn't
hold for the problematic architectural scenarios. Further, 3- Thereare two types of moves:
many computers cannot overlap communication as required

e There is a trade-off between how often data is moved
into cache and how often itis moved into registers. Itis
necessary either to move most elements into registers
twiceor into cachemultiple times For typical comput-
ers, it's better to optimize for cache.

An (infinitely large) “Go” board.
An integerK.

RULES:

1. Initially, all the pebbles are iA.

¢ Row move: Choose a row of the Go board. Place

by the model. as many stones from as desired (subject to the
2The specific model here assumes the initial access time afck bt limit of rule 2) on that row, in any positions (but
address: is z. only one pebble per position).

e COLUMN move: Choose a column of the Go

COL¢move

board, and move as many pebbles as desired from ﬂ

that column to buckes.

4. The game is over when all the pebbles are in buBket

The score is the number of moves. The goal is to use

as few moves as possible.

STRATEGY:

A poor strategy would be to repeatedly make or@nR
move to place< pebbles on one row of the board, and then
to makeK CoLUMN moves to pick them up one at a time.
This strategy would requireNV (1 + 1/K)] moves.

Z

6 ROW Moves :

X rXXX =

v__=

|

__—
— - == == =

o |

6 COL Moves

Figure 2. The “square” strategy for RoCol
with K = 36. Six Row moves create a square,
then six COLUMN moves remove the 36 peb-
bles. It is optimal when N =K

A much better strategy is illustrated in figure 2 for the
game withK = 36. For simplicity we assumé& = H?.
First H Row moves are made to create Bnx H square of
pebbles, and thel CoLuMN moves empty the board into
bucketB. This strategy has an average “bandwidth” frém
to B of v/K /2 pebbles per move, that is, assumiNgis a
multiple of K, the score will b@ N/VK.

However, there is a still better strategy, as illustrated in
figure 2 with K = 36. AssumeK is a triangular num-
ber,i.e. K = H(H + 1)/2. An initial H Row moves are
made to create a right triangle with legs of length There-
after, we alternate oned. umMN move placingH pebbles
in bucketB with one Row move of H pebbles, restoring
the triangle to its full size. The asymptotic “bandwidth” of
this strategy i97/2 = (v/1 + 8K — 1) /4 pebbles per move,
which is nearlyy/2 better than the previous strategy.

®

/_—\\
I N I A
a a a6 6 o a6 Ao
WV UV UV vV VvV Vv WV

a

w

an

w

an

w

—

—
T

cdh 4n & o A A

N

e e

A

Represents the next ROW move

Figure 3. The optimal “triangle” strategy for
RoCol with K = 36. Moves alternate remov-
ing a column of 8 pebbles and adding a row,
restoring the triangle.

We will now prove that the triangle strategy is optimal
within an additive constant.

DefineT'(h) = h(h + 1)/2 on the positive real num-
bers, and lef’ ! to be the inverse of" (i.e. T !(k) =
(V1+8k—1)/2)

Given a “board positionG of pebbles on the Go board,
let r; denote the number of pebbles on thth row andc;
the number on thg-th column. Define the potentidt of
positionG as:

P(G) = ZT(CJ') - ZT(TJ')

P can be thought of as a measure of the “vertical-ness”
of the arrangement of pebbles — a lot of pebbles in a small
number of columns will result in a largé. A large P sug-
gests there are a number of goodi@MN moves available.

Let G; denote the board position aftemoves have been
made. Note that in a game of moves G, andG,,, are the
empty board position.

We first give a bound on how much the potential of a
position can change in one move, then use that to bound the
“bandwidth” of an entire game.

Lemma I P(G;) — P(Gi-1) < K — T'(k;), wherek; is
the number of pebbles involved in moxe

Proof:

Case 1: Move is a Row move.
For a given j, the ternT’(c;) in the first summation in the
definition of P(G;) can be visualized as the number of

Proof: A complete game ofn moves involves moving all
N pebbles out of buckeA and movingN pebbles intdB,
so the total number of pebble-mov@,ﬁl k;,is2N. The
theorem follows immediately from Lemma 3.

edges (including one self-edge) that can be drawn between <

pebbles in thg-th column. Thus, adding at most one pebble
per column will increase this first summation by at most K
(the maximum number of pebbles that can be on the board)

Theorem 2 If H = T~!(K) is an integer, then a game of
RoCol that allows at mosk” pebbles on the board at a time

can move\V pebbles fromAtoBinatmos2N/H +2(H —

since there will be one new edge per pebble in each columnl) moves.

that gets a new storfeThe second summation increases by
at leastT'(k;), even more if pebbles were placed on a row
that already had some pebbles.

Case 2: Mové is a COLUMN move.
The proof is similar. (If you transpose the board and run
time backwards, a GLUMN move becomes a®wv move.)

¢
Lemma 2 In a game ofn movesy " | T'(k;) < mK.

Proof: Rewrite Lemma 1 a9'(k;) < K + P(G;_1) —
P(G;). Summing over ali from 1 to m and telescoping
the interior terms yield$"" | T'(k;) < mK + P(Go) —
P(G,) =mK.

¢

Lemma3 " k; <mT (K)

Proof: LetS = _." | T'(k;). Suppose we allow thi;'s to

be arbitrary non-negative reals (rather than restricting them
to the integers). It follows from the fact that the second
derivative ofT is positive thaty_ k; is maximized, subject

to the constraint tha}_ T'(k;) = S, when thek;'s are all

the same value, call i,.*

We can calculatek, by observing thatsS
>t T(ki) = mT(k,), sok, = T~'(S/m). Thus, the
maximum value of"" | k; ismT~—"(S/m).

It follows that foranyset ofk;’s that satisfyd " T'(k;) =
S, in particular for the game of interesty k; <
mT~'(S/m). We also know from Lemma 2 thaf <
mK, and sincel” is an increasing function, it follows that
S ki <mT HK).

¢

The above lemma leads to:

Theorem 1. A game of RoCol that allows at mo&t peb-
bles on the board at a time requires at led$f H moves to
transferN pebbles fromA to B, whereH = T~ (K) (i.e.
K =H(H +1)/2).

: 3An alternate algebraic proof follows simply froffi(c;) — 1'(c; —
1) =¢;.

4Proof: suppose to the contrary tht # ko. Letk) = ki, =
(kv + k2)/2, andk! = k; fori > 2. We then have) k! = > k;

but " T'(k!) < > T(k;). We could now increask to satisfy the con-
straintz T(k;) = S, resulting in a larger value of the objective function

> ki

Proof: The triangle strategy described earlier requites-
1 Row initial moves to set up the triangle arfd — 1 to
CoLuUMN moves to clear it at the end. The remaining moves
proceed at a “bandwidth” off pebbles per move. (Even if
N is not a multiple ofH , enough pebbles are moved during
the initialization and final moves to handle the remainder.)

¢

The reader is undoubtedly wondering what RoCol has to
do with TRANSPOSEand BTREVERSE The short answer
is, the buckets model a large memory module, tlosvRand
CoLumMN moves correspond to moving blocks of data into a
smaller module, and thE pebbles represent the total mem-
ory available in a still smaller module. Thus, RoCol models
the relationship amonthree levels of the memory hierar-
chy. But before this can be made clearer, we must describe
the relevant architectural features.

3. A primer of architecture

A simplified description of the architectural features of
modern PC’s and workstations that most affect the perfor-
mance of these programs, along with some sizes suitable for
“back-of-the-envelop” intuition, follows:

e The computer's memory is partitioned into blocks of
contiguous storage callegages Typically, a page
holds 1024 (4-Byte) array elements. Before the pro-
cessor can access data in a page, the page must “be
moved into the TLB’® The TLB can hold only a lim-
ited number of pages, say 64. Moving a page into
the TLB might take 15 or 50 cycles, depending on the
computer.

Depending on assorted detéikhere may be restric-
tions on which pages can be in the TLB simultane-
ously. This so called “associativity problem” can be
particularly acute when the addresses of the pages dif-
fer by multiples of a large power of two, as often hap-
pens withBitReverse andTranspose .

5This phrase describe something that is a bit more comptica¥®u
don’t want to know the details.

5They include the associativity of the TLB and whether the TBp-
ping is randomized. You don’t want to know.

e Pagesin TLB are partitioned into blocks of contiguous destined to be moved to a single cachelineBofin fact,

storage calledachelines Typically, a cacheline holds

each of theh; cachelines in the corresponding subarray of

between 8 and 32 array elements (depending on theB gets one element from each of the linesNa subarray.
machine). Before the processor can can access datdt gets worse: the cachelines of the subarraaire in the
in a cacheline, it must be moved into cache. The cachesame associativity cla$s.

can hold only a limited number of cachelines, say 64 or

This situation leads to a trade-off between how often data

1024 (depending on the machine). Moving a cacheline is moved into cache and how often it is moved into regis-

into cache takes perhaps 20 cycles.

« Depending on even more detdithere are limitations
on which cachelines can be in cache simultaneously.
The cache associativity problem is particularly acute
for Transpose on large arrays (where the number of
rows or columns is a multiple of the cache size), or for
BitReverse
an associativity problem means that all cachelines of
that contain data destined for contiguous locations in
B are in the same “associativity class”, and the archi-
tecture allows only some small number (depending on
the machine) of these cachelinesfatfo be in cache at
the same time.

ters. Suppose we restrict our implementation of transpose
to programs that move each array element into a register
only once during the execution of the program. The follow-
ing theorem is applicable wher& now represents a sub-
array whose elements are all in a single cache associativ-
ity class, and's elements are also in a single associativity

. . class (thouglB's class can be different from's.) The pa-
on even modest-sized arrays. Having rameterZ is the “

cache associativity”. The theorem applies

to each pair of subarrays separately, and then carries for-
ward to the original (large) arrays.

Theorem 3 Given a computer witli registers and a cache
that allows at mos¥ cachelines oA and Z cachelines of
Bin cache at a time. LeV be the size oA. Then any pro-
gram that compute$ranspose(A,B)

by bringing each

e There may actually be two or three levels of cache. We €lement into a register only once during the program must

don’t consider multiple levels of cache in this paper.

have at leasiV/(Z + T~ (K)/2) cachelines moves during

its execution.

e The processor has a numberegisters(typically 32)

Proof: Corresponding to the given program isehedulef

and perhaps half can hold array elements (the remain-gata movement. This schedule is a sequence of operations
der are needed for addresses, system pointers, etc.pf the following types:

One or two array elements can move between cache
and registers per cycle.

4. Lower bounds on permutations

In this section, we use RoCol to derive lower bounds on
the number of times data must be brought into TLB, cache,
and registers. We will focus on programs that implement
Transpose , since the exposition is easier, but the theo-
rems apply to equally tBitReverse

We always assume thhitl andN2, the dimensions o,
are multiples ofb,, the size of a page. This implies they
are also multiples ob, the size of a cacheline, since all
hardware parameters are powers of two. We also assume
the data are “nicely aligned”, that is, every cacheline and
page lies entirely within a single row éfor B.

PartitionA andB into subarrays of sizg x b;. A perfor-
mance problem withiranspose is that (for sufficiently
large arrays) thé; cachelines that hold one such subarray
of A are all in the same associativity class and cannot all
co-reside in cache. Yet these lines hold elements that are

"They include the cache associativity, whether cache isiphiis or

e Evict(X)

o Load(Alij],RK)

e Store(Rk,BI[j,i])

Encache(X) (where X is either A[i,j] or
B[j,i] , for some i and j), which brings the cache-
line containing the elementinto cache.

, Wwhich moves the cacheline containikg
out of cache, freeing up space for a different cacheline
to be cached.

(where0 < k < K), which
into the registelRk. The cacheline
must currently reside in cache.

movesA[i,j]
containingA[i,j]

(where0 < k < K), which
moves the element iRk into its final position in the
B array. The cacheline containirigjj,i] must cur-
rently reside in cache.

Copy(A[i,j1,BIj,i1) , which has the effect of a
Load immediately followed by &tore , but doesn’t
require naming the register. BotA[i,j] ’'s and
Bl[j,i] ’'s cachelines must currently reside in cache.

virtually addressed, and even how memory was allocatednditma. You
really don’t want to know.

8Qccasionally it will be the same associativity classAés subarray,
making things a little worse still.

We assume the initial schedule doesn’t contain any roundtrip involves two cache misses, one on each ofthe
Copy'’s; they are introduced to facilitate our analysis. By andB arrays. Using this terminology, we can restate Theo-
the theorem’s assumptions, for eackandj , there is ex- rem 3 as:
actly one Load(A[i,j]) and oneStore(B[j,i]) Corollary: Given a computer withK' registers, a cache-
operation. line length of L and a cache associativity of, then

We will rearrange the schedule into a canonical form. Transpose with one register roundtrip per element will
First, we search the schedule for any instant of time when,require at least./(2Z + T~ '(K)) cache roundtrips per el-
for somei andj, bothA[i,j] ’'sandB]Jj,i] 's cache- ement.
line are in cache. For each such occurrence, we removeProof: Each cacheline move corresponds to a one-way trip
the Load(Al[i,j],Rk) and theStore(RKk,B]j,i]) for oneL elements. To get the average number of roundtrips
from the schedule, and instead, at the earliest point in made by each element, we multiply the result of the theorem
the schedule where both lines are in cache, insert aby L/(2N)

Copy(A[i,jl,BIji) operation. Note that this will O

be immediately after Encache operation. For accounting The 66-MHz IBM Power2 processors used in our later
purposes, we “charge” tHéopy to theEncache operation experiments hag = 4 andL = 32 (measured in 4-Byte

it immediately follows. elements). The corollary says that even if we could use

After introducing as manyCopy’s as possible, each all K = 32 registers (sdl' }(K) ~ 7.5), an algorithm
Encache operation will have at most Copy’s charged with one register roundtrip per element must average at least
to it, since there can be at most one for each cacheline 0f32/15.5 = 2.06 cache roundtrips per element.
the opposite array that that is resident at the time of the An important observation igxactly the same analysis
Encache operation. applies to the TLB. For the Power2’s TLBZ = 2 and

We now show how the schedule (ignoring tGepy’s) L = 1024; hence an algorithm with one register roundtrip
corresponds to a game of RoCol, where there is one pebblger element must average at lea4/11.5 ~ 89 TLB
for each register, where thgj) pairs are the positions roundtrips per element.

on the playing board, and where edehcache operation Is it worth having this much cache and TLB traffic, just

is a RoCol move. so an algorithm can make optimum usage of register traf-
Consider anEncache(A[i,j]) operation and the fic? The answer depends on the relative costs, and the pos-

set of subsequeritoad’s from the cacheline containing sible alternative algorithms. Table 1 provides the answer

Ali,j] that occur before the correspondiBgict oper- for the Power2. The cost of a register roundtrif jssince

ation. For each sudhoad , the correspondin§tore must the Power2 can execute two memory operations (load’s or
occurafterthe Evict , since otherwise we would have re- store’s) per cycle. The cache cost assumes that 25-cycles

placed thd_oad-Store pair with aCopy. Thus, it is le- are required for a 32-element cacheline, i.e. a steady-state
galto move all suchoad s down to just before thEvict , of 25 cycles for 16 roundtrips, or 1.56 cycles per roundtrip.
without needing to change any register names. We will bun- The TLB on the Power2 is uncommonly fast — 15 cycles
dle this set of_oad s together and call it a 8w move. per 1024-element page. An alternative algorithm, shown in
Similarly, for eachEncache(B]j,i]) operation, we the last column, is COBRA, thBitReverse progran?

consider theStore operations on that cacheline before it described in the next section. COBRA has two register
is nextEvict -ed. Thesétore s can be moved up to just roundtrips per element, but only one cache roundtrip and
after theEncache , and designated adl UMN move. (on the Power2) 16 TLB roundtrips.

Let ¢ be the number oEncache operations. By our This figure suggest that the COBRA algorithm has a
accounting method, we know that mest elements will be significant advantage. In practice, it is impossible to de-
transposed bZopy moves. There remailV — c¢Z elements sign a register-efficient algorithm that has only 2.06 cache
to be moved in the RoCol game. Theorem 1 says ¢hat roundtrips per element; 4 is a more realistic number. Nev-
2(N — ¢Z)/T~'(K). The theorem follows after a little ~ ertheless, the projected costs of the COBRA algorithm are
algebra. close to those of our actual experiment.

o Thus, it is better to have a cache-efficient algorithm (one

The significance of this theorem is more intuitive when that makes only one cache roundtrip per element), than a
expressed in terms of “roundtrips per element”. A roundtrip register-efficient one.
means moving a 4-Byte array element into the smaller 9Recall our assertion that in theory, bit-reversals andspase have

memory a_nd bac_k out again. For mStanCQ a TI'egIS- the same analysis. In practice, bit-reversals have monhesd and other
ter roundtrip requires a load and a store, while a cache problems.

Memory level Register-efficient COBRA Finally, we give a lower bound on the number of TLB
(cycles/rt) r’s cost r's cost roundtrips required by a cache-efficient program.
TLB (0.03) 89 260 |16 047 Theorem 5 Suppose our computer can hdttlelements in
Cache (1.56) || 2.06 3.21 1 156 cache and registers combined, and it has TLB associativity
Reg (1.00) 1.00 1.00 2 2.00 of Z and page lengtli elements. Assuming that at mast
| Total cost || 6.81 | 4.03 | pages ofA and Z pages o can be in the TLB at a time,
any program that computdsanspose(A,B) with only
Table 1. Comparison of the theoretical one cache roundtrip per element must have an average of at
lower bound cost, in cycles/element, for a leastl/(2Z + T~*(K)) TLB roundtrips per element.
BitReverse that is constrained to one reg- Proof: The proof is essentially the same as the proof of The-
ister roundtrip (rt) per element, compared to orem 3 and its corollary, with “TLB pages” playing the role
the data movement cost of the COBRA algo- of cachelines, and with “cache” playing the role of registers.
rithm, which has two register roundtrips per We construct a schedule wincache andEvict op-
element. All costs are computed for the IBM erations corresponding to pages moved into and out of the
Power2 processor. TLB. When a cacheline of is moved from memory into

cache, d.oad operation is put into the schedule for each el-
ement of the cacheline. When a cachelinBd&f moved out
- of cache, &tore for each element of the line is put into
We now fF’C“S on lower bc?“”ds for pache-eﬁ!uent rans- the schedule. All other data movementinto registers or from

pose and bit-reversal algorlthms. First We give a lower one location to another in cache are ignored in the schedule.
bound on the number of register roundtrips that must be Reasoning as in Theorem 3, at led&t(Z + T~ (K)/2)
made. pages must be moved into TLB during the execution of
Theorem 4 Suppose our computer hds registers and the program, wherév is the number of elements i To

a cache that allows at most cachelines ofA and Z get the number of roundtrips per element, we multiply by
cachelines ofB in cache at a time, where each cache- 1 /(2

line is of length L. Then any program that computes
Transpose(A,B) with one cache roundtrip per element Applying Theorem 5 to the Power2 (which can hold

—1
must have an average of at least- (22 + T (K))/L 32800 elements in cache and registers combined), there
register roundtrips per element. - must be at least024/(4 + T~ (32800)) = 1024/259.6 =
Proof: Since the program is cache-efficient, it has exactly 3 g4 TLB roundtrips per element on average. Combined

2M/L cacheline moves, wher&/ is the size of each ar- ith the result from Theorem 4, the theoretical lower bound
ray. Consider the schedule of data movement as describegn any cache-efficierifranspose or BitReverse on

in the proof of Theorem 3. If we remove from this sched- the power2 is 3.20 cycles/element.

ule all Load’s and Store 's of elements that make more

than one roundtrip into registers, what remains will be the L .

schedule of a program that transposes a sparse array. Thea?- An efficient bit-reversal

rem 3 asserts that this program (which we know h&&/ L

cacheline moves) has at led¥f(Z + T~ '(K)/2) cache- We now give a BitReverse algorithm that is cache-
lines moves, whereV is the number of elements in the efficient and also has good TLB efficiency. It uses the
sparse array. Thu®M/L > N/(Z + T~'(K)/2), and square strategy of Figure 2, which is easier to implement
SoN/M < (2Z + T-'(K))/L. Note thatN/M is the and almost as efficient as the triangle strategy of Figure 3.
fraction of elements that require only one register roundtrip; The Cache Optimal BitReverse Algorithm (COBRA) that
the remainingl — N/M require at least two. Thus, the av- we present will also be the subject of the experiments pre-
erage number of register roundtrips per element is at leastsented in section 6.

2 - (2Z+T ' (K))/L. The length of a binary string is denoted|a| (e.g.
% |0100] = 4). We represent the indices of the array we wish
When applied to COBRA on the Power2, Theorem 4 to BitReverse , A, with binary strings of the fornabc,
says there must be at leaxst- (8 + 7.5)/32 = 1.52 reg- wherea andc are of lengthy, whereq is chosen to be at

ister roundtrips per element on average. Thus, it might beleast Ig of the size of a cacheline. Thugabc| = IgN
possible to save a half-cycle per element, thought at the costhen|b| =1g N — 2q.
of making the program more complicated. The pseudocode for COBRA is in figure 4. In COBRA,

for b, = 0 to 27(IgN-2q)-1 ondary (L2) cache with 64-Byte cachelines. The L1 cache
b* = r(b) R has a 6-cycle miss penalty when the data are in L2, and

f(?r a=0t 2gl an approximately 50-cycle additional cost (according to our
a = r@) . experiments) when the data must be fetched from memory.

for c = 0 to 2°q-1 (1] The TLB has associativity 64 (it is fully-associative), each

Tla'c] = Afabc] page is 8 KBytes, and a TLB miss costs about 75 cycles.

for ¢ = 0 to 2°g-1 Figures 5 and 6 compare COBRA to the_ Hybrid pro-

¢ = 1) gram developed by Alan Karp. Karp’s experiments [K96]

for a = 0 to 2°g-1 2] demonstrate that on a wide variety of architectures, Hybrid
Blcb'a] = T[a'c] is consistently either the best performing or near the best

performing code, compared to 29 other methods he found
in a thorough literature search.

Figure 4. Pseudocode for COBRA. The size we selected féa| and|c| were dependent on

the size of cache. On the IBM Power2 with its large cache,
we found|a| = |c| = 6 was best. On Alphda| = |c| =5

for a givenb, all data of the formA[*b*] is copied:® one
was better, probably due to the smaller L1 cache.

cacheline at a time, to the temporary arfigywhich should
reside completely in cache (this is all done in loop [1]). To
ensure thall remains in cache2?? should be smaller than
the size of cache (in most cases making% — 75% of
the size of cache is effective to minimize conflict with other Bit Reversals on the Power2
data that also sits in cache). In loop [2], the data are moved
from T to the destination arrag. Again, the data are moved
into a cacheline oB at a time, avoiding associativity prob- /
lems onB. The non-sequential referencesTtadon’t hurt, 8
since the entird array remains in cache. r\-//

Note that the inner loops of COBRA are very efficient. ° A i
In loop [1], iterating onc results in “stride one” (i.e. se- - /o
guential) accesses ovArandT. In loop [2] iterating or&’
gives stride one accesses oBeand stride2? overT. The
constant stride accesses make indexing efficient. 0

Thrashing can occur on loop [1] for certain valuesbof
whereAJabc] andT[a'c] become cache aligned. We
minimize this effect in our implementation by unrolling the
inner loop four times and scalarizing (loading four elements
into registers and then storing the elements from the four

10 [T

Cycles/Element

12 13 14 15 16 17 18 19 20 21 22
Bit reversal size (Ig N)

registers into memory locations) in the unrolled loop. Figure 5. Performance of COBRA and Alan
Lastly, we note that the above pseudocode is for an out- Karp's Hybrid bit-reversal programs on the
of-placeBitReverse . An in-placeBitReverse (one Power2.

that rearranges the elements but leaves the results in the
same array) using the same principles is not hard to design.

These figures show the near-linear performance of CO-
6. Experimental results BRA on both machines. COBRA is faster than Hybrid for
almost all problem sizes. On the Power2, COBRA is nearly

COBRA was implemented on two computers, an IBM twice as fast as Hybrid on large arrays, and on the Alpha, it

Power2 and a DEC Alpha 21164. The Power2 was de_is more than 4 times as fast. We suspect the poorer scala-
scribed earlier. The Alpha has a one-way set associative 8—biIity of Hybrid on the Alpha (compared to the Power2) is

KByte primary (L1) data cache, where each cacheline holdsdue to two factors: the Alpha has a smaller L1 cache than

32 Bytes. It also has a 3-way set associative 96-KByte SeC_the Power2, requiring Hybrid to make more passes over the

data, and the miss penalties on the Alpha are significantly
10each ** represents all binary strings of length greater than on the Power2.

[AC88] Aggarwal, A., A. K. Chandra, “Virtual Memory
Algorithms,” Proc. 20th. Symp. on Theory of Comp.
Bit Reversals on the Alpha 21164 May 1988, pp. 173-185.

10 [AV88] Aggarwal, A. and J. Vitter, “IO Complexity of
" // Sorting and Related ProblemsCACM, September
/ 1988, pp. 305-314.

® ﬁ A [AHU74] Aho, A., J. Hopcroft, and J. UllimariThe De-
) sign and Analysis of Computer Algorithmsddison-
// Wesley, Reading, Massachusetts, 1974.

20 g —arryrrre ey

Cycles/Element

[ACF90] Alpern, B., L. Carter, and E. Feig, “Uniform
0 ——— Memory Hierarchies,1JEEE Conference on Founda-
e A A tions of Computer Scienc®ctober, 1990.

Bit reversal size (Ig N)

[ACFS94] Alpern, B., L. Carter, E. Feig, and T. Selker,
“The Uniform Memory Hierarchy Model of Com-
putation,” Algorithmica Volume 12, Number 2-3
Figure 6. Comparison of COBRA and Hybrid (August—September 1994).

on the Digital Alpha 21164.
[B90] Bailey, D. H., “FFTs in External or Hierarchical

Memory,” The Journal of Supercomputing. 4, pp.
23-35, 1990.

7. Future work _ o _
[F72] Floyd, R. W., “Permuting Information in ldealized

Two-Level Storage,Complexity of Computer Compu-

Our goal is to eliminate the gap between the time tations Plenum Press, New York, 1972, pp. 105-109.
required by FFT programs and the analyses that give
lower bounds on this time. Having a nearly op- [GS66] Gentleman, W.M. and Sande, G., “Fast Fourier

timal BitReverse program gives us hope that the Transforms - For Fun and Profit,” AFIPS Proceedings,
communication-efficient FFT of [ACFS94] can be made to vol. 29, pp. 298-309 (1966).

out-perform existing implementations of other algorithms. .
: ; w - HK81] Hong, J-W. and H. T. Kung, “I/O Complexity: The
What ded next is a study of th details” not |
a’ Is heeded next IS a Study of e messy dears no Red-Blue Pebble GameRroc. 13th. Symp. on Theory

modeled in by the UMH (particularly cache associativity)

that are important to the performance of the remaining steps of Comp, May 1981.

of the FFT algorithm. [3J97] Johnson, J.R. and R.W. Johnson, “Challenges of
Computing the Fast Fourier Transform,” DARPA Con-

8. Acknowledgements ference, June 1997.

[K96] Karp, A.H., “Bit Reversal on Uniprocessors,” SIAM

Alan Karp kindly provided a copy of the programs used Review, Vol 38, No. 1, pp 1-26, March 1996.

in his experiments. This greatly facilitated our experiments. [S95] Savage, J.E., “Extending the Hong-Kung Model
We also thank Ashok Chandra for a Suggestion that to Memory Hierarchies"’Computing and Combina-
sharpened Lemma 1 and cleaned up some messy details. torics (Proceedings from COCOON ’95), LNCS 959,
pp.270-281, Springer-Verlag, 1995.

References [V-L92] Van Loan, C.,Computational Frameworks for the
Fast Fourier TransformSIAM, Philidelphia, 1992.

[ACS87] Aggarwal, A., A. K. Chandra, and M. Snir, “Hi-
erarchical Memory with Block Transferfroc 28th
Symp. on Foundations of Comp. S€ctober 1987,
pp. 204-216.

10

