
The Scaled Unscented TransformationSimon J. JulierAbstractThis paper describes the scaled unscented transformation, a new method of ap-plying the unscented transform to a nonlinear system. A set of samples are de-terministically chosen which match the mean and covariance of a (not necessarilyGaussian) probability distribution. Each point in the set is scaled by a user-speci�edconstant. A method is derived which preserves the second order accuracy in meanand covariance, giving performance as good as second order truncated �lter.
1 IntroductionOne of the most fundamental tasks in �ltering and estimation is to calculatethe statistics of a random variable that has undergone a transformation. Whenthe system models are non-linear no general closed-form solutions exist [11]and many approximations have been proposed [1{3, 12, 13].In [7] and [9] we introduced a new approximate method for propagating meansand covariances through nonlinear transformations called the unscented trans-formation. A set of weighted sigma points are deterministically chosen so thatcertain properties of these points (such as their �rst two moments) matchthose of the prior distribution. Each point undergoes the nonlinear transfor-mation and the properties of the transformed set are calculated. Although thisalgorithm super�cially resembles a Monte Carlo method, no random samplingis used and, in consequence, only a small number of points are required. In [7]we presented a symmetric sigma point solution that used 2n + 1 points tomatch the mean and covariance of an n-dimensional random variable. Withthis set of points, the unscented transform guarantees the same performanceas the truncated second order �lter, with the same order of calculations as anextended Kalman �lter (EKF) but without the need to calculate any approxi-mations or derivatives [10]. In subsequent work we have developed other sigmapoint selection schemes which exploit more information such as the �rst threemoments of an arbitrary distribution [5] or the �rst four non-zero moments ofa Gaussian distribution [8].Preprint submitted to Elsevier Preprint Revision 3 | January, 1999



However, all of these sigma point solutions share the property that as thedimension of the state space increases, the radius of the sphere that boundsall the sigma points increases as well. Therefore, the speci�ed information(such as mean and covariance) are captured with the cost of introducing errorsdue to non-local sampling. The originally unscented transformation overcamethese di�culties using two methods. The �rst is to specify a point at the meanof the prior with a weight that can be positive, zero or negative. When thisweight is negative, it causes the sigma points to be scaled into the origin. Asa result, the �rst two moments are preserved and this is re
ected by secondorder performance in the mean. However, although the mean is successfullycalculated, non-positive weights can lead to a predicted covariance that is non-positive semide�nite. The second strategy was to adopt a modi�ed form of theunscented transformation that added a positive semide�nite correction term.Although the point scaling approach has been successfully demonstrated in anumber of systems [4], the theoretical development of the modi�ed form hasa number of shortcomings. First, the approach was introduced from studyingthe higher order properties of the system and no physical intuition was used.Second, it was only developed to study the problem of point scaling in thesymmetric unscented transformation, and its applicability to other sigma pointsets was not examined.This paper re-examines the problem of sigma point scaling and introduces anew, general framework for scaling sigma points. This approach introducesan auxillary random variable that is related to the original system equa-tions. It has a number of desirable properties. First, as with the modi�edunscented transform the set of sigma points can be scaled but their �rst twomoments are preserved. Second, it provides a general framework within whichthe conventional unscented and modi�ed forms are limiting values. Third,the approach is proved to work with any sigma point set, and not just thesymmetric set. Fourth, the method is equivalent to applying the conventionalunscented transformation followed by a simple post-processing step. The stor-age and computational costs are exactly the same as a non-scaled version ofthe same transformation. Finally, at no extra cost the method can incorpo-rate known higher order information (such as the kurtosis). Given its superiorimplementation properties, this form of the algorithm is superior wheneverthe unscented transformation is used to propagate the �rst two moments ofa distribution. We have already used this method to develop minimal sigmapoint �lters [6] as well as demonstrate a �lter which propagates the skew (thirdorder moments) [5].The structure of this paper is as follows. In Section 2 we introduce the problemstatement and the unscented transformation. The scaled unscented transfor-mation is considered in Section 3. We present two complementary approaches.The �rst uses an auxillary random variable that introduces a modi�ed form ofthe process model. This is shown to be equivalent to the second method, that2



uses the conventional unscented transformation with an additional postpro-cessing step. We also show that it is possible to incorporate additional higherorder information through an extra term. Conclusions are drawn in Section 5.2 Background2.1 Problem StatementLet x be a random variable with mean �x and covariance Pxx. A second randomvariable, y is related to x through the nonlinear transformationy = f [x] : (1)The objective is to calculate the mean �y and covariance Pyy of y.Throughout this paper, we refer to the Taylor Series expansion of this equa-tion. Let x = ���x+ �x where ���x is a zero mean random variable with covariancePxx. Expanding f [�] about �x,f [x] = f [�x+ ���x] = f [�x] +rrrf���x+ 12rrr2f���x2 + 13!rrr3f���x3 + � � � (2)where, for the sake of simplicity, we use the informal notation that rrrif���xi isthe ith order term in the multidimensional Taylor Series. Taking expectations,it can be shown that�y = E [y]= f [�x] + 12rrr2f Pxx + 16rrr3f E h���x3i + � � � (3)Pyy = E h(y� �y) (y � �y)T i=rrrf Pxx(rrrf)T + 12rrr2fE h���x3i (rrrf)T + 12rrrfE h���x3i �rrr2f�T+ 12rrr2f �E h���x4i� E h���x2Pyyi� E hPyy���x2i +P2yy� (rrr2f)T+ 13!rrr3fE h���x4i (rrrf)T + � � � (4)
The Unscented Transform builds on the principle that it is easier to approx-imate a probability distribution than it is to approximate an arbitrary non-linear function. A set of p + 1 weighted points S = fWi;X ig (such thatPpi=0Wi = 1) are chosen to re
ect certain properties of x. In other words,they obey a condition of the form g [S; px(x)] = 0 where g [�; �] speci�es whatinformation from x is to be matched by S [8].Each point is instantiated through the nonlinear function, Y i = f [X i]. The3



estimated mean and covariance of y are�y = pXi=0WiY i (5)Pyy = pXi=0Wi fY i � �yg fY i � �ygT (6)and other properties (such as the third order moments or skew) can be calcu-lated accordingly [5].In [7] we presented the following set of points that obey both the mean andcovariance constraints:X 0 (k j k) = x̂ (k j k) W0 = �=(n + �)X i (k j k) = x̂ (k j k) + �q(n + �)P (k j k)�i Wi = 1=f2(n+ �)gX i+n (k j k) = x̂ (k j k)� �q(n+ �)P (k j k)�i Wi+n = 1=f2(n+ �)g (7)where � 2 <, �q(n + �)P (k j k)�i is the ith row or column of the matrixsquare root of (n + �)P (k j k) and Wi is the weight that is associated withthe ith point. The distance of the ith point, jX i� �xj = �q(n+ �). The valueof � had a direct e�ect on the scaling of the points. When � = 0, the distanceof the ith sigma point from �x is proportional to pn. When � > 0 the pointsare scaled further from �x and when � < 0 the points are scaled towards theorigin. If, for example, � = 3 � n the e�ect of n is cancelled out. However,when � < 0 it is possible that the covariance, calculated by Equation 6, is non-positive semide�nite. The modi�ed form of the the unscented transformationcalculates the covariance according toPMODyy = Pyy + fY0 � �yg fY0 � �ygT : (8)The justi�cation for this form is thatlim(n+�)!0 �y = f [�x] + 12rrr2f Pxxlim(n+�)!0PMODyy =rrrf Pxx(rrrf)T :In other words, in the limit as n+� tends to zero, both the mean and covarianceare calculated correctly to the second order.The next section introduces the scaled unscented methods.3 Sigma Point Scaling MethodsThe scaled unscented transformation is a generalisation of the unmodi�ed andmodi�ed unscented transformations. It is a method that scales an arbitrary4



sigma point set but ensures that the mean and covariance are maintained cor-rectly. Implicitly, the idea is to replace the existing set of sigma points by atransformed set X 0i = X 0+�(X i�X 0), where � is a positive scaling parame-ter. The next two subsections discuss two alternative implementations of thisform. The �rst introduces an auxillary random variable that used a modi�edform of the transition model and is related to y. In many respects, this formo�ers the clearest explanation of how the scaled unscented transformationworks. Subsection 3.2 shows that the same performance can be achieved us-ing the conventional unscented transform with a simple post-processing step.Finally, Subsection 3.3 describes how some fourth order information can beincorporated into the calculated covariance.3.1 The Auxillary Random VariableThe auxillary random variable z is related to x through the nonlinear equationz = g [x; �x; �; �] whereg [x; �x; �; �] = f [�x + �(x� �x)]� f [�x]� + f [�x] : (9)� is the point scaling parameter which was introduced above and � is a normal-isation term which scales the transformed point about f [�x]. Taking a TaylorSeries expansion of g [�; �; �; �] about �x,g [x; �x; �; �] = f [�x] +rrrf �����x+ 12rrr2f �2� ���x2 + 13!rrr3f �3� ���x3 + � � � (10)Comparing this with Equation 2, g [�; �; �; �] has a similar structure to f [�] andthat � and � scale the �rst and higher order terms of the series. Takingexpectations, the mean and covariance of z are�z = f [�x] + 12rrr2f �2� Pxx + 16rrr3f �3� E h���x3i+ � � � (11)Pzz = �2�2rrrf Pxx(rrrf)T + �3�2 12rrrfE h���x3i �rrr2f�T (12)+ �4�2 12rrr2f �E h���x4i� E h���x2Pyyi� E hPyy���x2i +P2yy� (rrr2f)T (13)+ �4�2 13!rrr3fE h���x4i (rrrf)T + � � � (14)From Equation 5, if � = �2, the values of �y and �z agree with one another upto the second order and the third and higher order moments scale geometri-cally with a common factor of �.Similarly, let P�zz = �Pzz. From Equation 4,P�zz agrees with Pyy up to the second order and higher order terms scale with�. Therefore, � can be chosen to incorporate appropriate higher order infor-mation. For example, to o�set the dimension-related scaling that occurs inEquation 7, � = 1=n. 5



Therefore, the auxillary form of the unscented transformation isZ i = g [X i; �x; �; �] (15)�z = pXi=0WiZ i (16)Pzz = � pXi=0Wi fZ 0i � �zg fZ 0i � �zgT (17)3.2 The Scaled Unscented TransformThe scaled unscented transform yields the same results as the auxillary randomvariable, but without the need to modify the process and observation model.Rather, an initial set of points are chosen and a transformation is applied tothese points. The mean and covariance are calculated as normal and then a�nal term is added back.Suppose a set of sigma points S have been constructed using a sigma pointselection algorithm. These have mean �x and covariance Pxx. We �rst constructa set of auxillary sigma points, S 0 = fi = 0; 1; : : : ; p : X 0i;W 0ig. These havethe same mean and covariance as S, but the sigma points obey the conditionsX 0i = X 0 + �(X i �X 0) (18)where X � are the sigma points which would be used to calculate the auxillaryrandom variable. The weights on S 0 are related to S throughW 0i = 8<:W0=�2 + (1� 1=�2) i = 0Wi=�2 i 6= 0 (19)The proof can be found in the Appendix. This set of points still obeys thesame mean and covariance condition and, for sigma point selection algorithmsthat are parameterised by the value of W0, S = S[W0], S0 = S[W 00].Given this set of points, the scaled unscented transform calculates its statisticsas follows:Y 0i = f [X 0i] : (20)�y0 = pXi=0W 0iY 0i: (21)P0yy = pXi=0W 0i fY 0i � �yg fY 0i � �ygT + (1� �2) fY 00 � �yg fY 00 � �ygT : (22)In the Appendix we prove that �y0 = �z and P0yy = �Pzz when � = �2. Com-paring this form with Equations 5 and 6, we see that both forms are virtually6



the same apart from the extra term applied to P0yy. The only di�erence is thatan extra correction term, is included. When � = 1, this gives the conventionalunscented. When � = 0, this form gives the modi�ed covariance of Equation 8.3.3 Incorporating Higher Order InformationAlthough the sigma points only capture the �rst two moments of the sigmapoints (and so the �rst two moments of the Taylor Series expansion), it ispossible to include extra terms that capture some of the higher order behaviourof the system in the covariance equation. From Equation 4, the fourth ordercontribution to the covariance isA = 12rrr2f �E h���x4i� E h���x2Pyyi� E hPyy���x2i +P2yy� (rrr2f)T+ 13!rrr3fE h���x4i (rrrf)T : (23)From Equations 2 and 3,Y0 � �y = 12rrr2f Pxx + 16rrr3f E h���x3i + � � �Taking outer products,(�y� Y0) (�y �Y0)T =rrr2fP2yy(rrr2f)T + � � �Comparing this with Equation 23, it can be seen that the �rst term in thisexpression equals one contribution to the fourth order term for the covariance.Therefore, by adding extra weighting to the contribution of the zeroth point,further higher order e�ects can be incorporated at no additional computationalcost by rewriting Equation 22 asP0yy = pXi=0W 0i fY 0i � �yg fY 0i � �ygT + (� + 1� �2) fY 00 � �yg fY 00 � �ygT :In the special case where the distribution is Gaussian, E [���x4] = 3P2xx. There-fore, the actual fourth order term isA =rrr2f P2yy(rrr2f)T + 13!rrr3fE h���x4i (rrrf)Twhereas the approximated term isA =rrr2f P2yy(rrr2f)T :The relevance of this extra information will be demonstrated below.7



4 Example | Not Completed YetThis section demonstrates the use of the scaled unscented transformation ina high order nonlinear system. The system is a navigation system for a highspeed vehicle that uses INS, GPS and a laser scanner. The system state vectorconsists of six states and ten process noises, giving a total state space of 16.For example, the process model for this vehicle is:XF (k) = XF (k � 1) + V cos[ (k � 1) + �(k � 1)� �f(k � 1)]�TYF (k) = YF (k � 1) + V sin[ (k � 1) + �(k � 1)� �f(k � 1)]�T (k) =  (k � 1) + V (k � 1)�F�TR(k) = R(k � 1)�f (k) = �f(k � 1)�r(k) = �r(k � 1)!(k) = !(k � 1) + _!(k � 1)�T�F = sin[� � �f ] + cos[� � �f ] tan�rB!(k) = !(k � 1) + _!(k � 1)�T:
5 ConclusionsThis paper has presented the scaled unscented transform | a new parame-terisation of the unscented transform which introduces the additional scalingparameters � and �. We have shown that the properties of this algorithm aresuperior to those of the conventional unscented transform in all respects. Itis able to retain second order accuracy in both the mean and covariance, butwithout the problem of the sigma point position \explosion" and without theneed to use negative weights. Given its superior properties, we believe thisalgorithm is superior to conventional unscented for all systems whose dimen-sionality is greater than three.A The Relationship Between the Scaled and Unscaled UnscentedTransformsThis Appendix shows that the any scaling strategy of the form of Equation 9can be written as an application of the straightforward method plus a post-processing term. This means that the equation has exactly the same numberof calculations as conventional unscented.Theorem 1. The weights of the S 0 are related to those of S by Equation 19.8



Proof. The normalisation and covariance conditions obeyed by S arepXi=0Wi = 1 (A.1)pXi=1Wi(X i � �x)(X i � �x)T = Pxx (A.2)where the fact that X 0 = �x has been used. The conditions obeyed by S 0 arepXi=0W 0i = 1 (A.3)pXi=1W 0i (X 0i � �x)(X 0i � �x)T = Pxx (A.4)Comparing Equations A.2 with A.4 and substituting from Equation 18, it canbe seen that Wi = W 0i�2 for i > 0. W0 is found from Equations A.1 and A.3,1 = pXi=0Wi = W0 + pXi=1Wi= W0 + �2 pXi=1W 0i= W0 + �2(1�W 00) (A.5)
Each scaled unscented sigma point is Y 0i = f [X 0i], whereas Z i is given byEquation 15, Z i = g [X i; �x; �; �]=  1� 1�! f [X 00] + 1�f [X 0i]=  1� 1�!Z 00 + 1�Y 0i: (A.6)
Theorem 2. Let �z = pXi=0WiZ i; �y0 = pXi=0W 0iZ 0iThen �z = �� �2� Z 00 + �2� �y0:9



Proof. Substituting from Equation A.6 and using the fact that Ppi=0Wi = 1,�z =  1� 1�!Z 00 + 1� pXi=0WiZ 0i=  �� 1� !Z 00 + 1� �2� Z 00 + �2� pXi=0W 0iZ 0i= �� �2� Z 00 + �2� �y0 (A.7)
Theorem 3. LetPzz = � pXi=0Wi (Z i � �z) (Z i � �z)T ; P0yy = pXi=0W 0i (Y 0i � �y0) (Z 0i � �y0)T :Then Pzz = �2� nP0yy + (1� �2)(Z 00 � �y0)(Z 00 � �y0)To :Proof. Substituting from Equations A.6 and A.7,Z i � �z = 1�(Z 0i � �y0) + (�2 � 1)� (Z 00 � �y0) (A.8)Therefore,Pzz = � pXi=0Wi ( 1�(Z 0i � �y0) + (�2 � 1)� (Z 00 � �y0))( 1�(Z 0i � �y0) + (�2 � 1)� (Z 00 � �y0))T= 1� pXi=0Wi n(Z 0i � �y0)(Z 0i � �y0)T + (�2 � 1)(Z 0i � �y0)(Z 00 � �y0)T+(�2 � 1)(Z 00 � �y0)(Z 0i � �y0)T + (�2 � 1)2(Z 00 � �y0)(Z 00 � �y0)To(A.9)From Equation 19,pXi=0Wi(Z 0i � �y0)(Z 0i � �y0)T = �2Pyy + (1� �2)(Z 00 � �y0)(Z 00 � �y0)T (A.10)pXi=0Wi(Z 0i � �y0)(Z 00 � �y0)T = (1� �2)(Z 00 � �y0)(Z 00 � �y0)T (A.11)pXi=0Wi(Z 00 � �y0)(Z 00 � �y0)T = (Z 00 � �y0)(Z 00 � �y0)T (A.12)10



Substituting Equations A.10 to A.12 into Equation A.9,Pzz = �2� �P0yy + (1� �2)(Z 00 � �y0)(Z 00 � �y0)T� :Remark 1. When � = �2,�z = �y0Pzz = P0yy + (1� �2)(Z 00 � �y0)(Z 00 � �y0)T :
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