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Abstract

This paper describes the scaled unscented transformation, a new method of ap-
plying the unscented transform to a nonlinear system. A set of samples are de-
terministically chosen which match the mean and covariance of a (not necessarily
Gaussian) probability distribution. Each point in the set is scaled by a user-specified
constant. A method is derived which preserves the second order accuracy in mean
and covariance, giving performance as good as second order truncated filter.

1 Introduction

One of the most fundamental tasks in filtering and estimation is to calculate
the statistics of a random variable that has undergone a transformation. When
the system models are non-linear no general closed-form solutions exist [11]
and many approximations have been proposed [1-3,12,13].

In [7] and [9] we introduced a new approximate method for propagating means
and covariances through nonlinear transformations called the unscented trans-
formation. A set of weighted sigma points are deterministically chosen so that
certain properties of these points (such as their first two moments) match
those of the prior distribution. Each point undergoes the nonlinear transfor-
mation and the properties of the transformed set are calculated. Although this
algorithm superficially resembles a Monte Carlo method, no random sampling
is used and, in consequence, only a small number of points are required. In [7]
we presented a symmetric sigma point solution that used 2n 4 1 points to
match the mean and covariance of an n-dimensional random variable. With
this set of points, the unscented transform guarantees the same performance
as the truncated second order filter, with the same order of calculations as an
extended Kalman filter (EKF) but without the need to calculate any approxi-
mations or derivatives [10]. In subsequent work we have developed other sigma
point selection schemes which exploit more information such as the first three
moments of an arbitrary distribution [5] or the first four non-zero moments of
a Gaussian distribution [8].
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However, all of these sigma point solutions share the property that as the
dimension of the state space increases, the radius of the sphere that bounds
all the sigma points increases as well. Therefore, the specified information
(such as mean and covariance) are captured with the cost of introducing errors
due to non-local sampling. The originally unscented transformation overcame
these difficulties using two methods. The first is to specify a point at the mean
of the prior with a weight that can be positive, zero or negative. When this
weight is negative, it causes the sigma points to be scaled into the origin. As
a result, the first two moments are preserved and this is reflected by second
order performance in the mean. However, although the mean is successfully
calculated, non-positive weights can lead to a predicted covariance that is non-
positive semidefinite. The second strategy was to adopt a modified form of the
unscented transformation that added a positive semidefinite correction term.
Although the point scaling approach has been successfully demonstrated in a
number of systems [4], the theoretical development of the modified form has
a number of shortcomings. First, the approach was introduced from studying
the higher order properties of the system and no physical intuition was used.
Second, it was only developed to study the problem of point scaling in the
symmetric unscented transformation, and its applicability to other sigma point
sets was not examined.

This paper re-examines the problem of sigma point scaling and introduces a
new, general framework for scaling sigma points. This approach introduces
an auzillary random wvariable that is related to the original system equa-
tions. It has a number of desirable properties. First, as with the modified
unscented transform the set of sigma points can be scaled but their first two
moments are preserved. Second, it provides a general framework within which
the conventional unscented and modified forms are limiting values. Third,
the approach is proved to work with any sigma point set, and not just the
symmetric set. Fourth, the method is equivalent to applying the conventional
unscented transformation followed by a simple post-processing step. The stor-
age and computational costs are exactly the same as a non-scaled version of
the same transformation. Finally, at no extra cost the method can incorpo-
rate known higher order information (such as the kurtosis). Given its superior
implementation properties, this form of the algorithm is superior whenever
the unscented transformation is used to propagate the first two moments of
a distribution. We have already used this method to develop minimal sigma
point filters [6] as well as demonstrate a filter which propagates the skew (third
order moments) [5].

The structure of this paper is as follows. In Section 2 we introduce the problem
statement and the unscented transformation. The scaled unscented transfor-
mation is considered in Section 3. We present two complementary approaches.
The first uses an auxillary random variable that introduces a modified form of
the process model. This is shown to be equivalent to the second method, that



uses the conventional unscented transformation with an additional postpro-
cessing step. We also show that it is possible to incorporate additional higher
order information through an extra term. Conclusions are drawn in Section 5.

2 Background
2.1 Problem Statement

Let x be a random variable with mean x and covariance P,,. A second random
variable, y is related to x through the nonlinear transformation

y = f[x]. (1)
The objective is to calculate the mean y and covariance P,, of y.

Throughout this paper, we refer to the Taylor Series expansion of this equa-
tion. Let x = dx + X where dx is a zero mean random variable with covariance
P... Expanding f [-] about x,

fx] = f[x+0x] = f[x] + Vox + %V2f6x2 + %vm,ﬁ @)

where, for the sake of simplicity, we use the informal notation that Vféx’ is
the ith order term in the multidimensional Taylor Series. Taking expectations,
it can be shown that

y =Ely]
:fhy+%v%fgf+év%E@hﬂ+un
Py, =E [(y -y)(y— y)T]

= VIP,, (Vi) + %v?m [6x*] (V) + %VfE [6x*] (v2f)T

(3)

5V (B [ox'] — B [5P,, ] — B [P,,6x'] + P2,) (9°5)"

+%V%EP#MVQT+~-

The Unscented Transform builds on the principle that it is easier to approx-
imate a probability distribution than it is to approximate an arbitrary non-
linear function. A set of p + 1 weighted points & = {W;, X;} (such that
>P Wi = 1) are chosen to reflect certain properties of x. In other words,
they obey a condition of the form g[S, p,(x)] = 0 where g |-, | specifies what
information from x is to be matched by S [8].

Each point is instantiated through the nonlinear function, Y; = f [&;]. The



estimated mean and covariance of y are

y = i W Y; (5)
Py, = Zp: Wil —yH{Yi -y} (6)

and other properties (such as the third order moments or skew) can be calcu-
lated accordingly [5].

In [7] we presented the following set of points that obey both the mean and
covariance constraints:

Xo(k|k) =x(k|k) Wy =r/(n+k)
X; (k| k) :fc(k\k)+(\/(n+/<¢)P(k\k))iWi =1/{2(n+r)} (7)
Xin (k[ k) =%k [ k) = (V(n+ &P (k[ k) Wipn =1/{2(n+r)}

where £k € R, (\/(Tl + k)P (k| k))z is the ith row or column of the matrix
square root of (n + k)P (k | k) and W; is the weight that is associated with
the ith point. The distance of the ith point, |X; — x| = a/(n + k). The value
of k had a direct effect on the scaling of the points. When x = 0, the distance
of the ith sigma point from X is proportional to y/n. When k£ > 0 the points
are scaled further from x and when k < 0 the points are scaled towards the
origin. If, for example, K = 3 — n the effect of n is cancelled out. However,
when k < 0 it is possible that the covariance, calculated by Equation 6, is non-
positive semidefinite. The modified form of the the unscented transformation
calculates the covariance according to

PUOP =P, +{Vo -y} {Vo -5} (8)

The justification for this form is that

o 1oy
(nllgioy =f[x]+ §V fP,,
lim PYOP = vfP,,(Vf)".

(n+k)—0 vy

In other words, in the limit as n+x tends to zero, both the mean and covariance
are calculated correctly to the second order.

The next section introduces the scaled unscented methods.

3 Sigma Point Scaling Methods

The scaled unscented transformation is a generalisation of the unmodified and
modified unscented transformations. It is a method that scales an arbitrary



sigma point set but ensures that the mean and covariance are maintained cor-
rectly. Implicitly, the idea is to replace the existing set of sigma points by a
transformed set X, = X+ a(X; — Xy), where a is a positive scaling parame-
ter. The next two subsections discuss two alternative implementations of this
form. The first introduces an auxzillary random wvariable that used a modified
form of the transition model and is related to y. In many respects, this form
offers the clearest explanation of how the scaled unscented transformation
works. Subsection 3.2 shows that the same performance can be achieved us-
ing the conventional unscented transform with a simple post-processing step.
Finally, Subsection 3.3 describes how some fourth order information can be
incorporated into the calculated covariance.

3.1  The Auzillary Random Variable

The auzillary random variable z is related to x through the nonlinear equation
z = g [x, X, a, ;| where
flx+ a(x—x)] —f[x] ~

glx, %, 1] = +£[x]. (9)
7

a is the point scaling parameter which was introduced above and p is a normal-
isation term which scales the transformed point about f [x]. Taking a Taylor
Series expansion of g [, -, -, -] about x,

1 /2 1 3
g [x,x, o, u] = f[x] + VESox + — V6% + V3 gx® + - (10)
7 2 7 3! 7
Comparing this with Equation 2, g |-, -, -, -] has a similar structure to f [-] and

that « and p scale the first and higher order terms of the series. Taking
expectations, the mean and covariance of z are

z=f[x]+ %VQf %QPM + %V3f %BE [6x°] + -+ (11)
2 3
P..— SVIPL (VI + %%VfE 5x?) (v2)" (12)
+ Z—;%VQf (E[6x] - E [6x*P,,| — B [P,,6x*] + P2) (V)" (13)
T Z—';I%V?’fE [6x4] (Ve + .- (14)

From Equation 5, if 4 = o?, the values of y and z agree with one another up
to the second order and the third and higher order moments scale geometri-
cally with a common factor of a.Similarly, let P}, = yP,,. From Equation 4,
P, agrees with P,, up to the second order and higher order terms scale with
«. Therefore, o can be chosen to incorporate appropriate higher order infor-
mation. For example, to offset the dimension-related scaling that occurs in
Equation 7, a = 1/n.



Therefore, the auzillary form of the unscented transformation is

Zi :g[X’i:iaanu’] (15)
p
z=> W2, (16)
i=0
p
P u S Wi{Z -2} {27} a7)
=0

3.2 The Scaled Unscented Transform

The scaled unscented transform yields the same results as the auxillary random
variable, but without the need to modify the process and observation model.
Rather, an initial set of points are chosen and a transformation is applied to
these points. The mean and covariance are calculated as normal and then a
final term is added back.

Suppose a set of sigma points S have been constructed using a sigma point
selection algorithm. These have mean x and covariance P,,. We first construct
a set of auxillary sigma points, &' = {i = 0,1,...,p : X., W/}. These have
the same mean and covariance as §, but the sigma points obey the conditions

where X. are the sigma points which would be used to calculate the auxillary
random variable. The weights on &’ are related to S through

{Wo/a2 +(1-1/a?) i=0

W.’ p—
W;/a? 1 #0

)

(19)

The proof can be found in the Appendix. This set of points still obeys the
same mean and covariance condition and, for sigma point selection algorithms
that are parameterised by the value of Wy, § = S[Wy], 81 = S[W1y.

Given this set of points, the scaled unscented transform calculates its statistics
as follows:

Y, = flxy). (20)
p

¥ =S WY (21)
1=0

Py = Z WAV =y Y =y} + (=) Y-y Y -y} (22)

In the Appendix we prove that y' = z and P, = uP,, when p = a?. Com-
paring this form with Equations 5 and 6, we see that both forms are virtually



the same apart from the extra term applied to P;y. The only difference is that
an extra correction term, is included. When « = 1, this gives the conventional
unscented. When a = 0, this form gives the modified covariance of Equation 8.

3.8 Incorporating Higher Order Information

Although the sigma points only capture the first two moments of the sigma
points (and so the first two moments of the Taylor Series expansion), it is
possible to include extra terms that capture some of the higher order behaviour
of the system in the covariance equation. From Equation 4, the fourth order
contribution to the covariance is

A= %VQf (E[6x'] — E [6x*P,,| — B [P,,0x*] + P2,) (Vf)”

(23)
+ %Vf‘fE ox'] (V)"

From Equations 2 and 3,

1 1
Vo—y = §V2fPM + 6V3fE [6x3] 4.

Taking outer products,

(¥ = Vo) (v — Vo) = VHP2 (V)" + -

Comparing this with Equation 23, it can be seen that the first term in this
expression equals one contribution to the fourth order term for the covariance.
Therefore, by adding extra weighting to the contribution of the zeroth point,
further higher order effects can be incorporated at no additional computational
cost by rewriting Equation 22 as

p
! — ! T / _ ] T
P, => WY~ yHY; -5} +(B+1-a){Y, - 5H{I 5} .
i=0
In the special case where the distribution is Gaussian, E [0x*] = 3P2_. There-
fore, the actual fourth order term is
1
_ o2 p2 (o2e\T 3 4 T
A = VP (V)" + V'R [6x*] (V£)
whereas the approximated term is

A =VP, (V)"

The relevance of this extra information will be demonstrated below.
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4 Example — Not Completed Yet

This section demonstrates the use of the scaled unscented transformation in
a high order nonlinear system. The system is a navigation system for a high
speed vehicle that uses INS, GPS and a laser scanner. The system state vector
consists of six states and ten process noises, giving a total state space of 16.
For example, the process model for this vehicle is:

Yr(k) = Ye(k — 1)+ Vsin[(k — 1) 4+ 6(k — 1) — ay(k — 1)]AT
G(k) = (k= 1) + V(k = 1)pp AT
R R(k—1)

Ek 1)+ ok — 1)AT

sin[d — o] + cos[d — o] tan o,
PF = B

w(k)=wk—1)+w(k —1)AT.

5 Conclusions

This paper has presented the scaled unscented transform a new parame-
terisation of the unscented transform which introduces the additional scaling
parameters o and p. We have shown that the properties of this algorithm are
superior to those of the conventional unscented transform in all respects. It
is able to retain second order accuracy in both the mean and covariance, but
without the problem of the sigma point position “explosion” and without the
need to use negative weights. Given its superior properties, we believe this
algorithm is superior to conventional unscented for all systems whose dimen-
sionality is greater than three.

A The Relationship Between the Scaled and Unscaled Unscented
Transforms

This Appendix shows that the any scaling strategy of the form of Equation 9
can be written as an application of the straightforward method plus a post-
processing term. This means that the equation has exactly the same number
of calculations as conventional unscented.

Theorem 1. The weights of the 8’ are related to those of S by Equation 19.



Proof. The normalisation and covariance conditions obeyed by S are

iWi =1 (A1)
zp: Wi(Xi —x)(X; — x)" =Py, (A.2)

Z W/ =1 (A.3)
Y WX, - %)X, = %) = P (A4)

Comparing Equations A.2 with A.4 and substituting from Equation 18, it can
be seen that W; = W/a? for i > 0. W is found from Equations A.1 and A.3,

Each scaled unscented sigma point is Y; = f[X}], whereas Z; is given by
Equation 15,

Z’i = g[x’uia «, :U’]

_ <1 _ l) fX] + %f &) (A.6)

Theorem 2. Let

P P
zZ = ZWiZi, y = ZWZ'Z;
=0 1=0
Then
2 2
Rl A L
[ 7



Proof. Substituting from Equation A.6 and using the fact that >>7_ =1,

(- Dz e
L 0 L 1<y
1

i=0
1 a2 2 p
S SET
H H i=0
2 2
= p—a Zg + a_y’
1 1
O
Theorem 3. Let
U T
PZZZNZWZ(ZZ_Z)(Zl_ ZW, (Z’_y,) ’
i=0
Then
P _O/_'Q P/ 1_23/ Z/ EAVA
zz—u{y,ﬂr( a’) (2 —¥)( v)'}
Proof. Substituting from Equations A.6 and A.7,
1 21
z o=z 9+ iz ) (A8
1 1
Therefore
- 1 ! 1! (052 B 1) ! .y 1 / 1! (052 B 1) ! .y ’
Po=p) Wii=(Zi-¥)+—(Z, - ¥) {~(Z - ¥)+ —(Z, - ¥)
= T [ T [
1 p
== 2w {2 -y - y)" + @ )& -y ¥)+
i=0

(@~ (2~ ¥)(E - 9) + (0~ )2~ 5)(Zh—5)")
(A.9)

From Equation 19,

S WAE —3)(Z~5) = a®P,, + (1— a?)(Z) — ¥)(Z)—¥)" (A0)

S WAZ - ¥)(Z) 5" = (1 0)(Z -~ ¥)(Zh—¥)" (A1)
S Wiz, Y)E ) = (B ) (A12)
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Substituting Equations A.10 to A.12 into Equation A.9,

2
(0%
P..= m (P, +(1=a”)(Z)-¥)(Z,-¥)").

Remark 1. When p = o?,
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