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A Survey of Methods for Scaling Up InductiveAlgorithmsFOSTER PROVOST provost@acm.orgBell Atlantic Science and Technology, 500 Westchester Avenue, White Plains, New York 10604VENKATESWARLU KOLLURI venkat@sis.pitt.eduDepartment of Information Science, University of Pittsburgh, Pittsburgh, PA 15260, andLycos, Inc., 5001 Centre Avenue, Pittsburgh, PA 15213Editor: Usama FayyadAbstract. One of the de�ning challenges for the KDD research community is to enable induc-tive learning algorithms to mine very large databases. This paper summarizes, categorizes, andcompares existing work on scaling up inductive algorithms. We concentrate on algorithms thatbuild decision trees and rule sets, in order to provide focus and speci�c details; the issues andtechniques generalize to other types of data mining. We begin with a discussion of importantissues related to scaling up. We highlight similarities among scaling techniques by categorizingthem into three main approaches. For each approach, we then describe, compare, and contrastthe di�erent constituent techniques, drawing on speci�c examples from published papers. Finally,we use the preceding analysis to suggest how to proceed when dealing with a large problem, andwhere to focus future research.Keywords: scaling up, inductive learning, decision trees, rule learning1. IntroductionThe knowledge discovery and data mining (KDD) community has challenged itselfto develop inductive learning algorithms that scale up to large data sets (Fayyad,Haussler, and Stolorz 1996) (Fayyad, Piatetsky-Shapiro, and Smyth 1996a) (Piatetsky-Shapiro, Brachman, Khabaza, Kloesgen, and Simoudis 1996). This paper1 summa-rizes, categorizes, and compares various existing methods. We restrict the survey'sscope to scalable algorithms, and do not consider issues of e�cient �le system de-sign, storage design, network interface design, or problem formulation, except asthey relate to the design of inductive algorithms. Although we believe the cate-gorization and lessons apply more generally, our analysis focuses primarily on al-gorithms that build feature-vector-based classi�ers (rather than those that includestructural or relational terms) in the form of decision trees or rule sets.We �rst address the meaning of \scaling up" and highlight important issues.We then show similarities between existing methods by grouping them into threehigh-level categories. Within each category, we discuss the techniques themselvesin some detail, showing the similarities and di�erences between techniques of eachtype. Finally, we conclude with suggestions for research and practice that emergefrom the survey's analysis.



2 PROVOST AND KOLLURI2. Why scale up?Organizations are amassing very large repositories of customer, operations, scien-ti�c, and other sorts of data. Fayyad et al. (1996b) cite several representativeexamples of databases containing many gigabytes (even terabytes) of data. KDDpractitioners would like to be able to apply inductive learning algorithms to theselarge data sets in order to discover useful knowledge. The question of scalabilityasks whether the algorithm can process large data sets e�ciently, while buildingfrom them the best possible models. However, the existence of very large data setsalone is not su�cient to motivate non-trivial scaling e�orts. Why not just select asmall subset of the data for data mining?The most commonly cited reason for scaling up is that increasing the size of thetraining set often increases the accuracy of learned classi�cation models (Catlett1991b). In many cases, the degradation in accuracy when learning from smallersamples stems from over�tting due to the need to allow the program to learn smalldisjuncts (Holte, Acker, and Porter 1989), elements of a class description that coverfew data items. In some domains small disjuncts make up a large portion of theclass description (Danyluk and Provost 1993). In such domains, high accuracydepends on the ability to learn small disjuncts to account for these special cases.The existence of noise in the data further complicates the problem, because witha small sample it is impossible to tell the di�erence between a special case and aspurious data point.Over�tting from small data sets also may be due to the existence of a large numberof features describing the data. Large feature sets increase the size of the space ofmodels. Searching through and evaluating more candidate models increases thelikelihood that, by chance, the program will �nd a model that �ts the data well(Jensen and Cohen 1999), and thereby increases the need for larger example sets(Haussler 1988). Things get particularly di�cult when there are many featuresand there is the need to learn small disjuncts. Speci�cally, because large featuresets lead to large and often sparsely populated model spaces, a program biased tosearch for models covering special cases can be inundated with small disjuncts fromamong which it cannot choose.Some data mining applications are concerned not with predictive modeling, butwith the discovery of interesting knowledge from large databases. In such cases,increasing accuracy may not be a primary concern. However, scaling up may still bean issue. For example, the ability to learn small disjuncts well often is of interest toscientists and business analysts, because small disjuncts often capture special casesthat were unknown previously (the analysts often know the common cases). Aswith classi�er learning, in order not to be swamped with spurious small disjunctsit is essential for a data set to be large enough to contain enough instances of eachspecial case from which to generalize with con�dence (Provost and Aronis 1996).It should be clear that scaling up to very large data sets implies, in part, thatfast learning algorithms must be developed. There are, of course, other motiva-tions for fast learners. For example, interactive induction (Buntine 1991), in whichan inductive learner and a human analyst interact in real time, requires very fast



SCALING UP INDUCTIVE ALGORITHMS 3learning algorithms in order to be practicable. Wrapper approaches, which fora particular problem and algorithm iteratively search for feature subsets or goodparameter settings (Kohavi and Sommer�eld 1995; Kohavi 1996; Provost 1992;Provost and Buchanan 1995), also require very fast learners because such systemsrun the learning algorithms multiple times, evaluating them under di�erent condi-tions. Furthermore, in a wrapper approach, each evaluation may involve multipleruns to produce performance statistics (e.g., with cross-validation). Experimentingwith many learning biases also requires a large data set to avoid over�tting dueto bias selection (DesJardins and Gordon 1995). As a �nal example, the popularpractice of learning multiple models and combining their predictions (Dietterich1997) also multiplies the run time.3. How large is \very large"?The KDD community includes researchers and practitioners from diverse back-grounds, including machine learning, statistics, and databases. Researchers in ma-chine learning are accustomed to dealing with 
at �les and algorithms that runin minutes or seconds on a desktop platform. For them, 100,000 instances with acouple dozen features is the beginning of the range of \very large" data sets.The database community deals with gigabyte databases. \Very large" to adatabase practitioner usually means databases (warehouses) of 100 gigabytes orlarger (Agrawal and Srikant 1994). Of course, it is unlikely that all the data ina data warehouse would be mined simultaneously. In practice, data preprocessingtechniques often reduce by orders of magnitude the size of the data set presentedto algorithms. However, the need for data reduction as a preprocess may be morea restriction on our view of learning algorithms than a fundamental restriction ondata mining. Nevertheless, because this survey concentrates on the algorithms formining the data, we will take an algorithmic perspective on the issue of \very large."For most published work on algorithms, one million examples is considered to bea very large data set (100Mbyte-1Gbyte range). This agrees with Huber's assess-ment from a statistical perspective, given in his KDD-97 invited talk (Huber 1997):\Somewhere around data sizes of 100 megabytes or so, qualitatively new, very se-rious scaling problems begin to arise, both on the human and on the algorithmicside"(p. 306).4. What is \scaling up"?For all its theoretical considerations, the issue of scaling up is inherently pragmatic.For scaling up learning algorithms, the issue is not as much one of speeding up aslow algorithm as one of turning an impracticable algorithm into a practicableone. The crucial issue is seldom \how fast" you can run on a certain problem, butinstead \how large" a problem can you (feasibly) deal with. From the point ofview of complexity analyses, for most scaling problems the limiting factor of thedata set has been the number of examples. A large number of examples introducespotential problems with both time and space complexity. For time complexity,



4 PROVOST AND KOLLURIthe appropriate algorithmic question is: what is the growth rate of the algorithm'srun time as the number of examples increases? Also important are the number ofattributes describing each example and the number of values for each attribute.As may be expected, time-complexity analyses do not tell the whole story. As thenumber of instances grows, certain space constraints become critical|most impor-tantly, the absolute size of the main memory with which the computing platform isequipped. Except as described below, almost all existing implementations of learn-ing algorithms operate with the training set entirely in main memory. Furthermore,many algorithms achieve reduced run-time complexity with bookkeeping that in-creases the space used. No matter what the run-time computational complexity ofthe algorithm, if exceeding the main memory limitation leads to virtual memorythrashing, the algorithm will not scale well (Provost and Hennessy 1996).Finally, the goal of the learning must be considered. Evaluating the e�ectivenessof a scaling technique becomes complicated if a degradation in the quality of thelearning is permitted. The vast majority of work on learning algorithms uses clas-si�cation accuracy as the metric by which di�erent algorithms are compared. Insuch cases, we are most interested in methods that scale up without a substantialdecrease in accuracy. For problems that require mining regularities from the datafor purposes other than classi�cation, metrics should be devised by which e�ective-ness can be measured (and compared) as the system scales up (Srikant and Agrawal1996).5. A high-level characterization of methods for scaling upMany diverse techniques have been proposed and implemented for scaling up in-ductive algorithms. The similarities among the techniques become apparent whenthey are categorized into three main approaches. In most cases, techniques fromseparate categories are independent and can be applied simultaneously. The threemain approaches are:� design a fast algorithm� partition the data� use a relational representationThe fast algorithm approach includes a wide variety of algorithm design tech-niques for reducing the asymptotic complexity, for optimizing the search and repre-sentation, for �nding approximate solutions instead of exact solutions, or for takingadvantage of the task's inherent parallelism.The data partitioning approach involves breaking the data set up into subsets,learning from one or more of the subsets, and possibly combining the results. Datapartitioning is useful to avoid the thrashing by memory management systems thatoccurs when algorithms try to process huge data sets in main memory. Also, if alearning algorithm's time complexity is worse than linear in the number of examples,processing small, �xed-size data subsets sequentially can make it linear, with the



SCALING UP INDUCTIVE ALGORITHMS 5constant term dependent on the size of the subsets (Domingos 1996a). In eithercase, it may be possible to use a system of distributed processors to mine thesubsets concurrently. An approach orthogonal to the selection of example subsetsis to select subsets of relevant features upon which to focus attention.The relational representation approach addresses data that cannot feasibly betreated as a 
at �le, including any large relational database, as well as other largerelational structures such as those used for knowledge representation in arti�cialintelligence. In the literature, such techniques have been framed either as learningin �rst-order logic, as learning from relational databases (without 
attening themout), or as 
at-�le learning augmented with relational background knowledge.Figure 1 summarizes the general methods that make up each of the three broadapproaches to scaling up inductive algorithms. We discuss the constituent methodsin detail in the next section. Scaling MethodsMain Approach General MethodFast algorithm Restricted model spacePowerful search heuristicsAlgorithm/programming optimizationsParallelizationData partitioning Select an instance subsetSelect a feature subsetProcess subsets sequentiallyProcess subsets concurrentlyRelational representations Represent data relationallyIntegrate data mining with database managementFigure 1. Methods for scaling up inductive algorithms6. A comparison of methodsGrouping methods into these three broad categories illustrates that certain tech-niques not previously considered to be related are in fact very similar. We will nowsummarize the methods within each category in order to highlight their similarities,their di�erences, their strengths, and their weaknesses.The survey is not exhaustive. It is representative of the current state of theart, and places recent work in the context of a number of historically importantexamples that have had lasting impact. We begin with the design of fast learningalgorithms.6.1. Fast algorithmsThe most straightforward approach to scaling up inductive learning is to producemore e�cient algorithms or to increase the e�ciency of existing algorithms. Of



6 PROVOST AND KOLLURIFast AlgorithmsGeneral Method Example TechniqueRestricted model space decision stump, two-level treePowerful search heuristics greedy, divide & conqueravoid decision-tree post-processingsearch-space pruningAlgorithm/programming e�cient data structuresoptimizations dynamic search-space restructuringbookkeeping strategiesoptimized computing infrastructureParallelization search-space parallelizationparallel matchingFigure 2. Methods for designing fast inductive algorithmscourse, for very large problems, even a fast linear-time algorithm may not be suf-�cient for practicable data mining. However, it is usually the case that for verylarge problems, even with the use of sampling, feature selection, and relational rep-resentations, a fast algorithm is still necessary. Just how fast inductive algorithmsmust be depends, of course, on the problem. Most work on fast algorithms strivesfor near-linear time complexity in the number of examples (e). This is in line withHuber's observation that O(e3=2) is the maximum tolerable time complexity (Huber1997).For a discussion of learning-algorithm design, it is necessary to choose an an-alytical framework that facilitates discussing di�erent algorithms. We will adoptthe commonly used \induction as search" framework, within which data mining isframed as a search through a space of models for a model that performs well withrespect to some criteria (Simon and Lea 1973) (Mitchell 1982). The use of thisframework naturally partitions fast-algorithm design into two categories of meth-ods (see Figure 2). First, one can restrict the space of models to be searched, basedon the straightforward (and sometimes untrue) principle that a small model spacewill be faster to search than a large one. Second, for a large model space, one candevelop powerful search heuristics, where \powerful" means that the heuristics aree�cient, yet they often �nd competitive models. Next we will discuss some partic-ular examples of each of these methods that have proven to be both e�ective ande�cient. We then discuss several algorithm/program optimizations that have beendetailed in the literature. Finally, we discuss approaches to the use of parallelismto speed up inductive algorithms.6.1.1. Restricted model space One approach to designing a fast learning algo-rithm is to restrict it to search an \easy" model space. The clearest examples ofe�ective restricted model-space learners are the long-lived and still viable linear-discriminant methods for learning classi�ers (Duda and Hart 1973). Complex ma-chine learning methods typically are justi�ed by noting that they can capture com-



SCALING UP INDUCTIVE ALGORITHMS 7plex, non-linear relationships from data. Nevertheless, research on both symbolicand neural learning has shown that simple models perform well on many problems.For example, Shavlik et al. (1991) show that with certain quali�cations, \the accu-racy of the perceptron is hardly distinguishable from the more complicated learningalgorithms." One-level decision trees, also known as decision stumps, are simplemappings from the values of one attribute to class labels. Decision stumps alsohave been shown to achieve moderately high accuracy on many common bench-mark databases (Iba and Langley 1992) (Holte 1993). Because of their restrictedmodel spaces, these simple learning algorithms can be trained very quickly. Haussler(1988) relates \easy" model spaces both to the machine-learning notion of inductivebias (Mitchell 1980), and to Valiant's theoretical framework (Valiant 1984). Thegist is that a model space can be easy to search either because it is simply small(as with decision stumps) or because some special structure weakens its power ofexpression (as with linear discriminants).The tone of research on inductive algorithms changed markedly with the accep-tance (or re-acceptance) of restricted hypothesis space algorithms as legitimate com-petitors. One reason for this change is that these simple, fast algorithms facilitatestraightforward, competitive benchmarking. More importantly, from a scaling-upperspective, the competitive run-time performance of the simple classi�ers makesit more di�cult to justify very complex algorithms. Interest has developed in othersimple classi�ers that also perform well. For example, in subsequent work Aueret al. (1995) introduce a theoretically founded algorithm, called T2, for learningtwo-level decision trees. They show that for eight out of �fteen data sets, T2 pro-duces two-level trees which rival or surpass the de facto standard C4.5 (see below)(Quinlan 1993). Interestingly, in practice C4.5 is considerably faster than T2 (Lim,Loh, and Shih 1999).6.1.2. Powerful Search Heuristics Certainly, in some domains there is leverage tobe gained by searching for more complex models. The size and structure of the spaceof models, the size of the sample necessary to learn well, and the computationalcomplexity of algorithms that search the space are intimately related. Typically,searching for more complex models is harder. However, as Haussler points out, \byusing a larger hypothesis space than is strictly necessary, it may be computationallyeasier to �nd a consistent hypothesis . . . On the other hand, by using a largerhypothesis space . . . (more) examples will be required" (Haussler 1988).Consider the (very large) space of formulae in disjunctive normal form (DNF).Many inductive algorithms designed for e�ciency, including those that learn deci-sion trees, decision lists, and rule sets, search the space of some variant of DNFformulae (Pagallo and Haussler 1990). Because the model space is vast and there islittle structure to facilitate search, powerful heuristics are necessary for navigatingit e�ciently (Haussler 1988).For a vast model space, it is unusual for learning algorithms to search the spacedirectly (i.e., by generating many alternative models and choosing one). In mostcases, a single model is built up by evaluating its components. For example, byevaluating individual conjunctions, a DNF class description can be built. However,



8 PROVOST AND KOLLURIeven the space of conjunctions can be infeasibly large, especially when learning froma large data set, because the data set is used in the evaluation of the individualconjunctions. In practice, to scale to large data sets the run-time complexity of thelearning algorithm must be close to linear in the number of examples.Algorithm designers have had much success with greedy, divide-and-conquer ap-proaches to building class descriptions. We chose decision-tree learners (made pop-ular by ID3 (Quinlan 1986) and CART (Breiman, Friedman, Olshen, and Stone1984)) for this survey, because they are relatively fast and typically they producecompetitive classi�ers. In fact, the decision tree generator C4.5 (Quinlan 1993), asuccessor to ID3, has become a de facto standard for comparison in machine learningresearch, because it produces good classi�ers quickly. For non-numeric data sets,the growth of the run time of ID3 (and C4.5) is linear in the number of examples.Speci�cally, its asymptotic time complexity is O(ea2) (Utgo� 1989), where e is thenumber of examples in the training set and a is the number of attributes. However,since numeric data typically require repetitive sorting, their inclusion adds a log efactor at each node.The practical run-time complexity of C4.5 has been determined empirically to beworse than O(e2) on some data sets (Catlett 1991a). One possible explanation isbased on the observation of Oates and Jensen (1998) that the size of C4.5 trees in-creases linearly with the number of examples (even after accuracy stabilizes). Oneof the factors of a in C4.5's run-time complexity corresponds to the tree depth,which can not be larger than the number of attributes. Tree depth is related (log-arithmically) to tree size, and thereby to the number of examples. For practicalanalyses during which tree size is still growing linearly with e, this adds yet an-other log e factor to the run-time complexity. Other empirical determinations onlarge data sets have established C4.5's practical time complexity to be substantiallybetter than quadratic.2The decision trees built by this greedy heuristic have been criticized for theirlack of comprehensibility; in many situations rule sets are desired instead becauseof their modularity and increased comprehensibility (Catlett 1991a). The mostcommon technique for producing high-accuracy rule sets, known as reduced-errorpruning, is to grow rules via one algorithm or another, and then prune the rulesin order to increase accuracy (Quinlan 1987). Unfortunately, reduced-error prun-ing systems generally do not scale well. For example, the rule-learning variantof C4.5, C4.5rules, has been reported sometimes to require O(e3 ) time (Cohen1995) (Domingos 1996b). Some algorithms e�ective at �nding high-accuracy rulesets have O(e4 ) time complexity in noisy domains (Cohen 1993). Kufrin (1997)describes speeding up C4.5rules with parallel processing, which we discuss later.F�urnkranz and Widmer (1994) show, with their incremental reduced error prun-ing (IREP) algorithm, that signi�cant speedups can be obtained by pruning eachrule as it is learned and then applying a separate-and-conquer strategy based onthe pruned rule. Their formal analysis predicts a computational complexity ofO(e log2 e), which has been veri�ed empirically by Cohen (1995). Unfortunately,the accuracy of the class descriptions learned by IREP often is lower than theaccuracy of those learned with the slower C4.5rules. Cohen details several mod-



SCALING UP INDUCTIVE ALGORITHMS 9i�cations to improve IREP's accuracy, including di�erent rule-evaluation criteria,di�erent stopping criteria, and a post-processing optimization, producing the algo-rithm RIPPER. He shows that RIPPER is competitive with C4.5rules in terms oferror rate and that it maintains the O(e log2 e) time complexity of IREP. (Cohenalso estimates the time complexity empirically.)A di�erent style of rule learning can be traced back to the search-based datamining program MetaDENDRAL (Buchanan, Smith, White, Gritter, Feigenbaum,Lederberg, and Djerassi 1976) (Buchanan and Feigenbaum 1978). Examples ofMetaDENDRAL-style rule learning include the Brute programs (Riddle, Segal, andEtzioni 1994; Segal and Etzioni 1994a), PVM (Weiss, Galen, and Tadepalli 1990),ITRULE (Smyth and Goodman 1992), the RL programs (Clearwater and Provost1990; Provost and Buchanan 1995; Fawcett and Provost 1997), SE-trees (Rymon1993), and even Schlimmer's determination-learning algorithm (Schlimmer 1993).These programs view rule learning as an explicit search of the rule space rooted atthe rule with no conditions in the antecedent, with rules becoming more speci�c(by adding conditions) as they get further from the root (described in detail byWebb (1995)). To allow for massive searches of very large rule spaces, the searchspace is reduced with depth-bounding and various forms of pruning.6.1.3. Algorithm/programming optimizations Algorithm optimization by usinge�cient data structures (e.g., bit vectors, hash tables, binary search trees) andclever programming techniques is good engineering practice, complements the othermethods of scaling up, and in practice often can give very large speedups. Theseoptimizations di�er from \powerful search heuristics" in that they concentrate oneliminating redundant or unnecessary computations|the models induced will notbe a�ected. Some such optimizations are remarkable enough to have appeared inpublished work.Some of the rule-space pruning techniques used in MetaDENDRAL-style rulelearners can be guaranteed not to discard good rules (Clearwater and Provost1990; Segal and Etzioni 1994b; Webb 1995). Webb (1995) takes this idea evenfurther, introducing techniques for dynamic search-space restructuring to maxi-mize the amount of search space removed with each pruning. He shows that it ispossible to search exhaustively for the rule that optimizes the Laplace accuracyestimate for (at the time) every categorical attribute-value benchmark data set inthe UCI repository (Merz and Murphy 1997). BruteDL's search algorithm was op-timized carefully (Segal and Etzioni 1994b). Segal and Etzioni report that with 500training examples, BruteDL can process 100,000 rules per second, when running ona SPARC-10 processor. They also note that signi�cant additional speedups are notexpected because BruteDL's speed is within an order of magnitude of the machine'sclock rate.Domingos (1996b) proposes to improve rule-learning e�ciency by not growingeach rule to its full length in the �rst place. He points out that the commonlyused separate-and-conquer methods induce rules by evaluating each rule by itself,without regard to the e�ect of other rules. To avoid super
uous growth, as each ruleis grown Domingos's CWS algorithm evaluates it in the context of the currently



10 PROVOST AND KOLLURIheld rule set. However, a straightforward recomputation of the accuracy of thewhole rule set for each rule modi�cation is very expensive. Domingos details anoptimized procedure that carefully eliminates redundant computation, yielding aprocedure with run-time complexity O(eavcs), where v is the average number ofvalues, c is the number of classes, and s is the total number of antecedents in theresultant rule set. In principle, s can be O(e), but Domingos veri�es empiricallythat in practice s is independent of e.Another notable optimization is the pre-sorting procedure used by the decision-tree learner SLIQ (Mehta, Agrawal, and Rissanen 1996). As described above, repet-itive sorting reduces the e�ciency of decision-tree learners when dealing with nu-meric attributes. SLIQ sorts the training data just once for each numeric attributeat the beginning of tree growth.As mentioned above, most inductive algorithms load all data into main memory;therefore if a data set is too large, either the algorithm will not run, or virtualmemory thrashing will render it useless. An alternative approach is never to loadall the data into memory, instead accessing them on secondary storage as needed.Since secondary storage devices typically do not provide random access to data,algorithms must be designed to process data via sequential scans|and as few aspossible. SLIQ takes advantage of the need for only a single pass through the datafor each level of a decision tree, if the tree is grown breadth �rst. However, one ofthe data structures that SLIQ uses during its pre-sorting step has size proportionalto the number of input records, and therefore the size of this memory-resident struc-ture becomes the limiting factor for this approach. These limitations are addressedin the SPRINT system (Shafer, Agrawal, and Mehta 1996), which does not use anymonolithic, memory-resident data structures.SPRINT is regarded widely as the reigning standard in scalable decision-treebuilding (Dietterich 1997). However, with this honor comes the increased scrutinythat leads to further advances. SPRINT maintains augmented vertical partitionsof the data, copied into auxilliary data structures (attribute lists). Because ofthis, it has been criticized for several reasons. For example, maintaining the datastructures can be costly, including a potential tripling of the size of the database(Gehrke, Ramakrishnan, and Ganti 1998) and an associated signi�cant increase inscan cost (Graefe, Fayyad, and Chaudhuri 1998).This brings us to perhaps the most remarkable data mining optimization, a sim-ple bookkeeping technique that has been pointed out recently by several indepen-dent research groups. The main insight is that matching hypotheses against thedata is not necessary: for most of the processing, statistics from which the re-sults of matching can be inferred are su�cient (cf. learning from statistical queries(Kearns 1993)). Separating the generation of the su�cient statistics from their usein the evaluation of hypotheses allows each to be treated separately|�rst using thedata to populate the statistics data structure and then operating only on the datastructure|which a�ords both optimized use of memory and improved run-timecomplexity.More speci�cally, for most of the critical data mining operations, such as choosingnodes when constructing decision trees, one must tally for all the examples (at a



SCALING UP INDUCTIVE ALGORITHMS 11particular point in the search) the class labels associated with the di�erent valuesof each attribute. A straightforward data structure to store such statistics is acontingency table of example counts for each attribute, indexed by attribute-valueand class. For av attribute values and e examples, as long as av � e the combinedsize of the su�cient-statistics data structures is much smaller than the size of thedata set itself. John and Lent (1997) point out that such data structures arereturned by SQL GROUP BY queries.By using such techniques, inductive algorithms must pass through the exampleset only once per node expansion|indeed, an algorithm must pass through theexample set only once per level in separate-and-conquer decision-tree learning|rather than once per attribute-value pair. Tremendous run-time e�ciencies can beachieved when attributes have large value sets (Aronis and Provost 1997). Even fastcontemporary rule-space search algorithms (Segal and Etzioni 1994b) (Domingos1996b) generate a conjunct for each attribute-value pair, and match each againstthe example set to compute statistics. Thus, the run-time complexity depends on v,the average number of values of an attribute. Domingos reports a time complexityof O(eav) for the CWS algorithm (discussed above). These bookkeeping techniquescan reduce rule-learning complexity to O(ea) (Aronis and Provost 1997). Aronisand Provost go on to show that similar techniques can be used to speed-up learningwith hierarchically structured data (Almuallim, Akiba, and Kaneda 1995), to whichwe will return when we discuss relational representations.Among the various decision tree programs, C4.5 has been shown to be comparablyfast (Lim, Loh, and Shih 1999)|remarkably so considering the programs' similarity.An analysis of its code shows that when evaluating node splits, C4.5 �rst builds asu�cient-statistics contingency table, and then uses it to decide on the best split.Kufrin (1997) notes that preliminary experiments with additional optimizationsto C4.5 show substantial additional speedups (on a single processor), and indeedC4.5's successor C5 has been observed to be substantially faster than its predecessor(Harris-Jones and Haines 1997).Gehrke, Ramakrishnan and Ganti (1998) provide a thorough treatment of the useof su�cient statistics to build decision trees when the size of the data set exceedsmain memory. They discuss the options available if even the su�cient-statisticsdata structure is too big for main memory, and present the rainforest family ofalgorithms. Moore and Lee (Moore and Lee 1998) present specialized data struc-tures (ADtrees) designed to take best advantage of su�cient statistics for speedingup inductive algorithms. According to Moore and Lee, it is doubtful that the costof building ADtrees will be worthwhile for individual runs of fast learning algo-rithms. However, they are obvious candidates for more computationally intensivealgorithms, and for systems that run algorithms many times on the same data (suchas interactive systems, wrapper systems, and multiple-models systems, discussedabove).Not only can the inductive program itself be optimized, the computing infrastruc-ture can too. Data mining programs read in large amounts of data; in fact, readingin the data can take longer than mining it (Provost and Aronis 1996). Parallel I/O



12 PROVOST AND KOLLURIsystems and optimized data layout can make a considerable di�erence (Grossmanand Bailey 1998).6.1.4. Parallelization The process of inductive learning is decomposable at twolevels, illustrated by the two main methods for parallel learning, namely, search-space parallelization and parallel matching.As we discuss above, inductive learning can be viewed as the search of a very largespace. In search-space parallelization, the search space is decomposed such that dif-ferent processors search di�erent portions of the space in parallel (Cook and Holder1990), similar to the parallelization of other forms of heuristic search (Kumar andRao 1987) (Rao and Kumar 1987). Load balancing and interprocess communica-tion add additional complexity and overhead. In general, this type of parallelizationdoes not address the problem of very large data sets, because each processor willhave to deal with all the data (or subsample, which we discuss below). However,recently Zaki et al. (1999) have had success with search-space parallelization of adecision-tree algorithm; by taking advantage of a shared memory multiprocessor,they are able to avoid replicating or communicating the entire data set among theprocessors. Using shared memory also allows the development of e�ective load bal-ancing techniques. Galal, Cook, and Holder also have had success recently usingsearch space parallelism to scale up other data mining algorithms (Galal, Cook,and Holder 1999).
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Figure 3. Parallel matchingParallel learning has been more successful when a lower-level decomposition isused. The parallel matching approach is based on the observation that search for



SCALING UP INDUCTIVE ALGORITHMS 13inductive learning is di�erent from most other search problems. In inductive learn-ing the cost of evaluating a node is very high, but also highly decomposable. Nodesin the search space (e.g., partial rules or decision tree branches) are hypothesizedand each is matched against many examples to gather statistics. In the parallelmatching approach, depicted in Figure 3, this compute-intensive matching processis farmed out by migrating the example set and matching routines to a parallelmachine, while the main learning algorithm (the master) may run on a sequentialfront end.Parallel matching has been used by Lathrop et al. (1990), by Provost and Aronis(1996), and in the parallelization of the SPRINT algorithm (Shafer, Agrawal, andMehta 1996). The former two e�orts use a straightforward parallelization of thematching routines. In the SPRINT work, each processor builds a sublist of eachattribute list, and for each decision-tree node sends the master a portion of thestatistics needed to determine the best split. Impressive speedups are reported forparallel matching: less than a minute to learn from one million examples on a CM-2 Connection Machine with 8192 bit-slice processors (Provost and Aronis 1996);400 seconds to learn from 1.6 million examples on an IBM SP2 with 16 processors(Shafer, Agrawal, and Mehta 1996).3 Kufrin (1997) uses parallelization to speed upC4.5's transformation of decision trees to rules (C4.5rules), using parallel matchingfor two phases of rule-set postprocessing, and dividing up the rule set itself for athird. He also reports impressive speedups (e�ciencies averaging more than 0:9for four learning tasks and up to eight processors). The drawback to the parallelmatching approach is that it is not always easy to obtain access to massively parallelhardware.Zaki (1998) points out that shared-memory multiprocessor (SMP) systems aremuch more common, and presents a parallel matching approach to the design ofan SMP version of SPRINT. Instead of distributing the instances, they process(in parallel) vertical partitions corresponding to SPRINT's attribute lists. Theattribute lists are divided equally among the processors, which return the matchingstatistics to the master.Access to parallel hardware may not be a concern if the data are already residentin a data warehouse with a parallel infrastructure. Freitas and Lavington (1996)take such an approach, making use of existing parallel database server technology.Their approach is similar to that shown in Figure 3, except the implementation-speci�c parallel data representation is replaced by an existing parallel databasesystem. Also, for communication between the front- and back-end, implementation-speci�c matching requests are replaced with SQL queries. Commercial data miningsystem vendors often cite this approach when confronted with the issue of scaling,but technical details on speci�c vendor-supplied data mining systems are elusive.We will discuss the use of database systems and SQL queries for scaling up in moredetail in Section 6.3.A third approach to the use of parallelization is to partition the data into subsets,and then run learners concurrently on the subsets. This approach is described inthe next section. Parallel data mining is treated in more detail in a recent book byFreitas and Lavington (1997).



14 PROVOST AND KOLLURI6.2. Data partitioningThe previous section addressed the design of algorithms that are fast enough torun on very large example sets. An orthogonal approach is to partition the data,avoiding the need to run algorithms on very large data sets. Data partitioningData PartitioningGeneral method Example techniqueSelect an instance subset random samplingduplicate compactionstrati�ed samplingpeepholingSelect a feature subset use relevance knowledgeuse statistical indicationsuse subset studiesProcessing subsets sequentially independent multi-subset learningsequential multi-subset learningProcessing subsets concurrently learn multiple models, pick bestcombine class descriptionscombine predictionscooperative learningFigure 4. Data partitioning methodstechniques can be categorized based on whether they separate subsets of examplesor subsets of features. Figure 4 illustrates that there are several techniques forselecting a single subset from which to learn. Furthermore, multiple subsets can bechosen and they can be processed in sequence or concurrently.Figure 5 depicts a general model showing the similarities among partitioned-dataapproaches. Systems using these approaches select one or more subsets S1; : : : ; Snof the data based on a selection procedure. Learning algorithms L1; : : : ; Ln are runon the corresponding subsets, producing concept descriptions C1; : : : ; Cn. Then theconcept descriptions are processed by a combining procedure, which either selectsfrom among C1; : : : ; Cn or combines them to produce a �nal concept description.The systems di�er in the particular procedures used for selection and combin-ing. They also di�er in the amount and style of interaction among the learningalgorithms and learned concept descriptions.6.2.1. Select a subset of the instances The most common approach for copingwith the infeasibility of learning from very large data sets is to select a single samplefrom the large data set. Referring to Figure 5, sampling is a degenerate form ofa partitioned-data system: only a single subset is chosen. The di�erences betweensampling techniques involve the particular selection procedure used.
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Figure 5. Learning using data partitioningCatlett (1991a) (1991b) studied a variety of procedures for sampling instancesfrom a large data set and compared empirically the results of using the di�erenttechniques. In particular, he studied the following.� Random sampling selects a subset of examples randomly.� Duplicate compaction removes duplicated instances from the database. Thecomputational e�ort is proportional to the degree of completeness desired.� Strati�ed sampling is applicable when the class values are not uniformly dis-tributed in the training sets. Examples of the minority class(es) are selectedwith a greater frequency, in order to even out the distribution.Some readers may have di�culty accepting sampling as a method for scaling up tolarge data sets; after all, sampling reduces the size of the data set processed. How-ever, it is important to examine the function the algorithm is performing. Considerclassi�er induction algorithms. They take data sets as input and produce classi�ca-tion models as output. As discussed above, the question of scalability asks whetherthe algorithm can process large data sets e�ciently, while building from them the



16 PROVOST AND KOLLURIbest possible models. Therefore, if (for example) using sampling produces modelswith lower accuracy than otherwise, its usefulness for scaling up is in question.On the other hand, if using sampling produces equivalent (or better) models, thensampling is an e�ective scaling mechanism. Sampling is well accepted by the statis-tics community, who observe that \a powerful computationally intense procedureoperating on a subsample of the data may in fact provide superior accuracy thana less sophisticated one using the entire data base." (Friedman 1997).Thus, for anyone wanting to mine a large data set, an important question is:must I process the whole thing? Or will sampling be e�ective? The answer is: itdepends on the data set. Just because you have a massive data set does not implynecessarily that you must mine it all. In practice, as the amount of data grows, therate of increase in accuracy slows, forming the familiar learning curve. Whethersampling will be e�ective depends on how dramatically the rate of increase slows.It is di�cult to determine in general how small a data set may be, because itdepends on factors not known a priori. For example, as we discuss above, it dependson the minimum size of the special cases that a learner must discover in order tomodel the phenomenon e�ectively. However, if one is willing to bias a learner(explicitly or implicitly) against learning very small special cases, then recent workon determining su�cient sample sizes for similar data mining problems providesrelevant results. For example, Toivonen (1996) and Zaki et al. (1997) discuss thedetermination of su�cient sample sizes for �nding association rules that are nosmaller than a prede�ned size, based on tolerances on the probability of error andthe size of the error. A di�erent view of su�cient sample size, that of samplecomplexity, is provided by Valiant's theoretical framework (Valiant 1984) (Haussler1988), which for a given hypothesis space allows the calculation of the number ofexamples su�cient for learning with high probability a good approximation to the\true concept," if one exists in the hypothesis space.Published work provides di�ering views of how often real-world classi�er learningcurves level o� before massive data sets are needed. Catlett's work shows thatlearning from subsets of data decreases accuracy. Despite the advantages of certainsampling strategies, viz., speed-ups and improving the accuracy of the classi�erover random sampling in noise-free domains, Catlett concludes that they are nota solution to the general problem of scaling up to very large data sets (Catlett1991b). However, it should be noted that at the time of Catlett's study, \massive"data sets were much smaller than they are today, and processing times much longer.In fact, Catlett's conclusions were based on data sets which had fewer than 100,000instances. Every data set in his study would �t in the main memory of a mod-ern desktop PC. The study of KDD would bene�t from a replication of Catlett'sanalyses, taking into consideration the current state of computing, to see if hisconclusions stand after a decade of technological improvements.In a more recent study, Harris-Jones and Haines (1997) analyze the relationshipbetween data set size and accuracy for two large business data sets (up to 300,000instances), by estimating learning curves empirically. They found that while somealgorithms level o� quite early, in some cases algorithms (decision-tree learner C4.5and its successor C5, in particular) continue to show accuracy increases across the



SCALING UP INDUCTIVE ALGORITHMS 17entire range of data set sizes. However, the improvements in accuracy at the uppersize limit have become quite small, and it is di�cult to conclude that they wouldcontinue with another order of magnitude increase in data set size. The authorsnote that a more important question is whether the bene�t of further improvementsis worth the associated cost (Haines 1998).Neither these results nor Catlett's provide ample justi�cation for mining dataoutside of main memory. The data set sizes are not \massive" by modern standards.They can be processed in the main memory of a PC.4 Our �eld would bene�t froma few prominent examples of the need to scale up beyond reasonable main memorylimits.Oates and Jensen (1997) studied decision tree induction for nineteen data sets,and looked speci�cally at the number of examples necessary before the learningcurves reached a plateau. They regard a plateau to have been reached when anaccuracy estimate is within a certain tolerance of the maximum (speci�cally, onepercent, in their experiments). Surprisingly, for these nineteen data sets, as well assome others (Jensen 1998), a plateau was reached after very few training examples.Of course, when there exists a massive volume of data, some sampling may benecessary, whether or not it decreases accuracy. For example, in a famous applica-tion of inductive learning, Fayyad et al. (1993) used sampling techniques (amongothers) to reduce more than three terabytes of raw data. Therefore, it is importantto consider whether it is possible to sample e�ciently. Consider that if it is nec-essary to scan the entire data set in order to produce a random sample, much ofthe advantage of sampling will be lost. We will return to this point later, when weaddress database support for scaling up data mining.Heretofore we have discussed what may be called \passive" sampling, for whichthe size and content of the training set are determined before induction begins.Inductive algorithms can also sample actively, based on intermediate results, asinduction progresses. The notion of induction as the simultaneous search of twospaces, the space of possible concepts and the space of possible instances, wasintroduced by Simon and Lea (1973) and was elaborated by Provost and Buchanan(Provost 1992; Provost and Buchanan 1995).For scaling up, Catlett (1991a) (1991b) studied the active, tactical use of samplingto reduce complexity as learning algorithms process large data sets. In particular,the search for good split values for numeric attributes dominates decision-tree in-ducers' computation, because the values must be sorted. Catlett found that bylooking at subsets of examples (called peepholes) when searching for good split val-ues for numeric attributes, the run time of decision-tree learners can be reducedsubstantially without sacri�cing accuracy. In subsequent work, Musick et al. (1993)introduced information-theoretic measures to assess the risk of using peepholes forthe evaluation of attributes in decision-tree induction. In particular, they showhow to determine whether the choice of attribute can be made con�dently withina given error tolerance, and, if not, how to determine how large a peephole is re-quired to do so. In Section 7 we discuss a similar technique for determining theminimum number of training examples su�cient for satisfactory learning, namely,



18 PROVOST AND KOLLURIprogressively sampling larger subsets until model performance no longer improves(John and Langley 1996; Frey and Fisher 1999; Provost, Jensen, and Oates 1999).6.2.2. Select a subset of the features So far, our discussion of data partitioninghas focused on selecting a subset of the examples. Let us now turn to the problemof selecting a subset of features. It is important to consider the symmetry withselecting instance subsets: one method selects rows of a data table; the otherselects columns. The space tradeo� is symmetric because the amount of spaceneeded to store the table is the product of the number of rows and the numberof columns. From the point of view of scaling up, the same observations applyto both. Operating on a subset reduces induction time and space requirements.Multiple subsets can be operated on independently. The results of induction withone subset may help to determine the next, and learned models can be built fromcomponents learned from di�erent subsets. This symmetry is discussed in moredetail by Provost and Buchanan (Provost 1992; Provost and Buchanan 1995).A full treatment of feature selection is beyond the scope of this paper. Dataengineering is less visible in the literature than algorithmic issues of induction, butfeature selection is one data-engineering issue that has received more than just asuper�cial treatment (Devijver and Kittler 1982) (Miller 1990) (Wettschereck, Aha,and Mohri 1997). However, the majority of the existing work on feature selectionhas not focused directly on scaling. Instead it has focused on the phenomenon thatreducing the size of the feature set, when done well, often can increase the accuracyof the resultant class description.For the purposes of this survey, it is important to clarify these two closely relatedreasons for selecting feature subsets. As discussed in Section 2, as the size of thefeature set grows, so do the chances that an induction program will over�t thetraining set|especially with a small training set. Thus, if one can select a goodsubset of the features, one often can increase accuracy. Ironically, as the numberof examples is increased (and thereby feature selection becomes less necessary froma data-�tting perspective), feature selection becomes more necessary from a run-time perspective. As described above, the run time of inductive algorithms growswith the number of attributes, often at a rate worse than linear. Therefore, select-ing a subset of the features may be important for practical algorithm application,independent of whether the selection increases the accuracy.Selecting a subset of features is such a common method for reducing problem sizethat it often is neglected in discussions of scaling. When setting up a learning prob-lem, only a small set of the possibly relevant variables are chosen for representation.Sometimes this restriction is based on the data collection apparatus, but often it isbased on knowledge of relevance. Interaction with domain experts can indicate thatit is unlikely for certain variables to be useful, so they are not included. Moreover,for each variable describing a problem, there are often auxiliary databases thatprovide related information. For example, a zip-code �eld might link to a massivedatabase of demographic information. In practice, additional �elds are added onlyif there is a reason to believe that they are relevant.



SCALING UP INDUCTIVE ALGORITHMS 19The use of prior relevance knowledge is not the only method for selecting a subsetof the possible features. Another approach is to describe the problem with asmany features as possible, and then to do inexpensive empirical studies to select asubset. Little has been published about using statistical indications to reduce thenumber of features for the purpose of scaling up, although some techniques maybe viewed as too straightforward to include in publications. For example, manypractitioners compute correlations of individual features to the target concept, andselect a practically manageable subset of features with high correlations (Kaufmanand Michalski 1996) or with high information gain (Wettschereck and Dietterich1995).Of course, such simple methods may miss features that are only useful in combi-nation. Chen and Yu (1995) address this problem with a combination of instancesubsetting and feature subsetting, similar to the peepholing of Catlett and of Mu-sick et al. described above. Chen and Yu propose a two-phase method for attributeextraction to improve the e�ciency of deriving classi�cation rules in a large trainingdata set. During the �rst phase, known as the feature extraction phase, a subset ofthe training data set is analyzed to identify a relevant subset of features. Duringthe second phase, the feature combination phase, those extracted features are eval-uated in combination, and multi-attribute predicates with strong inference powerare identi�ed (Chen, Han, and Yu 1997). The RELIEF-F algorithm (Kononenko1994) uses experiments with randomly drawn examples and a nearest-neighbor rep-resentation to identify (even highly interdependent) relevant features (Kononenko,Simec, and Robnik-Sikonja 1997). In the next section we discuss feature selectionmethods that process subsets sequentially.6.2.3. Processing Subsets Sequentially Several e�orts have addressed learningfrom multiple subsets and combining the results. We will �rst consider those ap-proaches where subsets are processed sequentially. In these cases, the di�erencesbetween methods involve how the concept description learned in the previous itera-tion is used, and how the combining procedure operates. Unless otherwise noted, foreach of the approaches described in this section and in the following, the selectionprocedure partitions the data set randomly into n subsets.Figure 5 shows a general model of partitioned-data learning. More precisely,this �gure shows a model of independent multi-subset learning, because there is nointeraction between the n learning runs; the Ci are formed independently, and thencombined. Fayyad et al. (1993) use a sequential independent multi-subset approachin which the Li are decision-tree learners; the Ci are rule sets extracted from thedecision trees, and the combination procedure is a greedy covering algorithm.When multiple subsets are being processed sequentially, it is possible to takeadvantage of knowledge learned in one iteration to guide learning in the next it-eration. Figure 6 and Figure 7 show two approaches to sequential multi-subsetlearning. Model-guided instance selection, shown in Figure 6, is an iterative, activesampling technique, with which class description Ci helps in determining Si+1. Inincremental batch learning, shown in Figure 7, class description Ci is taken as inputto the learner and used in building Ci+1.
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Figure 6. Sequential multi-subset learning: model-guided instance selectionSequential multi-subset techniques have been used by several researchers to ad-dress learning from large data sets. Quinlan (1983) used a model-guided instanceselection approach, called windowing. The selection procedure begins by choosingcandidate examples either randomly or by strati�cation. Si+1, called the window,is augmented by examples that Ci classi�es incorrectly. The combining proce-dure simply chooses Cn as the �nal concept description. Catlett (1991b) studiedwindowing on several learning problems, and found the following. The e�ect ofwindowing on learning time varied from problem to problem, from a factor of threespeedup to a factor of 20 slowdown. Severe slowdowns occur when the data arenoisy. He concluded that windowing is a scaling solution for noise-free data setsonly. If continuous attributes are present, windowing can also improve accuracy.Incremental batch learners (Clearwater, Cheng, Hirsh, and Buchanan 1989) arehybrids of sampling and incremental learning. Class description Ci is given as\prior knowledge" to learning algorithm Li+1, along with subset Si+1. The learn-ing algorithm uses Si+1 to evaluate Ci, and uses Ci as a basis for building Ci+1.As with windowing, the combining procedure chooses Cn as the �nal concept de-scription, but with incremental batch learning the Cn is constructed across the nlearning runs. Incremental batch learning approaches have been used to scale upto example sets that are too large for pure batch processing because of limits on



SCALING UP INDUCTIVE ALGORITHMS 21
... S S S

L L L

C C C
...

...

1 2 n

1 2 n

1 2 n

          set
Large example

Random
  selection

C final

     

Combining procedure

Figure 7. Sequential multi-subset learning: incremental batch learningmain memory, leading to increased accuracy over simple sampling (Provost andBuchanan 1995). Incremental batch learning o�ers speedups because, as discussedabove, even for learners that theoretically scale up linearly in the number of exam-ples, if the entire example set does not �t in main memory, operating system pagethrashing can render the learner useless. An incremental batch learning approachwas used by Domingos (1996a) to transform an algorithm whose run-time complex-ity is quadratic in the size of the example set to a linear algorithm. Incrementalbatch learning has also been called \multi-layer incremental induction" (Wu andLo 1998).Historically, windowing has been used with decision-tree learners and incrementalbatch learning has been used with rule learners. This coincidence is not acciden-tal. Because of their modularity, rules can be evaluated individually and rule setsconstructed easily from multiple learning runs; this is much more di�cult withdecision trees. Furthermore, separate-and-conquer rule learning internally doesmodel-guided instance selection as induction progresses: the existing rule set isused to reduce the set of examples used in subsequent learning. Therefore, if apartial rule set is provided as input to a separate-and-conquer learner, it can (in-ternally) restrict subsequent search to rules that are not yet covered. F�urnkranz(F�urnkranz 1998) presents a technique integrating model-guided instance selectionand incremental batch learning, which he calls integrative windowing.



22 PROVOST AND KOLLURIF�urnkranz also presents an insightful analysis of sequential multi-subset rulelearning, pointing to a variety of other related work and providing crisp expla-nations of important observations. For example, windowing fails for noisy domainsbecause a good classi�er will misclassify mostly noisy examples, so subsequent win-dows will have increasing levels of noise, thereby decreasing subsequent learningperformance. He also explains, and shows empirically, that sequential multi-subsetlearning improves the e�ciency of rule learning more than decision-tree learning,because as with incremental batch learning, the rules need not be learned again oneach iteration.Not unexpectedly, as with single subsets, sequential multi-subset techniques maydegrade classi�cation accuracy as compared to learning from the entire data set atonce. On the other hand, especially with model-guided instance selection, thesetechniques also may increase accuracy.All of these approaches incrementally process instance subsets. Similarly, featuresubsets can be processed iteratively. Sequential feature selection is not new, and iscommon in statistical treatments of classi�er formation (Devijver and Kittler 1982).Two common methods are sequential forward selection and sequential backwardelimination. However, as noted above, this work typically addresses increasingaccuracy, rather than scaling up. Sequential backward elimination provides a simpleillustration of the di�erence: the �rst iteration runs the inductive algorithm withall the features. However, techniques like sequential forward selection are usefuleither for increasing accuracy or for scaling up.Wrapper approaches (Kohavi 1996; Kohavi and John 1997; Provost 1992; Provostand Buchanan 1995) are notable because they unify iterative example selection anditerative feature selection (and other iterative approaches). As mentioned above,wrapper approaches run an underlying inductive algorithm within di�erent con-texts, in an attempt to maximize some criteria. Wrapper approaches for featureselection �t well into the framework for data partitioning depicted in Figure 5; se-lection procedures select columns instead of rows. Kohavi and John (1997) use awrapper to implement forward selection and backward elimination in order to max-imize accuracy. In order to scale up past the limits of their computational platform,Provost and Buchanan (1995) implement various ad hoc feature selection strategiesin the same programmable wrapper used to implement incremental batch learning.Sequential feature selection techniques fall into the same two categories as sequen-tial instance selection techniques. Speci�cally, as in Figure 6, some approaches, suchas sequential forward selection, use Ci to in
uence the selection of Si+1, in this caseselecting columns instead of rows. Alternatively, as in Figure 7, other approachesuse Ci in the construction of Ci+1. For example, combining class descriptionslearned with di�erent feature subsets has been found to be e�ective (Provost andBuchanan 1995).6.2.4. Process Subsets Concurrently To further increase e�ciency, partitioned-data approaches can be parallelized by distributing the subsets to multiple pro-cessors, learning concept descriptions in parallel, and then combining them. Wedi�erentiate this approach from parallel matching (described above) by the degree



SCALING UP INDUCTIVE ALGORITHMS 23of autonomy a�orded the individual learners. Rather than simply parallelizing asubprocedure of an existing algorithm, and returning results to the master, thesetechniques are loosely coupled collections of otherwise independent algorithms. Re-cently this type of algorithm has been called \distributed data mining," and wasthe subject of a KDD-98 workshop (Kargupta and Chan 1998).Concurrency precludes partitioned-data approaches where a prior concept de-scription is needed as input to a subsequent learning stage, such as incrementalbatch learning. However, for independent multi-subset approaches, as shown inFigure 5, the Ci can be learned concurrently (even with di�erent learning algo-rithms). Combining the Ci can take place as a sequential post-process, or can beparallelized (as by Kufrin (1997)). Hall et al. (1998) discuss this approach forlearning decision trees. Similar to a distributed version of the approach of Fayyadet al. (1993), their system learns trees independently from partitioned data, andthe trees are converted to rules. The rule sets are merged following the methoddescribed by Williams (1990), which resolves con
icts among similar rules.Chan and Stolfo (1993) (1997) take a concurrent approach in which the Li canbe di�erent learning algorithms, as well as separate instantiations of the same algo-rithm. They take an independent multi-subset approach with a key di�erence fromthe other methods: their method forms Cf as a hybrid of the Ci. Speci�cally, inthe combining stage, instead of constructing Cf from selected pieces of the Ci, theirapproach saves the Ci whole, and combines the predictions using a multiple-modelapproach (Ali and Pazzani 1996). Domingos (1996a) also experiments with thistype of combining for incremental batch learning, �nding it superior to taking asimple union of the rule sets learned from the many batches.A potential problem with creating a multiple-model hybrid is the resulting lossof comprehensibility. Prodromidis and Stolfo (1998) study several methods forevaluating, composing and pruning hybrid classi�ers that reduce their size whilepreserving or even improving their predictive performance. A quite di�erent ap-proach to creating comprehensible classi�ers from ensembles is taken by Craven(1996), by Domingos (1997), and by Guo and Sutiwaraphun (1998). These au-thors use machine-learning algorithms to induce understandable models of complexlearned classi�cation systems (Craven 1996). Speci�cally, they use the predictionsof the ensemble as training labels, and learn from them a decision tree that modelsthe hybrid's performance (with comparable accuracy). The resultant single tree ismore understandable than the multiple-model hybrid.Shasha and his research group have implemented PC4.5 (Li 1998; Shasha 1998),a parallel version of C4.5 (Quinlan 1993), which uses a di�erent instantiation of theframework of Figure 5. Speci�cally, the selection procedure is a random partitioningof the data. Each Ci is a decision tree learned from a di�erent subset of examples.The combining procedure evaluates each Ci on a subset of examples (disjoint fromSi), and chooses the one with the best accuracy as the �nal concept description.With these partitioned-data techniques, accuracy may be degraded as comparedto running a single inductive algorithm with all the data. This may be avoided if
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Figure 8. Cooperation among concurrent learnersthe group of learners cooperates to obtain a global view of the problem, as depictedin Figure 8. The key is that the learners cooperate by sharing modules of knowledge(e.g., individual rules) that look good locally. The other learners evaluate the sharedknowledge on their local data, returning or broadcasting the statistics. Provost andHennessy (1994, 1996) take this approach for MetaDENDRAL-style rule learning,and show that it is guaranteed that each rule is considered acceptable globally if andonly if it would be considered acceptable to a monolithic learner using the entiredata set. Speci�cally, no matter how the data are partitioned, every acceptable rulewill have acceptable statistics on at least one subset. Thus, over all subsets, all ofthe acceptable rules will be generated. The cooperation takes the form of requests(from the other learning algorithms or from a server with the entire database) forveri�cation of statistics regarding the best discovered rules, which narrows the setof rules to only those acceptable globally. The combining procedure simply cantake the union of the Ci. Because the cooperation requests are limited to rulesthat appear good to at least one learning program, interprocess communication isminimal. Thus, this approach has been successful scaling up to very large data sets.



SCALING UP INDUCTIVE ALGORITHMS 25A sequential version of this cooperative approach is the basis for Partition (Savasere,Omiecinski, and Navathe 1995), called one of the most e�cient association-rule al-gorithms in terms of database operations (Toivonen 1996). Similarly, for scalingup a scienti�c discovery system, Galal, Cook and Holder (1999) found the con-current/cooperative approach to be the best (among the various techniques theystudied). They partition the problem and then share the best discoveries, whichare then evaluated by all the processors to obtain a global perspective.We know of no work addressing the distributed processing of feature subsets forbuilding decision trees or rule sets, although preliminary results suggest promise forthis line of inquiry. Consider a concurrent version of an independent multi-subsetapproach, such as that shown in Figure 7, in which many di�erent feature subsetsare selected (rather than example subsets), and the concept descriptions are sub-sequently combined. Results from sequential processing of feature subsets suggestthat if the class description language is modular, such that useful modules (e.g.,rules) can be selected from many di�erent class descriptions, then it is possible tocreate an accurate class description without ever running the learner with a suitablesubset of features (Provost and Buchanan 1995). Kargupta et al. (1998) considerdistributed processing of feature subsets for a basis-function concept representa-tion. We now turn to the third general approach to scaling up: using a relationalrepresentation.6.3. Relational representationsMost existing inductive learning programs were not designed to handle very largedata sets. In particular, the majority were designed under the assumption that thedata set would be represented as a single, memory-resident table. Unfortunately,producing 
at �les from real-world, multitable, relational databases is fraught withproblems. The 
attening-out process can be quite time consuming, substantialstorage space is needed, and keeping the 
at �les around leads to the problemsthat relational databases are designed to avoid (e.g., update and delete anomalies).Indeed, 
attening may create, from otherwise manageable databases, data setsthat can no longer �t in main memory. As an example, consider a database withonly three tables: a customer table containing one million customers with twenty�elds, including address and product preference; a state table containing �fty stateswith eighty �elds of information on each state; and a product table containing tenproducts with four hundred �elds of information on each product. Furthermore,let us assume that the average size of a �eld is �ve bytes. Even in this vastlyoversimpli�ed example, 
attening out a 100Mbyte database results in a 2.5Gbyte
at �le.5 Flattening often demands choosing a subset of all the attributes thatcould be used to describe the data, which places an in
exible restriction on theunexpected discoveries that a KDD system may make.In summary, since mining smaller data sets is typically faster, especially whenthey can �t in main memory, the ability of relational representations to compressdata is critical. Furthermore, 
attening extremely large data sets simply is not



26 PROVOST AND KOLLURIRelational representationGeneral methods Example TechniqueRepresent data relationally Hierarchical structuresMultitable databasesKnowledge structuresInductive Logic Programming (ILP)Integrate data mining with Access via SQL queriesdatabase management Push computation into DBMSUtilize parallel database engineMine distributed databasesFigure 9. Methods using relational representationsfeasible. In either case, we need to be able to mine relationally represented data,e�ciently.We now describe how relationally represented data can be mined directly, whichscales up either because the representation is more e�cient, or because the dataare stored on a fast database machine.6 We have divided the collection of methodsin two, as depicted in Figure 9. First, we discuss the general issue of miningrelationally represented data|regardless of how they are stored. Then we discussmining when even the compact, relationally represented data set does not �t in mainmemory. In the latter case, integrating data mining with database managementsystems (DBMSs) is key. We treat data mining/DBMS integration as a separateapproach because a unique set of issues applies. Finally, we close this section witha discussion of mining distributed databases, noting that not only does it combinetwo orthogonal scaling techniques, it also may be necessary because of issues suchas privacy.6.3.1. Mining relational data We have argued for the storage e�ciencies a�ordedby relational representations, but what about mining the data once they are rep-resented relationally? A simple form of relational data|data with hierarchical,or tree-structured, attributes (Almuallim, Akiba, and Kaneda 1995)|has receivedrelatively much attention in the literature on inductive learning. The data com-pression a�orded with tree-structured attributes can be substantial, especially withtall trees.For example, consider geographic hierarchies ranging from �ne-grained descriptors(e.g., zipcode) up to coarse-grained (e.g., country). A data miner working exclu-sively with 
at �les must either include attributes for all possible granularities, or bychoosing a subset limit the possible resultant discoveries. By using tree-structuredattributes, the data miner can represent the hierarchy of values separately, therebymaintaining an economical representation of the data set. For example, if eachinstance contains a speci�c location, this location can be used to index into thehierarchy. Usually, instances contain the �nest granularity and the hierarchy canbe used to draw more general comparisons. E�cient mining with tree-structured



SCALING UP INDUCTIVE ALGORITHMS 27attributes is treated in depth by Allmuallim et al. (1995) and improvements aredescribed by Aronis and Provost (1997).Tree-structured attributes allow the representation of a simple relation, the isarelation, between attribute-value pairs. Each such relation can be seen as a separatetable in a relational database, for example a state/county table or a county/zipcodetable. Expanding data mining to general multitable relational databases is an ob-vious next step, which has been advocated recently in inductive learning researchcircles (Aronis, Kolluri, Provost, and Buchanan 1997) (Kohavi 1998). The abilityto handle multitable databases not only allows practitioners to compress otherwiseunwieldy 
at tables, it also creates possibilities for augmenting learning systemswith more and more related knowledge. For each �eld of a learning problem, prac-titioners can consider whether there exist additional tables of knowledge describingthat �eld.7It should be noted that selecting just the right auxiliary databases/knowledgebases begs the very question of data mining, because it requires identifying whichdatabases contain relevant and useful knowledge. One can envision augmentingmany �elds with related tables, and within the new data, augmenting additional�elds with related tables, and so on. Therefore, from a scaling up perspective,it becomes necessary to be able to learn in the context of massive amounts ofbackground knowledge,8 creating the need for even higher degrees of scaling indata mining systems.This view uni�es learning from relational databases with learning with largeamounts of background knowledge. Parallel marker-passing techniques can be usedto aid in augmenting inductive learners with large networks of relational back-ground knowledge (Aronis and Provost 1994). In the work of Aronis and Provost,the relational knowledge is used to construct new terms, which are then added tothe propositional concept description language.The �eld of Inductive Logic Programming (ILP) (Muggleton 1992) concentrateson mining data and knowledge expressed in a relational format. However, ILPaddresses a harder problem than the type of mining we are considering. Speci�-cally, not only are the data represented relationally, the results of the mining alsomay be represented relationally. Because learning relational descriptions is harderthan learning propositional ones, relational algorithms are considerably slower thanpropositional ones, and the scaling problem is correspondingly harder.However, Blockeel, De Raedt, Jacobs, and Demoen (1999) observe that \the fullpower of standard ILP is not used for most practical applications." Therefore, ageneral approach to speeding up learning with relational data is to avoid expensivebut little-used constructs. Aronis et al. (1996) investigate induction from feature-vector-based data items linked to relational background knowledge. For the sakeof e�ciency, they purposely avoid n-ary and recursive relational terms. Blockeel etal. (1999) study an e�cient subset of ILP known as learning from interpretations.In particular, they study scaling up �rst-order logical decision trees (FOLDTs),which are more expressive than propositional decision trees, but also avoid themost expensive ILP constructs. Of particular note, FOLDTs allow mining dataexpressed as multitable relational databases. As part of their study, Blockeel et al.



28 PROVOST AND KOLLURIconsider the application of techniques from SLIQ (Mehta, Agrawal, and Rissanen1996) to scale up learning FOLDTs to massive data sets. Their results are en-couraging: FOLDTs can be learned with run-time complexity linear in the numberof examples, and very large data sets can be mined e�ciently (e�ciently relativeto other ILP techniques|several non-trivial tasks with approximately 100,000 ex-amples (100Mbytes) each were processed in about a day of CPU time on a Sunworkstation). In another scalable-ILP project, Brockhausen and Morik (1996) de-scribe the integration of an ILP algorithm to a DBMS, facilitating e�cient learningdirectly from DBMS-resident data|which is the subject of the next section.6.3.2. Data mining/DBMS integration For many applications, data are alreadystored in an e�cient relational representation|a multitable relational database,most easily accessible via a commercial database management system (DBMS).Although many data mining systems access data stored in a commercial DBMS,most of these do not actually mine the relational data directly. Rather, they extractthe data from the DBMS into a memory-resident 
at �le, thereby not realizing thebene�ts of e�cient storage discussed in the previous subsection. Such approachesonly take advantage of the DBMS's e�cient data retrieval.Relational data, stored in a commercial DBMS, can be mined directly by imple-menting the core data manipulation operations within the DBMS. As discussed inSection 6.1, the speed of inductive programs often is determined primarily by thespeed of the matching or the gathering of su�cient statistics. If these operationscan be cast as SQL requests for statistics (Agrawal and Shim 1995) (Agrawal andShim 1996), a data mining program can avoid massive data uploads and problemsdue to main memory restrictions, and can take advantage of fast database machinesoptimized for query processing. In their proposal for the SQL Interface Protocol,John and Lent (1997) discuss how the basic operations for various types of datamining programs can be cast as SQL queries.Graefe, Fayyad and Chaudhuri (1998) show that a straightforward implementa-tion for deriving su�cient statistics from SQL databases (using SELECT and UNIONoperators) results in unacceptably poor performance. This poor performance stemsfrom the manner in which the database system will implement the query; speci�-cally, most database systems will implement a UNION query by performing a sep-arate scan for each clause in the UNION. However, for deriving su�cient statisticsthe UNIONs will be very similar. The authors propose to take advantage of thissimilarity by extending SQL to include a new operator (UNPIVOT), which minimizesthe number of scans required to produce the su�cient statistics.Figure 10 shows a schematic view of a system integrating data mining with aDBMS. The DBMiner data mining system (Han, Fu, Wang, Chiang, Gong, Kop-erski, Li, Lu, Rajan, Stefanovic, Xia, and Zaiane 1996) is a prototypical exampleof such an integrated data mining/DBMS system. Data Surveyor (Holsheimer,Kersten, and Siebes 1996) and SKICAT (Fayyad, Weir, and Djorgovski 1993) also
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    DataFigure 10. Data mining/DBMS integrationmake use of the data mining/DBMS integration approach to achieve competitiveperformance on large data sets.Sarawagi et al. (1998) discuss several alternatives for data mining/DBMS inte-gration. Their focus is on mining association rules, but they illustrate principlesthat apply more generally. In particular, they point to several e�orts to extend SQLto support mining operations, and discuss expressing mining algorithms in SQL.The following paragraphs parallel their high-level discussion; their paper gives moredetails on speci�c approaches.As noted above, the most common use of a DBMS for data mining is as a simplesource of records. If the DBMS and the data mining program are coupled tooloosely, the cost of switching contexts between programs may become prohibitive.This is true especially if records are read individually. Block transfers make moresense.A more tightly coupled approach pushes parts of the application program thatperform intensive computations on the retrieved set of records into the databasesystem, instead of bringing the records of the database into the application pro-gram. One method is to encapsulate the mining algorithm as a stored procedure.This approach allows the programs to share one address space, with the corre-sponding e�ciencies, while maintaining programming 
exibility. A hybrid of theseapproaches is to read the data once from the database into a temporary local cache,perhaps transforming it to a more e�cient format. The drawback of the cachingapproach is the need for additional storage space.A somewhat di�erent approach is to represent the individual data mining oper-ations as user-de�ned functions, rather than as stored procedures, placed in SQLdata scan queries (which also will run in the DBMS address space) (Agrawal andShim 1995) (Agrawal and Shim 1996). Such an approach promises to be faster,because passing records to a user-de�ned function is faster than passing them toa stored procedure. The disadvantage is the cost of rewriting entire mining algo-rithms as user-de�ned functions. Sarawagi et al. also consider the more general



30 PROVOST AND KOLLURIcase where a preprocessor translates data mining operations into the appropriateform for a particular environment.Integrating data mining with the DBMS takes advantage of the storage e�cienciesof relational representations, of the existence of indices, and of the fact that DBMSstypically reside on powerful platforms that are optimized for database operations.As described in Section 6.1.4, scaling can be extended further by making use ofparallel database server technology to speed up data-intensive SQL operations. Inone implementation, Freitas and Lavington (1996) achieved an order of magnitudespeedup over a workstation of the same DBMS technology by making use of aback-end 12-processor SQL server. Data Surveyor (Holsheimer, Kersten, and Siebes1996) also uses a parallel database engine.Finally, the fact that data already reside in a DBMS is not the only reason toconsider integrating data mining. There may be advantages to using a DBMS forother complex representations of knowledge. When faced with complex relationalrepresentations, one of the scaling problems realistic applications must address isthat existing knowledge representation systems do not provide high-speed access tolarge, complex knowledge bases (Karp and Paley 1995). Karp, Paley and Greenbergshow that one can employ a DBMS e�ectively as the storage subsystem for large,frame-based knowledge representations (Karp, Paley, and Greenberg 1994) (Karpand Paley 1995). Andersen, Hendler, Evett and Kettler also describe knowledgerepresentation tools that scale to massive knowledge bases (Andersen, Hendler,Evett, and Kettler 1994) (Evett 1994). Although initially most of the e�ciencygains they realized were due to massive parallelism, they too have made increas-ing use of DBMSs to achieve increased e�ciency (while still allowing for e�ectiveparallelization). Speci�cally, they use DBMS techniques to support matching, in-ference and data management. Advances such as these in the e�cient handling oflarge-scale knowledge bases should facilitate future e�orts to mine them or to usethem to augment data mining.6.3.3. Distributed databases Enabling inductive programs to learn from multi-table relational databases makes available to data mining the vast amount of dataand background knowledge distributed across a local network, or scattered aboutthe Internet. For example, companies are interested in mining federations of similardata (Stolfo, Fan, Lee, Prodromidis, and Chan 1997), and digital library researchis working to facilitate access to networked data and information (Fox, Akscyn,Furuta, and Legsett 1995). Along with the desire to take advantage of these col-lections comes the need to scale up to massive amounts of distributed data andbackground information. This scaling problem manifests all the issues discussed sofar in this survey, plus some additional constraints and opportunities.Not only do distributed data provide the opportunity for concurrent mining ofdi�erent subsets, similar to the more straightforward uses of parallelism and datapartitioning, distributed data may require distributed mining. Combining alreadydistributed databases may be out of the question for a variety of reasons. They maysimply be too big to combine on a local system. The bandwidth of the communica-tions channel may make combining databases infeasible, because it would take too



SCALING UP INDUCTIVE ALGORITHMS 31long to download the data. Finally, privacy issues may prevent unrestricted accessto the data. For any of these reasons, a database of interest may be accessible overthe network, but transferring it may not be feasible.Mining distributed databases requires a system that can operate on many separatedata partitions. The information that can be transferred is limited by bandwidthand other (e.g., privacy) restrictions. For data sets where rows or columns are dis-tributed, the methods discussed in Section 6.2.4 are for the most part appropriate.Stolfo et al. present their approach and an implemented system, and discuss howprivacy concerns restrict the federation of banking data (Stolfo, Fan, Lee, Prodro-midis, and Chan 1997) (Stolfo, Prodromidis, Tselepis, Fan, Lee, and Chan 1997).In an alternative distributed data mining scenario, di�erent database tables arespread about the network. Consider our simplistic multitable example above, whichhad three tables: customer information, geographic information, product informa-tion. In many real-world situations, di�erent tables such as these would not resideon the same machine. Currently, much of the practical work of data mining com-prises locating relevant tables in di�erent databases, and transferring them (orcarefully selected subsets) to the data mining platform. If network access wereprovided to these data, through SQL servers or tailored data-mining servers, aninductive algorithm could query the remote databases as necessary during datamining.Ribeiro, Kaufman and Kersberg (1995) describe a method for performing knowl-edge discovery across multiple databases by using foreign-key values to augmenttables. Speci�cally, they propose tracing through multiple databases following theforeign-keys, and learning individual knowledge segments for each database. TheWoRLD system (Aronis, Kolluri, Provost, and Buchanan 1997) learns across mul-tiple distributed databases spread across the network, using spreading activationtechniques. These require only limited communication to pass sets of markers (im-plemented with SQL queries).7. DiscussionBy looking systematically at the body of work on scaling up inductive methods, itis clear that several areas have received relatively deep treatment. We �rst remarkon what this work suggests you do when faced with mining a huge data set. Thenwe discuss where more research can provide the most help, from perspectives ofstatistics, databases, and machine learning.7.1. What should you do with a huge data set?When a large data set can �t in main memory, restricted model space learnersshould be tried �rst, because they often are e�ective at building competitive classi-�ers quickly. If the resulting simple classi�ers are not satisfactory, there are severalfast, e�ective algorithms for data sets that can �t in main memory. Extending thisconcept, one direction that has been suggested is to build algorithms that use asimplicity-�rst strategy in their search for classi�ers (Holte 1993) (Provost 1993). It



32 PROVOST AND KOLLURIis not yet clear how much leverage can be obtained through the use of simple classi-�ers to guide subsequent search to address speci�c de�ciencies in their performance(Holte 1993).So, what if a data set of interest does not �t in main memory? Or, what ifthe data set does �t in a machine's huge main memory, but mining it there justis not e�cient enough? Although research on induction when the data set is toolarge to �t in main memory is not nearly as comprehensive, several techniques areclear choices when they apply. But �rst, we should revisit brie
y the need, or lackthereof, to mine the entire data set.For most data mining problems, the bene�t of increasing the size of the data setdecreases as the data set size grows, yielding the familiar concave-down learningcurve. Eventually, the increase in the quality of the results becomes negligible (orsimply zero). For a given problem, how can you determine where the learningcurve will plateau? For most algorithms, calculating precisely, a priori, a tightbound on the size of the required data set is di�cult. Computational learningtheory does provide upper bounds, for many concept classes for a particular kindof learning, which should not be ignored. However, it may be that for a particularlearning algorithm these bounds are weak and many fewer instances are actuallyneeded. Of course, theoretical calculations are not the only method. Consideringthat the run-time complexity of inductive algorithms is at best linear in the numberof examples, and often worse, relatively inexpensive experiments can be conductedon small samples in order to estimate the number of examples that are actuallyneeded (John and Langley 1996; Frey and Fisher 1999; Provost, Jensen, and Oates1999). In cases where the number of examples needed is much smaller than thenumber available, such procedures can provide substantial practical speedups.Subsets of the examples should be sampled, using strati�ed sampling when oneclass dominates strongly. Subsets of the features should also be selected, by do-ing empirical studies to determine relevance.9 Once a practitioner has chosen agood subset of examples, a good subset of features, and an algorithm with an e�-cient data representation, there may not be a signi�cant increase in accuracy whenlearning with more data than will �t in main memory|especially with a moderncomputer with memory slots �lled to capacity.Once such straightforward methods have been exhausted, the best approach de-pends on the resources available. Massively parallel matching is an obvious choicefor increased scaling, if access to a massively parallel machine and specialized pro-gramming talent are available. However, one should carefully examine the tradeo�sbetween matching and gathering su�cient statistics. Taking advantage of powerful,well-tuned database systems, via data mining/DBMS integration, is a good ideaif cycles on the database engine are readily available, but such an approach mayrequire a signi�cant investment and is appropriate mostly for long-term plans tomine a set of data. Also, the loss of 
exibility in choosing and modifying inductivemethods cannot be ignored, since problem engineering is such a large portion ofthe overall KDD process. Specialized programming talent usually is required.Independent multi-subset learning shows promise for scaling up and retainingthe 
exibility of desktop data mining. The ability to process the subsets concur-



SCALING UP INDUCTIVE ALGORITHMS 33rently o�ers to take advantage of the large number of idle workstations that arealready networked in most institutions. Unfortunately, once again there is cur-rently a dearth of available technology to facilitate such learning, so specializedprogramming talent is still required. A notable exception is the JAM (Java Agentsfor Meta-learning) software, downloadable from Stolfo's web site (Stolfo 1998).7.2. Where will more research most help?As with most issues in data mining, even when problem and environmental char-acteristics dictate a general approach, there is little guidance for choice among thevarious constituent methods. For each approach, several methods have been stud-ied in isolation, but there exist few (if any) studies comparing their relative merits.For example, for partitioned-data approaches, research has only just reached theborder between the proof-of-concept stage and the comparative-evaluation stage.More theoretical and empirical research is needed before we can claim a thoroughunderstanding.What is most needed is a better treatment of sampling. The KDD community,including researchers from all the di�erent perspectives, should achieve a commonunderstanding of when and how sampling should be used, and should build artifactsenabling it. For example, what are the e�ects of strati�ed sampling on predictiveperformance on the original distribution? (See the recent work of Chan and Stolfo(1998).) Is it time to revive the concept of the \near miss" as a way to choose datasubsets intelligently, once a tentative classi�er has been built? Let us consider whatcan be contributed from the three most commonly cited KDD component �elds:(1) statistics, (2) databases, and (3) machine learning.(1) Statistics has a long and rich history of theoretical work on sampling. Al-though traditionally it has focused on small samples and on hypothesis veri�cation,it may be applicable to computer-driven discovery either directly or when tailoredto the current context. KDD should embrace e�orts by statisticians, based eitheron new or past research, to provide a common theoretical understanding of theissue.(2) Most discussions of sampling assume that producing random samples e�-ciently from large data sets is not di�cult. For most large databases this simply isnot true. To produce a random sample from even a single-table database may re-quire scanning the entire table. A naive implementation may be much worse. Thishas obvious implications for claims of algorithm e�ciency with sampling; for exam-ple, the asymptotic run-time complexity will be at least linear in the total numberof instances. Along with a better understanding of sampling must come databaseoperations and organizations that allow for e�cient sampling (Fayyad 1997).(3) Remarkable advances have been made in learning e�ectively from large num-bers of examples, and (separately) in learning e�ectively when there are large num-bers of features. However, the data mining problems most in need of scaling arethose with massive numbers of both. Main-memory learning algorithms are fast ande�ective enough that a good deal of experimentation is possible, and this type ofexperimentation can be automated to a large degree (Moore and Lee 1994) (Provost



34 PROVOST AND KOLLURIand Buchanan 1995) (Kohavi and John 1997). Indeed, some existing algorithmsmay provide strong baselines against which new approaches can be compared. Forexample, the well-known algorithm winnow (Littlestone 1988) is not only e�ectiveat detecting irrelevant features, it is also incremental; it should be straightforwardto augment the algorithm to reduce the number of features automatically as thenumber of examples grows (thus keeping the total size of the data set small).Another area in need of research e�ort is mining large multitable relationaldatabases/databases linked to relational background knowledge. Such researchwould have broad implications, a�ecting the development of data mining/DBMSintegrated systems, algorithms for learning in main memory, and partitioned-dataapproaches. Given the storage economies possible with relational representations,their use promises that much larger data sets can be processed in main memorythan with 
at �le representations. Furthermore, the ability to mine distributed,structured data and knowledge e�ciently will dovetail nicely with current e�ortsto make available vast amounts of metadata-indexed information (Fox, Akscyn,Furuta, and Legsett 1995), bringing into view new research horizons.8. ConclusionWe have reached some conclusions after reading and organizing more than a hun-dred papers on scaling up inductive algorithms. Much work has been done, andthe establishment of KDD as an coherent �eld of study seemingly has acceleratedthe production of relevant results.Because of the interdisciplinary nature of the �eld, often research is undertakenwithout the bene�t of insights from substantially similar work that has taken placeeither in another sub�eld, or that has taken place as a necessary peripheral task in aresearch e�ort with a di�erent focus. We found striking similarities between e�ortsthat, as far as we can determine, were completely independent. This is not unex-pected, and is in fact encouraging: often when \the time comes," fundamentallyidentical technical advances are made simultaneously by independent groups. Wehope that this survey helps to establish common ground from which future e�ortscan reach even higher.The design of fast algorithms stands out as a clear example of e�ective incre-mental research: there are clear chains of advances in fast rule learning and infast decision-tree learning. Research on partitioned-data approaches and on min-ing relationally represented data is less mature, consisting mainly of independentwork, but there are striking commonalities among the existing approaches. Webelieve these areas are ready for more emphasis on comparative research, followedby (hopefully signi�cant) incremental advances.The most glaring gaps in the literature are the lack of a common understanding ofthe power (or impotence) of sampling for data mining, and the dearth of convincingexamples of the need to mine massive data sets.
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