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ABSTRACT:Recent traffic measurement studies suggest that the
self-similarity observed in packet traffic arises from aggregating
individual sources which behave in an ON/OFF manner with
heavy-tailed sojourn times in one or both of the states. In this
paper, we investigate the connection between general ON/OFF
behavior, self-similarity and queueing performance. We use cha-
otic maps to model general ON/OFF behavior with combinations
of heavy tailed and light tailed sojourn time behavior. We present
results which show that chaotic maps which capture the heavy-
tailed sojourn time behavior in the OFF and/or ON states generate
traffic that is asymptotically self-similar. However, the resulting
queue length distribution decays as a power law with the heavy
ON source, and as an exponential with the light ON source, even
though both processes exhibit identical1/f noise behavior. To
resolve this apparent paradox, we consider aggregates of ON and
OFF sources, and show that the nature of the ON period is less
consequential, and in both instances the aggregate appears to con-
verge to Fractional Brownian Motion (FBM). The queueing
behavior is heavy in both cases, corresponding to the “stretched
exponential” form predicted by FBM models. This indicates that
differences in the single source case arise due to the impacts of
higher order statistics, which become less significant as sources
are aggregated. Convergence to FBM is observed to be slower
with light ON sources. Our results indicate that in assessing the
impact of long range dependence on performance, the potential
impacts of other factors, such as higher-order statistics, must also
be considered. Further, our analysis indicates conditions under
which long-range dependence can dominate queueing perfor-
mance in fast packet and SS7 networks, and with Variable Bit
Rate (VBR) video applications.

KEYWORDS: Packet Traffic Modeling, Deterministic Chaotic
Maps, Self-Similar, Long Range Dependence, Fractals, Chaos,
Intermittency, Performance Analysis.

1 Introduction

Conventional teletraffic theory is largely based on Markovian
assumptions of the traffic arrival process and of service time dis-
tributions. Although the theory permits other models for the
arrival and holding time distributions, most current research is
based on Markovian assumptions. Thus traditional models of
packet arrival process are characterized by interarrival times that
decay exponentially, by variances that decay inversely with sam-
ple size, by a power spectrum which is convergent near the origin,
etc. and lead to traffic models which are short-range dependent.
These models have been used with tremendous success in the
design and operation of telephone networks.

In contrast, traffic arrival processes in packet based networks are
much more bursty and intermittent. A number of recent measure-
ment studies from the full range of packet based networks and ser-
vices (ISDN packet, Ethernet, SS7, VBR Video) [2][4][9]
[11][12][13] indicate that packet traffic is characterized by inter-
arrival times that decay with heavy tails, by variances that decay
as a fractional power of the sample size, by a power spectrum that
is divergent near the origin, and by correlations that are long range

dependent. A number of analytical and experimental studies have
established the performance significance of these features
[4][8][14].

More recent measurement work has focused on the physical basis
of the self-similarity observed in the full range of packet based
networks. Based on a preliminary analysis of individual sources
on an Ethernet, Willinger [17] observes that individual sources
can be represented by the familiar ON/OFF abstraction: the source
is either transmitting at a peak rate when it is in the ON state, or it
is completely idle when it is in the OFF state. In conventional traf-
fic models, the sojourn times in the two states are characterized by
distributions with light-tailed behavior e.g., those that decay expo-
nentially. In contrast, Willinger [17] observes that in actual traffic
these sojourn time distributions decay far more slowly, as power
laws, such that the variance of the sojourn times is infinite. Anal-
ogous conclusions are made by Meier-Hellsternet al. [13] in stud-
ies of individual ISDN data traffic sources. These statements are
consistent with the observation that in self-similar traffic, bursts
occur over all durations, and there is no characteristic length or
time scale for traffic bursts. Based on theoretical results [16]
which suggest that aggregating a large number of ON/OFF
sources with the same heavy-tailed distribution in the two states
results in a self-similar process, Willinger makes the conjecture
that heavy-tailed ON/OFF behavior provides the physical basis
for the self-similarity observed in packet data traffic.

These measurement results motivate the investigation of more
general ON/OFF source behavior, in which the distribution of
sojourn times in one of the two states is heavy-tailed, in the sense
that its variance is infinite. In principle, one can approximate the
heavy-tailed sojourn time behavior by a mixture of exponentials,
but the number of parameters required to match observed data
increases as the sample size (and the range of the observed sojourn
times) increases. In the spirit of parsimoniously modeling the
many time scales inherent in self similar traffic, we instead use
chaotic maps to model such ON/OFF behavior. We are motivated
in part by experiences in a number of other disciplines in which
chaotic maps have been used as efficient generators of fractal pro-
cesses. Our approach is based on earlier work on the application
of deterministic chaotic maps to model traffic flows [5][6][7][8].
Specifically, we consider the simplest class of chaotic systems,
known as one dimensional (1-D) chaotic maps, in which the evo-
lution of a state variablex over discrete timen is described by a
deterministicnonlinear transformation . We can
model packet traffic sources using such maps by setting up a cor-
respondence between the state variable  and activity of the
source. For example, we model ON/OFF source behavior by stip-
ulating that the source is generating traffic at a peak rate if
exceeds a threshold, and is idle otherwise. By suitable choice of
the functionf(·) we are able to model and analyze a wide range of
ON/OFF behavior. In this setting, we can also cast simple queue-
ing systems in terms of two dimensional deterministic transforma-
tions.

In section 2 we describe the basic model and introduce some of the
fundamental concepts. We then look in detail at two different
maps, theSingle Intermittencymap, and theDouble Intermittency
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map as models of general ON/OFF behavior in sections 3 and 4
respectively. We then consider the performance implications of
queues driven by such traffic processes and show the importance
of considering the physical basis of self similarity in section 5.
Section 6 concludes this paper and discusses some open issues.

2 Chaotic Maps as Traffic Source
Models

In this section we review the chaotic map formulation to model
traffic sources. Consider a one-dimensional map in which the state
variable  evolves over time according to the nonlinear map
[6][7][8]:

(EQ 1)

Note that the formulation is completely deterministic, and a given
initial condition fully defines a trajectory in the phase space. This
is analogous to a “realization” of a stochastic process. We can now
model a packet generation process by assuming that the source is
in a passive or active state at timen depending on whetherxn is
below or above a threshold (Figure 1). Every iteration of the map
in theactive state is taken to generate a batch of  packets.
The packet arrival process is then described by the evolution of an
associate indicator variableyn:

(EQ 2)

Other source interpretations are also possible [7][8].

In practice, theyn are observed, while thexn are hidden, and the
challenge is to find suitablef1(·) andf2(·) such thatyn match those
properties of actual packet traffic that are relevant for queueing
performance. The following results from [8] relate the choice of
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Figure 1 Simple nonlinear map as packet generator.
When  the source is taken to be active, generating

packet(s) with every iteration (yn=1)
xn d≥

Basic Source Model Chaotic Maps as Models
of Packet Traffic
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f1(·) and f2(·) to the sojourn time behavior in the ON and OFF
states. Iff1(0)=0 andf2(1)=1,

• linear segments will generate geometric sojourn
times in the ON & OFF states i.e.,

• nonlinear segments that have a Taylor series
expansion of the form  in the
vicinity of 0 or 1 will generate heavy-tailed
sojourn times i.e.,

(EQ 3)

The deterministic formulation of a chaotic map also permits per-
formance analysis. Queueing systems can also be modeled as a
two dimensional deterministic transformation [6][7][8]. As an
illustration, consider a server with a deterministic service time
equal to the iteration interval of the underlying chaotic map (e.g.
cell processing in ATM networks). The performance of this server
can be analyzed in the framework of a discrete queueing system
whose state at timen is given by the queue lengthln. If every iter-
ation of the map in the active state produces a batch ofk packets1,
the server can be completely described by the following coupled
system of nonlinear equations:

(EQ 4)

(EQ 5)

where themax(·) function accounts for the boundary conditions at
ln = 0. Even though (EQ 4) and (EQ 5) are fully deterministic, the
chaotic map formulation nevertheless captures randomness in the
arrival process. The state of the source and queue is represented
by the point (xn, ln), and the evolution of the queue from any initial
condition, which is fully governed by (EQ 4) and (EQ 5), can be
represented by motion in the plane with  and integer
ln. The marginal distribution of iterates along thel axis corre-
sponds to the queue length distribution and can be numerically
computed in principle.

In particular we are interested in modeling traffic sources with a
range of ON/OFF behavior, and relating it to self-similar traffic.
In the next section we show that a simple chaotic map can be a
generator of1/f noise,which is the frequency domain manifesta-
tion of long range dependence.

3 Single Intermittency Map

Intermittency is a phenomenon which has been used to study sys-
tems (especially turbulence) which are characterized by alternat-
ing periods of long “regular” phases and relatively short irregular
“bursts”. We use this map to model sources which are character-
ized by heavy tailed OFF (corresponding to long “regular”
phases), and light-tailed ON distributions (corresponding to the
short irregular “bursts”). Using the results stated in the previous
section, we construct the following map [6]:

1. For any backlogs to exist k must be greater than 1.
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(EQ 6)

where

and (EQ 7)

The inactive state  is represented by a nonlinear seg-
ment. If the initial statexo at the beginning of any passive period
is not near the origin, the resulting passive period is relatively
short. However with finite probability the initial state can be close
to the origin (i.e. ), and here the state variable
evolves very slowly, and it takes many iterations of the map to
emerge from this region. This generates the very long idle periods.
The active period , on the other hand, is represented by
a linear segment. Thus the sojourn times in the active state are
essentially geometric [8] and sources of this type generate limited
bursts of packets interspersed with (occasionally) long idle inter-
vals. A source of messages in existing SS7 networks can be
loosely described in such terms: a burst of messages at the initia-
tion of a call, followed by an idle period corresponding to the
holding time of the call (which can span many time scales), fol-
lowed by another burst corresponding to the termination of the
call. It is a reasonable conjecture that the sustained inactivity mod-
eled by the single intermittency map is at the root of the self-sim-
ilarity observed in traffic from existing SS7 networks [9]. Note
that the limited burst scenario may not be valid when signaling
data from new services such as PCS, mobile computing, etc. make
up a substantial portion of signaling traffic.

The sojourn times in the inactive state are heavy tailed with infi-
nite variance when (3/2<m<2). The effect of  is to limit the max-
imum duration of the idle period. We show in [15] that the traffic
process generated by theSingle Intermittency map displays1/f-
noise, and is asymptotically second-order self-similar. The power
spectrum  of the generated traffic process is asymptotically
found to be,

for 3/2<m<2. (EQ 8)

Equivalently, the output process has a correlation structure that
decays as  asymptotically with . It
is relatively straight-forward to show that processes with such a
power law correlation structure are asymptotically second-order
self-similar [3], with the Hurst parameterH, given by,H = (3m-
4)/(2m-2) in the range(1/2,1),when m is in the range [3/2 < m <
2]. The effect of  is to place an upper-cutoff on the correlations;
in this paper we assume that there are no upper cut-offs on the
power law correlation behavior, and set =0.

4 Double Intermittency Map

The sojourn time in the ON period can be made heavy-tailed as
well by replacing the linear segment in the single intermittency
map with an appropriate nonlinear segment. Consider the map
[7][8],
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(EQ 9)

(EQ 10)

As discussed in Section 2, the sojourn time distributions of the
active and inactive periods behave as [8]

. To this extent, this map is a repre-
sentation of the ON/OFF behavior noted by Willinger [17] in pre-
liminary studies of single Ethernet sources. Taqqu and Levy [16]
derive results which indicate that aggregating a large number of
heavy tailed ON-OFF sources will in the limit lead to Fractional
Brownian Motion (FBM), and the Hurst index H is given by
H = (3m-4)/(2m-2),[3/2 < m < 2]. Considerable numerical evi-
dence also shows that the output is long-range dependent with (as
before)H = (3m-4)/(2m-2) [3/2 < m < 2]. This also provides a
connection between our approach, and the Fractional Brownian
Motion (FBM) model proposed by Norros [14] to model self-sim-
ilar packet traffic. Thus, both sustained inactivity (exemplified by
a heavy tailed OFF, light tailed ON source) and sustained activity
(heavy tailed ON/OFF sources) gives rise to traffic that is asymp-
totically self-similar in the sense that it exhibits1/f-noise. Next we
consider the performance implications of the two self-similar traf-
fic processes discussed above.

5 Performance Analysis

5.1 Single Intermittency Map

For the queueing system of (EQ 4) and (EQ 5) driven by the single
intermittency map it can be shown that the tail of the queue length
distributions decay geometrically as a function of the generalized

occupancy,i.e.  [7][8]1. This result can be estab-
lished by simulating the queueing system, or by numerically solv-
ing for the queue-length distribution from the dynamical system
description. The exponential decay characteristic of this form of
the queue length distribution is a consequence of limited burst
lengths even though the input traffic process exhibits long-range
dependence. Figure 2 illustrates this via simulation of (EQ 4) and
(EQ 5) for various values ofm. As can be seen, the complemen-
tary distribution functionP(L>l)  is clearly linear on a semi-log
plot, indicating an exponential decay. In particular, changingm,
which changes the target Hurst parameter value, hasno effect on
the exponential nature of the decay, which must arise from the
limited burst durations.

5.2 Double Intermittency Map

In contrast, analysis of the double intermittency map shows that
the effect of heavy-tailed sojourn times for the active state leads

1. This result is reminiscent of GI/M/. theory, and by analogy, we can refer
to  as thegeneralized occupancy.
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to a power law decay in the tail of the queue length distribution
function [8]:

. (EQ 11)

This power-law behavior is apparent in Figure 3 which shows the
plot of the queue length distribution on a log-log plot. Note that

the decay is linear in the log-log plot. Such heavy-tailed queueing
behavior has been studied in M/G/1 models with heavy-tailed ser-
vice distributions (see [1] for an analogous result with Pareto ser-
vice times) but is unprecedented in conventional arrival processes
with constant service times. The queue length distribution is so
heavy that in the range (3/2<m<2), the average queue length is
unbounded. From a physical basis, this result is not surprising,
given that the burst lengths have an infinite variance. This sug-
gests that for single sources with heavy-tailed ON behavior, peak
rate allocation must be used to avoid severe performance degrada-
tion. Note that the form of the queue length distribution here is
heavier than the Weibullian form predicted by the FBM model of
[14]. Aggregates of ON/OFF sources are discussed next.

Queueing Behavior With

Figure 2 The queue length distribution has a geometric

decay  for a deterministic server
driven by the traffic process generated from the Single
Intermittency map. Shown here for various values of the
Hurst parameter and utilizations (p) (both ranging from

about 2/3 to 7/8). Note the semi-log plot.
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Queueing Behavior With

Figure 3 The queue length distribution is heavy-tailed,

; a result due to the power-law burst

size distribution. Note the log-log plot.
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Double Intermittency Map

5.3 Multiple Source Aggregation

The enormous contrast in the queueing behavior with two pro-
cesses that asymptotically have the same second order behavior is
striking. These differences can be attributed to the impacts of
other factors, such as marginal distributions, and higher order sta-
tistics. It is shown in [10] that a form of the central limit theorem
applies to aggregates of long range dependent traces, and aggre-
gating a large number of sources results in marginals that are
Gaussian, and in which second-order statistics dominate. Thus, by
considering aggregates of ON/OFF sources, one would expect the
effect of other factors, such as differences in the marginals, and
higher order statistics, to be reduced.

Figure 4 shows the time series obtained by aggregating 50 sources

of theSingle and Double Intermittency type. Note the presence of
low frequency variations that indicate the presence of -noise
or long-range dependence discussed earlier. Also note the broader
band in the plot of the aggregates of the single intermittency map
as compared to the aggregates of the double intermittency map
indicating the presence of more relative power in the high fre-
quency range (which is to be expected, because limited bursts will
correspond to high frequency variations).

Figure 5 shows the variance-time plot [11] obtained from a multi-
plexing of 50 sources of theDouble Intermittencytype. The
slowly decaying variances are an evidence of long-range depen-
dence, and the estimate ofH from this plot (0.87) is very close to
the target value (=0.875) (the more rigorous Whittle [11] estimate
also gives similar results). As Figure 6 shows, the queue length
distributions appear to be Weibullian, or “stretched exponential”.
This is consistent with several theoretical results:(i) Taqqu and
Levy [16] indicate that aggregating a large number of heavy tailed
active/inactive sources will in the limit lead to Fractional Brown-
ian Motion (FBM)(ii)  Norros [14] shows that FBM arrival pro-

The Packet Arrival Process Generated by

Figure 4 The packet arrival process generated by
aggregating 50 sources of the Single Intermittency type

(top) and Double Intermittency type (bottom). Shown
here is the number of packets generated N(t) at discrete

time t. Note the low frequency variation in these
processes indicating 1/f-noise.
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cesses generate “stretched exponential” heavy-tailed queueing.
This suggests that aggregating as few as 50 sources leads to a good
approximation of FBM, and aggregating the output of the double
intermittency map may be an efficient way of generating FBM.
For the purposes of traffic analysis, this technique has the advan-
tage that the number of arrivals in a time interval is non-negative,
in contrast to other techniques of generating FBM. However, the
quality of the generated traces must be investigated further, along
with computational issues.

Figure 7 shows the variance-time plot of the time series obtained
by aggregating 50 sources of the single intermittency type. As
before, the slowly decaying variances indicate the presence of
long-range dependence, and the estimate of the Hurst parameter
from this plot (0.85) is close to the target value (form=1.8, H
=0.875) (the Whittle estimate also gives similar results).

Simulation studies of the queueing behavior obtained with aggre-

Variance-Time Plot for Aggregates of

Figure 5 The variance time plot of trace obtained by
aggregating 50 sources of the double intermittency type:

in absence of correlations, variances should decay
inversely with sample size ( dotted line); decay slower

than this rate indicates long-range dependence in trace
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Queueing Behavior of Aggregates of

Figure 6 The queue length distribution has a Stretched

Exponential decay  (with ) for a
deterministic server driven by the traffic process

generated from the aggregation of 50 Double
Intermittency type sources. The fit is given by the solid

lines which fall almost on the curves.
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gates of sources of theSingle Intermittency type also show con-
vergence to the stretched exponential form (Figure 8), though the
quantitative agreement is less precise. This can be attributed to
slower convergence to FBM. In particular, note the difference in
the decay rate of the queue length distributions of the aggregates
of the single intermittency and double intermittency, though the
target FBM parameter values (mean, peakedness and the Hurst
parameter) are the same. In practice, the excess high-frequency
power in the output of the single intermittency map presents diffi-
culties in matching the peakedness. This high-frequency compo-
nent is relatively inconsequential in determining queueing
performance, which is dominated by the long range dependence.
Thus for the same total power (related to the peakedness) the sin-
gle intermittency map generates lesser power in the lower fre-
quencies, and consequently, queueing backlogs are less heavy.
Such potential pitfalls should be taken into account while match-
ing FBM parameters to asymtptoically self-similar traffic. For
traffic generation using aggregations of the single intermittency
map, the high-frequency variations can be eliminated by aggregat-

Variance-Time Plot for Aggregates of

Figure 7 Variance time plot of trace obtained by
aggregating 50 sources of the Single Intermittency type:

decay rate slower indicating presence of long-range
dependence
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Figure 8 The queue length distribution has a stretched
exponential decay for a deterministic server driven by the

traffic process generated from the aggregation of 50
Single Intermittency type sources. The fit is given by the

solid lines which fall almost on the curves.
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ing in time.

6 Discussion and Conclusions

We have related self-similar traffic to a variety of ON/OFF source
behavior. Using chaotic maps to model a range of ON/OFF source
behavior, we show that long-range dependent traces can be gener-
ated by sources which have heavy-tailed OFF behavior. Both sin-
gle sources as well as aggregates of sources with heavy-tailed
OFF and light-or heavy-tailed ON behavior generate long-range
dependence, as indicated by variance-time plots, power spectra
and other statistical indicators. There are nevertheless differences
in queueing behavior, based on the nature of the ON period. For
single sources, light-tailed ON periods produce queue length dis-
tributions that decay exponentially; whereas sources which have
heavy-tailed ON periods generate queue length distributions that
decay as power laws. Neither of these sources generates the
stretched exponential queue length distributions predicted by
FBM models.

This paradox - of traffic traces with the similar second-order sta-
tistics generating dramatically different queueing behavior - can
be explained on the basis of differences in higher-order statistics.
This is supported by considering aggregates of heavy-tailed ON/
OFF sources, which appear to converge to FBM, and lead to
queueing behavior consistent with FBM models, regardless of the
nature of the ON period. The impact of higher order statistics is
diminished in aggregating independent sources [8]. In general, in
assessing impacts of long range dependence on performance, the
potential impacts of other factors, such as higher order statistics
should not be discounted. In particular the physical basis of the
self-similar behavior (sustained inactivity, or activity) can provide
insights into the performance impacts of long range dependence.
The differences in single source queueing behavior can be readily
understood on a physical basis by considering the durations of the
ON period. Ethernet sources appear to fit into the category of
heavy ON/OFF source behavior [17]; for sources of this type,
peak rate allocation may be required, and aggregates appear to
converge fairly quickly to FBM (“exactly self-similar”). Loosely
speaking, SS7 sources appear to fit into the category of heavy
OFF, but light ON sources. For single sources of this type, queue-
ing behavior is rather tame, but aggregates across sources and in
time once again lead to FBM (“asymptotically self-similar”).
Physically, a traffic stream consisting of many limited bursts will,
at a high enough utilization level, be indistinguishable from a
stream that is generated by extended bursts. As SS7 traffic levels
increase, the impacts of long range dependence may be more sig-
nificant. The advent of newer SS7 services may accelerate this
trend.

There is considerable scope for further work: more in-depth theo-
retical work to establish the emprirical results presented here; use
of general ON/OFF sources to generate exact and asymptotically
self-similar traffic; analysis of source aggregations on the basis of
flows in the invariant measure of the chaotic maps; the physical
basis of self-similarity in various applications etc.
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