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Abstract. One of the defining challenges for the KDD research community is to enable induc-
tive learning algorithms to mine very large databases. This paper summarizes, categorizes, and
compares existing work on scaling up inductive algorithms. We concentrate on algorithms that
build decision trees and rule sets, in order to provide focus and specific details; the issues and
techniques generalize to other types of data mining. We begin with a discussion of important
issues related to scaling up. We highlight similarities among scaling techniques by categorizing
them into three main approaches. For each approach, we then describe, compare, and contrast
the different constituent techniques, drawing on specific examples from published papers. Finally,
we use the preceding analysis to suggest how to proceed when dealing with a large problem, and
where to focus future research.
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1. Introduction

The knowledge discovery and data mining (KDD) community has challenged itself
to develop inductive learning algorithms that scale up to large data sets (Fayyad,
Haussler, and Stolorz 1996) (Fayyad, Piatetsky-Shapiro, and Smyth 1996a) (Piatetsky-
Shapiro, Brachman, Khabaza, Kloesgen, and Simoudis 1996). This paper! summa-
rizes, categorizes, and compares various existing methods. We restrict the survey’s
scope to scalable algorithms, and do not consider issues of efficient file system de-
sign, storage design, network interface design, or problem formulation, except as
they relate to the design of inductive algorithms. Although we believe the cate-
gorization and lessons apply more generally, our analysis focuses primarily on al-
gorithms that build feature-vector-based classifiers (rather than those that include
structural or relational terms) in the form of decision trees or rule sets.

We first address the meaning of “scaling up” and highlight important issues.
We then show similarities between existing methods by grouping them into three
high-level categories. Within each category, we discuss the techniques themselves
in some detail, showing the similarities and differences between techniques of each
type. Finally, we conclude with suggestions for research and practice that emerge
from the survey’s analysis.
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2. Why scale up?

Organizations are amassing very large repositories of customer, operations, scien-
tific, and other sorts of data. Fayyad et al. (1996b) cite several representative
examples of databases containing many gigabytes (even terabytes) of data. KDD
practitioners would like to be able to apply inductive learning algorithms to these
large data sets in order to discover useful knowledge. The question of scalability
asks whether the algorithm can process large data sets efficiently, while building
from them the best possible models. However, the existence of very large data sets
alone is not sufficient to motivate non-trivial scaling efforts. Why not just select a
small subset of the data for data mining?

The most commonly cited reason for scaling up is that increasing the size of the
training set often increases the accuracy of learned classification models (Catlett
1991b). In many cases, the degradation in accuracy when learning from smaller
samples stems from overfitting due to the need to allow the program to learn small
disjuncts (Holte, Acker, and Porter 1989), elements of a class description that cover
few data items. In some domains small disjuncts make up a large portion of the
class description (Danyluk and Provost 1993). In such domains, high accuracy
depends on the ability to learn small disjuncts to account for these special cases.
The existence of noise in the data further complicates the problem, because with
a small sample it is impossible to tell the difference between a special case and a
spurious data point.

Overfitting from small data sets also may be due to the existence of a large number
of features describing the data. Large feature sets increase the size of the space of
models. Searching through and evaluating more candidate models increases the
likelihood that, by chance, the program will find a model that fits the data well
(Jensen and Cohen 1999), and thereby increases the need for larger example sets
(Haussler 1988). Things get particularly difficult when there are many features
and there is the need to learn small disjuncts. Specifically, because large feature
sets lead to large and often sparsely populated model spaces, a program biased to
search for models covering special cases can be inundated with small disjuncts from
among which it cannot choose.

Some data mining applications are concerned not with predictive modeling, but
with the discovery of interesting knowledge from large databases. In such cases,
increasing accuracy may not be a primary concern. However, scaling up may still be
an issue. For example, the ability to learn small disjuncts well often is of interest to
scientists and business analysts, because small disjuncts often capture special cases
that were unknown previously (the analysts often know the common cases). As
with classifier learning, in order not to be swamped with spurious small disjuncts
it is essential for a data set to be large enough to contain enough instances of each
special case from which to generalize with confidence (Provost and Aronis 1996).

It should be clear that scaling up to very large data sets implies, in part, that
fast learning algorithms must be developed. There are, of course, other motiva-
tions for fast learners. For example, interactive induction (Buntine 1991), in which
an inductive learner and a human analyst interact in real time, requires very fast
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learning algorithms in order to be practicable. Wrapper approaches, which for
a particular problem and algorithm iteratively search for feature subsets or good
parameter settings (Kohavi and Sommerfield 1995; Kohavi 1996; Provost 1992;
Provost and Buchanan 1995), also require very fast learners because such systems
run the learning algorithms multiple times, evaluating them under different condi-
tions. Furthermore, in a wrapper approach, each evaluation may involve multiple
runs to produce performance statistics (e.g., with cross-validation). Experimenting
with many learning biases also requires a large data set to avoid overfitting due
to bias selection (DesJardins and Gordon 1995). As a final example, the popular
practice of learning multiple models and combining their predictions (Dietterich
1997) also multiplies the run time.

3. How large is “very large”?

The KDD community includes researchers and practitioners from diverse back-
grounds, including machine learning, statistics, and databases. Researchers in ma-
chine learning are accustomed to dealing with flat files and algorithms that run
in minutes or seconds on a desktop platform. For them, 100,000 instances with a
couple dozen features is the beginning of the range of “very large” data sets.

The database community deals with gigabyte databases. “Very large” to a
database practitioner usually means databases (warehouses) of 100 gigabytes or
larger (Agrawal and Srikant 1994). Of course, it is unlikely that all the data in
a data warehouse would be mined simultaneously. In practice, data preprocessing
techniques often reduce by orders of magnitude the size of the data set presented
to algorithms. However, the need for data reduction as a preprocess may be more
a restriction on our view of learning algorithms than a fundamental restriction on
data mining. Nevertheless, because this survey concentrates on the algorithms for
mining the data, we will take an algorithmic perspective on the issue of “very large.”
For most published work on algorithms, one million examples is considered to be
a very large data set (100Mbyte-1Gbyte range). This agrees with Huber’s assess-
ment from a statistical perspective, given in his KDD-97 invited talk (Huber 1997):
“Somewhere around data sizes of 100 megabytes or so, qualitatively new, very se-
rious scaling problems begin to arise, both on the human and on the algorithmic
side” (p. 306).

4. What is “scaling up”?

For all its theoretical considerations, the issue of scaling up is inherently pragmatic.
For scaling up learning algorithms, the issue is not as much one of speeding up a
slow algorithm as one of turning an impracticable algorithm into a practicable
one. The crucial issue is seldom “how fast” you can run on a certain problem, but
instead “how large” a problem can you (feasibly) deal with. From the point of
view of complexity analyses, for most scaling problems the limiting factor of the
data set has been the number of examples. A large number of examples introduces
potential problems with both time and space complexity. For time complexity,
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the appropriate algorithmic question is: what is the growth rate of the algorithm’s
run time as the number of examples increases? Also important are the number of
attributes describing each example and the number of values for each attribute.

As may be expected, time-complexity analyses do not tell the whole story. As the
number of instances grows, certain space constraints become critical most impor-
tantly, the absolute size of the main memory with which the computing platform is
equipped. Except as described below, almost all existing implementations of learn-
ing algorithms operate with the training set entirely in main memory. Furthermore,
many algorithms achieve reduced run-time complexity with bookkeeping that in-
creases the space used. No matter what the run-time computational complexity of
the algorithm, if exceeding the main memory limitation leads to virtual memory
thrashing, the algorithm will not scale well (Provost and Hennessy 1996).

Finally, the goal of the learning must be considered. Evaluating the effectiveness
of a scaling technique becomes complicated if a degradation in the quality of the
learning is permitted. The vast majority of work on learning algorithms uses clas-
sification accuracy as the metric by which different algorithms are compared. In
such cases, we are most interested in methods that scale up without a substantial
decrease in accuracy. For problems that require mining regularities from the data
for purposes other than classification, metrics should be devised by which effective-
ness can be measured (and compared) as the system scales up (Srikant and Agrawal
1996).

5. A high-level characterization of methods for scaling up

Many diverse techniques have been proposed and implemented for scaling up in-
ductive algorithms. The similarities among the techniques become apparent when
they are categorized into three main approaches. In most cases, techniques from
separate categories are independent and can be applied simultaneously. The three
main approaches are:

e design a fast algorithm
e partition the data

e use a relational representation

The fast algorithm approach includes a wide variety of algorithm design tech-
niques for reducing the asymptotic complexity, for optimizing the search and repre-
sentation, for finding approximate solutions instead of exact solutions, or for taking
advantage of the task’s inherent parallelism.

The data partitioning approach involves breaking the data set up into subsets,
learning from one or more of the subsets, and possibly combining the results. Data
partitioning is useful to avoid the thrashing by memory management systems that
occurs when algorithms try to process huge data sets in main memory. Also, if a
learning algorithm’s time complexity is worse than linear in the number of examples,
processing small, fixed-size data subsets sequentially can make it linear, with the
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constant term dependent on the size of the subsets (Domingos 1996a). In either
case, it may be possible to use a system of distributed processors to mine the
subsets concurrently. An approach orthogonal to the selection of example subsets
is to select subsets of relevant features upon which to focus attention.

The relational representation approach addresses data that cannot feasibly be
treated as a flat file, including any large relational database, as well as other large
relational structures such as those used for knowledge representation in artificial
intelligence. In the literature, such techniques have been framed either as learning
in first-order logic, as learning from relational databases (without flattening them
out), or as flat-file learning augmented with relational background knowledge.

Figure 1 summarizes the general methods that make up each of the three broad
approaches to scaling up inductive algorithms. We discuss the constituent methods
in detail in the next section.

Scaling Methods
Main Approach General Method
Fast algorithm Restricted model space
Powerful search heuristics
Algorithm /programming optimizations
Parallelization
Data partitioning Select an instance subset
Select a feature subset
Process subsets sequentially
Process subsets concurrently
Relational representations | Represent data relationally
Integrate data mining with database management

Figure 1. Methods for scaling up inductive algorithms

6. A comparison of methods

Grouping methods into these three broad categories illustrates that certain tech-
niques not previously considered to be related are in fact very similar. We will now
summarize the methods within each category in order to highlight their similarities,
their differences, their strengths, and their weaknesses.

The survey is not exhaustive. It is representative of the current state of the
art, and places recent work in the context of a number of historically important
examples that have had lasting impact. We begin with the design of fast learning
algorithms.

6.1. Fast algorithms

The most straightforward approach to scaling up inductive learning is to produce
more efficient algorithms or to increase the efficiency of existing algorithms. Of
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Fast Algorithms
General Method Ezample Technique
Restricted model space decision stump, two-level tree
Powerful search heuristics | greedy, divide & conquer
avoid decision-tree post-processing
search-space pruning
Algorithm /programming | efficient data structures
optimizations dynamic search-space restructuring
bookkeeping strategies
optimized computing infrastructure
Parallelization search-space parallelization
parallel matching

Figure 2. Methods for designing fast inductive algorithms

course, for very large problems, even a fast linear-time algorithm may not be suf-
ficient for practicable data mining. However, it is usually the case that for very
large problems, even with the use of sampling, feature selection, and relational rep-
resentations, a fast algorithm is still necessary. Just how fast inductive algorithms
must be depends, of course, on the problem. Most work on fast algorithms strives
for near-linear time complexity in the number of examples (e). This is in line with
Huber’s observation that O(e3/?) is the maximum tolerable time complexity (Huber
1997).

For a discussion of learning-algorithm design, it is necessary to choose an an-
alytical framework that facilitates discussing different algorithms. We will adopt
the commonly used “induction as search” framework, within which data mining is
framed as a search through a space of models for a model that performs well with
respect to some criteria (Simon and Lea 1973) (Mitchell 1982). The use of this
framework naturally partitions fast-algorithm design into two categories of meth-
ods (see Figure 2). First, one can restrict the space of models to be searched, based
on the straightforward (and sometimes untrue) principle that a small model space
will be faster to search than a large one. Second, for a large model space, one can
develop powerful search heuristics, where “powerful” means that the heuristics are
efficient, yet they often find competitive models. Next we will discuss some partic-
ular examples of each of these methods that have proven to be both effective and
efficient. We then discuss several algorithm /program optimizations that have been
detailed in the literature. Finally, we discuss approaches to the use of parallelism
to speed up inductive algorithms.

6.1.1. Restricted model space One approach to designing a fast learning algo-
rithm is to restrict it to search an “easy” model space. The clearest examples of
effective restricted model-space learners are the long-lived and still viable linear-
discriminant methods for learning classifiers (Duda and Hart 1973). Complex ma-
chine learning methods typically are justified by noting that they can capture com-
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plex, non-linear relationships from data. Nevertheless, research on both symbolic
and neural learning has shown that simple models perform well on many problems.
For example, Shavlik et al. (1991) show that with certain qualifications, “the accu-
racy of the perceptron is hardly distinguishable from the more complicated learning
algorithms.” One-level decision trees, also known as decision stumps, are simple
mappings from the values of one attribute to class labels. Decision stumps also
have been shown to achieve moderately high accuracy on many common bench-
mark databases (Iba and Langley 1992) (Holte 1993). Because of their restricted
model spaces, these simple learning algorithms can be trained very quickly. Haussler
(1988) relates “easy” model spaces both to the machine-learning notion of inductive
bias (Mitchell 1980), and to Valiant’s theoretical framework (Valiant 1984). The
gist is that a model space can be easy to search either because it is simply small
(as with decision stumps) or because some special structure weakens its power of
expression (as with linear discriminants).

The tone of research on inductive algorithms changed markedly with the accep-
tance (or re-acceptance) of restricted hypothesis space algorithms as legitimate com-
petitors. One reason for this change is that these simple, fast algorithms facilitate
straightforward, competitive benchmarking. More importantly, from a scaling-up
perspective, the competitive run-time performance of the simple classifiers makes
it more difficult to justify very complex algorithms. Interest has developed in other
simple classifiers that also perform well. For example, in subsequent work Auer
et al. (1995) introduce a theoretically founded algorithm, called T2, for learning
two-level decision trees. They show that for eight out of fifteen data sets, T2 pro-
duces two-level trees which rival or surpass the de facto standard C4.5 (see below)
(Quinlan 1993). Interestingly, in practice C4.5 is considerably faster than T2 (Lim,
Loh, and Shih 1999).

6.1.2. Powerful Search Heuristics Certainly, in some domains there is leverage to
be gained by searching for more complex models. The size and structure of the space
of models, the size of the sample necessary to learn well, and the computational
complexity of algorithms that search the space are intimately related. Typically,
searching for more complex models is harder. However, as Haussler points out, “by
using a larger hypothesis space than is strictly necessary, it may be computationally
easier to find a consistent hypothesis . . . On the other hand, by using a larger
hypothesis space . . . (more) examples will be required” (Haussler 1988).

Consider the (very large) space of formulae in disjunctive normal form (DNF).
Many inductive algorithms designed for efficiency, including those that learn deci-
sion trees, decision lists, and rule sets, search the space of some variant of DNF
formulae (Pagallo and Haussler 1990). Because the model space is vast and there is
little structure to facilitate search, powerful heuristics are necessary for navigating
it efficiently (Haussler 1988).

For a vast model space, it is unusual for learning algorithms to search the space
directly (i.e., by generating many alternative models and choosing one). In most
cases, a single model is built up by evaluating its components. For example, by
evaluating individual conjunctions, a DNF class description can be built. However,
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even the space of conjunctions can be infeasibly large, especially when learning from
a large data set, because the data set is used in the evaluation of the individual
conjunctions. In practice, to scale to large data sets the run-time complexity of the
learning algorithm must be close to linear in the number of examples.

Algorithm designers have had much success with greedy, divide-and-conquer ap-
proaches to building class descriptions. We chose decision-tree learners (made pop-
ular by ID3 (Quinlan 1986) and CART (Breiman, Friedman, Olshen, and Stone
1984)) for this survey, because they are relatively fast and typically they produce
competitive classifiers. In fact, the decision tree generator C4.5 (Quinlan 1993), a
successor to ID3, has become a de facto standard for comparison in machine learning
research, because it produces good classifiers quickly. For non-numeric data sets,
the growth of the run time of ID3 (and C4.5) is linear in the number of examples.
Specifically, its asymptotic time complexity is O(ea?) (Utgoff 1989), where e is the
number of examples in the training set and a is the number of attributes. However,
since numeric data typically require repetitive sorting, their inclusion adds a loge
factor at each node.

The practical run-time complexity of C4.5 has been determined empirically to be
worse than O(e?) on some data sets (Catlett 1991a). One possible explanation is
based on the observation of Oates and Jensen (1998) that the size of C4.5 trees in-
creases linearly with the number of examples (even after accuracy stabilizes). One
of the factors of a in C4.5’s run-time complexity corresponds to the tree depth,
which can not be larger than the number of attributes. Tree depth is related (log-
arithmically) to tree size, and thereby to the number of examples. For practical
analyses during which tree size is still growing linearly with e, this adds yet an-
other loge factor to the run-time complexity. Other empirical determinations on
large data sets have established C4.5°s practical time complexity to be substantially
better than quadratic.?

The decision trees built by this greedy heuristic have been criticized for their
lack of comprehensibility; in many situations rule sets are desired instead because
of their modularity and increased comprehensibility (Catlett 1991a). The most
common technique for producing high-accuracy rule sets, known as reduced-error
pruning, is to grow rules via one algorithm or another, and then prune the rules
in order to increase accuracy (Quinlan 1987). Unfortunately, reduced-error prun-
ing systems generally do not scale well. For example, the rule-learning variant
of C4.5, C4.5rules, has been reported sometimes to require O(e?) time (Cohen
1995) (Domingos 1996b). Some algorithms effective at finding high-accuracy rule
sets have O(e#) time complexity in noisy domains (Cohen 1993). Kufrin (1997)
describes speeding up C4.5rules with parallel processing, which we discuss later.

Fiirnkranz and Widmer (1994) show, with their incremental reduced error prun-
ing (IREP) algorithm, that significant speedups can be obtained by pruning each
rule as it is learned and then applying a separate-and-conquer strategy based on
the pruned rule. Their formal analysis predicts a computational complexity of
O(elog” e), which has been verified empirically by Cohen (1995). Unfortunately,
the accuracy of the class descriptions learned by IREP often is lower than the
accuracy of those learned with the slower C4.5rules. Cohen details several mod-
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ifications to improve IREP’s accuracy, including different rule-evaluation criteria,
different stopping criteria, and a post-processing optimization, producing the algo-
rithm RIPPER. He shows that RIPPER is competitive with C4.5rules in terms of
error rate and that it maintains the O(elog”e) time complexity of IREP. (Cohen
also estimates the time complexity empirically.)

A different style of rule learning can be traced back to the search-based data
mining program MetaDENDRAL (Buchanan, Smith, White, Gritter, Feigenbaum,
Lederberg, and Djerassi 1976) (Buchanan and Feigenbaum 1978). Examples of
MetaDENDRAL-style rule learning include the Brute programs (Riddle, Segal, and
Etzioni 1994; Segal and Etzioni 1994a), PVM (Weiss, Galen, and Tadepalli 1990),
ITRULE (Smyth and Goodman 1992), the RL programs (Clearwater and Provost
1990; Provost and Buchanan 1995; Fawcett and Provost 1997), SE-trees (Rymon

1993), and even Schlimmer’s determination-learning algorithm (Schlimmer 1993).
These programs view rule learning as an explicit search of the rule space rooted at
the rule with no conditions in the antecedent, with rules becoming more specific
(by adding conditions) as they get further from the root (described in detail by
Webb (1995)). To allow for massive searches of very large rule spaces, the search

space is reduced with depth-bounding and various forms of pruning.

6.1.3. Algorithm/programming optimizations Algorithm optimization by using
efficient data structures (e.g., bit vectors, hash tables, binary search trees) and
clever programming techniques is good engineering practice, complements the other
methods of scaling up, and in practice often can give very large speedups. These
optimizations differ from “powerful search heuristics” in that they concentrate on
eliminating redundant or unnecessary computations—the models induced will not
be affected. Some such optimizations are remarkable enough to have appeared in
published work.

Some of the rule-space pruning techniques used in MetaDENDRAL-style rule
learners can be guaranteed not to discard good rules (Clearwater and Provost
1990; Segal and Etzioni 1994b; Webb 1995). Webb (1995) takes this idea even
further, introducing techniques for dynamic search-space restructuring to maxi-
mize the amount of search space removed with each pruning. He shows that it is
possible to search exhaustively for the rule that optimizes the Laplace accuracy
estimate for (at the time) every categorical attribute-value benchmark data set in
the UCI repository (Merz and Murphy 1997). BruteDL’s search algorithm was op-
timized carefully (Segal and Etzioni 1994b). Segal and Etzioni report that with 500
training examples, BruteDL can process 100,000 rules per second, when running on
a SPARC-10 processor. They also note that significant additional speedups are not
expected because BruteDL’s speed is within an order of magnitude of the machine’s
clock rate.

Domingos (1996b) proposes to improve rule-learning efficiency by not growing
each rule to its full length in the first place. He points out that the commonly
used separate-and-conquer methods induce rules by evaluating each rule by itself,
without regard to the effect of other rules. To avoid superfluous growth, as each rule
is grown Domingos’s CWS algorithm evaluates it in the context of the currently
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held rule set. However, a straightforward recomputation of the accuracy of the
whole rule set for each rule modification is very expensive. Domingos details an
optimized procedure that carefully eliminates redundant computation, yielding a
procedure with run-time complexity O(eavcs), where v is the average number of
values, ¢ is the number of classes, and s is the total number of antecedents in the
resultant rule set. In principle, s can be O(e), but Domingos verifies empirically
that in practice s is independent of e.

Another notable optimization is the pre-sorting procedure used by the decision-
tree learner SLIQ (Mehta, Agrawal, and Rissanen 1996). As described above, repet-
itive sorting reduces the efficiency of decision-tree learners when dealing with nu-
meric attributes. SLIQ sorts the training data just once for each numeric attribute
at the beginning of tree growth.

As mentioned above, most inductive algorithms load all data into main memory;
therefore if a data set is too large, either the algorithm will not run, or virtual
memory thrashing will render it useless. An alternative approach is never to load
all the data into memory, instead accessing them on secondary storage as needed.
Since secondary storage devices typically do not provide random access to data,
algorithms must be designed to process data via sequential scans and as few as
possible. SLIQ takes advantage of the need for only a single pass through the data
for each level of a decision tree, if the tree is grown breadth first. However, one of
the data structures that SLIQ uses during its pre-sorting step has size proportional
to the number of input records, and therefore the size of this memory-resident struc-
ture becomes the limiting factor for this approach. These limitations are addressed
in the SPRINT system (Shafer, Agrawal, and Mehta 1996), which does not use any
monolithic, memory-resident data structures.

SPRINT is regarded widely as the reigning standard in scalable decision-tree
building (Dietterich 1997). However, with this honor comes the increased scrutiny
that leads to further advances. SPRINT maintains augmented vertical partitions
of the data, copied into auxilliary data structures (atéribute lists). Because of
this, it has been criticized for several reasons. For example, maintaining the data
structures can be costly, including a potential tripling of the size of the database
(Gehrke, Ramakrishnan, and Ganti 1998) and an associated significant increase in
scan cost (Graefe, Fayyad, and Chaudhuri 1998).

This brings us to perhaps the most remarkable data mining optimization, a sim-
ple bookkeeping technique that has been pointed out recently by several indepen-
dent research groups. The main insight is that matching hypotheses against the
data is not necessary: for most of the processing, statistics from which the re-
sults of matching can be inferred are sufficient (cf. learning from statistical queries
(Kearns 1993)). Separating the generation of the sufficient statistics from their use
in the evaluation of hypotheses allows each to be treated separately first using the
data to populate the statistics data structure and then operating only on the data
structure which affords both optimized use of memory and improved run-time
complexity.

More specifically, for most of the critical data mining operations, such as choosing
nodes when constructing decision trees, one must tally for all the examples (at a
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particular point in the search) the class labels associated with the different values
of each attribute. A straightforward data structure to store such statistics is a
contingency table of example counts for each attribute, indexed by attribute-value
and class. For av attribute values and e examples, as long as av < e the combined
size of the sufficient-statistics data structures is much smaller than the size of the
data set itself. John and Lent (1997) point out that such data structures are
returned by SQL GROUP BY queries.

By using such techniques, inductive algorithms must pass through the example
set only once per node expansion indeed, an algorithm must pass through the
example set only once per level in separate-and-conquer decision-tree learning
rather than once per attribute-value pair. Tremendous run-time efficiencies can be
achieved when attributes have large value sets (Aronis and Provost 1997). Even fast
contemporary rule-space search algorithms (Segal and Etzioni 1994b) (Domingos
1996b) generate a conjunct for each attribute-value pair, and match each against
the example set to compute statistics. Thus, the run-time complexity depends on v,
the average number of values of an attribute. Domingos reports a time complexity
of O(eav) for the CWS algorithm (discussed above). These bookkeeping techniques
can reduce rule-learning complexity to O(ea) (Aronis and Provost 1997). Aronis
and Provost go on to show that similar techniques can be used to speed-up learning
with hierarchically structured data (Almuallim, Akiba, and Kaneda 1995), to which
we will return when we discuss relational representations.

Among the various decision tree programs, C4.5 has been shown to be comparably
fast (Lim, Loh, and Shih 1999)—remarkably so considering the programs’ similarity.
An analysis of its code shows that when evaluating node splits, C4.5 first builds a
sufficient-statistics contingency table, and then uses it to decide on the best split.
Kufrin (1997) notes that preliminary experiments with additional optimizations
to C4.5 show substantial additional speedups (on a single processor), and indeed
(C4.5’s successor C5 has been observed to be substantially faster than its predecessor
(Harris-Jones and Haines 1997).

Gehrke, Ramakrishnan and Ganti (1998) provide a thorough treatment of the use
of sufficient statistics to build decision trees when the size of the data set exceeds
main memory. They discuss the options available if even the sufficient-statistics
data structure is too big for main memory, and present the RAINFOREST family of
algorithms. Moore and Lee (Moore and Lee 1998) present specialized data struc-
tures (ADtrees) designed to take best advantage of sufficient statistics for speeding
up inductive algorithms. According to Moore and Lee, it is doubtful that the cost
of building ADtrees will be worthwhile for individual runs of fast learning algo-
rithms. However, they are obvious candidates for more computationally intensive
algorithms, and for systems that run algorithms many times on the same data (such
as interactive systems, wrapper systems, and multiple-models systems, discussed
above).

Not only can the inductive program itself be optimized, the computing infrastruc-
ture can too. Data mining programs read in large amounts of data; in fact, reading
in the data can take longer than mining it (Provost and Aronis 1996). Parallel I/0
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systems and optimized data layout can make a considerable difference (Grossman
and Bailey 1998).

6.1.4. Parallelization The process of inductive learning is decomposable at two
levels, illustrated by the two main methods for parallel learning, namely, search-
space parallelization and parallel matching.

As we discuss above, inductive learning can be viewed as the search of a very large
space. In search-space parallelization, the search space is decomposed such that dif-
ferent processors search different portions of the space in parallel (Cook and Holder
1990), similar to the parallelization of other forms of heuristic search (Kumar and
Rao 1987) (Rao and Kumar 1987). Load balancing and interprocess communica-
tion add additional complexity and overhead. In general, this type of parallelization
does not address the problem of very large data sets, because each processor will
have to deal with all the data (or subsample, which we discuss below). However,
recently Zaki et al. (1999) have had success with search-space parallelization of a
decision-tree algorithm; by taking advantage of a shared memory multiprocessor,
they are able to avoid replicating or communicating the entire data set among the
processors. Using shared memory also allows the development of effective load bal-
ancing techniques. Galal, Cook, and Holder also have had success recently using
search space parallelism to scale up other data mining algorithms (Galal, Cook,
and Holder 1999).

SEQUENTIAL MACHINE PARALLEL MACHINE

Instances and matching routines

Matching
requests

Search
algorithm

Figure 3. Parallel matching

Parallel learning has been more successful when a lower-level decomposition is
used. The parallel matching approach is based on the observation that search for
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inductive learning is different from most other search problems. In inductive learn-
ing the cost of evaluating a node is very high, but also highly decomposable. Nodes
in the search space (e.g., partial rules or decision tree branches) are hypothesized
and each is matched against many examples to gather statistics. In the parallel
matching approach, depicted in Figure 3, this compute-intensive matching process
is farmed out by migrating the example set and matching routines to a parallel
machine, while the main learning algorithm (the master) may run on a sequential
front end.

Parallel matching has been used by Lathrop et al. (1990), by Provost and Aronis
(1996), and in the parallelization of the SPRINT algorithm (Shafer, Agrawal, and
Mehta 1996). The former two efforts use a straightforward parallelization of the
matching routines. In the SPRINT work, each processor builds a sublist of each
attribute list, and for each decision-tree node sends the master a portion of the
statistics needed to determine the best split. Impressive speedups are reported for
parallel matching: less than a minute to learn from one million examples on a CM-
2 Connection Machine with 8192 bit-slice processors (Provost and Aronis 1996);
400 seconds to learn from 1.6 million examples on an IBM SP2 with 16 processors
(Shafer, Agrawal, and Mehta 1996).% Kufrin (1997) uses parallelization to speed up
C4.5’s transformation of decision trees to rules (C4.5rules), using parallel matching
for two phases of rule-set postprocessing, and dividing up the rule set itself for a
third. He also reports impressive speedups (efficiencies averaging more than 0.9
for four learning tasks and up to eight processors). The drawback to the parallel
matching approach is that it is not always easy to obtain access to massively parallel
hardware.

Zaki (1998) points out that shared-memory multiprocessor (SMP) systems are
much more common, and presents a parallel matching approach to the design of
an SMP version of SPRINT. Instead of distributing the instances, they process
(in parallel) vertical partitions corresponding to SPRINT’s attribute lists. The
attribute lists are divided equally among the processors, which return the matching
statistics to the master.

Access to parallel hardware may not be a concern if the data are already resident
in a data warehouse with a parallel infrastructure. Freitas and Lavington (1996)
take such an approach, making use of existing parallel database server technology.
Their approach is similar to that shown in Figure 3, except the implementation-
specific parallel data representation is replaced by an existing parallel database
system. Also, for communication between the front- and back-end, implementation-
specific matching requests are replaced with SQL queries. Commercial data mining
system vendors often cite this approach when confronted with the issue of scaling,
but technical details on specific vendor-supplied data mining systems are elusive.
We will discuss the use of database systems and SQL queries for scaling up in more
detail in Section 6.3.

A third approach to the use of parallelization is to partition the data into subsets,
and then run learners concurrently on the subsets. This approach is described in
the next section. Parallel data mining is treated in more detail in a recent book by
Freitas and Lavington (1997).
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6.2. Data partitioning

The previous section addressed the design of algorithms that are fast enough to
run on very large example sets. An orthogonal approach is to partition the data,
avoiding the need to run algorithms on very large data sets. Data partitioning

Data Partitioning
General method Ezample technique
Select an instance subset random sampling
duplicate compaction
stratified sampling
peepholing
Select a feature subset use relevance knowledge
use statistical indications
use subset studies
Processing subsets sequentially | independent multi-subset learning
sequential multi-subset learning
Processing subsets concurrently | learn multiple models, pick best
combine class descriptions
combine predictions
cooperative learning

Figure 4. Data partitioning methods

techniques can be categorized based on whether they separate subsets of examples
or subsets of features. Figure 4 illustrates that there are several techniques for
selecting a single subset from which to learn. Furthermore, multiple subsets can be
chosen and they can be processed in sequence or concurrently.

Figure 5 depicts a general model showing the similarities among partitioned-data
approaches. Systems using these approaches select one or more subsets Sy,...,S,

of the data based on a selection procedure. Learning algorithms L., ..., L, are run
on the corresponding subsets, producing concept descriptions C, ..., C,. Then the
concept descriptions are processed by a combining procedure, which either selects
from among C4, ..., C), or combines them to produce a final concept description.
The systems differ in the particular procedures used for selection and combin-
ing. They also differ in the amount and style of interaction among the learning

algorithms and learned concept descriptions.

6.2.1. Select a subset of the instances The most common approach for coping
with the infeasibility of learning from very large data sets is to select a single sample
from the large data set. Referring to Figure 5, sampling is a degenerate form of
a partitioned-data system: only a single subset is chosen. The differences between
sampling techniques involve the particular selection procedure used.
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Figure 5. Learning using data partitioning

Catlett (1991a) (1991b) studied a variety of procedures for sampling instances
from a large data set and compared empirically the results of using the different
techniques. In particular, he studied the following.

e Random sampling selects a subset of examples randomly.

e Duplicate compaction removes duplicated instances from the database. The
computational effort is proportional to the degree of completeness desired.

o Stratified sampling is applicable when the class values are not uniformly dis-
tributed in the training sets. Examples of the minority class(es) are selected
with a greater frequency, in order to even out the distribution.

Some readers may have difficulty accepting sampling as a method for scaling up to
large data sets; after all, sampling reduces the size of the data set processed. How-
ever, it is important to examine the function the algorithm is performing. Consider
classifier induction algorithms. They take data sets as input and produce classifica-
tion models as output. As discussed above, the question of scalability asks whether
the algorithm can process large data sets efficiently, while building from them the
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best possible models. Therefore, if (for example) using sampling produces models
with lower accuracy than otherwise, its usefulness for scaling up is in question.
On the other hand, if using sampling produces equivalent (or better) models, then
sampling is an effective scaling mechanism. Sampling is well accepted by the statis-
tics community, who observe that “a powerful computationally intense procedure
operating on a subsample of the data may in fact provide superior accuracy than
a less sophisticated one using the entire data base.” (Friedman 1997).

Thus, for anyone wanting to mine a large data set, an important question is:
must I process the whole thing? Or will sampling be effective? The answer is: it
depends on the data set. Just because you have a massive data set does not imply
necessarily that you must mine it all. In practice, as the amount of data grows, the
rate of increase in accuracy slows, forming the familiar learning curve. Whether
sampling will be effective depends on how dramatically the rate of increase slows.

It is difficult to determine in general how small a data set may be, because it
depends on factors not known a priori. For example, as we discuss above, it depends
on the minimum size of the special cases that a learner must discover in order to
model the phenomenon effectively. However, if one is willing to bias a learner
(explicitly or implicitly) against learning very small special cases, then recent work
on determining sufficient sample sizes for similar data mining problems provides
relevant results. For example, Toivonen (1996) and Zaki et al. (1997) discuss the
determination of sufficient sample sizes for finding association rules that are no
smaller than a predefined size, based on tolerances on the probability of error and
the size of the error. A different view of sufficient sample size, that of sample
complezity, is provided by Valiant’s theoretical framework (Valiant 1984) (Haussler
1988), which for a given hypothesis space allows the calculation of the number of
examples sufficient for learning with high probability a good approximation to the
“true concept,” if one exists in the hypothesis space.

Published work provides differing views of how often real-world classifier learning
curves level off before massive data sets are needed. Catlett’s work shows that
learning from subsets of data decreases accuracy. Despite the advantages of certain
sampling strategies, viz., speed-ups and improving the accuracy of the classifier
over random sampling in noise-free domains, Catlett concludes that they are not
a solution to the general problem of scaling up to very large data sets (Catlett
1991b). However, it should be noted that at the time of Catlett’s study, “massive”
data sets were much smaller than they are today, and processing times much longer.
In fact, Catlett’s conclusions were based on data sets which had fewer than 100,000
instances. Every data set in his study would fit in the main memory of a mod-
ern desktop PC. The study of KDD would benefit from a replication of Catlett’s
analyses, taking into consideration the current state of computing, to see if his
conclusions stand after a decade of technological improvements.

In a more recent study, Harris-Jones and Haines (1997) analyze the relationship
between data set size and accuracy for two large business data sets (up to 300,000
instances), by estimating learning curves empirically. They found that while some
algorithms level off quite early, in some cases algorithms (decision-tree learner C4.5
and its successor C5, in particular) continue to show accuracy increases across the
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entire range of data set sizes. However, the improvements in accuracy at the upper
size limit have become quite small, and it is difficult to conclude that they would
continue with another order of magnitude increase in data set size. The authors
note that a more important question is whether the benefit of further improvements
is worth the associated cost (Haines 1998).

Neither these results nor Catlett’s provide ample justification for mining data
outside of main memory. The data set sizes are not “massive” by modern standards.
They can be processed in the main memory of a PC.# Our field would benefit from
a few prominent examples of the need to scale up beyond reasonable main memory
limits.

Oates and Jensen (1997) studied decision tree induction for nineteen data sets,
and looked specifically at the number of examples necessary before the learning
curves reached a plateau. They regard a plateau to have been reached when an
accuracy estimate is within a certain tolerance of the maximum (specifically, one
percent, in their experiments). Surprisingly, for these nineteen data sets, as well as
some others (Jensen 1998), a plateau was reached after very few training examples.

Of course, when there exists a massive volume of data, some sampling may be
necessary, whether or not it decreases accuracy. For example, in a famous applica-
tion of inductive learning, Fayyad et al. (1993) used sampling techniques (among
others) to reduce more than three terabytes of raw data. Therefore, it is important
to consider whether it is possible to sample efficiently. Consider that if it is nec-
essary to scan the entire data set in order to produce a random sample, much of
the advantage of sampling will be lost. We will return to this point later, when we
address database support for scaling up data mining.

Heretofore we have discussed what may be called “passive” sampling, for which
the size and content of the training set are determined before induction begins.
Inductive algorithms can also sample actively, based on intermediate results, as
induction progresses. The notion of induction as the simultaneous search of two
spaces, the space of possible concepts and the space of possible instances, was
introduced by Simon and Lea (1973) and was elaborated by Provost and Buchanan
(Provost 1992; Provost and Buchanan 1995).

For scaling up, Catlett (1991a) (1991b) studied the active, tactical use of sampling
to reduce complexity as learning algorithms process large data sets. In particular,
the search for good split values for numeric attributes dominates decision-tree in-
ducers’ computation, because the values must be sorted. Catlett found that by
looking at subsets of examples (called peepholes) when searching for good split val-
ues for numeric attributes, the run time of decision-tree learners can be reduced
substantially without sacrificing accuracy. In subsequent work, Musick et al. (1993)
introduced information-theoretic measures to assess the risk of using peepholes for
the evaluation of attributes in decision-tree induction. In particular, they show
how to determine whether the choice of attribute can be made confidently within
a given error tolerance, and, if not, how to determine how large a peephole is re-
quired to do so. In Section 7 we discuss a similar technique for determining the
minimum number of training examples sufficient for satisfactory learning, namely,
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progressively sampling larger subsets until model performance no longer improves
(John and Langley 1996; Frey and Fisher 1999; Provost, Jensen, and Oates 1999).

6.2.2. Select a subset of the features So far, our discussion of data partitioning
has focused on selecting a subset of the examples. Let us now turn to the problem
of selecting a subset of features. It is important to consider the symmetry with
selecting instance subsets: one method selects rows of a data table; the other
selects columns. The space tradeoff is symmetric because the amount of space
needed to store the table is the product of the number of rows and the number
of columns. From the point of view of scaling up, the same observations apply
to both. Operating on a subset reduces induction time and space requirements.
Multiple subsets can be operated on independently. The results of induction with
one subset may help to determine the next, and learned models can be built from
components learned from different subsets. This symmetry is discussed in more
detail by Provost and Buchanan (Provost 1992; Provost and Buchanan 1995).

A full treatment of feature selection is beyond the scope of this paper. Data
engineering is less visible in the literature than algorithmic issues of induction, but
feature selection is one data-engineering issue that has received more than just a
superficial treatment (Devijver and Kittler 1982) (Miller 1990) (Wettschereck, Aha,
and Mohri 1997). However, the majority of the existing work on feature selection
has not focused directly on scaling. Instead it has focused on the phenomenon that
reducing the size of the feature set, when done well, often can increase the accuracy
of the resultant class description.

For the purposes of this survey, it is important to clarify these two closely related
reasons for selecting feature subsets. As discussed in Section 2, as the size of the
feature set grows, so do the chances that an induction program will overfit the
training set especially with a small training set. Thus, if one can select a good
subset of the features, one often can increase accuracy. Ironically, as the number
of examples is increased (and thereby feature selection becomes less necessary from
a data-fitting perspective), feature selection becomes more necessary from a run-
time perspective. As described above, the run time of inductive algorithms grows
with the number of attributes, often at a rate worse than linear. Therefore, select-
ing a subset of the features may be important for practical algorithm application,
independent of whether the selection increases the accuracy.

Selecting a subset of features is such a common method for reducing problem size
that it often is neglected in discussions of scaling. When setting up a learning prob-
lem, only a small set of the possibly relevant variables are chosen for representation.
Sometimes this restriction is based on the data collection apparatus, but often it is
based on knowledge of relevance. Interaction with domain experts can indicate that
it is unlikely for certain variables to be useful, so they are not included. Moreover,
for each variable describing a problem, there are often auxiliary databases that
provide related information. For example, a zip-code field might link to a massive
database of demographic information. In practice, additional fields are added only
if there is a reason to believe that they are relevant.
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The use of prior relevance knowledge is not the only method for selecting a subset
of the possible features. Another approach is to describe the problem with as
many features as possible, and then to do inexpensive empirical studies to select a
subset. Little has been published about using statistical indications to reduce the
number of features for the purpose of scaling up, although some techniques may
be viewed as too straightforward to include in publications. For example, many
practitioners compute correlations of individual features to the target concept, and
select a practically manageable subset of features with high correlations (Kaufman
and Michalski 1996) or with high information gain (Wettschereck and Dietterich
1995).

Of course, such simple methods may miss features that are only useful in combi-
nation. Chen and Yu (1995) address this problem with a combination of instance
subsetting and feature subsetting, similar to the peepholing of Catlett and of Mu-
sick et al. described above. Chen and Yu propose a two-phase method for attribute
extraction to improve the efficiency of deriving classification rules in a large training
data set. During the first phase, known as the feature extraction phase, a subset of
the training data set is analyzed to identify a relevant subset of features. During
the second phase, the feature combination phase, those extracted features are eval-
uated in combination, and multi-attribute predicates with strong inference power
are identified (Chen, Han, and Yu 1997). The RELIEF-F algorithm (Kononenko
1994) uses experiments with randomly drawn examples and a nearest-neighbor rep-
resentation to identify (even highly interdependent) relevant features (Kononenko,
Simec, and Robnik-Sikonja 1997). In the next section we discuss feature selection
methods that process subsets sequentially.

6.2.3. Processing Subsets Sequentially Several efforts have addressed learning
from multiple subsets and combining the results. We will first consider those ap-
proaches where subsets are processed sequentially. In these cases, the differences
between methods involve how the concept description learned in the previous itera-
tion is used, and how the combining procedure operates. Unless otherwise noted, for
each of the approaches described in this section and in the following, the selection
procedure partitions the data set randomly into n subsets.

Figure 5 shows a general model of partitioned-data learning. More precisely,
this figure shows a model of independent multi-subset learning, because there is no
interaction between the n learning runs; the C; are formed independently, and then
combined. Fayyad et al. (1993) use a sequential independent multi-subset approach
in which the L; are decision-tree learners; the C; are rule sets extracted from the
decision trees, and the combination procedure is a greedy covering algorithm.

When multiple subsets are being processed sequentially, it is possible to take
advantage of knowledge learned in one iteration to guide learning in the next it-
eration. Figure 6 and Figure 7 show two approaches to sequential multi-subset
learning. Model-guided instance selection, shown in Figure 6, is an iterative, active
sampling technique, with which class description C; helps in determining S;y1. In
incremental batch learning, shown in Figure 7, class description C; is taken as input
to the learner and used in building Cjy;.
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Figure 6. Sequential multi-subset learning: model-guided instance selection

Sequential multi-subset techniques have been used by several researchers to ad-
dress learning from large data sets. Quinlan (1983) used a model-guided instance
selection approach, called windowing. The selection procedure begins by choosing
candidate examples either randomly or by stratification. S;y1, called the window,
is augmented by examples that C; classifies incorrectly. The combining proce-
dure simply chooses C), as the final concept description. Catlett (1991b) studied
windowing on several learning problems, and found the following. The effect of
windowing on learning time varied from problem to problem, from a factor of three
speedup to a factor of 20 slowdown. Severe slowdowns occur when the data are
noisy. He concluded that windowing is a scaling solution for noise-free data sets
only. If continuous attributes are present, windowing can also improve accuracy.

Incremental batch learners (Clearwater, Cheng, Hirsh, and Buchanan 1989) are
hybrids of sampling and incremental learning. Class description C; is given as
“prior knowledge” to learning algorithm L; 1, along with subset S;;;. The learn-
ing algorithm uses S;11 to evaluate C;, and uses C; as a basis for building C;4 ;.
As with windowing, the combining procedure chooses C,, as the final concept de-
scription, but with incremental batch learning the C,, is constructed across the n
learning runs. Incremental batch learning approaches have been used to scale up
to example sets that are too large for pure batch processing because of limits on
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main memory, leading to increased accuracy over simple sampling (Provost and
Buchanan 1995). Incremental batch learning offers speedups because, as discussed
above, even for learners that theoretically scale up linearly in the number of exam-
ples, if the entire example set does not fit in main memory, operating system page
thrashing can render the learner useless. An incremental batch learning approach
was used by Domingos (1996a) to transform an algorithm whose run-time complex-
ity is quadratic in the size of the example set to a linear algorithm. Incremental
batch learning has also been called “multi-layer incremental induction” (Wu and
Lo 1998).

Historically, windowing has been used with decision-tree learners and incremental
batch learning has been used with rule learners. This coincidence is not acciden-
tal. Because of their modularity, rules can be evaluated individually and rule sets
constructed easily from multiple learning runs; this is much more difficult with
decision trees. Furthermore, separate-and-conquer rule learning internally does
model-guided instance selection as induction progresses: the existing rule set is
used to reduce the set of examples used in subsequent learning. Therefore, if a
partial rule set is provided as input to a separate-and-conquer learner, it can (in-
ternally) restrict subsequent search to rules that are not yet covered. Fiirnkranz
(Flurnkranz 1998) presents a technique integrating model-guided instance selection
and incremental batch learning, which he calls integrative windowing.
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Firnkranz also presents an insightful analysis of sequential multi-subset rule
learning, pointing to a variety of other related work and providing crisp expla-
nations of important observations. For example, windowing fails for noisy domains
because a good classifier will misclassify mostly noisy examples, so subsequent win-
dows will have increasing levels of noise, thereby decreasing subsequent learning
performance. He also explains, and shows empirically, that sequential multi-subset
learning improves the efficiency of rule learning more than decision-tree learning,
because as with incremental batch learning, the rules need not be learned again on
each iteration.

Not unexpectedly, as with single subsets, sequential multi-subset techniques may
degrade classification accuracy as compared to learning from the entire data set at
once. On the other hand, especially with model-guided instance selection, these
techniques also may increase accuracy.

All of these approaches incrementally process instance subsets. Similarly, feature
subsets can be processed iteratively. Sequential feature selection is not new, and is
common in statistical treatments of classifier formation (Devijver and Kittler 1982).
Two common methods are sequential forward selection and sequential backward
elimination. However, as noted above, this work typically addresses increasing
accuracy, rather than scaling up. Sequential backward elimination provides a simple
illustration of the difference: the first iteration runs the inductive algorithm with
all the features. However, techniques like sequential forward selection are useful
either for increasing accuracy or for scaling up.

Wrapper approaches (Kohavi 1996; Kohavi and John 1997; Provost 1992; Provost
and Buchanan 1995) are notable because they unify iterative example selection and
iterative feature selection (and other iterative approaches). As mentioned above,
wrapper approaches run an underlying inductive algorithm within different con-
texts, in an attempt to maximize some criteria. Wrapper approaches for feature
selection fit well into the framework for data partitioning depicted in Figure 5; se-
lection procedures select columns instead of rows. Kohavi and John (1997) use a
wrapper to implement forward selection and backward elimination in order to max-
imize accuracy. In order to scale up past the limits of their computational platform,
Provost and Buchanan (1995) implement various ad hoc feature selection strategies
in the same programmable wrapper used to implement incremental batch learning.

Sequential feature selection techniques fall into the same two categories as sequen-
tial instance selection techniques. Specifically, as in Figure 6, some approaches, such
as sequential forward selection, use C; to influence the selection of S; 1, in this case
selecting columns instead of rows. Alternatively, as in Figure 7, other approaches
use C; in the construction of C;y;. For example, combining class descriptions
learned with different feature subsets has been found to be effective (Provost and
Buchanan 1995).

6.2.4. Process Subsets Concurrently To further increase efficiency, partitioned-
data approaches can be parallelized by distributing the subsets to multiple pro-
cessors, learning concept descriptions in parallel, and then combining them. We
differentiate this approach from parallel matching (described above) by the degree



SCALING UP INDUCTIVE ALGORITHMS 23

of autonomy afforded the individual learners. Rather than simply parallelizing a
subprocedure of an existing algorithm, and returning results to the master, these
techniques are loosely coupled collections of otherwise independent algorithms. Re-
cently this type of algorithm has been called “distributed data mining,” and was
the subject of a KDD-98 workshop (Kargupta and Chan 1998).

Concurrency precludes partitioned-data approaches where a prior concept de-
scription is needed as input to a subsequent learning stage, such as incremental
batch learning. However, for independent multi-subset approaches, as shown in
Figure 5, the C; can be learned concurrently (even with different learning algo-
rithms). Combining the C; can take place as a sequential post-process, or can be
parallelized (as by Kufrin (1997)). Hall et al. (1998) discuss this approach for
learning decision trees. Similar to a distributed version of the approach of Fayyad
et al. (1993), their system learns trees independently from partitioned data, and
the trees are converted to rules. The rule sets are merged following the method
described by Williams (1990), which resolves conflicts among similar rules.

Chan and Stolfo (1993) (1997) take a concurrent approach in which the L; can
be different learning algorithms, as well as separate instantiations of the same algo-
rithm. They take an independent multi-subset approach with a key difference from
the other methods: their method forms Cy as a hybrid of the C;. Specifically, in
the combining stage, instead of constructing Cy from selected pieces of the C}, their
approach saves the C; whole, and combines the predictions using a multiple-model
approach (Ali and Pazzani 1996). Domingos (1996a) also experiments with this
type of combining for incremental batch learning, finding it superior to taking a
simple union of the rule sets learned from the many batches.

A potential problem with creating a multiple-model hybrid is the resulting loss
of comprehensibility. Prodromidis and Stolfo (1998) study several methods for
evaluating, composing and pruning hybrid classifiers that reduce their size while
preserving or even improving their predictive performance. A quite different ap-
proach to creating comprehensible classifiers from ensembles is taken by Craven
(1996), by Domingos (1997), and by Guo and Sutiwaraphun (1998). These au-
thors use machine-learning algorithms to induce understandable models of complex
learned classification systems (Craven 1996). Specifically, they use the predictions
of the ensemble as training labels, and learn from them a decision tree that models
the hybrid’s performance (with comparable accuracy). The resultant single tree is
more understandable than the multiple-model hybrid.

Shasha and his research group have implemented PC4.5 (Li 1998; Shasha 1998),
a parallel version of C4.5 (Quinlan 1993), which uses a different instantiation of the
framework of Figure 5. Specifically, the selection procedure is a random partitioning
of the data. Each C; is a decision tree learned from a different subset of examples.
The combining procedure evaluates each C; on a subset of examples (disjoint from
Si), and chooses the one with the best accuracy as the final concept description.

With these partitioned-data techniques, accuracy may be degraded as compared
to running a single inductive algorithm with all the data. This may be avoided if
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the group of learners cooperates to obtain a global view of the problem, as depicted
in Figure 8. The key is that the learners cooperate by sharing modules of knowledge
(e.g., individual rules) that look good locally. The other learners evaluate the shared
knowledge on their local data, returning or broadcasting the statistics. Provost and
Hennessy (1994, 1996) take this approach for MetaDENDRAL-style rule learning,
and show that it is guaranteed that each rule is considered acceptable globally if and
only if it would be considered acceptable to a monolithic learner using the entire
data set. Specifically, no matter how the data are partitioned, every acceptable rule
will have acceptable statistics on at least one subset. Thus, over all subsets, all of
the acceptable rules will be generated. The cooperation takes the form of requests
(from the other learning algorithms or from a server with the entire database) for
verification of statistics regarding the best discovered rules, which narrows the set
of rules to only those acceptable globally. The combining procedure simply can
take the union of the C;. Because the cooperation requests are limited to rules
that appear good to at least one learning program, interprocess communication is
minimal. Thus, this approach has been successful scaling up to very large data sets.
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A sequential version of this cooperative approach is the basis for Partition (Savasere,
Omiecinski, and Navathe 1995), called one of the most efficient association-rule al-
gorithms in terms of database operations (Toivonen 1996). Similarly, for scaling
up a scientific discovery system, Galal, Cook and Holder (1999) found the con-
current/cooperative approach to be the best (among the various techniques they
studied). They partition the problem and then share the best discoveries, which
are then evaluated by all the processors to obtain a global perspective.

We know of no work addressing the distributed processing of feature subsets for
building decision trees or rule sets, although preliminary results suggest promise for
this line of inquiry. Consider a concurrent version of an independent multi-subset
approach, such as that shown in Figure 7, in which many different feature subsets
are selected (rather than example subsets), and the concept descriptions are sub-
sequently combined. Results from sequential processing of feature subsets suggest
that if the class description language is modular, such that useful modules (e.g.,
rules) can be selected from many different class descriptions, then it is possible to
create an accurate class description without ever running the learner with a suitable
subset of features (Provost and Buchanan 1995). Kargupta et al. (1998) consider
distributed processing of feature subsets for a basis-function concept representa-
tion. We now turn to the third general approach to scaling up: using a relational
representation.

6.3. Relational representations

Most existing inductive learning programs were not designed to handle very large
data sets. In particular, the majority were designed under the assumption that the
data set would be represented as a single, memory-resident table. Unfortunately,
producing flat files from real-world, multitable, relational databases is fraught with
problems. The flattening-out process can be quite time consuming, substantial
storage space is needed, and keeping the flat files around leads to the problems
that relational databases are designed to avoid (e.g., update and delete anomalies).
Indeed, flattening may create, from otherwise manageable databases, data sets
that can no longer fit in main memory. As an example, consider a database with
only three tables: a customer table containing one million customers with twenty
fields, including address and product preference; a state table containing fifty states
with eighty fields of information on each state; and a product table containing ten
products with four hundred fields of information on each product. Furthermore,
let us assume that the average size of a field is five bytes. Even in this vastly
oversimplified example, flattening out a 100Mbyte database results in a 2.5Gbyte
flat file.® Flattening often demands choosing a subset of all the attributes that
could be used to describe the data, which places an inflexible restriction on the
unexpected discoveries that a KDD system may make.

In summary, since mining smaller data sets is typically faster, especially when
they can fit in main memory, the ability of relational representations to compress
data is critical. Furthermore, flattening extremely large data sets simply is not
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Figure 9. Methods using relational representations

feasible. In either case, we need to be able to mine relationally represented data,
efficiently.

We now describe how relationally represented data can be mined directly, which
scales up either because the representation is more efficient, or because the data
are stored on a fast database machine.® We have divided the collection of methods
in two, as depicted in Figure 9. First, we discuss the general issue of mining
relationally represented data—regardless of how they are stored. Then we discuss
mining when even the compact, relationally represented data set does not fit in main
memory. In the latter case, integrating data mining with database management
systems (DBMSs) is key. We treat data mining/DBMS integration as a separate
approach because a unique set of issues applies. Finally, we close this section with
a discussion of mining distributed databases, noting that not only does it combine
two orthogonal scaling techniques, it also may be necessary because of issues such
as privacy.

6.3.1. Mining relational data  We have argued for the storage efficiencies afforded
by relational representations, but what about mining the data once they are rep-
resented relationally? A simple form of relational data data with hierarchical,
or tree-structured, attributes (Almuallim, Akiba, and Kaneda 1995) has received
relatively much attention in the literature on inductive learning. The data com-
pression afforded with tree-structured attributes can be substantial, especially with
tall trees.

For example, consider geographic hierarchies ranging from fine-grained descriptors
(e.g., zipcode) up to coarse-grained (e.g., country). A data miner working exclu-
sively with flat files must either include attributes for all possible granularities, or by
choosing a subset limit the possible resultant discoveries. By using tree-structured
attributes, the data miner can represent the hierarchy of values separately, thereby
maintaining an economical representation of the data set. For example, if each
instance contains a specific location, this location can be used to index into the
hierarchy. Usually, instances contain the finest granularity and the hierarchy can
be used to draw more general comparisons. Efficient mining with tree-structured
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attributes is treated in depth by Allmuallim et al. (1995) and improvements are
described by Aronis and Provost (1997).

Tree-structured attributes allow the representation of a simple relation, the isa
relation, between attribute-value pairs. Each such relation can be seen as a separate
table in a relational database, for example a state/county table or a county /zipcode
table. Expanding data mining to general multitable relational databases is an ob-
vious next step, which has been advocated recently in inductive learning research
circles (Aronis, Kolluri, Provost, and Buchanan 1997) (Kohavi 1998). The ability
to handle multitable databases not only allows practitioners to compress otherwise
unwieldy flat tables, it also creates possibilities for augmenting learning systems
with more and more related knowledge. For each field of a learning problem, prac-
titioners can consider whether there exist additional tables of knowledge describing
that field.”

It should be noted that selecting just the right auxiliary databases/knowledge
bases begs the very question of data mining, because it requires identifying which
databases contain relevant and useful knowledge. One can envision augmenting
many fields with related tables, and within the new data, augmenting additional
fields with related tables, and so on. Therefore, from a scaling up perspective,
it becomes necessary to be able to learn in the context of massive amounts of
background knowledge,® creating the need for even higher degrees of scaling in
data mining systems.

This view unifies learning from relational databases with learning with large
amounts of background knowledge. Parallel marker-passing techniques can be used
to aid in augmenting inductive learners with large networks of relational back-
ground knowledge (Aronis and Provost 1994). In the work of Aronis and Provost,
the relational knowledge is used to construct new terms, which are then added to
the propositional concept description language.

The field of Inductive Logic Programming (ILP) (Muggleton 1992) concentrates
on mining data and knowledge expressed in a relational format. However, ILP
addresses a harder problem than the type of mining we are considering. Specifi-
cally, not only are the data represented relationally, the results of the mining also
may be represented relationally. Because learning relational descriptions is harder
than learning propositional ones, relational algorithms are considerably slower than
propositional ones, and the scaling problem is correspondingly harder.

However, Blockeel, De Raedt, Jacobs, and Demoen (1999) observe that “the full
power of standard ILP is not used for most practical applications.” Therefore, a
general approach to speeding up learning with relational data is to avoid expensive
but little-used constructs. Aronis et al. (1996) investigate induction from feature-
vector-based data items linked to relational background knowledge. For the sake
of efficiency, they purposely avoid n-ary and recursive relational terms. Blockeel et
al. (1999) study an efficient subset of ILP known as learning from interpretations.
In particular, they study scaling up first-order logical decision trees (FOLDTS),
which are more expressive than propositional decision trees, but also avoid the
most expensive ILP constructs. Of particular note, FOLDTs allow mining data
expressed as multitable relational databases. As part of their study, Blockeel et al.
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consider the application of techniques from SLIQ (Mehta, Agrawal, and Rissanen
1996) to scale up learning FOLDTs to massive data sets. Their results are en-
couraging: FOLDTSs can be learned with run-time complexity linear in the number
of examples, and very large data sets can be mined efficiently (efficiently relative
to other ILP techniques several non-trivial tasks with approximately 100,000 ex-
amples (100Mbytes) each were processed in about a day of CPU time on a Sun
workstation). In another scalable-ILP project, Brockhausen and Morik (1996) de-
scribe the integration of an ILP algorithm to a DBMS, facilitating efficient learning
directly from DBMS-resident data—which is the subject of the next section.

6.3.2. Data mining/DBMS integration For many applications, data are already
stored in an efficient relational representation—a multitable relational database,
most easily accessible via a commercial database management system (DBMS).
Although many data mining systems access data stored in a commercial DBMS,
most of these do not actually mine the relational data directly. Rather, they extract
the data from the DBMS into a memory-resident flat file, thereby not realizing the
benefits of efficient storage discussed in the previous subsection. Such approaches
only take advantage of the DBMS'’s efficient data retrieval.

Relational data, stored in a commercial DBMS, can be mined directly by imple-
menting the core data manipulation operations within the DBMS. As discussed in
Section 6.1, the speed of inductive programs often is determined primarily by the
speed of the matching or the gathering of sufficient statistics. If these operations
can be cast as SQL requests for statistics (Agrawal and Shim 1995) (Agrawal and
Shim 1996), a data mining program can avoid massive data uploads and problems
due to main memory restrictions, and can take advantage of fast database machines
optimized for query processing. In their proposal for the SQL Interface Protocol,
John and Lent (1997) discuss how the basic operations for various types of data
mining programs can be cast as SQL queries.

Graefe, Fayyad and Chaudhuri (1998) show that a straightforward implementa-
tion for deriving sufficient statistics from SQL databases (using SELECT and UNION
operators) results in unacceptably poor performance. This poor performance stems
from the manner in which the database system will implement the query; specifi-
cally, most database systems will implement a UNION query by performing a sep-
arate scan for each clause in the UNION. However, for deriving sufficient statistics
the UNIONs will be very similar. The authors propose to take advantage of this
similarity by extending SQL to include a new operator (UNPIVOT), which minimizes
the number of scans required to produce the sufficient statistics.

Figure 10 shows a schematic view of a system integrating data mining with a
DBMS. The DBMiner data mining system (Han, Fu, Wang, Chiang, Gong, Kop-
erski, Li, Lu, Rajan, Stefanovic, Xia, and Zaiane 1996) is a prototypical example
of such an integrated data mining/DBMS system. Data Surveyor (Holsheimer,
Kersten, and Siebes 1996) and SKICAT (Fayyad, Weir, and Djorgovski 1993) also
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Figure 10. Data mining/DBMS integration

make use of the data mining/DBMS integration approach to achieve competitive
performance on large data sets.

Sarawagi et al. (1998) discuss several alternatives for data mining/DBMS inte-
gration. Their focus is on mining association rules, but they illustrate principles
that apply more generally. In particular, they point to several efforts to extend SQL
to support mining operations, and discuss expressing mining algorithms in SQL.
The following paragraphs parallel their high-level discussion; their paper gives more
details on specific approaches.

As noted above, the most common use of a DBMS for data mining is as a simple
source of records. If the DBMS and the data mining program are coupled too
loosely, the cost of switching contexts between programs may become prohibitive.
This is true especially if records are read individually. Block transfers make more
sense.

A more tightly coupled approach pushes parts of the application program that
perform intensive computations on the retrieved set of records into the database
system, instead of bringing the records of the database into the application pro-
gram. One method is to encapsulate the mining algorithm as a stored procedure.
This approach allows the programs to share one address space, with the corre-
sponding efficiencies, while maintaining programming flexibility. A hybrid of these
approaches is to read the data once from the database into a temporary local cache,
perhaps transforming it to a more efficient format. The drawback of the caching
approach is the need for additional storage space.

A somewhat different approach is to represent the individual data mining oper-
ations as user-defined functions, rather than as stored procedures, placed in SQL
data scan queries (which also will run in the DBMS address space) (Agrawal and
Shim 1995) (Agrawal and Shim 1996). Such an approach promises to be faster,
because passing records to a user-defined function is faster than passing them to
a stored procedure. The disadvantage is the cost of rewriting entire mining algo-
rithms as user-defined functions. Sarawagi et al. also consider the more general
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case where a preprocessor translates data mining operations into the appropriate
form for a particular environment.

Integrating data mining with the DBMS takes advantage of the storage efficiencies
of relational representations, of the existence of indices, and of the fact that DBMSs
typically reside on powerful platforms that are optimized for database operations.
As described in Section 6.1.4, scaling can be extended further by making use of
parallel database server technology to speed up data-intensive SQL operations. In
one implementation, Freitas and Lavington (1996) achieved an order of magnitude
speedup over a workstation of the same DBMS technology by making use of a
back-end 12-processor SQL server. Data Surveyor (Holsheimer, Kersten, and Siebes
1996) also uses a parallel database engine.

Finally, the fact that data already reside in a DBMS is not the only reason to
consider integrating data mining. There may be advantages to using a DBMS for
other complex representations of knowledge. When faced with complex relational
representations, one of the scaling problems realistic applications must address is
that existing knowledge representation systems do not provide high-speed access to
large, complex knowledge bases (Karp and Paley 1995). Karp, Paley and Greenberg
show that one can employ a DBMS effectively as the storage subsystem for large,
frame-based knowledge representations (Karp, Paley, and Greenberg 1994) (Karp
and Paley 1995). Andersen, Hendler, Evett and Kettler also describe knowledge
representation tools that scale to massive knowledge bases (Andersen, Hendler,
Evett, and Kettler 1994) (Evett 1994). Although initially most of the efficiency
gains they realized were due to massive parallelism, they too have made increas-
ing use of DBMSs to achieve increased efficiency (while still allowing for effective
parallelization). Specifically, they use DBMS techniques to support matching, in-
ference and data management. Advances such as these in the efficient handling of
large-scale knowledge bases should facilitate future efforts to mine them or to use
them to augment data mining.

6.5.3. Distributed databases Enabling inductive programs to learn from multi-
table relational databases makes available to data mining the vast amount of data
and background knowledge distributed across a local network, or scattered about
the Internet. For example, companies are interested in mining federations of similar
data (Stolfo, Fan, Lee, Prodromidis, and Chan 1997), and digital library research
is working to facilitate access to networked data and information (Fox, Akscyn,
Furuta, and Legsett 1995). Along with the desire to take advantage of these col-
lections comes the need to scale up to massive amounts of distributed data and
background information. This scaling problem manifests all the issues discussed so
far in this survey, plus some additional constraints and opportunities.

Not only do distributed data provide the opportunity for concurrent mining of
different subsets, similar to the more straightforward uses of parallelism and data
partitioning, distributed data may require distributed mining. Combining already
distributed databases may be out of the question for a variety of reasons. They may
simply be too big to combine on a local system. The bandwidth of the communica-
tions channel may make combining databases infeasible, because it would take too
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long to download the data. Finally, privacy issues may prevent unrestricted access
to the data. For any of these reasons, a database of interest may be accessible over
the network, but transferring it may not be feasible.

Mining distributed databases requires a system that can operate on many separate
data partitions. The information that can be transferred is limited by bandwidth
and other (e.g., privacy) restrictions. For data sets where rows or columns are dis-
tributed, the methods discussed in Section 6.2.4 are for the most part appropriate.
Stolfo et al. present their approach and an implemented system, and discuss how
privacy concerns restrict the federation of banking data (Stolfo, Fan, Lee, Prodro-
midis, and Chan 1997) (Stolfo, Prodromidis, Tselepis, Fan, Lee, and Chan 1997).

In an alternative distributed data mining scenario, different database tables are
spread about the network. Consider our simplistic multitable example above, which
had three tables: customer information, geographic information, product informa-
tion. In many real-world situations, different tables such as these would not reside
on the same machine. Currently, much of the practical work of data mining com-
prises locating relevant tables in different databases, and transferring them (or
carefully selected subsets) to the data mining platform. If network access were
provided to these data, through SQL servers or tailored data-mining servers, an
inductive algorithm could query the remote databases as necessary during data
mining.

Ribeiro, Kaufman and Kersberg (1995) describe a method for performing knowl-
edge discovery across multiple databases by using foreign-key values to augment
tables. Specifically, they propose tracing through multiple databases following the
foreign-keys, and learning individual knowledge segments for each database. The
WoRLD system (Aronis, Kolluri, Provost, and Buchanan 1997) learns across mul-
tiple distributed databases spread across the network, using spreading activation
techniques. These require only limited communication to pass sets of markers (im-
plemented with SQL queries).

7. Discussion

By looking systematically at the body of work on scaling up inductive methods, it
is clear that several areas have received relatively deep treatment. We first remark
on what this work suggests you do when faced with mining a huge data set. Then
we discuss where more research can provide the most help, from perspectives of
statistics, databases, and machine learning.

7.1.  What should you do with a huge data set?

When a large data set can fit in main memory, restricted model space learners
should be tried first, because they often are effective at building competitive classi-
fiers quickly. If the resulting simple classifiers are not satisfactory, there are several
fast, effective algorithms for data sets that can fit in main memory. Extending this
concept, one direction that has been suggested is to build algorithms that use a
simplicity-first strategy in their search for classifiers (Holte 1993) (Provost 1993). It
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is not yet clear how much leverage can be obtained through the use of simple classi-
fiers to guide subsequent search to address specific deficiencies in their performance
(Holte 1993).

So, what if a data set of interest does not fit in main memory? Or, what if
the data set does fit in a machine’s huge main memory, but mining it there just
is not efficient enough? Although research on induction when the data set is too
large to fit in main memory is not nearly as comprehensive, several techniques are
clear choices when they apply. But first, we should revisit briefly the need, or lack
thereof, to mine the entire data set.

For most data mining problems, the benefit of increasing the size of the data set
decreases as the data set size grows, yielding the familiar concave-down learning
curve. Eventually, the increase in the quality of the results becomes negligible (or
simply zero). For a given problem, how can you determine where the learning
curve will plateau? For most algorithms, calculating precisely, a priori, a tight
bound on the size of the required data set is difficult. Computational learning
theory does provide upper bounds, for many concept classes for a particular kind
of learning, which should not be ignored. However, it may be that for a particular
learning algorithm these bounds are weak and many fewer instances are actually
needed. Of course, theoretical calculations are not the only method. Considering
that the run-time complexity of inductive algorithms is at best linear in the number
of examples, and often worse, relatively inexpensive experiments can be conducted
on small samples in order to estimate the number of examples that are actually
needed (John and Langley 1996; Frey and Fisher 1999; Provost, Jensen, and Oates
1999). In cases where the number of examples needed is much smaller than the
number available, such procedures can provide substantial practical speedups.

Subsets of the examples should be sampled, using stratified sampling when one
class dominates strongly. Subsets of the features should also be selected, by do-
ing empirical studies to determine relevance.” Once a practitioner has chosen a
good subset of examples, a good subset of features, and an algorithm with an effi-
cient data representation, there may not be a significant increase in accuracy when
learning with more data than will fit in main memory—especially with a modern
computer with memory slots filled to capacity.

Once such straightforward methods have been exhausted, the best approach de-
pends on the resources available. Massively parallel matching is an obvious choice
for increased scaling, if access to a massively parallel machine and specialized pro-
gramming talent are available. However, one should carefully examine the tradeoffs
between matching and gathering sufficient statistics. Taking advantage of powerful,
well-tuned database systems, via data mining/DBMS integration, is a good idea
if cycles on the database engine are readily available, but such an approach may
require a significant investment and is appropriate mostly for long-term plans to
mine a set of data. Also, the loss of flexibility in choosing and modifying inductive
methods cannot be ignored, since problem engineering is such a large portion of
the overall KDD process. Specialized programming talent usually is required.

Independent multi-subset learning shows promise for scaling up and retaining
the flexibility of desktop data mining. The ability to process the subsets concur-
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rently offers to take advantage of the large number of idle workstations that are
already networked in most institutions. Unfortunately, once again there is cur-
rently a dearth of available technology to facilitate such learning, so specialized
programming talent is still required. A notable exception is the JAM (Java Agents
for Meta-learning) software, downloadable from Stolfo’s web site (Stolfo 1998).

7.2.  Where will more research most help?

As with most issues in data mining, even when problem and environmental char-
acteristics dictate a general approach, there is little guidance for choice among the
various constituent methods. For each approach, several methods have been stud-
ied in isolation, but there exist few (if any) studies comparing their relative merits.
For example, for partitioned-data approaches, research has only just reached the
border between the proof-of-concept stage and the comparative-evaluation stage.
More theoretical and empirical research is needed before we can claim a thorough
understanding.

What is most needed is a better treatment of sampling. The KDD community,
including researchers from all the different perspectives, should achieve a common
understanding of when and how sampling should be used, and should build artifacts
enabling it. For example, what are the effects of stratified sampling on predictive
performance on the original distribution? (See the recent work of Chan and Stolfo
(1998).) Is it time to revive the concept of the “near miss” as a way to choose data
subsets intelligently, once a tentative classifier has been built? Let us consider what
can be contributed from the three most commonly cited KDD component fields:
(1) statistics, (2) databases, and (3) machine learning.

(1) Statistics has a long and rich history of theoretical work on sampling. Al-
though traditionally it has focused on small samples and on hypothesis verification,
it may be applicable to computer-driven discovery either directly or when tailored
to the current context. KDD should embrace efforts by statisticians, based either
on new or past research, to provide a common theoretical understanding of the
issue.

(2) Most discussions of sampling assume that producing random samples effi-
ciently from large data sets is not difficult. For most large databases this simply is
not true. To produce a random sample from even a single-table database may re-
quire scanning the entire table. A naive implementation may be much worse. This
has obvious implications for claims of algorithm efficiency with sampling; for exam-
ple, the asymptotic run-time complexity will be at least linear in the total number
of instances. Along with a better understanding of sampling must come database
operations and organizations that allow for efficient sampling (Fayyad 1997).

(3) Remarkable advances have been made in learning effectively from large num-
bers of examples, and (separately) in learning effectively when there are large num-
bers of features. However, the data mining problems most in need of scaling are
those with massive numbers of both. Main-memory learning algorithms are fast and
effective enough that a good deal of experimentation is possible, and this type of
experimentation can be automated to a large degree (Moore and Lee 1994) (Provost
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and Buchanan 1995) (Kohavi and John 1997). Indeed, some existing algorithms
may provide strong baselines against which new approaches can be compared. For
example, the well-known algorithm winNow (Littlestone 1988) is not only effective
at detecting irrelevant features, it is also incremental; it should be straightforward
to augment the algorithm to reduce the number of features automatically as the
number of examples grows (thus keeping the total size of the data set small).

Another area in need of research effort is mining large multitable relational
databases/databases linked to relational background knowledge. Such research
would have broad implications, affecting the development of data mining/DBMS
integrated systems, algorithms for learning in main memory, and partitioned-data
approaches. Given the storage economies possible with relational representations,
their use promises that much larger data sets can be processed in main memory
than with flat file representations. Furthermore, the ability to mine distributed,
structured data and knowledge efficiently will dovetail nicely with current efforts
to make available vast amounts of metadata-indexed information (Fox, Akscyn,
Furuta, and Legsett 1995), bringing into view new research horizons.

8. Conclusion

We have reached some conclusions after reading and organizing more than a hun-
dred papers on scaling up inductive algorithms. Much work has been done, and
the establishment of KDD as an coherent field of study seemingly has accelerated
the production of relevant results.

Because of the interdisciplinary nature of the field, often research is undertaken
without the benefit of insights from substantially similar work that has taken place
either in another subfield, or that has taken place as a necessary peripheral task in a
research effort with a different focus. We found striking similarities between efforts
that, as far as we can determine, were completely independent. This is not unex-
pected, and is in fact encouraging: often when “the time comes,” fundamentally
identical technical advances are made simultaneously by independent groups. We
hope that this survey helps to establish common ground from which future efforts
can reach even higher.

The design of fast algorithms stands out as a clear example of effective incre-
mental research: there are clear chains of advances in fast rule learning and in
fast decision-tree learning. Research on partitioned-data approaches and on min-
ing relationally represented data is less mature, consisting mainly of independent
work, but there are striking commonalities among the existing approaches. We
believe these areas are ready for more emphasis on comparative research, followed
by (hopefully significant) incremental advances.

The most glaring gaps in the literature are the lack of a common understanding of
the power (or impotence) of sampling for data mining, and the dearth of convincing
examples of the need to mine massive data sets.
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Notes

1. A version of this paper was available as a technical report on the web (Provost and Kolluri
1997b) and an overview appears in the proceedings of KDD-97 (Provost and Kolluri 1997a).

2. One study of large data sets shows a polynomial estimation of C4.5’s run-time complexity to
fall between O(e2) and O(e!*4) (Provost, Jensen, and Oates 1999).

3. These run times are given for illustration only. No comparison should be inferred.

4. In fact, the experiments of Harris-Jones and Haines were conducted on a dual-processor
133MHz Compaq computer with 256 M RAM running Windows NT. The run time for C5
on 283,649 examples was fifty minutes (fifteen minutes for 99,303 examples).

5. Before flattening, the customer table requires 1,000,000 customers * 20 fields/customer *
5 bytes/field = 100,000,000 bytes, the state table requires 50 states * 80 fields/state * 5
bytes/field = 20,000 bytes, and the product table requires 50 products * 400 fields/product *
5 bytes/field = 100,000 bytes, for a pre-flattening total size of 100,120,000 bytes. To flatten,
the appropriate state and product information is spliced into each customer record, yielding a
new customer record comprising 498 fields. For the same one million customers, the new space
requirement is 1,000,000 customers * 498 fields/customer * 5 bytes/field = 2.49 * 10° bytes.

6. It should be noted that even with a fast database machine, mining database-resident data
directly is often considerably slower than flat-file mining (Musick 1998).

7. To justify calling linked tables “knowledge,” recall the direct correspondence between relational
databases and knowledge representation structures (Hayes 1979).

8. Gaines (1989) analyzed the extent that prior knowledge reduces the amount of data needed for
effective learning.

9. Remember that the size of the example set is a product of the number of examples and the
number of features. Halving the number of features by eliminating irrelevant ones not only
may increase the accuracy by itself, it also will allow one to double the number of examples
occupying a fixed space.
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