
From the Proceedings of the 1996 ACM SIGMOD Inter. Conf. on Management of Data, Montreal, Canada, June 3{6, 1996Semi-automatic, Self-adaptive Control ofGarbage Collection Rates in Object DatabasesJonathan E. CookUniversity of Coloradojcook@cs.colorado.edu Artur W. KlauserUniversity of Coloradoklauser@cs.colorado.edu Alexander L. WolfUniversity of Coloradoalw@cs.colorado.eduBenjamin G. ZornUniversity of Coloradozorn@cs.colorado.eduAbstractA fundamental problem in automating object databasestorage reclamation is determining how often to performgarbage collection. We show that the choice of collection ratecan have a signi�cant impact on application performanceand that the \best" rate depends on the dynamic behaviorof the application, tempered by the particular performancegoals of the user. We describe two semi-automatic, self-adaptive policies for controlling collection rate that wehave developed to address the problem. Using trace-driven simulations, we evaluate the performance of thepolicies on a test database application that demonstratestwo distinct reclustering behaviors. Our results show thatthe policies are e�ective at achieving user-speci�ed levelsof I/O operations and database garbage percentage. Wealso investigate the sensitivity of the policies over a rangeof object connectivities. The evaluation demonstrates thatsemi-automatic, self-adaptive policies are a practical meansfor 
exibly controlling garbage collection rate.1 IntroductionAutomatic storage reclamation, or garbage collection(GC), is becoming recognized as an important newfeature for object database management systems(ODBMSs). A number of recent research papers haveconsidered some of the important aspects of the cor-rectness and performance of ODBMS garbage collec-tion [AFG95, CWZ94, KLW89, KW93, YNY94]. A re-cently proposed standard suggests using garbage col-lection for at least some of the programmatic inter-faces to an ODBMS [Cat93]. Commercial ODBMSsare now providing implementations of garbage collec-tion (e.g., [Cor94]).This work was supported in part by the National ScienceFoundation under grant IRI-95-21046. A. Klauser was supportedby a BMfWF/Fulbright Graduate Fellowship.Permission to make digital/hard copy of part or all of this work forpersonal or classroom use is granted without fee provided that copiesare not made or distributed for pro�t or commercial advantage, thecopyright notice, the title of the publication and its date appear, andnotice is given that copying is by permission of ACM, Inc. To copyotherwise, to republish, to post on servers, or to redistribute to lists,requires prior speci�c permission and/or a fee.SIGMOD '96 6/96 Montreal, Canadac
 1996 ACM 0-89791-794-4/96/0006:: :$3.50

In a previous paper [CWZ94] we presented a frame-work for investigating the issues surrounding parti-tioned garbage collection of ODBMSs. Partitioned col-lection is an incremental technique based on manipu-lating disjoint portions of a database [YNY94] and isakin to generational collection in programming languagesystems [Wil92]. We categorized the issues into a num-ber of policy areas that together contribute to a com-plete garbage collection algorithm. We described theresults of our investigation in one policy area, partitionselection, which is the selection of which partition of adatabase to collect during a given garbage collection.In that paper we introduced a new partition selectionpolicy, called UpdatedPointer.In this paper we investigate another critical policyarea of partitioned garbage collection algorithms, thatof determining how often to perform garbage collection.We refer to this policy area as the collection rate.Intuitively, we can understand how collection rateimpacts both I/O performance and database size. Ifgarbage collection occurs frequently, then the numberof I/O operations associated with reclamation willdominate the number of I/O operations associatedwith the application, but very little garbage will existin the database. Conversely, if collection occursinfrequently, then the impact of reclamation on I/Operformance will be small, but a signi�cant amountof garbage may accumulate in the database betweencollections, reducing storage e�ciency and possiblyincreasing access time. Thus, �nding an appropriatecollection rate is an exercise in determining a time/spacetradeo� between I/O and storage overheads.Figures 1a and 1b show the e�ect of varying thecollection rate on the I/O performance and on thetotal garbage collected in a test database. Speci�cdetails of the test database, an instance of the OO7benchmark [CDN93], are discussed in Section 3.3. The�gures highlight the time/space tradeo� of collectionrate policies. For example, it is clear that choosing acollection rate for this application of \50", measuredin pointer overwrites (i.e., modi�cations of pointersbetween objects) per collection, results in excessive377
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Garbage Collected(a) (b)Figure 1: Collection Rate versus I/O Operations (a) and Total Garbage Collected (b).numbers of I/O operations, while choosing a collectionrate of \800" pointer overwrites per collection results inlittle garbage being collected.1 So the question remains,what is a reasonable rate for collecting garbage?Unfortunately, this question depends on a numberof di�erent parameters and, as a result, is di�cultto answer in general. Foremost, there is the issue ofthe relative importance of I/O overhead versus storageoverhead. This issue is best decided by the ODBMSuser,2 which is tantamount to saying that the choiceof a collection rate achieving the desired optimizationis necessarily application dependent. Thus, it isinappropriate for the ODBMS implementor to preseta collection rate. On the other hand, in order forthe ODBMS user to determine a suitable collectionrate, they would need to understand the performanceof the application as a function of collection rate bygathering data similar to those of Figure 1. Of course,for any signi�cant database, such an exploration ofapplication performance is costly in execution time andin human e�ort. Moreover, the data would re
ect justthat single application, which may be in con
ict withother applications manipulating the same database.A reasonable conclusion, therefore, is that a mech-anism for controlling collection rate should be semi-automatic, in that the ODBMS, rather than the ODBMSimplementor or the ODBMS user, should set the rate.More than that, the mechanism should be self-adaptive,in that the collection rate can vary in response to thedynamic behavior of the applications manipulating thedatabase. Adaptiveness has two components: respon-siveness, which is the speed with which a mechanism1As we explain in Section 2, one meaningful measure ofcollection rate is in terms of the number of pointer overwritesper collection.2By \user" we mean the database administrator, the applica-tion developer, or the application user.

recognizes a change in behavior and reacts to thatchange, and accuracy, which is the degree to which themechanism correctly responds to the change. The roleof the ODBMS implementor and user should be to pro-vide the broad performance goals that implicitly guidethe ODBMS's semi-automatic, self-adaptive control ofthe collection rate.In this paper we describe and evaluate two newODBMS policies for determining appropriate collectionrates. The policies are given input from the ODBMSuser about the relative importance of I/O or storageresources and are adaptive to the dynamic behaviorof database applications. In particular, our policiesallow the user to specify a target percentage of I/Ooperations to be dedicated to garbage collection or atarget percentage of garbage to be allowed to existin the database. For example, if the speci�ed targetI/O percentage is 5%, then the collector automaticallyadjusts the collection rate to match the total number ofgarbage collection I/O operations to that percentage.As the mix of I/O operations changes, the collectionrate adjusts to maintain the target percentage.The policies we describe are intended to providean exact level of performance (e.g., garbage or I/Opercentage), under the assumption that the levelsde�ned by the user apply while the database is underan active workload. When, for example, the databaseis quiescent, it would be desirable to have the collectorrun beyond its user-stated limits. In the case of I/Ooperations, this means a higher percentage of I/O can begiven over to the collector in order to reduce the garbagein the database, while in the case of garbage percentage,this means the collector could attempt to reduce theamount of garbage below what was requested. Althoughwe do not explore this dimension here, our policies canbe extended to handle such situations.We present a performance evaluation of our two378



GenDB Reorg1 Reorg2Traversal1Figure 2: Phases of the OO7 Test Application.new collection rate policies that is based on trace-driven simulations of an application developed by Yong,Naughton, and Yu [YNY94] for the OO7 ODBMSbenchmark [CDN93]. The application consists of fourdistinct phases, each exhibiting behavior di�erent fromthe one that it precedes. Figure 2 illustrates the pro-gression of the phases, which we describe fully in Sec-tion 3. Our results show that the policies give excel-lent performance, accurately and responsively reactingto changes in application behavior. Furthermore, ourcollection rate policies add only little time and spaceoverhead. We also show that our results hold acrossdatabases with di�erent object connectivities.While there has been a signi�cant amount of researchin object database garbage collection [AFG95, Bj�o93,But87, CA86, CWZ94, KLW89, KW93, ML94, Mat85,YNY94], none of that previous work has investigatedthe issue of collection rate. For example, Yong,Naughton, and Yu propose a partitioned garbagecollection policy, but assume that collection is triggeredeither when free-space becomes unavailable or after a�xed amount of storage is allocated [YNY94]. Theirconcern in that work is in comparing partitionedgarbage collection against other approaches, and theychoose a collection rate policy drawn from the realmof programming languages. In contrast, our work isaimed at both quantifying the cost of poor collectionrate choices and proposing new policies for e�ectivelycontrolling the collection rate in object databases.There are a number of similarities between copyinggarbage collection [Che70] and on-line object reclus-tering. In particular, they both have the potential toimprove application performance by relocating objects,they both incur additional execution overhead that mustbe balanced against the performance bene�ts they pro-vide, and they both must �nd an appropriate rate atwhich to operate e�ectively. In recent work, for exam-ple, McIver and King [WJMK94] investigate the perfor-mance of an algorithm in which on-line reclustering istriggered when a measure of reference locality (the \ex-ternal tension") exceeds a certain threshold and when acluster analysis determines that reclustering might im-prove performance. The goal of their work is strictly toreduce the total number of application I/O operations.Our work is complicated by the additional (and some-times con
icting) goal of trying to reduce the amountof storage required by the database.Both reclustering and garbage collection can be

addressed via o�-line algorithms or \opportunistic" on-line algorithms that attempt to schedule large-scaledatabase reorganizations when there is little databaseactivity. Because many databases currently cannot betaken o�-line and seldom have periods of low activity, wefeel that investigating algorithms for on-line reclusteringand garbage collection remains very important.In Section 2 we present our new collection ratepolicies. Section 3 describes the experimental methodwe use to evaluate the policies and details the testdatabases and application we use in the evaluation.Section 4 presents the results of our experiments andSection 5 summarizes our �ndings.2 Collection Rate PoliciesIn order to reclaim the most garbage, we need to iden-tify what events occur that indicate when garbage iscreated. In programming language GC algorithms, ob-ject allocation and garbage creation are often assumedto be correlated. As a result, a heuristic of collecting af-ter allocating a �xed number of bytes is sometimes used.However, allocation and garbage creation are not alwayscorrelated in object databases. Alternatively, we knowthat when pointers are overwritten, the objects are \lessconnected". Overwriting the �nal pointer to an objector group of objects actually does create garbage. Thus,we choose to use pointer-overwrite events as an indica-tor that garbage is being created in the database.2.1 Fixed Rate PoliciesA very simple collection rate policy is one that �xes therate of collection over all applications. Unfortunately, apolicy that chooses a �xed rate is destined to fail, as theamount of collection required will vary from databaseapplication to application, and any particular choice willnot be optimal for all applications.A more clever �xed-rate policy might attempt todetermine the collection rate based on applicationcharacteristics, such as connectivity, object size, andODBMS characteristics, such as partition size. Forexample, we know that the OO7 application we use hasan approximate average connectivity of four (i.e., eachobject has four pointers pointing to it), and that objectsize is 133 bytes on average. From this, we could inferthat every four pointer overwrites creates 133 bytes ofgarbage. If we assume that partitions are 96 kilobytesin size, then an obvious choice for collection rate wouldbe to collect every 2956 pointer overwrites|that is,when a partition's worth of garbage has been created.Unfortunately, this simple heuristic also fails miserably.The OO7 application actually creates garbage at a rateof one kilobyte per six pointer overwrites, or �ve timesmore garbage than the simple calculation would predict.There are two reasons why such simple heuristicsfail. First, some individual overwrites can detach large379



connected structures from the rest of the database andthe heuristic does not capture this possibility. Second, asingle overwrite may disconnect very large objects fromthe database, such as OO7 document nodes.Another failing of �xed-rate policies is that theycannot adapt to changes in the database behavior. TheOO7 application we use, for example, has two distinctreorganizations with very di�erent properties. As aresult, any �xed-rate policy used in this applicationwill fail to work e�ectively for one or the otherreorganization. We conclude that �xed-rate policies areunacceptable.The obvious alternative to a �xed-rate policy is apolicy that adjusts the collection rate automatically inan e�ort to achieve an optimal result. Unfortunately,because a time/space tradeo� is involved, there isno global \optimum" to achieve. As a result, wehave investigated two semi-automatic policies thatcontrol collection rate based on user preferences. The�rst policy attempts to limit garbage collector I/Ooperations and we call it the Semi-Automatic I/O(SAIO) policy. The second policy attempts to limitthe amount of garbage in the database, and we call itthe Semi-Automatic GArbage (SAGA) policy. Both ofthese policies are self-adaptive, that is, they adjust thecollection rate dynamically as the database applicationbehavior changes. We use methods from control theoryto develop the policies. To our knowledge, controltheory has not been previously applied to this problem.2.2 SAIO: An I/O Percentage PolicyUnder the SAIO policy, the database user indicateswhat fraction of I/O operations should be used toperform garbage collection. For example, if the userwants garbage collection to utilize approximately 10%of the total I/O operations, then the user would set theSAIO parameter (called SAIO Frac below) to 10%. Inthis policy, we use a count of I/O operations as a unitof time, because it corresponds exactly to the value thepolicy is trying to control.The count of I/O operations indicates a behavior ofthe system, not a state. This means that I/O operationcounts are always coupled with a measurement period,which we refer to as a history below. A naturaltime period in our application is the time between twosuccessive collections. We use integral numbers of thisbasic period to describe history in our formulation ofthe SAIO rate policy. To describe a history, we use thenotation xjba to indicate the history of x starting at aand ending at b. To express the history from the currentcollection to the next collection we use the intuitivenotational abbreviation �x � xjc+1c .In the formulation of the SAIO policy, we use thefollowing de�nitions.

SAIO Frac : : : requested collector I/O percentageAppIO : : : application I/O operationsGCIO : : : garbage collection I/O operationsc : : : current collectionchist : : : history size (number of collections)The goal of the SAIO policy is to determine the interval�AppIO after which the next garbage collection shouldoccur, such that the SAIO Frac constraint is met. Interms of I/O histories, this can be formulated as follows.GCIOjc+1c�chist+1 = GCIOjcc�chist+1 +�GCIOAppIOjc+1c�chist+1 = AppIOjcc�chist+1 +�AppIOGCIOjc+1c�chist+1 = AppIOjc+1c�chist+1 � SAIO FracGCIOjcc�chist+1 +�GCIO= (AppIOjcc�chist+1 +�AppIO) � SAIO Frac�AppIO = GCIO jcc�chist+1+�GCIOSAIO Frac � AppIOjcc�chist+1� GCIO jcc�chist+1+CurrGCIOSAIO Frac � AppIOjcc�chist+1where CurrGCIO � GCIOjcc�1. The approximation for�AppIO is achieved by making the assumption that�GCIO = CurrGCIO, which means successive garbagecollections incur approximately the same number of I/Ooperations.To implement this policy, the collector must be able todetermine the number of application and collection I/Ooperations. Additionally, the ODBMS must be able totrigger a garbage collection after the calculated numberof application I/O operations has occurred. SinceODBMSs typically perform I/O operations explicitly,this requirement does not pose a problem.2.3 SAGA: A Garbage Percentage PolicyUnder the SAGA policy, the database user indicateswhat fraction of the database should contain garbage.For example, if the user wants garbage to account forapproximately 5% of the total database size, then theuser would set the SAGA parameter (called SAGA Fracbelow) to 5%.In the formulation of the SAGA policy, we use thefollowing de�nitions.SAGA Frac : : : requested garbage percentageDBSize(t) : : : total database size by time tTotGarb(t) : : : total garbage generated by time tTotColl(t) : : : total garbage collected by time tActGarb(t) : : : actual database garbage by time t= TotGarb(t) � TotColl(t)TargetGarb(t) : : : target database garbage by time t= DBSize(t) � SAGA FracGarbDi�(t) : : : ActGarb(t) � TargetGarb(t)CurrColl : : : amount of garbage collected by thecurrent collection380



If CurrColl amount of garbage is collected at time t,the policy makes the assumption that approximatelythe same amount of garbage will be collected duringthe next collection. The policy also assumes that thedatabase size will not grow signi�cantly between t andt + �t. Thus, TargetGarb(t) � TargetGarb(t + �t).Solving for �t, we get the following.ActGarb(t+�t) = TotGarb(t+�t) � TotColl(t+�t)= TotGarb(t+�t) � (TotColl(t)+ CurrColl)TotGarb(t+�t) = TotGarb(t) + TotGarb0(t) � �tActGarb(t+�t) = TotGarb(t) + TotGarb0(t) � �t� (TotColl (t) + CurrColl)= ActGarb(t) + (TotGarb0(t) � �t)� CurrCollWith the assumption of insigni�cant database growthbetween successive collections, our goal is then thefollowing.ActGarb(t+�t) = TargetGarb(t+�t) � TargetGarb(t)We can then simplify and solve for �t.TargetGarb(t) = ActGarb(t) + (TotGarb0(t) � �t)� CurrCollCurrColl = (ActGarb(t) � TargetGarb(t))+ (TotGarb0(t) � �t)CurrColl = GarbDi�(t) + (TotGarb0(t) � �t)�t = (CurrColl�GarbDiff(t))TotGarb0(t)To implement this policy, the ODBMS must estimateTotGarb0(t), which is the slope of the TotGarb function.Thus, the collector must maintain some history infor-mation about previous estimates of the total garbage inorder to estimate how much garbage will occur in the fu-ture. We estimate TotGarb0(t) using a simple formula.Given a previous slope estimate, TotGarb0(tprev), a pre-vious pair of data points (tprev, TotGarb(tprev)), and acurrent set of data points (t, TotGarb(t)), we estimate:TotGarb0(t) = Weight � TotGarb0(tprev)= + (1�Weight)(TotGarb(t)�TotGarb(tprev))t�tprevwhere Weight is a controlling factor that bu�ers thepolicy from rapid changes in slope. We currently setWeight = 0.7. Also note that in practice, �t can becomevery large if TargetGarb0(t) approaches zero, or evennegative. As a result, we place a minimum (�tmin = 2)and maximum (�tmax = 1000) on the value of �t. We�nd that our policy works well in practice and that�tmin and �tmax are rarely utilized by the policies (e.g.,see Figure 7 in Section 4).

2.4 Garbage Estimation for the SAGA PolicyOne major di�erence between the SAIO policy and theSAGA policy is that the information needed to compute�t for SAGA is not readily available. In particular,ActGarb(t) cannot be determined without scanning theentire database. As a result, to implement the SAGApolicy practically, heuristics must be employed thatcan estimate the current amount of garbage in thedatabase. We have invented and investigated severalsuch heuristics, two of which we describe below. To helpevaluate them, we have implemented in our simulatora perfect garbage \estimator" that knows exactly howmuch garbage exists in the database.Garbage estimation can be split into two orthogonalcomponents.1. State. Describes the potential amount of garbagein each partition. Depending on the granularity,we di�erentiate between coarse and �ne grain statedescriptions. Coarse grain state (CGS) character-izes the database simply as the number of allocatedpartitions, whereas �ne grain state (FGS) character-izes the database in terms of the number of pointeroverwrites in each partition, which is based on theobservation that pointer overwrites highly correlatewith garbage creation. During a collection, the FGSvalue of one single partition changes from x to 0|that is, all potential garbage in this partition is re-claimed. During application operations, the FGSvalues of partitions are increased when pointers intothose partitions are overwritten.2. Behavior. Describes results of garbage collections.After each collection, a performance metric for thegarbage collector is calculated. This metric is calledthe current behavior (CB). To suppress excessivenoise on the behavior metric, it can be averagedover recent collections, thus introducing some formof history and deriving a history behavior (HB).In order to combine both state and behavior to thedesired metric of garbage amount, the state andbehavior metrics must match. From the above designspace, we derive the following heuristics.2.4.1 Coarse Grain State / Current BehaviorTo derive the amount of garbage in the system, thisheuristic combines CGS with a behavior metric that isexpressed as follows.C : : : bytes reclaimed in last collectionWith the number of partitions (CGS) expressed as p,this results in the following equation.ActGarb = C � p381



2.4.2 Fine Grain State / History BehaviorIn this heuristic, FGS is combined with a behaviormetric of bytes reclaimed per pointer overwrite. Weuse the following de�nitions.PO(p) : : : pointer overwrites of partition pGPPO : : : garbage per pointer overwriteGPPOh : : : garbage per pointer overwrite historyh : : : history factorWe use an exponential mean to derive the behaviorhistory from current behavior according to equationGPPOh = h �GPPOh + (1� h) �GPPOCombining state and history yields the �nal predictionequation. ActGarb = GPPOh � nXp=1PO(p)By varying h from 1.0 to 0.0, the heuristic changesfrom FGS/HB to FGS/CB. The FGS/HB heuristic isvery inexpensive to compute because all that is requiredto implement it is a single value to record the historyand counters to maintain a count of the number ofpointer overwrites to each partition (also necessary forthe UpdatedPointer partition selection policy).3 Evaluation MethodIn this section, we describe the method we use to evalu-ate the collection rate policies presented in the previoussection. In particular, we describe the complete garbagecollection algorithm into which the collection rate poli-cies are �t, discuss the simulation techniques used incomparing the policies, and detail the test database andapplication used to drive the experiments.3.1 Complete Garbage Collection AlgorithmThe collection rate policies form just a part of a com-plete garbage collection algorithm. The partitioned col-lection algorithm used in our experiments is describedin our previous paper [CWZ94], so we refer the reader tothat paper for details. Here we give just a brief reviewof the important aspects of that algorithm.We use a copying garbage collector [Che70] in whichobjects are relocated as a result of collection. Thisallows garbage collection to not only reclaim the spaceoccupied by garbage but also to compact the collectedpartition's live objects for improved reference locality.Copying is done in a breadth-�rst traversal from thepartition's roots. Copying is performed transitivelyfrom the roots until all objects are reached. Pointersleaving the collected partition are not traversed.In our work, we decouple the issue of when to grow thedatabase from the issue of when to collect. In particular,

if an allocation is requested and there is insu�cient freespace anywhere in the current set of partitions, a newpartition is simply added. Lack of free space nevercauses a garbage collection to occur, as is often donein programming language garbage collection.We chose the I/O bu�er size to be the same asthe size of the partitions. We did this because abu�er signi�cantly smaller than a partition may cause agarbage collector to perform an excessive number of I/Ooperations, while a much larger bu�er could overwhelmany improved reference locality that resulted from thecollections. In our experiments, the bu�er size was setto 12 8-kilobyte pages.3.2 Simulation EnvironmentOur simulation system mimics the physical and logicalstructure of the database implementation being mea-sured. Traces of database application events (e.g., ob-ject creations, accesses, modi�cations) are used to drivethe simulations; details appear in [CWZ93]. For thework described here, we use traces derived from theOO7 benchmark database [CDN93]. Details of the testdatabase are provided in Section 3.3.Because we are concerned with the relative perfor-mance of collection rate polices, we assume simplemech-anisms for concurrency control and recovery. In partic-ular, we make the simplifying assumptions that the en-tire database is locked while collection is performed, andthat logging for recovery is not supported. Clearly, moresophisticated mechanisms must be provided in actualimplementations; proposals for such mechanisms arediscussed elsewhere [AFG95, KLW89, KW93, YNY94].We evaluate the performance of the policies based onmultiple simulation runs that di�er only in the initialrandom number seed. In our results, we present themean of the values over time. Each simulation runexperiences a cold-start of the database. We do not,however, want to include the cold-start behavior inthe calculation of means. Therefore, we isolate thepreamble to the signi�cant part of a run, keeping thepreamble as short as possible by using exponentiallydecreasing knowledge from an oracle. Mean valuesare then only calculated for the signi�cant part ofsimulations. Preamble lengths range from 10 to 30collections, depending on the simulation parameters,but usually were closer to 10 than to 30. For the time-varying results shown, preambles are 10 collections.3.3 Test Database StructureThe test database used in our measurements is the OO7benchmark [CDN93], which was also used by Yong,Naughton, and Yu in their work on garbage collec-tion [YNY94]. Table 1 shows how the characteristics ofour Small0 OO7 database that we measured comparesto the Small database used by Yong, Naughton, andYu, and described in [CDN93]. Given these parameters,382



Parameter Small0 SmallNumAtomicPerComp 20 20NumConnPerAtomic 3/6/9 3/6/9DocumentSize (bytes) 2000 2000ManualSize (kbytes) 100 100NumCompPerModule 150 500NumAssmPerAssm 3 3NumAssmLevels 6 7NumCompPerAssm 3 3NumModules 1 1Table 1: OO7 Benchmark Database Parameters.
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Connection::from (0)Figure 3: Example of the OO7 Database Structure.the test database ranges from approximately 3.7 to 7.9megabytes in size. This range allows us to run the nu-merous simulations required to understand the repeata-bility of our results. We have also experimented withapplications running on a database up to 17 megabytesin size and have observed behavior consistent with theresults reported in Section 4.Figure 3 is a depiction of the structure of theOO7 database as it appears at some point duringthe execution of an example trace. The top levelof the database is a tree hierarchy that leads to anumber of composite part objects. Composite partsare composed of atomic parts and their connections,which are subordinate to the composite part. Theseatomic parts are highly interconnected, with an averageconnectivity of three. The connections highlighted inthe �gure, together with their associated atomic partand connection objects, form an object cluster that canbe detached from the rest of the graph by overwritingjust six pointers.3.4 Test Application BehaviorFigure 2 shows the sequence of phases making up thetest application. These are essentially the same phasesused by Yong, Naughton, and Yu. The �rst phase,GenDB, generates an initial database of a particularconnectivity. The second phase, Reorg1, deletes half

the atomic parts and then reinserts them. The thirdphase, Traverse, is a read-only, depth-�rst traversal overall the atomic parts. Finally, the fourth phase, Reorg2,again deletes half the atomic parts and then reinsertsthem. Unlike the similar Reorg1, the atomic parts arereinserted in such a way as to break any clustering ofatomic parts for a given composite part.One di�erence from Yong, Naughton, and Yu in ouruse of the application is that our second and thirdphases are reversed. We did this in order to causemore disruption in the behavior of the application, sinceour goal is to test the accuracy and responsiveness tochanges in application behavior. By separating thetwo reorganizations in our sequence, we create greaterdi�erences in phase transition. Another di�erence inour test application is that the original Reorg2 deletedall, rather than half, of the atomic parts. We made thischange so that the two reorganizations would performapproximately the same amount of work.4 ResultsWe now present the simulation results for the SAIO andSAGA collection rate policies, including the garbageestimation heuristics needed by the SAGA policy. We�rst investigate the e�ectiveness of the policies atmeeting a range of user-requested settings. We thenshow that our collection rate policies work in databasesof varying connectivities.4.1 Accuracy and ResponsivenessIn the results presented, each data point shows the meanof 10 runs, with the connectivity between atomic parts(i.e., NumConnPerAtomic) set to 3. The means shownare computed as the average sampled at each databaseevent (i.e., object creation, access, or modi�cation).Sampling at each event represents an approximation ofa uniform sample, given the assumption of an activeworkload. The �gures present error bars indicating theminimum and maximum means over the 10 runs. Inmany instances the error bars are hard to distinguish,because the range of errors is negligible.4.1.1 SAIO PolicyFigure 4 shows the accuracy of the SAIO policy overa range of requested I/O percentages. By accuracy,in this case, we mean how well the policy is able toachieve the parameter setting SAIO Frac provided bythe user. Clearly, the SAIO policy is very accurate atcontrolling the garbage collection I/O percentage. Thishigh accuracy comes about for three reasons. First,the control algorithm is correct, as our results show.Second, it is very e�ective if the input data given to itare accurate. In the case of I/O operations, the data areexact because they can be measured directly. Third,the assumptions made by the algorithm are valid. In383
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Figure 4: E�ectiveness of SAIO Policy as a Function ofthe Requested I/O Percentage.particular, for the SAIO policy, we assume that thenumber of I/O operations from one collection to thenext remains fairly constant. While this assumptionbreaks down occasionally (i.e., during phase changes inthe application), overall it appears to hold.The �gure shows that at the highest I/O percentages,the policy results in slightly more I/O operations thanrequested, and there is more variance among runs.The extra I/O operations result when the primarySAIO assumption breaks down. This breakdownoccurs more often at higher percentages because morecollections are performed. To understand why theactual I/O percentage is higher than requested, considerthe following scenario. Suppose the �rst, second, andthird collections resulted in 100, 50, and 100 I/Ooperations, respectively. After the �rst collection, theassumption would lead us to predict that the nextcollection would require 100 I/O operations, whichwould result in a 200% error (100/50). For the thirdcollection, the policy would predict 50 I/O operations,and the error would be 50% (50/100). As a result,the errors do not cancel ((200+50)/2=125), whichcauses the actual I/O percentage to drift above therequested percentage. Note that this happens onlyin extreme cases|in practice, such a high percentagewould probably never be requested by the user.In Figure 4 the chist parameter has been set to 0,which means that no history is used to compute thenext collection interval. As a result, the policy shouldbe highly responsive to changes in the applicationbehavior. In fact, we simulated the entire range ofI/O percentages at both extremes (i.e., chist = 0 andchist = 1), and found that for the OO7 applicationthe use of any amount of history makes little di�erencewith respect to the accuracy of the policy. However,expanding the history does reduce the error seen at highI/O percentages because the error would be exposed
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Figure 5: E�ectiveness of SAGA Policy as a Functionof the Requested Garbage Percentage.to the control algorithm, which could then respondto eliminate it. At chist = 0, the control algorithmdoes not use misprediction information from previouscollections, and thus cannot respond as accurately.While the use of history information makes littledi�erence in the OO7 application, if the assumptionthat �GCIO � CurrGCIO is violated more often inother applications, the history parameter can be usedto ameliorate the impact.4.1.2 SAGA PolicyFigure 5 shows the accuracy of the SAGA policy over arange of requested garbage percentages. Here accuracymeans how well the policy is able to achieve the pa-rameter setting SAGA Frac provided by the user. Re-call that the SAGA policy, unlike the SAIO policy, usesestimated information, and that these estimates comefrom either the CGS/CB or the FGS/HB heuristics. Toevaluate the SAGA policy independent of the accuracyof the heuristics, we include results obtained using animpractical-to-implement oracle, which knows exactlyhow much garbage is in the database at each collection.The �gure shows that the SAGA policy using theoracle is extremely accurate, such that the line isdi�cult to distinguish from perfect accuracy. Thisresult con�rms two things. First, the control algorithmis correct and, second, the assumptions made in thealgorithm are valid for this application. In particular,the assumptions are that successive collections collectapproximately the same amount of garbage, and thatthe database size does not change appreciably betweensuccessive collections. The �rst assumption is furthercon�rmed by results presented below.Figure 5 also shows the results for instances of theSAGA policy using the CGS/CB and FGS/HB heuris-tics. As the �gure shows, the CGS/CB heuristic isquite poor at achieving the requested garbage percent-age, while the FGS/HB policy is much better. Note that384



the error bars, especially for the FGS/HB heuristic, arevery narrow. The CGS/CB heuristic shows larger errorbars because the control algorithm in its case behavesmuch more erratically.We now examine in detail why these heuristics di�erin their accuracy and variance. In addition, we examinewhy the FGS/HB policy shows a systematic variationof a small amount of inaccuracy (i.e., a \bump").Figures 6a and 6b show the time-varying behavior ofCGS/CB and FGS/HB. In these �gures, the requestedgarbage percentage is �xed at 10%. The �gures showthe target, actual, and estimated garbage percentage inthe database as a function of the number of collectionsperformed. The number of collections performed whenusing each heuristic di�ers because the heuristic controlsthe rate of collection. Note that because the SAGApolicy measures time in pointer overwrites and Traverseis a read-only phase, \time" does not progress betweenthe end of Reorg1 and the beginning of Reorg2. Thismakes sense because no garbage can be created duringa read-only phase.As Figure 6a clearly shows, the CGS/CB heuristicexhibits widely varying estimates of the garbage per-centage, and a signi�cant overestimation of the actualamount of garbage in the database. This behavior re-sults directly from the nature of the heuristic, whichassumes that information gained from the collection ofthe current partition is representative of all the parti-tions in the database. This assumption fails becausethe partition selection policy employed (i.e., Updated-Pointer [CWZ94]) is e�ective at �nding a partitionwith more than an average amount of garbage. If thepartition selection policy used was likely to �nd a par-tition with only an average amount of garbage (e.g., itpicked a random partition to collect), then the CGS/CBheuristic would provide a more accurate estimate. Notealso that CGS/CB uses only the current behavior (i.e.,information from the current collection) to estimatethe garbage percentage in the database. As a result,its garbage percentage estimates can vary dramaticallyfrom collection to collection, as the �gure clearly shows.On the other hand, FGS/HB shows a consistentlyaccurate estimate of the percentage of garbage in thedatabase, even when the application behavior changes(e.g., from Reorg1 to Traverse to Reorg2 at the 25thcollection). This accuracy results from its use of�ne grain state in the form of the number of pointeroverwrites, which has been shown to be highly relatedto garbage creation [CWZ94]. There is also signi�cantlyless variation in the garbage estimation of the FGS/HBheuristic because of its use of historical information.Figure 7a shows the sensitivity of the FGS/HBheuristic to changes in the history parameter, h,discussed in Section 2.4. The responsiveness of theheuristic is best understood in the context of changes

in the database application behavior. The �gurere
ects two distinct behavior changes in the application.These changes occur at the startup of the application,when the database is generated, and at the transitionbetween the two database reorganizations (occurring atcollection number 9 in the top graph). How responsivethe heuristic is to changes depends on the amount ofhistory it uses. In the case of 95% history, we seethat the heuristic is very slow at adapting to changesin the application behavior, resulting in large swingsin the estimated garbage percentage and signi�canterrors. By the 60th collection, however, the 95% historyshows relatively stable and accurate estimation. Onthe other hand, with only 50% history, we see that theheuristic is very responsive to the application changes,but it develops systematic inaccuracies as a result. Inparticular, note that after 40 collections the heuristicdevelops an oscillation that results entirely from themathematics of the control algorithm. The speci�cproblem is caused by a breakdown in the SAGA policyassumption that the computed derivative, TotGarb0(t),is accurate. In practice, we have used 80% history withsuccess in this application.Figure 7b shows di�erent aspects of the FGS/HBheuristic as a function of the number of collections. Inthese graphs, the requested garbage percentage is 10%and the history parameter in FGS/HB is set to 80%.The �gure shows how the collection rate, collectionyield, and garbage percentage vary over time. In allof these graphs, the transition from Reorg1 to Traverseto Reorg2 occurs at the 25th collection.Looking at the collection rate as a function of time inthe top graph of Figure 7b, we see that the cold-startof the database causes initially high rates. After thisinitial transient, the rate settles to approximately onecollection per 200 overwrites. Finally, at the Reorg1-Traverse-Reorg2 transition, the rate becomes less stable,but averages to an overall lower value.The collection yield, shown in the middle graph ofFigure 7b, indicates how the amount of garbage col-lected di�ers during di�erent phases of the application.In this graph, there are clear di�erences in the collectionyield caused by the two database reorganization phases.In particular, Reorg2 produces less garbage per parti-tion as it executes. Note that the transition betweenreorganization phases occurs at the 25th collection, butpartitions containing garbage from Reorg1 remain in thedatabase until approximately the 35th collection. Thisbehavior also indicates why the collection rate does notimmediately decrease after the 25th collection.The bottom graph of Figure 7b indicates the e�ec-tiveness of the garbage estimation heuristic during thedi�erent phases of the application. (This graph dupli-cates the middle graph of Figure 7a, but at a di�erentscale.) Note that based on this �gure alone, one might385
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(a) (b)Figure 6: Time-varying Behavior of Garbage Estimation in the CGS/CB (a) and FGS/HB (b) Heuristics.
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Figure 8: Sensitivity of Policy Accuracy to Database Connectivity.conclude that the average of the actual garbage in thedatabase was somewhat higher than the average pre-sented in Figure 5. This observation also relates to thesystematic \bump" that can be observed in Figure 5.The behavior results from the way in which the averagegarbage percentage is computed. As mentioned, thegarbage percentage is sampled each time an applica-tion event occurs. As a result, a number of samples areincluded that occur during the Traverse phase (at the25th collection). Thus, the particular garbage percent-age during that period has an impact on the computedaverage. As the requested garbage percentages changes,there is a systematic shift in the startup curve shown inthe bottom graph, resulting in a di�erent point in thecurve occurring during Traverse. This systematic erroris also present, to di�ering degrees, when we considerdatabases with higher connectivity, as discussed below.4.2 Sensitivity to Database ConnectivityFigure 8 shows the sensitivity of the SAIO and SAGApolicies to changes in the connectivity of the database.In the graphs presented, each data point shows the re-sults from one run of the OO7 database with the connec-tivity among atomic parts (i.e., NumConnPerAtomic)set to 6 and 9. The results in the graphs are consistentwith those in �gures 4 and 5, where the connectivity isset to 3. This supports the assertion that the SAIO andSAGA polices are e�ective across a variety of databaseconnectivities.5 SummaryOne important aspect of garbage collection in objectdatabases is determining how often to collect. Collect-

ing too often results in excessive garbage collection I/Ooverhead and collecting too infrequently results in largeamounts of garbage in the database. The proper col-lection rate is a function of user preferences, databasestructure, application behavior, and database size. Fur-thermore, because applications can exhibit distinctlydi�erent phases, no particular �xed collection rate canprovide the desired performance. No previous work hasconcentrated on the problem of controlling the collec-tion rate in object database garbage collection.In this paper, we have proposed and evaluated twosemi-automatic, self-adaptive collection rate policies.These policies are guided by user input about whatlevel of performance is desired. In particular, the semi-automatic I/O (SAIO) policy attempts to achieve aspeci�ed level of garbage collection I/O operations asa percentage of total I/O operations, and the semi-automatic garbage (SAGA) policy attempts to achieve aspeci�ed percentage of garbage in the database. Thesepolicies are self-adaptive in that they dynamically re-spond to temporal changes in the application behavior.The SAIO policy uses exact information about I/Ooperation counts that is typically gathered for otherpurposes by the ODBMS. On the other hand, the SAGApolicy must use heuristics to estimate the amount ofgarbage in the database because determining it exactlyis prohibitive. We have explored two simple andpractical heuristics for this purpose.Using the OO7 database and an application �rstused by Yong, Naughton, and Yu, we show that ourpolicies are accurate at achieving a wide range of user-speci�ed I/O and garbage percentage settings. Thepolicies are also responsive to phase changes in the OO7387



application. We also show that one of our garbageestimation heuristics, FGS/HB, was e�ective for thisapplication. Our current results suggest that pursuingfurther investigations of these policies is worthwhile.First, we intend to better understand the legitimacyof our assumptions. In particular, it will be importantto �nd out whether commercial object databases andapplications violate these assumptions, and if so, whatimpact this has on the e�ectiveness of the policies.Another direction for future work is to more tightlycouple the two policies with respect to achieving aglobal optimum. In particular, the SAIO policy coulduse information provided by the SAGA heuristics todetermine the cost-e�ectiveness of the I/O operationsbeing performed, and adjusting itself accordingly.We also intend to place our policies in a broadercontext. In the current studies, we have assumedan active database workload. Our policies de�ne aparticular interval at which to do the next collection.If it appears advantageous to perform collection beforethe interval expires (e.g., the application workload dropsto a quiescent state), then such opportunism can beconsidered. Semi-automatic, self-adaptive policies arewell equipped to take advantage of such opportunism.References[AFG95] L. Amsaleg, M. Franklin, and O. Gruber. Ef-�cient incremental garbage collection for client-server object database systems. In Proceedingsof the 21st VLDB Conference, Zurich, Switzer-land, September 1995.[Bj�o93] Anders Bj�ornerstedt. Secondary StorageGarbage Collection for Decentralized Object-Based Systems. PhD thesis, Stockholm Univer-sity, Dept. of Comp. Sys. Sciences, Royal Inst.of Tech. and Stockholm Univ., Kista, Sweden,1993. Also appears as Systems Dev. and AI Lab.Report No. 77.[But87] Margaret H. Butler. Storage reclamation inobject-oriented database systems. In Proceed-ings of the ACM SIGMOD International Con-ference on the Management of Data, pages 410{423, San Francisco, CA, 1987.[CA86] Jack Campin and Malcolm Atkinson. A per-sistent store garbage collector with statisticalfacilities. Persistent Programming ReserarchReport 29, Department of Computing Science,University of Glasgow, Glasgow, Scotland, 1986.[Cat93] R.G.G. Cattell, editor. The Object DatabaseStandard: ODMG{93. Morgan Kaufmann,1993.[CDN93] Michael J. Carey, David J. DeWitt, and Jef-frey F. Naughton. The OO7 benchmark. InProceedings of the ACM SIGMOD InternationalConference on the Management of Data, pages12{21, Washington, DC, June 1993.
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