
P arallel Programming

using

F unctional Languages

P aul Ro e, M.Eng. (Y ork)

A thesis submitted for the degree of Do ctor of Philosoph y

Departmen t of Computing Science,

Univ ersit y of Glasgo w.

F ebruary 1991

c

 P aul Ro e 1991

Ac kno wledgemen ts

I am greatly indebted to Simon P eyton Jones, m y sup ervisor, for his encouragemen t and tec hnical

assistance. His o v erwhelming en th usiasm w as of great supp ort to me. I particularly w an t to

thank Simon and Geo� Burn for commen ting on earlier drafts of this thesis. Through his

excellen t lecturing Colin Runciman initiated m y in terest in functional programming. I am

grateful to Phil T rinder for his sim ulator, on whic h mine is based, and Will P artain for his help

with LaT ex and graphs. I w ould lik e to thank the Science and Engineering Researc h Council of

Great Britain for their �nancial supp ort. Finally , I w ould lik e to thank Mic helle, whose culinary

skills supp orted me whilst I w as writing-up.

i

The Imagination

the only nation worth defending

a nation without alienation

a nation whose flag is invisible

and whose borders are forever beyond the horizon

a nation whose motto is why have one or the other

when you can have one the other and both

a nation whose badge is a chrysanthemum of sweet wrappings

maybe

a nation whose laws are magnificent

whose customs are not barriers

whose uniform is multiform

whose anthem is improvised

whose hour is imminent

and whose poetry does not have many laughs

John Hegley , 1990

ii

Con ten ts

1 In tro duction 1

1.1 F unctional programming : 1

1.2 P arallel programming : 4

1.3 P arallel functional programming : 5

1.4 This thesis : 8

2 P arallel mac hines 12

2.1 P arallel computer arc hitecture : 12

2.2 Managing parallelism : 13

2.3 Conserv ativ e v ersus sp eculativ e parallelism : 14

2.4 Distributed mac hines: task and data placemen t : : : : : : : : : : : : : : : : : : : 15

2.5 Shared memory mac hines: GRIP : 16

2.6 Sc heduling: Eager's result : 17

2.7 The target mac hine : 18

3 P arallel functional programming 19

3.1 A parallel functional language : 20

3.2 Implicit expression of parallelism : 24

3.3 Explicit expression of parallelism : 31

3.4 Algorithm classes and programming paradigms : : : : : : : : : : : : : : : : : : : 32

3.5 Conclusions : 40

4 The exp erimen tal set-up 42

4.1 The sim ulators : 42

iii

CONTENTS iv

4.2 The LML in terpreter v ersus the P ascal in terpreter : : : : : : : : : : : : : : : : : 44

4.3 The information collected and graphs : 45

5 Squigol 46

5.1 In tro duction : 46

5.2 Basics : 46

5.3 P arallel Squigolling : 51

5.4 Example: all shortest paths : 56

5.5 Example: n-queens : 63

5.6 Example: A parallel greedy algorithm : 73

5.7 Summary : 83

5.8 Conclusions : 83

6 P arallelism con trol 85

6.1 In tro duction : 85

6.2 What should b e con trolled? : 86

6.3 A surv ey of parallelism con trol metho ds : 87

6.4 The goals of exp erimen ts : 92

6.5 Data parallelism : 93

6.6 Divide and conquer algorithms : 108

6.7 Summary : 146

6.8 Conclusions : 147

7 Bags 148

7.1 Surv ey : 149

7.2 A bag abstract data t yp e : 150

7.3 Bag comprehensions : 152

7.4 Some useful bag functions : 153

7.5 Bag la ws and seman tics : 154

7.6 Bag implemen tation : 158

7.7 P arallel bags p erformance : 169

CONTENTS v

7.8 Sets : 171

7.9 Examples of bags use : 173

7.10 Summary : 176

7.11 Conclusions : 177

8 P erformance analysis and debugging 178

8.1 In tro duction : 178

8.2 Simple analysis : 181

8.3 F ormal p erformance analysis : 192

8.4 Using the seman tics : 203

8.5 Abstract sim ulation : 213

8.6 Debugging : 227

8.7 Summary : 234

8.8 Conclusions : 235

9 F urther w ork 237

9.1 Expressing parallelism and parallel algorithms : 237

9.2 P arallelism con trol : 244

9.3 P erformance : 247

10 Conclusions 249

10.1 A parallel functional language : 249

10.2 Squigol : 250

10.3 P arallelism con trol : 250

10.4 Bags : 251

10.5 P erformance : 251

10.6 A �nal commen t : 252

Summary

It has b een argued for man y y ears that functional programs are w ell suited to parallel ev alua-

tion. This thesis in v estigates this claim from a programming p ersp ectiv e; that is, it in v estigates

parallel programming using functional languages. The approac h tak en has b een to determine

the minim um programming whic h is necessary in order to write e�cien t parallel programs. This

has b een attempted without the aid of clev er compile-time analyses. It is argued that parallel

ev aluation should b e explicitly expressed, b y the programmer, in programs. T o do ac hiev e this

a lazy functional language is extended with parallel and sequen tial com binators.

The mathematical nature of functional languages means that programs can b e formally deriv ed

b y program transformation. T o date, most w ork on program deriv ation has concerned sequen tial

programs. In this thesis Squigol has b een used to deriv e three parallel algorithms. Squigol is a

functional calculus for program deriv ation, whic h is b ecoming increasingly p opular. It is sho wn

that some asp ects of Squigol are suitable for parallel program deriv ation, while others asp ects

are sp eci�cally orien tated to w ards sequen tial algorithm deriv ation.

In order to write e�cien t parallel programs, parallelism m ust b e con trolled. P arallelism m ust

b e con trolled in order to limit storage usage, the n um b er of tasks and the minim um size of

tasks. In particular o v er-eager ev aluation or generating excessiv e n um b ers of tasks can consume

to o m uc h storage. Also, tasks can b e to o small to b e w orth ev aluating in parallel. Sev eral

program tec hniques for parallelism con trol w ere tried. These w ere compared with a run-time

system heuristic for parallelism con trol. It w as disco v ered that the b est con trol w as e�ected b y

a com bination of run-time system and programmer con trol of parallelism.

One of the problems with parallel programming using functional languages is that non-

deterministic algorithms cannot b e expressed. A bag (m ultiset) data t yp e is prop osed to allo w a

limited form of non-determinism to b e expressed. Bags can b e giv en a non-deterministic parallel

implemen tation. Ho w ev er, pro viding the op erations used to com bine bag elemen ts are asso cia-

tiv e and comm utativ e, the result of bag op erations will b e deterministic. The on us is on the

programmer to pro v e this, but usually this is not di�cult. Also bags' insensitivit y to ordering

means that more transformations are directly applicable than if, sa y , lists w ere used instead.

It is necessary to b e able to reason ab out and measure the p erformance of parallel programs.

F or example, sometimes algorithms whic h seem in tuitiv ely to b e go o d parallel ones, are not.

F or some higher order functions it is p ossible to devise parameterised form ulae describing their

p erformance. This is done for divide and conquer functions, whic h enables constrain ts to b e

form ulated whic h guaran tee that they ha v e a go o d p erformance. Pip elined parallelism is di�cult

to analyse. Therefore a formal seman tics for calculating the p erformance of pip elined programs

is devised. This is used to analyse the p erformance of a pip elined Quic ksort. By treating the

vi

SUMMAR Y vii

p erformance seman tics as a set of transformation rules, the sim ulation of parallel programs

ma y b e ac hiev ed b y transforming programs. Some parallel programs p erform p o orly due to

programming errors. A pragmatic metho d of debugging suc h programming errors is illustrated

b y some examples.

Chapter 1

In tro duction

1.1 F unctional programming

This thesis con tributes some ideas for programming parallel computers using functional lan-

guages. This c hapter separately discusses the adv an tages of functional programming and the

problems of parallel programming. Subsequen tly the b ene�ts of parallel programming with func-

tional languages are describ ed. Lastly the con ten t of the whole thesis is outlined, along with the

con tributions whic h ha v e b een made.

1.1.1 Wh y functional languages?

F unctional languages are programming languages whic h express computation in terms of pure

functions. A program is expressed as a function from its input to its output. These languages

are radically di�eren t from imp erativ e languages and they are curren tly the sub ject of m uc h

researc h. F unctional languages ha v e sev eral imp ortan t adv an tages o v er con v en tional imp erativ e

ones. Man y ha v e adv o cated functional programming and the follo wing references are recom-

mended [1, 7, 56 , 110].

P erhaps the most imp ortan t adv an tage they ha v e, as describ ed b y John Hughes [56], are their

p o w erful facilities for mo dular design. In particular higher order functions enable common pat-

terns of computation to b e captured. This ma y b e at a relativ ely lo w lev el suc h as a function

for applying another function elemen t-wise across a data structure or it ma y b e the abstraction

of a whole algorithm, for example a generic branc h and b ound algorithm. Con v en tional imp er-

ativ e languages do not include suc h p o w erful abstraction facilities. It is not that con v en tional

languages ha v e few er abstraction facilities; it is that their facilities are less general. F or example

in languages lik e P ascal it is not p ossible to write generic list pro cessing functions. This is

due to limitations of the t yp e system and limitations of pro cedural abstraction. Con v en tional

languages are m uc h more limited in the kind of abstractions whic h ma y b e de�ned and used.

The b etter the abstraction facilities a language o�ers, the more w a ys there are of breaking up

(and hence solving) a problem. Abstraction facilities are the k ey to mo dularisation and hence

to programming in the large. Th us functional languages are go o d for programming in the large.

There are at least t w o other b ene�ts of functional programming languages. The �rst is that

1

CHAPTER 1. INTR ODUCTION 2

they are mathematically tractable and hence they can b e reasoned ab out more easily than

con v en tional languages. This also mak es program deriv ation m uc h easier. The second b ene�t is

that functional programs are amenable to parallel ev aluation. This is the sub ject of this thesis;

the basis for this is discussed in Section 1.3.

1.1.2 The language

The language used throughout this thesis to express programs is based on Miranda

1

; Bird and

W adler's b o ok pro vides an excellen t in tro duction to functional programming in this st yle of

language [11]. The examples used in this thesis are all quite simple and they should b e easily

understo o d with a little kno wledge of a mo dern functional language. The k ey asp ects of the

functional language are:

� it is purely functional; there are no side e�ects, suc h as assignmen t

� it is p olymorphically t yp ed

� it is lazy

� it is curried

Some features of the language are no w sk etc hed. The language uses la y out to indicate the

scoping of iden ti�ers and all v alid program lines commence with a c hevron, for example:

> power4 x = y * y

> where

> y = x * x

The function power4 raises a n um b er to the fourth p o w er. The de�nition of y is lo cal to the

expression y * y ; the la y out expresses this.

Lists are a commonly used data t yp e. The empt y list is represen ted b y [] and the in�x function

for app ending a single elemen t on to the fron t of a list is represen ted b y : . Lists ma y b e written

th us [1,2,3] whic h is a shorthand for 1:(2:(3:[])) . F unctions on lists ma y b e de�ned b y

cases. F or example the higher order function map , whic h applies a function to eac h elemen t in a

list, ma y b e written th us:

> map :: (*->**) -> [*] -> [**]

> map f [] = []

> map f (x:xs) = f x : map f xs

The �rst line sho ws the t yp e of map ; it is optional and indicates that map tak es a function from

* to ** and a list of * s and pro duces a list of ** s. The t yp e v ariables * and ** are univ ersally

quan ti�ed: they range o v er all t yp es. P atterns suc h as [] and x:xs are matc hed against the list

1

Miranda is a trademark of Researc h Soft w are Limited.

CHAPTER 1. INTR ODUCTION 3

argumen t of map . If x:xs matc hes the list argumen t, then x will b e b ound to the head of the list

and xs will b e b ound to the tail of the list. An example use of map is: to raise all the n um b ers

in the list [1,2,3,4] to the p o w er four, the expression map power4 [1,2,3,4] could b e used.

F unction comp osition is denoted b y the in�x . com binator. F or example a function to calculate

sine to the p o w er four is: power4 . sin .

Tw o useful list op erators are # and ! . The # op erator determines the length of a list, for

example #[99,100,101] is 3 . The ! op erator is an in�x op erator for indexing lists, for example

[33,34,35,36]!1 is 34 (list indexing starts from 0).

Equations ma y b e guarded. F or example a function, filter . An application suc h as filter p l

returns a list of all the elemen ts from l whic h satisfy the predicate p :

> filter :: (*->bool) -> [*] -> [*]

> filter p [] = []

> filter p (x:xs) = x:filter p xs, p x

> = filter p xs, otherwise

The expression p x is a guard; the expression it guards (x:filter p xs) is only returned if the

guard is true. P atterns and guards are tested sequen tially from the top equation do wn w ards,

un til a matc h and true guard are found. The otherwise guard represen ts a default guard, tak en

if none of the other guards are true.

List comprehensions are also a v ailable (these are analogous to set comprehensions in Zermelo-

F rank el set theory). F or example the filter function could ha v e b een de�ned th us:

> filter p l = [x| x<-l; p x]

The list comprehension [x| x<-l; p x] ma y b e read as: the list of x 's suc h that eac h x is

dra wn from l and p x is true. The expressions x<-l and p x are quali�ers ; x<-l is a gener ator

and p x is a �lter .

Algebraic data structures lik e lists and trees can b e de�ned. Binary trees ma y b e de�ned th us:

> bintree * ::= Node (bintree *) (bintree *) |

> Leaf *

The Node and Leaf v alues are constructors lik e cons (:) and nil ([]) are for lists. Notice that the

t yp e v ariable * means that bintree 's ma y b e de�ned of an y t yp e, for example trees of n um b ers,

trees of lists etc. Ho w ev er eac h instance of a bintree m ust b e homogeneous.

A function to sum a tree of n um b ers ma y b e written th us:

> treesum :: bintree num -> num

> treesum = treereduce (+)

CHAPTER 1. INTR ODUCTION 4

Notice ho w this function is only v alid for bintree 's of n um b ers (num). The reduction function

on bintree s, treereduce , is de�ned as:

> treereduce :: (*->*->*) -> bintree * -> *

> treereduce f (Leaf x) = x

> treereduce f (Node l r) = f (treereduce f l) (treereduce f r)

This higher order function is useful for de�ning reductions o v er binary trees.

A $ sym b ol ma y b e used to sho w that a function or constructor is b eing used as an in�x op erator,

for example: (Leaf 1) $Node (Leaf 2) .

1.2 P arallel programming

There are go o d reasons wh y parallel mac hines are b ecoming common and hence parallel program-

ming is b ecoming necessary . P arallel mac hines can b e built whic h are c heap er than sequen tial

mac hines o�ering the same ra w p erformance. Also the highest absolute p erformance can only b e

ac hiev ed with parallel mac hines. Unfortunately programming parallel mac hines is m uc h more

di�cult than programming sequen tial ones.

T o write a parallel program a programmer m ust organise a parallel computation [10 , 68 , 95].

This in v olv es: partitioning a program in to tasks; mapping tasks on to a parallel mac hine, p ossibly

dynamically; and arranging for tasks to safely comm unicate. All but the last issue are discussed

in Chapter 2. Ho w ev er, the biggest problem asso ciated with parallel programming is that of

c orr e ctness .

Di�culties arise due to the async hronous nature of man y parallel mac hines; suc h mac hines

are usually programmed with non-deterministic parallel languages. F or example net w orks of

transputers ma y b e programmed using the o ccam programming language [75]. Deterministic

parallel languages ma y b e reasoned ab out in the same w a y as sequen tial languages. This is

b ecause there is a sequen tial execution order for a deterministic parallel program, whic h alw a ys

giv es the same result as its parallel execution. Ho w ev er for non-deterministic languages this is

not true; in particular all p ossible execution orders of a program m ust b e considered. Reasoning

ab out non-deterministic parallel programs is often couc hed in terms of t w o program prop erties:

safety and liveness . Safet y prop erties are analogous to partial correctness issues. They state the

answ ers a program should pro duce, if it terminates. Liv eness prop erties state that if something

is supp osed to happ en, then ev en tually it will. F or example a task wishing to comm unicate

ev en tually will do so. These are similar to total correctness issues; a program should ev en tually

terminate and pro duce the correct result. The w orst breac h of liv eness is de ad lo ck . Informally ,

deadlo c k arises when a collection of tasks hold resources, a cycle of demands for resources exists

and no preemption o ccurs. In suc h a situation no mac hine progress can b e made and the mac hine

b ecomes lo c k ed up.

P arallel programs' non-determinism also means that testing them is ev en less useful than testing

sequen tial programs. Deadlo c k ma y not b e rev ealed b y testing and deadlo c k ma y o ccur on

some program runs and not on others, with iden tical data. Debugging in general b ecomes

v ery di�cult since program results ma y not b e duplicable. F or these reasons man y formal

CHAPTER 1. INTR ODUCTION 5

metho ds for reasoning ab out and deriving parallel programs ha v e b een dev elop ed [45 , 72 , 82, 102].

Unfortunately these are all complex re
ecting the inheren t complexit y of these kinds of parallel

languages.

1.3 P arallel functional programming

1.3.1 P arallel ev aluation

F unctional programs ma y b e ev aluated in parallel [91]. P arallelism is ac hiev ed b y ev aluating

function applications and their argumen ts in parallel. As men tioned in the previous section, the

async hronous b eha viour of parallel mac hines means that they are usually programmed using non-

deterministic languages. This mak es programs' correctness di�cult to pro v e. What of functional

languages? A sup er�cial answ er is that the parallel ev aluation of functional languages m ust b e

determinate since functions are determinate. Ho w ev er the non-deterministic ev aluation of a

functional language will result in a non-deterministic reduction order and this could in theory

yield incorrect or indeterminate results.

A theorem is needed whic h states that the order in whic h reductions are p erformed alw a ys yields

equiv alen t results. A suitable theorem exists for the un t yp ed lam b da calculus:

Ch urc h-Rosser (I) theorem :

if E ma y b e reduced to M

and if E ma y b e reduced to N

then there exists an expression T suc h that

M ma y b e reduced to T and

N ma y b e reduced to T

A corollary of this means that all sequences of reductions whic h reduce an expression to a

normal form, will result in the same v alue (some renaming ma y b e necessary). An y parallel

reduction ma y b e view ed as a particular sequence of reductions: a particular in terlea ving of

sev eral concurren t reductions. Th us pro viding a parallel reduction terminates it will alw a ys

yield the same v alue; that is the parallel reduction will b e determinate. F urthermore the v alue

will b e the same as if sequen tial lazy (normal order) reduction had b een emplo y ed. Unfortunately

the un t yp ed lam b da calculus is not a go o d basis for the functional language b eing used here.

The functional language used here is t yp ed, has delta rules, uses com binator reduction (not b eta

reduction) and reduces expressions to WHNF. Burn [20] has gone some w a y to extending the

classical lam b da calculus results in order to pro v e the safet y of ev aluating functional languages

in parallel.

Certainly , it is necessary to ensure that a parallel reduction terminates if a sequen tial normal

order reduction w ould do so. This ma y b e ac hiev ed b y only ev aluating expressions in parallel

whose results will de�nitely b e required. Chapter 3 discusses this issue further.

What ab out deadlo c k? Although terminating parallel reduction is deterministic, the reduction

order itself is still non-deterministic. As previously stated deadlo c k can only arise when there

are a set of tasks holding resources and a cycle of resource demands exists. T o understand ho w

this ma y arise parallel graph reduction m ust b e understo o d.

CHAPTER 1. INTR ODUCTION 6

2

1

+

@

@

+ 3

@

+

@

@

@

Figure 1.1: A program graph

1.3.2 P arallel graph reduction

P arallel graph reduction is the abstract execution mec hanism whic h the functional language is

presumed to use. A functional expression ma y b e represen ted as a graph. F or example consider

the con triv ed expression b ound to res :

> res = x + y

> where

> x = 1 + 2

> y = x + 3

The graphical represen tation of this is sho wn in Figure 1.1. The @ sym b ols represen t function

applications, left sub-graphs are functions and righ t sub-graphs are argumen ts. Notice ho w

shared expressions are represen ted b y shared graph no des. Recursiv e expressions are represen ted

b y cyclic graphs. Ev aluation pro ceeds b y reducing graphs; for example + reduces b oth of its

argumen ts to n um b ers, then the redex (no de) is o v erwritten with the result of the addition, see

Figure 1.2.

Graph reduction is the pro cess of lo cating redexes and reducing them b y o v erwriting them

with their v alues. P arallel graph reduction in v olv es m ultiple tasks p erforming concurren t graph

reduction. T o prev en t sev eral tasks from reducing the same redex (no de) a m utual exclusion

mec hanism is needed. This is ac hiev ed b y tasks marking redexes. Th us in the previous example

(Figure 1.1) the outermost + ma y reduce its argumen ts in parallel. (There is not m uc h ac hiev ed

b y doing this here but it illustrates parallel graph reduction.) Therefore tasks will b e created to

ev aluate the graphs corresp onding to the argumen ts of + (x and y). The pro cess of creating a

task will b e referred to as sp arking . Eac h task will mark redexes it encoun ters to prev en t other

tasks from reducing them. An y task encoun tering a mark ed redex will blo ck un til the redex

CHAPTER 1. INTR ODUCTION 7

2

1

+

@

@

3

Reduces to

Figure 1.2: A reduction

@

Y

2

1

+

@

@

X

+ 3

+

@

@

@

Figure 1.3: Concurren t reduction

b ecomes unmark ed; once unmark ed the task will r esume . T asks unmark redexes (no des) when

they reduce (o v erwrite) them and they release an y tasks blo c k ed on that redex.

In the example, the task ev aluating y ma y blo c k if the task ev aluating x has not completed b efore

it tries to access x . This is sho wn in Figure 1.3. No de marking has b een sho wn b y subscripting

the appropriate no de with X or Y to indicate whic h task is reducing whic h redex. Once the X

task has ev aluated x the @

X

no de will b e o v erwritten with 3 and unmark ed; then the Y task

can resume and p erform its reduction.

No w the deadlo c k question can b e addressed. In parallel programming terms marking redexes

corresp onds to holding resources (m utual exclusion). T rying to ev aluate redexes corresp onds to

demanding resources. Th us deadlo c k corresp onds to a cycle of demands for redexes. Ho w ev er

suc h a cycle is meaningless. It means that a v alue is dep enden t up on itself, for example:

> a = a + 1

CHAPTER 1. INTR ODUCTION 8

This equation has no solution; the v alue of a is dep enden t up on a and it is therefore unde�ned.

In a parallel in terpreter this ma y giv e rise to deadlo c k, if the argumen ts to + are ev aluated

in parallel. A sequen tial implemen tation ma y lo op inde�nitely or some implemen tations ma y

detect suc h self dep endencies. Crucially , cyclic dep endencies are the only w a y deadlo c k ma y

arise. Th us deadlo c k can only arise in a parallel functional language for a program whose v alue

is unde�ned.

1.3.3 The adv an tages of parallel functional programming

The adv an tages of parallel programming with functional languages are summarised b elo w. These

are in addition to the general adv an tages of functional programming, previously men tioned.

� F unctional programs designed for parallel ev aluation ma y b e reasoned ab out in the same

w a y as sequen tial functional programs.

� P arallel functional programs, unlik e other parallel programs, need no comm unication, syn-

c hronisation or m utual exclusion to b e sp eci�ed explicitly . This all o ccurs implicitl y in the

program graph.

� Deadlo c k can only arise when the result of a program is unde�ned.

The determinacy of parallel functional programs means that all the tec hniques applicable to

sequen tial functional programming are applicable to parallel functional programming. In par-

ticular parallel functional programs are amenable to transformation just as sequen tial functional

programs are.

1.4 This thesis

This section is a summary of the main results and con tributions of this thesis. The basis of this

w ork is a particular approac h to parallel functional programming. This assumes an underlying

mac hine mo del whic h is describ ed in Chapter 2, along with v arious other prop osed mo dels.

Essen tially this is a shared memory MIMD mac hine: a generalisation of the lo cally a v ailable

mac hine, GRIP [92]. The mo del uses a dynamic sc heduling disciplin e; results b y Eager giv e

conditions necessary for go o d program p erformance, using suc h a sc heduling discipline .

The functional language used for expressing parallel algorithms is describ ed in Chapter 3. It

uses a parallel com binator for explicitly expressing parallel ev aluation; it is argued that this is

b oth necessary and desirable. F urthermore, it is argued that implicit detection of parallelism,

via strictness analysis, in functional programs is extremely di�cult to do and indeed undesir-

able. The parallel functional language, and its assumed underlying mac hine mo del, are used

throughout this thesis. Chapter 3 also discusses ho w di�eren t parallel programming paradigms

ma y b e used with language. It is sho wn that sev eral classes of algorithms ma y b e expressed

using the language, except for non-deterministic algorithms.

T o determine the e�ectiv eness of example programs, written in the parallel language, a sim ulator

w as used. This is describ ed in Chapter 4.

CHAPTER 1. INTR ODUCTION 9

One of the nicest features of functional programs are their amenabilit y to transformation. Squigol

is an impressiv e algebraic st yle of program deriv ation and transformation. Chapter 5 in v estigates

the suitabilit y of Squigol for parallel program deriv ation; previously it has mainly b een used for

sequen tial algorithm deriv ation. It w as disco v ered that some asp ects of Squigol are sp eci�cally

orien tated to w ards deriving sequen tial algorithms. Ho w ev er other asp ects w ere found to b e

naturally suited to parallel algorithm deriv ation. This is discussed and it is demonstrated b y

three deriv ations of parallel algorithms: an all shortest paths graph algorithm, an n-queens

algorithm and a greedy algorithm.

Since the assumed mac hine is a shared memory one, task placemen t is unimp ortan t; hence it is

p erformed at run-time. Ho w ev er task size (gran ularit y), the n um b er of tasks in the mac hine and

storage use are imp ortan t issues. The target mac hine (an idealisation of GRIP) tries to con trol

task gran ularit y b y using run-time heuristics. It is sho wn in Chapter 6 that to some exten t

this w orks; ho w ev er for e�ectiv e con trol this should b e com bined with v arious programmed

tec hniques for con trolling tasks gran ularit y .

As previously men tioned it is imp ossible to express non-deterministic algorithms in standard

functional languages; ev en if their results are deterministic. Chapter 7 considers the in tro duction

of bags (m ultisets) in to functional languages. These admit a non-deterministic implemen tation

but put an on us on the programmer to pro v e that they are used determinately . Usually suc h

pro ofs are straigh tforw ard. Bags mak e some algorithms easier to write and more e�cien t than

w ould otherwise b e p ossible. An implemen tation is sk etc hed together with a pro of that an

in termediate implemen tation (a rewriting system) is correct.

Chapter 8 considers the p erformance of parallel functional programs. It is sho wn b y analysing

some simple algorithms that writing e�cien t parallel programs is more di�cult than it �rst

app ears. F or corrob oration, the results of analyses are compared with sim ulation results. The

analysis of algorithms whic h use pip elined parallelism is sho wn to b e considerably more di�cult,

and hence error prone, than analysis of other parallel algorithms. T o this end, a formal seman tics

is dev elop ed for reasoning ab out pip eline d parallelism. This ma y b e used to generate recurrence

relations and hence to analyse pip elin ed programs, as is demonstrated.

The p en ultimate c hapter (9) discusses further w ork. In particular some ideas on sp eculativ e

parallelism, non-determinism, h ybrid parallel and sequen tial algorithms and reasoning ab out

parallel p erformance are discussed.

1.4.1 Thesis con tributions

The follo wing con tributions ha v e b een made b y this thesis:

P arallel programming

Con trary to some authors exp ectations I argue that parallelism should b e explicitly expressed.

In supp ort of this I prop ose a simple parallel functional language. Extensiv e examples of par-

allel functional programs are giv en throughout this thesis. In particular the use of parallelism

abstractions is exp ounded, esp ecially divide and conquer ones.

CHAPTER 1. INTR ODUCTION 10

Squigol

A considerable amoun t of w ork exists on the Squigol metho dology for program deriv ation. I

dev elop and extend this w ork to parallel algorithms. In particular I demonstrate that homo-

morphisms are divide and conquer algorithms, that some Squigol optimisations are inheren tly

sequen tial and I illustrate the use of parallel op erators and rules via three example deriv ations.

Con trol of parallelism

There ha v e b een man y di�eren t prop osals in the literature for con trolling parallelism. I sho w

that for go o d con trol of parallelism (task n um b ers, storage use and task sizes) explicit con trol

of parallelism is necessary , see Chapter 6. I prop ose v arious tec hniques for con trolling data

parallelism and divide and conquer parallelism. Exp erimen ts ha v e b een p erformed to measure

the e�ectiv eness of these tec hniques and to compare the b est of them with a simple run-time

heuristic for con trolling parallelism.

Non-determinism

Pure functional languages are insu�cien tly expressiv e to implemen t man y useful parallel al-

gorithms. I ha v e explained one w a y to extend a pure functional language: b y adding non-

deterministic bag structures, see Chapter 7. This pro v ed e�ectiv e; in particular bags enabled

some algorithms prop osed b y Arvind [6] to b e expressed whic h cannot b e expressed in a pure

functional language. The implemen tation of bags' non-determinism is di�cult; hence this w as

semi-formally dev elop ed via non-deterministic rewriting systems.

The p erformance of parallel programs

The p erformance of parallel programs is nearly as imp ortan t as their seman tic correctness.

There is a v ast literature on the latter topic but v ery little on the former. I address the former

in Chapter 8. I prop ose that to debug the p erformance of parallel programs di�eren t lev els of

abstraction are required; this is demonstrated via sev eral examples. In particular some programs

are analysed at an abstract lev el and some others are sim ulated.

T o reason ab out programs p erformance at a v ery abstract lev el, analysis is required. There ha v e

b een sev eral prop osals for analysing the p erformance of parallel strict programs. Ho w ev er suc h

programs do not admit pip elined parallelism, an imp ortan t form of ev aluation. I ha v e, therefore,

dev elop ed a non-standard seman tics for calculating the p erformance of pip elined programs.

Hybrid algorithms

The goal of writing parallel programs for MIMD mac hines is not simply to obtain a program

with maximal parallelism. In particular some parallel algorithms are not e�cien t sequen tial

ones. Th us, h ybrid parallel and sequen tial algorithms are sometimes needed. The scan function

analysed in Section 8.2.3, the greedy algorithm deriv ed in Section 5.6 and the dc5 com binator

used in Section 6.6 demonstrate this.

CHAPTER 1. INTR ODUCTION 11

Non-determinism and pro of obligations

A general principle used to aid algorithm expression is the in tro duction of non-deterministic

com binators in to the language whic h ma y e asily b e pro v en deterministic. F or example the par

com binator of Section 3.1, the bhom function of Chapter 7, the choose function of Section 9.1.3

and the bb function of Section 9.1.1.

Chapter 2

P arallel mac hines

This c hapter surv eys some parallel mac hines and discusses the parallelism issues whic h arise

from them. In particular this c hapter describ es the mac hine to b e used throughout the rest

of this thesis. It is necessary to describ e the target mac hine since an y parallel programming

language m ust b e based on certain assumptions ab out the underlying mac hine. This is basically

a generalisation of a lo cally-a v ailable m ultipro cessor: GRIP [92].

2.1 P arallel computer arc hitecture

The arc hitecture of parallel computers w as a `hot' researc h area a few y ears ago. No w its p op-

ularit y has diminished as parallel mac hines are b ecoming commercially a v ailable. Nev ertheless

there are fundamen tal di�erences b et w een the t w o ma jor classes of parallel computer arc hitec-

ture. These classes are SIMD (Single Instruction stream, Multiple Data stream) and MIMD

(Multiple Instruction stream, Multiple Data stream) arc hitectures. The arc hitectures ha v e the

same p o w er and ma y sim ulate one another. Ho w ev er their di�erences mean that they are b est

suited to di�eren t kinds of algorithm. Also they di�er in ho w parallelism m ust b e organised for

them to w ork e�cien tly; th us di�eren t approac hes to programming them are needed.

SIMD mac hines are arra y pro cessors. They t ypically consist of a large collection of small pro-

cessing elemen ts. The same instruction is p erformed b y all pro cessing elemen ts in sync hron y .

This means that the ev aluation of programs on SIMD mac hines is usually deterministic, and

hence programs ma y b e reasoned ab out in the same w a y as sequen tial ones. SIMD mac hines are

w ell suited to regular problems op erating on large data sets. An example of a SIMD mac hine is

the Connection Mac hine [46]. This w as dev elop ed at MIT and it is in tended to b e programmed

in Lisp. Hudak and Mohr ha v e sho wn ho w graph reduction ma y b e p erformed on SIMD ma-

c hines b y using a �xed set of com binators [53]; ho w ev er in practice this is v ery ine�cien t. Also,

O'Donnell has in v estigated the programming of SIMD mac hines using functional languages [85].

MIMD mac hines consist of co op erating pro cessors eac h executing their o wn programs. These

programs need not b e the same and they are usually executed async hronously . The non-

deterministic ev aluation of programs means that MIMD mac hines are harder to program than

SIMD or sequen tial mac hines. Ho w ev er, as stated in the previous c hapter, this is not true

for functional languages. This thesis only considers MIMD implemen tations of functional lan-

12

CHAPTER 2. P ARALLEL MA CHINES 13

guages, of whic h there ha v e b een man y prop osals. MIMD mac hines ma y b e sub-divided in to

t w o classes: shared memory (tigh tly coupled) mac hines and distributed (lo osely coupled) ma-

c hines. The essen tial di�erence b et w een these t w o t yp es of MIMD mac hines is that, memory

access (comm unications cost) is constan t for shared memory mac hines whereas for distributed

mac hines the pro cessor net w ork top ology a�ects memory access. Examples of shared memory

functional language implemen tations are: ALICE, Buc kwheat, Flagship, GRIP and the � -G-

mac hine [31 , 38 , 92 , 63 , 118]. Examples of distributed mac hines are Alfalfa, the HDG-mac hine

the Nijmegen group's mac hine and ZAPP [38 , 71 , 111 , 25]. F or the purp ose of this thesis the

assumed target mac hine is a shared memory MIMD one.

This thesis do es not concern itself with an y particular execution mo del for functional languages;

other than the assumptions made ab out parallel graph reduction in Section 1.3.2. F or more

information on implemen tation details [88] is recommended.

2.2 Managing parallelism

Managing parallelism is imp ortan t in order to mak e a parallel program run e�cien tly on an

MIMD mac hine. Con trol ma y b e e�ected b y the program or via heuristics incorp orated in to

the run-time system. The follo wing issues ha v e imp ortan t e�ciency implications (for MIMD

mac hines):

task and data placemen t: tasks and data should b e arranged so as to minimise comm unica-

tion costs whilst main taining parallelism. The placemen t of tasks and data should preserv e

task and data lo calit y . The comm unication c haracteristics for shared memory mac hines

mean that lo calit y is less imp ortan t than it is for distributed mac hines.

sc heduling: this is the task of assigning tasks to idle pro cessors. If there are more tasks than

idle pro cessors, a c hoice m ust b e made to determine whic h tasks to sc hedule (run) on the

idle pro cessors; this is almost alw a ys p erformed b y the run-time system. The di�cult y

with sc heduling is that di�eren t sc hedules (orders of task execution) ma y result in di�eren t

execution times.

task gran ularit y and the n um b er of tasks: these are related. T ask o v erheads, suc h as

comm unication costs, mean that there is a minim um size of task whic h is suitable for

parallel ev aluation. One measure of task size is the ratio of comm unications cost to execu-

tion cost. Also since tasks consume storage it is undesirable to generate man y more tasks

than there are pro cessors.

The �rst t w o issues are describ ed in this section, whilst the latter issue is in v estigated in Chapter

6, where sev eral di�eren t metho ds for programmer con trol of task gran ularit y and the n um b er of

tasks are considered. Before describing strategies for task and data placemen t, and sc heduling,

t w o imp ortan t t yp es of parallelism are discussed.

CHAPTER 2. P ARALLEL MA CHINES 14

2.3 Conserv ativ e v ersus sp eculativ e parallelism

Conserv ativ e parallelism is the term giv en to parallel ev aluation where the results of all tasks are

required. Con v ersely , sp eculativ e parallelism ma y pro duce tasks whose results are not required.

Sp eculativ e parallelism is useful, and more general than conserv ativ e parallelism; ho w ev er it is

considerably harder to manage.

In particular, parallel searc h algorithms often require sp eculativ e ev aluation. T ypically , a searc h

space is concurren tly searc hed un til a desired elemen t is found. Once the elemen t has b een found

all other searc h tasks b ecome redundan t; ho w ev er it is not kno wn a priori whic h task will disco v er

the elemen t. Th us the parallel ev aluation is sp eculativ e. F or example to calculate in parallel

the �rst n prime n um b ers, using the siev e of Eratosthenes, man y n um b ers are sp eculativ ely

siev ed in parallel. Another example is the n-queens problem. T o calculate a single solution to

this, in parallel, man y di�eren t partial solutions m ust b e generated in parallel. Burton discusses

sp eculativ e searc hing algorithms in [23].

The implemen tation di�culties of sp eculativ e parallelism arise b ecause conserv ativ e tasks (those

whose results are required) m ust b e giv en priorit y o v er sp eculativ e tasks, or at least a fair

sc heduling discipline m ust b e used. Otherwise the situation can arise where all a mac hines

pro cessors are ev aluating sp eculativ e tasks, none of whic h terminate. Th us no progress will b e

made, although a result ma y exist. F urther complications arise b ecause sp eculativ e tasks ma y

b ecome conserv ativ e tasks or sp eculativ e tasks ma y need to b e garbage collected (killed). In

con trast the situation is far simpler if all parallelism is conserv ativ e b ecause then an y sc hedule

will pro duce the same result from a program, if it exists.

Hudak describ es a sophisticated sc heme to manage sp eculativ e parallelism [49]. It is a graph-

based sc heme whic h executes in a distributed fashion, concurren tly with parallel graph reduction.

Ho w ev er it has not b een implemen ted and it app ears to b e quite complicated and costly .

A similar sc heme to Hudak's has b een adv o cated b y P artridge [87]. This manages sp eculativ e

parallelism on a distributed mac hine. His sc heme uses a storage garbage collector to collect

garbage tasks. A priorit y system is used to ensure that normal order reduction is sim ulated and

to ensure that the amoun t of redundan t computation is minimised. Once again there is a lac k

of empirical evidence to supp ort the sc heme.

An alternativ e and simpler approac h has b een prop osed b y man y researc hers, for example

[43 , 121]. This uses a notion of fuel; fuel corresp onds to a quan tit y of ev aluation whic h ma y

b e p erformed on a task, after whic h it is pre-empted. Some, kno wn, conserv ativ e tasks ma y b e

giv en an in�nite amoun t of fuel. This seems an in teresting approac h but again there is a lac k of

empirical evidence to supp ort it.

The implemen tation di�culties of sp eculativ e parallelism are so great that few functional lan-

guage implemen tations supp ort it. Therefore no programs are describ ed in this thesis whic h

require sp eculativ e parallelism, unless sp eci�cally stated otherwise. Managing general sp ecula-

tiv e parallelism is not a problem whic h is sp eci�c to functional languages (compare sp eculativ e

parallelism with garbage collection for instance).

CHAPTER 2. P ARALLEL MA CHINES 15

2.4 Distributed mac hines: task and data placemen t

The dominan t parallelism managemen t issues for distributed mac hines are task and data place-

men t. Although suc h mac hines are not the sub ject of this thesis, sev eral in teresting ideas, whic h

ha v e b een prop osed, are discussed in this section.

2.4.1 ZAPP

The ZAPP pro ject fo cussed on divide and conquer algorithms [25]. This restriction mean t that

a run-time heuristic w as su�cien t to e�ectiv ely con trol task and data placemen t. Initially a

program w as loaded on to a single pro cessor. T asks w ere pro duced and these w ere subsequen tly

stolen b y neigh b ouring pro cessors. Th us tasks di�used from the original ro ot pro cessor. This

ensured a reasonable degree of lo calit y for divide and conquer algorithms' tasks.

2.4.2 Sark ar's system

Sark ar [100] has in v estigated the automatic partitioning and sc heduling of programs at compile-

time. This w as p erformed with SISAL programs from whic h static net w orks of tasks w ere

extracted. Th us, the programmer has no con trol o v er lo calit y or gran ularit y . SISAL is a �rst

order single assignmen t language. The actual partitioning and sc heduling is p erformed on GR,

a graphical represen tation of SISAL or an y other �rst order language. GR do es not express a

program's seman tics, instead it con tains estimates of a program's p erformance c haracteristics.

These estimates include the program's parallelism, execution time, comm unications costs and

sync hronisation p oin ts. GR is limited in the kind of parallelism it can express since it is in tended

for compile-time analysis.

Complemen ting GR is a p erformance mo del of the target mac hine. This con tains information on

pro cessor execution times, sc heduling and comm unications o v erheads. Algorithms are used for

partitioning (splitting a program in to tasks) and sc heduling at compile-time. These algorithms

try to optimise the mapping of a GR program represen tation on to particular mac hine mo del.

Sark ar's system p erforms w ell for static programs where computation do es not v ary m uc h for

di�eren t inputs. It is unsuitable for programs whose computation is v ery input dep enden t. Since

static analysis of higher order languages is m uc h harder than for �rst order languages; it is also

unsuitable for these.

2.4.3 Caliban

P aul Kelly has prop osed an extension to Miranda to supp ort the explicit mapping of tasks

to pro cessors, called Caliban [70]. The programmer sp eci�es a static net w ork of tasks whic h

are mapp ed on to a distributed mac hine, rather lik e o ccam [75]. In Caliban, function de�nitions

ma y b e augmen ted with clauses sp ecifying task placemen ts, where tasks corresp ond to functions.

Net w orks of stream-pro cessing functions ma y b e constructed whic h are statically mapp ed on to

a lo osely-coupled arc hitecture. These connection sp eci�cations are written in a functional st yle;

ho w ev er a formal seman tics for them has y et to b e de�ned. Th us task sizes and task lo calit y are

completely determined b y the programmer.

CHAPTER 2. P ARALLEL MA CHINES 16

2.4.4 P ara-functional programming

P ara-functional programming has b een devised b y Hudak [54]. Essen tially , a dynamic net w ork of

tasks is sp eci�ed b y the programmer. This is dynamically mapp ed on to a computer's arc hitecture

at run-time. Annotations in a program are used to sp ecify that certain expressions constitute

tasks and that they should b e ev aluated in parallel. They also are used to sp ecify particular

pro cessors on whic h expressions (tasks) should b e ev aluated. This pro cessor addressing ma y b e

absolute or relativ e, for example: exp $on left($self) means that exp should b e ev aluated

on the pro cessor to the left of the curren t pro cessor. A seman tics for Hudak's para-functional

language is describ ed in [51] (the original seman tics as giv en in [54] is erroneous).

Just as with Caliban, lo calit y and task gran ularit y is completely determined b y the programmer.

This strategy encompasses all programs whic h can b e written in Caliban. It is w ell suited to

problems with a regular structure. Ho w ev er for problems with an irregular task distribution,

an adaptiv e run-time heuristic ma y b e b etter. F or example it is di�cult to e�cien tly map an

irregular tree of tasks (unkno wn at compile-time) on to an arc hitecture, using explicit task place-

men t instructions. This sc heme has not y et b een implemen ted and there are man y remaining

questions; for example what happ ens if m ultiple tasks are mapp ed on to the same pro cessor?

2.4.5 Concurren t CLEAN

The Nijmegen group are in v estigating the distributed implemen tation of a functional language,

based on graph rewriting [111]. The in termediate language they use, Concurren t CLEAN, has

annotations to denote sequen tial and parallel ev aluation. The no v el part of their approac h is

language annotations to con trol graph cop ying. When a task is created, its graph m ust b e copied

on to another pro cessor. Cop ying is the norm and annotations determine ho w m uc h graph should

b e copied b y prev en ting the cop ying of graph they annotate. As a general rule only graph in

WHNF should b e copied. These annotations do not strictly prev en t cop ying, rather they defer

cop ying un til the graph b ecomes ev aluated. Once ev aluated, graph whose cop ying has b een

deferred, is copied. These annotations allo w the creation of arbitrary pro cess net w ork top ologies

and they supp ort sync hronous and async hronous pro cess comm unication. They claim that suc h

cop ying con trol is necessary for e�cien t distributed implemen tation.

2.5 Shared memory mac hines: GRIP

GRIP is a shared memory MIMD mac hine [92]. As previously men tioned task and data place-

men t on shared memory mac hines are not as imp ortan t as on distributed mac hines. Th us

task and data placemen t on shared memory mac hines, suc h as GRIP , are usually p erformed b y

run-time heuristics.

An imp ortan t feature of GRIP is that it uses an evaluate-and-die task mo del [91]. This means

that sparking an expression do es not reserv e the expression for ev aluation b y the new task;

the expression will b e ev aluated b y the �rst task requiring its v alue. This mec hanism tends to

coalesce tasks and hence it can increase the gran ularit y of parallelism. This is discussed further

in Section 6.3.1.

CHAPTER 2. P ARALLEL MA CHINES 17

In addition GRIP discards sparks once it b ecomes loaded b ey ond a certain limit; this prev en ts

the mac hine from b ecoming
o o ded with tasks.

2.6 Sc heduling: Eager's result

F or run-time sc heduling to w ork w ell a program's p erformance m ust not b e to o dep enden t up on

sc heduling. This section describ es some w ork whic h determines conditions under whic h this

holds.

Eager et al. [36] ha v e analysed the p erformance of parallel programs running on a mac hine with

run-time sc heduling. Their results are quite abstract; they pro vide b ounds on the p erformance

of a parallel program using only a few simple measures.

Some terms are no w de�ned. Sp e e dup is de�ned to b e the ratio of sequen tial execution time to

parallel execution time for a program run on an n -pro cessor mac hine. Th us the b est p ossible

sp eedup for a program run on an n -pro cessor mac hine is n (linear sp eedup). The measure used to

c haracterise parallel programs is their aver age p ar al lelism ; this has sev eral equiv alen t de�nitions,

including: the sp eedup giv en an un b ounded n um b er of pro cessors, and the a v erage n um b er of

pro cessors that are busy during the execution of a parallel program, with an un b ounded n um b er

of pro cessors a v ailable. The former measure is used in some p erformance analyses in Chapter

8. The latter measure is used in the exp erimen tal sim ulator, Chapter 4.

The follo wing result has b een used a great deal in this thesis:

2.6.1 Eager's sp eedup theorem

Let A b e the a v erage parallelism of a program and let S (n) b e the sp eedup with n pro cessors.

Then for an y w ork-conserving sc heduling discipli ne:

S (n) �

n � A

n + A � 1

A w ork-conserving sc heduling discipline is one that nev er lea v es idle a task that is eligible for

execution when there is a pro cessor a v ailable. The assumed target mac hine do es ha v e a w ork-

conserving sc heduling discipline ; ho w ev er GRIP do es not, since it ma y discard sparks (tasks).

A simple corollary of this is that if A � n then a go o d sp eedup will result. Th us a program

is w ell suited to run on an n -pro cessor mac hine with run-time sc heduling if A � n . If it is not

the case that A � n then sc heduling b ecomes m uc h more imp ortan t and an explicit sc heduling

discipline is desirable. In general explicit sc heduling is not practical, except in the extreme case

when no sc heduling needs to b e p erformed. That is, when a static net w ork of tasks are statically

mapp ed one-to-one on to a mac hine's pro cessors. When this o ccurs the follo wing usually holds:

A � n . Ho w ev er as previously men tioned the sub ject of this thesis is mainly MIMD mac hines

with run-time sc heduling; therefore it is required that A � n . Notice that to obtain a go o d

sp eed-up there m ust b e man y more tasks than pro cessors. This con tends with the parallelism

managemen t issue of not sw amping the mac hine with tasks.

CHAPTER 2. P ARALLEL MA CHINES 18

2.7 The target mac hine

The assumed target mac hine for all programs in this thesis is a MIMD shared memory one,

an idealisation of GRIP [92]. It is assumed that task and data placemen t are p erformed b y

the mac hine's run-time system. Th us no task or data placemen t information is sp eci�ed b y

programs. Most imp ortan tly it is assumed that an ev aluate-and-die task mo del is used; ho w ev er

unlik e GRIP no sp arks ar e disc ar de d . Therefore all that programs need to sp ecify is: what

to sp ark ? Throughout this thesis, unless otherwise stated, this will b e the target mac hine.

Ho w ev er, remarks will also b e made on the implications of discarding sparks, lik e GRIP do es.

Chapter 3

P arallel functional programming

This c hapter describ es a particular approac h to parallel functional programming. An y parallel

programming language m ust b e based on certain assumptions ab out the underlying mac hine.

The in tended target mac hine for programs in this thesis is describ ed in the previous c hapter.

The philosoph y b ehind m y approac h to parallel programming with functional languages has

b een to �nd the minim um necessary to write e�cien t parallel functional programs for the target

mac hine. In particular it w as desired to reliev e the programmer from as m uc h parallelism

organisation as p ossible, whilst not relying on an y as y et unpro v en compile-time analyses. The

underlying assumptions of m y approac h to parallel functional programming ma y b e summarised

th us:

� The programmer m ust devise a parallel program and annotate it to indicate whic h expres-

sions are suitable for parallel ev aluation.

� The target mac hine is assumed to b e an MIMD one with a shared memory . T ask and data

placemen t are p erformed b y its run-time system. Th us the programmer is resp onsible for

addressing the question what to sp ark ? but not where or when to execute tasks.

� No automatic partitioning, sc heduling, parallelisation or task placemen t is p erformed b y

the compiler. Rather the programmer and run-time system are resp onsible for p erforming

these tasks.

It is argued that automatic detection of parallelism using strictness analysis is not su�cien t alone

to pro duce e�cien t parallel programs. F urthermore it is argued that the explicit expression of

parallelism is in an y case v ery desirable.

After describing the parallel functional language and arguing for the explicit expression of par-

allelism, parallel algorithms and programming paradigms are discussed. It is sho wn that func-

tional languages are w ell suited to implemen ting some algorithms but not others. In particular

functional languages cannot express non-deterministic algorithms.

19

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 20

3.1 A parallel functional language

This section describ es ho w the functional language is extended so it can express parallel al-

gorithms. T o ac hiev e this a parallel and sequen tial com binator are used. The seman tics and

op erational b eha viour of these com binators are discussed. Lastly , an algebraic tec hnique for

remo ving some redundan t sparks is presen ted.

3.1.1 A parallel com binator

It is necessary to express in programs what to spark. New syn tax, suc h as annotations, could b e

added to the language, but for simplicit y and econom y of concepts a parallel com binator (par)

is used:

> par :: * -> ** -> *

par a b = b

Informally , par sparks its �rst argumen t and returns its second argumen t. It is the only source

of parallelism in the language. T asks are only ev aluated to WHNF; greater ev aluation ma y b e

ac hiev ed b y using m ultiple par s to ev aluate the comp onen ts of data structures. A b ene�t of

ha ving a parallel com binator is that no c hanges to the fron t end of a compiler are necessary ,

since par ma y b e treated as a function syn tactically and seman tically . (An alternativ e metho d

for expressing parallelism, due to Burn, is describ ed in Section 3.2.3.)

A t ypical parallel expression migh t ha v e the form: (par e1 . par e2 . � � � . par en) exp .

The meaning and ev aluation of the expression ha v e b een separated: the meaning is exp and all

the expressions e1 through to en are spark ed. Other com binators could ha v e b een c hosen, for

example a parallel apply com binator; ho w ev er par w as found to b e the easiest to use.

What should the seman tics and op erational b eha viour of par b e? There are sev eral alternativ es:

1. The par com binator could b e strict in its �rst argumen t: par ? x = ? . Op erationally

par x y sparks x and then ev aluates y . The application par x y is only o v erwritten with

the v alue of y when x has completed. This is necessary to ensure strictness. The problem

with this b eha viour is that it is o v erly-sync hronous and it do es not p ermit pip elined par-

allelism. F or pip elined parallelism with lists, an expression lik e par h (par t (h:t)) is

required to return the cons v alue b efore the ev aluation of h and t ha v e completed. This

cannot happ en with this particular v ersion of par .

2. The par com binator could b e non-strict in its �rst argumen t: par ? x = x. Op era-

tionally par x y m ust spark x and then return y . Ho w ev er since x ma y not terminate,

parallelism ma y b e sp eculativ e. As previously men tioned sp eculativ e parallelism is v ery

general but v ery di�cult to implemen t, see Section 2.3.

3. The meaning of par could b e non-deterministic; that is par ? x ma y b e ? or x. This

b eha viour arises from most practical implemen tations of par b ecause sc heduling is not

usually fair. In suc h cases, if x blo c ks then it is p ossible for non-terminating tasks to

prev en t x from ev er b eing resumed, esp ecially if ? creates man y non-terminating tasks.

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 21

The second option is c hosen for the meaning of par , that is par x y = y . Ho w ev er par will b e

implemen ted non-deterministically , as p er the third option. This implemen tation of par is not

generally v alid for all uses of par , but it do es mean that par ma y b e e�cien tly implemen ted,

and it will not needlessly constrain parallelism.

Tw o op erationally di�eren t par s are discussed, b oth of whic h b eha v e non-deterministically . It

is assumed that unless otherwise stated all programs and results in this thesis use a par whic h

always sparks its �rst argumen t. In addition the GRIP implemen tation of par , whic h ma y

or ma y not spark its �rst argumen t is discussed. When the GRIP implemen tation of par is

discussed it will b e referred to b y phrases suc h as \if a GRIP-lik e spark discarding strategy is

used".

In order for the non-deterministic implemen tations of par to resp ect the seman tics of par , the

w a y in whic h par is used m ust b e constrained. In particular it m ust b e ensured that the �rst

argumen t of par is de�ned, unless the result, the second argumen t, is unde�ned. This par

constrain t ma y b e form ulated th us:

F or all applications of par x y , the follo wing m ust hold: x = ?) y = ? .

The latter condition is just a reform ulation of strictness; this is explained in Section 3.2.1.

This represen ts a constrain t on ho w par ma y b e used. If this constrain t is met then the non-

deterministic implemen tations of par will resp ect par 's seman tics.

The constrain t on ho w par ma y b e used can either b e a pro of obligation for programmers using

par , or it can b e v eri�ed mec hanically using, for example, a strictness analysis (see Section

3.2.1). Alternativ ely if par s are automatically placed then this constrain t m ust alw a ys b e met.

F or example the par s in the follo wing t w o programs do not satisfy the constrain t:

> funny1 = f 0

> where f n = par (f (n+1)) n

In order for funny1 to b e a v alid program the par in it m ust satisfy the constrain t. Ho w ev er

the expression f (n+1) do es not satisfy the par constrain t. Th us the par in funny1 do es not

satisfy the constrain t and hence funny1 is not a v alid program.

> funny2 = par (error "FAIL") "OK"

The error function is similar to b ottom: it causes the program to b e ab orted, and its �rst

argumen t to b e output. Th us since "OK" de�nitely terminates, this par also do es not satisfy the

constrain t.

In [40] it w as recognised that t w o forms of parallelism annotation are required: one for function

de�nitions and one for function applications. These ma y b oth b e expressed using par . F or

example a function f x = exp whic h should spark its argumen t ma y b e written:

> f x = par x exp

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 22

An application app = g exp whose argumen t exp should b e spark ed ma y b e written:

> app = par e (g e)

> where e = exp

In b oth cases the par constrain t m ust b e satis�ed.

3.1.2 A sequen tial com binator

In addition to par a sequen tial com binator, seq , is needed. The seq com binator is strict in b oth

argumen ts; op erationally , it ev aluates its �rst argumen t to WHNF, then discards it and returns

its second argumen t.

> seq :: * -> ** -> **

seq x y = y , if x 6= ?

= ? , if x = ?

A t �rst it seems curious that a sequen tial com binator is needed for expressing parallel ev aluation.

There are three reasons for needing seq . Firstly for strict op erators whose order of argumen t

ev aluation m ust b e c hanged. F or example (assuming left to righ t argumen t ev aluation) consider:

: : : par x (if cond then seq y (x+y) else seq z (x-z)) : : :

The un-spark ed v ariables in the arithmetic expressions m ust b e ev aluated b efore trying to ev al-

uate the spark ed v ariables. Otherwise ev aluation migh t blo c k on the spark ed v ariables and

parallelism will b e lost. If the ev aluation order of strict op erators is sp eci�ed then some, but

not all, seq com binators ma y b e remo v ed; for example with left to righ t ev aluation, the example

ab o v e ma y b e rewritten:

: : : par x (if cond then y+x else seq z (x-z)) : : :

Secondly , seq ma y b e used for ev aluating data structures `further' than WHNF. The par com bi-

nator can b e used in place of seq but sometimes this is not desirable b ecause the tasks pro duced

are to o small to b e useful. F or example a parallel map for binary trees:

> bintree * ::= Node (bintree *) (bintree *) |

> Leaf *

> treemap f (Leaf x) = seq res (Leaf res) where res = f x

> treemap f (Node l r) = par ml (par mr (Node ml mr))

> where

> ml = treemap f l

> mr = treemap f r

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 23

The seq ensures that the application f x is p erformed b efore it is required (demanded). If the

seq w as omitted ev aluation of treemap w ould stop at Leaf s. The seq could b e c hanged to a

par ; this migh t impro v e p erformance b y allo wing pip elined parallelism to o ccur. Ho w ev er it

could also b e detrimen tal, since it could create man y small tasks. Dep ending up on the con text

in whic h treemap w as used it migh t not b e necessary to spark b oth ml and mr .

Thirdly , sometimes it is desirable to guaran tee ev aluation. This can b e useful for a GRIP-st yle

system where par s ma y not spark their �rst argumen ts. F or example consider the treemap

function ab o v e, a lik ely b eha viour for GRIP is this: initially GRIP will not discard sparks,

then once it b ecomes loaded with tasks, it will discard sparks. When sparks are discarded then

the results of previously spark ed tasks will b e (Node ml mr) where ml and mr are unev aluated

closures. It w ould b e far b etter for ml and mr to b e ev aluated alb eit sequen tially .

This can b e ac hiev ed b y using a new form of par , de�ned using par and seq , newpar :

> newpar x y = par y (seq x y)

The newpar com binator is strict in b oth argumen ts. It has the adv an tage o v er par that there

is no constrain t on ho w it ma y b e used. This is b ecause the par in newpar alw a ys satis�es the

par constrain t b ecause the �rst argumen t to par , y , is alw a ys ev aluated b y seq .

The treemap function ma y b e rewritten:

> treemap f (Leaf x) = seq res (Leaf res) where res = f x

> treemap f (Node l r) = newpar ml (newpar mr (Node ml mr))

> where

> ml = treemap f l

> mr = treemap f r

The problem with using newpar , or putting seq s directly in to treemap , is that pip elined paral-

lelism is prev en ted. Eac h Node constructor is not built un til b oth ml and mr ha v e b een ev aluated.

Th us, none of the result of treemap will b e returned un til the whole result has b een ev aluated.

F or this reason newpar is not used. In Section 9.1 this and some other dra wbac ks of using par

and seq com binators to explicitly express parallelism are discussed.

The seq com binator is not a new idea. It has b een used in sequen tial functional languages for

con trolling ev aluation order, for example to con trol functions' input and output b eha viour.

3.1.3 Remo ving redundan t parallelism

Sometimes it is p ossible to remo v e redundan t sparks, whic h ma y ha v e b een inadv erten tly in-

serted in to programs. This ma y b e p erformed b y using algebraic reasoning, whic h ensures only

redundan t par s are remo v ed. As an example consider Quic ksort:

> qsort [] = []

> qsort (e:r) = (par qlo . par qhi) (qlo ++ (e:qhi))

> where

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 24

> qlo = qsort [x| x<-r; x<e]

> qhi = qsort [x| x<-r; x>=e]

All par applications in qsort satisfy the par constrain t; since if either qlo or qhi is unde�ned

then the whole result m ust also b e unde�ned.

There is some redundan t sparking in this function since only one task need b e spark ed p er

recursion. This can b e remo v ed, and it can b e guaran teed that it is safe to do so, b y using some

algebraic reasoning.

The follo wing rules preserv e meaning and op eration, pro viding the par s satisfy the par con-

strain t. Idemp otency and the app end rule reduce the n um b er of tasks whic h are spark ed, whilst

main taining the same parallel p erformance.

par x . (par y . par z) = (par x . par y) . par z asso ciativit y

par x . par y = par y . par x comm utativit y

par x . par x = par x idemp otency

par l (l ++ m) = l ++ m ++ rule

These rules ma y b e pro v ed using the tec hniques outlined in Section 8.3. Note that, these rules

do not preserv e op erational b eha viour if par is giv en a GRIP-lik e implemen tation whic h ma y

discard sparks.

The second qsort equation ma y b e simpli�ed th us:

(par qlo . par qhi) (qlo ++ (e:qhi))

= (par qhi . par qlo) (qlo ++ (e:qhi)) b y par comm utativit y

= par qhi (par qlo (qlo ++ (e:qhi))) comp osition def. (preserv es parallelism)

= par qhi (qlo ++ (e:qhi)) b y ++ rule

Hence qsort ma yb e rewritten:

> qsort [] = []

> qsort (e:r) = par qhi (qlo ++ (e:qhi))

> where

> qlo = qsort [x| x<-r; x<e]

> qhi = qsort [x| x<-r; x>=e]

3.2 Implici t expression of parallelism

Programming languages used for programming parallel computers ma y roughly b e divided in to

t w o t yp es, dep ending up on whether they express parallelism explicitly or not. Languages without

explicit parallelism expression either w ere not in tended for parallel ev aluation, or they w ere

designed to ha v e implicit parallelism extracted from them. The b est example of the former are

the so-called `dust y-dec k' F ortran programs. These are F ortran programs whic h w ere originally

written for a sequen tial computer and whic h subsequen tly ha v e b een mec hanically analysed to

extract parallelism. Although there has b een some success with extracting parallelism from

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 25

`dust y-dec k' programs mostly this has only b een �ne-grained parallelism resulting from lo cal

`innermost' computations. In particular DO lo ops op erating elemen t-wise o v er arra ys; suc h

computations are common in scien ti�c programs. This is reasonable for SIMD mac hines suc h

as v ector pro cessors, but for MIMD mac hines a m uc h larger grain of parallelism is required.

This needs a more sophisticated global analysis of programs whic h is m uc h more di�cult to do.

Often suc h large-grain parallelism simply is not presen t.

Most declarativ e languages con tain no explicit expression of parallelism ev en if they are in-

tended for parallel ev aluation. The in ten tion is that implicit parallelism should b e mec hanically

extracted from programs. Ho w ev er, almost all imp erativ e languages designed for programming

parallel mac hines do ha v e explicit parallelism expression, for example Ada and o ccam. This is

b ecause it is generally m uc h more di�cult to iden tify parallelism in programs written in these

languages.

It has b een said that: functional programs are \inheren tly" parallel, for example in [44]. Ho w-

ev er, this is blatan tly un true! P arallelism is inheren t in an algorithm not in the language in

whic h an algorithm is expressed. Sequen tial and parallel algorithms ma y b e written in b oth

functional and imp erativ e languages. A simple example of a sequen tial algorithm in a functional

language is:

> f n l = foldl (-) n l

The function f subtracts all the elemen ts of l from n . The functional dep endencies are suc h that

eac h subtraction m ust o ccur in sequence. A parallel algorithm ma y b e obtained b y transforming

this one.

> f n l = n - fold (+) l

The elemen ts of l are added together and then they are subtracted from n . The fold function

need not sp ecify an y sequencing of additions. In realit y a sp ecial represen tation of lists ma y b e

required, for example balanced trees. This parallelism relies on the asso ciativit y and comm uta-

tivit y of plus (min us has neither prop ert y). Reductions and parallelism are discussed further in

Section 5.3.

A common b elief is that strictness analysis ma y b e used to parallelise functional programs. The

idea is to ev aluate a function's strict argumen ts in parallel. In the follo wing sections strictness

analysis will b e describ ed and it will b e explained wh y it is not su�cien t to pro duce e�cien t

parallel programs. In the last section, Burn's ev aluation transformers will b e discussed; these

are an attempt to alleviate some of the problems whic h result from using strictness analysis to

determine parallelism. Of great imp ortance is the desired goal; this is not to pro duce parallel

programs. The goal is to pro duce e�cien t fast programs; parallelism is not sough t for its o wn

sak e!

3.2.1 Strictness analysis

Strictness analysis is a mec hanical pro cedure for determining whether a function is strict or not.

A function f is strict if and only if:

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 26

f ? = ?

The relev ance of strictness analysis to parallel ev aluation

1

is that if only functions' strict ar-

gumen ts are ev aluated in parallel then the resulting parallelism will b e conserv ativ e. This is

b ecause strict functions require their argumen ts v alues

2

. Strictness also satis�es the par con-

strain t (see Section 3.1.1). There are t w o basic forms of analysis suitable for strictness analysis:

forw ards analysis, usually an abstract in terpretation [21 , 62], and bac kw ards analysis [59 , 117].

Da vis surv eys the area strictness analysis in [33]. Strictness analysis using these t w o tec hniques

will no w b e brie
y describ ed.

Abstract in terpretation in v olv es the abstraction of a language's standard v alues to abstract ones.

Abstract v alues appro ximate standard ones. Ev aluation ma y b e p erformed with abstract v alues

to yield appro ximate results. These appro ximation are arranged to b e safe (under appro xima-

tions) to the standard results. Th us a function will only b e determined strict if it really is

strict. This safet y is pro v en via a formalisation of the relationship b et w een standard and ab-

stract v alues. Abstract in terpretation is a forw ards analysis b ecause it is p erformed in the usual

ev aluation direction using abstract functions and v alues.

F or example, all ground v alues migh t b e represen ted b y the abstract v alues 1 and 0, represen ting

p ossibly de�ned and de�nitely unde�ned v alues resp ectiv ely . Then the abstraction of op erators

lik e plus, whic h is strict in b oth argumen ts, will b e the and function. That is, the result of plus

is only de�ned if b oth of its argumen ts are de�ned. T o determine whether a function is strict,

its abstract v alue is applied to 0. If the result of the application is 0 then the function is strict;

this is the same as the de�nition of strictness giv en ab o v e.

Bac kw ards analysis uses con texts whic h represen t the amoun t of information needed b y an

expression. Essen tially bac kw ards analysis in v olv es the propagation of a con text for an expression

in to its sub-expressions. F or strictness analysis, bac kw ards analysis addresses the question: if

an expression o ccurs in a strict con text then in what con text do its sub-expressions o ccur? F or

example if e1+e2 o ccurs in a strict con text, then b oth e1 and e2 also o ccur in strict con texts.

Th us the analysis pro ceeds bac kw ards in to expressions sub-comp onen ts.

Both abstract in terpretation and bac kw ards analysis ha v e some problems coping with certain

features of functional languages. These are summarised b elo w:

higher order: forw ards analysis w orks for higher order functions [21]. Ho w ev er bac kw ards

analysis has really only b een applied to �rst order functions, though a p ossible extension

is giv en in [59].

p olymorphism: there has b een some progress on b oth abstract in terpretation and bac kw ards

analysis of p olymorphic functions [3, 60, 61]; ho w ev er there are still some remaining prob-

lems.

data structures: forw ards analysis cannot analyse all the patterns of data structure strictness

that bac kw ards analysis can.

1

Strictness analysis can also b e used to impro v e the e�ciency of sequen tial programs.

2

Except in degenerate cases lik e f = �x: ? whic h fail to terminate an yw a y .

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 27

In general, when it can b e used, bac kw ards analysis giv es more information than forw ards

analysis. P erhaps the biggest problem with b oth analyses is that of cost. Both forw ards and

bac kw ards analyses generate recursiv e functions whic h m ust b e solv ed (�xp oin ts found). A t

presen t calculating �xp oin ts is v ery costly [28].

3.2.2 Strictness analysis and parallelism

It is true that strictness analysis ma y �nd some expressions in a functional program whic h can

b e ev aluated in parallel. Ho w ev er there are sev eral problems in v olv ed with trying to do this.

Firstly , strictness analysis is only appro ximate and therefore it will not alw a ys b e able to detect

expressions whic h ma y b e ev aluated in parallel. This is particularly true for data structures, for

whic h man y complex patterns of strictness are p ossible.

Secondly , some expressions ma y b e to o small to b e w orth ev aluating in parallel. F urthermore

ev aluating small expressions in parallel ma y b e detrimen tal to programs' p erformance. T o

analyse this automatically some form of complexit y analysis is needed. This can b e used to

determine the complexit y of an expression and hence whether it is large enough to b e a task.

The complexit y of an expression is lik ely to b e dep enden t on its input data; in this case a

run-time test for task candidacy m ust b e made. In general this is extremely di�cult to do.

Thirdly , some shared expressions ma y b e spark ed more than once. The r e-sp arking of expres-

sions can consume mac hine resources and hence b e detrimen tal to p erformance. Ev aluation

transformers (describ ed in the next section) or an ev aluation analysis, suc h as [16], can prev en t

some re-sparking; ho w ev er, these b oth ha v e costs asso ciated with them.

Some of these e�ciency issues, suc h as task size, are in v estigated in Chapter 6. Th us strictness

analysis m ust b e com bined with sev eral other analyses in order for it to extract useful parallelism

from functional programs. T o illustrate these and other p oten tial problems consider Quic ksort:

> qsort :: [num] -> [num]

> qsort [] = []

> qsort (e:r) = qsort (fillo r) ++ (e:qsort (filhi r))

> where

> fillo = filter (<e)

> filhi = filter (>=e)

This function will b e used as an example to sho w the information giv en b y strictness analysis.

F or simplicit y only the top lev el expression of the second equation will b e analysed, whic h

consists of monot yp ed �rst order function applications.

The follo wing con texts will b e used to describ e strictness: L and S will represen t lazy and strict

con texts for in tegers. A lazy con text means that an expression ma y or ma y not b e ev aluated to

WHNF. A strict con text is one in whic h an in teger expression will b e ev aluated to WHNF. F or

lists of in tegers, the con texts HT, T, S, and L will represen t: head and tail strict, tail (spine)

strict, strict (to WHNF) and lazy , resp ectiv ely . Belo w are tables represen ting ho w con texts ma y

b e propagated. These tables sho w the degree to whic h a function's argumen ts ma y b e ev aluated,

giv en that the function application o ccurs in a certain con text.

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 28

qsort

con text arg1

L L

S HT

T HT

HT HT

fillo / filhi

con text arg1

L L

S S

T HT

HT HT

++

con text arg1 arg2

L L L

S S L

T T T

HT HT HT

:

con text arg1 arg2

L L L

S L L

T L T

HT S HT

F or example in a tail strict con text (T) an application of fillo will b e head and tail strict (HT)

in its argumen t.

Assuming that an application of qsort o ccurs in at least a strict con text (L), the top lev el

applications of the second qsort equation can b e lab elled th us:

@

H T

(@

H T

++ (@

H T

qsort (@

H T

fillo r))) (@

H T

(@

S

: e) (@

H T

qsort (@

H T

filhi r)))

Notice ho w small the original expression is and ho w man y annotations ha v e b een generated (the

�lter functions ha v e not b een sho wn!). W orse still, in general functions will ha v e man y di�eren t

annotations according to the con text in whic h they o ccur. Th us man y function v ersions ma y b e

required.

The problem with these annotations is that man y of them are redundan t with regards to paral-

lelism, and di�eren t op erational in terpretations ma y b e giv en to them. The annotations could b e

in terpreted as indicating the amoun t of parallel ev aluation p ossible; for example HT could mean

that all a lists elemen ts ma y b e ev aluated in parallel. Equally , annotations could b e in terpreted

as meaning the amoun t of sequen tial ev aluation p ossible (call b y v alue ev aluation). F or example

the parallel in terpretations of @

H T

and @

S

are sho wn b elo w:

@

H T

f l = ht f l

@

S

f x = s f x

> ht f l = par (p l) (f l)

> where

> p [] = ()

> p (x:xs) = par x (p xs)

> s f a = par a (f a)

Th us the qsort expression could b e v alidly transformed to:

ht (ht (++) (ht qsort (ht fillo r))) (ht (s (:) e) (ht qsort (ht filhi r)))

Ho w ev er this expression generates man y redundan t tasks; that is man y tasks are generated whic h

do little or no ev aluation. Pro ducing redundan t tasks ma y greatly imp ede a mac hine. T asks

consume storage and they require comm unication resources if ev aluated on another pro cessor.

A GRIP-lik e mac hine whic h emplo ys dynamic con trol of task n um b ers, will discard tasks once

it b ecomes hea vily loaded. If a mac hine b ecomes loaded with redundan t tasks crucial parallel

tasks ma y b e discarded. A more op erationally e�cien t transformation w ould b e:

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 29

s ((++) (qsort (fillo r))) ((ss (:) e) (qsort (filhi r)))

Where:

> ss f a = seq a (f a)

This do es not generate redundan t tasks, although it still do es generate some v ery small tasks for

example qsort [] . This problem is discussed further in Chapter 6. Pro ducing to o man y tasks

and pro ducing to o small tasks is a real problem, for example see [39]. This demonstrates that

transforming an expression in to an op erationally e�cien t parallel one requires m uc h more than

just strictness information. Either additional complex analyses or man ual help are required.

As a further example consider the �lter expressions in qsort ; since �lter is used in a head and

tail strict con text (HT), these �lterings could b e p erformed in parallel:

> parfilter :: (*->bool) -> [*] -> [*]

> parfilter p [] = []

> parfilter p (x:xs) = par rest l

> where

> l = x:rest, p x

> = rest, otherwise

> rest = parfilter p xs

Ho w ev er, for most MIMD mac hines this gran ularit y of parallelism (the size of tasks whic h

are pro duced) will b e to o small. The tasks whic h are pro duced will not b e w orth ev aluating

in parallel. Nev ertheless they will consume storage and comm unication resources, and for a

GRIP-lik e mac hine whic h discards tasks, they ma y prev en t other more w orth y tasks from b eing

ev aluated.

3.2.3 Ev aluation transformers

Burn has prop osed ev aluation transformers to solv e some of the problems with using strictness

analysis to determine parallelism [18 , 19, 20, 71]. Ev aluation transformers solv e the problem

that di�eren t amoun ts of ev aluation ma y b e p ossible in di�eren t con texts. F or example in the

con text of sum exp all the elemen ts of the list exp ma y b e ev aluated in parallel. In the con text

of # exp only the spine of the list ma y b e safely ev aluated; this yields no parallelism and hence

should b e done sequen tially . F or a �rst order language the di�eren t con texts in whic h expressions

o ccur ma y b e statically determined. Ho w ev er for a higher order language, the con texts in whic h

expressions o ccur ma y b e data dep enden t and hence not statically determinable. F or example

consider the apply function:

> apply f a = f a

The con text in whic h the second argumen t to apply o ccurs, that is the amoun t of ev aluation

whic h ma y b e p erformed on the second argumen t, dep ends on the �rst argumen t. In general

this can only b e determined dynamically; if this is not done parallelism ma y b e lost.

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 30

Ev aluation transformers propagate ev aluators. Ev aluators are similar to the strictness con texts

and parallel functions (ht and s) of the previous section. Ev aluators and rules for propa-

gating (transforming) them are deriv ed b y an abstract in terpretation. Some ev aluators ma y

b e statically determinable, whilst others ma y need to b e dynamically determined at run-time.

Propagating ev aluators dynamically at run-time giv es more information and hence p oten tially

more parallelism than only utilising statically determinable ev aluators. Ho w ev er there is an

implemen tation o v erhead asso ciated with propagating ev aluators at run-time. Only utilising

statically determinable ev aluators yields less information and hence p oten tially less parallelism

than propagating them at run-time. Ho w ev er there is no implemen tation o v erhead asso ciated

with static ev aluators. In addition, if ev aluators are propagated at run-time and program graph

no des are mark ed with ev aluators, some re-sparking ma y b e prev en ted.

A similar e�ect to ev aluation transformers ma y b e ac hiev ed b y just using par and seq . F unctions

ma y b e giv en an extra parameter whic h corresp onds to an ev aluator. These ev aluator argumen ts

can b e passed b et w een functions and transformed as necessary . F or example the papply function

b elo w is parameterised so that in di�eren t con texts it ma y ev aluate its second argumen t to

di�eren t degrees:

> papply f e a = par (e a) (f a)

> pl [] = ()

> pl (x:xs) = par x (pl xs)

Th us if apply w as applied to a h yp er-strict function on lists of in tegers, f , the follo wing apply

function could b e used: papply f pl exp . This w ould ev aluate all the elemen ts of the list

exp in parallel. It seems di�cult to implemen t ev aluation transformers, in their full general-

it y , using this metho d. If ev aluation con texts w ere expressed in this w a y then those suc h as

papply f pl exp whic h are statically determinable, could b e sp ecialised using partial ev alua-

tion. This w ould remo v e the need, in some expressions, to propagate ev aluators, just as o ccurs

with Burn's statically determinable ev aluation con texts.

The prev en tion of re-sparking cannot b e e�cien tly ac hiev ed using par and seq since this requires

graph no des to b e mark ed with ev aluators. These no de markings m ust b e up dated when a no de

is ev aluated b y an ev aluator. Ho w ev er it ma y b e p ossible to ac hiev e this e�ect at compile time b y

p erforming some manipulation of expressions; see for example Section 3.1.3, where an algebraic

metho d for remo ving some redundan t par s is presen ted.

Ev aluation transformers are unpro v en. It is unclear whether ev aluators are capable of capturing

enough forms of parallel ev aluation, esp ecially for di�eren t data structures, to b e useful. In

order to use ev aluation transformers in their full generalit y an implemen tation suc h as describ ed

b y Burn in [19] is probably necessary . Ho w ev er for a more limited use of ev aluation transformers

seq and par ma y b e su�cien t.

If ev aluation transformers are incorp orated in to a run-time system, then they can prev en t some

re-sparking, whic h could not b e prev en ted b y using just par and seq . Ho w ev er, neither ev alua-

tion transformers nor par and seq can prev en t the creation of all small tasks.

Ev aluation transformers w ere originally designed to b e used with programs con taining implicit

parallelism. It ma yb e p ossible to use ev aluators for explicitly expressing parallelism in a similar

w a y to par and seq . Ho w ev er this thesis in v estigates ho w w ell a simpler approac h w orks.

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 31

3.3 Explicit expression of parallelism

The previous section has argued that just using strictness analysis to determine the parallelism

in programs, is unlik ely to pro duce e�cien t parallel programs. This section argues that it is

in an y case p ositiv ely desirable to express parallelism explicitly . In the con text of the parallel

functional language previously presen ted, the explicit expression of parallelism means that par s

and seq s should b e inserted in to programs b y the programmer. The on us is on the programmer

to pro v e that applications of par satisfy the par constrain t (the par pro of obligation).

Notice that b y requiring parallelism to b e expressed explicitly the original adv an tages of using

functional languages generally , and sp eci�cally for programming parallel computers, ha v e b een

retained: there is still no need to sp ecify comm unications, and deadlo c k is not a problem.

Burton, Hudak and the Nijmegen group ha v e also prop osed explicit parallelism expression [22 ,

54 , 111]. Ho w ev er their main aim w as to program distributed mac hines and th us to address

lo calit y issues, rather than what to spark, whic h this thesis addresses. Hughes has also suggested

explicit concurrency; ho w ev er his main aim w as to reduce the space usage of functional programs

[58]. His || com binator is an in�x v ersion of the par com binator used here.

3.3.1 A scenario

There are are comp elling reasons to b eliev e that explicit parallelism expression is desirable.

Programming in all its forms, from con v en tional programming through to sophisticated program

deriv ation, consists of re�ning a high lev el problem sp eci�cation (p ossibly in the programmers

head) to an executable algorithm. The parallel programmer m ust ultimately pro duce a parallel

program and this is, not surprisingly , a ma jor consideration in the programs design.

Without explicit parallelism expression one can imagine the follo wing programming scenario: a

programmer designs a parallel functional program for a parallel mac hine. Throughout the algo-

rithms dev elopmen t, parallelism has b een upp ermost in the programmers mind. The resulting

program is fed in to a compiler. The compiler then carefully analyses the program to r e-disc over

the programmers parallelism. It is eviden t from this that the programmer should kno w where

the parallelism is in their program but cannot comm unicate this to the compiler. Most lik ely

the programmer will commen t v arious parts of the program with their in ten tions lik e \ev aluate

elemen ts of the list xyz in parallel". Unfortunately the programmer can but hop e that the

compiler will disco v er this parallelism.

Of course a compiler ma y disco v er more parallelism than a programmer in tended, but this is

sheer luck and I do not b eliev e in programming b y luc k! When writing parallel programs, parallel

ev aluation is not just a desirable optimisation that a compiler ma y disco v er; it is a fundamen tal

prop ert y of programs.

3.3.2 P arallelism declaration

Lac k of parallelism do cumen tation or lac k of explicit parallelism expression could result in

a programmer (or compiler) un wittingly remo ving parallelism. This ma y arise b ecause of-

ten m uc h more e�ciency is ac hiev able with a sequen tial algorithm on a sequen tial mac hine

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 32

than with a parallel algorithm on a sequen tial mac hine. F or example for accum ulate (also

kno wn as scan or parallel pre�x), an algorithm exists whic h on a parallel mac hine with n pro-

cessors has O(ln n) time complexit y . The same algorithm if run sequen tially has has com-

plexit y O(n ln n). Ho w ev er a simple O(n) purely sequen tial algorithm do es exist. Th us,

a programmer or a compiler migh t inadv erten tly transform the parallel algorithm to the se-

quen tial algorithm. This w ould result in a m uc h more sequen tially e�cien t algorithm at the

exp ense of remo ving all parallelism. The p erformance of accum ulate is discussed further in

Section 8.2.3.

This destro ys the idea that a computer ma y b e regarded as a blac k b o x whic h a programmer

kno ws nothing ab out. The programmer and compiler m ust b oth kno w what is in the b o x, at

least whether it is a parallel or sequen tial mac hine, and the program m ust express this to o.

Another example illustrating this p oin t is sorting. On a sequen tial mac hine the t w o main issues

in c ho osing a sorting algorithm are the input size and its distribution (ho w sorted the input is

lik ely to b e). F or a parallel mac hine these are imp ortan t to o, but also the n um b er of pro cessors

compared to the input size is imp ortan t. If the n um b er of pro cessors is large then a parallel

sort lik e bitonic merge sort (see for example [93]) ma y b e appropriate. Ho w ev er, eac h individual

pro cessor should execute a more e�cien t sequen tial sorting algorithm since bitonic merge sort is

not an e�cien t sequen tial algorithm. The parallel algorithm should b e used to distribute w ork

across pro cessors, eac h of whic h do es e�cien t sequen tial sorting. Again this is discussed further

in Section 8.2.3.

A further p oin t supp orting the case for explicit parallelism expression is related to a more

general functional language problem. When functional languages are said to b e `declarativ e'

what is really mean t is that they are declarativ e in meaning; that is programs declare the v alues

whic h they compute. One could argue that imp erativ e languages are declarativ e to o. They are

declarativ e op erationally , b ecause they declare ho w to compute v alues (not what the v alues are).

There ha v e b een t w o approac hes to functional languages' lac k of op erational sp eci�cation, whic h

leads to ine�cien t implemen tation and mak es reasoning ab out their op eration di�cult. The �rst

approac h is to dev elop analyses to extract the required op erational information automatically ,

for example strictness analysis and in-place-up d ate analysis. The second approac h is to augmen t

functional languages with explicit op erational information. One horrible extreme of this is ha ving

assignmen t, lik e in ML. The other extreme are extensions to functional languages whic h do not

compromise them: for example W adler's linear t yp e system [116]. The parallelism extensions I

prop ose, par and seq , do not unduly compromise functional languages.

3.4 Algorithm classes and programming paradigms

This section describ es parallel algorithm classes and parallel programming paradigms. In par-

ticular the suitabilit y of the parallel functional language to these classes and algorithms, is

discussed. Quinn's classi�cation of algorithms is explained and the di�cult y of expressing cer-

tain algorithms is highligh ted. The last t w o sections discus t w o parallel programming paradigms;

b oth are suited to parallel functional programming.

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 33

3.4.1 Quinn's algorithm classi�cation

Quinn in his b o ok [93] describ es a useful classi�cation of parallel algorithms for MIMD mac hines:

partitioned: these algorithms divide a problem up in to sub-problems whic h are solv ed in par-

allel. All sub-problems are solv ed using the same pro cedure. The sub-problem solutions

are com bined to form the problem solution; divide and conquer algorithms are t ypical

partitioned algorithms. In general partitioned algorithms are v ery sync hronous and hence

they are sometimes termed sync hronous algorithms.

pip elined: these algorithms consist of a sequence of tasks, eac h of whic h solv es a di�eren t

problem. The task are connected so that the output of one task feeds the input of another

task. This t yp e of parallel algorithm giv es an increased thr oughput o v er a sequen tial

algorithm. An example of a pip eline d algorithm is a parallel compiler where all the phases

are p erformed in parallel: lexing, parsing, co de generation and co de optimisation are all

separate tasks. Sync hronisation in a pip elined algorithm is implicit and arises b et w een

pro ducers and consumers of data.

relaxation: these algorithms are also termed async hronous or non-deterministic algorithms.

They are c haracterised b y b eing able to w ork with the most recen tly a v ailable data. Th us

task sync hronisation is minimised. Relaxation algorithms ma y b e similar to partitioned

or pip eline d algorithms; the k ey p oin t is their abilit y to w ork with di�eren t amoun ts of

information ab out the problem b eing solv ed. Man y relaxation algorithms require some

form of sp eculativ e parallelism. An example of a relaxation algorithm is the parallel

union-�nd algorithm, describ ed in [93]; this ma y b e used to solv e man y graph problems.

Ban^ atre et al. ha v e a discipli ne of programming based on relaxation algorithms [8]. These

are sp eci�ed as non-deterministic rewriting systems.

Often algorithms con tain parts from di�eren t classes of parallel algorithms. F or example, the

top lev el an algorithm ma y b e expressed as a pip elin ed algorithm; ho w ev er, individual tasks in

the pip eline ma y b e partitioned algorithms. A signal pro cessing algorithm ma y t ypically ha v e

this structure.

An y functional language ma y naturally express partitioned parallel algorithms, suc h as divide

and conquer algorithms. F or example a function for summing the lea v es of a binary tree

(treesum) ma y b e written th us:

> bintree * ::= Node (bintree *) (bintree *) |

> Leaf *

> treereduce f (Leaf x) = x

> treereduce f (Node l r) = par ll (par rr (f ll rr))

> where

> ll = treereduce f l

> rr = treereduce f r

> treesum = treereduce (+)

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 34

The pro of obligation asso ciated with par means that treereduce is v alid program if f is strict

in b oth argumen ts or if f is total and the input tree is completely de�ned.

T o express pip elin ed algorithms a functional language m ust ha v e non-strict data structures, for

example streams. (This is a rarely-men tioned adv an tage of lazy languages o v er strict ones.)

Pip elined algorithms rely on ev aluation with only partial information. A consumer task (func-

tion) m ust b e able to do some ev aluation with only partial information (for example part of a

list) pro duced b y some pro ducer task.

The siev e of Eratosthenes for generating all the prime n um b ers less than one thousand is an

example of a pip elined algorithm:

> primes = par (forcespine sp) sp

> where

> sp = sieve [2..1000]

> sieve [] = []

> sieve (p:nos) = par (forcespine filtnos) (p:sieve filtnos)

> where

> filtnos = filter pred nos

> pred n = n mod p ~= 0

> forcespine [] = []

> forcespine (x:xs) = forcespine xs

Since sp in primes is completely de�ned, the par in primes satis�es the par constrain t. The

sieve function o ccurs in at least a tail strict con text, hence the par in sieve also satis�es the

par constrain t.

This program uses sieve to successiv ely �lter m ultiples of prime n um b ers from a list of the

�rst thousand n um b ers. Eac h prime n um b er �ltering is p erformed in parallel. Th us consecutiv e

sieve op erations form a pip eline. The program is expressed so that it ma y form part of a

pip eline; primes b ecome a v ailable as they are generated. Notice ho w forcespine is used to

force eac h �ltering; this is required b ecause par only ev aluates its �rst argumen t to WHNF.

This is another example of where sequen tial ev aluation is needed in a parallel program. (A

parallel �lter w ould ha v e pro duced to o small tasks.) This algorithm is quite complex; often

pip elined algorithms are more complex than partitioned ones. A sim ulator/debugger is useful

for debugging the p erformance of suc h algorithms (see Section 8.6).

Relaxation algorithms are inheren tly problematical for functional languages due to their non-

determinism. F unctional languages are inheren tly deterministic b ecause expressions denote

unique v alues. The theoretical implications to programming language seman tics of non-

determinism ha v e b een widely studied, for example [102]. Some in teresting practical solutions

to the problem ha v e b een prop osed b y: Burton (impro ving v alues), John Hughes (sets) and

LeM � eta y er (gamma mo del). Chapter 7 discusses these prop osals and a limited form of non-

deterministic construct is prop osed for functional languages. Section 9.1.1 also discusses some

more ideas concerning non-determinism.

The implemen tation di�cult y of algorithm classes correlates with their amoun t of sync hronisa-

tion. P artitioned algorithms are easy to implemen t in an y language; pip elined algorithms are a

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 35

little harder to implemen t. Relaxation algorithms, assuming they can b e expressed, are hard to

implemen t; in particular detection of termination can b e non-trivial, see Section 7.6.2 and [8].

Also in correlation with the sync hronisation of the v arious algorithm classes, is the di�cult y

of reasoning ab out algorithms p erformance. The p erformance of partitioned algorithms is rela-

tiv ely easy to reason ab out. Pip elined algorithms are harder to reason ab out. In Section 8.3 a

seman tics to formalise reasoning ab out pip elined parallelism is presen ted. The p erformance of

relaxation algorithms is notoriously hard to reason ab out; often this is b ecause the p erformance

of relaxation algorithms is unpredicatable!

3.4.2 Carriero and Gelern ter's paradigm

Carriero and Gelern ter in [26] presen t three parallel programming metho ds based on three

conceptual classes of parallelism. These classes of parallelism roughly corresp ond to the three

classes of algorithm previously describ ed. The conceptual classes are:

result parallelism: with this class of parallelism eac h task pro duces one piece of the result.

This corresp onds closely to the class of partitioned algorithms.

sp ecialist parallelism: here eac h task p erforms one sp eci�c kind of activit y . This corresp onds

closely to the class of pip eline d algorithms.

agenda parallelism: a global agenda is k ept and eac h task p erforms an op eration according to

the curren t agenda. This paradigm has similarities with the relaxation class of algorithms.

With eac h of the ab o v e conceptual classes of parallelism there are three asso ciated parallel

programming metho ds:

liv e data structures: here data structures are transformed b y tasks in to a result data struc-

ture.

message passing: this st yle in v olv es the splitting of a problem in to its logical parts; resulting

tasks comm unicate using message passing. Th us tasks are sp ecialised.

distributed data structures: this lies b et w een the extremes of liv e data structures and mes-

sage passing. A group of data ob jects and tasks exist. T asks can p erform man y activities

on data ob jects. T asks activ ely lo ok for data ob jects on whic h to p erform a giv en activit y .

Data ob jects ma y b e shared, whic h is ho w tasks comm unicate.

T o explain these three metho ds of parallel programming, an example is used (tak en from [26]).

Consider a naiv e n-b o dy sim ulator. On eac h iteration of the sim ulation, forces b et w een all

ob jects are calculated and the new ob ject p ositions are determined. The liv e data structure

solution to the problem consists of a matrix represen ting ob jects and their p ositions. A function

to calculate a new matrix of p ositions is de�ned. This function implicitly creates tasks to

determine the new p osition of eac h ob ject from the old matrix of ob ject p ositions.

The message passing approac h en tails sim ulating eac h ob ject with a task. Th us there is a logical

connection b et w een tasks and the problem b eing solv ed. Eac h task computes a single ob ject's

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 36

curren t p osition throughout the sim ulation. A t the start of eac h iteration, pro cesses inform eac h

other of their curren t ob ject p ositions. E�ectiv ely eac h task mo dels an ob ject.

The distributed data structure approac h concen trates on an agenda of activities to b e p erformed.

Eac h task computes the new p osition of an ob ject. Th us tasks rep eatedly lo ok for ob jects and

calculate their new p ositions. A master task can b e used to ensure that tasks calculate new

p ositions in the correct order.

The metho dology is to determine whic h conceptual class of parallelism is naturally suited to the

problem b eing solv ed. Then an algorithm is written using the asso ciated programming metho d.

If the algorithm is ine�cien t or not suited to the arc hitecture b eing used, it is transformed to a

b etter one. This transformation ma y c hange the algorithm to use a di�eren t st yle of parallelism.

The pap er [26] discusses the relationships b et w een the three programming st yles in terms of

data and tasks; with this information transformation of an algorithm b et w een st yles is p ossible.

T o demonstrate that this metho dology can b e used for functional programs, the problem of

generating all the primes less than n will b e considered. There are t w o natural w a ys to solv e this

problem. The �rst w a y is to use message passing. This solution uses the siev e of Eratosthenes,

see Section 3.4. A pip eline of siev es are used to generate the primes; eac h siev e sp ecialises in

one prime. The second natural w a y to solv e this problem is with liv e data structures. This

paradigm in v olv es eac h task transforming a data structure in to a result data structure. Starting

with an initial list of n um b ers from 2 to n eac h n um b er ma y b e tested in parallel to determine

primalit y . A n um b er is prime if no prime less than or equal to its ro ot divides it exactly . This

algorithm ma y b e enco ded th us:

> prim ((p,sqrp):ps) x = [], x mod p = 0

> = [(n,n*n)], sqrp > n

> = prim ps n, otherwise

> pflatmap f [] = []

> pflatmap f (x:xs) = par rest (f x ++ rest)

> where

> rest = pflatmap f xs

> primes' = (2,4) : pflatmap (prim primes') [3..n]

> primes = map fst primes'

Using the seman tics of par it can b e pro v en that for the the con text in whic h pflatmap o ccurs in

primes' , the rest v alue in pflatmap is completely de�ned. Th us the par in pflatmap satis�es

the par constrain t.

In [26] a distributed data structure algorithm is dev elop ed from a Linda v ersion of the ab o v e

algorithm. Rather than just testing a single n um b er for primalit y eac h task tests the primalit y

of n um b ers within an in terv al. This increases the gran ularit y of parallelism; similar tec hniques

are describ ed in Chapter 6. A shared p oin ter indicates the next in terv al of n um b ers whic h

m ust b e tested. T asks non-deterministicall y access this p oin ter to get an in terv al of n um b ers to

test. Eac h task incremen ts the p oin ter to the next blo c k of n um b ers to b e tested. This is quite

a lo w lev el algorithm and is di�cult to implemen t in a functional language, due to the non-

determinism. A simple w a y is to c hange the de�nition of parflatmap to increase the gran ularit y

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 37

of tasks whic h are generated.

In general distributed data structure algorithms can only b e written in functional languages suc h

that tasks ha v e a deterministic sc hedules of op erations to p erform. F or example in a functional

v ersion of this distributed data structure algorithm, it w ould b e necessary to sp ecify whic h task

w ould test whic h in terv al of n um b ers. Sometimes this is acceptable but it can often mean that

an algorithm is considerably slo w er than a comparable non-deterministic algorithm.

3.4.3 Cole's algorithmic sk eletons

Murra y Cole has prop osed the use of algorithmic sk eletons for expressing parallel algorithms [29].

Essen tially these are abstractions represen ting generic parallel algorithms. He describ es sev eral

sk eletons whic h ma y b e used to express a v ariet y of parallel algorithms. In a functional language

the algorithmic part of a sk eleton corresp onds to a higher order function [30]. Some example

higher order functions whic h express algorithmic sk eletons are sho wn later. The sk eletons Cole

describ es express a selection of algorithms from all the previously men tioned algorithm classes.

There are three reasons wh y algorithmic sk eletons aid programming; all these stem from param-

eterised design. Firstly a library of sk eletons means less w ork for a programmer. If a sk eleton

can b e used, only bits of a program relev an t to the particular instance of the algorithm need

b e written: the parameters of the algorithm sk eletons. Secondly if static task placemen t is

p erformed a general placemen t sc heme ma y b e devised for sk eletons; th us placemen t only need

b e calculated once. F or complicated algorithms a parameterised placemen t sc heme ma y b e re-

quired. Thirdly for some algorithmic sk eletons their complexit y (p erformance) ma y only require

analysing once. Th us a form ula ma y b e constructed whic h expresses an algorithm's parallel

complexit y as a function of its parameterised parts' complexities, for example see Section 8.2.2.

Algorithmic sk eletons are useful for all t yp es of programming; ho w ev er giv en the additional

problems of designing parallel algorithms they seem particularly useful.

Another adv an tage of parallelism abstractions (algorithmic sk eletons) is that they factor out

parallelism; th us prev en ting programs from b ecoming cluttered with par s. Lots of par s dis-

tributed throughout a program can obscure its meaning and op eration. This is no new problem

sp eci�c to par and its standard solution is abstraction. Th us function abstractions ma y b e used

to express common patterns of parallel computation; just as they are used to express common

patterns of sequen tial computation.

As previously men tioned the implemen tation of par is not fully general; th us par can only b e used

in certain con texts. This m ust b e ensured b y the programmer via the pro of obligation asso ciated

with par . When parallelism abstractions are constructed using par s, par pro of obligations carry

o v er to the abstractions. Th us parallelism abstractions usually ha v e pro of obligations asso ciated

with them.

F or example a com binator to ev aluate the elemen ts of a list in parallel:

> parlist :: (*->**) -> [*] -> [*]

> parlist f l = par (p l) l

> where

> p [] = ()

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 38

> p (x:xs) = par (f x) (p xs)

The �rst argumen t to parlist f l is a function whic h is used to force the ev aluation of eac h

elemen t of the list. The pro of obligation asso ciated with parlist is: f m ust alw a ys b e total

and in addition either the elemen ts of l m ust b e de�ned as far as f will ev aluate them, or the

strictness con text in whic h parlist o ccurs m ust b e at least that implied b y f on list elemen ts.

F or example a list of lists of in tegers (exp) could b e fully ev aluated in parallel b y:

> l :: [[num]]

> l = parlist (parlist id) exp

> id x = x

The pro of obligation amoun ts to: either exp m ust b e totally de�ned or l m ust b e used in a

h yp er-strict con text.

A selection of other parallelism abstractions whic h ha v e b een found useful is sho wn b elo w.

P arallel apply:

> pap :: (*->**) -> * -> **

> pap f a = par a (f a)

The pro of obligation is: either a m ust not b e unde�ned or f m ust b e strict.

A conditional parallel com binator:

> condpar :: bool -> * -> ** -> **

> condpar c = par, c

> = seq, otherwise

The pro of obligation is the same as par , either the second argumen t to condpar m ust not b e

b ottom or if the second argumen t is b ottom then so m ust b e the third argumen t.

A parallel �lter:

> parfilter :: (*->bool) -> [*] -> [*]

> parfilter p [] = []

> parfilter p (x:xs) = par rest l

> where

> l = (x:rest), p x

> = rest, otherwise

> rest = parfilter p xs

The pro of obligation for parfilter is: either p m ust b e total and all the list elemen ts m ust b e

de�ned as far as p ev aluates them, or the strictness of the con text in whic h parfilter is used

m ust b e at least as great as that implied b y p .

A general parallel map:

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 39

> parmap :: (*->**) -> (***->*) -> [***] -> [*]

> parmap ff f l = parlist ff (map f l)

The pro of obligation for parmap is: ff m ust b e total, and either all the list elemen ts m ust b e

de�ned as far as ff ev aluates them, or the strictness of the con text in whic h parmap is used

m ust b e at least as great as that implied b y ff .

A general parallel
atmap:

> parflatmap :: ([*]->**) -> (***->[*]) -> [***] -> [*]

> parflatmap ff f [] = []

> parflatmap ff f (x:xs) = par rs (par (ff r) (r ++ rs))

> where

> r = f x

> rs = parflatmap ff f xs

The pro of obligation for parflatmap is: ff m ust b e total, and either all the list elemen ts m ust

b e de�ned as far as ff ev aluates them, or the strictness of the con text in whic h parflatmap is

used m ust b e at least as great as that implied b y ff .

Although man y of these abstractions op erate on lists similar abstractions ma y b e de�ned for

trees and other data structures. If parallelism abstractions are used extensiv ely then there is

a danger of re-sparking. One solution to this is for an implemen tation to mark program graph

no des with the degree to whic h they ha v e b een ev aluated, as men tioned in Section 3.2.3.

A more general and more complex parallelism abstraction is a divide and conquer com binator:

> divconq :: (*->(*,*)) -> (**->**->**) -> (*->bool) -> (*->**) -> * -> **

> divconq div comb isleaf solve =

> f where

> f x = solve x, isleaf x

> = par sprob1 (par sprob2 (comb sprob1 sprob2)), otherwise

> where

> (p1,p2) = div x

> sprob1 = f p1

> sprob2 = f p2

The div function divides a problem in to t w o smaller sub-problems. The results of sub-problems

are com bined using comb . The isleaf function tests whether a problem can b e solv ed directly

and solve solv es a small problem directly .

The pro of obligation for divconq is: either comb m ust b e strict in b oth argumen ts or all functions

m ust b e total and the input m ust b e completely de�ned.

F or example the treesum function in Section 3.4 ma y b e written th us:

> treesum = divconq div (+) leaf solve

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 40

> where

> div (Node l r) = (l,r)

> leaf (Leaf x) = True

> leaf (Node l r) = False

> solve (Leaf x) = x

This satis�es the pro of obligation since + is strict in b oth of its argumen ts.

Sequen tial abstractions can b e useful to o, for example:

> seqlist f [] = ()

> seqlist f (x:xs) = seq (f x) (seqlist xs)

This sequen tially forces the ev aluation of a list; the degree to whic h elemen ts are ev aluated is

determined b y the function f .

Using parallel abstractions also means that sophisticated abstractions for certain arc hitectures

ma y b e designed. F or example e�ciency issues relev an t to a particular arc hitecture ma y b e

incorp orated in to the abstractions; this is discussed in Chapter 6. Th us abstractions also mak e

programs more p ortable and free the programmer from kno wing some arc hitectural details.

Cole used algorithmic sk eletons to express (non-functionally) some relaxation algorithms. One

approac h to the problem of expressing suc h algorithms in a functional language is to pro vide

the programmer with sev eral relaxation algorithm sk eletons as primitiv es. These abstractions

could b e implemen ted non-deterministically , and there w ould b e pro of obligations asso ciated

with them to ensure that their results w ere deterministic. This is discussed further in Section

9.1.1.

3.5 Conclusions

It has b een said that functional languages are inheren tly parallel; ho w ev er, it has b een sho wn

here that this is not the case. This is further supp orted b y the results of Chapter 8.

Man y p eople ha v e prop osed strictness analysis as a metho d of parallelising functional programs.

Here it has b een argued that strictness analysis is not su�cien t for pro ducing e�cien t parallel

programs, and this has b een demonstrated b y an example. The results of Chapter 6 also supp ort

this claim. F urthermore it has b een argued that it is highly desirable to explicitly express

parallelism in programs. T o accomplish this a simple parallel functional language has b een

dev elop ed. Usually parallel ev aluation need only b e sp eci�ed in a few places within a program.

F or e�ciency it is desirable to remo v e redundan t sparks from programs. This ma y b e ac hiev ed

b y using algebraic reasoning. In particular la ws are used whic h preserv e programs op erational

b eha viour and meaning. This has b een demonstrated b y an example.

Sev eral paradigms for writing parallel programs ha v e b een prop osed b y others. It has b een sho wn

ho w these paradigms are suitable for use with the parallel functional language. In particular the

use of parallelism abstractions is adv o cated, and throughout this thesis they are used. Although

CHAPTER 3. P ARALLEL FUNCTIONAL PR OGRAMMING 41

the functional language ma y express sev eral di�eren t forms of parallel algorithm it cannot express

non-deterministic algorithms.

Chapter 4

The exp erimen tal set-up

A sim ulator w as used to test, v erify and exp erimen t with parallel functional programs. This ga v e

information on a program's run time b eha viour, including: the execution time and the a v erage

parallelism.

An alternativ e to using a sim ulator w ould ha v e b een to use a real implemen tation, whic h w ould

ha v e giv en `real' results. Ho w ev er, apart from the lo cally-a v ailable mac hine, GRIP , not b eing `up

and running' at that time, there w ere t w o reasons for fa v ouring a sim ulator. Firstly , a sim ulator

can yield more abstract results than a real mac hine. Results from a sim ulator will b e less lik ely

to b e a�ected b y sp eci�c asp ects of a particular implemen tation and hence they will b e more

applicable to a v ariet y of implemen tations. Also abstract results are easier to in terpret than

those from a real mac hine. Secondly , generating run time statistics from a sim ulator is m uc h

easier than extracting them from a real implemen tation.

4.1 The sim ulators

Tw o sim ulators w ere written; the �rst w as written in LML, a functional language, and the second

w as written in P ascal

1

. The sim ulators b oth w ork in the same w a y; whic h is no w describ ed.

The sim ulators use concurren t in terpreters to sim ulate parallel ev aluation. They b oth op erate

on FLIC programs [90]. FLIC is essen tially a sugared lam b da calculus, with lo cal de�nitions

and e�cien t data structure op erations. FLIC programs are pro duced from LML programs via

an LML compiler. Th us although programs are sho wn in a Miranda st yle throughout this thesis,

they w ere translated in to LML in order to run them. (LML w as not used for exp osition due

to its v erb osit y .) The ev aluation mec hanism used b y the in terpreters is sup ercom binator graph

reduction. This is p erformed on lam b da-lifted FLIC, pro duced from the LML compiler. F or an

excellen t description of sup ercom binator graph reduction see [88].

What of parallelism? The in terpreters sim ulate the parallel graph reduction whic h is describ ed

in Section 1.3.2. It w as desired to ha v e as abstract results as p ossible; therefore it is assumed

that only r e ductions tak e an y time to p erform and that ev ery reduction tak es unit time, despite

reductions ha ving di�eren t sizes in realit y . No o v erheads whic h w ould o ccur on a real mac hine,

1

This w as based on a sim ulator written b y Phil T rinder, to whom I am grateful.

42

CHAPTER 4. THE EXPERIMENT AL SET-UP 43

suc h as comm unications, blo c king and resuming, w ere sim ulated: the sole activities of in terest

w ere reductions.

P arallel graph reduction w as sim ulated b y in terlea ving concurren t reductions. T o implemen t this

the in terpreters main tained a queue of tasks. During ev ery mac hine cycle (time unit) eac h task

p erformed a single reduction. By limiting the task queue size di�eren t n um b ers of pro cessors

could b e sim ulated.

4.1.1 The LML in terpreter

The �rst v ersion of the in terpreter w as written, purely functionally , in LML; unfortunately this

had to b e abandoned for reasons of e�ciency , whic h will b ecome apparen t. The basic part of the

in terpreter, an ev aluation function, w as written in a con tin uation passing st yle. Eac h task w as

represen ted as an ev aluation con tin uation. Applying a task to the program graph resulted in a

new graph and a new con tin uation. These represen ted the c hange in state of the graph and task,

after p erforming one reduction. Single reductions, p erformed b y eac h task, w ere in terlea v ed to

sim ulate concurrency . The graph w as essen tially a store whic h w as implemen ted b y a binary

tree. This lead to the follo wing ine�ciencies:

� slo w access time to graph no des. This w as due to ine�cien t no de addressing and tree

tra v ersal o v erheads.

� part of a new tree (graph) had to b e constructed after eac h reduction: no destructiv e

up date could really b e implemen ted

� space-leak age caused b y laziness; for an explanation of this phenomena see [89].

The last problem w as partially cured b y enforcing the strictness of the binary tree graph repre-

sen tation. This w ould ha v e b een m uc h easier if strict data structures could ha v e b een de�ned.

The latter t w o problems mean t that the in terpreter used to o m uc h space to b e practical. Nev-

ertheless writing the LML program w as v ery enjo y able. Also, in retrosp ect, debugging the LML

sim ulator of correctness errors pro v ed m uc h easier than debugging the P ascal program. This

w as despite not ha ving an y debugging to ols for the LML program and ha ving used a windo w

based debugger (db x) for the P ascal program.

The LML program w ould ha v e b een viable if the follo wing facilities had b een a v ailable:

1. to ols w ere a v ailable for lo cating space leaks and for generally examining the storage use of

programs.

2. some kind of linear data structures (preferably arra ys) w ere a v ailable, whic h w ere imple-

men ted using destructiv e up dating. F or example the linear logic extensions to functional

languages prop osed b y W adler [116].

A curious result of writing the in terpreter is that I can claim to b e one of the few p eople to

ha v e written a garbage collector in a purely functional language! Also curious is the fact that

the concurren t in terpreter is v ery sequen tial. This is due to the sequen tial threading of the

graph through the ev aluation function, and the exact in terlea ving of tasks' reductions whic h is

sp eci�ed.

CHAPTER 4. THE EXPERIMENT AL SET-UP 44

4.1.2 The P ascal in terpreter

The P ascal in terpreter w as used to generate all the exp erimen tal results sho wn in this thesis.

It is quite ine�cien t, but it can, of course, p erform destructiv e up dating of the program graph.

The imp ortan t design decisions made for the in terpreter, whic h a�ect the exp erimen tal results,

are describ ed b elo w. These are in addition to the basic p olicy of only measuring concurren t

graph reductions.

Tw o new terms are used: useless tasks are de�ned to b e those whic h when run, disco v er that

their graph is either already in WHNF or that another tasks is ev aluating their graph. In either

case suc h tasks are redundan t and ma y b e discarded. A ctive tasks are those tasks whic h actually

run, that is they are not blo c k ed, during a sp eci�ed time unit.

� T ask sc heduling from the global task queue is alw a ys p erformed FIF O. This is only relev an t

when there are more tasks whic h can b e run than there are pro cessors.

� T asks are alw a ys spark ed b y par , they are nev er discarded (unlik e GRIP).

� Before running eac h newly-spark ed task, they are c hec k ed to see if they are in WHNF or

whether another task is already ev aluating their graph. An y tasks for whic h this is true

(useless tasks), are discarded. This c hec king tak es one time unit.

� T asks only mark graph no des once they start to reduce them (lik e GRIP); in particular

when tasks are initially spark ed they do not mark no des. This corresp onds to an ev aluate-

and-die ev aluation mo del. Essen tially an y task can reduce an y redex not already ev aluated

or b eing ev aluated, see Section 2.5 and [91].

� Storage is allo cated in no des and hence store statistics are measured in terms of no de

n um b ers. No des corresp ond to applies, n um b ers, sup ercom binators, constructors etc.

� The output of eac h constructor or atom tak es one time unit.

� No cost is asso ciated with sc heduling.

� FLIC is augmen ted with, primitiv e, par functions. Lik e all other primitiv e functions these

require one time unit to reduce; th us sparking, ev aluating a par , requires on time unit.

In Chapter 7 a bag data structure is prop osed and an implemen tation is sk etc hed. Bags w ere

implemen ted in the P ascal sim ulator to test some of the prop osed ideas. The implemen tation

closely follo ws that describ ed in Chapter 7.

4.2 The LML in terpreter v ersus the P ascal in terpreter

The in terpreters are roughly of the same size, the LML in terpreter is appro ximately 2500 lines

long and the P ascal in terpreter is appro ximately 3000 lines long. The P ascal in terpreter is

appro ximately an order of magnitude quic k er and more space e�cien t than the LML one. Muc h

of the time sp en t running the LML in terpreter is sp en t garbage collecting. Ov erall the LML

in terpreter is more mo dular and more sophisticated than the P ascal one.

CHAPTER 4. THE EXPERIMENT AL SET-UP 45

4.3 The information collecte d and graphs

Tw o forms of information are pro duced from program results: tabular information and graphs.

Unless otherwise stated all results sho wn in this thesis are for sim ulations using an un b ounded

n um b er of pro cessors. This is b ecause suc h results are easy to in terpret, there are no sc heduling

issues, and Eager's result can b e used (see Section 2.6).

The follo wing tabular information is collected (note that all exp erimen tal results sho wn in this

thesis include an y time sp en t outputting an y results, unless stated otherwise):

execution time: this represen ts the execution time with the sp eci�ed n um b er of pro cessors.

a v erage parallelism: this measuremen t indicates the a v erage n um b er of tasks whic h w ere

activ e. When an in�nite n um b er of pro cessors are sim ulated, Eager's result can b e used

with this result.

w ork done: this is the total n um b er of reductions whic h w ere p erformed. If a parallel program

is run on a single pro cessor this w ould b e equal to the execution time.

maxim um no. of tasks: this is the maxim um n um b er of tasks whic h w ere concurren tly activ e

(including the main task and c hec king useless tasks).

total n um b er of tasks: this is the total n um b er of tasks whic h w ere executed (not including

the main task or useless tasks).

a v erage task length: a task's length is the total amoun t of time for whic h it w as activ e, not

including an y time for whic h it w as blo c k ed. Th us the a v erage spark ed task length is

the a v erage total time for whic h tasks w ere activ e (not including the main task or useless

tasks).

the n um b er of useless tasks: the total n um b er of useless tasks w as recorded.

Three t yp es of graph ha v e b een plotted:

parallelism pro�les: these are plots of the n um b er of activ e tasks against time (mac hine cy-

cles). F or some results these graphs con tain a long output `tail' during whic h the result

w as output. Where necessary suc h details are tak en in to consideration.

store pro�les: these are plots of the n um b er of no des in use against time. T o determine the

n um b er of no des in use a garbage collection w as forced b efore eac h sampling. Sometimes

these pro�les are plotted on the same axes as parallelism pro�les.

task length distributions: these are bar c harts sho wing the distribution of task lengths. The

righ t-most bar sho ws all tasks longer than the lab elled length. The main task and useless

tasks do not app ear in these statistics.

T ypically exp erimen tal programs w ere less than 100 lines long and data sets consisted of ap-

pro ximately 1000 elemen ts. This generally yielded an a v erage parallelism of 10 to 500. It w as

usually assumed that tasks with lengths of appro ximately 100 reductions w ere small tasks. T ask

length distribution graphs w ere plotted for the range of tasks lengths 0 to 400 in in terv als of 50.

Chapter 5

Squigol

5.1 In tro duction

Squigol is the p opular name giv en to the Bird-Meertens formalism, a concise mathematical

metho dology for program deriv ation. In essence, Squigol is a functional calculus based on

map and reduce. This c hapter explores ho w Squigol ma y b e used to deriv e parallel functional

programs. Muc h of this c hapter applies existing Squigol w ork to the deriv ation of parallel algo-

rithms. Previously Squigol has only b een used for deriving sequen tial algorithms and hardw are

descriptions.

In some resp ects Squigol is similar to Bac kus's FP [7]; they are b oth algebraic approac hes to

program transformation. Ho w ev er, unlik e FP , Squigol is t yp ed and it is in general more
exible

than FP . Bird and Meertens join tly dev elop ed Squigol and the follo wing references are highly

recommended: [14 , 80]. Man y p eople are curren tly w orking on Squigol and although there is a

consensus on most of Squigol, some asp ects are treated di�eren tly b y di�eren t p eople: notably

non-determinism. Th us Squigol should not b e regarded as a standardised calculus; usually it is

customised to suit the particular class of problems b eing solv ed. Here Bird's
a v our of Squigol

from [14] will b e used.

The next section describ es some basic Squigol; the follo wing section lo oks at the parallel asp ects

of Squigol and �nally three examples are dev elop ed: a parallel shortest paths algorithm, a

parallel n-queens algorithm and a parallel greedy algorithm.

It should b e noted that it is unclear just ho w general Squigol is for sequen tial or parallel program

deriv ation. Ho w ev er, certainly a large class of optimisation algorithms are amenable to deriv ation

using Squigol.

5.2 Basics

This section describ es some basic Squigol concepts. Muc h of what is describ ed is general to

sequen tial and parallel program deriv ation.

A Squigol deriv ation starts with an ine�cien t sp eci�cation. The sp eci�cation is rep eatedly

46

CHAPTER 5. SQUIGOL 47

transformed b y applying algebraic iden tities and theorems, un til an e�cien t algorithm is deriv ed.

Often the initial sp eci�cation and �nal program are quite simple, and the deriv ation is quite

complex. Since programs are deriv ed using algebraic iden tities and theorems, programs will b e

correct with resp ect to the sp eci�cation from whic h they w ere deriv ed. One of the Squigol goals

is to calculate algorithms without using induction.

Lik e FP , the language used for Squigolling is based on com binators. Th us, it is rather lik e

functional programming using com binators as m uc h as p ossible. Unlik e functional programming,

functions are assumed to b e total, to facilitate algebraic manipulation. A consequence of this is

that data structures are �nite. Despite this the language do es not sp ecify an y ev aluation order.

A dra wbac k of this approac h is that the language do es not ha v e a formal seman tics, unlik e

functional programming or FP . In particular deriv ations only guaran tee partial correctness.

Squigol is not ev en necessarily constructiv e; in particular function in v erses ma y b e used to sp ecify

other functions. Also �ctitious v alues ma y b e used, for example 1 and �1 .

The notation used is similar to that of a curried functional language; functions are curried and

comp osition is denoted b y an in�x dot for example f � g . F unction application binds more

tigh tly than other op erators; th us f a
 b is (f a)
 b . Expressions' t yp es ma y b e written in a

straigh tforw ard w a y , for example: if f :: � !
 and g :: � ! � then f � g :: � !
 .

5.2.1 Data structures and homomorphism s

Rather than dev eloping rules for sev eral di�eren t data structures, generic binary structures will

b e considered instead: the Bo om hierarc h y [80]. This is a family of �nite binary structures

(Struct) with the follo wing op erations, for a t yp e � :

empty :: Struct �

unit :: � ! Struct �

join :: Struct � ! Struct � ! Struct �

F or all suc h structures empty is the iden tit y elemen t of join . According to the la ws b esto w ed

up on join , di�eren t data structures result:

join la ws resulting data

asso ciativ e comm utativ e idemp oten t structure

� � �

binary tree

p

� �

list

p p

�

bag (m ultiset)

p p p

set

In algebraic terms the ab o v e op erations and la ws do not fully c haracterise these data structures.

Man y algebras satisfy these op erations and la ws. F or example for sets the follo wing op erations

w ork: empty = false , unit = �x: true and join = or . A full c haracterisation is that eac h instance

of Struct (for example lists) m ust b e initial in that class of algebras. This means that there

exists a homomorphism from the data structure to all other algebras in the same class.

Homomorphisms ma y b e de�ned on these data structures, Struct , th us:

CHAPTER 5. SQUIGOL 48

h empty = 1

h (unit a) = f a

h (join x y) = h x
 h y

for a function f and an op erator
 . The iden tit y elemen t of
 is denoted b y 1

.

In order to mak e sense
 m ust ha v e at least the algebraic ric hness of join and 1

m ust b e

the iden tit y elemen t of
 . F or example the n um b er of elemen ts in a tree, list or bag ma y b e

calculated b y taking: 1

= 0, f a = 1 and
 = +. Ho w ev er the size (cardinalit y) of a set

cannot b e calculated in this w a y since + is not idemp oten t, that is: j A [B j 6 = j A j + j B j .

By ha ving a generic view of the previous data structures general rules applicable to all of them

ma y b e dev elop ed. Ho w ev er to ease reading the con v en tional notations for trees, lists, bags and

sets will b e used, for example: [], [�] and + + will b e used for lists, and fg , f�g and [will b e used

for sets; in place of empty , unit and join . In particular notice that [�] and f�g are functions for

constructing singleton lists and sets. Muc h of the Squigol w ork has concen trated on lists and

these will feature most in the forthcoming text.

Homomorphism are not used directly , rather they serv e as a basis for the calculus of map and

reduce. Map (�) is de�ned th us (for an y Struct):

f � empty = empty

f � (unit a) = unit (f a)

f � (join x y) = join (f � x) (f � y)

Reduce (=) is de�ned th us (for an y Struct):

 = empty = 1

 = (unit a) = a

 = (join x y) = (
 =x)
 (
 =y)

An imp ortan t prop ert y is that ev ery homomorphism on Struct ma y b e factored in to a comp osi-

tion of map and reduce, and vice v ersa. A homomorphism h :

h empty = 1

h (unit a) = f a

h (join x y) = h x
 h y

is equal to: h =
 = � f � .

F or example:

sum = + = for trees, lists and bags

al l p = & = � p � for trees, lists, bags and sets

= + = � (K 1) � for trees, lists and bags

K c x = c

CHAPTER 5. SQUIGOL 49

The function K is used for constructing constan t functions and the function # is the size

function, for example the length function on lists.

There are man y la ws and rules concerning map and reduce. The most imp ortan t rules are called

pr omotion rules. Promotion rules allo w functions to b e transformed without using induction;

whic h is a goal of using Squigol. F or example:

map pr omotion r e duc e pr omotion

f � � + + = = + + = � (f �) �
 = � + + = =
 = � (
 =) �

These rules hold for all data structures in the family Struct . A general rule for promotion of

op erators in to binary structures can b e form ulated although it is not done so here, see [81]. Re-

cen t w ork b y Malcolm has extended the ideas of homomorphism and promotion to an y arbitrary

data structure [76].

5.2.2 Other op erators

This section brie
y describ es some other common op erators, whic h will b e used later in the

examples. There are man y rules whic h relate these op erators and some of these rules will b e

describ ed here.

Notice that for lists reduce do es not sp ecify an y direction of reduction. Nev ertheless, directed

reductions can b e useful for lists. Tw o directions are p ossible: left to righ t reduction (foldl in

functional programming) has the follo wing form: � =!

e

and is de�ned informally:

� =!

e

[a

1

; a

2

; : : : ; a

n

] = ((e � a

1

) � a

2

) � � � � � a

n

and righ t to left reduction (foldr), whic h is de�ned th us:

� =

e

[a

1

; a

2

; : : : ; a

n

] = a

1

� (a

2

� � � � � (a

n

� e))

Directed reductions ma y also b e de�ned without seed starting v alues. Also, they ma y b e de�ned

on bags and sets, but this is not often v ery useful.

Sp ecialisation lemmas exist whic h allo w homomorphisms to b e rewritten as directed reductions,

for example:

Left reduction sp ecialisation lemma :

 = � f � = � =!

e

where a � b = a
 f b and e = 1

Accum ulations ma y b e de�ned on lists. These are usually referred to as scan or pre�x in the

functional programming w orld. Accum ulations are generally directed. They exists with and

without seed starting v alues, as do directed list reductions. Left accum ulate without a seed is

denoted � = =! and de�ned as:

CHAPTER 5. SQUIGOL 50

� = =! [a

1

; a

2

; : : : ; a

n

] = [a

1

; a

1

� a

2

; : : : ; ((a

1

� a

2

) � a

3

) � � � � � a

n

]

Righ t accum ulate without a seed is denoted � = = and de�ned as:

� = = [a

1

; a

2

; : : : ; a

n

] = [a

1

� (a

2

� � � � � (a

n � 1

� a

n

)) ; : : : ; a

n � 1

� a

n

; a

n

]

The McCarth y conditional form is used when manipulation of conditionals is required:

h = (p ! f ; g)

This is equiv alen t to:

h x = f x; p x

= g x; other w ise

Filtering is ac hiev ed b y �lter denoted b y p/ , for example for lists:

p/ = + + = � (p ! [�] ; K []) �

This ma y b e de�ned on trees, lists, bags and sets.

Selection is denoted b y #

f

and "

f

:

a #

f

b = a; f a � f b

= b; f a � f b

The "

f

function is similar. When " or # ha v e no function subscript it is assumed that they

op erate directly on n umeric argumen ts, and they then denote max and min. Fictitious iden tit y

elemen ts for #

f

and "

f

ma y b e used. In an program these v alues often corresp ond to exceptions.

Notice also the delib erate undersp eci�cation of #

f

in the case that f a = f b . Non-determinism

in sp eci�cations is a big issue in Squigol, see [14 , 34 , 80]. It is discussed no further here.

Another useful op erator is cross pro duct �

�

, informally:

[a; b] �

�

[c; d; e] = [a � c; b � c; a � d; b � d; a � e; b � e]

It is de�ned on lists th us:

x �

�

[] = []

x �

�

[a] = f � x where f z = z � a

x �

�

(y + + z) = (x �

�

y) + + (x �

�

z)

This ma y b e de�ned on an y Struct . In particular �

pair

, where p air a b = (a; b), is the cartesian

pro duct function. Cross pro duct is often used where in a functional program list comprehensions

w ould b e used.

CHAPTER 5. SQUIGOL 51

5.3 P arallel Squigolling

The previous section describ ed basic Squigolling whic h has b een predominan tly used for deriv-

ing sequen tial algorithms. Ho w ev er m uc h of the Squigol metho dology applies equally w ell to

parallel algorithm deriv ation. This section discusses asp ects of parallel Squigolling, including

those asp ects suited and unsuited to parallel algorithm deriv ation, an imp ortan t parallel algo-

rithm (parallel pre�x) and a w a y of annotating expressions to mak e their in tended op erational

b eha viour explicit.

5.3.1 Surv ey

Some Squigol researc hers ha v e used Squigol for pro ducing hardw are descriptions (circuits). Cir-

cuits are inheren tly parallel and th us the tec hniques emplo y ed are also suitable for parallel

algorithm deriv ation. F or example Gerain t Jones has pro duced an impressiv e deriv ation of the

fast F ourier transform from a F ourier transform sp eci�cation [64]. Sheeran has a relational

v ersion of Squigol whic h is used for transforming circuit descriptions [104]. By using a rela-

tional Squigol, manipulation of comp onen t connections is simpli�ed, since directionalit y is not

sp eci�ed.

Ho w ev er, m uc h of this w ork is concen trated on VLSI design where connectivit y issues dominate.

The hardw are descriptions whic h are pro duced consist of comp onen t (pro cess) net w orks. This is

�ne for situations where a static mapping of tasks to pro cessors (circuit elemen ts) is considered.

Ho w ev er for the kind of system under consideration here, this is not the case. The static pro cess

net w orks pro duced for hardw are purp oses are more akin to Kelly's Caliban [70] and o ccam than

parallel algorithms designed for dynamic sc heduling mac hines.

5.3.2 Deriving parallel algorithms

P arallel algorithms ma y b e deriv ed in the same w a y as sequen tial algorithms. Th us parallel algo-

rithm deriv ation consists of a sequence of steps during whic h an ine�cien t problem sp eci�cation

is transformed in to an e�cien t algorithm. In general the sp eci�cations used as the starting p oin t

for al l deriv ations are parallel. This is b ecause sp eci�cations should b e as abstract as p ossible

and therefore they should not sp ecify particular ev aluation orders; they should admit man y

di�eren t ev aluation orders. This is certainly true of non-constructiv e sp eci�cations!

Eac h step in a deriv ation consists of applications of algebraic iden tities and theorems. Some

iden tities and theorems used for sequen tial algorithm deriv ation preserv e or impro v e parallel

p erformance, while others do not. The most imp ortan t rules, pr omotion rules , do preserv e

parallel p erformance. (This could b e pro v ed using the p erformance seman tics of Section 8.3.)

Sometimes parallel algorithms can b e deriv ed from parallel sp eci�cations b y a sequence of steps

eac h of whic h successiv ely impro v e the algorithms' parallel p erformance. V ery rarely are parallel

algorithms deriv ed via sequen tial algorithms.

Ho w ev er as explained in Chapter 8 maximal parallelism is not alw a ys sough t from algorithms.

An extreme example w ould b e to solv e an NP complete problem using an exhaustiv e searc h

algorithm; with an in�nite n um b er of pro cessors this w ould ha v e p olynomial complexit y . In

practice mac hines only ha v e �nite n um b ers of pro cessors and therefore sequen tial costs of parallel

CHAPTER 5. SQUIGOL 52

algorithms b ecome imp ortan t to o. Since if the n um b er of concurren tly activ e tasks a program

pro duces exceeds the n um b er of pro cessors a mac hine has, then e�ectiv ely the parallel algorithm

will b e run sequen tially on individual pro cessors. Th us it is necessary to assess a parallel

algorithms sequen tial p erformance in addition to its parallel p erformance.

One w a y to approac h this is: if a parallel algorithms p erformance di�ers greatly from an optimal

sequen tial algorithm then a h ybrid algorithm should b e used. A parallel algorithm should

solv e the problem `across' pro cessors and sequen tial algorithm should b e used on individual

pro cessors. F or example see the p erformance analysis of parallel pre�x in Section 8.2.3. The

parallel and sequen tial parts of a h ybrid algorithm ma y b e indep enden tly deriv ed and then

com bined together. Hybrid algorithms often app ear as parallel programming paradigms where

in terpreters for a problem are run on eac h pro cessor of a MIMD mac hine, for example the

agenda parallelism of Linda [26]. F or man y problems this h ybrid approac h is not required since

a parallel algorithm is quite e�cien t when run sequen tially .

5.3.3 Homomorphism s and divide and conquer algorithms

An imp ortan t asp ect of Squigol with resp ect to parallel algorithms, is its emphasis on homo-

morphisms. Homomorphisms are often go o d parallel algorithms b ecause they corresp ond to a

limited class of divide and conquer algorithms. If a divide and conquer algorithm is describ ed

b y the follo wing sc heme:

D & C p = solve p; le af p

= c ombine (D & C x) (D & C y) ; otherwise

(x; y) = divide p

The applications (D & C x) and (D & C y) can b e ev aluated in parallel.

F or a homomorphism
 = � f � roughly sp eaking f is the solve function, join

� 1

is the divide function

and
 is the c ombine function. A similar observ ation has b een made b y Mou and Hudak [83].

They in v estigated divide and conquer algorithms b y taking an algebraic view, considering general

morphisms b et w een algebras. They w ere in terested in disco v ering ho w general D&C algorithms

w ere and lo oking at their p erformance and comm unication prop erties. As sho wn in Section 8.2.2

not all D&C algorithms are go o d parallel algorithms. Nev ertheless D&C is a v ery useful parallel

programming paradigm.

5.3.4 Represen tation of data structures

Muc h of the w ork on Squigol has concen trated on list data structures. In a parallel setting the

implemen tation of lists, and other data structures, is imp ortan t. In particular the con v en tional

cons cell represen tation of lists only allo ws sequen tial access to lists' elemen ts, whic h can prev en t

parallelism. An exception to this is if an exp ensiv e function is to b e mapp ed in parallel o v er a

list.

List homomorphisms are describ ed th us:

CHAPTER 5. SQUIGOL 53

h [] = 1

h [a] = f a

h (x + + y) = h x
 h y

In order to ev aluate a function lik e length (f = K 1 and
 = +) in parallel, lists should b e rep-

resen ted as balanced binary trees or arra ys. If the com bining function f is su�cien tly exp ensiv e

then a list represen tation ma y b e translated to one more suitable for parallel ev aluation, b efore

application of the homomorphism. Similar represen tation considerations apply to bags and sets.

5.3.5 Directed reductions are sequen tial

Not all of the w ork on Squigol is applicable to parallel algorithm deriv ation. Muc h of the

w ork on Squigol has concen trated on lists and sequen tial list optimisations. In particular the

directed reduction op erators are sequen tial. Directed reductions are often used to optimise

homomorphisms b y making use of their directionalit y: for example the Greedy algorithm in

[13].

An y parallelism whic h ma y b e p ossible with directed reductions ma y b e factored out as a map

th us:

 =!

e

= � =!

e

� f � where a � b = a
 (f b)

(This assumes no parallelism can result from ev aluating the input list; this ma y not b e the case

if expressions are ev aluated lazily .)

As previously men tioned, often homomorphisms are go o d parallel algorithms. Ho w ev er not

all functions on lists are homomorphisms, and directed reductions can express more functions

than homomorphisms can. (The sp ecialisation lemma, previously men tioned, states that all

homomorphisms can b e expressed as directed reductions.) F or example the function pr e�x

whic h tak es the longest initial segmen t of a list satisfying a predicate p ; for example:

pr e�x even [2 ; 4 ; 1 ; 6 ; 8] = [2 ; 4]

Note this pr e�x is not the same as parallel pre�x (scan/accum ulate). A sequen tial pr e�x function

ma y b e de�ned th us:

pr e�x p = � =

[]

where

a � x = [a] + + x; p a

= [] ; otherwise

Ho w ev er pr e�x cannot b e de�ned as a homomorphism on lists and hence parallelised in the

ob vious divide and conquer w a y . The follo wing lemma allo ws some directed reductions to b e

expressed as parallel algorithms b y generalising them:

CHAPTER 5. SQUIGOL 54

P arallel directed reduction lemma :

If: 8 �; � ;
 : � :: � ! � ! �

f :: � ! (�;
)

g :: � ! �

 :: (�;
) ! (�;
) ! (�;
)

(a � b) = fst (f (g a)
 f b)

1

= (e; ?)

? denotes an y v alue and
 is asso ciativ e

Then: � =

e

= fst �
 = � (f � g) �

This lemma ma y b e used to parallelise pr e�x . Although it has b een previously stated that it is

rare to deriv e parallel algorithms from sequen tial algorithms; there are man y existing algorithms

and deriv ations in v olving directed reductions, hence this lemma allo ws some degree of algorithm,

and deriv ation, re-use.

A parallel v ersion of the ab o v e pre�x function ma y b e form ulated th us:

(x; xb)
 (y ; y b) = (x + + y ; y b) ; xb

= (x; false) ; : xb

1

= ([] ; true)

f x = (x; al l p x)

g x = [x] ; p x

= [] ; : p x

h = f � g

The h function ma y b e simpli�ed to yield the follo wing program:

h x = ([x] ; true) ; p x

= ([] ; false) ; : p x

pr e�x p = fst �
 = � h �

The function
 = � h � is a generalisation of pr e�x . The �rst comp onen t of this expression is equal

to pr e�x ; the second comp onen t is a b o olean indicating whether all elemen ts of the list satisfy p

that is snd �
 = � h � = & = � p � . Th us the de�nition of (x; xb)
 (y ; y b) concatenates the pre�xes

of the t w o lists x and y if p holds for all elemen ts of x , that is xb is true.

It is in teresting to note that (? ; false), that is an y pair whose second comp onen t is false, is a left

zero of
 . The v alue z is a left zero of an op erator � if and only if for all x , z � x = z . This

means that parallel ev aluation of
 = can b e cut short when a list elemen t is encoun tered whic h

do es not satisfy p ; since no list elemen ts to the righ t of the elemen t need b e tested. This is a

form of sp eculativ e ev aluation, see Section 2.3.

CHAPTER 5. SQUIGOL 55

F rom this it ma y b e concluded that some of Squigol is orien tated to w ards using sequen tial

optimisations, suc h as directed reductions. Hence some new rules and theorems, lik e the one

ab o v e, are needed for coping with these kinds of situations.

5.3.6 P arallel pre�x (scan)

An imp ortan t algorithm is parallel pre�x (also kno wn as accum ulate and scan) [47]. In this

section a parallel and sequen tial pre�x function (= =!) are de�ned. If
 is asso ciative then
 = =!

ma y b e de�ned b y the homomorphism h b elo w:

 = =! = � = � [�] � where a � b = a + +((l ast a)
) � b

The function last selects the last elemen t of a list; note, for this to w ork, last [] m ust equal 1

. F or

a list of length n on an n pro cessor mac hine this ma y b e ev aluated in O(ln n) time, assuming the

list is represen ted as a balanced binary tree. With one pro cessor this has complexit y O(n ln n) .

Ho w ev er a more e�cien t sequen tial algorithm ma y b e deriv ed:

� = � [�] �

= using the left reduction sp ecialisation lemma

� =!

[]

where a � b = a � [b]

Simplifying a � [b]

= using � def.

a + +((l ast a)
) � [b]

= using map def.

a + + [last a
 b]

Th us, left accum ulate ma y b e expressed as:

 = =! = � =!

[]

where

l � x = l + + [last l
 x]

This is an optimal sequen tial algorithm whic h has complexit y O(n). Th us to implemen t left

accum ulate e�cien tly on a MIMD mac hine a h ybrid parallel and sequen tial algorithm is required.

These complexities are calculated and discussed in Section 8.2.3.

5.3.7 P arallel annotations

Sometimes it is desirable to b e explicit ab out the sequen tial or parallel ev aluation of expressions.

This is to mak e explicit to the reader the in tended ev aluation of an algorithm. One w a y to

CHAPTER 5. SQUIGOL 56

ac hiev e this is to annotate expressions. This is useful for monitoring the parallelism throughout

a deriv ation and to ensure that the deriv ation results in a p erformance impro v emen t. F urther-

more it ma y b e p ossible to construct a seman tics to enable a formal complexit y analysis to b e

p erformed, lik e that in Section 8.3. This w ould require the iden ti�cation of expressions parallel

or sequen tial ev aluation.

P arallel annotations are v ery useful in situations where the parallel ev aluation of an expression

is not ob vious. Often man y expressions ma y b e ev aluated in parallel but the parallel ev aluation

of some expressions are more imp ortan t than others, with resp ect to the o v erall p erformance.

Hence expressions whose parallel ev aluation is crucial to the p erformance of an algorithm should

b e annotated.

T o this end t w o forms of parallel annotations are in tro duced:

k

and f �

k

l . The former is used

to annotate a binary op erator. F or example if it is desired to indicate that plus should ev aluate

it op erands in parallel then +

k

should b e used b e used; parallel sum ma y b e denoted th us: +

k

= .

The latter annotation (�

k

) denotes a parallel map; f is applied to all the elemen ts of l in parallel.

It is assumed that parallel map causes the ev aluation of all f applications to w eak normal form.

Rules can b e form ulated whic h equate the op erational b eha viour of the t w o annotations, for

example:

+ +

k

= � f � = + + = � f �

k

This assumes a lazy ev aluation strategy (parallel ev aluation is propagated) and that no b ene�t

arises from p erforming just app ends in parallel. It states that concatenating a list of lists

together in parallel, whic h is formed from a map op eration, is op erationally and seman tically

equiv alen t to p erforming the map in parallel. This is b ecause p erforming eac h concatenation in

parallel causes the ev aluation of eac h f application in parallel. Of course the correctness of rules

suc h as these ma y only b e pro v en within an op erational seman tics, whic h assumes some kind of

op erational b eha viour, for example the seman tics describ ed in Section 8.3.

These annotations and assumptions ab out ev aluation assign an explicit op erational meaning to

op erators in the language. This is necessary in order to express algorithms in tended for MIMD

mac hines; where the di�eren tiation b et w een sequen tial and parallel ev aluation is imp ortan t.

5.4 Example: all shortest paths

In this section a parallel algorithm for calculating the shortest paths b et w een all v ertices in a

directed graph is deriv ed. In common with most Squigol deriv ations some theory is initially

dev elop ed. This is used in the deriv ation of an algorithm to solv e the problem. The theory is

general to all problems in the same class as the problem b eing solv ed. The algorithm app ears,

without deriv ation or pro of, in [4].

The crucial decision for graph problems is ho w to represen t the graph. The metho d c hosen here is

to represen t graphs as adjacency matrices. Adjacency matrices are in turn represen ted b y quad-

trees [120]. This pro vides a uniform represen tation for highly connected and sparsely connected

graphs. Also quad-tree matrix represen tation is easily implemen ted and parallelisable in a

CHAPTER 5. SQUIGOL 57

functional programming language. The deriv ation is indep enden t of the matrix represen tation.

It just relies on certain prop erties of matrix op erations.

The next section discusses matrices in general, some matrix op erations and some la ws concerning

these op erations.

5.4.1 Matrices

Three op erations will b e required on matrices:

map: whic h will b e denoted b y � as b efore. This maps a function p oin t wise across all elemen ts

of a matrix.

zip: this will b e denoted 5

�

, meaning zip with � . This pro duces a matrix whose elemen ts are

the p oin t wise com bination with � of the t w o op erand matrices. F or example 5

+

is matrix

addition. (Zip ma y b e usefully de�ned on lists to o.)

m ultiply: this is a generalised matrix m ultiply denoted b y h
 ; �i � (a binary op erator whic h

tak es t w o parameters in addition to its op erands). Rather than dot pro ducts b eing formed

b y m ultiplication and addition they are formed b y
 and � . Th us the dot pro duct of

h a

1

; : : : ; a

n

i and h b

1

; : : : ; b

n

i is (a

1

 b

1

) � : : : � (a

n

 b

n

) . F or example h� ; + i � is the

standard matrix m ultiplication.

All of these three matrix op erations are highly parallel and throughout the deriv ation it will b e

assumed that they are ev aluated in parallel. Since this parallel ev aluation is fairly ob vious no

parallel annotations will b e sho wn. Ho w ev er parallel annotations could ha v e b een added to the

de�nitions.

The implemen tation of matrices using quad-trees is no w describ ed; this has b een prop osed b y

Wise [120]. Matrices will b e represen ted as quad-trees. These are a v ariation on the binary

trees previously discussed (binary trees could b e used to represen t v ectors). Quad-trees ma y b e

de�ned, in a similar manner to algebraic data t yp es in functional programs:

matrix � = Sc alar � + Quad (matrix �) (matrix �) (matrix �) (matrix �)

There are no la ws asso ciated with these op erations, the algebra is free as with all functional

programming data structures. Ho w ev er it will b e assumed that all quad-trees ha v e the same

shap e. This constrain t ma y b e relaxed so that sparse matrices ma y b e e�cien tly represen ted.

Sparse graphs ma y then b e represen ted b y sparse adjacency matrices. T o do this the matrix

data t yp e ma y b e augmen ted with a nil v alue. The nil v alue acts as an iden tit y and zero elemen t

in an analogous w a y to zero for n umeric matrix addition and m ultiplication. Where a whole

sub-tree con tains only zero v alues, the whole sub-tree ma y b e represen ted b y a single nil v alue.

The matrix op erations are de�ned th us, map: � :: (� ! �) ! matrix � ! matrix �

f � (S cal ar b) = S cal ar (f a)

f � (Quad a b c d) = Quad (f � a) (f � b) (f � c) (f � d)

CHAPTER 5. SQUIGOL 58

Zip: if � :: � ! � !
 then 5

�

:: matrix � ! matrix � ! matrix

(S cal ar a) 5

�

(S cal ar b) = S cal ar (a � b)

(Quad a b c d) 5

�

(Quad w x y z) = Quad (a 5

�

w) (b 5

�

x) (c 5

�

y) (d 5

�

z)

Multiply: if
 :: � ! � ! � and � :: � ! � ! � then h
 ; �i � :: matrix � ! matrix �

(S cal ar a) h
 ; �i � (S cal ar b) = S cal ar (a
 b)

(Quad a b c d) h
 ; �i � (Quad w x y z) = Quad p q r s

where

p = (a h
 ; �i � w) 5

�

(b h
 ; �i � y)

q = (a h
 ; �i � x) 5

�

(b h
 ; �i � z)

r = (c h
 ; �i � w) 5

�

(d h
 ; �i � y)

s = (c h
 ; �i � x) 5

�

(d h
 ; �i � z)

There are some useful prop erties that 5

�

and h
 ; �i � ob ey . The 5

�

op erator is asso ciativ e,

comm utativ e and idemp oten t if � is. The h
 ; �i � op erator is asso ciativ e if
 and � are;

lik e n umeric matrix m ultiplication it is not in general comm utativ e. Also similarly to n umeric

matrices zero and iden tit y matrices ma y b e de�ned.

Sev eral rules will b e required concerning m ultiply:

Multiply-map rule :

(f � A) h
 ; �i � (f � B) = A h� ; �i � B

where

a � b = (f a)
 (f b)

Pro of, b y induction on A and B :

case A = S cal ar a and B = S cal ar b

� and h
 ; �i � def : s

LHS = S cal ar ((f a)
 (f b)) = RHS

case A = Quad a b c d and B = S cal ar w x y z

LHS = Quad p q r s and RHS = Quad i j k l

where

p = ((f � a) h
 ; �i � (f � w)) 5

�

((f � b) h
 ; �i � (f � y))

= b y the induction h yp othesis

(a h� ; �i � w) 5

�

(b h� ; �i � y)

= i for the RHS

q = etc.

2

CHAPTER 5. SQUIGOL 59

Map-m ultiply rule (I) :

If a
 b = f (a � b)

a � b = f (a � b)

then:

A h
 ; �i � B = f � (A h� ; 	i � B)

where

a 	 b = (f a) � (f b)

Map-m ultiply rule (I I) :

(with the ab o v e de�nitions from rule (I))

If: f (a � b) = f ((f a) � (f b))

then: A h
 ; �i � B = f � (A h� ; �i � B)

Pro of of Map-m ultiply rule (I):

A h
 ; �i � B = f � (A h� ; 	i � B)

a
 b = f (a � b)

a � b = f (a � b)

a 	 b = (f a) � (f b)

b y induction on A and B :

case A = S cal ar a and B = S cal ar b

� and h
 ; �i � def : s

LHS = S cal ar (f (a � b)) = RHS

case A = Quad a b c d and B = Quad w x y z

LHS = Quad p q r s and RHS = Quad i j k l

where

p = ((f � a) h
 ; �i � (f � w)) 5

�

((f � b) h
 ; �i � (f � y))

= b y the induction h yp othesis

(f � (a h� ; 	i � w)) 5

�

(f � (b h� ; 	i � y))

= � distributes in to 5

�

and 	 def.

f � ((a h� ; 	i � w) 5

	

(b h� ; 	i � y))

= i for the RHS

q = etc.

2

5.4.2 Graphs, relations and paths

Rather than starting with the shortest paths problem a simpler, related, problem will b e solv ed

�rst: the connected comp onen ts problem. This can then b e used as a basis for solving the all

shortest paths problem The connected comp onen ts problem is to �nd b et w een whic h v ertices of

a graph there are paths (of an y length). If a graph is view ed as a relation b et w een v ertices R

and v

1

R v

2

if and only if there is an edge b et w een v

1

and v

2

. Then the problem of �nding the

CHAPTER 5. SQUIGOL 60

connected comp onen ts is equiv alen t to �nding the re
exiv e transitiv e closure of R . Assuming

that R is re
exiv e this is equal to R

n

where n is the order of the relation.

An adjacency matrix implemen tation of a graph is related to the relational view of a graph th us,

if R is the relation and M is the matrix: 8 i; j : i R j , M [i; j] = 1. Th us if relation comp osition

can b e de�ned on matrices (whic h ma y b e view ed as an implemen tation of a relation) then the

connected comp onen ts problem ma y b e solv ed b y calculating the transitiv e closure, using the

form ula ab o v e.

Relation comp osition, using a matrix represen tation of relations, is equal to h and; or i � . If

matrices (relations) are used to represen t graphs then the connected comp onen ts of a graph

ma y b e calculated th us:

pow er n f = f

n

con = pow er (l n n) (sq r (h and; or i �))

sq r � x = x � x

(The function ln is logarithm to the base t w o and n is the order of the relation, a p o w er of t w o.)

The function sq r (h and; or i �) comp oses a relation with itself. Th us con comp oses a relation

with itself ln n times to compute R

n

, where n is the order of the relation.

By adapting this algorithm all the paths b et w een pairs of v ertices ma y b e en umerated. This

ma y b e used as the basis for a sp eci�cation for the shortest paths problem; b y en umerating all

the p ossible paths b et w een pairs of v ertices and then selecting the shortest of those paths:

(#

shor test

=) � � pow er (l n n) (sq r h�

+ +

; [i �) � f�g�

The v alue n is the n um b er of v ertices in the graph: the width of the matrix, a p o w er of four.

The op erator #

shor test

giv es the shortest of t w o paths. P aths are represen ted as lists of edges.

T o represen t unconnected no des a sp ecial list represen ting in�nite paths is required: 1 . The

v alue 1 b eha v es as a zero with resp ect to + + and as an iden tit y elemen t for #

shor test

.

1 + + p = 1

p + + 1 = 1

p #

shor test

1 = p

1 #

shor test

p = p

The op erator �

+ +

tak es t w o sets of paths and forms the cartesian pro duct of the t w o; th us

generating all p ossible com binations of paths. If AB is the set of all paths from A to B and B C

is the set of all paths from B to C then AB �

+ +

B C is the set of all paths from A to C .

The basic idea is to promote (#

shor test

=) � in to pow er . In addition to the m ultiply rules the

follo wing prop erties of pow er will b e required (note that comp osition binds less than application):

P o w er rule 1 :

If n > 0 then

f � g = f � g � f) f � pow er n g = pow er n (f � g)

P o w er rule 2 :

f � g = g � h) pow er n f � g = g � pow er n h

CHAPTER 5. SQUIGOL 61

5.4.3 The deriv ation

In this section the all shortest paths algorithm is deriv ed. The rules concerning pow er and

h and; or i � are used to progressiv ely transform the sp eci�cation in to an e�cien t parallel algo-

rithm. The function the is only de�ned on singletons; it the in v erse of f�g , the singleton set

constructor.

The sp eci�cation

(#

shor test

=) � � pow er (l n n) (sq r h�

+ +

; [i �) � f�g�

= since the � � f�g� = id

the � � (f�g� #

shor test

=) � � pow er (l n n) (sq r h�

+ +

; [i �) � f�g�

= p o w er rule 1 since n > 0

the � � pow er (l n n) ((f�g� #

shor test

=) � � sq r h�

+ +

; [i �) � f�g�

= map-m ultiply rule (I I)

the � � pow er (l n n) (sq r h
 ; �i �) � f�g�

where

a
 b = (f�g� #

shor test

=) (a �

+ +

b)

a � b = (f�g� #

shor test

=) (a [b)

It is desired to use p o w er rule 2 to simplify the previous expression. The follo wing sub-deriv ation

concerns the precondition of p o w er rule 2: f � g = g � h . F or the previous expression f � g is

sq r h
 ; �i � � f�g� . F rom this an expression analogous to g � h is deriv ed.

(sq r h
 ; �i � � f�g�) A

(f�g � A) h
 ; �i � (f�g � A)

= m ultiply-map rule

A h� ; �i � A

a � b = (f�g� #

shor test

=) (f a g �

+ +

f b g) = (f�g� #

shor test

=) (f a + + b g) = f�g (a + + b)

= map-m ultiply rule (I)

f�g � (A h + + ; 	i � A)

where

a 	 b = f a g � f b g = #

shor test

= (f a g [f b g) = a #

shor test

b

=

(f�g � � sq r h + + ; #

shor test

i �) A

No w using the result of the sub-deriv ation:

sq r h
 ; �i � � f�g� = f�g � � sq r h + + ; #

shor test

i �

p o w er rule 2 can b e applied to the previous expression:

CHAPTER 5. SQUIGOL 62

the � � pow er (l n n) (sq r h
 ; �i �) � f�g�

where

a
 b = (f�g� #

shor test

=) (a �

+ +

b)

a � b = (f�g� #

shor test

=) (a [b)

= using p o w er rule 2 and the sub-deriv ation result

the � � f�g � � pow er (l n n) (sq r h + + ; #

shor test

i �)

= using the � � f�g� = id

pow er (l n n) (sq r h + + ; #

shor test

i �)

In tuitiv ely to �nd the shortest path from a to b , for eac h x the shortest path from a to x is

found and concatenated with the shortest path from x to b . This yields a set of paths from a to

b ; the shortest of these is the shortest path from a to b .

Although this is a simple algorithm, whic h app ears v ery similar to the sp eci�cation, it is not

ob vious that it is correct with resp ect to the sp eci�cation. By formally deriving the algorithm

it is guaran teed that the algorithm is correct, and also some useful theory concerning h
 ; �i �

has b een dev elop ed, whic h ma y b e useful for deriving other algorithms.

5.4.4 The functional program

The Squigol algorithm ma y b e translated in to a parallel functional program, as sho wn. An

additional optimisation of memoising path lengths has b een used to a v oid their recalculation.

Th us a path is represen ted as a list of edges and the o v erall path length.

> matrix * ::= Scalar * |

> Quad (matrix *) (matrix *) (matrix *) (matrix *)

> multiply f g

> = h

> where

> h (Scalar a) (Scalar b) = seq r (Scalar r) where r = (f a b)

> h (Quad a b c d) (Quad w x y z) =

> par r1 (par r2 (par r3 (seq r4 (Quad r1 r2 r3 r4))))

> where

> r1 = mzip' g (h a w) (h b y)

> r2 = mzip' g (h a x) (h b z)

> r3 = mzip' g (h c w) (h d y)

> r4 = mzip' g (h c x) (h d z)

> mzip' f x y = par x (seq y (mzip f x y))

> mzip f (Scalar a) (Scalar b) = seq r (Scalar r) where r = (f a b)

> mzip f (Quad a b c d) (Quad w x y z) =

> par r1 (par r2 (par r3 (seq r4 (Quad r1 r2 r3 r4))))

CHAPTER 5. SQUIGOL 63

> where

> r1 = mzip f a w

> r2 = mzip f b x

> r3 = mzip f c y

> r4 = mzip f d z

> weight == num

> vertex == num

> edge == (vertex,vertex)

> path ::= Uncon | Con weight [edge]

> shortest Uncon y = y

> shortest x Uncon = x

> shortest (Con wa a) (Con wb b) = Con a, wa <= wb

> = Con b, otherwise

> join Uncon x = Uncon

> join x Uncon = Uncon

> join (Con wx x) (Con wy y) = Con (wx+wy)(x++y)

> power 0 f = id

> power n f = f . power (n-1) f

> sqr f x = f x x

> shortestpaths = power (log2 num_vertices) (sqr (multiply join shortest))

In order for the par s in multiply , mzip and mzip' to satisfy the par constrain t, it is su�cien t for

these functions to o ccur in con texts where all of their result matrix is required. The application

of multiply in shortestpaths o ccurs in suc h a con text.

5.4.5 Exp erimen tal results

Using the exp erimen tal set-up describ ed in Chapter 4; the follo wing results w ere obtained from

running the shortestpaths program. These results sho w that the algorithm is highly parallel.

Input size (n um b er of v ertices) 4 8 16

Sp eed-up (a v erage parallelism) 13 54 215

5.5 Example: n-queens

This deriv ation is of a parallel algorithm for the n-queens problem. This problem is a little more

arti�cial than the other problems. Ho w ev er there are some useful applications for this algorithm,

it is a go o d example deriv ation and some useful theory is generated `along the w a y'.

CHAPTER 5. SQUIGOL 64

5.5.1 Road map

This deriv ation of a parallel n-queens algorithm essen tially consists of four parts:

� The high lev el parallel sp eci�cation: the sp eci�cation consists of a searc h space en umer-

ation and the subsequen t �ltering of that searc h space to �nd solutions to the n-queens

problem.

� A re�nemen t of the sp eci�cation: the sp eci�cation en umerates a large searc h space; this

step re�nes the sp eci�cation b y reducing the size of the searc h space.

� A lemma ab out p / p erms l : the ma jor step in the deriv ation of the parallel algorithm is

the application of the p erms-�lter lemma. This lemma allo ws the �ltering of p erm utations

to b e com bined with their generation. It is a general lemma, not sp eci�c to the problem

b eing solv ed.

� Application of the lemma to the re�ned sp eci�cation: this enables the generation of the

n-queens searc h space and the subsequen t searc hing (�ltering) of that searc h space to b e

com bined.

5.5.2 The sp eci�cation

A parallel sp eci�cation for the n-queens problem is sho wn b elo w:

que ens n = safe / comb n al l pos

safe s = (al l � + +

k

= � sp s �) s

where

sp pos = ((: � che ck pos) �

k

) (s � [pos])

che ck (i; j) (m; n) = (i = m) _ (j = n) _ (i + j = m + n) _ (i � j = m � n)

al l = & =

al l = & =

The sp eci�cation generates the set represen ting all p ossible placemen ts of n queens on a b oard:

comb n al l pos . This set of placemen ts is �ltered to remo v e all placemen ts con taining m utually

attac king queens. The safe function determines whether a set of queen p ositions (a placemen t

of n queens) are m utually safe. The c omb n s function pro duces the set of all com binations of n

elemen ts from s . The v alue al l p os is a set of pairs of in tegers represen ting all the p ositions on

an n � n c hess b oard. A p osition is represen ted as a ro w n um b er b y column n um b er pair. Notice

that \ � " has b een o v erloaded; it represen ts subtraction of n um b ers and lists. List subtraction

is de�ned th us:

CHAPTER 5. SQUIGOL 65

x � [] = x

x � ([b] + + y) = (r emove b x) � y

r emove b [] = []

r emove b ([a] + + x) = x; if a = b

= [a] + + r emove b x; otherwise

al l p os = f 1 ::n g �

pair

f 1 ::n g

pair a b = (a; b)

The op erator �

p air

is cartesian pro duct.

This is a highly parallel sp eci�cation; b oth the com binations generation and the �ltering ma y

b e ev aluated in parallel. Since there are sev eral expressions whic h ma y b e ev aluated in parallel,

the appropriate op erators ha v e b een lab elled as parallel.

Using reduce promotion and � distributivit y safe can b e rewritten th us:

safe s = (al l � sp s �

k

) s

where

sp pos = (al l � (: � che ck pos) �

k

) (s � [pos])

(As previously stated promotion conserv es parallelism.)

The c omb function ma y b e realised th us:

c omb n = (f�g � take n) � � p erms

The p erms function tak es a list and pro duces a set of all the p erm utations of the input list. (F or

this to w ork al l p os m ust b e a list not a set of b oard p ositions.) The take n function tak es the

�rst n elemen ts of a list.

P erm utations (p erms) ma y b e generated in parallel th us:

p erms l = mkset (p ower # l g [[]])

where

g = + +

k

= � f �

f y = ((y

�

+ +) � [�]) �

k

(l � y)

F or an y binary op erator
 , a

�

 b = b
 a . The function mkset maps a list to a set

(mkset: [�] ! f � g) .

The sequen tial complexit y of c omb al l p os is O(n

2

), since al l p os has size n

2

and p erms l has

complexit y O(n !). A t b est w e can only exp ect a linear sp eed-up with P pro cessors; whic h giv en

the problem's complexit y is not going to b e v ery m uc h!

CHAPTER 5. SQUIGOL 66

5.5.3 Sp eci�cation re�nemen t

Despite the parallelism in the sp eci�cation, it is v ery ine�cien t | as has b een sho wn. Hence,

the sp eci�cation will b e re�ned to reduce the searc h space (oldSS = c omb al l p os); whilst not

increasing the cost of its generation.

The n-queens lemma :

8 n 2 Nat ; s 2 que ens n : fst � s = snd � s = f 1 ::n g & j s j = n

Pro of b y con tradiction (omitted).

This states that the safe n queens m ust all lie on di�eren t ro ws and di�eren t columns. Th us

to place n queens on an n b y n b oard the queens ro w p ositions m ust form the set f 1 ::n g as

m ust their column p ositions. T o ease the deriv ation of a constructiv e sp eci�cation the size of s

is made explicit.

This ma y b e re-expressed th us:

8 n 2 Nat : que ens n � newSS & newSS = f s : fst � s = snd � s = f 1 ::n g & j s j = n g

Also (lemma):

newSS � oldSS where oldSS = c omb n al l p os

(pro of omitted)

If newSS can b e generated as e�cien tly as oldSS then this will b e a more e�cien t space to

searc h. That is, b elo w w ould b e an e�cien t n-queens solution:

que ens n = safe / new S S

Can newSS b e generated e�cien tly? T o attempt this a constructiv e de�nition for newSS is

required. Suc h a de�nition will b e syn thesised:

CHAPTER 5. SQUIGOL 67

new S S

= de�nition

f s : fst � s = snd � s = f 1 ::n g & j s j = n g

= since there are no duplicates a list abstraction can b e used (j s j = n)

(mkset � mkset �) [l j mkset (fst � l) = mkset (snd � l) = f 1 ::n g & # l = n]

= mkset

� 1

f 1 ::n g = mkset (p erms [1 ::n]) if 8 l 2 mkset

� 1

f 1 ::n g : # l = n

(mkset � mkset �) [l j fst � l 2 (p erms [1 ::n]) & snd � l 2 (p erms [1 ::n])]

= fst � l = fst (unz ip l) similarly for snd

(mkset � mkset �) [l j unzip l = (a; b) & a 2 p erms [1 ::n] & b 2 p erms [1 ::n]]

= unzip

� 1

= zip

(mkset � mkset �) zip � [(a; b) j a 2 p erms [1 ::n] & b 2 p erms [1 ::n]]

= [(a; b) j a 2 A & b 2 B] = A �

pair

B

(mkset � mkset �) (z ip � ((p erms [1 ::n]) �

pair

(p erms [1 ::n])))

= do not generate duplications

new S S = (mkset � mkset �) ((z ip � pair [1 ::n]) � (p erms [1 ::n]))

The n-queens algorithm ma y no w b e expressed:

que ens n = (safe / � mkset � mkset � � (z ip � pair [1 ::n]) �) (p erms [1 ::n])

= map �lter sw ap

que ens n = (mkset � mkset � � (z ip � pair [1 ::n]) � � (safe � z ip � pair [1 ::n]) /) (p erms [1 ::n])

Since no duplicates are generated (all elemen ts originate from p erms) w e will omit the mkset

op erations. If necessary the mkset op erations can b e added according to an y con text in whic h

que ens is used.

que ens n = (z ipc [1 ::n] � � (safe � z ipc [1 ::n]) /) (p erms [1 ::n])

z ipc a b = z ip (a; b)

This new searc h space (newSS) ma y b e generated as e�cien tly as the old searc h space (oldSS)

since b oth use p erms . The new searc h space, newSS , has sequen tial complexit y O(n !). This is

not m uc h b etter than oldSS . Ho w ev er it do es allo w an imp ortan t optimisation to b e used, whic h

is describ ed in the next subsection.

Later the safe p osition indep endence lemma will b e required:

The safe p osition indep endence lemma :

8 i; j; n 2 Nat : j � i � n) (safe � z ipc [1 ::n] = safe � z ipc [i::j])

CHAPTER 5. SQUIGOL 68

This states that the safet y of queens on a b oard is only dep enden t up on their relativ e, not

absolute, ro w p ositions.

The zip used b y zip c is not the same as the one used in the re�nemen t. This new zip is larger,

that is, it is de�ned for more elemen ts, suc h as pairs of unequal length lists.

The che ck function ma y b e simpli�ed since in this re�ned sp eci�cation que ens can not b e placed

on the same ro ws:

che ck

0

(i; j) (m; n) = (j = n) _ (i + j = m + n) _ (i � j = m � n)

5.5.4 The p erms-�lte r lemm a

This lemma is general to problems of the form: p / p erms l . If p is su�x closed, that is:

8 x; y : p (x + + y)) p y and p holds for [] then:

p / p erms l = p ower # l (� / � g) [[]]

where

g = + +

k

= � f �

f y = ((y

�

+ +) � [�]) �

k

(l � y)

The � predicate m ust satisfy:

p ([e] + + x) = p x & � ([e] + + x)

The in ten tion is that candidate results are tested piece-wise as they are generated and discarded

if necessary . This reduces the n um b er of elemen ts whic h need b e tested; since only elemen ts

with su�ces whic h satisfy the predicate are generated. An alternativ e w a y of understanding this

is: the p erm utations form a tree of su�ces, with the resulting p erm utations at the lea v es. The

expression p / p erms l generates the whole tree of su�ces then prunes the lea v es (p erm utations).

This lemma p ermits branc hes to b e pruned, th us pruning sev eral lea v es in one go.

This lemma impro v es the parallel e�ciency of problems ha ving the aforemen tioned form. The

expression p / p erms l generates the p erm utations in parallel and then �lters them. Eac h �l-

tering is done in parallel. The optimised v ersion: p ower # l (� / � g) [[]] generates elemen ts in

parallel exactly as p erms do es. It com bines the �ltering with elemen ts generation though. F or all

successful n-queens results the n um b er of comparisons p erformed is n

2

in b oth cases. These com-

parisons, applied to eac h result, ma y b e p erformed in parallel or sequence for b oth algorithms;

the imp ortan t fact b eing that the cost is the same for them b oth. Also for b oth algorithms, the

results will ha v e b een tested in parallel. The total n um b er of tasks created will b e smaller in the

optimised case though. In other w ords this lemma preserv es the useful parallelism of the p erms

�ltering, whilst discarding redundan t parallelism (searc hing).

The equation ma y b e simpli�ed:

CHAPTER 5. SQUIGOL 69

� / � g

= def. of g

� / � + +

k

= � f �

= �lter promotion

+ +

k

= � (� /) � � f �

= � distributivit y

+ +

k

= � (� / � f) �

= in tro ducing the de�nitions f

0

= � / � f and g

0

= � / � g

g

0

= + +

k

= � f

0

�

f

0

y = (� / � ((y

�

+ +) � [�]) �

k

) (l � y)

= / de�nition

(+ + = � (� ! [�] ; K []) �

k

� (y

�

+ + � [�]) �) (l � y)

= � distributivit y and (p ! f ; g) � h = (p � h ! f � h; g � h)

(+ + = � (� � (y

�

+ + � [�]) ! y

�

+ + � [�] � [�] ; K []) �

k

) (l � y)

= in tro ducing the de�nition h y = (� � (y

�

+ + � [�]) ! y

�

+ + � [�] � [�] ; K [])

(+ + = � h y �

k

) (l � y)

= �

k

la w

f

0

y = (+ +

k

= � h y �) (l � y)

Therefore, h ma y b e rewritten th us:

h

0

y e = [] ; : � x

= [x] ; otherwise

where x = [e] + + y

Th us:

p ower # l (� / � g) [[]] = p ower # l g

0

[[]]

Note, that this is still general to an y problem ha ving the form: p / p erms l and where p is su�x

closed. In fact similar lemmas hold for predicates whic h are pre�x and segmen t closed.

5.5.5 Application of the lemma

In this section the p erms-�lter lemma is applied to the re�ned n-queens sp eci�cation. This is

p ossible b ecause safe � z ipc [1 ::n] is su�x closed.

CHAPTER 5. SQUIGOL 70

All that remains is to calculate � whic h has the form: p (x + + [e]) = p x & � (x + + [e]) . In this

case � m ust satisfy:

(safe � z ipc [1 ::n]) ([p] + + r) = (safe � z ipc [1 ::n]) x & � ([p] + + r)

Manipulating:

(safe � z ipc [1 ::n]) ([p] + + r)

= zip c def. and # r < n

safe ([(1 ; p)] + + z ipc [2 ::n] r)

= safe def.

(al l � sp �

k

) ([(1 ; p)] + + z ipc [2 ::n] r)

where

sp pos = (al l � (: � che ck

0

pos) �

k

) (l � [pos])

l = [(1 ; p)] + + z ipc [2 ::n] r

= = and � def.

(al l � sp �

k

) (z ipc [2 ::n] r) & (al l � sp �

k

) [(1 ; p)]

where : : :

Simplifying sp p os = (al l � (: � che ck

0

pos) �

k

) (l � [pos])

= since l con tains no duplicates, and

if x + + y con tains no duplicates, then (x + + y) � [e] = (x � [e]) + + (y � [e])

sp pos = a pos & b pos

a p os = (al l � (: � che ck

0

pos) �

k

) ((z ipc [2 ::n] r) � [pos])

b p os = (al l � (: � che ck

0

pos) �

k

) ([(1 ; p)] � [pos])

th us:

(al l � a �

k

) (z ipc [2 ::n] r) & (al l � b �

k

) (z ipc [2 ::n] r) & (al l � sp �

k

) [(1 ; p)]

= safe def.

(safe � z ipc [2 ::n]) r & (al l � b �

k

) (z ipc [2 ::n] r) & (al l � sp �

k

) [(1 ; p)]

= safe p osition indep endence lemma

(safe � z ipc [1 ::n]) r & (al l � b �

k

) (z ipc [2 ::n] r)

| {z }

c

& (al l � sp �

k

) [(1 ; p)]

| {z }

d

Th us:

(safe � z ipc [1 ::n]) ([p] + + r) = (safe � z ipc [1 ::n]) r & � ([p] + + r)

where

� ([p] + + r) = c & d

simplifying b in order to simplify c

b pos = (al l � (: � che ck

0

pos) �

k

) ([(1 ; p)] � [pos])

CHAPTER 5. SQUIGOL 71

= since (1 ; p) 62 (z ipc [2 ::n] r)

(al l � (: � che ck

0

pos) �

k

) [(1 ; p)]

= � and al l def. (al l = & =)

: che ck

0

pos (1 ; p)

= che ck

0

is comm utativ e

: che ck

0

(1 ; p) pos

Therefore

c = (al l � (: � che ck

0

(1 ; p)) �

k

) (z ipc [2 ::n] r)

simplifying d

d = (al l � sp �

k

) [(1 ; p)]

= � and al l def.

sp (1 ; p)

= sp def.

(al l � (: � che ck

0

(1 ; p)) �

k

) (l � [(1 ; p)])

where

l = [(1 ; p)] + + z ipc [2 ::n]

= � def.

(al l � (: � che ck

0

(1 ; p)) �

k

) (z ipc [2 ::n] r)

Therefore

c = d = (al l � (: � che ck

0

(1 ; p)) �

k

) (z ipc [2 ::n] r)

Hence:

� (r + + [p]) = (al l � (: � che ck

0

(1 ; p)) �

k

) (z ipc [2 ::n] r)

The de�nition of h w as:

h y e = [] ; : � x

= [x] ; otherwise

where x = [e] + + y

After p erforming some pattern matc hing, � ma y b e re-written as �

0

:

�

0

r p = (al l � (: � che ck

0

(1 ; p)) �

k

) (z ipc [2 ::n] r)

and h b ecomes:

h

0

y e = [] ; : �

0

y e

= [[e] + + y] ; otherwise

Doing a few simpli�cations the �nal algorithm b ecomes:

CHAPTER 5. SQUIGOL 72

que ens n = p ower n g

0

[[]]

where

g

0

= + +

k

= � f

0

�

f

0

y = (+ +

k

= � h

0

y �) ([1 ::n] � y)

h

0

y e = [] ; �

0

y e

= [[e] + + y] ; otherwise

�

0

r p = (exists � che ck

0

(1 ; p) �

k

) (z ipc [2 ::n] r)

che ck

0

(i; j) (m; n) = (j = n) _ (i + j = m + n) _ (i � j = m � n)

exists = _ =

Notice ho w some partial ev aluation of �

0

and che ck' could b e done.

5.5.6 The functional program

The parallel functional program b elo w is a simple translation of the Squigol algorithm. The

sp ecialisation lemma has b een used to rewrite list homomorphisms as directed reductions.

> queens n = power n g' [[]]

> where

> g' = foldl gg []

> where

> gg a b = par a (x++a) where x = f' b

> f' y = foldl ff [] ([1..n]--y)

> where

> ff a b = par a (x++a) where x = h' y b

> h' y e = [], delta' y e

> = [e:y], otherwise

> delta' r p = (exists . parlist id . map (check' (1,p)))

> (zipc [2..n] r)

> check' (i,j) (m,n) = (j=n) \/ (i+j=m+n) \/ (i-j=m-n)

> exists = foldl (\/) False

The par s in gg and ff satisfy the par constrain t since the expressions they spark o ccur in the

results of these functions, and the en tire results of these functions are required. The parlist id

expression satis�es the parlist pro of obligation since it is used in a head and tail strict con text

(exists). F or a real mac hine the parallelism in delta ma y b e to o �ne to b e used, see Chapter

6.

CHAPTER 5. SQUIGOL 73

5.5.7 Exp erimen tal results

Using the exp erimen tal set-up describ ed in Chapter 4; the follo wing results w ere obtained. These

sho w that the algorithm is highly parallel.

Input size (n um b er of queens) 4 6 8

Sp eed-up (a v erage parallelism) 8 52 228

5.5.8 Discussion

The n-queens deriv ation o ccupies almost six pages. This ma y seem excessiv ely long, ho w ev er

t w o pages of this concerns the p erms-�lter lemma. This is quite general and it is applicable

to an y problem ha ving the required form. Th us, as with the other deriv ations, this deriv ation

has generated some theory enabling other similar problems to b e easily solv ed. It is also w orth

noting that the initial sp eci�cation of n-queens is v ery abstract.

The sp eci�cation, and hence algorithm, generate all the solutions to the n-queens problem. The

algorithm could b e used to generate a single solution to the n-queens problem b y selecting a

single elemen t from the result. Ho w ev er to implemen t this e�cien tly in parallel is di�cult since

sp eculativ e ev aluation is required. This is b ecause not all solution are required and it is not

p ossible to tell whic h partial solutions will lead to �nal solutions.

5.6 Example: A parallel greedy algorithm

This section consists of the deriv ation of a parallel greedy algorithm and a description of this

algorithm's use. The algorithm computes a maximal or minimal partition of a list, suc h that

eac h sub-list satis�es a giv en predicate. F or example a list ma y b e partitioned in to a minimal

n um b er of sublists, suc h that eac h sublist is sorted. A similar problem is solv ed in a di�eren t

manner b y Bird in [13]. Bird's algorithm is more general than the one presen ted here; ho w ev er

it is not parallel.

The deriv ation is split in to four parts:

� the sp eci�cation of the problem.

� a general greedy lemma for use in the main deriv ation.

� a pro of that the greedy lemma is applicable to the sp eci�cation

� the main deriv ation of the parallel greedy algorithm from the sp eci�cation. The ma jor

step in this deriv ation uses the greedy lemma.

5.6.1 The sp eci�cation

The problem is to compute the minim um partition of a list, suc h that eac h elemen t of the

partition satis�es a predicate p . This ma y b e formally sp eci�ed as:

CHAPTER 5. SQUIGOL 74

#

#

= � al l p / � p arts

Where p arts is de�ned th us:

p arts =
 = � [[[�]]] �

a
 b = a �

+ +

b + + a �

�

b

(as + + [a]) � ([b] + + bs) = as + + [a + + b] + + bs

The function p arts computes all the partitions of a list. F or example p arts [1 ; 2 ; 3] is:

[[[1] ; [2] ; [3]] ; [[1] ; [2 ; 3]] ; [[1 ; 2] ; [3]] ; [[1 ; 2 ; 3]]]. The �lter al l p / remo v es all partitions whic h

con tain elemen ts not satisfying p . The selection #

#

= selects the minimal partition. Only minor

c hanges are necessary in the deriv ation and the resulting algorithm in order to compute the

maximal partition of a list rather than the minimal one.

5.6.2 A greedy lemm a

The main deriv ation requires the application of a lemma. This lemma allo ws the selection and

�ltering of partitions to b e com bined with partitions generation. This lemma states that for an y

function g :: [�] ! � and op erator 	 :: [�] ! [�] ! [�], pro viding:

g � 	 = = g � 	 = � ([�] � g) �

then:

g � 	 = = � = � g �

where x � y = g ([x] 	 [y])

Pro of, b y induction, of: (g � 	 =) l = (� = � g �) l

case l = [v]:

LHS = g v = RHS

case l = x + + y :

CHAPTER 5. SQUIGOL 75

LHS =

g ((=x) 	 (=y))

= using the precondition

g ([g (=x)] 	 [g (=y)])

= inductiv e h yp othesis

g ([� =g � x] 	 [� =g � y])

= fold using � def.

(� =g � x) � (� =g � y)

= map and reduce folding

(� = � g �) (x + + y)

= RHS

2

5.6.3 Pro of of the greedy lemma's applicabilit y

T o use the greedy lemma in the forthcoming deriv ation, the precondition of the lemma m ust

hold. This means that for g = #

#

= � al l p/ , the follo wing m ust b e true:

g �
 = = g �
 = � ([�] � g) �

Since this holds for singletons, only the follo wing constrain t is required:

g (x
 y) = g ([g x]
 [g y])

= def. of

g (x �

+ +

y + + x �

�

y) = g ([g x] �

+ +

[g y] + + [g x] �

�

[g y])

= since for an y 	 ; [a] �

	

[b] = [a 	 b]

g (x �

+ +

y + + x �

�

y) = g ([g x + + g y] + + [g x � g y])

= �lter and reduce promotion

g (x �

+ +

y) #

#

g (x �

�

y) = g [g x + + g y] #

#

g [g x � g y]

This will b e pro v ed b y pro ving that:

1. g (x �

+ +

y) = g [g x + + g y]

2. g (x �

�

y) = g [g x � g y] or # g (x �

+ +

y) � # g (x �

�

y)

Under these t w o rules the previous equalit y b ecomes a r e�nement . This is b ecause in general

for an y function h , #

h

= [u; v] is un-sp eci�ed in the case that h u = h v . A re�nemen t of f is

CHAPTER 5. SQUIGOL 76

a function whic h resp ects the ordering of f but whic h ma y imp ose an additional ordering on

v alues whic h are equal under f . Re�nemen ts are denoted b y ; ; for example if h u = h v then

#

h

= [u; v] ; u or alternativ ely #

h

= [u; v] ; v . Re�nemen ts are discussed further in [13 , 14 , 80].

F or the equalit y in question, (1) and (2) will mean that:

g (x �

+ +

y) #

#

g (x �

�

y) ; g [g x + + g y] #

#

g [g x � g y]

This means that the greedy lemma in the main deriv ation will result in a re�nemen t.

Pro of of (1), g (x �

+ +

y) = g [g x + + g y]

g (x �

+ +

y)

= since g = g � [�] � g

(g � [�] � g) (x �

+ +

y)

= def. of g and �lter promotion

g [#

#

= (al l p / x �

+ +

al l / p y)]

= since #

#

distributes through + + ; use cross-distributivit y � = � �

= =
 = � � = �

g [(#

#

= al l p / x) + + (#

#

= al l p / y)]

= def. of g

g [g x + + g y]

= RHS

Pro of of (2), �rst part, g (x �

�

y) = g [g x � g y]

g (x �

�

y)

= def. of g

#

#

= al l p / (x �

�

y)

assuming p is segmen t closed, that is: p (x + + y)) p x & p y

then: al l p / (s � t) = (al l p /) ((al l p / s) � (al l p / t))

and hence: al l p / (x �

�

y) = al l p / ((al l p / x) �

�

(al l p / y))

therefore:

CHAPTER 5. SQUIGOL 77

#

#

= al l p / (al l p / x �

�

al l p / y)

= since g = g � [�] � g

(g � [�] � #

#

= � al l p /) (al l p / x �

�

al l p / y)

= assuming al l p (#

#

= (al l p / x �

�

al l p / y))

(g � [�] � #

#

=) (al l p / x �

�

al l p / y)

since #

#

distributes through � ; using cross-distributivit y

(g � [�]) (#

#

= al l p / x � #

#

= al l p / y)

= def. of g

g [g x � g y]

= RHS

Pro of of (2), the second part. Disc harging the assumption al l p (#

#

= (al l p / x �

�

al l p / y))

: al l p (#

#

= (al l p / x �

�

al l p / y))) # g (x �

+ +

y) � # g (x �

�

y)

Since #

#

= (x �

�

y) = #

#

=x � #

#

=y

: al l p (#

#

= (al l p / x �

�

al l p / y)) , # (g x � g y) < # (g (x �

�

y))

Therefore:

(g x � g y) < # g (x �

�

y)) # g (x �

+ +

y) � # g (x �

�

y)

= since g (x �

+ +

y) = [g x + + g y] and factoring out # g (x �

�

y)

(g x � g y) < �) # [g x + + g y] � �

= factoring out g x and g y

(x

0

� y

0

) < �) # [x

0

+ + y

0

] � �

= using def. of �

(as + + [a + + b] + + bs) < �) # (as + + [a] + + [b] + + bs) � �

This is alw a ys true.

2

5.6.4 The main deriv ation

The deriv ation of the parallel greedy algorithm from the problem sp eci�cation is presen ted

here. The use of the greedy lemma means that the resulting algorithm is a re�nemen t of the

sp eci�cation.

CHAPTER 5. SQUIGOL 78

#

#

= � al l p / � p arts

= p arts de�nition

#

#

= � al l p / �
 = � [[[�]]] �

= using the greedy lemma

� = � (#

#

= � al l p /) � � [[[�]]] �

where a � b = (#

#

= � al l p /) ([a]
 [b])

= p holds on singletons and map distributivit y

� = � (#

#

= � [[[�]]]) �

= for an y op erator 	 ; 	 = � [�] = id

� = � [[�]] �

Simplifying a � b

(#

#

= � al l p /) ([a]
 [b])

= def. of

(#

#

= � al l p /) ([a] �

+ +

[b] + + [a] �

�

[b])

= since [x] �

	

[y] = [x 	 y]

(#

#

= � al l p /) ([a + + b] + + [a � b])

= since #(a � b) < #(a + + b)

a � b; al l p (a � b)

a + + b; al l p (a + + b) & : al l p (a � b)

#

#

= [] ; otherwise

Since al l p (a + + b) alw a ys holds, b y virtue of the fact that p holds on singletons, this ma y b e

written th us:

(as + + [a]) � ([b] + + bs) = as + + [a + + b] + + bs ; al l p (as + + [a + + b] + + bs)

= as + + [a] + + [b] + + bs ; otherwise

F urthermore since p holds for as and bs , al l p (as + + [a + + b] + + bs) ma y b e simpli�ed to p (a + + b).

The �nal Squigol algorithm is:

� = � [[�]] �

where

(as + + [a]) � ([b] + + bs) = as + + [a + + b] + + bs ; p (a + + b)

= as + + [a] + + [b] + + bs ; otherwise

5.6.5 The functional program

T o test the parallel greedy algorithm an implemen tation w as co ded in the parallel functional

language. The problem of run length enco ding w as used for the test. Run length enco ding

CHAPTER 5. SQUIGOL 79

enco des runs of equal v alues as a pair of the v alue and the n um b er of o ccurrences. F or example

the string (list of c haracters) \aaabbac" w ould b e enco ded th us [('a',3),('b', 2), (' a', 1), ('c', 1)] . In

Squigol the problem ma y b e solv ed using the deriv ed algorithm th us:

h � � � = � [[�]] �

where h ([c] + + r) = (c; 1 + # r)

p ([a] + + r) ([b] + + s) = a = b

The function � = � [[�]] � minimally partitions lists, for example the string \aaabbac" w ould b e

partitioned th us: [\aaa",\bb",\a" ,\c"] . The h � function enco des runs as pairs, represen ting a

run as a v alue and its n um b er of o ccurrences.

T o implemen t this e�cien tly either arra ys, or a clev er represen tation of lists, are required. The

latter w as c hosen b ecause arra ys w ere not a v ailable; also a naiv e arra y implemen tation w ould

consume a lot of storage. The implemen tation di�cult y is caused b y � accessing elemen ts at

b oth ends of lists. Clearly implemen tation using ordinary cons lists will b e v ery ine�cien t. If

trees are used, access to elemen ts will b e at b est logarithmic. The solution emplo y ed represen ts

the top lev el list, the list of partitions, as a tree. P artitions are represen ted b y a sp ecial queue

(mqueue). These queues consist of either one (One), t w o (Two) or man y elemen ts (Queue). In

the latter case the end most elemen ts w ere stored separately from the middle elemen ts. The

middle elemen ts w ere stored as a tree. The k ey to this w orking is that only end elemen ts are

ev er accessed, elemen ts in the middle of a list are not accessed. The program is sho wn b elo w:

> tree * ::= Node (tree *) (tree *) | Leaf *

> mqueue * ** ::= One * | Two * * | Queue * ** *

> tmap f (Leaf x) = seq y (Leaf y) where y = f x

> tmap f (Node l r) = par rr (seq ll (Node ll rr))

> where

> ll = tmap f l

> rr = tmap f r

> treduce f (Leaf x) = x

> treduce f (Node l r) = par rr (seq ll (f ll rr))

> where

> ll = treduce f l

> rr = treduce f r

> fun :: mqueue (*,num) (tree (*,num)) ->

> mqueue (*,num) (tree (*,num)) ->

> mqueue (*,num) (tree (*,num))

> fun (One a) (One x) = seq q (One q), pred a x

> = Two a x, otherwise

> where q = comb a x

CHAPTER 5. SQUIGOL 80

> fun (One a) (Two x z) = seq q (Two q z), pred a x

> = Queue a (Leaf x) z, otherwise

> where q = comb a x

> fun (One a) (Queue x y z) = seq q (Queue q y z), pred a x

> = Queue a (Node (Leaf x) y) z, otherwise

> where q = comb a x

> fun (Two a c) (One x) = seq q (Two a q), pred c x

> = Queue a (Leaf c) x, otherwise

> where q = comb c x

> fun (Two a c) (Two x z) = seq q (Queue a (Leaf q) z), pred c x

> = Queue a (Node (Leaf c) (Leaf x)) z, otherwise

> where q = comb c x

> fun (Two a c) (Queue x y z) = seq q (Queue a (Node (Leaf q) y) z), pred c x

> = Queue a

> (Node (Node (Leaf c) (Leaf x)) y) z, otherwise

> where q = comb c x

> fun (Queue a b c) (One x) = seq q (Queue a b q), pred c x

> = Queue a (Node b (Leaf c)) x, otherwise

> where q = comb c x

> fun (Queue a b c) (Two x z) = seq q (Queue a (Node b (Leaf q)) z), pred c x

> = Queue a

> (Node b (Node (Leaf c) (Leaf x))) z, otherwise

> where q = comb c x

> fun (Queue a b c) (Queue x y z)

> = seq q (Queue a (Node b (Node (Leaf q) y)) z), pred c x

> = Queue a (Node (Node b (Leaf c)) (Node (Leaf x) y)) z, otherwise

> where q = comb c x

> pred (x,n) (y,m) = x = y

> comb (x,n) (y,m) = seq nm (x,nm)

> where nm = n + m

> sing x = One (x,1)

> pargreedy :: tree * -> mqueue (*,num) (tree (*,num))

> pargreedy = treduce fun . tmap sing

In order for the par in treduce to satisfy the par pro of obligation it is su�cien t for the function

argumen t of treduce to b e strict in b oth of its argumen ts. The function fun is strict in b oth of

its argumen ts th us the treduce application in pargreedy is v alid. In order for the par in tmap

CHAPTER 5. SQUIGOL 81

to satisfy the par pro of obligation, it is su�cien t for tmap to o ccur in a con text whic h is strict

in tree elemen ts. In pargreedy , tmap o ccurs in suc h a con text.

The function fun corresp onds to � . The h function has b een promoted through � so that

the in termediate lists represen ting runs are directly represen ted as the v alue and its n um b er

of o ccurrences. The pattern matc hing in fun will compile in to v ery e�cien t co de in a mo dern

implemen tation. Man y seq s w ere needed in the fun function. These could b e remo v ed if the tree

used in mqueue could b e de�ned as b eing strict. It is not p ossible to simply force the ev aluation

of mqueue further than WHNF in treduce since it is unkno wn what m ust b e ev aluated. It is

not kno wn ho w m uc h of the tree argumen t of mqueue m ust b e forced. The implemen tation of

lists using mqueue s and tree s is quite complicated. A go o d w a y to formalise this translation

w ould b e to use abstract data t yp es together with abstraction maps and comm uting diagrams,

as describ ed in [11].

The parallel greedy algorithm is v ery complex. Therefore to assess its p erformance fairly an

e�cien t sequen tial algorithm w as also used in exp erimen ts. This is based on the sequen tial

greedy algorithm deriv ed in [13]. This uses con v en tional lists rather than tree s and mqueue s.

> seqgreedy :: [*] -> [(*,num)]

> seqgreedy (x:xs) = sg x 1 xs

> sg :: * -> num -> [*] -> [(*,num)]

> sg e n [] = [(e,n)]

> sg e n (x:xs) = sg e (n+1) xs, x = e

> = (e,n):sg x 1 xs, otherwise

This program app ears to b e m uc h simpler than the parallel greedy algorithm. An imp ortan t

observ ation is that most of the additional complexit y of the parallel greedy algorithm is in v olv ed

in implemen ting an e�cien t data structure for parallel ev aluation. If arra ys w ere a v ailable they

could simplify the parallel greedy program. Ho w ev er using trees rather than arra ys ma y mak e

parallel implemen tation more e�cien t: particularly an ticipatory data prefetc hing via p oin ters.

5.6.6 Exp erimen tal results

The parallel and sequen tial greedy algorithms w ere run on three lists of data, con taining 512,

2048 and 8192 c haracters. Eac h in terv al of 16 c haracters in the lists con tained the same v alue.

The results obtained w ere:

Input size 512 2048 8192

Sp eed-up (a v erage parallelism) 30 39 43

Sp eed-up (e�cien t sequen tial algorithm) 4.7 6.3 6.9

Ratio of extra w ork 6.4 6.2 6.2

The a v erage parallelism sp eed-up represen ts the sp eed-up, o v er the program's sequen tial execu-

tion, giv en an un b ounded n um b er of pro cessors. The a v erage parallelism sp eed-up �gures are the

sp eed-up compared to the same algorithm run sequen tially . The e�cien t sequen tial algorithm

CHAPTER 5. SQUIGOL 82

sp eed-up �gures are the sp eed-up compared to the e�cien t sequen tial algorithm. These �gures

sho w go o d sp eed-up although the parallelism do es not seem to increase linearly with the input

size. This should b e the case since the algorithm is essen tially a D&C algorithm with com bining

op erator (�) whic h has constan t time complexit y . (See Section 8.2.2 for more information on

this result.)

The sp eed-up compared with the e�cien t sequen tial algorithm is p o or. F or example with an

input size of 2048, the parallel greedy algorithm utilises on a v erage 39 pro cessors to ac hiev e

a p erformance 6.3 times that of the e�cien t sequen tial algorithm. The ratios of extra w ork

p erformed b y the parallel greedy algorithm compared to the sequen tial greedy algorithm, are

almost constan t. These �gure rev eal that the parallel algorithm p erforms a total of at least six

times the amoun t of w ork the sequen tial algorithm p erforms.

The sp eed-up of the parallel algorithm o v er the e�cien t sequen tial algorithm could b e increased

in a n um b er of w a ys:

1. Expand the comb and pred functions inline and hence decrease the total amoun t of w ork

the parallel algorithm has to do.

2. Increase the amoun t of parallel ev aluation. The exp erimen tal results do not include the

output time of the data structures. Ho w ev er the parallelism pro�le rev eals that m uc h

of the resulting mqueue has to b e ev aluated (built) b y the output driv er. This could b e

o v ercome if strict data structures could b e de�ned. Using seq s w ould ha v e the same

e�ect; ho w ev er this w ould seriously obscure the program. Results of putting some extra

seq s in the program to force the ev aluation of the tree data structures earlier, resulted

in a signi�can t impro v emen t of sp eed-up o v er the e�cien t sequen tial algorithm.

3. A h ybrid algorithm could b e used. This w ould reduce the total amoun t of w ork the parallel

algorithm had to p erform. In particular it w ould reduce the total amoun t of w ork when

little p erformance gain w as ac hiev ed b y parallel ev aluation: either b ecause partitions are

short or b ecause all the mac hine's pro cessors are busy . Th us for building partitions of short

sub-lists, or when all pro cessors w ere utilised, the e�cien t sequen tial algorithm w ould b e

used. Larger partitions w ould b e constructed concurren tly using the parallel algorithm.

5.6.7 Discussion

The deriv ation has pro duced a parallel algorithm. Ho w ev er the algorithm is more complex than

its e�cien t sequen tial coun terpart. The reason for this is the complicated data structure whic h is

necessary for parallel implemen tation. F undamen tally the algorithm is capable of go o d sp eed-up,

since it is a D&C algorithm and the com bining op eration can b e e�cien tly implemen ted, ho w ev er

ac hieving this is di�cult. If arra ys w ere a v ailable these migh t remedy this situation. Often it

seems that data structures used in parallel algorithms m ust b e implemen ted v ery carefully in

order to ac hiev e go o d sp eed-up. The abilit y to de�ne strict data structures w ould b e v ery useful

for this program.

CHAPTER 5. SQUIGOL 83

5.7 Summary

Initially this c hapter has describ ed the basic asp ects of Squigol; subsequen tly these ha v e b een

built on with a view to the deriv ation of parallel algorithms.

The ma jorit y of this c hapter consists of three example deriv ations of parallel algorithms: an all

shortest paths algorithm, an n-queens algorithm and a greedy algorithm. F or eac h deriv ation

parallel op erators and asso ciated la ws ha v e b een dev elop ed. Exp erimen ts ha v e v eri�ed that

the deriv ed programs are indeed parallel. The exp erimen ts ha v e rev ealed that some parallel

algorithms are not e�cien t sequen tial algorithms.

F or deriving parallel algorithms sev eral imp ortan t observ ations ha v e b een made. It has b een

sho wn that Squigol sp eci�cations are usually parallel; this is true of all the sp eci�cations in

this c hapter. Also, it has b een sho wn that homomorphisms corresp ond to divide and conquer

algorithms. Muc h of the Squigol w ork has concen trated on list data structures; lists m ust often b e

represen ted as balanced trees or arra ys in order for functions on them, suc h as homomorphisms,

to b e ev aluated in parallel. F or example the parallel greedy algorithm represen ts a nested list

using t w o di�eren t structures. Despite this, man y Squigol optimisations p erformed on lists, suc h

as directed reductions, are inheren tly sequen tial.

T o aid the op erational reading of Squigol expressions the use of parallel annotations has b een

prop osed. These annotations ha v e b een exp erimen ted with in the n-queens program deriv ation.

5.8 Conclusions

The main conclusions of this c hapter are:

� Squigol ma y b e used to deriv e parallel algorithms, and this has b een demonstrated via

three examples.

� A deriv ation starts with an abstract parallel sp eci�cation and this is progressiv ely re�ned

to an e�cien t parallel algorithm. No in termediate sequen tial algorithms are pro duced.

This di�ers from the ideas of others who prop ose transforming sequen tial algorithms in

order to pro duce parallel ones.

� In order to deriv e parallel algorithms, parallel op erators and accompan ying theorems and

la ws are needed. F or example the map, m ultiply and p erms functions used here.

� Homomorphisms are ubiquitous in Squigol. This is particularly useful when deriving par-

allel algorithms b ecause homomorphisms corresp ond to divide and conquer algorithms,

whic h often mak e go o d parallel algorithms.

� Not all Squigol is suitable for deriving parallel algorithms. In particular optimisations

whic h re�ne reductions to directed reductions, result in sequen tial algorithms. F or these

cases alternativ e parallel optimisations are required.

� Some parallel algorithms do not p erform w ell sequen tially . In suc h cases it is imp ortan t

to com bine these with e�cien t sequen tial algorithms to form h ybrid algorithms.

CHAPTER 5. SQUIGOL 84

� The represen tation of data structures in parallel programs is more imp ortan t than it is for

sequen tial programming. In particular the represen tation of lists m ust often b e carefully

designed, in order for them to admit parallel ev aluation.

Chapter 6

P aralleli sm con trol

6.1 In tro duction

In order to ac hiev e r e al sp eed-up parallel programs m ust mak e e�cien t use of a parallel mac hines

resources. P articularly this means that pro cessors and storage m ust b e used carefully . T o ac hiev e

this a sp ectrum of p ossibilities exists. A t one end the programmer m ust sp ecify ev erything; for

example what constitutes a task, on whic h pro cessor it should b e run, its comm unication with

other pro cessors and the order in whic h tasks should b e executed. This is hardly compatible

with the philosoph y of high lev el programming! A t the other end of the sp ectrum the mac hine

m ust try to deduce all of these things, using analyses and heuristics. This is a highly desirable

approac h but it is unlik ely to alw a ys pro duce programs with an acceptable lev el of e�ciency .

What is required is a compromise, enabling the programmer to express programs with a free-

dom from lo w lev el implemen tation concerns and y et allo wing the programmer enough con trol

o v er their programs for them to run e�cien tly . F urthermore the parallelism con trol whic h the

programmer has should not b e mandatory , in the sense that it should b e p ossible to dev elop

programs without suc h con trol and then further re�ne them to include this if necessary .

In k eeping with the spirit of this thesis, m y o wn prop osals consider the minim um actions the

programmer m ust tak e to pro duce e�cien t parallel functional programs. The emphasis of this

thesis is on programming with functional languages, using just par and seq to con trol ev alu-

ation. The thrust of this c hapter is on programmer con trol of parallelism, using par and seq

com binators; in particular con trol of task sizes is in v estigated. Ho w ev er, con trol via a mac hine's

run-time system (the ev aluate-and-die task mo del) is also used for comparativ e purp oses.

Tw o kinds of algorithm are in v estigated: data parallel algorithms, (those algorithms whose

parallelism o ccurs from p erforming op erations in parallel across data structures) and divide and

conquer (D&C) algorithms. The tec hniques used to con trol parallelism in these algorithms apply

equally w ell to other algorithms. F or example, most of the D&C algorithm con trol tec hniques

can b e applied to searc h and optimisation problems; for example branc h-and-b ound, and alpha-

b eta algorithms. The data parallel algorithms use lists, but the parallelism con trol tec hniques

apply equally w ell to other data structures.

The parallelism con trol tec hniques are expressed as abstractions, as adv o cated b y Cole (see

Section 3.4.3). Th us D&C algorithms are all expressed using D&C com binators. Imp ortan tly

85

CHAPTER 6. P ARALLELISM CONTR OL 86

this allo ws abstractions to b e constructed whose meaning is relativ ely simple but whose op eration

is sophisticated. These com binators ma y b e used without the programmer understanding their

op eration. The programmer need only understand the meaning of a com binator and what

parallelism con trol parameters it need b e giv en, if an y .

Th us, this c hapter demonstrates some cases when parallelism con trol is necessary and a v ariet y

of programming tec hniques for doing this. Man y researc hers ha v e had man y di�eren t ideas

concerning man y di�eren t asp ects of parallelism con trol. An ob jectiv e of this c hapter is to sho w

the relationship b et w een these ideas and the relationship b et w een the problems they try to solv e;

previously these concerns ha v e b een regarded in isolation.

6.2 What should b e con trolled?

There are man y asp ects of parallelism whic h m ust b e con trolled. The follo wing is a list of

common asp ects for con trol:

� The n um b er of tasks in a mac hine at a giv en time, task r esidency . It is desirable to con trol

the n um b er of tasks in a mac hine at an y giv en time simply b ecause there will, naturally ,

b e some constrain t on the maxim um n um b er of tasks a mac hine can hold. Also, as task

n um b ers increase so do comm unication and blo c king, b oth of whic h are exp ensiv e.

� The `size' of tasks, p ar al lelism gr ain/gr anularity . T ask sizes m ust b e con trolled to ensure

sp eed-ups are gained from parallel ev aluation. There are alw a ys o v erheads asso ciated with

parallel ev aluation, caused b y comm unication and con text switc hing, and hence tasks m ust

b e w orth ev aluating in parallel.

� Storage usage caused b y parallelism, stor age r esidency . Ev aluating a program in parallel

ma y exhaust a mac hines storage. Th us the disastrous situation ma y arise where a program

will pro duce a result when run sequen tially and ma y fail when run in parallel. Hughes

in his thesis in v estigates the storage usage of parallel and sequen tial functional programs

[58].

� T ask and data placemen t: the mapping of tasks and data on to pro cessors should preserv e

parallelism and minimise comm unications costs. This is discussed in Chapter 2, and it is

not discussed further here since the assumed target mac hine is a shared memory one.

The �rst three areas are related. Con trolling task residency will increase the size of tasks since

the same amoun t of w ork m ust b e p erformed b y programs but b y few er tasks. Con trolling the

size of tasks con trols task residency b ecause it con trols the total n um b er of tasks. T asks are

either split in to smaller tasks or sev eral tasks are coalesced, and hence the n um b er of tasks activ e

at a giv en time is c hanged.

T asks consume store in t w o w a ys. Firstly tasks use store for their o wn state { for example

a stac k { and secondly they generally result in a greater transitory store o ccupancy than a

corresp onding sequen tial program. F or example consider an n task program where eac h task

uses s amoun t of store transitorily . A total amoun t of n � s storage is required when it is run

in parallel, compared with s when it is run sequen tially . (Ho w ev er, there are o ccasions when

CHAPTER 6. P ARALLELISM CONTR OL 87

parallelism can reduce the storage residency [58].) Th us there is a storage parallelism trade-o�;

b y decreasing the n um b er of tasks the transitory store usage is also lik ely to b e decreased. Also

task n um b ers in excess of the n um b er of pro cessors will increase storage use. Note that in the

exp erimen ts p erformed, it w as not p ossible to measure the storage used b y tasks' o wn state.

Some idea of this �gure can b e gained b y examining parallelism pro�les; ho w ev er parallelism

pro�les do not sho w blo c k ed tasks and hence their state.

An imp ortan t trade-o� has no w b ecome apparen t. An e�cien t parallel program should ha v e its

parallelism limited so as to just k eep all of a mac hine's pro cesses busy and to not use more storage

than necessary . Ho w ev er Eager's sp eed-up results [36] sa y , in e�ect, that to get a reasonable

sp eed-up the n um b er of tasks should b e m uc h greater than the n um b er of pro cessors (see Section

2.6) .

6.3 A surv ey of parallelism con trol metho ds

Three di�eren t approac hes to con trolling parallelism ha v e b een prop osed; these are discussed in

this section.

run-time system con trol: with this tec hnique the run-time system uses heuristics to con trol

parallelism. The programmer has no con trol o v er this and the run-time system has no

information ab out the programs whic h are run. This ma y b e compared with a paged

virtual memory system's managemen t of memory .

automatic partitioning: this tec hnique uses compile-time analyses to partition (divide) a

program in to useful tasks. The decisions concerning parallelism con trol are expressed

within programs.

programmer con trol: here the programmer is resp onsible for con trolling parallelism. The

programmer mak e decisions ab out parallelism and these are expressed within the program.

There are t w o forms of partitioning: static and dynamic . Static partitioning is the determination

of tasks at compile-time. Essen tially task candidacy is decided prior to program execution.

Dynamic partitioning causes the p ostp onemen t of task candidacy decisions un til run-time. T ests

for determining task candidacy are deriv ed at compile-time and inserted in to the program at

sparking p oin ts. A t run-time these tests will determine whether a task should b e spark ed or

not. Static partitioning is a sp ecial case of dynamic partitioning when task candidacy tests ma y

b e ev aluated at compile-time.

Notice that b oth automatic partitioning and programmer con trol of parallelism express par-

allelism within programs. Th us although this c hapter concen trates on programmer con trol of

parallelism, m uc h of it is also relev an t to automatic partitioning to o.

6.3.1 Run-time system con trol

Run-time system con trol is c haracterised b y b eing blind to programs; that is nothing ab out

programs is kno wn. Hence all con trol is b y general heuristics. It is particularly suited to

CHAPTER 6. P ARALLELISM CONTR OL 88

con trolling task residency . This is done b y a mac hine calculating a loading factor whic h is used

to determine whether to create a new task or not when a spark o ccurs. If the n um b er of tasks

and storage usage are used to compute the mac hines loading factor, then the storage use ma y

also b e e�ectiv ely con trolled.

The ZAPP pro ject in v estigated divide and conquer algorithms and in particular, ho w to run

them e�cien tly on a lo osely coupled net w ork of pro cessors [25]. They prop osed con trolling the

n um b er of tasks b y using an adaptiv e sc heduling strategy . The sc heduling strategy used either

a LIF O or FIF O task queue dep ending up on the mac hines loading (the n um b er of activ e tasks).

P arallel divide and conquer algorithms pro duce a tree of tasks. Th us the sc heduling strategy

resulted in a breadth �rst tra v ersal of the task tree when the mac hine w as ligh tly loaded, causing

the generation of man y new tasks. When the mac hine w as hea vily loaded a depth �rst tra v ersal

o ccurred, causing tasks to b e completed rather than new tasks to b e generated. Imp ortan tly ,

a noti�cation mo del w as used, see b elo w. This mec hanism con trolled the n um b er of tasks and

storage but it did not con trol task sizes.

The GRIP mac hine [27] has b een brie
y describ ed in Section 2.5. It is in teresting b ecause it

attempts to con trol task sizes, as w ell as task n um b ers, using a run-time heuristic. The con trol

of b oth of these issues arise from GRIP's ev aluate-and-die task mo del. This task mec hanism

allo ws an y task to ev aluate an y redex. In particular sparking an expression do es not reserv e the

expression for ev aluation b y the new task. E�ectiv ely task sparks are only advisory and they

ma y b e ignored. Th us once GRIP b ecomes loaded b ey ond a certain lev el it ma y ignore sparks;

this is ho w task n um b ers are con trolled. Compare this with ALICE where a noti�cation mo del

of task sparking is used; in this mo del if a closure is spark ed it ma y only b e ev aluated b y the

new task whic h w as created to ev aluate it [31]. Th us tasks ma y not b e discarded.

GRIP is in tended for programs with m uc h greater parallelism than there are pro cessors. If this

is the case then task sizes ma y b e con trolled. The idea is that once GRIP is fully loaded with

tasks, an y spark ed closures will b e ev aluated b y paren t tasks, rather than c hild tasks, b ecause

paren t tasks will encoun ter the closures �rst. P aren t tasks will encoun ter closures �rst b ecause

new tasks can not b e run un til there is some spare capacit y; that is un til some paren t tasks

ha v e terminated. P aren t tasks cannot terminate un til they ha v e the spark ed closures' v alues.

This strategy is particularly suited to D&C algorithms. F or example consider a D&C algorithm

whic h pro duces a balanced tree of tasks. The parallel ev aluation ma y b e view ed as t w o w a v es

one pro ceeding do wn the tree dividing problems in to sub-problems, and solving them at the

lea v es; the other mo ving up the tree com bining problems. If the tree is m uc h bigger than the

n um b er of pro cessors, then at some p oin t the do wn w a v e will fully load GRIP with tasks. When

this happ ens all subsequen tly spark ed problems will b e ev aluated b y paren t tasks; since there

will b e no spare pro cessors on whic h to run new tasks. E�ectiv ely , once loaded, eac h remaining

sub-tree of the D&C tree will b e solv ed sequen tially . This results in larger tasks. E�ectiv ely

tasks are coalesced.

A recen t pap er has rep orted some early exp erimen ts with the GRIP mac hine [39]. This mainly

considers a parallel n�b function. Although this is a somewhat arti�cial example, the results

sho w that unrestricted parallelism causes comm unications time to sw amp reduction time. Using

some run-time strategies they con trolled parallelism and impro v ed the program's absolute p er-

formance. These are only preliminary results and further exp erimen tation with more realistic

programs is necessary . Ho w ev er the results do sho w that e�ectiv e parallelism con trol is v ery

imp ortan t for a real mac hine.

CHAPTER 6. P ARALLELISM CONTR OL 89

As previously stated, the target mac hine for programs in this thesis is an idealisation of GRIP

whic h has an ev aluate-and-die task mo del, but whic h do es not discard an y sparks.

Hartel in his thesis, [42], states that con trol of task n um b ers, and their mapping to pro cessors,

should b e based on the recorded history of an application program whic h is running. This

history should include information from previous runs of the program. This is highly dep enden t

up on the regularities of the program b eing run. A run time system could learn ab out a program

o v er a n um b er of runs and thereb y mec hanically tune it.

6.3.2 Automatic partitioning

Automatic partitioning is done b y a compiler; a compiler uses analyses and heuristics to attempt

to partition a program in to tasks. Tw o forms of automatic con trol ha v e b een prop osed. The

�rst form is con trol at the micro-parallelism lev el, for example com bining groups of data
o w

op erators to form larger op erators. These are all static partitioning metho ds. The second form

is a m uc h more am bitious system whic h uses some form of complexit y analysis to statically and

dynamically partition programs. The �rst form is only of limited use on an MIMD mac hine. The

second form has problems b ecause in general complexit y analysis is not decidable. Therefore

some form of appro ximate complexit y analysis is required. Ho w ev er general tec hniques for `go o d'

appro ximate complexit y analysis ha v e y et to b e dev elop ed. Ev en w orse, is the di�cult y of using

suc h information for dynamic partitioning. F or static partitioning this is simple, but for dynamic

partitioning some form of task candidacy test is required. Deriv ation of this test is non-trivial;

in particular a straigh tforw ard test ma y b e to o exp ensiv e. Often the only e�cien t w a y to do

the test is to com bine it with some existing calculation; th us the automatic partitioning system

is no w required to do program transformation as w ell! F or example consider parallel Quic ksort.

A suitable task candidacy test is to examine the length of the list to b e sorted. If a list is short

it should not b e sorted in parallel. Ho w ev er for e�ciency the list length should b e calculated in

conjunction with splitting the list, not separately .

The �rst three prop osals describ ed are for static partitioning, the last is for dynamic partition-

ing. Goldb erg in his thesis [38] used a simple analysis to automatically determine whether an

expression w as `big enough' to b e considered a task. This w as a v ery simple analysis whic h

w as able to calculate the complexit y of simple expressions, in v olving no recursion, and whic h

attributed an in�nite cost to recursiv e expressions or expressions dep enden t up on recursiv e ex-

pressions. An y expression with a cost greater than a certain amoun t w as considered a candidate

task. Unfortunately this pro v ed rather to o simple an analysis and it attributed most expressions

an in�nite cost.

Some di�eren t w ork b y Hudak and Goldb erg considered parallelism at the com binator lev el [52].

Serial com binators w ere designed suc h that they corresp onded to a task. They w ere executed

sequen tially but they could spark new tasks (serial com binator applications). An y parallelism

had the form of one serial com binator in v oking sev eral other serial com binators in parallel.

Th us serial com binators con tained no expressions within themselv es whic h could b e ev aluated

in parallel other than parallel calls to other serial com binators. The e�ect of this w as to mak e the

implemen tation of tasks simple since tasks w ere exactly serial com binator applications. Ho w ev er

this do es not seem to ha v e signi�can tly a�ected the sizes or n um b er of tasks pro duced.

Sark ar and Hennessy , [101], describ e a compile-time metho d for automatically partitioning (IF1)

data
o w graphs. The goal once again w as to increase task sizes. Their system had three phases:

CHAPTER 6. P ARALLELISM CONTR OL 90

1. assign execution times to no des and comm unications times to edges

2. partition the graph

3. generate the co de

The partitioning required the follo wing mac hine information: the n um b er of pro cessors, sc hedul-

ing o v erheads and function in v o cation o v erheads.

The data
o w graph w as partitioned on a function b y function basis. Starting with the �nest

gran ularit y (single op erators), no des w ere merged together un til the desired gran ularit y w as

reac hed. The result of the partitioning w as a set of sequen tial b o died macro actors whic h could

b e run in parallel. The di�cult part w ere the cost assignmen ts. These w ere based on t yp e

information and probabilities; whic h in turn w ere based on three sources of information:

� heuristics

� programmer pragmas

� pro�ling information

The system whic h w as implemen ted used only the latter source of information; whic h w as

obtained from instrumen ted SISAL programs. This is one of the most sophisticated partitioning

systems whic h has b een implemen ted. It is di�cult to assess ho w applicable these tec hniques

are to parallel functional languages.

Rabhi and Manson [94] adv o cate the use of automatically deriv ed complexit y functions to con trol

parallelism grain size. Their approac h uses static and dynamic partitioning. They sho w ho w

complexit y functions ma y b e used in a functional program to con trol the grain size of tasks. They

do not ho w ev er ha v e a system for automatically deriving the complexit y functions. A problem

with their approac h is that man y prop osals for automatic complexit y deriv ation are concerned

with asymptotic complexit y . It is unlik ely that asymptotic complexit y will b e accurate enough

for determining task sizes. They also demonstrate ho w complexit y functions are often exp ensiv e

to calculate. T o alleviate this they sometimes assumed an in�nite cost, as Goldb erg do es,

or they transform programs. The transformation they tried w as to carry list lengths around

with lists. Th us list length calculation b ecame a constan t time op eration, at the exp ense of

longer construction time. This supp orts the previous p oin ts made, concerning the di�cult y of

automatic grain size con trol.

6.3.3 Programmer con trol

Lastly the con trol of task sizes b y the programmer is discussed. V ree and Hartel [112], to ok

the approac h of using program transformation to c hange the sizes of tasks. They used t w o

t yp es of transformation dep ending on whether they w an ted to increase or decrease the grain of

parallelism. Data partitioning w as used for decreasing the grain size of a function, particularly

for D&C algorithms. This ma y b e summarised th us:

F (union (a,b)) -> union ((F a) in parallel with (F b))

CHAPTER 6. P ARALLELISM CONTR OL 91

Data parallel algorithms are algorithms where parallelism o ccurs b y p erforming op erations o v er

data structures; the t ypical example is map. V ree and Hartel used data grouping to increase

the grain size of tasks for data parallel algorithms, for example:

ParMap F (1..10) -> SeqMap F (1..5) in parallel with SeqMap F (6..10)

Starting with an algorithm whic h had the wrong grain of parallelism they w ere able to demon-

strate ho w v arious transformation rules could b e used to impro v e the grain sizes of tasks. T rans-

formation w as accomplished using some syn tactic transformation rules. These rules to ok a

parallelism annotated program and some task size predicates, and pro duced a program with

dynamic task size con trol (dynamic partitioning). F or example they transformed a Quic ksort

program, similar to the one b elo w, to increase its parallelism grain.

> pqsort [] = []

> pqsort (e:r) = par hi (lo++(e:hi))

> where

> lo = pqsort [x| x<-r; x<=e]

> hi = pqsort [x| x<-r; x>e]

The optimised program they pro duced w as similar to the follo wing one:

> pqsort [] = []

> pqsort (e:r) = lo++(e:hi), lshrt \/ hshrt

> = par hi (lo++(e:hi)), otherwise

> where

> l = [x| x<-r; x<=e]

> h = [x| x<-r; x>e]

> lo = sqsort l, lshrt

> = pqsort l, otherwise

> hi = sqsort h, hshrt

> = pqsort h, otherwise

> lshrt = #l < threshold

> hshrt = #h < threshold

> sqsort [] = []

> sqsort (e.r) = lo++(e:hi)

> where

> (l,h) = split e r

> lo = sqsort l

> hi = sqsort h

Both v ersions of pqsort are head and tail strict in their argumen ts. Th us if the hi v alue, whic h

is spark ed, is unde�ned then so will b e the o v erall result. Therefore the par s in b oth v ersions

satisfy the par constrain t.

CHAPTER 6. P ARALLELISM CONTR OL 92

The idea is to ev aluate recursiv e pqsort applications in parallel pro viding b oth the list argumen ts

are su�cien tly long. Once su�cien tly short, lists are sorted sequen tially using a sequen tial

v ersion of Quic ksort (sqsort). This has b ecome quite a complex program and it is quite di�eren t

from the usual short sp eci�cation of Quic ksort, sho wn previously .

It is not clear ho w they obtained their task grain size tests, whic h in some sense em b o dy

the task candidacy criteria. Their transformation rules assume the programmer already has

these predicates a v ailable and that some initial parallelism in the program has, someho w, b een

sp eci�ed. A further problem is that it is unclear ho w general the transformation rules are; they

only sp ecify them for an un t yp ed sequence data t yp e.

The goal of a parallel program is to run quic k er than the fastest sequen tial program. Often to do

this sequen tial tasks (those whic h create no tasks) m ust use a di�eren t algorithm from parallel

tasks (those whic h create tasks). This is b ecause, as sho wn in Section 8.2.3 with parallel pre�x,

parallel algorithms are not necessarily e�cien t sequen tial algorithms. The ideal situation is to

run e�cien t sequen tial algorithms on eac h pro cessor of a parallel mac hine so as to calculate

di�eren t parts of the desired result in parallel.

With this in mind a group at Imp erial College ha v e demonstrated with a small example the

imp ortance of using di�eren t algorithms and data structures for sequen tial and parallel tasks.

They accomplish this b y transforming functions to sp ecialise them for parallel or sequen tial

ev aluation. In [32] they describ e a simple w a y of represen ting lists as balanced binary trees with

cons-st yle lists at the lea v es. The trees are op erated on in parallel and the lea v es are op erated

on b y sequen tial tasks. This impro v es the lo calit y of computations, the o v erall execution sp eed

and the storage usage. It also con trols the n um b er and size of tasks.

6.4 The goals of exp erimen ts

Before discussing some metho ds for con trolling parallelism and presen ting some exp erimen tal

results from using these metho ds, the desired goals of exp erimen ts are discussed.

The goals of con trolling parallelism, for the mac hine under consideration, are to:

� reduce task residency

� decrease storage use

� increase the gran ularit y of parallelism

Ob viously some programs ma y not need parallelism to b e con trolled; for example a program's

gran ularit y of parallelism ma y b e naturally suited to its target mac hine. Ho w ev er for other

programs this will not b e the case.

The target mac hine has b een made delib erately abstract, in order to mak e results as general as

p ossible, see Chapter 4. Th us the target mac hine do es not con tain an y built in parallelism costs,

suc h as comm unications costs. This means that con trolling parallelism will result in a decrease

in p erformance, since all parallelism con trols e�ectiv ely reduce parallelism and hence increase

execution time. Of course on a real mac hine this w ould not b e the case. Therefore the ob ject

CHAPTER 6. P ARALLELISM CONTR OL 93

of con trolling a programs parallelism is to ac hiev e the p oin ts stated ab o v e, with only a small

decrease in p erformance and with only a small increase in the total moun t of w ork p erformed.

In addition no �xed assumptions are made ab out the cost of parallelism o v erheads. F or example,

it is not assumed that eac h program m ust pro duce tasks whic h p erform at least n reductions.

Rather, it is simply assumed that for eac h example program it is necessary to impro v e its parallel

e�ciency (parallelism gran ularit y etc.). Although this is arbitrary it should b e noted that the

data used for example programs is also arbitrary . Th us on a real mac hine some of the example

programs migh t not require parallelism con trol; ho w ev er with di�eren t data they migh t do. The

goal is to in v estigate ho w parallelism can b e e�ectiv ely con trolled.

6.5 Data parallelism

The preceding sections ha v e surv ey ed the area of parallelism con trol and discussed the goals

of exp erimen ts. This section describ es some metho ds and results for program con trol of data

parallelism.

P arallel ev aluation across data structures ma y yield massiv e parallelism; this is often termed

data parallelism. Often suc h parallelism is �ne grained; that is, the tasks pro duced are small.

While this is suitable for SIMD mac hines, suc h as the Connection Mac hine [46], this t yp e of

�ne grained data parallelism cannot b e directly exploited b y MIMD mac hines, b ecause of the

o v erheads of small tasks on MIMD mac hines. F urthermore unrestricted data parallelism ma y

o o d a mac hine with tasks, often resulting in to o m uc h storage use.

6.5.1 T ec hniques

Three tec hniques are sho wn in this section for program con trol of data parallelism:

data grouping: this tec hnique groups data elemen ts together in to c h unks. Ch unks are then

pro cessed in parallel rather than single elemen ts resulting in larger tasks.

k-b ounded lo ops: these ha v e a similar e�ect to data grouping tec hniques. K-b ounded lo ops

b ound the n um b er of tasks whic h op erate up on a data structure. Eac h task op erates on

more than one elemen t of data.

bu�ering: bu�ers ma y b e used to con trol the n um b er of concurren tly activ e tasks. These help

to sync hronise the pro duction of v alues with their consumption. This is particularly useful

for pip elined parallelism.

Essen tially all of these tec hniques allo w greater con trol of the parallelism pro duced b y parlist

and other similar parallelism abstractions.

Data grouping

V ree and Hartel ha v e used program transformation to increase the parallelism gran ularit y of

some functions. They describ e their program transformation as data grouping since it groups

CHAPTER 6. P ARALLELISM CONTR OL 94

together data to yield larger tasks.

An alternativ e accoun t of suc h transformations, using Squigol (see Chapter 5) is giv en b elo w.

The basic idea is to group data elemen ts together and to op erate up on these groups in parallel.

T o do this an op eration is needed to group the data elemen ts of a data structure. An op erator

to do this on lists is chk

k

(c h unkify); this splits a list in to a list of sub-lists of length k .

chk

k

[a

1

; :::; a

n

] = [[a

1

; :::; a

k

] ; [a

k +1

; :::; a

2 k

] ; :::]

Th us chk

k

is an in v erse of + + = . The only prop ert y required of chk

k

is the c h unk la w:

+ + = � chk

k

= id

[�] ! [�]

Using this, the data grouping v ersions of map and �lter ma y b e deriv ed. Gerain t Jones has used

similar ideas in his impressiv e FFT deriv ation [64].

Map, data grouping Filter, data grouping

f �

= chk la w

f � � + + = � chk

k

= map promotion

+ + = � (f �) � � chk

k

= making parallelism explicit

+ + = � (f �) �

k

� chk

k

p /

= c hk la w

p / � + + = � chk

k

= �lter promotion

+ + = � (p/) � � chk

k

= making parallelism explicit

+ + = � (p/) �

k

� chk

k

The v alues for k will dep end up on the costs of f and p . Other op erations suc h as fold and scan

ma y also b e de�ned using chk

k

. Also the chk

k

function ma y b e de�ned for other data structures:

in particular for other data structures in the Bo om hierarc h y , suc h as sets and trees (see Section

5.2.1).

Some functions for implemen ting data grouping are sho wn b elo w:

> splitat 0 l = ([],l)

> splitat n [] = ([],[])

> splitat n (x:xs) = (x:l,r)

> where

> (l,r) = splitat (n-1) xs

> chunkify n [] = []

> chunkify n l = e:chunkify n r

> where

> (e,r) = splitat n l

> concat xs = [y| ys<-xs; y<-ys]

> chk n = concat . parlist (seqlist id) . chunkify n

CHAPTER 6. P ARALLELISM CONTR OL 95

The chunkify function implemen ts chk

k

; the chk function uses chunkify to ev aluate groups of

list elemen ts in parallel. The pro of obligation for chk is essen tially the same as for parlist id :

either the list whic h chk n is applied to m ust b e de�ned in its structure and at least de�ned to

WHNF in its elemen ts, or chk n m ust b e used in a head and tail strict con text.

K-b ounded lo ops

A similar e�ect to chk

k

w as ac hiev ed b y Arvind's group at MIT. Arvind's group w ere concerned

with the
o o ding of their data
o w mac hine with tasks. This manifest itself as a prohibitiv e

amoun t of storage use. T o tac kle this problem they concen trated on a sp ecial programming

construct to con trol iterativ e parallelism. Their language, Id Nouv eau [84], supp orts parallel

iteration. A naiv e implemen tation w ould un wind lo ops and ev aluate lo op b o dies in parallel. Th us

a lo op with one thousand iterations w ould pro duce one thousand tasks. T o prev en t
o o ding their

mac hine with tasks, b ounde d lo ops w ere used [5]. Their k-b ounded lo ops limited the n um b er of

lo op b o dies whic h could pro ceed concurren tly to k . Th us a k-b ounded lo op with one thousand

iterations, where k equals nine, will only pro duce a maxim um of nine tasks. Initially the �rst k

iterations of a lo op are ev aluated concurren tly . On completion a task ev aluating the i th iteration

ev aluates the (i + k)th iteration. This also enables the task's storage to b e reused for the (i + k)th

iteration. Excessiv e storage use is an imp ortan t problem whic h the MIT group ha v e iden ti�ed.

K-b ounded lo ops e�ectiv ely com bine sev eral iterations in to one task and th us task sizes are

increased to o.

A dra wbac k of k-b ounded lo ops is that they only con trol iterativ e parallelism. Also k-b ounded

lo ops can cause deadlo c k. F or example, if a dep endency exists from the i th iteration to the

(i + k)th of a k-b ounded lo op, deadlo c k will arise.

It seems ironic that a data
o w mac hine should need to con trol excessiv e storage use b y enlarging

task sizes; since this is exactly ho w a MIMD mac hine is able to mak e use of �ne grained data

parallelism.

K-b ounded lo ops ma y b e written in the functional language th us:

> bounded k l = par (parmap f [0..k-1]) l

> where

> f i = g (drop i l)

> g [] = ()

> g (x:xs) = seq x (g (drop k xs))

The pro of obligation for bounded is the same as for chk : either the list whic h bounded n is

applied to m ust b e de�ned in its structure and at least de�ned to WHNF in its elemen ts, or

bounded n m ust b e used in a head and tail strict con text.

A di�erence b et w een chk and bounded is the order in whic h they ev aluate op erations on data

structure elemen ts. Also chk �xes task sizes whereas bounded �xes the n um b er of tasks. Note

that in exp erimen ts bounded w as optimised b y sp ecialising it to a particular k and unfolding

drop .

CHAPTER 6. P ARALLELISM CONTR OL 96

Bu�ering

A related issue is pip elined parallelism and bu�ering. In his thesis, [58], Hughes sho ws ho w

bu�ered lists can b e programmed. These b eha v e lik e a bu�er b y ensuring that k elemen ts from

the last list elemen t demanded, are ev aluated or b eing ev aluated. A more general v ersion of

bu�ered lists is sho wn b elo w:

> pipe k f l = par (parlist f (take k l)) (pf l (drop k l))

> where

> pf l [] = l

> pf (x:xs) (y:ys) = par (f y) (x:pf xs ys)

A su�cien t pro of obligation for pipe k f l is: f m ust alw a ys b e total and in addition either

the elemen ts of l m ust b e de�ned as far as f will ev aluate them, or the strictness con text in

whic h pipe k f l o ccurs m ust b e at least that implied b y f on list elemen ts. This is the same

as the pro of obligation for parlist .

F or example an application g l could b e bu�ered th us: g (pipe k f l) . The v alue k is the

size of the bu�er and f is used to force eac h list elemen ts ev aluation. The �rst k elemen ts of

the list are ev aluated in parallel. An y demand for the ith elemen t of the list causes its v alue

to b e returned and a task to b e created to ev aluate the (i + k)th elemen t of the list. Bu�ered

lists con trol the n um b er of activ e tasks and storage use. Storage use is con trolled not only b y

regulating the n um b er of tasks but p oten tially b y con trolling the size of the in termediate list.

There is some o v erhead with pipe since it create a new list spine.

This di�ers from Arvind's k-b ounded lo ops since the ev aluation of the list here pro ceeds in a

demand driv en w a y with some sp eculativ e ev aluation of the next k list elemen ts. Arvind's k-

b ounded lo ops are eagerly ev aluated, alb eit with a b ounded n um b er of tasks. Also, new tasks

are created b y pip e rather than re-using old tasks as k-b ounded lo ops do.

The bu�er size ma y b e calculated. If the consumption rate is c and the pro duction rate is p ,

and there are no dep endencies b et w een pro duced elemen ts, then the bu�er size should b e p=c .

Note that a bu�er (for parallel ev aluation) is only required if the consumer is faster than the

pro ducer. F or regular problems the p=c ratio ma y b e easily estimated; notice that only a ratio is

required, and no absolute measuremen ts are needed. A ratio-sized bu�er ensures there is alw a ys

an elemen t a v ailable for consumption, after an initial lag of p time. As the list length increases

the a v erage parallelism tends to the bu�er's size.

Pip elinin g cannot usefully b e com bined with bounded but it ma y b e com bined with chunkify

th us:

> pipe_chk k n = concat . pipe k (seqlist id) . chunkify n

This can b e used to increase the gran ularit y of parallelism, at the exp ense of bu�ering op erating

on larger elemen ts. Th us task size is increased, but bu�ering b ecomes coarser.

CHAPTER 6. P ARALLELISM CONTR OL 97

6.5.2 Claims

The results whic h follo w sho w that it is essen tial to transform data parallel algorithms for use on

MIMD mac hines. Although the execution o v erheads of suc h transformation can b e high, these

o v erheads are lessened when run on a real mac hine where the n um b er of pro cessors is m uc h

smaller than the a v erage parallelism.

The ev aluate-and-die task mo del do es not increase the gran ularit y of parallelism for the data

parallel algorithm tested. This is b ecause the parallelism is monolithic: all the tasks ha v e the

same size and the tasks are not dep enden t up on eac h other. Th us tasks cannot b e coalesced.

Since ev aluate-and-die st yle task coalescing do es not w ork at all for this algorithm, no exp eri-

men ts w ere p erformed to in v estigate this form of parallelism con trol (exp erimen ts with a limited

n um b er of pro cessors). T o ac hiev e ev aluate-and-die st yle task coalescing the algorithm m ust b e

c hanged. F or example, if the data structure w as a tree, rather than a list, and algorithm w as

expressed in a D&C st yle, then task coalescing migh t w ork. The D&C section describ es metho ds

for con trolling the parallelism resulting from these algorithms.

Data grouping and k-b ounding b oth con trol task sizes and the n um b er of tasks. Data grouping

has a larger o v erhead than k-b ounding but it is more useful. This is b ecause chk forms the

i th c h unk (sub-list) b efore the (i + 1)th task ma y start. Also in the exp erimen ts bounded w as

optimised to a greater degree than chk . Data grouping is more useful than k-b ounding b ecause

task size is sp eci�ed rather than the n um b er of tasks. The chk function ma y b e com bined with

pipe , unlik e bounded . In addition data grouping ma y ha v e b etter data lo calit y than k-b ounding;

ho w ev er this w as not tested.

The chk function is less space e�cien t than bounded b ecause it reconstructs the input list and

its order of elemen t ev aluation causes longer reten tion of the input list. This arises b ecause

the �rst k elemen ts of a list are ev aluated sequen tially b y chk k ; for large lists the equiv alen t

bounded v ersion will ev aluate the �rst k elemen ts in parallel.

The pipe function con trols the n um b er of tasks and the storage used; it do es not ho w ev er con-

trol the size of tasks. The prime reason for needing pipe is to con trol storage use arising from

pip elined parallelism. A straigh tforw ard maxim um parallelism implemen tation has a similar ex-

ecution time as a pipe implemen tation but it has considerably higher transien t storage use. The

bu�er size calculations, describ ed in Section 6.5.1, are reasonably accurate and useful. Ho w ev er,

for complex or irregular pip elines, bu�er sizes are more easily found b y exp erimen tation.

6.5.3 Data grouping and k-b ounding results

T o compare data grouping and k-b ounding, exp erimen ts w ere p erformed whic h mapp ed a v ector

op eration across a list of 250 v ectors (data). V ectors w ere represen ted as balanced binary trees.

> vector ::= Scalar num | Bin vector vector

> testvec = Bin

> (Bin (Bin (Scalar 1) (Scalar 2)) (Bin (Scalar 3) (Scalar 4)))

> (Bin (Bin (Scalar 5) (Scalar 6)) (Bin (Scalar 7) (Scalar 8)))

CHAPTER 6. P ARALLELISM CONTR OL 98

The size of testvec determines the gran ularit y of parallelism whic h is pro duced. The dotprod

function assumes that v ectors ha v e the same shap e.

> dotprod (Scalar n) (Scalar m) = n * m

> dotprod (Bin a b) (Bin c d) = (dotprod a c) + (dotprod b d)

> parmap f g = parlist f . map g

> seq_test = map (dotprod testvec) data

> par_test = parmap id (dotprod testvec) data

> chk_test k = chk k (map (dotprod testvec) data)

> bnd_test n = bounded n (map (dotprod testvec) data)

Exp erimen ts w ere p erformed with a sequen tial map, a simple parallel map, data grouping and

k-b ounding. Eac h parallel function o ccurs in a h yp er-strict con text (the output driv er), hence

all pro of obligations are met. The results are summarised in the table b elo w:

Program seq par c hk c hk c hk bnd bnd

Ch unk length / task b ound { { 5 10 20 5 10

Num b er of mac hine cycles 36023 2894 4707 4892 5958 7080 4254

Av erage parallelism { 13.0 9.3 8.8 7.1 5.7 10.3

W ork done { 37535 43775 42903 42481 40214 43986

Max. n um b er of activ e tasks { 15 12 13 14 6 11

T otal n um b er of tasks { 251 51 26 14 5 10

Av erage spark ed task length { 147 818 1576 2902 5441 3629

The results sho wn in the table ab o v e, and subsequen t graphs, are no w discussed. Man y com-

men ts are made ab out `short' tasks; these are tak en to b e the shortest tasks pro duced b y the

simple parallel algorithm. Note that no task distribution graphs are sho wn, since eac h program

pro duced tasks of appro ximately one length.

Notice ho w for b oth chk and bnd the o v erhead, extra amoun t of w ork whic h is p erformed,

decreases as the size of tasks increase.

The store pro�le for the sequen tial map is sho wn in Figure 6.1. It sho ws ho w store linearly

decreases as elemen ts of data are consumed and the result list is output. Once used, the

elemen ts of these lists b ecome garbage, hence causing the store to linearly decrease.

Figure 6.2 sho ws the task and store pro�les for the simple parallel test. The simple parallel

v ersion (Figure 6.2) uses parlist to force the parallel ev aluation of map o v er data . Since the

result of dotprod is a n um b er, ev aluation to WHNF is su�cien t.

The storage usage is greater than in the sequen tial case but follo ws the same pattern. The

parallelism pro�le sho ws ho w equilibrium is reac hed with 14 tasks. A t this p oin t for ev ery new

task created an old task dies. This also demonstrates the sequen tialit y of cons-lists; one migh t

exp ect there to quic kly b e n tasks activ e, where n is the length of the list. Notice also that al l

tasks are v ery short, see the previous table.

CHAPTER 6. P ARALLELISM CONTR OL 99

Storage

used

Time

0 5000 10000 15000 20000 25000 30000 35000 40000

0

500

1000

1500

Figure 6.1: Store pro�le: sequen tial map

Num b er

of

tasks

(| | {)

Time

Storage

used

(� � � � �)

0

5

10

15

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

Figure 6.2: T ask and store pro�les: parallel map

CHAPTER 6. P ARALLELISM CONTR OL 100

Num b er

of

tasks

Time

0

5

10

15

0 1000 2000 3000 4000 5000 6000

Figure 6.3: P arallelism pro�les: c hk 5 (| | {) and parallel map (� � � � �)

Num b er

of

tasks

Time

0

5

10

15

0 1000 2000 3000 4000 5000 6000

Figure 6.4: P arallelism pro�les: c hk 10 (| | {) and parallel map (� � � � �)

The next set of graphs, Figures 6.3 to 6.8 compare the task and store pro�les of using chk

with the simple parallel map of Figure 6.2 (the latter b eing sho wn dotted on eac h plot for

comparison). Three v alues of k w ere tried: 5, 10 and 20. Since the list con tained 250 elemen ts

these resp ectiv ely pro duced 50, 25 and 13 tasks in total . The graphs and the previous table

sho w, compared to the simple parallel v ersion:

� increased storage usage

� less maxim um parallelism

� longer slop es leading to and from the parallelism equilibrium plateau

� greater w ork p erformed

� all tasks with lengths greater than 800 cycles

As exp ected the a v erage task length is prop ortional to c h unk size. The parallelism pro�les

consist of three parts: an up slop e, an equilibrium p oin t and a do wn slop e. Increasing c h unk

lengths increases the starting latency of tasks and hence lengthens the up slop e. P arallelism

CHAPTER 6. P ARALLELISM CONTR OL 101

Num b er

of

tasks

Time

0

5

10

15

0 1000 2000 3000 4000 5000 6000

Figure 6.5: P arallelism pro�les: c hk 20 (| | {) and parallel map (� � � � �)

Storage

used

Time

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000 6000

Figure 6.6: Store pro�les: c hk 5 (| | {) and parallel map (� � � � �)

Storage

used

Time

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000 6000

Figure 6.7: Store pro�les: c hk 10 (| | {) and parallel map (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 102

Storage

used

Time

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000 6000

Figure 6.8: Store pro�les: c hk 20 (| | {) and parallel map (� � � � �)

equilibrium is reac hed when the n um b er of tasks b eing created equals the n um b er of tasks

dying. The equilibrium p oin t increases with c h unk size since as task lengths increase so do es the

n um b er of concurren tly activ e tasks. This phenomena o ccurs up to the p oin t when the maxim um

parallelism equals the total n um b er of tasks spark ed. After this the a v erage parallelism and

maxim um n um b er of tasks m ust decrease. The do wn slop e represen ts the staggered �nishing of

tasks and the remaining output of the resulting list.

The storage pro�les for the chk tests sho w that it uses more store than the simple parallel

v ersion. This is b ecause the chk v ersion creates new lists to group elemen ts in the input list.

The storage usage follo ws the parallelism pro�les up and do wn slop es, but decreases at the

parallelism plateau. The plateau is analogous to the sequen tial v ersion of the program: except

the sequen tial v ersion has only one task. Hence throughout this plateau storage usage decreases

as it do es in the sequen tial case. The storage follo ws the up and do wn slop e since eac h task

corresp onds to a c h unk, a sub-list of the original list. As tasks are created so c h unks are allo cated

and hence more storage is used. When tasks die, c h unks are output and storage is reclaimed.

Notice also ho w the o v erheads of c h unks are suc h that c h unk sizes of 5 and 10 ha v e ab out the

same execution times. Ov erall the chk v ersions do appro ximately 15% more w ork than the

simple parallel v ersion and they ha v e a lo w er a v erage parallelism. Ho w ev er on a real mac hine it

is exp ected for some programs, similar to this one, a chk v ersion w ould b e quic k er than a naiv e

parallel v ersion. Ho w ev er, this is v ery dep enden t on the mac hine, the program b eing run and

the data size. The imp ortan t p oin t is that for a particular mac hine and data parallel program,

this is a tec hnique whic h ma y b e used to impro v e parallel e�ciency , if need b e.

Tw o bounded examples are sho wn: one using 5 tasks and one using 10 tasks. Their graphs,

Figures 6.9 to 6.12, are similar to the chk graphs alb eit less smo oth. The ma jor di�erence is

that the, parallelism, up and do wn slop es are m uc h steep er. This is b ecause, �rstly bounded

w as hea vily optimised (for example drop 10 w as unfolded). Secondly the pattern of bounded s

ev aluation causes list elemen ts to b e ev aluated in order from the fron t of the list rather than in

c h unks. The b ounding v ersions p erformed appro ximately the same amoun t of w ork as the data

grouping programs. That is they p erformed 10{15% more w ork than the simple parallel v ersion.

As with the c h unking v ersion, on a real mac hine with parallelism o v erheads, the b ounding v ersion

of the program ma y b e far more e�cien t than the naiv e parallel v ersion. Lik e the chk v ersions

the b ounding v ersions all pro duced tasks with lengths greater than 800 mac hine cycles. The

CHAPTER 6. P ARALLELISM CONTR OL 103

Num b er

of

tasks

Time

0

5

10

15

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 6.9: P arallelism pro�les: bnd 5 (| | {) and parallel map (� � � � �)

Num b er

of

tasks

Time

0

5

10

15

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 6.10: P arallelism pro�les: bnd 10 (| | {) and parallel map (� � � � �)

k-b ounding v ersions of the program used appro ximately the same amoun t of store as the simple

parallel v ersion, unlik e the data grouping v ersion. Ov erall the b ounding v ersion of the program

has a lo w er o v erhead than the the c h unking v ersion.

CHAPTER 6. P ARALLELISM CONTR OL 104

Storage

used

Time

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 6.11: Store pro�les: bnd 5 (| | {) and parallel map (� � � � �)

Storage

used

Time

0

500

1000

1500

2000

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 6.12: Store pro�les: bnd 10 (| | {) and parallel map (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 105

6.5.4 Bu�ering results

An abstract program with an abundance of pip elined parallelism w as used to test the pipe

function:

> producer = map (delay 1000) [1..500]

> consumer = map f

> where f x = seq x (delay 100 x)

> bufsize = 10

> test = consumer (pipe bufsize id producer)

The pipe function w as used in a h yp er-strict con text, since consumer is essen tially the iden tit y

function, th us the pro of obligation for pipe w as ful�lled. The application delay n e causes a

dela y of appro ximately n reductions b efore e is returned. The function delay w as found useful

for exp erimen ting with abstract parallel programs. The optimal bu�er size is 10 according to

the bu�er size calculations (the ratio of the pro ducer to consumer is 10:1). The example w as

tried with an un b ounded bu�er, that is parmap , and with bu�ers of size 10 and 20. The results

w ere as follo ws:

Bu�er size 10 20 1

Num b er of mac hine cycles 69752 69482 66525

Av erage parallelism 8.2 8.2 8.7

W ork done 571269 571142 578768

Max. n um b er of activ e tasks 12 22 48

T otal n um b er of tasks 502 502 501

Av erage spark ed task length 1000 1001 991

The parallelism and storage use graphs are sho wn in Figures 6.13 to 6.17. These rev eal that the

bu�ered map results in a striking impro v emen t in task and storage residency without increasing

execution time; this demonstrates ho w imp ortan t bu�ering is. The table and graphs sho w that

the optimal bu�er size is just less than 10. That is a bu�er size of just less than 10 will ha v e

appro ximately the same p erformance as the un b ounded parallel map, and y et minimise task and

storage residency .

The pip e and pro ducer/consumer o v erheads accoun t for the di�erence in calculated and actual

v alues for the optimal bu�er size. All the examples ha v e ab out the same execution time. Ho w ev er

the transien t storage usage of the un bu�ered v ersion is m uc h higher than for the bu�ered v ersions.

T o a lesser exten t the storage residency of 10 elemen t bu�er v ersion w as b etter than the 20

elemen t bu�er v ersion. Th us ha ving a bu�er of size 10 (or sligh tly less) is optimal with resp ect

to storage use and execution time. Notice that b ecause parmap w as de�ned using map and

parlist it has resulted in more w ork b eing p erformed b y the simple parallel v ersion than the

bu�ered programs. Quirks lik e this also arose from the di�eren t transformations whic h the LML

compiler used for di�eren t programs. (The LML compiler w as used to generate FLIC for the

sim ulator, see Chapter 4.)

CHAPTER 6. P ARALLELISM CONTR OL 106

Num b er

of

tasks

(| | {)

Time

Storage

used

(� � � � �)

0

10

20

30

40

50

0 10000 20000 30000 40000 50000 60000 70000

0

200

400

600

800

1000

1200

Figure 6.13: T ask and store pro�les: map, un b ounded bu�er

Num b er

of

tasks

Time

0

10

20

30

40

50

0 10000 20000 30000 40000 50000 60000 70000

Figure 6.14: T ask pro�les: bu�er 10 (| | {) and un b ounded (� � � � �)

Num b er

of

tasks

Time

0

10

20

30

40

50

0 10000 20000 30000 40000 50000 60000 70000

Figure 6.15: T ask pro�les: bu�er 20 (| | {) and un b ounded (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 107

Storage

used

Time

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000

Figure 6.16: Store pro�les: bu�er 10 (| | {) and un b ounded (� � � � �)

Storage

used

Time

0

200

400

600

800

1000

1200

0 10000 20000 30000 40000 50000 60000 70000

Figure 6.17: Store pro�les: bu�er 20 (| | {) and un b ounded (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 108

6.6 Divide and conquer algorithms

Divide and conquer (D&C) algorithms are in teresting b ecause the size of tasks they pro duce

v aries. Also D&C algorithms are exactly the kind of algorithms suited to the mac hine b eing

considered. This is b ecause parallel D&C algorithms are di�cult to map statically on to a

mac hine and therefore dynamic placemen t m ust b e emplo y ed. In addition suc h algorithms are

easy to express in functional languages. D&C algorithms ha v e b een generally in v estigated in [83 ,

105]. In the con text of functional programming the ZAPP pro ject and later Cole, ha v e adv o cated

the use of D&C com binators. Here to o, com binators are used to express D&C algorithms. The

com binators used ha v e the same meaning but they di�er op er ational ly . Di�eren t com binators are

used to attempt to con trol task sizes, and also to con trol task n um b ers and storage usage. The

com binators are compared with a run-time strategy for increasing the gran ularit y of parallelism:

the ev aluate-and-die (E&D) task mo del as used b y GRIP [91] (note that unlik e GRIP no sparks

are discarded).

6.6.1 Programming tec hniques

This section describ es six di�eren t D&C com binators:

seq_dc a simple sequen tial one.

dc1 a simple parallel one.

dc2 a depth b ounding one; this limits the depth to whic h sub-problems are split-up and solv ed

in parallel.

dc3 a dela y ed sparking one; this dela ys parallel ev aluation to reduce the probabilit y of sparking

small tasks.

dc4 an exact con trol one; this uses a problem-sp eci�c predicate to determine whether a problem

is w orth solving in a parallel.

dc5 a sp ecialist exact con trol one; this is the same as dc4 , except that it uses a sp ecialised

sequen tial algorithm to solv e the problem when it is not w orth solving it in parallel.

The follo wing sections describ e these com binators in greater detail.

Simple sequen tial and parallel D&C com binators

A sequen tial D&C com binator is sho wn b elo w:

> seq_dc div comb isleaf solve =

> f

> where

> f x = solve x, isleaf x

> = comb (f p1) (f p2), otherwise

> where

> (p1,p2) = div x

CHAPTER 6. P ARALLELISM CONTR OL 109

The div function is used to divide a problem up in to sub-problems (alw a ys t w o in this case).

The comb function com bines the sub-problems' results to form a new result. The isleaf x

predicate indicates whether x is a leaf problem and therefore whether it can b e solv ed directly

b y using solve .

F or example a divide and conquer �b onacci function:

> dfib = seq_dc div (+) (<2) (const 1)

> where

> div x = (x-1,x-2)

A parallel D&C com binator ma y ev aluate sub-problems in parallel:

> dc1 div comb isleaf solve =

> f

> where

> f x = solve x, isleaf x

> = par sprob1 (seq sprob2 (comb sprob1 sprob2)), otherwise

> where

> (p1,p2) = div x

> sprob1 = f p1

> sprob2 = f p2

In order for the par in dc1 to satisfy the pro of obligation it is su�cien t for comb to b e strict in

its second argumen t.

By using seq no assumptions are made ab out the order in whic h comb ev aluates its argumen ts.

Notice also that only one task is generated, the paren t con tin ues with the ev aluation of one

sub-problem. Ho w ev er, sometimes it ma y b e desirable to replace seq b y par to obtain pip elined

parallelism. This dep ends on whether an y useful ev aluation of comb sprob1 sprob2 can o ccur

b efore sprob1 and sprob2 ha v e b een ev aluated. F or the examples considered here, seq is

su�cien t.

It is v ery di�cult to mak e completely general D&C com binators. Sev eral generalisations of the

one sho wn are:

� ha v e lists of sub-problems rather than just pairs.

� ha v e a function for forcing the ev aluation of sub-problems' results further than WHNF.

� ev aluate the sub-tasks in parallel with the comb application { for pip eline d parallelism.

The more general the D&C com binator the less e�cien t it is. Ho w ev er a sophisticated compiler

ma y b e able to do some partial ev aluation to transform a program to a more e�cien t one. Ev en

if this cannot b e done, and man ual transformation is necessary , the com binators are still useful

for designing programs.

CHAPTER 6. P ARALLELISM CONTR OL 110

Depth b ounding

It is desirable to limit the amoun t of parallelism pro duced b y a D&C com binator. D&C al-

gorithms form a tree of tasks: sub-problems to b e solv ed in parallel. A simple w a y to limit

the parallelism of a D&C com binator is to b ound the depth of the task tree. That is to only

spark tasks less than a certain depth and thereafter to solv e sub-problems sequen tially , suc h a

com binator is sho wn b elo w:

> dc2 bnd div comb isleaf solve =

> f bnd

> where

> f d x = solve x, isleaf x

> = seq_dc div comb isleaf solve x, d=0

> = par sprob1 (seq sprob2 (comb sprob1 sprob2)), otherwise

> where

> (p1,p2) = div x

> sprob1 = f (d-1) p1

> sprob2 = f (d-1) p2

As for dc1 , in order for the par in dc2 to satisfy the pro of obligation it is su�cien t for comb to

b e strict in its second argumen t.

The v ariable d is used to b ound the depth of the task tree. The isleaf test ma y b e omitted if

it can b e guaran teed that bnd is alw a ys less than the heigh t of the tree.

Dela y ed sparking

A more complex metho d for con trolling task sizes, is to dela y the sparking of tasks; this is

based on an idea b y John Hughes and Da vid Lester. The idea is analogous to the Hewit and

Lieb ermann st yle garbage collector. It is this: the longer a task has run the longer it is lik ely to

run. If a task is lik ely to run a long time, it should spark c hild tasks; if not, it should not spark

an y tasks. I call this delaye d sp arking ; rather than immediately sparking a task, a paren t task

dela ys its sparking | in case the paren t task terminates. The dela y dep ends on the particular

problem. This metho d is blind in the sense that it do es not examine the problem b eing solv ed,

and it is, therefore, suited to implemen tation in a mac hine's run-time system.

The divide and conquer com binator ma yb e expressed to do dela y ed sparking th us:

> dc3 k div comb isleaf solve =

> f []

> where

> f l x = solve x, leaf x

> = seq this (comb this delayed), #l<k

> where

> (s1, s2) = div x

> delayed = f [] s2

> this = f (l++[delayed]) s1

CHAPTER 6. P ARALLELISM CONTR OL 111

> = par old (seq this (comb this delayed)), #l=k

> where

> (old:rest) = l

> (s1, s2) = div x

> delayed = f [] s2

> this = f (rest++[delayed]) s1

As for dc1 , in order for the par in dc3 to satisfy the pro of obligation it is su�cien t for comb to

b e strict in its second argumen t.

The �rst argumen t to f is a list of dela y ed sparks (a FIF O queue). The p osition of a dela y ed

spark in a task's queue is prop ortional to the amoun t of computation that the task has done

since the dela y ed spark. Th us once a dela y ed spark reac hes the head of the queue, the sparking

task has done a su�cien t amoun t of computation to w arran t really sparking that task. On

encoun tering a leaf, the dela y ed sparks in a tasks queue will not b e spark ed but will b e ev aluated

sequen tially (eac h dela y ed spark ma y pro duce tasks though). Notice that once a task terminates

the dela y ed sparks are visited sequen tially in LIF O order. This is done purely for simplicit y . It

could b e c hanged to FIF O, whic h w ould probably giv e b etter p erformance, b y altering the base

case equations. In the follo wing examples an optimised v ersion of dc3 w as used b ecause queues

(whic h dc3 needs) are di�cult to implemen t e�cien tly in functional languages. The optimised

v ersion had a queue of length one.

> dc3q1 div comb isleaf solve =

> f

> where

> f x = solve x, isleaf x

> = seq this (comb this del), otherwise

> where

> (sub1, sub2) = div x

> del = f sub2

> this = f' del sub1

> f' a x = solve x, isleaf x

> = par a (seq this (comb this del)), otherwise

> where

> (sub1, sub2) = div x

> del = f sub2

> this = f' del sub1

As previously , for the par in dc3q1 to satisfy the pro of obligation it is su�cien t for comb to b e

strict in its second argumen t.

This v ersion, with a queue of length one, ma y b e further optimised but it is designed to sho w

ho w similar optimisations can b e used for other lengths of small queues. Ho w ev er, generally a

queue of length one w as found to b e su�cien t for the grain size increases sough t.

CHAPTER 6. P ARALLELISM CONTR OL 112

Problem Solution

Final

Time

Leaf Problem

Leaf Problem

Leaf Problem

Leaf Problem

Leaf Problem

Leaf Problem

Leaf Problem

Leaf Problem

Problem

Division

Solution

Com bination

Ro ot

Figure 6.18: D&C algorithm ev aluation

A simple analysis of simple dela y ed sparking

This section describ es a simple analysis of dela y ed sparking. It is restricted to the follo wing

assumptions:

� The D&C algorithm, with no parallelism con trol, pro duces a binary balanced tree of tasks.

� The amoun t of w ork required to divide problems and com bine their solutions is indep enden t

of problems' size (this is necessary for a go o d sp eed-up an yw a y , see Section 8.2.2).

� The dela y used is equal to one spark; that is sparks are dela y ed b y one lev el in the divide

and conquer tree, as with dc3q1 .

It will b e pro v ed that under these assumptions, using dela y ed sparking to con trol a D&C algo-

rithm, b oth the a v erage task length and the execution time will b e doubled (with an un b ounded

n um b er of pro cessors).

The ev aluation of a D&C algorithm will b e represen ted as a tree. A pictoral represen tation of

its ev aluation with an un b ounded n um b er of pro cessors is sho wn in Figure 6.18. Its ev aluation

has the form of a tree and its re
ection: the problems' division and solutions' com bination.

Ho w ev er since one tree is a re
ection of the other, one tree will su�ce to represen t its ev aluation.

Ev aluation trees (trees represen ting a D&C algorithm's ev aluation) will b e constructed from the

follo wing data t yp e:

eval tr e e = " + work eval tr e e + eval tr e e ^ eval tr e e

CHAPTER 6. P ARALLELISM CONTR OL 113

The " v alue represen ts a directly solv able (leaf) problem, whic h, for this purp ose, tak es no time

to solv e. The work v alue represen ts a unit of w ork whic h is required to divide a problem and

com bine its solutions. The in�x ^ v alue represen ts a spark. The left argumen t represen ts the

con tin uation of the paren t task and the righ t argumen t represen ts the c hild task. Notice that

only work v alues ha v e an ev aluation cost asso ciated with them. F or example an ev aluation tree

work (" ^ ") , represen ts the follo wing ev aluation: a unit of w ork is p erformed represen ting the

division of a problem and its solution's com bination, a c hild task is spark ed for one of the sub-

problems, eac h task is directly solv able and hence no w ork is required to solv e them ("). The

units of w ork represen t a �xed cost for dividing problems in to sub-problems and for com bining

their results.

A balanced ev aluation tree will represen t the ev aluation of the D&C algorithm with no paral-

lelism con trol and an un b ounded n um b er of pro cessors. Dela y ed sparking will b e expressed as a

transformation on the balanced tree. A balanced ev aluation tree of heigh t h ma y b e expressed

th us:

tt 0 = "

tt h = work (tt (h-1) ^ tt (h-1))

A tree suc h as tt 10 represen ts the ev aluation of a D&C algorithm with no parallelism con trol.

Dela y ed sparking has the e�ect of dela ying sparking b y one spark, pro vided a directly solv able

sub-problem (") is not reac hed. Th us dela y ed sparking ma y b e describ ed as the follo wing

transformation on balanced ev aluation trees:

ds " = "

ds (work x) = work (ds x)

ds (" ^ r) = ds r

ds ((work l) ^ r) = work (ds l ^ ds r)

This is not a complete transformation of all forms of ev aluation tree, but it handles those

generated b y tt . The last equation dela ys sparking b y one unit of w ork, whic h for tt is the

equiv alen t of one spark. The second to last equation sho ws what happ ens when a leaf problem

is encoun tered and hence dela y ed sparks are not spark ed. The " represen ts the solution of a

leaf sub-problem, these are not measured, hence the ev aluation in sequence of " and ds r ma y

b e represen ted b y ds r .

The maxim um n um b er of work s p erformed in sequence represen ts the parallel execution time

with an un b ounded n um b er of pro cessors. F or the no con trol case a tree of heigh t h tak es time h

(h work s). The dela y ed sparking case tak es time 2 � h � 1. Pro of is b y induction on the balanced

(no con trol) tree heigh t:

CHAPTER 6. P ARALLELISM CONTR OL 114

case heigh t = 0, balanced tree = " :

dela y ed sparking tree = " (using the dela y ed sparking transformation rules)

so b oth trees tak e time 0 (note, all n um b er are naturals).

case heigh t = 1, balanced tree = work (" ^ "):

dela y ed sparking tree = work " (using the dela y ed sparking transformation rules)

therefore, b oth trees tak e time 1.

case heigh t = h (h > 1), balanced tree = work ((work l) ^ r):

dela y ed sparking tree = work (work (ds l ^ ds r))

execution time = 2 + maxim um execution time of ds l and ds r

l and r are balanced trees and ha v e heigh ts h � 2 and h � 1 resp ectiv ely .

using the induction h yp othesis the execution time is:

2 + max (2 � (h � 2) � 1) (2 � (h � 1) � 1) = 2 � h � 1

2

The a v erage task length is equal to the total amoun t of w ork done divided b y the n um b er of

tasks. The no con trol and dela y ed sparking v ersions, b oth p erform the same amoun t of w ork.

F or a tree of heigh t h the amoun t of w ork (total n um b er of work s) is: 2

h

� 1. The no con trol

ev aluation tree generates 2

h

tasks, for a tree of heigh t h . The dela y ed sparking case generates

2

h � 1

tasks, for h > 0 and 1 task for h = 0. Pro of b y induction on the no con trol tree heigh t,

where the heigh t is measured in terms of ^ s:

case heigh t = 0, balanced tree = " :

dela y ed sparking tree = " (using the dela y ed sparking transformation rules)

dela y ed sparking consists of 1 task

case heigh t = 1, balanced tree = work (" ^ "):

dela y ed sparking tree = work " (using the dela y ed sparking transformation rules)

dela y ed sparking consists of 1 task (2

1 � 1

)

case heigh t = h (h > 1), balanced tree = work ((work l) ^ r):

dela y ed sparking tree = work (work (ds l ^ ds r))

in terms of ^ s, l and r ha v e the same heigh t (h � 1)

n um b er of tasks = n um b er of tasks in ds l + n um b er of tasks in ds r

using the induction h yp othesis = 2

h � 2

+ 2

h � 2

= 2

h � 1

2

With form ulae for the total amoun t of w ork p erformed and the n um b er of task whic h eac h

v ersion generates, the a v erage task lengths can b e calculated:

no con trol a v erage task length =

2

h

� 1

2

h

� 1

= 1

dela y ed sparking a v erage task length =

2

h

� 1

2

h � 1

� 1

� 2

CHAPTER 6. P ARALLELISM CONTR OL 115

Th us under the assumptions giv en con trol of parallelism b y dela y ed sparking doubles the a v erage

task length and doubles the execution time with an un b ounded n um b er of pro cessors. Pro viding

the a v erage parallelism is m uc h greater than the n um b er of pro cessors the e�ect on execution

time will b e negligible. By insp ection it can b e seen that the shortest length tasks whic h are

generated b y the dela y ed sparking tec hnique, are equal to the shortest length tasks generated

under no con trol (0), plus the dela y ed sparking dela y (one work unit). Th us the shortest length

tasks whic h are generated b y the dela y ed sparking tec hnique ha v e lengths of one work unit.

Exact con trol

A more direct metho d of con trolling task sizes is to examine the `size' of the problem to b e solv ed.

Dep ending on the size of problem to b e solv ed it ma y b e solv ed in parallel or sequen tially . A

simple w a y to implemen t this is to c hange the leaf predicate and the solve functions for the

simple D&C com binator. F or example:

> dc4 issmall div comb isleaf solve =

> dc1 div comb issmall (seq_dc div comb isleaf solve)

The pro of obligation for dc4 is the same as for dc1 : it is su�cien t for comb to b e strict in its

second argumen t.

This will only w ork pro viding 8 p 2 pr obl em domain : isleaf p) issmall p .

Ho w ev er as has b een previously men tioned, sequen tial tasks often should use di�eren t algorithms

to parallel tasks; this is exp ounded in Chapter 8. Also, close insp ection of dc4 rev eals that task

sizes m ust b e tested b efore sparking in order to decide whether to spark or not. F or example if

t w o sub-problems a and b are pro duced from a problem division, a ma y b e suitable for parallel

ev aluation, but b ma y not. T ogether these problems should b e executed sequen tially but a

should b e solv ed using the parallel D&C function and b should use a sequen tial D&C function.

This ma y b e implemen ted th us:

> dc5 issmall seqalg div comb =

> f

> where

> f x = comb sprob1 sprob2, p1small \/ p2small

> = par sprob1 (seq sprob2 (comb sprob1 sprob2)), otherwise

> where

> (p1,p2) = div x

> sprob1 = seqalg p1, p1small

> = f p1

> sprob2 = seqalg p2, p2small

> = f p2

> p1small = small p1

> p2small = small p2

In order for the par in dc5 to satisfy the pro of obligation, it is su�cien t for comb to b e strict

in its second argumen t. An impro v ed dc4 , for use when the same algorithm should b e used for

sequen tial and parallel solution of problems, ma y no w b e de�ned th us:

CHAPTER 6. P ARALLELISM CONTR OL 116

> dc4 issmall div comb isleaf solve =

> dc5 issmall (seq_dc div comb isleaf solve) div comb

The pro of obligation is the same as for dc5 . The b ounding D&C com binator ma y also b e

extended so as to use a di�eren t algorithm to solv e sub-problems when running sequen tially .

It is in teresting to compare a dc5 com binator v ersion of Quic ksort with V ree and Hartel's

transformed Quic ksort. Unfortunately , Quic ksort cannot b e expressed using these com binators

since it cannot b e de�ned as a homomorphism on lists. This is b ecause the com bination of

t w o sub-problems' results is dep enden t up on the splitting elemen t used to pro duce the results.

T o enable Quic ksort to b e expressed, and other non-homomorphism algorithms lik e it, a more

general divide and conquer com binator is required. Sp eci�cally , the com bine function m ust b e

pro duced b y the divide function. A more general v ersion of dc5 to do this is sho wn b elo w:

> dc5 issmall seqalg div =

> f

> where

> f x = comb sprob1 sprob2, p1small \/ p2small

> = par sprob1 (seq sprob2 (comb sprob1 sprob2)), otherwise

> where

> (comb,p1,p2) = div x

> sprob1 = seqalg p1, p1small

> = f p1, otherwise

> sprob2 = seqalg p2, p2small

> = f p2, otherwise

> p1small = small p1

> p2small = small p2

The pro of obligation is similar to b efore: it is su�cien t for the comb function pro duced b y div

to b e strict in its second argumen t.

Quic ksort ma y then b e expressed th us:

> parqsort l = dc5 isshort insertionsort div

> isshort l = #l < 6

> div (e:r) = (comb, [x| x<-r; x<=e], [x| x<-r; x>r])

> where

> comb lo hi = lo++(e:hi)

Pro viding the whole of the result is required, comb will b e strict in its second argumen t and hence

parqsort will ful�ll the pro of obligation. (In fact a w eak er pro of obligation can b e form ulated for

these D&C com binators whic h rev eals that in an y strict con text parqsort is a v alid program.)

The function insertionsort is the standard sequen tial insertion sort, whic h is e�cien t for short

lists.

CHAPTER 6. P ARALLELISM CONTR OL 117

This is comparable with the result of V ree and Hartel's transformation. The same e�ect has b een

ac hiev ed but without transformation. Ho w ev er with dc5 , the programmer need only kno w that

its meaning is the same as the op erationally simpler one (dc1), and the nature of the predicate

for con trolling tasks sizes. V ree's and Hartel's transformation results in a m uc h more complex

program for the programmer but it has the adv an tage of b eing more e�cien t. The more general

the D&C com binators are, the less e�cien t they b ecome. A solution to this ine�ciency is to

do some partial ev aluation, hop efully automatically , to pro duce a program equiv alen t to the

transformed v ersion. Ev en if the partial ev aluation cannot b e done automatically , the man ual

transformation of a D&C com binator program to an explicitly recursiv e one is easier than the

transformations V ree adv o cates.

One w a y to mak e exact con trol D&C com binators more e�cien t is to com bine the issmall

and div functions. The resulting function ma y pro duce pairs, consisting of a sub-problem and

a truth v alue indicating whether it is small or not. This can impro v e e�ciency b ecause the

splitting of problems and determination of sub-problems sizes are usually inextricably link ed.

Ho w ev er this has not b een done here, b ecause it w ould mean using a di�eren t div function for

the exact con trol com binators.

6.6.2 Claims

It is not p ossible to sa y that one metho d for con trolling parallelism is de�nitiv ely b etter than

another. T o adequately con trol parallelism for di�eren t algorithms a v ariet y of tec hniques are

necessary: b oth run time and programmer con trolled.

P arallelism con trol is particularly imp ortan t for D&C algorithms b ecause they t ypically pro duce

far more tasks than the mac hine has pro cessors and they pro duce man y small tasks. T ask

residency is b est con trolled b y the run-time system of a mac hine. T o con trol the sizes of tasks a

com bination of the ev aluate-and-die (E&D) task mo del and programmer con trol is most e�ectiv e.

F or some algorithms, suc h as parallel pre�x, go o d sp eed-up o v er a sequen tial implemen tation

ma y only b e ac hiev ed b y using a di�eren t, sequen tial, algorithm for sequen tial tasks, see Section

8.2.3. F or these algorithms a D&C com binator is required whic h enables a di�eren t algorithm

to b e used for solving problems sequen tially .

The most e�ectiv e programmed metho d for con trolling task sizes w as found to b e the exact

metho d. This w orks w ell for an y shap e of task tree. The dra wbac k of this metho d is that

a predicate m ust b e form ulated indicating when a sub-problem is so small that it should b e

executed sequen tially . In some cases this predicate ma y b e quite exp ensiv e to compute and it

ma y b e di�cult for the programmer to form ulate.

F or balanced task trees the simple depth b ounding con trol w orks w ell and it has negligible cost

asso ciated with it. Ho w ev er it is not suited to badly un balanced task trees. More imp ortan tly

the notion of kno wing when to b ound the task tree not only requires information ab out the

cost of solving sub-problems but it also requires the size of the original problem to b e kno wn

or calculated. Th us this metho d is most suited to problems of �xed size whic h ha v e balanced

task trees, suc h as the matrix problem describ ed. This precludes, for example, the use of sparse

matrices represen ted using quad-trees.

The dela y ed sparking mec hanism is b etter than the simple depth b ounding one, for badly un bal-

anced task trees. Lik e the depth b ounding case this to o has some pathological bad cases. Unlik e

CHAPTER 6. P ARALLELISM CONTR OL 118

the other programmed metho ds this metho d relies on lazy ev aluation, whic h it needs in order

to represen t the queue of dela y ed sparks; that is, a queue of unev aluated tasks. In man y w a ys

dela y ed sparking is far more suited to b eing incorp orated in to the run-time system of a mac hine

rather than b eing a programmer con trolled tec hnique. This is b ecause the tec hnique requires

no problem sp eci�c information, unlik e the other tec hniques. All that is required is to dela y the

sparking of a task. If the paren t task of a dela y ed spark completes ev aluation b efore its task is

really spark ed; then the paren t ma y ev aluate the task and no spark is necessary . Nev ertheless

this tec hnique is a v ailable to the programmer if it is not implemen ted in a mac hines run-time

system.

An imp ortan t observ ation is that a GRIP-lik e mac hine whic h discards tasks (that is it do es

not k eep all sparks in some form of task p o ol) m ust regularly garbage collect its task queue

of useless WHNF tasks. The results sho w that v ast n um b ers of WHNF tasks are created. A

mac hine whic h discards tasks m ust mak e sure that tasks in its task p o ol are not in WHNF.

Otherwise go o d tasks ma y b e discarded when the ma jorit y of task in a task p o ol are in WHNF.

It is not su�cien t to just c hec k tasks when they are put in a task queue and when they are

ev aluated to see whether they are in WHNF; since while in a task p o ol a task's expression ma y

b e ev aluated b y another task.

The E&D task mo del pro duces a dramatic increase in the a v erage sizes of tasks. Although a

noti�cation task mo del w as not implemen ted, the E&D mo del ma y b e compared with it. The

p erformance on the abstract mac hine of the t w o mo dels will b e appro ximately equal. This is

b ecause the only di�erence b et w een the t w o mo dels on an abstract mac hine will b e the order

in whic h tasks are sc heduled, and Eager's result (Section 2.6) means that b oth systems should

p erform w ell. The sizes of task whic h are pro duced b y the noti�cation mo del, when executed with

a limited n um b er of pro cessors, will b e the same as the task sizes pro duced b y the E&D mo del on

a mac hine with an un b ounded n um b er of pro cessors. This is b ecause with an un b ounded n um b er

of pro cessors the E&D mo del sparks all tasks and coalesces no tasks: the exact b eha viour of the

noti�cation mo del on a mac hine with an y n um b er of pro cessors.

Nev ertheless the E&D mo del do es still create a signi�can t n um b er of small tasks. This can

arise when a D&C algorithms task tree cannot b e equally divided-up b et w een pro cessors and

the pro cessors end up sharing the remaining w ork. Th us b y itself, run-time system con trol of

parallelism is not su�cien t.

A problem with programmed task size con trol is that for e�cien t task size con trol only enough

tasks to satisfy the n um b er of a v ailable pro cessors should b e generated. The calculation of suc h

cut-o� p oin ts is v ery hard. This is di�eren t from just ensuring that tasks whic h are created

are `w orth-while'. Ho w ev er if the programmed con trol metho d and E&D mo del are com bined,

then tasks sizes and task n um b ers ma y b e v ery e�cien tly con trolled. The programmed con trol

imp oses a lo w er limit on the size of tasks whic h are generated. That is, only tasks are generated

whic h will b e b ene�cial to ev aluate in parallel. The E&D mo del automatically coalesces tasks

once the mac hine is busy , th us e�ectiv ely increasing the sizes of tasks.

6.6.3 Adaptiv e quadrature results

Man y exp erimen ts w ere p erformed; a few in teresting ones are describ ed here. Tw o programs

form the basis of the exp erimen ts sho wn: a n umerical in tegration, using an adaptiv e quadrature

algorithm, and a matrix m ultiplication, using quad-trees to represen t matrices. The analysis

CHAPTER 6. P ARALLELISM CONTR OL 119

of the p erformance results had to tak e in to accoun t output times. The result of the n umerical

in tegration is a single n um b er hence its output time is negligible. The ob jectiv e of task size

con trol w as to reduce the n um b er of short tasks. This w as done relativ e to the sizes of the short

tasks in the simple (dc1) v ersion of the program.

An adaptiv e quadrature algorithm w as enco ded using the D&C com binators. This p erforms an

in tegration of a function o v er an in tegral, using an adaptiv e trap ezium rule [103].

> area left right = (foo left + foo right) / (2*(right-left))

> solve (l, m, r, val) = (area l m) + (area m r)

> isleaf (l, m, r, val) = abs ((left+right)-val) < 0.5

> where

> left = area l m

> right = area m r

> div (l, m, r, val) = ((l,nlm,m,left), (m,nrm,r,right))

> where

> nlm = (l+m)/2

> nrm = (m+r)/2

> left = area l m

> right = area m r

> comb = (+)

> issmall (l, m, r, val) = abs ((left+right)-val) < 0.7

> where

> left = area l m

> right = area m r

> depthbound = 9

> mkdata l r = (l, (l+r)/2, r, area l r)

> foo x = ((((x-6)*x)+3)*x)-2

> data = mkdata 0 100

Notice that the com bining function comb is strict in b oth argumen ts; th us it satis�es the pro of

obligations of the aforemen tioned D&C com binators.

This algorithm has the imp ortan t c haracteristic that the sub-problems it pro duces are of v arying

sizes.

Tw o sets of exp erimen ts w ere p erformed; the �rst set compared seq_dc , dc1 , dc2 , dc3 and

dc4 , using an un b ounded n um b er of pro cessors. With an un b ounded n um b er of pro cessors no

sc heduling issues arise and no task coalescing o ccurs. A b ounding depth of 9 w as used for dc2 ,

and the dc3q1 v ersion of dc3 w as used, see Section 6.6.1. The second set of exp erimen ts compared

CHAPTER 6. P ARALLELISM CONTR OL 120

Storage

used

Time

0 50000 100000 150000 200000 250000 300000

0

100

200

300

400

Figure 6.19: Store pro�le: seq_dc

dc1 with dc4 running on mac hines with 25, 100 and 200 pro cessors. F or these exp erimen ts task

coalescing did o ccur. The sim ulated mac hine and the sim ulator are describ ed in Section 2.7 and

Chapter 4, resp ectiv ely .

Short tasks are de�ned to b e the those in the group of shortest tasks (as sho wn in task distribu-

tion graphs) pro duced b y the simple parallel com binator dc1 . T ypically these fall in the range

of 0 to 150 mac hine cycles.

Comparison of the com binators

The results of the �rst set of exp erimen ts are summarised in the table b elo w:

The algorithm seq_dc dc1 dc2 dc3 dc4

Num b er of mac hine cycles 253909 1261 1885 2325 2663

Av erage parallelism { 203 152 110 115

W ork done { 255983 286652 255471 305020

Max. n um b er of activ e tasks { 986 505 429 385

T otal n um b er of tasks { 1040 505 518 384

Av erage spark ed task length { 245 564 491 787

In general �gures are not that accurate and they should only b e read relativ ely to other �gures;

th us only general trends should b e inferred from them. The sequen tial ev aluation time ma y

b e compared with the w ork done b y the parallel v ersions to rev eal the extra w ork the parallel

algorithms ha v e to do. Notice ho w the hea vily optimised dc3 p erforms ab out the same amoun t

of w ork as dc1 .

The execution times of the parallelism con trolling com binators are w orse than the execution time

for dc1 . Ho w ev er this w ould b e o�set b y the increased task o v erheads, suc h as comm unications,

from all the small tasks generated b y dc1 . Also for a limited pro cessor mac hine the di�erence in

execution times b et w een dc1 and the other parallel com binators will b e reduced; this is sho wn

in the second set of exp erimen ts.

CHAPTER 6. P ARALLELISM CONTR OL 121

Num b er

of

tasks

(| | {)

Time

Storage

used

(� � � � �)

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400

0

20000

40000

60000

80000

100000

Figure 6.20: T ask and store pro�les: dc1

Num b er

of

tasks

T ask length

0

100

200

300

400

500

600

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.21: T ask distribution: adaptiv e quadrature dc1

The sequen tial ev aluation graph Figure 6.19 sho ws an erratic pro�le of storage usage. The

storage usage probably v aries according to the depth of the D&C tree. This means that only

general remarks ab out the storage consumption of the parallel v ersions can b e made.

Figures 6.20 and 6.21 sho w the dc1 com binators p erformance. It sho ws the soft w are limit on the

a v ailable parallelism; that is it sho ws the maxim um amoun t of parallelism giv en an un b ounded

n um b er of pro cessors. This sho ws that there is a lot of parallelism and that the storage used tends

to increase as parallelism increases. P arallelism increases as more of the D&C tree is concurren tly

ev aluated. The task distribution graph sho ws that man y small tasks (100-200 reductions) are

created. These graphs will b e compared with the graphs for the other com binators.

Figures 6.22 and 6.23 compare the parallelism and store usage of dc2 with dc1 . The n um b er

of tasks is reduced b y appro ximately 50% and the storage residency is cut b y appro ximately

75%. The execution time is increased b y 50%, this is due to the reduction in parallelism and

the o v erheads of calculating the b ound.

The task distribution graph, Figure 6.24, sho ws that far few er short tasks are created, than for

dc1 . By c hanging the b ounding, bigger or smaller tasks ma y b e created. In general selecting

a go o d b ound for dc2 w as found to b e quite delicate and m uc h `tuning' w as required. A p o or

b ound either drastically reduces the a v ailable parallelism or results in man y small tasks. This

CHAPTER 6. P ARALLELISM CONTR OL 122

Num b er

of

tasks

Time

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000

Figure 6.22: P arallelism pro�les: adaptiv e quadrature dc2 (| | {) and dc1 (� � � � �)

Storage

used

Time

0

20000

40000

60000

80000

100000

0 500 1000 1500 2000 2500 3000

Figure 6.23: Store pro�les: adaptiv e quadrature dc2 (| | {) and dc1 (� � � � �)

Num b er

of

tasks

T ask length

0

100

200

300

400

500

600

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.24: T ask distribution: adaptiv e quadrature dc2

CHAPTER 6. P ARALLELISM CONTR OL 123

Num b er

of

tasks

Time

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000

Figure 6.25: P arallelism pro�les: adaptiv e quadrature dc3 (| | {) and dc1 (� � � � �)

Storage

used

Time

0

20000

40000

60000

80000

100000

0 500 1000 1500 2000 2500 3000

Figure 6.26: Store pro�les: adaptiv e quadrature dc3 (| | {) and dc1 (� � � � �)

w as esp ecially true for this example, whic h generates an un balanced task tree. The b ound c hosen

here w as necessarily v ery coarse to prev en t the generation of small tasks.

Figures 6.25 and 6.26 compare the parallelism and store usage of dc3 with dc1 . The dela y ed

sparking D&C v ersion of the program is slo w er then the depth b ounding v ersion. The degra-

dation in p erformance w as due to the dela y in tasks b eing ev aluated; since the amoun t of w ork

p erformed b y this com binator and dc1 w as ab out the same. Nev ertheless, this com binator ef-

fectiv ely regulates the n um b er of small tasks, and it con trols the storage usage b etter than the

depth b ounding v ersion. It w as noticeable ho w m uc h less tuning w as required with the dela y ed

sparking com binator to pro duce an e�cien t program than with the other com binators. The

main di�erence b et w een the parallelism pro�le of dc3 and the other com binators is the longer

sequen tial start-up time of dc3 . Figures 6.27 sho ws that no task less than 350 cycles w ere

generated; this compares w ell with dc2 where a few small tasks are still generated.

The results of the exact task size con trol com binator dc4 are sho wn in Figures 6.28, 6.29 and

6.30. It's execution time is quite slo w; this is b ecause it pro duces no short tasks and it p erforms

more w ork than an y of the other com binators. Ho w ev er the a v erage length of tasks it pro duces,

are m uc h greater than the other com binators. Its sp eed could b e increased to a similar v alue to

the other com binators, at the exp ense of pro ducing some smaller tasks. It could also b e made

CHAPTER 6. P ARALLELISM CONTR OL 124

Num b er

of

tasks

T ask length

0

100

200

300

400

500

600

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.27: T ask distribution: adaptiv e quadrature dc3

Num b er

of

tasks

Time

0

200

400

600

800

1000

0 500 1000 1500 2000 2500 3000

Figure 6.28: P arallelism pro�les: adaptiv e quadrature dc4 (| | {) and dc1 (� � � � �)

Storage

used

Time

0

20000

40000

60000

80000

100000

0 500 1000 1500 2000 2500 3000

Figure 6.29: Store pro�les: adaptiv e quadrature dc4 (| | {) and dc1 (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 125

Num b er

of

tasks

T ask length

0

100

200

300

400

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.30: T ask distribution: adaptiv e quadrature dc4

m uc h more e�cien t if div and issmall w ere com bined, since they duplicate w ork. Although it

w as not tried a dc5 v ersion utilising a di�eren t sequen tial algorithm could b e tested, for example

using Simpson's rule.

Comparison of dc1 with dc4 , using a limited n um b er of pro cessors

The second set of exp erimen ts compared dc1 with dc4 on a mac hine with a limited n um b er of

pro cessors. The mac hine used the ev aluate-and-die (E&D) task mo del whic h attempts to coalesce

tasks. No sparks w ere discarded. Th us these exp erimen ts compare a com binator (dc1) whic h

relies solely on the run-time system's task coalescing to con trol task sizes, with a com binator

(dc4) whic h con trols tasks sizes itself and has help from the run-time system. In addition

the E&D task mo del ma y b e compared with the noti�cation task mo del, see Section 6.3.1, as

previously men tioned programs with a high a v erage parallelism will p erform similarly on b oth

abstract mac hines. Ho w ev er the size of tasks whic h are generated will di�er. Th us the sizes of

task generated b y the dc1 com binator with a limited n um b er of pro cessors ma y b e compared

with the sizes of task generated for the dc1 com binator with a in�nite n um b er of pro cessors. The

latter measuremen t corresp onds to the sizes of task whic h w ould b e generated b y the noti�cation

mo del for an y n um b er of pro cessors, since it cannot coalesce tasks.

Mac hines with 25, 100 and 200 pro cessors w ere tried. These sizes w ere c hosen since in the

unrestricted case the a v erage parallelism w as appro ximately 200 and for a run-time task size

con trol p olicy to w ork w ell the a v erage parallelism m ust b e greater than the n um b er of pro cessors.

Also Eager's sp eed-up theorem can b e v eri�ed.

The table b elo w sho ws the results from these exp erimen ts:

CHAPTER 6. P ARALLELISM CONTR OL 126

Algorithm dc1 dc4 dc1 dc4 dc1 dc4

Num b er of pro cessors 25 25 100 100 200 200

Num b er of mac hine cycles 10756 13502 3320 4634 2138 3575

Av erage parallelism 24 23 77 66 120 85

W ork done 255993 305010 256005 305010 255983 305019

Max. n um b er of activ e tasks 25 25 100 100 200 200

T otal n um b er of tasks 98 74 269 189 451 287

Av erage spark ed task length 2527 3989 942 1595 564 1054

Num b er of useless tasks 942 310 771 195 589 97

Figures 6.31 to 6.42 sho w the results of exp erimen ts p erformed with mac hines of 25, 100 and 200

pro cessors. The results agree with Eager's sp eed-up predictions { they sho w a go o d p erformance

when the a v erage parallelism (200) is m uc h greater than the n um b er of pro cessor (25). Also none

of the p erformances drop b elo w the limit whic h Eager's sp eedup theorem states, see Section 2.6.

F or example the a v erage parallelism of dc1 and dc4 with an unlimited n um b er of pro cessors is

203 and 115, resp ectiv ely (see the table prior to this one). With 200 pro cessors dc1 and dc4

ha v e a v erage parallelisms of 120 and 85. Eager's sp eedup theorem giv es lo w er b ounds on the

a v erage parallelism of dc2 and dc4 as 101 and 73, resp ectiv ely .

With an in�nite n um b er of pro cessors, see the previous results, dc1 pro duces tasks with an

a v erage length of 245. This corresp onds to the a v erage length of tasks pro duced b y a mac hine

using a noti�cation task mo del for an y n um b er of pro cessors. As can b e seen ab o v e, the results

for dc1 with a limited n um b er of pro cessors ha v e m uc h greater a v erage task lengths than 245.

Th us, unlik e the noti�cation mo del, the E&D task mo del can coalesce tasks and hence impro v e

the parallelism gran ularit y of some programs.

The p ercen tage di�erence in execution times b et w een dc1 and dc4 decreases with the n um b er

of pro cessors. This di�erence in execution times ma y b e b ounded b y the p ercen tage di�erence

in w ork done b y the t w o algorithms (20%) and the p ercen tage di�erence in execution time for

the t w o algorithms with an un b ounded n um b er of pro cessors (80%).

T ask n um b ers (tasks residency) are w ell con trolled b y dc1 and dc4 . The dc1 com binator's task

sizes w ere greatly impro v ed o v er the un b ounded case, compare Figure 6.21 with 6.33, 6.37 and

6.41. Nev ertheless a signi�can t n um b er of small tasks w ere created. Figures 6.34, 6.38 and 6.42

sho w that com bining a run-time task size con trol with program con trol prev en ts all these small

tasks.

The dc1 com binator generates man y useless WHNF tasks; this demonstrates that c hec king tasks'

expressions to see whether they are in WHNF is v ery imp ortan t for a mac hine whic h implemen ts

an ev aluate-and-die task mo del. Ho w ev er dc4 generates far few er useless tasks than dc1 , whic h

means that detection of suc h tasks is less imp ortan t in this case.

CHAPTER 6. P ARALLELISM CONTR OL 127

Num b er

of

tasks

Time

0

5

10

15

20

25

0 2000 4000 6000 8000 10000 12000 14000

Figure 6.31: P arallelism pro�les: 25 pro cessors dc4 (| | {) and dc1 (� � � � �)

Storage

used

Time

0

2000

4000

6000

8000

0 2000 4000 6000 8000 10000 12000 14000

Figure 6.32: Store pro�les: 25 pro cessors dc4 (| | {) and dc1 (� � � � �)

Num b er

of

tasks

T ask length

0

10

20

30

40

50

60

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.33: T ask distribution: 25 pro cessors dc1

CHAPTER 6. P ARALLELISM CONTR OL 128

Num b er

of

tasks

T ask length

0

20

40

60

80

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.34: T ask distribution: 25 pro cessors dc4

Num b er

of

tasks

Time

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

Figure 6.35: P arallelism pro�les: 100 pro cessors dc4 (| | {) and dc1 (� � � � �)

Storage

used

Time

0

5000

10000

15000

20000

0 1000 2000 3000 4000 5000

Figure 6.36: Store pro�les: 100 pro cessors dc4 (| | {) and dc1 (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 129

Num b er

of

tasks

T ask length

0

50

100

150

200

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.37: T ask distribution: 100 pro cessors dc1

Num b er

of

tasks

T ask length

0

50

100

150

200

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.38: T ask distribution: 100 pro cessors dc4

Num b er

of

tasks

Time

0

50

100

150

200

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 6.39: P arallelism pro�les: 200 pro cessors dc4 (| | {) and dc1 (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 130

Storage

used

Time

0

10000

20000

30000

40000

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 6.40: Store pro�les: 200 pro cessors dc4 (| | {) and dc1 (� � � � �)

Num b er

of

tasks

T ask length

0

50

100

150

200

250

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.41: T ask distribution: 200 pro cessors dc1

Num b er

of

tasks

T ask length

0

50

100

150

200

250

300

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.42: T ask distribution: 200 pro cessors dc4

CHAPTER 6. P ARALLELISM CONTR OL 131

6.6.4 Matrix m ultiplication results

The second example of a D&C algorithm is matrix m ultiplication. This used used quad-trees

to represen t matrices, as adv o cated b y Wise [120]. Generally quad-tree matrix represen tation

is v ery go o d for parallelism and data lo calit y . It also means that sparse and dense matrices

ma y b e uniformly represen ted. Imp ortan t op erations suc h as Gaussian elimination ma y also b e

p erformed using quad-trees. The result of a matrix m ultiplication is large and hence considerable

time is sp en t outputting it. Therefore results (tables and graphs) w ere adjusted to remo v e this

output time.

Tw o 16 b y 16 matrices w ere m ultiplied together in parallel. This problem is v ery di�eren t from

the adaptiv e quadrature one. Its c haracteristics are:

� sub-problems ha v e �xed sizes (dense matrices)

� the task tree is thic kly branc hing

� the comb op eration uses another D&C algorithm | matrix addition

T o handle this problem generalised v ersions of the previous D&C com binators w ere required,

whic h could handle more than t w o sub-problems. Therefore div and comb w ere c hanged to

pro duce and com bine lists of sub-problems. F or example dc1 b ecomes:

> dc1 div comb isleaf solve =

> f

> where

> f x = solve x, isleaf x

> = comb (parmap id f (div x)), otherwise

> parmap ff f = parlist ff . map f

In order for the parmap pro of obligation to b e met, this D&C com binator m ust b e used in a

con text where either comb is head and tail strict in its argumen t or where the solutions of all

sub-problems are de�ned. That is where div , comb , isleaf and solve are total and the input

data is de�ned. Similar pro of obligations hold for the other D&C com binators.

The quad-tree matrix m ultiplication w as implemen ted th us:

> matrix * ::= Scalar * |

> Quad (matrix *) (matrix *) (matrix *) (matrix *)

> isleaf ((Scalar _), _) = True

> isleaf _ = False

> addsolve (Scalar n, Scalar m) = seq x (Scalar x) where x = n+m

> adddiv (Quad a b c d, Quad e f g h) = [(a,e), (b,f), (c,g), (d,h)]

CHAPTER 6. P ARALLELISM CONTR OL 132

> addcomb [p,q,r,s] = Quad p q r s

> addisshort (Quad _ _ _ _, _) = False

> addisshort _ = True

> mulsolve (Scalar n, Scalar m) = seq x (Scalar x) where x = n*m

> muldiv (Quad a b c d, Quad e f g h) =

> [(a,e),(b,g),(a,f),(b,h),(c, e),(d,g) ,(c,f), (d,h)]

> mulcomb madd [p,q,r,s,t,u,v,w] m =

> par m1 (par m2 (par m3 (seq m4 (Quad m1 m2 m3 m4))))

> where

> m1 = madd (p,q)

> m2 = madd (r,s)

> m3 = madd (t,u)

> m4 = madd (v,w)

> depthbound = 3

> mulisshort (Quad (Quad _ _ _ _) _ _ _, _) = False

> mulisshort _ = True

The _ pattern acts as a wildcard, whic h matc hes an ything. An example m ultiplication using

dc1 is:

> test = dc1 muldiv mulcomb isleaf mulsolve (bigmatrix,bigmatrix)

> where

> comb = mulcomb (dc1 adddiv addcomb isleaf addsolve)

Since all of the result matrix is required (b y the output driv er), b oth mulcomb and addcomb

o ccur in h yp er-strict con texts. Th us test meets b oth dc1 pro of obligations. A similar argumen t

applies to tests p erformed with the other D&C matrices.

Notice ho w dc1 has b een used for b oth the m ultiplication and the addition of sub-problems. In

general matrix addition w as alw a ys implemen ted using the same com binator as m ultiplication.

Lik e the adaptiv e quadrature program, t w o sets of exp erimen ts w ere p erformed. The �rst set

compared seq_dc , dc1 , dc2 , dc3 , dc4 and dc5 , using an un b ounded n um b er of pro cessors. A

b ounding depth of 3 w as used for m ultiplication using dc2 . F or dc3 a v ersion of dc3q1 , see

Section 6.6.1, w as used; this manipulated lists rather then pairs of sub-problems. The dc5

com binator used an optimised algorithm for m ultiplying small matrices directly , rather than

using recursion. The second set of exp erimen ts compared dc1 with dc4 running on mac hines

with 25, 100 and 200 pro cessors.

CHAPTER 6. P ARALLELISM CONTR OL 133

Storage

used

Time

0 25000 50000 75000 100000 125000 150000 175000 200000

0

500

1000

1500

2000

2500

3000

Figure 6.43: Store pro�le: seq_dc

Comparison of the com binators

The results of the �rst set of exp erimen ts are summarised in the table b elo w:

The algorithm seq_dc dc1 dc2 dc3 dc4 dc5

Num b er of mac hine cycles 173230 514 832 861 845 583

Av erage parallelism { 425 240 222 237 123

W ork done { 218270 199320 191057 200072 71489

Max. n um b er of activ e tasks { 1693 522 1041 523 432

T otal n um b er of tasks { 9105 1105 2422 1105 1105

Av erage spark ed task length { 24 180 79 181 65

Notice that the optimisation of the parallelism con trolling com binators means that they do less

w ork than dc1 . This is partly b ecause the parmap used in the de�nition of dc1 is quite ine�cien t;

it is de�ned in terms of parlist . When solving problems sequen tially the parallelism con trolling

com binators do not incur the ine�ciencies of using parmap . The dc5 com binator is m uc h more

e�cien t than the others, due to its optimisation for m ultiplying small matrices.

Figure 6.43 sho ws the store pro�le of seq_dc . This sho ws a linearly decreasing use of storage.

Figure 6.44 sho ws b eautiful parallelism and storage pro�les, resulting from the problems reg-

ularit y . The graphs sho w go o d sp eed-up and the storage usage exactly follo ws the parallelism

pro�le. Ho w ev er the storage usage (residency) is increased o v er the sequen tial v ersion. This is

b ecause sub-problems are solv ed concurren tly and the solution of a sub-problem requires more

storage than its input data or result. Th us sequen tial ev aluation will only require the transien t

storage use of one sub-problem, since sub-problems are solv ed sequen tially . P arallel ev aluation

will concurren tly solv e sub-problems and hence their transien t storage requiremen ts will b e ac-

cum ulated. The task distribution graph, Figure 6.45, rev eals man y small tasks; the ma jorit y of

tasks to ok less than 25 cycles to execute!

Depth b ounding w orks w ell for this problem b ecause the task tree is balanced; ho w ev er a p o-

ten tial w eakness of depth b ounding also b ecomes apparen t. During matrix m ultiplication, the

matrix size whic h add op erates up on v aries and therefore this m ust b e calculated dynamically to

CHAPTER 6. P ARALLELISM CONTR OL 134

Num b er

of

tasks

(| | {)

Time

Storage

used

(� � � � �)

0

500

1000

1500

2000

0 100 200 300 400 500 600

0

10000

20000

30000

40000

50000

Figure 6.44: T ask and store pro�les: dc1

Num b er

of

tasks

T ask length

0

2000

4000

6000

8000

10000

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.45: T ask distribution: matrix m ultiplication dc1

CHAPTER 6. P ARALLELISM CONTR OL 135

Num b er

of

tasks

Time

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900

Figure 6.46: P arallelism pro�les: matrix m ultiplication dc2 (| | {) and dc1 (� � � � �)

Storage

used

Time

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900

Figure 6.47: Store pro�les: matrix m ultiplication dc2 (| | {) and dc1 (� � � � �)

ac hiev e correct b ounding for matrix addition. This is less of a problem for matrices, compared

with other D&C algorithms, b ecause matrices branc h quic kly and hence they are not usually

v ery high. Also the matrices used in this exp erimen t are regular, hence only the heigh t of one

matrix need b e calculated for eac h set of additions. The o v erall execution time is 60% greater

than dc1 and few small tasks are generated. This sho ws that the small tasks whic h dc1 gener-

ates p erform a lot of w ork, otherwise there w ould b e less discrepancy in execution times b et w een

dc1 and dc2 . Ho w ev er in practice these tasks w ould b e to o small to b e b ene�cial for parallel

ev aluation on a MIMD mac hine. T ask n um b ers are con trolled w ell b y depth b ounding; it only

generates ab out 12% of the tasks whic h dc1 do es. The storage use of dc2 is similar to dc1 .

The dela y ed sparking algorithm p erforms v ery w ell compared to the other con trol metho ds,

see Figures 6.49 to 6.51. The amoun t of w ork it p erforms and its execution time are similar

to dc2 and dc4 . Ho w ev er it do es generate more tasks than the other parallelism con trolling

com binators and it generates man y small tasks. This is b ecause the other metho ds are w ell

suited to con trolling algorithms with balanced task trees. Nev ertheless dc3 only generates 25%

of the tasks whic h dc1 do es, and it generate far few er small tasks (less than 50 reduction cycles)

than dc1 do es.

CHAPTER 6. P ARALLELISM CONTR OL 136

Num b er

of

tasks

T ask length

0

100

200

300

400

500

600

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.48: T ask distribution: matrix m ultiplication dc2

Num b er

of

tasks

Time

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900

Figure 6.49: P arallelism pro�les: matrix m ultiplication dc3 (| | {) and dc1 (� � � � �)

Storage

used

Time

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900

Figure 6.50: Store pro�les: matrix m ultiplication dc3 (| | {) and dc1 (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 137

Num b er

of

tasks

T ask length

0

500

1000

1500

2000

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.51: T ask distribution: matrix m ultiplication dc3

Num b er

of

tasks

Time

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900

Figure 6.52: P arallelism pro�les: matrix m ultiplication dc4 (| | {) and dc1 (� � � � �)

Figures 6.52 to 6.54 sho w the results for the exact task size con trol com binator (dc4). The

results for this are essen tially the same as for the dc2 com binator, the same sub-problems are

solv ed in parallel. The only di�erence is that dc4 is sligh tly less e�cien t than dc2 at determining

whether sub-problems should b e solv ed in parallel. The graphs for dc4 are almost iden tical to

those for dc2 .

Using exact task size con trol and an optimised sequen tial algorithm is v ery e�cien t as can b e

seen in Figures 6.55, 6.56 and 6.57. The same sub-problems w ere solv ed in parallel as dc2 and

dc4 ; ho w ev er an optimised sequen tial algorithm w as used for m ultiplying small matrices. The

execution time compares w ell with dc1 y et the n um b er of tasks is reduced to 12% of dc1 . The

storage residency is reduced b y appro ximately 50% of dc1 . The drastic reduction in storage is

a result of the optimised sequen tial tasks whic h create no in termediate matrices for addition, as

the general case do es. It is true that normally this optimisation w ould reduce the storage and

execution time of the sequen tial algorithm, but in a parallel setting these b ene�ts are ampli�e d .

This is b ecause in a parallel setting the storage residency is increased and, b ecause, sequen tial

parts of the program limit the parallel algorithms p erformance, see [67].

CHAPTER 6. P ARALLELISM CONTR OL 138

Storage

used

Time

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900

Figure 6.53: Store pro�les: matrix m ultiplication dc4 (| | {) and dc1 (� � � � �)

Num b er

of

tasks

T ask length

0

100

200

300

400

500

600

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.54: T ask distribution: matrix m ultiplication dc4

Num b er

of

tasks

Time

0

500

1000

1500

2000

0 100 200 300 400 500 600 700 800 900

Figure 6.55: P arallelism pro�les: matrix m ultiplication dc5 (| | {) and dc1 (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 139

Storage

used

Time

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900

Figure 6.56: Store pro�les: matrix m ultiplication dc5 (| | {) and dc1 (� � � � �)

Num b er

of

tasks

T ask length

0

200

400

600

800

1000

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.57: T ask distribution: matrix m ultiplication dc5

CHAPTER 6. P ARALLELISM CONTR OL 140

Num b er

of

tasks

T ask length

0

1000

2000

3000

4000

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.58: T ask distribution: 25 pro cessors dc1

Comparison of dc1 with dc4 , using a limited n um b er of pro cessors

The matrix algorithm when run on an un b ounded n um b er of pro cessors had an a v erage paral-

lelism of appro ximately 200; therefore once again dc1 w as tried with 25, 100 and 200 pro cessors.

Figure 6.58 sho ws the task length distributions for a 25 pro cessor mac hine. Notice ho w man y

small tasks, less than 50 cycles long, are generated. Of the 5678 tasks spark ed ab out 60% had

lengths less than 10 mac hine cycles.

One reason for this w as the parlist com binator whic h w as used. The parlist com binator

ma y generate sparks whic h do v ery little ev aluation b efore terminating. F or example in making

parlist general it forces ev aluation of list elemen ts with a function. The v alue b eing forced ma y

b e in WHNF but this cannot b e detected b y the mac hine b ecause the task consists of a closure:

the forcing function applied to the v alue in WHNF. It seems as though the mec hanisms of parallel

mac hines ma y hinder the use of parallelism abstractions. Ev aluation transformers, describ ed in

Section 3.2.3, w ould prev en t this problem; ho w ev er at presen t they are not extensible, and they

do not supp ort the de�nition of parallelism abstractions. This is discussed further in Section

9.1.7.

An alternativ e solution is to de�ne parmap di�eren tly:

> pcons h t = par t (seq h (h:t))

> parmap f [] = []

> parmap f (x:xs) = (f h) $pcons parmap f xs

This v ersion of parmap m ust b e used in at least a tail strict con text: whic h it is in the D&C

com binators. With this v ersion of parmap results and par s (task sparks) reference the same

v alues, therefore once a v alue is in WHNF an y task whic h refers to that v alue ma y also detect

this. Unfortunately parmap is no longer parameterised with a forcing function.

Revised v ersions of the D&C com binators, whic h used the new parmap , w ere tried for 25, 100

and 200 pro cessor mac hines. The results are summarised in the table b elo w:

CHAPTER 6. P ARALLELISM CONTR OL 141

Algorithm dc1 dc4 dc1 dc4 dc1 dc4

Num b er of pro cessors 25 25 100 100 200 200

Num b er of mac hine cycles 7860 7952 2127 2316 1163 1385

Av erage parallelism 25 25 92 85 168 142

W ork done 195436 197227 195449 197225 195449 197226

Max. n um b er of activ e tasks 25 25 100 100 200 200

T otal n um b er of tasks 3436 569 4049 959 4636 959

Av erage spark ed task length 56 342 48 205 42 205

Num b er of useless tasks 4499 390 3886 0 3299 0

These results sho w that the execution times of dc1 and dc4 are v ery similar for small n um b er

of pro cessors. The execution o v erhead of using dc4 ma y b e b ounded as previously men tioned

in the discussion of the adaptiv e quadrature results. Also, as previously , the results agree with

Eager's sp eed-up predictions. In particular notice ho w the parallelism pro�les in Figures 6.59,

6.63 and 6.67 deteriorate as the n um b er of pro cessors increases. (Ideally the parallelism pro�les

should sho w a constan t activit y of p tasks for a p pro cessor mac hine.)

Once again the E&D task mo del successfully coalesces some tasks and hence it results in a larger

gran ularit y of parallelism than if a noti�cation mo del had b een used. A noti�cation mo del, on

a mac hine with an y n um b er of pro cessors, w ould ha v e pro duced tasks with an a v erage length

the same as dc1 with an in�nite n um b er of pro cessors (24).

The task distribution graphs, Figures 6.61 to 6.70, sho w that run-time con trol of task sizes is not

su�cien t. Man y more small tasks (< 50 cycles) are generated b y dc1 than dc4 . It is noticeable

that for 25 pro cessors, dc4 b etter con trols the storage residency considerably b etter than dc1 .

Similarly to the adaptiv e quadrature results, dc4 pro duces far few er useless tasks than dc1 :

whic h pro duces lots of them. Ho w ev er unlik e the adaptiv e quadrature results, dc4 also pro duces

far few er tasks in total than dc1 .

Some of the short tasks whic h are generated b y dc1 and dc4 can b e attributed to applications

of pcons h [] . This generates an unnecessary task since there is no p oin t ev aluating h and []

in parallel.

These results sho w that additional con trol of parallelism is far more necessary for this algo-

rithm than for the adaptiv e quadrature one. This is probably b ecause this algorithm is more

complicated than the adaptiv e quadrature one; this algorithm is a double D&C algorithm.

CHAPTER 6. P ARALLELISM CONTR OL 142

Num b er

of

tasks

Time

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 6.59: P arallelism pro�les: 25 pro cessors dc4 (| | {) and dc1 (� � � � �)

Storage

used

Time

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 6.60: Store pro�les: 25 pro cessors dc4 (| | {) and dc1 (� � � � �)

Num b er

of

tasks

T ask length

0

500

1000

1500

2000

2500

3000

3500

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.61: T ask distribution: 25 pro cessors dc1

CHAPTER 6. P ARALLELISM CONTR OL 143

Num b er

of

tasks

T ask length

0

50

100

150

200

250

300

350

400

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.62: T ask distribution: 25 pro cessors dc4

Num b er

of

tasks

Time

0

20

40

60

80

100

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Figure 6.63: P arallelism pro�les: 100 pro cessors dc4 (| | {) and dc1 (� � � � �)

Storage

used

Time

0

2000

4000

6000

8000

10000

12000

14000

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Figure 6.64: Store pro�les: 100 pro cessors dc4 (| | {) and dc1 (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 144

Num b er

of

tasks

T ask length

0

500

1000

1500

2000

2500

3000

3500

4000

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.65: T ask distribution: 100 pro cessors dc1

Num b er

of

tasks

T ask length

0

100

200

300

400

500

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.66: T ask distribution: 100 pro cessors dc4

Num b er

of

tasks

Time

0

50

100

150

200

0 200 400 600 800 1000 1200 1400

Figure 6.67: P arallelism pro�les: 200 pro cessors dc4 (| | {) and dc1 (� � � � �)

CHAPTER 6. P ARALLELISM CONTR OL 145

Storage

used

Time

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

0 200 400 600 800 1000 1200 1400

Figure 6.68: Store pro�les: 200 pro cessors dc4 (| | {) and dc1 (� � � � �)

Num b er

of

tasks

T ask length

0

500

1000

1500

2000

2500

3000

3500

4000

4500

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.69: T ask distribution: 200 pro cessors dc1

Num b er

of

tasks

T ask length

0

50

100

150

200

250

300

350

400

450

500

� 0 � 50 � 100 � 150 � 200 � 250 � 300 � 350 � 400

Figure 6.70: T ask distribution: 200 pro cessors dc4

CHAPTER 6. P ARALLELISM CONTR OL 146

6.7 Summary

This c hapter has rep orted some of the �rst exp erimen ts carried out on a v ariet y of programs, for

testing the e�ectiv eness of sev eral tec hniques for con trolling task sizes of functional programs.

The con trol of t w o di�eren t kinds of parallelism has b een in v estigated: data parallelism and

divide and conquer algorithm's parallelism. Three asp ects of parallelism ha v e b een in v estigated:

task sizes, task residency and storage residency . Ho w ev er all these areas are related and the

emphasis has b een on con trolling task sizes. In particular increasing the size of tasks decreases

task residency , and often decreases storage residency .

Three metho ds of con trolling data parallelism w ere considered: data grouping, k-b ounding, and

bu�ering. The results of these metho ds are summarised in the table b elo w:

task size task n um b ers storage use

Data grouping increased decreased increased

K-b ounding increased decreased unc hanged

Bu�ering unc hanged decreased decreased

Data grouping is b etter than k-b ounding for con trolling task sizes b ecause it �xes task sizes.

T o use k-b ounding to con trol task sizes, the size of the data m ust b e kno wn. F or con trolling

task n um b ers k-b ounding is b est since it �xes task n um b ers. Lik ewise to con trol task n um b ers

with data grouping, the size of the data m ust b e kno wn. F or v ery large data structures, yielding

pip elined data parallelism, bu�ering is useful to con trol storage use. In particular bu�ering syn-

c hronises pro duction and consumption of v alues, and th us it can prev en t o v er eager ev aluation.

Divide and conquer algorithms pro duce man y tasks, the ma jorit y of whic h are small. Therefore

it is particularly imp ortan t to con trol task residency and the sizes of tasks pro duced. Three

di�eren t D&C com binators, whic h con trol task sizes, w ere tried. These indirectly con trol task

n um b ers to o. In addition a run-time metho d, the ev aluate-and-die task mo del, for coalescing

tasks w as used for comparison.

The b est metho d of con trol w as a com bination of the ev aluate-and-die task mo del with an ex-

act task size con trolling D&C com binator. The exact con trol com binator limited the minim um

sizes of task whic h w ere spark ed. The ev aluate-and-die task mo del reduced task n um b ers and

increased task sizes; ho w ev er it w as not found to b e su�cien t alone. It w as found that the

di�erence in e�ciency b et w een just using the ev aluate-and-die mo del and using this and pro-

grammer con trol, decreased as the n um b er of pro cessors decreased. F or parallel D&C algorithms

whic h are not e�cien t sequen tial algorithms, an e�cien t sequen tial algorithm should b e used

for solving problems sequen tially . This can impro v e e�ciency tremendously .

The dela y ed sparking D&C com binator p erformed w ell considering that it uses no information

ab out the problem to b e solv ed. It is heuristic based and it app ears to b e w ell suited to

incorp oration in to a mac hines run-time system.

Section 3.2 argued that using just strictness analysis to determine parallelism risks pro ducing

tasks of an un usably small grain. Results of this c hapter supp ort this.

In addition the matrix m ultiplication exp erimen ts ha v e rev ealed some problems with using paral-

lelism abstractions. In particular parallelism abstractions can prev en t a mac hine from detecting

CHAPTER 6. P ARALLELISM CONTR OL 147

that v alues are in WHNF, and this can lead to needless re-sparking. The only solutions to

this seem to b e to write programs in a constrained st yle to prev en t this from o ccurring (this is

discussed further in Section 9.1.7), or to use some form of extensible ev aluation transformers.

6.8 Conclusions

The main conclusion of this c hapter is that programmer con trol of parallelism is necessary;

in particular con trol of the follo wing is required: task n um b ers, storage and task sizes. The

sim ulation results ha v e sho wn this to b e necessary .

The con trol of data parallelism is v ery problem dep enden t. Dep ending on the problem, one of

the tec hniques describ ed here ma y b e appropriate. The results rev eal that eac h of the con trol

tec hniques are suited to di�eren t asp ects of parallelism con trol.

F or con trolling divide and conquer parallelism a com bination of the ev aluate-and-die task mec h-

anism with an exact con trol metho d w orks b est. The programmer should pro vide a lo w er b ound

on task sizes, and the E&D task mo del ma y coalesce tasks thereb y increasing their sizes. This

is b orne out b y the results.

The dela y ed sparking sc heme for con trolling task sizes could usefully b e implemen ted in a ma-

c hine's run-time system. The results sho w that this sc heme w orks w ell, esp ecially considering

that it is a `blind' tec hnique.

Man y useless tasks are spark ed; th us it is necessary to remo v e these tasks. On a real mac hine it

w ould b e necessary to p erio dicall y garbage collect the task p o ol of useless tasks. The statistics

rev eal this to o.

Chapter 7

Bags

T raditionally functional programs ha v e made great use of the list data t yp e. Ho w ev er, often

lists are not used as lists but as bags (m ultisets). A list is a data t yp e represen ting an ordered

sequence. A bag is a data t yp e represen ting an unordered list. If lists are used in place of

bags, this results in a biased implemen tation, whic h can b e detrimen tal to program meaning

and implemen tation. This c hapter prop oses an extension to functional languages to pro vide

direct supp ort for bag data t yp es.

A bag consists of a �nite collection of unordered elemen ts, whic h ma y con tain duplicates. (Bags

are restricted to b eing �nite b ecause it is unclear what the seman tics of in�nite bags are, see

Section 7.5.1.) Op erations ma y construct bags and tak e them apart. Ho w ev er op erations to

tak e bags apart m ust b e deterministic; that is, not dep enden t up on the order of elemen ts in

bags. Determinism is necessary for referen tial transparency , whic h in turn is necessary for using

equational reasoning. Th us there is no op eration to select an elemen t from a bag, but there is

a bag �lter op eration.

This ma y b e con trasted with Hughes and O'Donnell's sets [57]. They use sets for handling

non-determinism, where sets are represen ted b y one elemen t. All their op erations on sets m ust

apply to one elemen t only: for example set union is p ossible, in tersection is not. As describ ed

here, bag op erations m ust apply equally to all bag elemen ts.

Pro viding bags directly in a functional language allo ws sp eci�cations and programs to b e written

whic h are more abstract than if lists had b een used to mo del bags. Note that bags do not replace

lists, if a sequence is required then a list should b e used; if only a m ultiset is required then a

bag, not a list, should b e used. In particular bags are naturally suited to database queries.

Bags ha v e t w o imp ortan t adv an tages o v er lists. Firstly more transformations are applicable

to bags than lists b ecause bags are insensitiv e to ordering c hanges. Secondly , bags ma y b e

implemen ted non-deterministicall y and hence they allo w a greater freedom of parallel ev aluation

than lists. If the elemen ts of a bag are ev aluated in parallel they ma y b e com bined or consumed

as they terminate, since bag elemen ts are unordered. This means that the sc heduling of the

elemen ts ev aluation b ecomes less imp ortan t, and parallel bag folding is v ery e�cien t.

148

CHAPTER 7. BA GS 149

7.1 Surv ey

This section surv eys sev eral other bag-lik e prop osals. None of these prop osals suggest in tro ducing

bags generally and deterministically in to functional languages, nor do an y giv e an implemen-

tation of bags. It is particularly imp ortan t not to in tro duce non-determinism in to a language

b ecause it means that referen tial transparency will b e lost.

There ha v e b een sev eral prop osals for non-deterministic fold op erations whic h b eha v e deter-

ministically when the folding op erator is asso ciativ e and comm utativ e. Hudak prop osed a non-

deterministic list folding op erator whic h com bined the elemen ts of a list in the order in whic h

they terminate [50]. This required that the folding function w as asso ciativ e and comm utativ e.

W adler had a similar op erator to Hudak for com bining arra y elemen ts in an arra y comprehension

[113]. This allo w ed the v alue of an arra y elemen t to b e sp eci�ed as the non-deterministic com-

bination of sev eral v alues together: again pro viding that the com bining function w as asso ciativ e

and comm utativ e.

Bird and Meertens ha v e used trees, lists, bags and sets in a generalised w a y , for algebraic program

transformation and deriv ation [14 , 80]. T rees, lists, bags and sets ma y b e view ed as di�ering

only in the algebraic ric hness of their constructors (the Bo om hierarc h y), see Section 5.2.1.

Ban^ atre et al. ha v e used bags as part of a non-deterministic rewriting mo del for parallel programs

[9]. Essen tially this is a parallel rewriting system whic h non-deterministicall y rewrites elemen ts

in a bag. They also describ e ho w their bags ma y b e implemen ted on a MIMD mac hine.

Connection Mac hine (CM*) Lisp has a data t yp e similar to a bag called a Xapping [107].

Xappings ha v e b een inspired b y the APL and FP languages and they ful�ll the role of bags,

mappings and arra ys. These ha v e b een designed for e�cien t implemen tation on the Connection

Mac hine, whic h has a �ne grained SIMD arc hitecture.

Xappings are sp eci�ed as mappings from indices to v alues; all the indices m ust b e distinct. F or

example:

x = {a->1 b->2 c->3 d->4}

There are a v ariet y of shorthands and op erators for xappings, including t w o sp ecial forms.

Xappings where the indices are equal to the v alues are called xets and xappings where the

indices are consecutiv e in tegers from zero are called xectors. Th us arra ys are represen ted as

xectors of xectors. The most imp ortan t xapping op erators are � and � these corresp ond to map

and fold applied to xappings v alues. Th us, � sqr x is {a->1 b->4 c->9 d->16} and � + x

is 10. The implemen tation of � is non-deterministic; xapping elemen ts are com bined in an y

order. Th us the results of a � op eration are only deterministic when the com bining op erator

is asso ciativ e and comm utativ e. Other op erators allo w xapping indices to b e manipulated, for

example to ac hiev e the e�ect of arra ys. In general the op erations are designed to allo w e�cien t

programs for the Connection Mac hine to b e written. Unfortunately xappings su�er the common

Lisp ailmen t of b eing o v er complicated: there are man y di�eren t op erations on xappings, eac h

with man y di�eren t forms.

Some other researc hers ha v e prop osed adding bags to a purely functional language [77]. Their

prop osal tries to mimic xappings. The op erations they prop ose on bags are:

CHAPTER 7. BA GS 150

> emptybag :: bag *

> any :: bag * -> *

> add :: * -> bag * -> bag *

> sub :: * -> bag * -> bag *

> member :: bag * -> * -> bool

> distr :: (*->**) -> bag * -> bag **

> fold :: (*->*->*) -> bag * -> *

> dom :: (*->**) -> bag *

There are man y problems with their approac h. In particular any is a non-deterministic bag

selection op erator, whic h means that referen tial transparency is lost. The dom op eration is

mean t to generate a bag from the domain of a function with a �nite domain. The idea of dom is

to giv e some of the p o w er of xappings. Generally their approac h is confused and they see bags

as a metho d of in tro ducing gen uine non-determinism in to a functional language.

7.2 A bag abstract data t yp e

This section describ es a bag abstract data t yp e. Bag op erations are discussed along with con-

strain ts necessary for determinism. As previously stated a bag consists of a �nite collection

of unordered elemen ts p ossibly con taining duplicates. A complete set of op erations for a bag

abstract data t yp e is sho wn b elo w:

> bnil :: bag *

> bunit :: * -> bag *

> bunion :: bag * -> bag * -> bag *

> bhom :: (* -> * -> *) -> (** -> *) -> * -> bag ** -> *

The �rst three functions are used to construct bags; the last function bhom is a homomorphism

on bags, it ma y b e describ ed using the follo wing equations:

bhom f g e bnil = e

bhom f g e (bunit a) = g a

bhom f g e (bunion x y) = f (bhom f g e x) (bhom f g e y)

This is not a legal functional program since bnil , bunit and bunion are not constructors.

Ho w ev er these equations ma y b e used for reasoning ab out programs.

Since bags are unordered it follo ws that bunion is asso ciativ e (lik e list app end) and comm utativ e

(unlik e list app end). That is:

bunion x (bunion y z) = bunion (bunion x y) z

bunion x y = bunion y x

As Meertens states in [80] \inserting an op erator � in a structure s is only meaningful if � has

at least the same algebraic ric hness as the op erator + used to construct the structure". Th us

CHAPTER 7. BA GS 151

f in bhom f g e b m ust b e asso ciativ e and comm utativ e, lik e bunion . (The homomorphism

(fold) used for lists in functional programs is directed and so the folding function do es not ev en

ha v e to b e asso ciativ e, see [14].) Analogously since:

bunion bnil x = x

bunion x bnil = x

The e v alue in bhom f g e b m ust b e the righ t and left iden tit y elemen t of f ; that is:

f e v = v

f v e = v

(It ma y also b e useful to ha v e a bhom whic h w orks on non-empt y bags, in whic h case no iden tit y

elemen t is required. If required this is a trivial extension and it is discussed no further.) These

constrain ts on f and e are left as pr o of obligations to the programmer; often f will b e a simple

op erator. F or example:

> bsum b = bhom (+) id 0 b

This sums a bag of n um b ers. It is ob vious that plus is asso ciativ e and comm utativ e, therefore

this is a v alid bhom application and the additions ma y b e p erformed in an y order.

Another useful op eration is bag mem b ership:

> bmem e b = bhom (\/) (=e) False b

Care m ust b e tak en ho w ev er since some op erators are not equally strict in their argumen ts; for

example b o olean or \/ ma y b e left sequen tial:

> True \/ x = True

> False \/ x = x

This \/ op erator is not comm utativ e since: True \/ ? 6 = ? \/ True . Hence \/ m ust b e either

bi-strict or more in terestingly bi-lazy , that is parallel.

Bi-strict P arallel

\/ ? F alse T rue

? ? ? ?

F alse ? F alse T rue

T rue ? T rue T rue

\/ ? F alse T rue

? ? ? T rue

F alse ? F alse T rue

T rue T rue T rue T rue

Similarly for bexists and ball :

CHAPTER 7. BA GS 152

> bexists pred b = bhom (\/) pred False b

> ball pred b = ~ bexists ((~) . pred) b

There is a large implemen tation cost asso ciated with parallel-or since it requires un b ounded

concurrency from a sequen tial or parallel implemen tation.

Alternativ ely ev aluation of a bag expression suc h as bexists p b ma y b e cut short, if it can

b e guaran teed that all elemen ts are de�ned. This can b e ac hiev ed b y using strictness analysis.

Another alternativ e is to regard programs as b eing sp eci�cations, p ossibly w eak er than their

implemen tations; a program ma y terminate whic h should not. Bags ma y b e de�ned to b e strict

but they ma y b e implemen ted more `lazily'. This is similar to ev aluating a strict language lazily .

The par com binator is similar to this; it could b e regarded as b eing strict in its �rst argumen t

that is, seman tically equal to seq , but implemen ted more freely .

7.3 Bag comprehensions

A useful notational op eration that is a v ailable is the bag comprehension; just as it is p ossible

to ha v e list comprehensions, bag comprehensions are p ossible to o. Bag comprehensions ma y

include list and bag generators: ho w ev er list comprehensions cannot include bag generators. F or

example the bag �lter function ma y b e written:

> bfilter p b = {| e | e<~b; p e |}

Bag comprehensions are delimited b y {| and |} . The <~ construct is a bag generator, whereas

<- is the usual list generator.

Bag comprehensions ma y b e translated in to applications of the basic bag functions using a

translation analogous to [114]. An unoptimised translation is sho wn b elo w:

T [[{| E | v<~B; Q |}]] � bflatmap f B where f v = T [[{| E | Q |}]] T1

T [[{| E | v<-L; Q |}]] � bflatmap f (bagify L) where f v = T [[{| E | Q |}]] T2

T [[{| E | P; Q |}]] � if P then T [[{| E | Q |}]] else bnil T3

T [[{| E | |}]] � bunit E T4

> bagify :: [*] -> bag *

> bagify = fold bunion . map bunit

> bflatmap :: (* -> bag **) -> bag * -> bag **

> bflatmap f b = bhom bunion f bnil b

The v alue E is an y expression, v is a v ariable, L is a list expression, B is a bag expression, Q is a

list of zero of more quali�ers (�lters or generators) and P is a b o olean expression. The bagify

function translates a list in to a bag.

A di�eren t approac h is to view bag comprehensions as monads [115], but this will not b e pursued

here.

CHAPTER 7. BA GS 153

7.4 Some useful bag functions

This section sho ws that man y useful bag functions can b e de�ned. All of the functions sho wn

b elo w ma y b e de�ned in terms of the four basic bag op erations previously describ ed, b y using

the translation rules. It ma y b e desirable for some of these op erations to b e implemen ted as

primitiv es for e�ciency .

> bfold f e b = bhom f id e b

> bmap f b = {| f x | x<~b |}

> bflatten b = {| y | x<~b; y<~x |}

> bapply b a = (bfold (.) id b) a

> bsort p b = bhom (merge p) listunit [] b

> where

> listunit e = [e]

> merge p [] l = l

> merge p l [] = l

> merge p (x:xs) (y:ys) = x:merge p xs (y:ys), p x y

> = y:merge p (x:xs) ys, otherwise

> bsize b = bhom (+) (const 1) 0 b

> bempty b = bsize b = 0

> bmax b = bfold max minint b

> bcartprod xs ys = {| (x,y) | x<~xs; y<~ys |}

> bcrossprod f xs ys = {| f x y | x<~xs; y<~ys |}

> bgencartprod b = bhom (bcrossprod bunion) (bmap bunit) bnil b

> bsubbags b = bhom (bcrossprod bunion) f bnil b

> where

> f e = bunion (bunit bnil) (bunit (bunit e))

> bdiff b1 b2 = {| x | x<~b1; ~bmem x b2 |}

The functions bfold , bapply and bsort are in teresting b ecause they are not necessarily deter-

ministic; p oten tially non-deterministic abstractions ha v e b een constructed. T o b e deterministic

f of bfold f e , as with bhom f g e b , m ust b e asso ciativ e and comm utativ e, and e m ust b e a

righ t and left iden tit y elemen t of f . The function bsort sorts a bag in to a list; in order for this

to b e a function the predicate pred m ust form a total ordering o v er all the elemen ts and partial

elemen ts of the bag. That is:

8 a: pred a a

8 a,b: (a 6= b) , ((pred a b & � pred b a) _ (� pred a b & pred b a))

8 a,b,c: (pred a b & pred b c)) (pred a c)

The bapply function comp oses a bag of functions and applies them to an argumen t. In general

function comp osition is asso ciativ e but not comm utativ e; so for bapply b a to b e deterministic

the functions in the bag m ust comm ute with eac h other, that is:

8 f, g 2 b: f . g = g . f

CHAPTER 7. BA GS 154

The last few functions ha v e b een adapted from [14]. The cartesian pro duct of t w o bags is

generated b y bcartprod ; bcrossprod is a generalisation of the cartesian pro duct, it applies a

function to elemen ts dra wn from eac h bag rather than pairing them. The bgencartprod function

tak es a bag of bags and forms the general cartesian pro duct of elemen ts tak en from constituen t

bags. The bsubbags function forms the bag of all sub-bags of a bag (compare with the p o w erset

of a set). A form of bag di�erence is p erformed b y bdiff ; v arious di�eren t di�erence op erations

are p ossible.

7.5 Bag la ws and seman tics

This section describ es ho w bags ma y b e reasoned ab out. Sev eral la ws are sho wn together with

an imp ortan t theorem. The theorem allo ws bag comprehensions to b e optimised b y rearranging

�lters and generators. The di�culties of giving a denotational seman tics to bags is discussed,

and an algebraic approac h is prop osed. In addition the Squigol w ork in [14] con tains man y la ws

and lemmas concerning bags.

Some example la ws are sho wn b elo w:

bunion x (bunion y z) = bunion (bunion x y) z

bunion x y = bunion y x

bunion bnil b = b

bunion b bnil = b

bfilter p (bunion x y) = bunion (bfilter p x) (bfilter p y)

bmap f (bunion x y) = bunion (bmap f x) (bmap f y)

(bfold f e) . (bmap g) = bhom f g e

The last la w is the Squigol homomorphism lemma, see Section 5.2.1. Some la ws allo w the

manipulation of bagify and the con v ersion of bags to and from lists

bagify (map f l) = bmap f (bagify l)

bagify (x++y) = bunion (bagify x) (bagify y)

= bagify (y++x)

bagify [] = bnil

Also, if compbody do es not con tain an y bag generators (<~), then:

bagify [compbody] = {| compbody |}

Using the bag comprehension translation rules, the follo wing iden tities ma y b e pro v ed:

CHAPTER 7. BA GS 155

{| E | v<~bnil; Q |} = bnil

{| E | v<~bunit E'; Q |} = {| E | Q |} [E' = v]

{| E | v<~bunion X Y; Q |} = bunion {| E | v<~X; Q |} {| E | v<~Y; Q |}

{| E | False; Q |} = bnil

{| E | True; Q |} = {| E | Q |}

{| E | |} = bunit E

{| E | v<-[]; Q |} = bnil

{| E | v<-EH:ET; Q |} = bunion (bunit ({| E | Q |} [EH = v]))

{| E | v<-ET; Q |}

An imp ortan t theorem is the quali�er in terc hange theorem. This allo ws optimisations of bag

comprehension to b e ac hiev ed b y rearranging their generators and �lters. T rinder has used this

to optimise queries within a functional database setting [108]; these optimisations originate from

the relational database w orld. The quali�er in terc hange theorem is stated and pro v ed b elo w:

Quali�er in terc hange theorem :

If Q1 and Q2 are quali�ers whic h do not refer to v ariables b ound in eac h other, QL

and QL' are lists of zero or more quali�ers, and all the quali�ers are total, then:

{| E | QL; Q1; Q2; QL' |} = {| E | QL; Q2; Q1; QL' |}

The reason for requiring all the quali�ers to b e total is that c hanging the order of quali�ers can

c hange termination prop erties of a bag comprehension. F or example:

> terminate = {| x | x<~{| 1 |}; even x; error "help!" |}

> bottom = {| x | x<~{| 1 |}; error "help!"; even x |}

The �rst expression will terminate and return {| |} , whereas the second will giv e an error (try

translating these using the rules previously giv en to see wh y).

T o pro v e the quali�er in terc hange theorem, the follo wing lemma will b e needed:

Lemma :

If Q1 and Q2 are quali�ers whic h do not refer to v ariables b ound in eac h other then:

{| E | Q1; Q2; QL |} = {| E | Q2; Q1; QL |}

Pro of of the lemma:

By case analysis on Q1 and Q2 (using the translation rules of Section 7.3):

Case Q1 and Q2 are b oth �lters:

= LHS using T1 t wice

if Q1 then if Q2 then {| E | QL |} else bnil else bnil

= (mo dulo termination)

if Q2 then if Q1 then {| E | QL |} else bnil else bnil

= the RHS translated b y T1 t wice

CHAPTER 7. BA GS 156

Case Q1 is a �lter and Q2 is a bag generator Q2 = v2<~q2 :

= LHS using T1 and T3

if Q1 then (bflatmap (\v2. {| E | QL |}) q2) else bnil

= using bnil = bflatmap (\v2.bnil) b

if Q1 then (bflatmap (\v2. {| E | QL |}) q2)

else (bflatmap (\v2. bnil) q2)

= pro viding v2 not in Q1 and if idemp otency

if Q1 then (bflatmap (\v2. if Q1 then {| E | QL |} else bnil) q2)

else (bflatmap (\v2. if Q1 then {| E | QL |} else bnil) q2)

= using (if c then e else e) = e and Q1 6= ?

bflatmap (\v2 . if Q1 then {| E | QL |} else bnil) q2

= the RHS translated using T1 and T3

Case Q1 is a generator and Q2 is a �lter | similar to previous case

Case Q1 and Q2 are b oth generators:

{| E | v1<~q1; v2<~q2; QL |} = {| E | v2<~q2; v1<~q1; QL |}

do b y induction on q1

translating LHS and RHS using T3

LHS = bflatmap (\v1. (bflatmap (\v2. E) q2)) q1

=

RHS = bflatmap (\v2. (bflatmap (\v1. E) q1)) q2

base case: bnil

LHS and RHS = bnil

base case: bunit x

LHS and RHS = bflatmap (\v1. E [v1/x]) q2

pro viding v1 not in q2 and v2 not in q1 .

inductiv e case: bunion x y

LHS

bflatmap (\v1. (bflatmap (\v2. E) q2)) (bunion x y)

= bhom and flatmap

bunion (bflatmap (\v1. (bflatmap (\v2. E) q2)) x)

(bflatmap (\v1. (bflatmap (\v2. E) q2)) y)

CHAPTER 7. BA GS 157

= using induction h yp othesis

bunion (bflatmap (\v2. (bflatmap (\v1. E) x)) q2)

(bflatmap (\v2. (bflatmap (\v1. E) y)) q2)

= since bunion asso ciativ e and comm utativ e

bflatmap (\v2. bunion (bflatmap (\v1. E) x)

(bflatmap (\v1. E) y)) q2

= bflatmap prop erties

bflatmap (\v2. (bflatmap (\v1. E) (bunion x y))) q2

= translated RHS using T3

2

Pro of of the Quali�er in terc hange theorem:

{| E | QL; Q1; Q2; QL' |} = {| E | QL; Q2; Q1; QL' |}

Do b y induction on length of QL (a list of quali�ers):

case: empt y | lemma applies

inductiv e case: QL = Q ; QR

Q is a single quali�er and QR is a sequence of quali�ers.

trivial from the translation rules b ecause all the translation rules translate

{| E | Q; QR; Q1; Q2; QL' |} to a function of the translation of

{| E | QR; Q1; Q2; QL' |}

2

The ma jor optimisation whic h this theorem p ermits, is the mo ving of �lters so as to �lter

elemen ts as early as p ossible. The follo wing example is adapted from [108]:

> res1 = {| a | (a,b)<~AB; (c,d)<~CD; b=c; d=99 |}

> res2 = {| a | (c,d)<~CD; d=99; (a,b)<~AB; b=c |}

By quali�er in terc hange, res1 is equal to res2 . If the n um b er of pairs in CD with a second

comp onen t equal to 99 is m uc h smaller than n; where n is the size of AB and CD , then res2 is

considerably more e�cien t to compute than res1 ; res1 is O(n

2

) and res2 is O(n). This is more

easily understo o d b y analogy with for lo ops:

res1 = bag_of_all_values_such_th at

for (a,b) in AB

for (c,d) in CD

if b = c then

if d = 99 then

a

res2 = bag_of_all_values_such_th at

for (c,d) in CD

if d = 99 then

for (a,b) in AB

if b = c then

a

CHAPTER 7. BA GS 158

(These are similar to an SQL queries.)

This sho ws wh y it is desirable to �lter elemen ts as so on as p ossible. These transformations

could b e done automatically; ho w ev er this w ould b e considerably more di�cult for lists b ecause

the quali�er in terc hange theorem do es not hold. The compiler relies on the kno wledge that the

ordering of quali�ers for bags do es not matter. Bags mak e this explicit, lists do not since the

resulting elemen ts' order ma y matter for lists.

7.5.1 Bag seman tics

F or manipulating bags it is desirable to ha v e a denotational seman tics for them. Unfortunately

this is far from straigh tforw ard as is also the case with sets. This is b ecause it is necessary to

reconcile the partial (information) ordering with the sub-bag (compare with subset) ordering

of bags. In order to do this p o w erdomains m ust b e used whic h are complex constructions for

handling domains of sets of v alues, see [102]. One w a y to do this is to mo del bags as sets, b y

uniquely lab ellin g their elemen ts.

A simpler approac h is tak en here, rather than trying to mathematically mo del bags, they are

view ed algebraically , in terms of their prop erties. This is similar to the Squigol view of data

structures. A bag corresp onds to the free comm utativ e monoid (bag *,bunion,bnil) gener-

ated b y * under the assignmen t bunit: * -> bag * . This means that bhom f g e de�nes a

unique function, pro viding f is asso ciativ e and comm utativ e with iden tit y an elemen t e . Th us

pro viding the constrain ts hold bhom f g e denotes a unique function and the bhom equations

describ e its b eha viour. This approac h assumes all op erations on bags are total. Th us it is not

strong enough to enable reasoning ab out termination; only partial correctness can b e ensured.

7.6 Bag impleme n tati on

This section describ es the implemen tation of bags. There are t w o ob jectiv es of this section.

Firstly an e�cien t represen tation of bags is sough t, whic h is b oth fast and store e�cien t. Sec-

ondly a correct parallel implemen tation whic h is non-deterministic is sough t.

7.6.1 Bag represen tation

Ho w should bags b e represen ted inside a computer system? Tw o ob vious represen tations are

lists and trees. Lists are compact and bagify is easy to implemen t, but bunion is slo w, lik e

list app end. T rees are not compact and bagify m ust con v ert a list in to a tree, but bunion can

b e p erformed in constan t time. A go o d represen tation is to com bine these t w o represen tations

th us:

> bagrep * ::= Bnil |

> Bunit * |

> Bunion (bagrep *) (bagrep *) |

> Blist [*]

CHAPTER 7. BA GS 159

Note, Bnil , Bunit etc. are true constructors, but they are not visible to the user. The bagrep

data t yp e is used to implemen t the abstract data t yp e bag whose op erations are a v ailable to the

user. This com bined represen tation has the go o d features of b oth list and tree represen tations;

in fact Bnil and Bunit are not really needed: Blist can b e used, alb eit less e�cien tly . With

the bagrep represen tation bagify and bunion are b oth constan t time op erations.

The bag data t yp e ma y b e implemen ted, in terms of bagrep , th us:

> bnil = Bnil

> bunit e = Bunit e

> bunion x y = Bunion x y

> bagify = Blist

A sequen tial implemen tation of bhom is:

> bhom f g e Bnil = e

> bhom f g e (Bunit a) = g a

> bhom f g e (Bunion x y) = f (bhom f g e x) (bhom f g e y)

> bhom f g e (Blist l) = foldr h e l

> where h a b = f (g a) b

A problem with this represen tation is that redundan t Bnil s ma y consume a lot of storage. This

can b e prev en ted b y normalising bags so that redundan t Bnil s are eliminated; th us Bnil only

o ccurs for represen ting a gen uinely empt y bag. The bag `constructors' ma y then b e implemen ted

th us:

> bnil = Bnil

> bunit e = Bunit e

> bunion (Blist []) (Blist []) = Bnil

> bunion (Blist []) x = x

> bunion x (Blist []) = x

> bunion Bnil x = x

> bunion x Bnil = x

> bunion x y = Bunion x y

Normalising bags can sa v e a lot of storage, but it do es ha v e an o v erhead to o. F urther normali-

sation is p ossible; for example rather than using Blist directly a function can b e used:

> blist [] = Bnil

> blist [e] = Bunit e

> blist l = Blist l

This also eliminates the three Blist equations used for normalising `unioned' bags. The bagify

function is no w just equal to blist . Normalisation op ens up sev eral bag p ossibilities. It w ould

CHAPTER 7. BA GS 160

b e p ossible to allo w pattern matc hing on Bnil and Bunit ho w ev er this is not really in k eeping

with the notion of bags b eing abstract data t yp es. Some op erations could b e made m uc h faster;

for example bempty can b e done in constan t time and m ultiple bag tra v ersals w ould b e made

more e�cien t. Also if a non-empt y bag homomorphism w as required, this could b e implemen ted

as bhom f g ? ; since only gen uinely empt y bags w ould con tain Bnil s.

Normalisation do es not a�ect the termination prop erties of bags. This is b ecause once a bag

has b een demanded, its whole structure will b e required. In tuitiv ely , either none of the bag

structure or the whole bag structure will b e required; this is necessary for bag op erations to

b e deterministic. Note that bag elemen ts ma y not b e ev aluated; for example bsize need only

examine the structure of a bag. If bags are normalised then the bisempty op eration need only

examine the top lev el constructor of the bag to determine whether the bag is empt y or not.

Normalisation means that the empt y bag has a unique represen tation, namely Bnil . Without

normalisation the whole bag structure m ust b e tra v ersed. Th us normalisation can reduce the

space usage of bags and it can impro v e the e�ciency of some op erations suc h as bsize and

bisempty .

7.6.2 Dev eloping a parallel implem en tation

This section dev elops a parallel implemen tation of bags. It assumes that bags are strict to WHNF

in their elemen ts. The implemen tation allo ws bag elemen ts to b e com bined in an y order; th us

the implemen tation is non-deterministic. A non-deterministic rewriting system is used for the

dev elopmen t.

Bags ma y b e sequen tially implemen ted in an ordinary functional language. Ho w ev er a parallel

implemen tation of bhom f g e is in teresting, b ecause bag elemen ts ma y b e com bined with f

in an y order; this ma y b e done e�cien tly b y com bining elemen ts in the order in whic h they

terminate. This allo ws the non-deterministic reduction order of parallel functional tasks to b e

matc hed to subsequen t non-deterministic com bination of suc h tasks. This non-deterministic

b eha viour cannot b e ac hiev ed with par and seq ; th us, the parallel bag implemen tation requires

the implemen tation of a sp ecial non-deterministic mec hanism. The implemen tation of suc h a

mec hanism is non-trivial b ecause the ev aluation o ccurs async hronously . In particular termina-

tion is quite delicate and m ust b e explicitly detected; this is generally the case for async hronous

(relaxation) algorithms, for example see [8].

The parallel implemen tation of bags is dev elop ed semi-formally to sho w that it is a correct

implemen tation. F or simplicit y the Blist constructor is ignored; its implemen tation is fairly

ob vious from what follo ws. A simple re-writing system illustrates the op eration of bhom :

bhom f g e b = (mk bag b ; f e g)

(f x g] D ; U) ! (D ; U] f g x g)

(D ; f p; q g] U) ! (D ; U] f f p q g)

f = M [[f]] ; g = M [[g]] and e = M [[e]]

The �rst line sho ws the initial v alue of the tuple to b e rewritten, giv en a full bhom application.

The second and third lines sho w the t w o rules of the rewriting system. A rule matc hing the

CHAPTER 7. BA GS 161

tuple is selected, and the tuple is rewritten according to that rule. Rewriting stops when no rule

matc hes the tuple. Here D and U are mathematical (algebraic) bags, where f g denote bags,

] denotes bag union and hom denotes a bag homomorphism, lik e bhom . The mk bag function

is used to translate a concrete bag, as represen ted b y bagrep , in to a mathematical bag; its

elemen ts are also translated to mathematical v alues. It is assumed that f is asso ciativ e and

comm utativ e, e is an iden tit y elemen t of f and the meanings of the argumen ts to bhom and bag

elemen ts are giv en via a standard denotational seman tics.

The bag D (do wn bag) corresp onds to the map part of bhom ; ev aluation pro ceeds do wn the tree

lik e represen tation of bags (bagrep). The bag U (up bag) corresp onds to the fold part of bhom ;

ev aluation pro ceeds up w ards, com bining v alues with f . The rewriting system sho ws that sev eral

rewrites ma y b e p erformed in parallel. Pro viding there are no dep endencies b et w een concurren t

rewrites, the result will b e the same as through the rewrites w ere p erformed in some sequence.

P arallelism arises from concurren t applications of g and f .

The basis for the correctness pro of of the rewriting system is sho wn b elo w:

start the rewriting starts as describ ed with a �nite D and U = f e g

termination the follo wing strictly decreases 2 � j D j + j U j where j B j is the size of the bag B

in v arian t the follo wing holds: h (mk bag b) = f (h D) (hom f id e U) where h = hom f g e

result the rewrite system terminates when D = fg and U = f v g therefore v = h b

Ho w ev er, this simple rewriting system is hard to implemen t directly; the di�cult y is in com bining

elemen ts of U with f . It is desired to com bine pairs of elemen ts of U as so on as they b ecome

a v ailable. Unfortunately , it is unclear ho w to do this from the rewriting system. Some rendez-

v ous p oin t for ev aluated elemen ts of U is required. A more complex rewriting system, based

on the previous one, has b een dev elop ed whic h ma y b e easily implemen ted. This uses an

accum ulator, a , to act as a rendez-v ous p oin t for ev aluated elemen ts of U . The accum ulator

holds the most recen tly ev aluated elemen t of U ; it accum ulates the result. A distinguished

elemen t " is used to represen t an empt y accum ulator. In addition, this new rewriting system is

made less abstract b y w orking directly with the bag represen tation (bagrep):

bhom f g e b = (f b g ; fg ; e)

(f Bnil g] D ; U; a) ! (D ; U; a) (1)

(f Bunit z g] D ; U; a) ! (D ; U] f g z g ; a) (2)

(f Bunion x y g] D ; U; a) ! (D] f x ; y g ; U; a) (3)

(D ; f v g] U; a) ! (D ; U] f f a v g ; ") ; if a 6= " (4)

(D ; f v g] U; ") ! (D ; U; v) (5)

z = M [[z]] ; f = M [[f]] ; g = M [[g]] and e = M [[e]]

As b efore D represen ts the do wn (map) part of bhom and U represen ts the up (fold) part of

bhom . The bag D is also used to extract elemen ts from the bag represen tation. The pieces of bag

represen tation in D are progressiv ely split-up (rule 3) un til elemen ts are encoun tered (rule 2).

The function g is applied to bag elemen ts, represen ting the map op eration, and the application

CHAPTER 7. BA GS 162

results are put in U for subsequen t com bination (rule 2). Rule 4 com bines an elemen t from U

and the elemen t in the accum ulator using f , and the result is put in U . If the accum ulator is

empt y rule 5 puts an elemen t from U in to it. This rewriting system is less abstract than the

previous one b ecause it uses the bag represen tation (bagrep) directly and it uses an accum ulator

as an explicit rendez-v ous p oin t for com bining elemen ts in U . As b efore parallelism arises from

b eing able to p erform sev eral rewrites concurren tly; and in particular p erforming f applications

in parallel and g applications in parallel. Rules 1 to 3 ma y b e applied concurren tly to di�eren t

elemen ts in D . Rule 4 ma y b e o v erlapp ed with other rule applications. That is, to p erform

a rewrite using rule 4 it is not necessary to w ait for the application f a v to complete, b efore

applying other rules. Ho w ev er it is necessary to rewrite the accum ulator to " b efore applying

other rules.

The correctness pro of of this more complicated rewriting system is similar to that of the previous,

simpler, rewriting system:

start the rewriting starts as describ ed with a �nite D and empt y U

termination the follo wing strictly decreases (t D) + 2 � j U j + w a where (in Squigol)

t = + = � (3 ^ � heig ht) � , heig ht returns the heigh t of a tree (bagrep); t is similar to the

standard m ultiset ordering used in termination pro ofs; w x = if (x = ") then 0 else 1

in v arian t the follo wing in v arian t holds, let h = hom f g e

h (mk bag b) = f (hom f (h � mkb ag) e D) (hom f id e (U] (q a))) where

q x = if (x = ") then fg else f x g

result the rewrite system terminates when D = U = fg and therefore a = h (mk bag b)

T ermination and in v arian t main tenance m ust b e pro v ed:

T ermination pro of:

Eac h rewrite rule m ust decrease (t D) + 2 � j U j + w a that is using (t D) + 2 � j U j + w a , it

m ust pro v en that for eac h rule LHS > RHS. F or eac h rule it will b e assumed that for the LHS

of the rule: d = t D , u = 2 � j U j and z = w a . The LHS and RHS v alues for the rule will then

b e compared in order to pro v e that LHS > RHS.

(rule 1): only D c hanges.

d + u + z > (d � 3

0

) + u + z

since heigh t of Bnil is 0

(rule 2): D decreases b y one elemen t of heigh t 1, U increases b y one elemen t and a

is unc hanged.

d + u + z > (d � 3

1

) + (u + 2) + z

since heigh t of Bunit x is 1

(rule 3): only D c hanges.

d + u + z > (d � 3

i

+ 3

j

+ 3

k

) + u + z

where j; k < i (la w ab out heig ht)

CHAPTER 7. BA GS 163

(rule 4): D is unc hanged, j U j remains the same, a is not empt y and it b ecomes

empt y .

d + u + 1 > d + u + 0

(rule 5): D is unc hanged, j U j loses an elemen t, a is empt y and it b ecomes full.

d + u + 0 > d + (u � 2) + 1

2

The termination pro of is not dep enden t up on the asso ciativit y or comm utativit y of the com bining

function f . Th us ev en non-deterministic programs will terminate (pro viding f and g are total

etc.).

In v arian t pro of:

h = hom f g e and id is the iden tit y function

The follo wing prop erties of h and hom will b e required:

hom prop ert y 1 for an y f ; g ; e; B ; x : hom f g e (B] f x g) = f (hom f g e B) (g x)

hom prop ert y 2 for an y f ; e; B ; x : hom f id e (B] f x; y g) = hom f id e (B] f f x y g)

h prop ert y for an y x; y and h = hom f g e : h (x] y) = f (h x) (h y)

Pro of b y induction on rewrite sequences:

base case: (f b g ; fg ; e)

h (mkb ag b) = f (hom f (h � mkb ag) e f b g) (hom f id e (fg] fg))

RHS = hom f (h � mkb ag) e f b g

= (h � mkb ag) b

inductiv e cases: rules 1-5

assume it holds for LHS, pro v e it holds for RHS

(rule 1) trivial since mkb ag Bnil = fg

(rule 2)

h (mkb ag b) = f (hom f (h � mkb ag) e (f Bunit x g] D)) (hom f id e (U] f q a g))

RHS of ab o v e

f (hom f (h � mkb ag) e (f Bunit x g] D)) (hom f id e (U] f q a g))

= hom prop ert y 1

f (f (hom f (h � mkb ag) e D) ((h � mkb ag) (Bunit x))) (hom f id e (U] f q a g))

= using h def. and mkb ag (Bunit x) = x

f (f (hom f (h � mkb ag) e D) v) (hom f id e (U] f q a g)) where v = g x

CHAPTER 7. BA GS 164

= using f asso ciativit y and comm utativit y

f (hom f (h � mkb ag) e D) (f v (hom f id e (U] f q a g)))

= hom prop ert y 1

f (hom f (h � mkb ag) e D) (hom f id e (U] f v g] q a))

where v = g x

= in v arian t for the RHS of rule 2

(rule 3)

h (mkb ag b) = f (hom f (h � mkb ag) e (f Bunion x y g] D)) (hom f id e (U] q a))

RHS of ab o v e

f (hom f (h � mkb ag) e (f Bunion x y g] D)) (hom f id e (U] q a))

= hom prop ert y 1

f (f (hom f (h � mkb ag) e D) ((h � mkb ag) (Bunion x y))) (hom f id e (U] q a))

= using the la w: mkb ag (Bunion x y) = mkb ag x] mkb ag y

f (f (hom f (h � mkb ag) e D) (h (mkb ag x] mkb ag y))) (hom f id e (U] q a))

= using the h prop ert y

f (f (hom f (h � mkb ag) e D) (f (h (mkb ag x))(h (mkb ag y)))) (hom f id e (U] q a))

= hom prop ert y 1 t wice

f (hom f (h � mkb ag) e (f x,y g] D)) (hom f id e (U] q a))

= in v arian t for the RHS of rule 3

(rule 4)

h (mkb ag b) = f (hom f (h � mkb ag) e D) (hom f id e (f v g] U] f a g))

RHS of ab o v e

f (hom f (h � mkb ag) e D) (hom f id e (f v g] U] f a g))

= hom prop ert y 2 and q " = fg

f (hom f (h � mkb ag) e D) (hom f id e (U] f f a v g] q "))

= in v arian t for the RHS of rule 4

(rule 5) trivial

2

The in v ariance pro of is dep enden t up on the asso ciativit y and comm utativit y of the com bining

function f and e b eing an iden tit y elemen t of f . Th us the v alue returned b y non-deterministic

programs is unkno wn.

The result:

CHAPTER 7. BA GS 165

The rewriting system terminates when no further rewrite rules can b e applied. Th us the re-

maining triple m ust b elong to the set whic h is the complemen t of the union of the rewrite rule

left hand sides. This is the set of triples f (fg ; fg ; a) g . The in v arian t restricts the v alue of a to

that required.

A de�ciency of the rewriting system is that it do es not giv e the desired parallel b e-

ha viour when the result of a bhom f g e b application is a function. In particular bapply

(= bhom (.) id id) do es not ha v e the desired b eha viour. This is b ecause for an application

suc h as bapply b a , the functional result of bapply b will not b e applied to a un til all of the

functions in b ha v e b een ev aluated. It is desired for the functions in b to b e applied to a as they

b ecome ev aluated. One w a y to solv e this problem is to pro vide a sp ecial implemen tation for

bapply . Although this is not a general solution, in practice bapply is the most commonly used

bhom application whic h yields a functional result. A t yp e-c hec k er could issue w arnings ab out

bhom applications whic h yield functional results.

A rewriting system whic h giv es bapply the desired op erational b eha viour is sho wn b elo w:

bapply b a = (f b g ; a)

(f Bnil g] D ; v) ! (D ; v) (1)

(f Bunit f g] D ; v) ! (D ; f v) (2)

(f Bunion x y g] D ; v) ! (D] f x ; y g ; v) (3)

a = M [[a]] and f = M [[f]]

The basis for the correctness pro of of the rewriting system is sho wn b elo w:

start the rewriting starts as describ ed with a �nite D

termination the follo wing strictly decreases (t D) where (in Squigol) t = + = � (3 ^ � heig ht) � ,

heig ht returns the heigh t of a tree (bagrep); t is similar to the standard m ultiset ordering

used in termination pro ofs

in v arian t the follo wing in v arian t holds, let h = hom (�) id id

h (mk bag b) a = hom (�) (h � mkb ag) id D v

result the rewrite system terminates when D = fg and therefore v = h (mk bag b) a

The pro of of correctness is similar to the bhom one.

7.6.3 Practical parallel implem en tati ons of bhom and bapply

The rewriting systems ma y b e used to guide the practical parallel implemen tations of bhom and

bapply . There is a gap b et w een the rewriting systems and the implemen tations, it w ould b e nice

to pro v e the implemen tations are correct with resp ect to the rewriting systems. Ho w ev er, the

rewriting systems are v ery rev ealing and the implemen tations closely follo w them. Of particular

CHAPTER 7. BA GS 166

imp ortance is that b y k eeping trac k of the sizes of D and U , for bhom , and D for bapply , termi-

nation ma y b e detected. The in v arian ts of the rewriting systems imply that when termination

o ccurs the accum ulators of bhom and bapply hold the o v erall results.

The implemen tation of bhom is no w describ ed. When bhom is �rst reduced a single task is

created (down_phase(b)), to tra v erse the tree (bagrep). Also an accum ulator corresp onding to

a is constructed, this includes information on the sizes of D and U ; all tasks ha v e access to the

accum ulator.

acc = (value : graph_pointer; full : boolean; dsize, usize : integer)

Initially for bhom f g e b : acc = (e, true, 1, 0) and down_phase(b) is initiated.

There are t w o o v erlapping phases in the ev aluation:

do wn phase: the bag structure is ev aluated in parallel and g is applied to the elemen ts of the

bag in parallel. This corresp onds to rules 1 to 3, the map part of bhom .

up phase: the elemen ts resulting from the do wn phase are com bined with f . This corresp onds

to rules 4 and 5, the fold part of bhom .

The algorithm is as follo ws (for simplicit y the Blist case has b een omitted but its implemen ta-

tion should b e ob vious):

down_phase(x) =

-- x is evaluated to WHNF

eval(x)

case x of

bnil: decrement acc.dsize

-- whole bhom has terminated?

if { (acc.dsize = 0) and (acc.usize = 0) }

then return(acc.value)

else die

bunit a: increment acc.usize

decrement acc.dsize

-- make an application and bind it to y

y := (g a)

eval(y)

up_phase(y)

bunion l r: increment acc.dsize

spark_new_task(down_phase(r))

down_phase(l)

up_phase(x) =

if acc.full

then { v := acc.value

CHAPTER 7. BA GS 167

set acc.full to false }

-- make an application and bind it to y

y := (f v x)

eval(y)

up_phase(y)

else { decrement acc.usize

set acc.full to true

set acc.value to x }

-- whole bhom has terminated?

if { (acc.dsize = 0) and (acc.usize = 0) }

then return(acc.value)

else die

All single op erations m ust b e atomic and all groups of op erations, enclosed b y curly braces m ust

b eha v e as single atomic instructions. Since applications of f are disconnected from the rest of

the program graph, they can only b e ev aluated b y the task created to ev aluate them; th us bhom

sparks ma y not b e discarded. If it is desired to limit parallelism in this w a y , then when a task

spark o ccurs whic h is not required, the spark m ust b e p erformed sequen tially b y the paren t task.

F or large bags the accum ulator could b ecome a b ottlenec k in whic h case some form of distribution

w ould b e required; for example a bag could b e split up in to sev eral smaller bags eac h implemen ted

as describ ed and the results of those could b e com bined in a similar w a y . This ma y b e describ ed

as a program transformation, in a similar w a y to the data parallelism optimisations sho wn in

Section 6.5, using Squigol.

f = � g �

= chk la w

f = � g � �] = � chk

k

= map promotion

f = �] = � g � � � chk

k

= reduce promotion

f = � (f =) � � g � � � chk

k

= map comp osition

f = � (f = � g �) � � chk

k

Returning to the functional programming w orld, this ma y b e expressed th us:

> bhom' f g e = bhom f (bhom f g e) e . chk k

The problem with splitting up the bag in this w a y is that it prev en ts elemen ts in di�eren t sub-

bags from b eing com bined. All the elemen ts in a sub-bag m ust b e com bined b efore their result

ma y b e com bined with the result of an y other sub-bag. Th us splitting up a bag in to sub-bags

in tro duces extra sync hronisation. F urther w ork is required to see if a b etter implemen tation of

bhom can b e found, whic h a v oids the accum ulator b ottlenec k but whic h is not o v erly sync hronous.

With a tree lik e bag represen tation, w ell balanced trees are desirable: �rstly from a storage

e�ciency viewp oin t and secondly when f and g are c heap op erations and the the cost of tra v ers-

ing the tree b ecomes imp ortan t. One w a y to ac hiev e this is to balance trees when they are

CHAPTER 7. BA GS 168

constructed, in a similar w a y to normalisation. This is an exp ensiv e op eration but if bag union

o ccurs infrequen tly compared to bhom it could b e cost e�ectiv e.

The implemen tation of bapply is no w describ ed; in man y w a ys this is similar to bhom . The ma jor

di�erence b et w een the implemen tations is that for bapply the com bination of bag elemen ts, b y

applying them to the accum ulator, is p erformed sequen tially b y one task. Initially one task is

created to do this (init_task(b)). An accum ulator corresp onding to v is created in whic h to

accum ulate the result. This also con tains a coun ter corresp onding to the size of D , to detect

termination; this coun ts the n um b er of functions whic h ha v e b een applied to v . In addition the

accum ulator con tains a queue of ev aluated functions w aiting to b e sequen tially applied to v .

acc = (value : graph_pointer; dsize : integer; fqueue : queue of graph_pointer)

Initially for bapply b a : acc = (a, 1, empty) and init_task(b) is initiated.

The algorithm is as follo ws:

init_task(b) =

allocate(acc)

initialise(acc)

spark_new_task(down_phase(b))

while acc.dsize > 0 do

if ~ isempty(acc.fqueue) then

decrement acc.dsize

f := dequeue(acc.fqueue)

-- make an application and bind it to x

x := f acc.value

eval(x)

acc.value := x

return(acc.value)

down_phase(x) =

-- x is evaluated to WHNF

eval(x)

case x of

bnil: decrement acc.dsize

die

bunit f: eval f

enqueue(f,acc.fqueue)

die

bunion l r: increment acc.dsize

spark_new_task(down_phase(r))

down_phase(l)

CHAPTER 7. BA GS 169

The init_task pro cedure creates and initialises the accum ulator. Then it rep eatedly extracts

functions from the queue and applies them to v , un til all the functions in D ha v e b een applied.

Th us it corresp onds to the function application part of rule 2. The down_phase pro cedure

corresp onds to rules 1 to 3; it tra v erses and ev aluates the bag structure and the bag elemen ts

in parallel.

Since com bination of bag elemen ts o ccurs sequen tially in bapply , there are no b ottlenec k prob-

lems. Similar considerations to those for bhom apply to bapply if it is desired to discard sparks

in a GRIP-lik e fashion.

7.7 P arallel bags p erformance

What are the p erformance b ene�ts of bags o v er con v en tional data structures? The b ene�ts

arising from sequen tial optimisations ha v e already b een describ ed. In a parallel setting, the

b ene�t of bags o v er other data structures is that bag elemen ts ma y b e com bined in the order in

whic h they terminate. This concerns the folding part of bhom ; th us it is su�cien t to compare

bfold with folds on con v en tional data structures. A fair comparison can b e made with trees. A

parallel tree fold ma y b e describ ed th us:

> tree * ::= Tnil |

> Tunit * |

> Tunion (tree *) (tree *)

> treefold f e Tnil = e

> treefold f e (Tunit x) = x

> treefold f e (Tunion x y) = par l (seq r (f l r))

> where

> r = treefold f e x

> l = treefold f e y

If the cost of com bining elemen ts is constan t and it is m uc h larger than the cost of tra v ersing the

bag structure, then the parallel cost of treefold is, theoretically , prop ortional to the maxim um

depth of the tree. (The maxim um n um b er of com bining function applications o ccurring in

sequence.) The function bfold b eha v es in suc h a w a y that the cost of com bining elemen ts is

as though the elemen ts w ere arranged as a balanced tree. Th us the theoretical cost of bfold is

prop ortional to d l n n e where n is the size of the bag. Therefore for balanced trees treefold

and bfold ha v e the same parallel cost. Th us when the cost of com bining elemen ts is constan t

and it is m uc h larger than the cost of tra v ersing the bag structure, bfold prev en ts the need

for balancing trees. Ho w ev er, if the cost of com bining elemen ts is comparable to the cost of

tra v ersing the bag structure, bfold b eha v es lik e treefold . In some cases it ma y b e p ossible to

balance a tree b efore com bining tree elemen ts, in order to ac hiev e a similar parallel e�ciency to

a bag. Ho w ev er, this will not b e practical if the com bining op eration is relativ ely c heap.

This automatic balancing e�ect from the implemen tation of bags can arise b ecause bags' com-

bining op erations m ust b e asso ciativ e. Similar results could b e ac hiev ed b y designing a sp ecial

list folding op erator whic h w as designed to w ork with just asso ciativ e com bining op erations.

Ho w ev er it seems di�cult to implemen t suc h an op erator.

CHAPTER 7. BA GS 170

Num b er

of

tasks

Time

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000

Figure 7.1: P arallelism pro�les: bag (| | {) and tree (� � � � �)

In addition, the comm utativ e asp ect of bags' com bining op erations means that the e�ect is more

than just tree balancing. Elemen ts are e�ectiv ely rearranged out of their original order, in to

the order in whic h they terminate. Th us elemen ts are com bined in the order in whic h they

terminate. This matters when the cost of com bining elemen ts v aries or when elemen ts b ecome

a v ailable at di�eren t times due to their sc heduling. In suc h cases it is extremely di�cult to

write a program without b ags to arrange elemen ts to b e com bined in the order in whic h they

terminate, and hence to maximise concurrency .

A simple example whic h compares trees and bags is sho wn in Figure 7.1; Chapter 4 describ es the

exp erimen tal set-up, in particular bags w ere implemen ted using the algorithms describ ed in the

previous section. A bag and tree of small v ectors, all of the same size, w ere summed together |

th us the com bining op eration (addition) had a constan t cost. The bag (whic h w as represen ted

as a tree using bagrep) and tree of v ectors w ere giv en the same shap e of the �b onacci call tree;

whic h is a mo derately w ell balanced tree. The bag and tree con tained 89 v ectors in the shap e

of �b 10.

Program bag tree

Num b er of mac hine cycles 4586 5953

Av erage parallelism 13.6 10.4

W ork done 62278 62209

Max. n um b er of activ e tasks 77 76

T otal n um b er of tasks 89 88

Av erage spark ed task length 700 669

The results sho w that the bag v ersion had a greater degree of initial parallelism, whic h resulted in

it b eing the quic k est of the t w o. F urther comparison is hard due to the di�eren t implemen tation

costs asso ciated with the t w o particular implemen tations. It is p ossible though to use the

previous theoretical remarks to compare the t w o. The maxim um heigh t of a �b onacci call tree

is n � 1 for �b n . Therefore the cost of the tree v ersion (�b 10) w as prop ortional to 9. The n um b er

of elemen ts in the bag/tree w as 89; therefore the cost of the bag v ersion w as prop ortional to 7

(= d l n 89 e). This giv es the bag v ersion a 22% p erformance impro v emen t o v er the tree v ersion,

whic h is reasonably consisten t with the exp erimen tal �gures.

CHAPTER 7. BA GS 171

There is another parallelism b ene�t from bags whic h has not b een explored here. This concerns

pip elini ng and sc heduling. Sometimes it is desirable to com bine bag elemen ts sequen tially , for

reasons of e�ciency (see Chapter 6). With con v en tional data structures this m ust happ en in the

pattern sp eci�ed b y the com bining function. F or example a list of n um b ers migh t b e summed

from left to righ t using foldr (+) 0 . If the list of n um b ers is ev aluated in parallel then task

sc heduling ma y cause elemen ts to b ecome a v ailable in a di�eren t order from their ordering in

the list. This will hinder elemen ts consumption whic h can only o ccur in strict sequence, left to

righ t. Hence ev aluation will b e slo w ed do wn, it ma y also result in a large amoun t of storage use,

from the eagerly ev aluated list. Bags can eliminate this problem since they are not restricted

b y suc h o v er-sp eci�ed functional dep endencies. Ho w ev er the bags describ ed here do not do this.

Essen tially a sp ecial sequen tial bfold , or bfold part of bhom , is required.

F riedman and Wise [37] ha v e designed bags whic h b eha v e in this w a y . Their bags consisted

of lists whose elemen ts w ere ev aluated in parallel, and whic h w ere ordered according to when

they terminated. Unfortunately they view ed their lists as a w a y of in tro ducing gen uine non-

determinism in to a functional language. Also, they did not ha v e a parallel bfold (bhom), only

a sequen tial fold and parallel map .

7.8 Sets

Lists with an asso ciativ e com bining op erator ha v e b een brie
y men tioned. Increasing the n um-

b er of la ws whic h the com bining op erator m ust ob ey can yield sets. Bags ma y b e usefully used

to implemen t sets. The extra la w for implemen tation of sets is that the com bining op erator in

bhom f g e m ust b e idemp otent , in addition to asso ciativ e and comm utativ e. This represen ta-

tion of sets do es con tain duplicates, but b ecause com bining op erations m ust b e idemp oten t they

are hidden. F or space e�ciency sets could b e normalised, similar to bags, to eliminate dupli-

cates. Ho w ev er in cases where there are man y duplicate elemen ts an alternativ e represen tation

for sets ma y b e desirable, for example see [12].

The set abstract data t yp e ma y b e de�ned th us:

> snil = bnil

> sunit = bunit

> sunion = bunion

> shom = bhom

Bag comprehensions ma y also b e used to sp ecify sets. F or example:

> setfilter s p = {| x | x<~s; p x |}

Since addition and m ultiplication are not idemp oten t, setsize and setsum ma y not b e de�ned

as shom (+) (const 1) 0 and shom (+) id 0 . One w a y to implemen t these is to con v ert sets

to bags, b y remo ving duplicates. Then bagsize and bagsum ma y b e used.

> settobag s = shom f bunit bnil s

> where

> f b1 b2 = bunion b1 {| x | x<~ b2; ~(bmem x b1) |}

CHAPTER 7. BA GS 172

The function f , ab o v e, is idemp oten t as w ell as asso ciativ e and comm utativ e. This only w orks

where equalit y is de�ned on the set elemen ts.

A last set example, set sort:

> ssort :: (*->*->bool) -> set * -> [*]

> ssort p s = shom (remsorteddups . merge p) listunit [] s

> where

> listunit e = [e]

> merge p [] l = l

> merge p l [] = l

> merge p (x:xs) (y:ys) = x : merge p xs (y:ys), p x y

> = y : merge p (x:xs) ys, otherwise

> remsorteddups [] = []

> remsorteddups (x:xs) = f x xs

> where

> f x [] = [x]

> f x (y:ys) = f x ys, x = y

> = x:f y ys, otherwise

The represen tation of sets as bags is similar to the sets used in Mac hia v elli [86]. Mac hia v elli is an

extension of ML designed for database applications. In particular it extends ML p olymorphism

to handle records. A k ey feature of Mac hia v elli is its abilit y to represen t relations as sets of

records. Mac hia v elli's set t yp e is similar to a bag. A set t yp e can b e de�ned o v er an y equalit y

t yp e, that is an y data t yp e for whic h equalit y is a v ailable. (It is unclear whether sets of equalit y

t yp es are themselv es equalit y t yp es.) Lik e ML, it is a strict language and hence sets can only

ha v e a �nite cardinalit y . There are �v e basic op erations on sets:

{} { empt y set constructor

{x} { singleton set constructor

union { set union

hom { set homomorphism

hom* { non-empt y set homomorphism

The latter t w o op erations ma y b e describ ed th us:

hom (f, op, z, {}) = z

hom (f, op, z, {x1..xn}) = op(f(x1), op(f(x2), .. op(f(xn), z)..))

hom* (f, op, {x}) = x

hom* (f, op, {x1..xn}) = op(f(x1), op(f(x2), .. op(f(xn-1), f(xn))..))

Applications of hom and hom* are only considered prop er if f has no side e�ects and op is

asso ciativ e and comm utativ e. This ensures the result of hom is indep enden t of ev aluation order.

Mac hia v elli cannot guaran tee that hom applications are prop er. Indeed, they write \improp er

applications of hom are frequen tly useful" [86]. Applications of hom ma y b e ev aluated in parallel.

CHAPTER 7. BA GS 173

The authors claim that suc h sets are sets in the mathematical sense and that they are not bags

or lists. Ho w ev er in order to b e sets, set union m ust b e idemp oten t, and hence so m ust op in

hom (f, op, z) .

7.9 Examples of bags use

This section sho ws sev eral examples of bags use. In particular t w o problems p osed b y Arvind

are solv ed using bags, and a divide and conquer com binator is de�ned using bags.

An example where the com bination of bag elemen ts non-deterministicall y w ould greatly impro v e

the sp eed of an algorithm is a parallel compiler and link er. The compilations ma y pro ceed in

parallel sub ject to mo dule dep endencies; once an y t w o mo dules ha v e b een compiled they ma y

b e link ed together to form a single ob ject co de �le:

> a_out = bfold linker empty_prog bag_of_comp_progs

The linker function should b e asso ciativ e and comm utativ e, and empty_prog should b e its

iden tit y elemen t.

In [6], Arvind sho ws t w o examples where I-structures, single assignmen t arra ys, ha v e limitations.

Some of these problems ma y b e resolv ed b y using bags.

The �rst example is: \ : : : w e are giv en a v ery large n um b er of generators (sa y a million of

them), eac h pro ducing a n um b er. W e w an t to compute a frequency distribution (histogram) of

these v alues in sa y 10 in terv als. An e�cien t parallel solution should allo cate an arra y of ten

accum ulators initialised to zero, and execute as man y generators as p ossible in parallel. As eac h

generator completes, its result should b e classi�ed in to an in terv al j , and the j 'th accum ulator

should b e incremen ted. It do es not matter in whic h order accum ulations are p erformed, : : : ",

[6]. This ma y b e co ded using bags th us:

> gens = mkbag generators

> accumulators = mkarray 1 10 f

> where f i = bsize (bfilter (interval i) gens)

The function mkbag constructs a bag in parallel. The predicate interval i g returns true if a

generator g is in in terv al i . The arra y of generators is mo delled as a bag. The accum ulations

ma y b e p erformed in the order in whic h generators complete.

The problem with the ab o v e solution is that eac h generator is examined b y eac h in terv al, if

there are a large n um b er of in terv als this could b e ine�cien t. A solution whic h alleviates this

problem, b y generating a bag of functions to incremen t arra y elemen ts, is:

> inc_array :: num -> array num -> array num

> int :: generator -> num

CHAPTER 7. BA GS 174

Num b er

of

tasks

Time

0

50

100

150

200

250

0 10000 20000 30000 40000 50000 60000 70000

Figure 7.2: Histogram

> intv g = seq v (inc_array v) where v = int g

> initarray = makearray 1 10 (const 0)

> increments = bmap intv gens

> result = bapply increments initarray

Notice that the functions in increments , applications of inc_array , all comm ute with them-

selv es, and hence satisfy the bapply pro of obligation.

The function inc_array incremen ts an elemen t of an arra y and int classi�es a generator in to

an in terv al (1 to 10). The intv function tak es a generator as argumen t and pro duces a function

result; the function pro duced will incremen t the appropriate in terv al of an arra y of in terv als,

according to the in terv al within whic h the generator falls. The bag of incremen ts are then

applied to an arra y initialised to zero.

With this solution the generators can execute in parallel but the incremen ts are done sequen-

tially; ho w ev er the incremen ts ma y b e done in the order in whic h they are pro duced. The bag

increments ma y b e view ed as a bag of incremen t messages for the accum ulators | the result

arra y . A desirable optimisation is for the store used b y initarray to b e re-used b y bapply .

Exp erimen tal results yielded the parallelism pro�le sho wn in Figure 7.2. The exp erimen t used

10 in terv als and 256 generators. Dela ys of 0 to 45000 cycles (in m ultiples of 5000 cycles) w ere

used.

The second example is: \... in a system that p erforms sym b olic algebra computations, consider

the part that m ultiplies p olynomials. A p ossible represen tation for the p olynomial:

a

0

+ a

1

x + a

2

x

2

+ a

3

x

3

+ ::: + a

n

x

n

w ould b e an arra y of size n + 1 con taining the co e�cien ts a

0

; :::; a

n

. T o m ultiply t w o p olynomials

A and B of degree n together, w e need �rst to allo cate an arra y of size 2 n , with eac h lo cation

CHAPTER 7. BA GS 175

Num b er

of

tasks

Time

0

50

100

150

200

0 250 500 750 1000 1250 1500

Figure 7.3: P olynomial m ultiplication

con taining an accum ulator initialised to 0; then, for eac h j , initiate (j + 1) pro cesses to compute

a

0

� b

j

; a

1

� b

j � 1

; :::; a

j

� b

0

; as eac h of these pro cesses completes, its result should b e added to

the j 'th accum ulator. The order of the accum ulation at an y index do es not matter.", [6].

This ma y b e programmed th us:

> result = mkarray 0 (2*n) f

> where

> f j = bsum {| a[i]*b[j-i] | i<-[lo..hi] |}

> where

> lo = max [1,j-n]

> hi = min [j,n]

> bsum b = bfold 0 (+) b

The v ariables a and b are the arra ys to b e m ultiplied; lo and hi b ounds are necessary to

prev en t indexing outside the arra ys. The function bmap creates the tasks to compute

a

0

� b

j

; a

1

� b

j � 1

; :::; a

j

� b

0

and bfold collects together the results of these tasks as they com-

plete.

Exp erimen tal results for a p olynomial of degree 20 yielded the parallelism pro�le sho wn in Figure

7.3; this demonstrates a go o d sp eed-up.

An alternativ e is to use the `index v alue' pair st yle arra ys, arra y comprehensions, see [113].

Rather than using a list, a bag of index-v alue pairs ma y b e used. There are t w o useful forms of

arra y comprehension, one without and one with a reduction op erator whic h applies to elemen ts

with the same indices. These are analogous to W adler's array3 and array4 op erations; array4'

with bfold is the same as array6 .

A = array3' n ixs) 8 1 � i � n: A [i] = v & (i,v) 2 ixs

A = array4' h n ixs) 8 1 � i � n: A [i] = bhom h id e {| v | (i,v)<~ixs |}

Th us, the solution to Arvind's �rst problem b ecomes:

CHAPTER 7. BA GS 176

> gens = mkbag generators

> bsum g = bfold 0 (+) b

> accumulators = array4' bsum 10 (bunion {| (i,0) | i<-[1..10] |}

> {| (interval g,1) | g<~gens |})

The bunion with zero v alued elemen ts is necessary to giv e a v alue to in terv als with no generators

falling within them.

Arvind's second example has the same form as b efore:

> result = array3' (0, 2*n)

> {| (x,v) | x<-[0..2*n]

> where

> v = bsum {| a[i]*b[x-i] | i<-[lo..hi] |}

> lo = max [0,x-n]

> hi = min [n,x]

> |}

No reduction op erator is needed for this example; for eac h arra y index there is exactly one

corresp onding elemen t in the bag comprehension, hence array3' is used.

Using bags it is p ossible to write a divide and conquer com binator th us:

> dc :: (*->bag *) -> (**->**->**) -> ** -> (*->bool) -> (*->**) -> * -> **

> dc div comb i isleaf solve root = bfold comb i (f root)

> where

> f e = bunit (solve e), isleaf e

> = bflatmap f (div e), otherwise

The comb function m ust b e asso ciativ e and comm utativ e, and i m ust b e its iden tit y elemen t;

alternativ ely if a non-empt y bhom is a v ailable, an non-empt y bfold could b e de�ned and used.

Notice that div pro duces a bag of subproblems to b e solv ed.

7.10 Summary

This c hapter has discussed in tro ducing a bag data t yp e in to functional languages. Bags, in

v arious guises, ha v e b een prop osed b y other researc hers; ho w ev er the approac h tak en here is

the �rst to generally incorp orate them, in a clean w a y , in to a functional language. Unlik e other

prop osals, a parallel implemen tation of bags is describ ed, and this is formally dev elop ed.

Bags are in tro duced in to functional languages as an abstract data t yp e (ADT). The ADT op er-

ations consist of functions for constructing bags and a bag homomorphism function. Since the

bag union op eration is asso ciativ e and comm utativ e, the corresp onding homomorphism function

m ust also b e asso ciativ e and comm utativ e. This is left as a pro of obligation for the programmer;

in practice this is rarely di�cult.

CHAPTER 7. BA GS 177

A useful notational op eration for sp ecifying bags is the bag comprehension. It is sho wn ho w

these ma y b e translated in to the bag ADT op erations.

Man y la ws and theorems ma y b e form ulated ab out bags. Of particular imp ortance is the

Quali�er-in terc hange theorem. This allo ws generators and �lters in bag comprehensions to

b e rearranged without c hanging the meaning of the comprehension.

The most imp ortan t reason for in tro ducing bags in to a functional language is that they ma y b e

giv en a non-deterministic parallel implemen tation. Ho w ev er, pro viding the pro of obligation is

met, the results of bag expressions will b e deterministic. A parallel implemen tation has b een

dev elop ed semi-formally via non-deterministic rewriting systems.

The p erformance of the parallel bag implemen tation is discussed and some exp erimen ts are tried.

It is sho wn that bags p erformance is less dep enden t up on sc heduling and it is less data dep enden t

than is p ossible without them. F or example if op erations are applied in parallel across trees, for

maxim um parallelism it is imp ortan t that trees are balanced, this is not necessary if bags can

b e used.

Finally some parallel programming problems, p osed b y Arvind [6], are solv ed using bags.

The real utilit y of bags will not b e kno wn un til there is more exp erience of writing parallel

functional programs. Ho w ev er there are certainly some cases where they mak e programming

easier and giv e greater e�ciency than w ould otherwise b e p ossible.

7.11 Conclusions

The main conclusions of this c hapter are:

� Bags ma y b e used to express a limited form of non-determinism. Th us bags ma y ex-

press some algorithms whic h can not b e expressed in a standard functional language. F or

example the histogram and p olynomial m ultiplication problems ma y b e solv ed using bags.

� In some situations bags mean that less w ork is require from the programmer to ensure

parallel ev aluation. F or example to sum a collection of n um b ers together in a con v en tional

language a balanced tree migh t b e used, program co de w ould b e needed to ensure that the

tree is balanced. With bags this is not necessary .

� The ev aluation order of bag homomorphisms is not sp eci�ed. This p ermits a greater

freedom of implemen tation than w ould b e p ossible without bags. In addition this means

that sc heduling will a�ect the p erformance of a bag homomorphism less than that of,

sa y , a tree one. This is b ecause the dep endencies b et w een tasks, pro duced b y a bag

homomorphism, are less constrained than those pro duced from a tree homomorphism.

� The implemen tation of non-deterministic algorithms, lik e the implemen tation of bags, is

complicated. In particular, care has to b e tak en with detecting the termination of suc h

algorithms. F or this reason it is desirable to formally dev elop suc h algorithms. This has

b een done for the bag implemen tation.

Chapter 8

P erformance analysis and debugging

8.1 In tro duction

8.1.1 Motiv ation

A great deal has b een written on reasoning ab out the meaning of functional programs, but

m uc h less has b een written on reasoning ab out their p erformance. This is particularly acute for

parallel programs b ecause:

� the problem is harder.

� the reason for parallel programs is p erformance; therefore it is esp ecially imp ortan t to get

a handle on parallel p erformance.

Indeed, there are man y reasons wh y it is necessary to b e able to reason ab out and measure the

p erformance (execution time) of parallel programs, including:

comparison of parallel programs: for example it is necessary to b e able to answ er questions

lik e: what is the b est sorting algorithm for a particular mac hine? or is this new algorithm

an impro v emen t o v er existing ones?

v alidating program transformations: in the con text of program transformation, it is desir-

able to pro v e that transformations impro v e or preserv e p erformance. Do transformations

ha v e their desired e�ect?

p erformance debugging: this means debugging parallel programs whic h do not p erform as

exp ected. T ypically this arises as a program's ev aluation b eing far more sequen tial than

w as exp ected.

Similar reasons exist for analysing and measuring the p erformance of sequen tial programs. Ho w-

ev er, except for the sync hronous programming of SIMD mac hines suc h as the Connection Ma-

c hine [46], the op eration of parallel programs is m uc h more complex than for sequen tial pro-

grams. A consequence of this is that p erformance analysis and measuremen t of parallel programs

is considerably more di�cult than for sequen tial programs.

178

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 179

8.1.2 P erformance analysis and measuremen t

There are sev eral lev els at whic h the p erformance of a parallel program ma y b e measured. These

are listed in decreasing order of the insigh ts whic h they giv e: whic h corresp onds to increasing

lev els of detail.

formal program analysis: this is the most abstract lev el of p erformance measuremen t. This

giv es the greatest insigh ts in to a programs p erformance, y et it is the least detailed measure-

men t. F ormal analyses ma y giv e a general p erformance measure for all p ossible program

inputs or b ounds on a programs p erformance.

program sim ulation: b y sim ulating a program, its p erformance ma y b e measured. Di�eren t

lev els of detail in the sim ulation are p ossible. Program sim ulation ma y b e v ery abstract

or it ma y predict the real p erformance of a particular implemen tation.

run-time pro�ling: programs ma y b e run on a real implemen tation and pro�les of the pro-

grams' executions ma y b e collected. Ultimately this is the most imp ortan t p erformance

measure. It is the most accurate measure, but it is also the least rev ealing measure.

These lev els of analysis/measuremen t are complemen tary . None alone is suitable for all uses

of p erformance measuremen t. Ultimately a programs execution time is most imp ortan t. Ho w-

ev er for algorithm comparison more abstract measuremen ts are desirable, whic h abstract a w a y

from particular implemen tations. F or p erformance analysis to b e mathematically tractable it is

necessary to abstract a w a y from a language's implemen tation details.

P erformance debugging ma y require measuremen ts at all lev els. Bugs whic h cause a program's

p erformance to di�er from that exp ected, should b e caugh t at as abstract a lev el as p ossible.

Initially a simple analysis should b e used to estimate a programs p erformance. This should not

incorp orate an y sc heduling issues or comm unications costs. The analysis ma y indicate that a

program is inheren tly sequen tial. If not then a more detailed analysis or an abstract sim ula-

tion of the program with some test data should b e p erformed. This should incorp orate more

implemen tation details than the previous analysis. This pro cess of measuremen t at increasing

lev els of detail should b e rep eated un til the bug is lo cated; this ma y pro ceed as far as running

the program on a real mac hine. A t eac h lev el the programmer should satisfy himself that the

p erformance of the program is satisfactory , b efore p erforming a more detailed measuremen t.

F or example a program ma y b e highly parallel but it ma y b e slo w b ecause it p erforms a lot of

comm unication. A simple analysis will sho w this as a go o d parallel algorithm. As successiv ely

more detailed p erformance measuremen ts are tak en it will b e rev ealed, when comm unications

costs are incorp orated in to measuremen ts, that this program p erforms a lot of comm unication.

The comm unications problem can then b e iden ti�ed and �xed. This ma y suggest that only

p erformance measuremen t at the lo w est lev el is necessary . Ho w ev er it is necessary to pro ceed

through sev eral re�nemen ts of measuremen t to determine at what stage a p erformance bug

o ccurs. Consider the case of an inheren tly sequen tial algorithm; this w ould b e di�cult to

iden tify with detailed lev els of measuremen t, since comm unications costs etc. w ould mask the

real problem. Ho w ev er if the program w as analysed simply , this could rev eal the inheren t

sequen tialit y . The idea of measuring a program's p erformance incorp orating di�eren t amoun ts

of implemen tation detail suggests that a sim ulator whose lev el of sim ulation could b e v aried

w ould b e a v ery useful to ol. Certainly it can b e v ery di�cult to in terpret p erformance results

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 180

from real mac hines. F or this reason the sim ulator outlined in Chapter 4 w as found to b e v ery

useful.

T o summarise: it is necessary to b e able to measure programs' p erformance at di�eren t lev els

of abstraction.

8.1.3 Chapter summary and con tributions

This c hapter in v estigates program p erformance via program analysis and sim ulation. All p er-

formance measuremen ts made are quite abstract. In particular the a v erage parallelism of a

program, will b e used as a measuremen t. This measuremen t has b een adv o cated b y Eager

[36]. Imp ortan tly , it enables abstraction a w a y from sc heduling issues, whic h w ould otherwise

greatly complicate analyses and in terpretation of measuremen ts. This measuremen t is discussed

in Section 2.6.

Section 8.2 considers a simple analysis of some divide and conquer (D&C) algorithms. These

algorithms ha v e b een adv o cated b y man y as a paradigm for writing parallel programs. Ho w ev er,

it is sho wn here that some parallel D&C algorithms, suc h as Quic ksort using lists, do not ha v e a

go o d p erformance. This motiv ates the design of some form ulae whic h describ e the p erformance

of generalised divide and conquer algorithms. These form ulae enable constrain ts to b e deriv ed

for ensuring that D&C algorithms do ha v e a go o d p erformance. It is also sho wn that some

parallel algorithms are not e�cien t sequen tial algorithms, suc h as parallel pre�x. This means

that for some problems e�cien t parallel algorithms need to b e h ybrid parallel and sequen tial

algorithms; whic h use parallel algorithms to distribute w ork across pro cessors and sequen tial

algorithms to solv e problems on individual pro cessors. The analysis tec hnique used in this

section is simple, but o v erly sync hronous. It cannot b e used to analyse pip elined parallelism;

essen tially the tec hnique can only analyse parallel languages whic h are strict.

T o analyse pip elin ed parallelism a more complex metho d of p erformance measuremen t is neces-

sary . A non-standard seman tics whic h can calculate the p erformance of programs with pip elined

parallelism, is presen ted in Section 8.3. This seman tics is presen ted formally b ecause it is quite

complex. It is no v el in its use of time and timestamps. The seman tics enables the p erformance

of lenien t programs to b e calculated. Lenien t programs supp ort pip elined parallelism, and they

represen t a compromise b et w een strict and lazy parallel languages. Unfortunately it do es not

seem p ossible to easily extend the seman tics to deal with parallel lazy languages. In Section

8.4 the p erformance of a parallel Quic ksort, whic h has pip eline d parallelism, is calculated using

the seman tics. This is a long calculation and it sho ws the di�culties of using the p erformance

seman tics.

Section 8.5 uses the non-standard seman tics, for calculating lenien t programs' p erformance, in

a di�eren t w a y . It uses the seman tics as the sp eci�cation of a parallel sim ulator/in terpreter. By

treating the seman tic equations as transformation rules, parallel programs' p erformance ma y

b e sim ulated b y transforming programs. It is sho wn ho w other more detailed information can

b e collected from the seman tics, suc h as parallelism pro�les. F urthermore it is sho wn ho w

rather than directly calculating a programs p erformance, the seman tics can b e used to generate

a history trace of a programs ev aluation. This ma y b e tra v ersed b y a separate program to

sim ulate di�eren t n um b ers of pro cessors and di�eren t sc heduling strategies. This allo ws a m uc h

more detailed lev el of p erformance measuremen t than the original seman tics.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 181

Section 8.6 sho ws, via some real examples, ho w a sim ulator ma y b e used to disco v er some

programming errors, whic h cause p o or program p erformance. This section concerns errors of

algorithm translation rather than fundamen tal
a ws in algorithms.

8.2 Simple analysis

In this section a simple analysis of some parallel programs p erformance is describ ed. This

rev eals the `algorithmic' parallelism of the programs; no comm unications or other o v erheads are

measured. Often upp er b ounds ma y b e made on the p erformance of programs; these are useful

for determining whether an algorithm do es con tain an y parallelism and ho w m uc h it con tains.

If some simplifying assumptions are made it is p ossible to reason ab out the p erformance of some

parallel algorithms in a similar w a y to sequen tial ones. There are t w o ma jor assumptions:

there are an un b ounded n um b er of pro cessors: therefore sc heduling issues do not arise

and the a v erage parallelism ma y b e easily calculated. Eager has sho wn that the a v er-

age parallelism is a useful p erformance measure, see Section 2.6, ev en if the n um b er of

pro cessors is �xed in the target mac hine.

the language is strict: therefore the expressed parallelism is sync hronous. In this con text

sync hronous parallelism means that a task ma y not b e started un til all tasks ev aluating

expressions on whic h it dep ends, ha v e completed. This means that all v alues whic h a task

dep ends on will b e fully ev aluated b efore the task is started. Th us the ev aluations of tasks,

b et w een whic h there are dep endencies, do not o v erlap; hence no pip eline d parallelism is

p ossible. F or example consider f E

1

E

2

, where E

1

and E

2

are ev aluated in parallel. The

application cannot pro ceed un til b oth the E

1

task and the E

2

task ha v e terminated. Note

that, in all other c hapters it has b een assumed that the functional language is lazy .

Most forms of sequen tial algorithm analysis pro vide an asymptotic b ound on the n um b er of times

a certain op eration is p erformed. F or example an algorithm for searc hing a list sequen tially for

a giv en elemen t has an upp er b ound of O(n) comparison op erations, where n is the length of

the list.

Ho w ev er for the kind of mac hine en visaged asymptotic p erformance analysis is not accurate

enough. F or the mac hines b eing considered it is desirable for algorithms to ha v e a m uc h greater

a v erage parallelism than the mac hine has pro cessors, see Section 2.6 for an explanation. This

means that the total amoun t of w ork p erformed is m uc h greater than the n um b er of pro cessors.

Hence the sequen tial p erformance will b e of the same order as the parallel p erformance. F or

example consider matrix m ultiplication, if p is the n um b er of pro cessors and n is the matrix

size then for a high a v erage parallelism p � n

3

, assuming sequen tial matrix m ultiplication has

complexit y O(n

3

). Therefore the b est p ossible parallel complexit y whic h can b e obtained is

O(n

3

=p). Ho w ev er since p is a small constan t compared to n

3

, the parallel complexit y is equal

to the sequen tial complexit y: O(n

3

=p) = O(n

3

). Therefore for parallel algorithm analysis, in

this setting, p erformance measuremen ts m ust b e more accurate than asymptotic.

T o measure parallel programs p erformance, program's aver age p ar al lelism will b e used. This

is the sequen tial execution time of the algorithm divided b y the parallel execution time of

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 182

the algorithm; giv en an un b ounded n um b er of pro cessors. An equiv alen t measure is the total

n um b er of op erations p erformed b y the program, divided b y the maxim um n um b er of op erations

p erformed in sequence: the pro of of these t w o measures equiv alence is due to Eager [36]. Often

the a v erage parallelism will b e termed sp eed-up: more accurately this is the sp eed-up giv en an

un b ounded n um b er of pro cessors. The sp eed-up (a v erage parallelism) can b e view ed as a limit

on the size of mac hine, de�ned as the n um b er of pro cessors it con tains, whic h an algorithm can

utilise e�cien tly .

The follo wing sections analyse some divide and conquer algorithms; other similar algorithms

suc h as searc h and optimisation algorithms ma y b e analysed in a similar w a y . The last section

discusses the shortcomings of this simple approac h.

8.2.1 Quic ksort analysis

A parallel Quic ksort function

1

is sho wn b elo w:

> qsort [] = []

> qsort (e:r) = par qhi (seq qlo (qlo++(e:qhi)))

> where

> qlo = qsort [x| x<-r; x<=e]

> qhi = qsort [x| x<-r; x>e]

Ho w migh t this b e formally analysed? The di�cult y with formal analyses is that the amoun t of

w ork p erformed b y the program will dep end on the v alues of the data as w ell as the size of the

data. Th us assumptions concerning the input data m ust b e made. A simplifying assumption for

Quic ksort is that the list to b e sorted alw a ys splits in to equal sized sub-lists. Hence applications

of parallel Quic ksort are assumed to result in a balanced tree of tasks. This assumption puts a

lo w er b ound on the cost of Quic ksort (b oth sequen tial and parallel).

If it is assumed that qsort alw a ys pro duces an equal split, then its sequen tial cost ma y b e

describ ed th us:

S (0) = 0

S (n) = 2 � (n � 1) + 2 � S ((n � 1) = 2)

F or an input of size n the �rst elemen t is remo v ed and the remainder is recursiv ely sorted. The

t w o recursiv e calls �lter the remainder, pro ducing a list half the size (the assumption). Eac h of

the �lterings requires n � 1 comparisons.

Assuming there are an in�nite n um b er of pro cessors a v ailable then qsort 's parallel cost ma y b e

describ ed th us:

P (0) = 0

P (n) = (n � 1) + P ((n � 1) = 2)

1

In practice app end w ould not b e used in Quic ksort but this is of no consequence here since it is not measured.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 183

The t w o recursiv e calls to Quic ksort are p erformed in parallel and tak e the same time to ev aluate

since the list splits exactly . Therefore only the cost of one task and its �ltering is incurred.

These recurrence relations ma y b e solv ed th us (assume input size n = 2

m

� 1):

Sequen tial cost:

S (2

m

� 1) = 2

m +1

� 4 + 2 � S (2

m � 1

� 1)

= 2

m +1

+ 2 � 2

m

+ 2

2

� 2

m � 1

+ : : : + 2

m +1

� 2

0

� 4 � 2 � 4 � 2 � 2 � 4 � : : : � 2

m � 1

� 4

= m � 2

m +1

� 4 �

P

m � 1

i =0

2

i

= m � 2

m +1

� 4 � (2

m

� 1)

= 2

m +1

(m � 2) + 4

P arallel cost:

P (2

m

� 1) = 2

m

� 2 + 2

m � 1

� 2 + : : : + 2

1

� 2

= 2

m +1

� 2 � (m + 1)

The sp eed-up (a v erage parallelism) of an algorithm is the ratio of the sequen tial cost to parallel

cost = S (n) =P (n):

2

m +1

(m � 2) + 4

2

m +1

� 2 � (m + 1)

� for large n (= 2

m

� 1)

2

m +1

(m � 2)

2

m +1

= m � 2

This is for an input size of n = 2

m

� 1 therefore the sp eed-up is only logarithmic in the input

size. This is unexp ectedly p o or! F or example, for a 100 pro cessor mac hine it is desirable to

ha v e an a v erage parallelism of at least 100. This means that the list to b e sorted should ha v e

a length of at least 2

100

! Exp erimen ts w ere p erformed to v erify this result. A 1024 elemen t list

w as constructed whic h pro duced exact splits for Quic ksort. Sorting this list with the parallel

Quic ksort program pro duced an a v erage parallelism of 10, compared to the calculated a v erage of

8. In fact it w as the p o or exp erimen tal p erformance of Quic ksort whic h led me to analyse it and

sev eral other programs. Only after the analysis w as complete w as I con vinced that Quic ksort's

p o or p erformance w as inheren t and that it w as not due to an implemen tation bug! Notice that

the p o or p erformance of Quic ksort is due to its use of lists. If arra ys w ere a v ailable, as they are

in Hask ell [55], a b etter p erformance could b e ac hiev ed.

This Quic ksort result is brie
y men tioned in Hughes's thesis [58]; ho w ev er he do es not sa y that

this is a bad result.

8.2.2 General divide and conquer analysis

This section generalises the results obtained for Quic ksort. Giv en some assumptions ab out the

splitting of problems in to sub-problems, general analyses can b e made of divide and conquer

algorithms. The sequen tial analysis of divide and conquer (D&C) algorithms, as used here, is

describ ed in [106].

In the follo wing section the recurrence relation for the sequen tial D&C algorithm b eing describ ed

is S . The input size is n , the n um b er of sub-problems is a and the size of sub-problems is n=b .

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 184

The parallel divide and conquer function will b e describ ed as P , it solv es sub-problems in parallel;

th us it is the same as S except that a is e�ectiv ely 1.

F or the �rst D&C function considered, the cost of dividing problems and com bining their solu-

tions is constan t and equal to c .

a > 1 b > 1 c > 0

S (1) = c

S (n) = a � S (n=b) + c

P (1) = c

P (n) = P (n=b) + c

F or an input of size n = b

k

:

S (n) = c �

k

X

i =0

a

i

= c �

a

k +1

� 1

a � 1

P (n) = c � (k + 1)

Therefore the sp eed-up is equal to:

S (b

k

)

P (b

k

)

=

c �

a

k +1

� 1

a � 1

c � (k + 1)

=

a

k +1

� 1

(a � 1) � (k + 1)

This has a go o d sp eed-up whic h is almost linear in the input size. F or example v ector addition

where v ectors are represen ted b y binary trees. If the addition of t w o scalars (lea v es) is assumed

to ha v e the same cost as accessing and building a tree no de, then this �ts the D&C sc heme

describ ed. In this case a = 2 hence the sp eed-up for an input of size n is:

2 � n � 1

l n n + 1

F or example the addition of t w o 1000 elemen t v ectors should ha v e an a v erage parallelism of

appro ximately 190. Exp erimen ts w ere p erformed to v erify this result. These sho w ed that the

a v erage parallelism w as 180, whic h compares w ell with the predicted result of 190.

The results from the ZAPP pro ject seem to b e m uc h b etter than form ulae deriv ed here [78]; they

manage to ac hiev e a near linear sp eed-up. Ho w ev er they used a mac hine with a small n um b er of

pro cessors (40 maxim um) and they used v ery large data sets, hence their �gures do agree with

these form ulae.

The second divide and conquer sc heme considers the case when the cost of dividing problems

and com bining their results is prop ortional to problems' sizes:

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 185

S (1) = c

S (n) = a � S (n=b) + c � n

P (1) = c

P (n) = P (n=b) + c � n

Assuming an input of size n = b

k

:

S (n) = c � n �

k

X

i =0

�

a

b

�

i

S (n) = c � n �

8

>

<

>

:

(k + 1) ; if a = b

q

k +1

� 1

q � 1

where q = a=b; if a 6= b

P (n) = c � n �

r

k +1

� 1

r � 1

!

where r = 1 =b = c � n �

b

k +1

� 1

b

k +1

� b

k

F or example when b = 2, P (n) = c � (2 � n � 1)

The sp eed-up is:

S (b

k

)

P (b

k

)

=

8

>

>

<

>

>

:

(k +1) � (b

k +1

� b

k

)

b

k +1

� 1

; a = b

q

k +1

� 1

q � 1

�

b

k +1

� b

k

b

k +1

� 1

; a 6= b

This sp eed-up is logarithmic in the input size and therefore only useful in limited circumstances,

for example: a mac hine with only a small n um b er of pro cessors. Ideally an algorithm's sp eed-

up, with an un b ounded n um b er of pro cessors, should b e near linear in its input size. Th us an y

algorithm whic h �ts this sc heme is not a go o d parallel algorithm. Divide and conquer algorithms

ha v e b een adv o cated b y man y as a go o d parallel programming paradigm [29 , 78]. This result

sho ws that not all D&C algorithms are go o d parallel algorithms.

An example of this is parallel merge sort. Merge sort splits its input list in to t w o halv es, eac h

halv e is recursiv ely sorted and the results are merged together. Eac h split requires the input

list to b e tra v ersed once, as do es eac h merge (a = 2, b = 2 and c = 2). Th us this divide and

conquer algorithm �ts the curren t sc heme. The sp eed-up of merge sort for a list of length 2

k

is:

S (2

k

)

P (2

k

)

=

(k + 1) � (2

k +1

� 2

k

)

2

k +1

� 1

�

k + 1

2

Lik e Quic ksort this is v ery bad; for a one million elemen t list (n = 2

20

) the sp eed-up w ould only

b e 10!

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 186

The �nal general divide and conquer analysis considers algorithms where the cost of dividing

problems and com bining their solutions is logarithmic in problems' sizes. The p erformance of

these algorithms should lie b et w een that of the t w o previous sc hemes. The new sc heme is:

S (1) = c

S (n) = a � S (n=b) + c � (l n n)

P (1) = c

P (n) = P (n=b) + c � (l n n)

Since base t w o logarithms are used it is assumed, in addition to the previous assumptions ab out

a , b and c , that b = 2

d

. F or an input of size n = 2

k

:

S (n) = c � a

k

+ c �

k � 1

X

i =0

a

i

� l n

�

n

b

i

�

Since b = 2

d

:

S (n) = c � a

k

+ c � d �

k � 1

X

i =0

a

i

� (k � i)

F or example if a = 2:

S (n) = c � 2

k

+ c � d � (2

k +1

� k � 2)

The parallel case is the same as the sequen tial case but with a = 1:

P (n) = c + c �

k � 1

X

i =0

d � (k � i) =

1

2

� (2 � c + c � k � d � (k + 1))

The sp eed-up for a = 2 is:

S (2

k

)

P (2

k

)

=

c � 2

k

+ c � d � (2

k +1

� k � 2)

1

2

� (2 � c + c � k � d � (k + 1))

=

2

k +1

+ 2 � d � (2

k +1

� k � 2)

2 + k � d � (k + 1)

F or example the sp eed-up for b = 2 ; d = 1 is:

S (2

k

)

P (2

k

)

=

2

k +1

+ 2 � (2

k +1

� k � 2)

2 + k � (k + 1)

Some example �gures are sho wn b elo w:

input size n 8 32 128 1024 4096 16384

sp eed-up 2.7 5.6 13 55 155 464

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 187

As can b e seen quite a large input size is required to get a go o d sp eed-up. Algorithms with this

form are viable for mac hines with a small n um b er of pro cessors or for large input sizes.

This analysis sho ws ho w recurrence relations can get quite complex for ev en small algorithms.

Ho w ev er, rather than solving recurrence relations they can alw a ys b e calculated for a few v alues

and a graph plotted. This can easily b e done automatically and can serv e as a useful metho d

for v erifying solutions to o. Justi�cation for this is that usually only a fairly limited range of

input sizes need b e considered for an algorithm; a few orders of magnitude normally su�ce.

T o summarise, in order for a D&C algorithm to ha v e a reasonable parallel p erformance, the

dividing and com bining op erations should tak e constan t time or no w orse than logarithmic

time. If this is not the case then it will b e di�cult to e�cien tly utilise a parallel mac hine unless

the mac hine is v ery small or the input data is extremely large.

8.2.3 P arallel pre�x

P arallel pre�x (scan or accum ulate) is a particular D&C algorithm. Ho w ev er this algorithm is

v ery imp ortan t and general in its o wn righ t, for details see [47]. This analysis is of a parallel

pre�x whic h uses trees rather than list data structures. It is assumed that the tress are balanced;

this giv es a lo w er b ound on parallel pre�x's cost for arbitrary binary trees. P arallel pre�x using

trees is analogous to parallel pre�x using lists. An informal sp eci�cation of parallel pre�x, using

lists, is:

listscan � [a

1

; a

2

; : : : ; a

n

] = [a

1

; a

1

� a

2

; : : : ; ((a

1

� a

2

) � a

3

) � � � � � a

n

]

A parallel pre�x (pscan) using trees is sho wn b elo w:

> tree * ::= Node (tree *) (tree *) | Leaf *

> tmap f (Leaf x) = seq fx (Leaf fx) where fx = f x

> tmap f (Node l r) = par ll (seq rr (Node ll rr))

> where

> ll = tmap f l

> rr = tmap f r

> pscan f (Leaf x) = (Leaf x, x)

> pscan f (Node l r) = par lt (seq rt (seq rt' (seq v (Node lv rt',v))))

> where

> (lt,lv) = pscan f l

> (rt,rv) = pscan f r

> rt' = tmap (f lv) rt

> v = f lv rv

An application suc h as pscan f t meets the par pro of obligation pro viding either f is total and

t is completely de�ned, or if the application o ccurs in a con text whic h is strict in tree elemen ts

to the same degree as f .

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 188

Notice that the calculation of v is redundan t, since v is equal to the righ t-most elemen t in rt' .

F or simplicit y optimisation is not sho wn, but the cost of v is omitted from calculations.

Assuming that the scanning function's (f 's) cost is m uc h greater than the cost of tree tra v ersal,

and if the cost of v is omitted, the follo wing recurrence relations result (S is the sequen tial cost

and P is the parallel cost):

S

pscan

(1) = 0

S

pscan

(n) = 2 � P

pscan

(n= 2) + S

map

(n= 2)

P

pscan

(1) = 0

P

pscan

(n) = P

pscan

(n= 2) + P

map

(n= 2)

S

map

(n) = n

P

map

(n) = 1

Th us for an input of size n = 2

k

(n um b er of lea v es in the tree):

S

pscan

(n) = k � 2

(k � 1)

P

pscan

(n) = k

This giv es rise to the follo wing a v erage parallelism:

k � 2

(k � 1)

k

= n= 2

Th us this algorithm has an excellen t a v erage parallelism.

Next the case when the scanning function has appro ximately the same cost as tree tra v ersal,

is considered. T o do this some arbitrary assumptions ab out the cost of tree tra v ersal and

construction m ust b e made. The assumptions are: only the cost of tra v ersing and constructing

lea v es and no des, and scan functions applications, are coun ted. All these are assumed to ha v e

the same unit cost. This generates the follo wing recurrence relations:

S

map

(1) = 3

S

map

(n) = 2 + 2 � S

map

(n= 2)

P

map

(1) = 3

P

map

(n) = 2 + P

map

(n= 2)

S

pscan

(1) = 2

S

pscan

(n) = 2 + 2 � S

pscan

(n= 2) + S

map

(n= 2)

P

pscan

(1) = 2

P

pscan

(n) = 2 + P

pscan

(n= 2) + P

map

(n= 2)

These can b e simpli�ed to:

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 189

S

map

(n) = 3 � n + 2 � (n � 1) = 5 � n � 2

P

map

(2

k

) = 2 � (k + 1) + 1

S

pscan

(1) = 2

S

pscan

(n) = (5 = 2) � n + 1 + 2 � S

pscan

(n= 2)

P

pscan

(2

0

) = 2

P

pscan

(2

k

) = 2 � k + 3 + P

pscan

(2

k � 1

)

Assuming the input size is n = 2

k

and using the solutions generated in the previous section,

these recurrence relations ma y b e solv ed:

S

pscan

(n) = (5 = 2) � n � (k + 1) + (n � 1) � n= 2 = (n= 2) � (5 � k + 6) � 1

P

pscan

(n) = k � (k + 4) + 2

Th us the sp eed-up is:

S (n)

P (n)

=

(n= 2) � (5 � k + 6) � 1

k � (k + 4) + 2

Some example a v erage parallelism �gures are sho wn b elo w:

input size n 8 32 128 1024 4096 16384

sp eed-up 3.5 11 33 200 697 2450

The a v erage parallelism for this case is not as go o d as the previous case but is nev ertheless

reasonable.

Ho w ev er, although these scan results do giv e its a v erage parallelism, they are misleading. Scan

is an in teresting algorithm b ecause an e�cien t sequen tial algorithm do es less w ork than the

parallel algorithm. Hence the imp ortan t measuremen t is the sp eed-up of the parallel algorithm

compared with the e�cien t sequen tial algorithm. An e�cien t sequen tial algorithm is sho wn

b elo w:

> scan f e (Leaf x) = (Leaf fxe,fex) where fex = f e x

> scan f e (Node l r) = (Node l r,e'')

> where

> (l,e') = scan f e l

> (r,e'') = scan f e' r

Notice ho w the sequen tial scan requires an iden tit y elemen t to `prime' it with. This p erforms n

applications of f , where n is the input size,

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 190

The pure parallel algorithm will run m uc h slo w er than the e�cien t sequen tial algorithm on a

single pro cessor. Akl has also noticed this [4]; he describ es suc h algorithms as not b eing cost

optimal. This means that on a MIMD mac hine, a h ybrid parallel and sequen tial algorithm

is most e�cien t. The parallel algorithm should b e used to distribute w ork to pro cessors; eac h

pro cessor should ev aluate its sub-problem using the e�cien t sequen tial algorithm. Ho w ev er it can

b e di�cult to express suc h algorithms on a GRIP-lik e system. This is b ecause programs (tasks)

cannot determine when they ha v e generated enough tasks for distribution across a mac hine,

so that they ma y c hange and use an e�cien t sequen tial algorithm to solv e problems. Kelly's

Caliban [70] is w ell suited to this kind of b eha viour b ecause there is a one-to-one mapping of

tasks to pro cessors. Most parallel imp erativ e languages also consist of static task net w orks,

including the one used b y Akl. Th us expressing h ybrid algorithms is not a problem for these

languages. A solution to this problem, for GRIP-lik e systems, is prop osed in Section 9.1.3.

The follo wing analysis compares the e�cien t h ybrid parallel algorithm with the naiv e parallel

algorithm. F or this analysis only applications of the scanning function will b e coun ted. As

previously men tioned, the sequen tial algorithm p erforms n applications of the scan function,

where n is the input size. T o in v estigate the e�ciency of the naiv e parallel algorithm the cost

of the parallel algorithm run sequen tially m ust b e used. This w as previously calculated to b e:

S

pscan

(2

k

) = k � 2

(k � 1)

The naiv e parallel algorithm running on a mac hine with p = 2

q

pro cessors and an input of size

n = 2

k

, where k > q , ma y b e describ ed th us:

P

naiv e

(1 ; n) = S

pscan

(n)

P

naiv e

(p; n) = P

naiv e

(p= 2 ; n= 2) + P

map

(p; n= 2)

P

map

(p; n) = n=p

This sa ys that the cost of ev aluating an input of size n on one pro cessor is equal to the cost of

ev aluating it sequen tially using the pscan algorithm. On more than one pro cessor the input is

divided in to t w o and eac h recursion is allo cated half the n um b er of pro cessors a v ailable (p= 2)

to recursiv ely ev aluate their input halv es. On completion using the p a v ailable pro cessors the

parallel map is p erformed. The sync hronisation of tasks is crucial to this cost form ulation.

Therefore,

P

naiv e

(2

q

; 2

m

) = S

pscan

(m � q) +

q � 1

X

i =0

2

m � i

2

q +1 � i

= (m � q) � 2

m � q � 1

+ q � 2

m � q � 1

= m � 2

m � q � 1

The e�cien t parallel pre�x whic h runs the e�cien t sequen tial algorithm on eac h pro cessor is

similar to the naiv e parallel algorithm except the sequen tial parts ha v e cost n (S

q uick

(n) = n).

P

q uick

(1 ; n) = n

P

q uick

(p; n) = P

q uick

(p= 2 ; n= 2) + P

map

(p; n= 2)

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 191

This has the follo wing solution:

P

q uick

(2

q

; 2

m

) = 2

m � q

+ q � 2

m � q � 1

= 2

m � q � 1

� (2 + q)

Therefore, the sp eed-up, with 2

q

pro cessors, for the naiv e parallel algorithm is:

S

q uick

(2

m

)

P

naiv e

(2

q

; 2

m

)

=

2

m

m � 2

m � q � 1

=

2

q +1

m

The sp eed-up of the e�cien t parallel algorithm is:

S

q uick

(2

m

)

P

q uick

(2

q

; 2

m

)

=

2

m

2

m � q � 1

� (2 + q)

=

2

q +1

2 + q

The e�ciency of the t w o parallel algorithms ma y b e compared. The ratio of the e�cien t parallel

algorithms cost to the naiv e parallel algorithms cost is:

2

m � q � 1

� (2 + q)

m � 2

m � q � 1

=

2 + q

m

This is quite substan tial. F or example for a 128 pro cessor mac hine with an input size of 4096

the e�cien t parallel pre�x algorithm is 33% faster than the naiv e one, despite the fact that

the naiv e parallel algorithm has a m uc h greater a v erage parallelism. This result con tra v enes

the philosoph y that ha ving a m uc h greater a v erage parallelism than the n um b er of pro cessors

a v ailable is alw a ys a go o d idea. Th us the ob ject of designing a parallel program is not simply

to pro duce one with maximal parallelism.

8.2.4 Shortcomings

A ma jor shortcoming of the simple approac h describ ed is that it is cannot describ e pip elined

parallelism. The di�cult y is inheren t since simple sync hronous systems are easier to reason ab out

than ones whic h sync hronise purely on data v alues. Nev ertheless it is particularly desirable to b e

able to reason ab out pip elined parallelism. Some algorithms ma y rely on pip eline d parallelism,

for example the siev e of Eratosthenes for �nding primes. Man y other algorithms will con tain

implicit pip elined parallelism; this ma y a�ect or in v alidate the analysed p erformance of an

algorithm if disregarded.

F or example the Quic ksort sho wn b elo w is a mo di�ed v ersion of the previous Quic ksort whic h

w as analysed. An imp ortan t question is: what, if an y , p erformance impro v emen t is obtained b y

ev aluating the �lters in parallel; th us allo wing successiv e Quic ksort recursions to ev aluate in a

pip elined fashion?

> qsort [] = []

> qsort (e:r) = ((par seqall lo) . (par seqall hi) . (par qhi) . (seq qlo))

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 192

> (qlo ++ (e:qhi))

> where

> lo = [x| x<-r; x<=e]

> hi = [x| x<-r; x>e]

> qlo = qsort lo

> qhi = qsort hi

The next section formalises the basis for the analyses done here and it extends this to incorp orate

pip elined parallelism. This enables the p erformance of the v ersion of Quic ksort de�ned ab o v e,

to b e analysed.

8.3 F ormal p erformance analysis

The previous seman tics informally analysed the p erformance of sev eral algorithms. Ho w ev er, the

simple informal analysis w as o v erly sync hronous and it could not analyse pip elined parallelism.

Th us, it can not accurately measure the p erformance of programs written in the parallel lazy

language, describ ed in Section 3.1. The ob jectiv e of this section is to dev elop an analysis whic h

is able to calculate the p erformance of pip elined algorithms. Pip elined parallelism is more

op erationally complex than the strict parallelism of the previous section; this is b ecause for

pip elined parallelism task sync hronisation o ccurs on v alues. Due to this complexit y a formal

metho d for calculating programs p erformance will b e used. This will b e ac hiev ed b y de�ning

a non-standard denotational seman tics whic h, in addition to calculating a program's standard

meaning, will calculate its p erformance. T o do this program op erations m ust b e coun ted or

timed.

It is desirable to devise a non-standard seman tics to calculate the p erformance of the parallel

language whic h has b een used throughout this thesis. Unfortunately the op erational b eha viour

of lazy languages, ev en sequen tial ones, is v ery complex. Essen tially this is b ecause although the

seman tics of lazy languages are comp ositional; their op erational b eha viour is not comp ositional.

The ev aluation of one expression ma y a�ect the cost (p erformance) of ev aluating another ex-

pression. The cost of ev aluating a v ariable dep ends on whether the v ariable has previously b een

ev aluated or not. F or example:

> res = (a,a)

> where

> a = ...

The cost of ev aluating snd res will dep end up on, amongst other things, whether the �rst

comp onen t or the second comp onen t has b een previously ev aluated. This op erational b eha viour

is clearly not comp ositional.

There ha v e b een sev eral prop osals for analysing the p erformance of sequen tial lazy languages

including [15 , 97 , 99]. These are all based on the same tec hnique. The problem with lazy

languages is that it is not kno wn to what degree, if at all, expressions will b e ev aluated. Strictness

analysis, see Section 3.2.1, yields this information. This enables op erations to b e coun ted in a

similar w a y to sequen tial step coun ting (this is describ ed in the next section); basically the total

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 193

n um b er of op erations whic h are p erformed can b e summed to giv e the sequen tial p erformance.

Ho w ev er this strictness approac h to the p erformance analysis of sequen tial lazy languages is

not su�cien t to analyse parallel lazy languages. This is b ecause it is not su�cien t to kno w to

what degree expressions are ev aluated; in addition it is necessary to kno w when expressions are

ev aluated.

Hudak and Anderson [51] ha v e devised an op erational seman tics for parallel lazy languages,

based on partially ordered m ultisets. This could b e used as the basis for a p erformance seman tics.

Ho w ev er the approac h is extremely complicated and un wieldy , and there are some tec hnical

problems with it.

Rather than trying to solv e the inheren tly di�cult problem of reasoning ab out parallel lazy

languages, a simpler problem has b een solv ed. A non-standard seman tics is presen ted for rea-

soning ab out the p erformance of a lenien t language. Lenien t languages, suc h as Id Nouv eau

[84], represen t a compromise b et w een strict and lazy languages. Lenien t languages are strict in

expressions whic h are ev aluated sequen tially , and lazy in expressions whic h are ev aluated in par-

allel. The essen tial di�erence b et w een strict languages and lenien t languages is that for lenien t

languages sync hronisation b et w een tasks o ccurs when tasks' results are required b y another task.

Imp ortan tly , lik e strict languages, lenien t languages' op erational b eha viour is comp ositional.

The next sections describ es t w o p erformance seman tics. Firstly a seman tics for calculating

the p erformance of sequen tial strict languages is devised. This is subsequen tly extended for

analysing a parallel strict language (this has the same op erational b eha viour as the language

used for the informal analyses). Lastly a seman tics for reasoning ab out a lenien t language is

describ ed.

8.3.1 A sequen tial strict language

This section presen ts a seman tics for calculating the p erformance of a sequen tial call-b y-v alue

language. Call-b y-v alue languages ha v e a comp ositional op erational b eha viour. (I b eliev e the

only real adv an tage of call-b y-v alue functional languages o v er lazy ones is their comp ositional

op erational b eha viour.) F or example the cost of ev aluating E1 * E2 will b e equal to the cost

of ev aluating E1 plus the cost of ev aluating E2 plus the cost of the m ultiplication. Note that

an y shared v ariables m ust ha v e already b een ev aluated. This forms the basis of step c ounting

whic h will b e used to analyse the call-b y-v alue language. Using step coun ting to measure strict

languages p erformance is not a new idea; one of the �rst references to it is [119]. More recen tly

LeM � eta y er [74] has used step coun ting in A CE; this attempts to automatically analyse the

complexit y of FP programs. Sands [98] has also used step coun ting, as part of an op erational

seman tics calculate the p erformance of strict functional programs.

The syn tax of the language to b e used is sho wn in Figure 8.1. The language is t yp ed although

no t yping rules are sho wn. It is similar to languages lik e Hop e and a pure subset of ML.

T o p erform step coun ting the v alue giv en to an y expression m ust b e a pair comprising its

standard v alue and the n um b er of steps tak e to ev aluate it. Th us the v aluation function M used

to giv e v alues to expressions within a particular en vironmen t has the form:

M : E ! Env ! A ns

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 194

c 2 Con

v ; h ; t 2 V ar

E ::= c

j v

j E E

j \ v . E

j let v = E in E

j letrec v = E in E

j E + E

j E : E

j case E of []-> E (h : t) -> E

j (E)

Figure 8.1: Syn tax

The seman tic domains for the step coun ting seman tics are:

A ns = D
 Step

�; � 2 D = Basic + (D ! A ns) + List

Basic = constan ts and primitiv e functions including in tegers and b o oleans

List = nil + (D � List)

s 2 Step = Nat

?

� 2 Env = V ar ! D

The
 op erator is smash pro duct, that is strict pro duct. This is used to ensure the strictness

of the source language. Since the lam b da calculus used to describ e the source language is lazy ,

the strictness of the source language m ust b e enforced. Normally this is done b y either using a

sp ecial strictifying function or b y using a con tin uation based seman tics whic h mimics the call-

b y-v alue ev aluation order. The tric k emplo y ed here relies on the fact that a function applied

to b ottom ma y yield a v alue comp onen t of the answ er whic h is not b ottom; ho w ev er the step

coun t comp onen t will b e b ottom. Th us the smash pro duct forces the whole answ er to b ottom

if the step comp onen t is b ottom.

F or example, the let construct has the follo wing meaning:

M [[let v = E

1

in E

2

]] � = h � ; s

1

+ s

2

i

h �; s

1

i = M [[E

1

]] �

h � ; s

2

i = M [[E

2

]] � [v 7! �]

This sa ys that if it tak es s

1

steps to ev aluate E

1

and s

2

to ev aluate E

2

then the total n um b er

of steps required to ev aluate the let is s

1

+ s

2

. Con trast this with a lazy language where E

1

ma y or ma y not b e ev aluated. Ev en w orse in a lazy language di�eren t amoun ts of ev aluation

of E

1

and E

2

are p ossible if they are data structures. Notice ho w the en vironmen t only binds

v ariables to v alues (D). This is b ecause the cost of ev aluating a v ariable is alw a ys zero. This

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 195

is v ery imp ortan t and it is the reason wh y a strict seman tics can b e form ulated. This arises

b ecause:

In a strict language all bindings (v ariables) are ev aluated b efor e they can b e shared.

The meaning of a v ariable is th us:

M [[v]] � = h � [v] ; 0 i

Of course accessing a v ariable ma y cost a small amoun t or a great deal if the access is non-lo cal;

ho w ev er no ev aluation of the program will b e necessary .

Figure 8.2 sho ws the complete seman tics min us the rules for constan ts and primitiv e functions.

Underscore is used to represen t un used v alues in patterns.

Notice ho w none of the ab o v e expressions tak e an y steps to ev aluate. It w ould b e p ossible

to mak e some expressions tak e a n um b er of steps to ev aluate. F or example cons could tak e

one step to ev aluate. Ho w ev er a more general solution is to ha v e a user supplied annotation

whic h indicates whic h expressions should b e coun ted as taking one step to ev aluate. These

annotations are represen ted as curly braces around an expression th us: { E } . The meaning of

these annotations is:

M [[{ E }]] � = h �; s + 1 i

h �; s i = M [[E]] �

It is p ossible to ha v e a v ersion this annotation whic h also indicates the n um b er of steps to coun t.

Th us di�eren t costs ma y b e assigned to di�eren t op erations. Ho w ev er usually in these complexit y

analyses only the cost of one primitiv e op erator is of concern and it is giv en a unit cost. F or

example in analysing sorting algorithms usually only the n um b er of comparisons p erformed are

coun ted. (F or parallel sorting the maxim um n um b er of comparisons p erformed in sequence is

sough t.)

8.3.2 A parallel strict language

This section describ es ho w the previous seman tics can b e extended to calculate the p erformance

of a parallel call-b y-v alue language.

Before discussing the parallel seman tics a commen t is made on the approac h tak en. P arallelism

ma y b e in tro duced in to the sequen tial language previously describ ed in v arious w a ys. The most

general approac h is to ev aluate all function applications and other constructs in parallel. The

dra wbac k with this is that an implemen tation m ust b e faithful to the seman tics. This seman tics

means that ev en case statemen ts will b e ev aluated in parallel. Since case statemen ts are non-

strict sp eculativ e ev aluation has b een in tro duced, whic h is v ery hard to implemen t e�cien tly .

The seman tics could restrict parallelism to just strict functions and constructs. Ho w ev er, most

parallel programs only ha v e a few `p oin ts' where parallel ev aluation is necessary to gain a

substan tial sp eed-up. Ev aluating other expressions in parallel will cloud the analysis of the

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 196

M [[v]] � = h � [v] ; 0 i

M [[E

1

E

2

]] � = h f a; s

1

+ s

2

+ s

3

i

h f ; s

1

i = M [[E

1

]] �

h a; s

2

i = M [[E

2

]] �

h f a; s

3

i = f a

M [[\ v . E]] � = h ��: M [[E]] � [v 7! �] ; 0 i

M [[let v = E

1

in E

2

]] � = h � ; s

1

+ s

2

i

h �; s

1

i = M [[E

1

]] �

h � ; s

2

i = M [[E

2

]] � [v 7! �]

M [[letrec v = E

1

in E

2

]] � = h
 ; s

1

+ s

2

i

h � ; s

1

i = �x (� h �; i : M [[E

1

]] � [v 7! �])

h
 ; s

2

i = M [[E

2

]] � [v 7! �]

M [[E

1

+ E

2

]] � = h � + � ; s

1

+ s

2

i

h �; s

1

i = M [[E

1

]] �

h � ; s

2

i = M [[E

2

]] �

M [[[]]] � = h nil ; 0 i

M [[E

1

: E

2

]] � = h c ons � � ; s

1

+ s

2

i

h �; s

1

i = M [[E

1

]] �

h � ; s

2

i = M [[E

2

]] �

M [[case E of

[] -> E

1

(x : xs) -> E

2

]] �

= c ase M [[E]] �

h nil ; s

1

i : h �; s

1

+ s

2

i

h �; s

2

i = M [[E

1

]] �

h c ons � � ; s

1

i : h �; s

1

+ s

2

i

h �; s

2

i = M [[E

2

]] � [x 7! �; xs 7! �]

Figure 8.2: Step coun ting seman tics

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 197

ma jor parallelism. Also, as has b een sho wn exp erimen tally , there is no b ene�t from ev aluating

small tasks in parallel. Th us al l parallelism will b e made explicit; there will b e no implicit

parallelism. T o do this parallel language constructs will b e in tro duced. The philosoph y b ehind

the approac h is to mak e programs op erationally declarativ e.

T o mak e the previous sequen tial language parallel it will b e augmen ted with a parallel v ersion

of let . The syn tax for this new construct is:

plet f v = E g

+

in E

The plet construct mak es a n um b er of bindings whic h are all ev aluated in parallel. Its seman tics

is de�ned b elo w:

M [[plet v

1

= E

1

; : : : ; v

n

= E

n

in E]] � = h �; s + max (s

1

; : : : ; s

n

) i

h �; s i = M [[E]] � [v

1

7! � ; : : : ; v

n

7!
]

h � ; s

1

i = M [[E

1

]] �

.

.

.

h
 ; s

n

i = M [[E

n

]] �

The bindings (E

1

to E

n

) are ev aluated in parallel and the main expression (E) is not ev aluated

un til all the bindings ha v e b een ev aluated. Th us the n um b er of steps tak en to ev aluate the

parallel bindings is the maxim um n um b er of steps that an y one of the bindings tak es to ev aluate.

The n um b er of steps to ev aluate the main expression is added to the n um b er of steps it tak es

to ev aluate the parallel bindings, to giv e the n um b er of steps it tak es to ev aluate the whole

construct.

This assumes, as with the informal analysis, that there is an un b ounded n um b er of pro cessors.

By calculating the p erformance with an un b ounded n um b er of pro cessors, and the sequen tial

p erformance, the a v erage parallelism can b e calculated, whic h is a useful measure, as previously

explained. T o calculate the sequen tial p erformance plet s are treated as let s.

An example sho wing the use of plet is a parallel map function.

parmap = \f. \l. case l of

[] -> []

(x:xs) -> plet

first = fx

rest = parmap f xs

in

first : rest

This applies f to eac h elemen t of the list in parallel. The cost is the maxim um cost of applying

f to an y elemen t of the list. This also implies that none of the result list is formed un til all

the parallel applications ha v e completed. Th us no pip elined parallelism can arise b et w een this

and another task consuming the result list. In fact this seman tics do es not p ermit an y pip elined

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 198

parallelism. A true call-b y-v alue language cannot ha v e an y pip elined parallelism. This is b ecause

all constructors' (functions) argumen ts m ust b e ev aluated b efore the constructor is ev aluated

(built).

The plet construct is the only source of parallelism in the language; ho w ev er other parallel

constructs suc h as those prop osed in [40] could easily b e added and analysed.

A successor to LeM � eta y er's A CE system (CA T) has b een constructed for analysing parallel FP

programs [65]. The basis of the approac h is the same as the parallel step coun ting describ ed

here.

8.3.3 A lenien t language

The seman tics for the call-b y-v alue language is v ery simple and corresp onds to the in tuitiv e

parallel step coun ting used previously to analyse Quic ksort. Its dra wbac k is that it is o v erly

sync hronous and it do es not supp ort pip elin ed parallelism. In this section a seman tics for a

lenien t language is devised; this language do es supp ort pip elined parallelism.

In a lenien t language, a parallel let's bindings and main expression are ev aluated in parallel. Th us

lenien t languages are non-strict in expressions whic h are ev aluated in parallel. Op erationally

parallel call-b y-v alue and lenien t languages di�er in when sync hronisation o ccurs. Sync hronisa-

tion o ccurs in a lenien t language when one task requires the v alue of a v ariable b eing ev aluated b y

another task. In the parallel call-b y-v alue language sync hronisation w as suc h that all the tasks

ev aluating a parallel let's bindings had to terminate b efore the parallel let's main expression w as

ev aluated.

F or a lenien t language a parallel let with a single binding is su�cien t: m ultiple parallel de�nitions

ma y b e accomplished b y simply nesting parallel lets. Therefore, the syn tax of plet will b e

simpli�ed th us:

plet v = E in E

The rest of the syn tax for the lenien t language will b e the same as for the call-b y-v alue language.

Step coun ting do es not w ork for lenien t languages. Consider the ev aluation of plet v = E

1

in E;

the tasks ev aluating E

1

and E should pro ceed in parallel, with no unnecessary sync hronisation.

Sync hronisation b et w een the tasks ma y o ccur if the task ev aluating E tries to access the v alue

of v. When this happ ens one of t w o p ossibilitie s can arise: either v will ha v e b een already

ev aluated or it will still b e b eing ev aluated. This is b ecause:

In a lenien t language all v ariables' ev aluation is starte d at binding time

but their ev aluation is not necessarily completed then.

If v has b een ev aluated, it should b e accessed exactly the same as if it had b een ev aluated

sequen tially b y a let . If v is still b eing ev aluated, the task ev aluating E should w ait for it to

b e ev aluated to WHNF. (In an implemen tation this arises as one task blo c king on another.) T o

reason ab out the length of one task, ev aluating v, and the time for another task, ev aluating E,

to require the v alue of v, a concept of time is required.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 199

Tw o pieces of temp oral information are required for this non-standard seman tics. Firstly the

time sp en t evaluating expressions is needed. Secondly the time at whic h v alues b ecome available

is needed. T o understand these pieces of temp oral information a simple op erational mo del of

ev aluation is required. The mo del consists of a dynamic collection of tasks. Eac h task ev aluates

an expression. The essen tial comp onen ts of the mo del are tasks and values . With regards to

the p erformance seman tics of the lenien t language, eac h task will ha v e an asso ciated ev aluation

time. The ev aluation time monitors the time a task has sp en t ev aluating and w aiting for v alues:

rather lik e a reduction clo c k. Eac h v alue has an asso ciated timestamp, indicating the time when

the v alue w as reduced to WHNF, and hence when it b ecame a v ailable. (Note that in the lenien t

language expressions are reduced to WNF, as in a strict language.)

Consider a task ev aluating a list, its ev aluation time monitors the time sp en t ev aluating the list.

Elemen ts of the list will b e timestamp ed with the times at whic h they b ecome a v ailable: the

times at whic h they are ev aluated to WHNF. Th us the time at whic h the task �nishes ev aluating

the en tire list is lik ely to b e later than when some list elemen ts b ecome a v ailable. Alternativ ely if

the task ev aluating the list sparks tasks to ev aluate list elemen ts in parallel, the task ev aluating

the en tire list ma y �nish b efore list elemen ts b ecome a v ailable. Pip elining relies on this; for

example, one task ma y consume list elemen ts while another task pro duces list elemen ts. Of

imp ortance is that list elemen ts ma y b e consumed b efore the en tire list has b een ev aluated.

Times ha v e also b een used in real-time functional languages, for example AR T and Ruth [17 , 41].

Ho w ev er, in these languages times are used for a di�eren t purp ose; they are used to resp ond

to real-time ev en ts and to a v oid non-determinism. Times are explicitly manipulated to a v oid

non-determinism. F or example an op erator for merging streams of elemen ts can b e written

deterministically b y simply taking stream elemen ts with the lo w est timestamps �rst. In these

real time languages times are an in tegral part of the language; in the lenien t language describ ed

here, times are part of the non-standard seman tics, they are not part of the programming

language.

Rather than augmen ting a standard seman tics with temp oral information, a com bined seman tics

has b een de�ned. In this seman tics, the standard seman tics and temp oral information are

m utually dep enden t.

The v aluation function M has the form:

M : E ! Env ! Time ! A ns

Expressions are ev aluated within an en vironmen t and at a sp eci�c time to pro duce answ ers. The

new seman tic domains are:

A ns = D � Time

�; � 2 D = Basic + F un + List

Basic = B � Time

F un = (A ns ! A ns) � Time

List = (nil + (D � List)) � Time

t 2 Time = Nat

?

� 2 Env = V ar ! D

B = constan ts and primitiv e functions

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 200

All v alues (D) are time-stamp ed with the time when they b ecome a v ailable: when they are

ev aluated to WHNF. Eac h ev aluation returns a pair (Ans), comprising a v alue (D) and a Time

denoting the time when ev aluation b y the curren t task �nished. T asks only o ccur implicitly in

the seman tics. The time argumen t to the v aluation function represen ts the time when a task

starts to ev aluate an expression. The time comp onen t of A ns pairs represen ts the time when a

task �nishes ev aluating an expression. This time is not necessarily the time when the v alue of

the expression b ecomes a v ailable. F or example the curren t task ma y ha v e spark ed another task

to ev aluate an expression. Th us the curren t task need sp end no time ev aluating the expression.

Ho w ev er if the curren t task requires the expression's v alue it will ha v e to w ait for it to b ecome

a v ailable. With one exception times are sequen tially threaded through v aluation functions,

represen ting a single task's sequen tial ev aluation. The exception is for the meaning of the plet

function. This is the only parallel construct. Here there are t w o v aluation function applications

with the same time argumen ts: this represen ts a fork, parallel ev aluation with a newly created

task.

The meaning of a v ariable v, in an en vironmen t � and at time t , is:

M [[v]] � t = h � [v] ; t i

The time-stamp ed v alue is lo ok ed-up in the en vironmen t. The v ariable is either already ev aluated

or b eing ev aluated b y another task, th us no time is required to ev aluate it. Therefore the amoun t

of time required b y this task to ev aluate a v ariable is zero; hence the input time t is returned as

the new time after v's ev aluation.

The meaning of let is:

M [[let v = E

1

in E

2

]] � t = M [[E

2

]] � [v 7! �] t

0

h �; t

0

i = M [[E

1

]] � t

The let construct ev aluates its binding (E

1

) and then it ev aluates its main expression (E

2

).

Th us the binding is ev aluated at the curren t time t and the main expression is ev aluated at the

time when the ev aluation of the binding �nishes. The v aluation function is strict in its time

argumen t: M [[E]] � ? = h? ; ?i . Therefore if the let binding ev aluates to b ottom, t

0

will b e

b ottom and hence the whole construct will ev aluate to b ottom. In this w a y times are used to

ensure the strictness of sequen tial ev aluation.

The let construct ma y b e con trasted with plet :

M [[plet v = E

1

in E

2

]] � t = M [[E

2

]] � [v 7! �] t

h �; i = M [[E

1

]] � t

The di�erence b et w een plet and let is that for plet , the main expression's ev aluation (E

2

)

b egins at the same time as the bindings ev aluation (E

1

). Th us implicitly a new task has b een

spark ed to ev aluate the binding. Unlik e the sequen tial let, the binding ma y ev aluate to b ottom

and the main expression ma y still b e de�ned. Sync hronisation o ccurs if the curren t task ev al-

uating E

2

requires v's v alue; in whic h case it ma y ha v e to w ait for the v alue of v to b ecome

a v ailable.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 201

T o help understand the seman tics consider: let l = E in l and plet l = E in l . The meanings

of the t w o expressions in an en vironmen t � and at time t are:

M [[let l = E in l]] � t = h �; t

0

i

h �; t

0

i = M [[E]] � t

M [[plet l = E in l]] � t = h � ; t i

h � ; i = M [[E]] � t

There are t w o imp ortan t p oin ts concerning the meanings of these t w o expressions:

1. � = � . The v alues � and � are equal (including their timestamps); th us the results of the

t w o expressions are equal, and they b ecome a v ailable at the same time.

2. t � t

0

. Since a task ev aluating let m ust fully ev aluate E b efore it can ev aluate the main

let expression (l), the amoun t of time required for a task to ev aluate the let is at least that

required to ev aluate the plet . A task ev aluating plet will ev aluate the main expression

(l) immediately , b ecause it has spark ed a task to ev aluate its binding. No ev aluation of

the let and the plet s main expressions are required since in b oth cases the expression is

a v ariable (l), and all v ariables m ust either ha v e already b een ev aluated (let) or spark ed

tasks m ust b e ev aluating them (plet).

The meaning of cons is:

M [[E

1

: E

2

]] � t = hh c ons � � ; t i ; t

2

i

h �; t

1

i = M [[E

1

]] � t

h � ; t

2

i = M [[E

2

]] � t

1

Op erationally cons pro duces a cons cell, then the head of the cons is ev aluated and then the

tail of the cons is ev aluated. Man y di�eren t patterns of ev aluation for cons are p ossible; for

example E

1

and E

2

could b e ev aluated in parallel. This cons, although sequen tial, can giv e rise

to pip elin ing. Notice that the cons v alue is time-stamp ed with the curren t time. The head and

tail will often ha v e di�eren t time-stamps from this cons time-stamp.

The seman tics for { E } incremen ts the time at whic h the ev aluation of E completes and the time

at whic h that v alue b ecomes a v ailable. The b eha viour of this annotation only mak es sense for

annotating primitiv e op erator applications whic h return an atomic v alue.

M [[{ E }]] � t = hh a; t

1

+ 1 i ; t

2

+ 1 i

hh a; t

1

i ; t

2

i = M [[E]] � t

The seman tics for + is:

M [[E

1

+ E

2

]] � t = hh n1 + n2 ; t

0

i ; t

0

i

t

0

= max t

1

t

3

t

4

hh n1 ; t

1

i ; t

2

i = M [[E

1

]] � t

hh n2 ; t

3

i ; t

4

i = M [[E

2

]] � t

2

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 202

Lik e most primitiv e op erators + m ust sync hronise on its argumen ts. That is, if the argumen ts to

+ are not y et a v ailable after the curren t task has �nished ev aluating them, it m ust w ait for them.

The + op erator sequen tially ev aluates its argumen ts, left to righ t. Th us �rst the left argumen t is

ev aluated, and then the righ t argumen t is ev aluated. The left argumen t is ev aluated at time t .

A t time t

2

the ev aluation of the left argumen t, b y the curren t task, �nishes. The left argumen t

ma y not b e fully ev aluated at time t

2

, since another task ma y b e ev aluating it. Ho w ev er it is

guaran teed that this curren t task need not ev aluate the left argumen t an y further and that the

argumen t will ev en tually b e fully ev aluated, p ossibly b y another task. Th us the ev aluation of

the righ t argumen t ma y start at time t

2

. A t time t

4

the ev aluation b y the curren t task of the

righ t argumen t �nishes. Only when the v alues of b oth argumen ts are a v ailable ma y the result

of the addition b e calculated. The argumen ts b ecome a v ailable at times t

1

and t

3

. Th us the

result of the addition cannot b e calculated un til the latest of the times t

4

, t

1

and t

3

. (The time

t

4

m ust b e later than or equal to t

2

.)

The seman tics for case is:

M [[case E of

[] -> E

1

(x : xs) -> E

2

]] � t

= c ase M [[E]] � t

hh nil ; t

1

i ; t

2

i : M [[E

1

]] � (max t

1

t

2

)

hh c ons � � ; t

1

i ; t

2

i : M [[E

2

]] �

0

(max t

1

t

2

)

�

0

= � [x 7! �; xs 7! �]

The case construct ev aluates E at time t . Since case requires the v alue of E, if necessary , it

m ust w ait for this v alue to b ecome a v ailable (sync hronise). It do es not w ait for the whole list to

b ecome ev aluated but only the top cons or nil. The v alue E b ecomes a v ailable at time t

1

. The

ev aluation of E, b y the curren t task, tak es un til t

2

. Therefore the ev aluation of E

1

or E

2

, b y the

curren t task, starts at the later of the t w o times t

1

and t

2

.

The complete seman tics is sho wn in Figure 8.3.

The lenience of the seman tics ma y b e demonstrated b y comparing: let v = ? in [] with

plet v = ? in [] . The plet expression terminates whereas the let expression do es not:

M [[let v = ? in []]] � t = M [[[]]] � [v 7! ?] ?

h? ; ?i = M [[v]] � t

= h? ; ?i since M is strict in times

M [[plet v = ? in []]] � t = M [[[]]] � [v 7! ?] t

h? ; ?i = M [[v]] � t

= hh nil ; t i ; t i

The follo wing example demonstrates ho w pip elini ng ma y o ccur in the lenien t language. Consider

the expression E de�ned b elo w:

plet l = {1} : {2} : {3} : []

in case l of

[] -> 0

(a:as) -> a

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 203

The l binding is ev aluated in parallel with the case expression. Eac h list elemen t tak es one time

unit to ev aluate. The v alue of the whole expression ma y b e returned b efore all of the list l has

b een ev aluated. This is essen tially a v ery simple form of pip elini ng. If it is assumed that the

whole expression (E) is ev aluated at time t and in an en vironmen t � then:

M [[l]] � t = h w ; t + 3 i

w = h c ons h 1 ; t + 1 i x; t i

x = h c ons h 2 ; t + 2 i y ; t + 1 i

y = h c ons h 3 ; t + 3 i z ; t + 2 i

z = h nil ; t + 3 i

F or example, the second cons cell x b ecomes a v ailable at time t + 1; ho w ev er its in teger head

v alue b ecomes a v ailable later, at time t + 2. This has a `real' v alue of 2. Since plet discards the

ev aluation time of l and ev aluates the case expression at time t , the meaning of E is:

M [[E]] � t = M [[case l of

[] -> 0

(a : as) -> a]] � [l 7! w] t

= c ase h w ; t i

hh nil ; t

1

i ; t

2

i : M [[0]] � (max t

1

t

2

)

hh c ons � � ; t

1

i ; t

2

i : M [[a]] � [a 7! �; as 7! �] (max t

1

t

2

)

= M [[a]] � [a 7! h 1 ; t + 1 i ; as 7! x] t

= hh 1 ; t + 1 i ; t i

Th us the initial task ev aluating E will �nish at time t and the v alue of the whole expression (1)

will b ecome a v ailable at time t + 1.

8.4 Using the seman tics

Using the seman tics pro ofs ma y b e made ab out the p erformance of parallel programs. Tw o

prop erties are commonly sough t: the (appro ximate) p erformance equiv alence of t w o programs

and the absolute p erformance of a program. As with con v en tional complexit y analysis one

do es not calculate the p erformance of arbitrary programs. Rather, the p erformance of core

algorithms and library functions are calculated. The follo wing section uses the seman tics to

pro v e t w o program fragmen ts ha v e the equiv alen t p erformance; a kind of idemp otence is pro v en.

T o simplify pro ofs some rules are used; t w o of these are giv en in the next section (without pro of).

The last section sho ws a p erformance calculation for a pip eline d v ersion of Quic ksort.

8.4.1 A small pro of

The follo wing is a pro of that the t w o program fragmen ts sho wn b elo w, ha v e equiv alen t op eration

and meaning. A kind of idemp otence is pro v ed. The signi�cance of this, is that it enables some

redundan t plet s to b e remo v ed from programs; this will impro v e programs' e�ciency . Th us

an y expression ha ving the form of the left hand side ma y b e replaced b y the more e�cien t form

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 204

M [[E]] � ? = h? ; ?i

If t 6= ? :

M [[v]] � t = h � [v] ; t i

M [[E

1

E

2

]] � t = f (M [[E

2

]] � t

1

)

hh f ; i ; t

1

i = M [[E

1

]] � t

M [[\ v . E]] � t = hh � h �; t

0

i : M [[E]] � [v 7! �] t

0

; t i ; t i

M [[let v = E

1

in E

2

]] � t = M [[E

2

]] � [v 7! �] t

0

h �; t

0

i = M [[E

1

]] � t

M [[letrec v = E

1

in E

2

]] � t = M [[E

2

]] � [v 7! �] t

0

h � ; t

0

i = �x (� h �; i : M [[E

1

]] � [v 7! �] t)

M [[plet v = E

1

in E

2

]] � t = M [[E

2

]] � [v 7! �] t

h �; i = M [[E

1

]] � t

M [[E

1

+ E

2

]] � t = hh n1 + n2 ; t

0

i ; t

0

i

t

0

= max t

1

t

3

t

4

hh n1 ; t

1

i ; t

2

i = M [[E

1

]] � t

hh n2 ; t

3

i ; t

4

i = M [[E

2

]] � t

2

M [[[]]] � t = hh nil ; t i ; t i

M [[E

1

: E

2

]] � t = hh c ons � � ; t i ; t

2

i

h �; t

1

i = M [[E

1

]] � t

h � ; t

2

i = M [[E

2

]] � t

1

M [[case E of

[] -> E

1

(x : xs) -> E

2

]] � t

= c ase M [[E]] � t

hh nil ; t

1

i ; t

2

i : M [[E

1

]] � (max t

1

t

2

)

hh c ons � � ; t

1

i ; t

2

i : M [[E

2

]] �

0

(max t

1

t

2

)

�

0

= � [x 7! �; xs 7! �]

M [[{ E }]] � t = hh a; t

1

+ 1 i ; t

2

+ 1 i

hh a; t

1

i ; t

2

i = M [[E]] � t

Figure 8.3: A time based seman tics

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 205

sho wn on the righ t. This ma y b e used to pro v e algebraic iden tities similar to those used in

Section 3.1.3.

plet a = E in

plet b = a in

Emain

= plet a = E in

Emain [a = b]

The left hand side is equal to, at time t and in an en vironmen t � :

M [[Emain]] �

0

[b 7! fst (M [[a]] �

0

t)] t

�

0

= � [a 7! fst (M [[E]] � t)]

= v ar seman tics

M [[Emain]] �

0

[b 7! �

0

[a]] t

= b y substitution

M [[Emain [a = b]]] �

0

t

�

0

= � [a 7! fst (M [[E]] � t)]

= meaning of the righ t hand side

2

This pro of ma y seem in tuitiv ely ob vious; ho w ev er b ew are, for example plet x = E in x and

E ha v e the same meaning, but they do not ha v e the same p erformance.

8.4.2 Rules

This section describ es t w o rules whic h are useful in the pro of whic h follo ws. The �rst states that

essen tially times can only increase. The second is an uncurrying simpli�cation for full function

applications.

1. Time monotonicit y:

8 E ; �; �; t; t

0

: (h �; t

0

i = M [[E]] � t)) (t

0

� t)

2. Uncurrying, if f is b ound to a lam b da abstraction of n argumen ts in an en vironmen t � :

f = (\ v

1

: : : \ v

n

: E)

then applications of f to n argumen ts ma y b e p erformed b y f '; where the meaning of f ' is

de�ned to b e:

M [[f ']] �

0

t = hh �t

0

: ��

1

: : : ��

n

: M [[E]] � [v

1

7! �

1

; : : : ; v

n

7! �

n

] t

0

; t i ; t i

The meaning of f ' applications is:

M [[f' E

1

E

2

: : : E

n

]] � t = f t

n

�

1

�

2

: : : �

n

hh f ; i ; t

f

i = M [[f']] � t

h �

1

; t

1

i = M [[E

1

]] � t

f

h �

2

; t

2

i = M [[E

2

]] � t

1

.

.

.

h �

n

; t

n

i = M [[E

n

]] � t

n � 1

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 206

Both of these rules follo w in a straigh tforw ard w a y from the seman tics.

8.4.3 Quic ksort revisited

The aim of this section is to calculate an upp er b ound on the p erformance of a Quic ksort

function. This function has some pip elined parallelism; this is caused b y the ev aluation of

successiv e recursiv e calls to Quic ksort o v erlapping. The p erformance of this Quic ksort ma y then

b e compared with the non-pip eli ned v ersion. T o impro v e the readabilit y of subsequen t programs

written in the lenien t language: top lev el letrec s will b e remo v ed, de�ning constructs will b e

extended to handle m ultiple de�nitions and some brac k ets will b e omitted where the in tended

meaning is ob vious. In addition some extra data structures, suc h as tuples, will b e needed.

These en tail only minor extensions to the previously de�ned seman tics.

The pip eline d Quic ksort program is:

qsort = \l. case l of

[] -> []

(e:r) -> parlet

lo = filter (\x.{x<=e}) r

hi = filter (\x.{x>e}) r

in

parlet

qlo = qsort lo

qhi = qsort hi

in

append qlo (e:qhi)

filter = \p. \l. case l of

[] -> []

(x:xs) -> if p x then x : filter p xs else filter p xs

Notice the curly braces whic h indicate that only comparisons should b e coun ted.

Although tec hnically p ossible, it is v ery di�cult to reason ab out a program of this complexit y

directly using the seman tics. Instead the program will b e transformed so as to compute the

execution times in addition to the real results. Th us temp oral information will b e calculated

explicitly as standard v alues. The transformed program ma y then b e reasoned ab out using

equational reasoning, in the same w a y as programs are usually reasoned ab out. This greatly

simpli�es reasoning b ecause all reasoning is p erformed at the program lev el. The transformation

can b e ac hiev ed b y regarding the non-standard seman tics as sp ecifying a program transformation

rather than a denotational seman tics. Denotational seman tics sp ecify the seman tics of a language

b y translating expressions in the language in to the lam b da calculus. The lam b da calculus has

a w ell kno wn domain theoretic seman tics. A simple functional language is v ery similar to the

lam b da calculus. Therefore the denotational seman tics ma y b e treated as a source to source

transformation, rather than a translation of the lenien t language in to the lam b da calculus. The

lam b da calculus used in the denotational seman tics has b een made delib erately similar to the

lenien t language for this purp ose. This is a standard `tric k' whic h often ma y b e p erformed with

the denotational seman tics of functional languages.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 207

The only di�cult y in p erforming this transformation is that non-strictness is required in places

in the seman tics (for parallel constructs). Th us parallel constructs should b e transformed in to

expressions with parallel constructs. Ho w ev er since the standard meaning of plet and let is

the same, when the binding is completely de�ned (this can b e easily pro v en), parallel constructs

ma y b e transformed in to sequen tial constructs.

Despite calculating Quic ksort's p erformance via program transformation, the calculation is still

v ery detailed. Th us the calculations sho wn, esp ecially the �rst step, con tains man y simpli�ca-

tions. These will b e highligh ted when imp ortan t. Ideally p o w erful simpli�cation rules should b e

dev elop ed to allo w more formal, y et concise, reasoning to b e used.

Once a transformed program has b een obtained it is progressiv ely simpli�ed; un til a recurrence

relation ma y b e deriv ed and solv ed. Where necessary assumptions ab out data are made. The

transformed v ersion of qsort , whic h includes explicit time information, is:

qsort = \t. \l.

case l of

([],t') -> let tt = max t t' in (([],tt),tt)

(e:r,t') -> let tt = max t t' in

let lo = filter tt (time e) (\x.x <= value e) r

hi = filter tt (time e) (\x.x > value e) r

in

let qlo = fst (qsort tt lo)

qhi = fst (qsort tt hi)

in

.....

filter = \t. \te. \p. \l.

case l of

([],t') -> ([],max t t')

(x:xs,t') -> let tt = 1 + max (max te (time x)) (max t t') in

if p (value x)

then ((value x,tt) : filter tt te p xs, tt)

else filter tt te p xs

Sev eral simpli�cations ha v e b een made; these include:

� Time monotonicit y and the uncurrying rule ha v e b een used.

� Since the argumen t to b oth case statemen ts is a v ariable, whic h tak es no time to ev aluate,

neither case statemen t calculates the time to ev aluate its expression to b e matc hed.

� The filter function has b een sp ecialised. In particular, it need not calculate ev aluation

times since it is ev aluated in parallel b y qsort .

� The filter function incremen ts the time tak en for eac h predicate application.

� A `real' predicate is passed in to filter . The time tak en to ev aluate the predicate dep ends

on the time at whic h x and e b ecome a v ailable. The time at whic h e b ecomes a v ailable,

is passed in to filter . The time at whic h x b ecomes a v ailable is insp ected in filter .

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 208

The syn tax of of answ ers (A ns in the seman tics) is (v alue , time) and the syn tax of v alues is (real

v alue , time) . F or example ((x:xs),t) is a cons v alue with a timestamp of t . The expression

(([],t),t) is an answ er taking time t to ev aluate. It has a v alue ([],t) whic h in turn is nil

with a time stamp of t . As in the seman tics, value and time are fst and snd resp ectiv ely .

Ho w should append (qsort lo) (e:qhi) b e transformed? Rather than transform it directly it

will b e assumed that the greatest time it tak es for an y elemen t to b ecome a v ailable, is required.

Therefore the p erformance calculation ma y b e simpli�ed b y only calculating the longest time it

tak es for an y elemen t to b ecome a v ailable.

In addition since filter is alw a ys called from qsort with a non-empt y list and since max is

idemp oten t the time e v alue will b e lifted out of filter . Th us the functions b ecome:

qsort = \t. \l.

case l of

([],t') -> max t t'

(e:r,t') -> let tt = max t t' in

let lo = filter (max tt (time e)) (\x.x <= value e) r

hi = filter (max tt (time e)) (\x.x > value e) r

in

let qlo = qsort tt lo

qhi = qsort tt hi

in

max qlo (max (time e) qhi)

filter = \t. \p. \l.

case l of

([],t') -> ([],max t t')

(x:xs,t') -> let tt = 1 + max (time x) (max t t') in

if p (value x)

then ((value x,tt) : filter tt p xs, tt)

else filter tt p xs

Curren tly list elemen ts and list cons cells are timestamp ed. This is unnecessary since only list

elemen ts need to b e timestamp ed. The precondition for remo ving list cons cell timestamps can

b e formalised for filter th us:

f (M [[l]] �

0

t

0

) = f (zer o (M [[l]] �

0

t

0

))

where:

hh f ; i ; t

0

i = M [[filter p]] � t

zer o h �; t i = h z �; t i

z h nil ; t i = h nil ; 0 i

z h c ons � � ; t i = h c ons � (z �) ; 0 i

This sa ys that �ltering a list m ust b e the same as �ltering a list with all the top lev el cons times

zero ed. That is the list timestamps are irrelev an t, only the elemen t timestamps are required. A

similar result holds for map.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 209

This precondition is met b y the filter used b y qsort . Also since qsort consists of successiv e

list �lterings, list timestamps are unnecessary in qsort to o. Th us the functions ma y b e rewritten

as:

qsort = \t. \l.

case l of

[] -> t

(e:r) -> let lo = filter (max t (time e)) (\x.x <= value e) r

hi = filter (max t (time e)) (\x.x > value e) r

in

let qlo = qsort t lo

qhi = qsort t hi

in

max qlo (max (time e) qhi)

filter = \t. \p. \l.

case l of

[] -> ([],t)

(x:xs) -> let tt = 1 + max (time x) t in

if p (value x)

then ((value x,tt) : filter tt p xs, tt)

else filter tt p xs

It will b e assumed that the list argumen t to qsort b ecomes a v ailable at the same time as qsort

is applied to it. Then the time argumen t to qsort ma y b e omitted, only the times at whic h list

elemen ts b ecome a v ailable is required. Th us qsort b ecomes:

qsort = \l. case l of

[] -> 0

(e:r) -> let lo = filter (time e) (\x.x <= value e) r

hi = filter (time e) (\x.x > value e) r

in

let qlo = qsort lo

qhi = qsort hi

in

max qlo (max (time e) qhi)

It has also b een assumed that the initial list to b e sorted is non-empt y . Th us, the nil case for

qsort ma y return 0 whic h is the iden tit y elemen t of max (on naturals).

The in tuition b ehind this description of the qsort 's p erformance is no w giv en. Only comparisons

are b eing measured and the greatest time tak en for an y elemen t to b ecome a v ailable is required.

Therefore only the times at whic h elemen ts b ecome a v ailable from eac h �ltering is required.

E�ectiv ely the qsort applications cost nothing and hence they can b e completely unfolded at

no cost. Th us the description consists solely of nested �lters. Eac h comparison in filter

incremen ts the a v ailabilit y time of elemen ts.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 210

Filter rules

T o further simplify qsort it is necessary to simplify the filter applications. T o do this some

rules ab out �lter are dev elop ed.

These rules concern the transformed v ersion of filter lik e the one in qsort : this �lter has no

cons timestamps and it has a predicate whic h is b eing `coun ted'. In suitable cases these rules

enable the time at whic h elemen ts b ecome a v ailable to b e determined indep enden tly of whic h

elemen ts are presen t in the result.

The follo wing assumptions are made, the list to b e �ltered is l :

l = [(e

1

; t

1

) ; � � � ; (e

n

; t

n

)]

Th us (e

i

; t

i

) is the i th elemen t of l , e

i

is the real v alue and t

i

is its timestamp. The �ltering

starts at time tt , the predicate is p and the result of the �lter is
 :

 = filter tt p l

The time tak en to ev aluate the predicate, p , is constan t for all v alues whic h are a v ailable at the

same time:

8 x; y : (time x = time y)) (time (p (value x)) = time (p (value y)) = (tp + time x))

The v alue tp is the relativ e time tak en to ev aluate the predicate on an elemen t of the list to b e

�ltered. The series t

0

1

: : : t

0

n

are the times at whic h eac h elemen t (e

i

; t

i

) of l is tested with the

predicate p .

t

0

1

= tp + max tt t

1

t

0

i

= tp + max t

0

i � 1

t

i

Then in general the follo wing rule holds:

8 (e

i

;) 2 l : (e

i

; t) 2
) t = t

0

i

Tw o more restricted cases of the general rule are giv en b elo w, case 1:

(8 (e

i

; t

i

) 2 l : t

i

� tt)) (8 (e

i

;) 2 l : (e

i

; t

0

i

) 2
) t

0

i

= tt + i � tp)

This ma y b e expressed in programming terms th us:

fl = filt p (acc tt l)

acc = \tt. \tp. \l. case

[] -> []

(x:xs) -> (value x,tt) : acc (tt+tp) tp xs

filt = \p. \l. case l of

[] -> []

(x:xs) -> if p (value x) then x : filt p xs else filt p xs

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 211

Case 2:

(8 1 � i � n � 1 : (t

i

+ tp) � t

i +1

)) (8 (e

i

;) 2 l : (e

i

; t

0

i

) 2
) t

0

i

= t

i

+ tp)

This ma y b e expressed th us:

fl = filt p (map (add tp) l)

add = \t. \x. (value x,(time x)+t)

Notice ho w in this case the time tt is not used. Similar rules hold for map, and other rules can

b e usefully form ulated for scan and fold.

T o use the �lter rules it is necessary to unfold qsort once:

qsort = \l. case l of

[] -> 0

(e:r) -> let lo = filter1 (time e) (\x.x<=e) r

hi = filter1 (time e) (\x.x>e) r

in

let qlo = qsort' lo

qhi = qsort' hi

in

max qlo (max (time e) qhi)

qsort' = \l. case l of

[] -> 0

(e:r) -> let lo = filter2 (time e) (\x.x<=e) r

hi = filter2 (time e) (\x.x>e) r

in

let qlo = qsort' lo

qhi = qsort' hi

in

max qlo (max (time e) qhi)

filter1 = filter

filter2 = filter

If it is assumed that all the input list elemen ts b ecome a v ailable at time zero and hence qsort

is initially applied at time zero; the �lter rules ma y no w b e applied to filter1 and filter2

yielding:

filter1 = \t. \p. \l. filt p (acc t 1 l)

filter2 = \t. \p. \l. filt p (map (add 1) l)

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 212

Notice that filter2 do es not use its time parameter.

T o simplify the �lter functions further it is necessary to mak e some additional assumptions

ab out the input list. It is assumed that the input list divides exactly , as w as assumed in the

analysis of the strict parallel Quic ksort. F urthermore the input data divides in to alternating

sequences of elemen ts less than or equal to, then greater than the piv ot elemen t; for example

the list: [8,4,12,2,10,6,14,1,9,5,13,3,1 1,7,15] . This means that eac h pair of recursiv e

calls to qsort , qlo and qhi will tak e almost the same amoun t of time to ev aluate, and hence

the splitting is optimal. Th us, the result obtained will giv e an upp er b ound on the p erformance

of pip elined Quic ksort.

Since pairs of qsort recursions are almost symmetric and they tak e almost the same time to

ev aluate, only the sligh tly longer recursion need b e analysed: qhi .

The filter function ma y no w b e mo delled as a function whic h selects ev ery other elemen t of

the list to b e sorted. Since the real v alues of the elemen ts to b e sorted are no longer used, only

the times when elemen ts b ecome a v ailable are required:

qsort = \l. case l of

[] -> 0

(e:r) -> let lo = filter1 e r

hi = filter1 e r

in

let qhi = qsort' hi in max e qhi

qsort' = \l. case l of

[] -> 0

(e:r) -> let lo = filter2 e r

hi = filter2 e r

in

let qhi = qsort' hi in max e qhi

filter1 = \t. \l. everyother (from t ((length l)+t))

filter2 = \t. \l. everyother (map inc l)

inc = \x. x+1

No w the list of times ma y b e eliminated since the times are strictly increasing and therefore only

the last elemen t is required. The last elemen t will ha v e the longest time; in the program this is

represen ted as t . The length of the list will no w b e mo delled using a n um b er l . This giv es:

qsort = \l. let ll = length l in qsort' ((ll-1)/2) ll

qsort' = \l. \t. if l=1 then t else qsort' ((l-1)/2) (t+1)

The recurrence relation whic h this de�nes ma y b e solv ed th us: assuming the length of l is

n = 2

m

� 1 then the calculated time is: qsort' (2

m � 2

� 1) n . This equals 2

m

+ m � 3. This ma y

b e compared with the previous strict (non-pip elined) v ersion of Quic ksort previously analysed;

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 213

this had a parallel execution time of 2

m +1

� 2 � (m + 1). This giv es a factor of t w o impro v emen t

in execution time for this pip elined Quic ksort o v er the non-pip elined v ersion of Quic ksort. This

is signi�can t when compared with the basic logarithmic sp eed-up whic h is p ossible. E�ectiv ely

this means that this algorithm can e�cien tly utilise t wice as man y pro cessors as the previous

strict algorithm can. Exp erimen ts ha v e b een p erformed and these v erify the result, namely

that the pip elined v ersion of Quic ksort is appro ximately t wice as fast as the simple v ersion of

Quic ksort.

The deriv ation is rather long. This is b ecause the reasoning is at a v ery detailed lev el. Ideally

theorems enabling reasoning at a higher lev el are required. F or reasoning ab out purely sequen-

tial expressions, all of whose free v ariables are immediately a v ailable, a step coun ting seman tics

could b e used. The complexit y of the seman tics is inheren t in the lenien t language; in particular

this is caused b y tasks sync hronising on v alues. The parallel strict language has a m uc h simpler

op erational b eha viour b ecause this do es not happ en; all the v alues a task ma y use are immedi-

ately a v ailable. T o reason ab out the p erformance of large programs either man y simpli�cations

m ust b e made to enable an analysis to b e tractable, or some kind of sim ulation m ust b e used.

8.5 Abstract sim ulation

This section describ es ho w the non-standard seman tics for the lenien t language, whic h w as dev el-

op ed in the previous section, ma y b e used for program sim ulation rather than for generating cost

form ulae. Other non-standard seman tics are also dev elop ed for generating di�eren t information.

Often sim ulation is preferable to analysis b ecause although less general, sim ulation is quic k er

than analysis and it is tractable for large programs. The comparison of analysis and sim ulation

is analogous to that of sym b olic v ersus n umeric in tegration; the former is more general, but the

latter is m uc h easier!

8.5.1 Running the seman tics

A di�eren t view of the non-standard seman tics (Figure 8.3) is to regard it as de�ning a sim ulator.

It ma y b e used to sim ulate the p erformance of a parallel program; that is to ev aluate a program

and to generate some statistics ab out its ev aluation. The main reason wh y this migh t b e useful

is that, as w as sho wn in the previous sections, simplifying and solving recurrence relations is

b oth di�cult and time consuming. Often it is quic k er and simpler to sim ulate a program, using

sets of t ypical input data of di�eren t sizes. The results ma y b e used to plot sp eed-up graphs

to sho w the general b eha viour of a program o v er a certain range of data. F urther justi�cation

of this is that usually the con text in whic h an algorithm is to b e used puts constrain ts on the

t yp e and size of input data. Th us general information ab out an algorithms p erformance, as

obtained b y doing a complexit y analysis and solving recurrence relations, is rarely required.

Ev en if recurrence relations are generated and solv ed, the seman tics ma y b e run to v erify the

solutions for some v alues.

Tw o di�eren t approac hes exist for running the seman tics:

� The seman tics ma y b e treated as the sp eci�cation and the basis for a con v en tional sim u-

lator. A simple but v ery ine�cien t w a y to do this is to implemen t the seman tics directly

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 214

yielding an in terpreter.

� The seman tics ma y b e view ed as a set of transformation rules, as w as done in the analysis

of Quic ksort. Sim ulation then b ecomes a t w o stage pro cess. First a parallel program is

transformed (automatically) in to a sequen tial program. Then the sequen tial program is

ev aluated using a con v en tional in terpreter or compiler.

The second approac h is new and corresp onds to sim ulation b y program transformation. This has

sev eral adv an tages o v er the con v en tional �rst approac h. The adv an tages ma y b e summarised

as giving greater
exibilit y than con v en tional sim ulation. This arises b ecause the sim ulation is

not `wired-in' to the sim ulator. The t w o tec hniques can b e implemen ted with appro ximately

the same e�ciency . F or b oth approac hes the essen tial optimisation is to only timestamp v alues

whic h need to b e timestamp ed. Man y sequen tial parts of programs do not need to propagate

timestamps since they nev er c hange them.

Bene�ts of sim ulation b y transformation

The programmer ma y v ary the detail of sim ulation and has great con trol o v er the sim ulation.

F or example the cost of all op erations ma y b e coun ted or only a few. The programmer can

decide what the costs should b e. F or calibration of op erations costs, the cost of op erations on a

real implemen tation ma y b e measured.

Another b ene�t is that expressions b eha viour and v alue ma y b e mo delled. During the dev elop-

men t of a soft w are system, the system is often tested, although it is incomplete, b y using stubs.

Stubs mo del the v alue of missing parts of the system, either b y calculating v alues ine�cien tly ,

for example a constructiv e sp eci�cation or rapid protot yp e, or b y only b eing de�ned for a range

of v alues. This tec hnique ma y b e extended to include the p erformance of missing soft w are com-

p onen ts, as w ell as their v alues. Th us the p erformance of missing comp onen ts m ust b e mo delled

in addition to their v alues. F or some complex high p erformance systems this ma y b e essen tial.

T o mo del the ev aluation of an expression dela ys are required. This ma y b e ac hiev ed b y the dela y

function:

delay = \n. \x. if n=0 then x else delay (n-1) x

The delay function in tro duces an arti�cial dela y prop ortional to its �rst argumen t. Pragmat-

ically delay has b een found to b e a v ery useful function for debugging and designing parallel

programs. It is used in the subsequen t section on debugging (Section 8.6).

Rather than iterating n times, as the de�nition ab o v e sho ws, delay could b e treated sp ecially

b y the transformation phase. It can simply return its second argumen t and incremen t the time

b y n , or some prop ortion of it. In terms of the seman tics delay ma y b e de�ned th us:

M [[delay]] � t = hh df ; t i ; t i

d f = � hh n; i ; t

0

i : hh � h �; t i : h �; t + n i ; t

0

i ; t

0

i

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 215

The meaning delay pro duces a function df . The df function tak es a n umeric argumen t and

pro duces a further function. This function returns its argumen t but incremen ts the time b y the

n umeric argumen t.

An example of suc h expression mo delling is a game pla ying system. The system ma y b e tested

b efore the ev aluation function whic h assesses ho w go o d a mo v e is, has b een written. The v alue

of the ev aluation function ma y b e mo delled as an arithmetic form ulae. Its b eha viour ma y b e

mo delled using delay . If the ev aluation function is an O(n

2

) op eration then the dela y should b e

prop ortional to the square of the argumen t's size. The stub for an ev aluation function is sho wn

b elo w:

eval_fun = \pos. delay (sqr (size pos)) (modelled_value pos)

The arithmetic co de for calculating the mo delled v alue should not con tain an y cost annotations;

the en tire cost of the ev aluation function is mo delled b y the delay function.

The �nal adv an tage of doing sim ulation b y transformation, is that although a program trans-

former is required, a sim ulator is not required!

8.5.2 Generating parallelism pro�les

As describ ed so far the only information whic h the seman tics deliv ers is the result v alue and

the execution time. F or sim ulation purp oses it is highly desirable to b e able to generate other

information to o. P arallelism pro�les plot the n um b er of activ e tasks against time. They are

particularly useful; hence the seman tics will b e augmen ted to generate these. F or consistency ,

the addition of pro�ling information will still b e presen ted as a non-standard seman tics, although

this seman tics is di�cult to reason with directly .

T o get parallelism pro�les tracing information m ust b e incorp orated in to the seman tics. This

information represen ts the history of a task and its c hild tasks. This extra information is an

augmen t to the previous seman tics. The seman tics is essen tially unc hanged.

P arallelism traces are lists of n um b ers sho wing the n um b er of tasks activ e at a certain time.

The v alue of a trace elemen t at p osition t indicates the n um b er of tasks activ e at time t . Sev eral

op erations are required on traces: k , + + and zer os . The k op erator adds the elemen ts of t w o

traces pairwise. If the traces are of di�eren t lengths the shorter is padded-out with zeros. The

k op erator represen ts parallel comp osition of traces. The + + op erator app ends one trace to

another lik e list app end; this represen ts sequen tial comp osition of traces. The zer os n function

creates a trace of n zeros; this is used for indicating a passage of time when a task is blo c k ed -

w aiting for the result of another task. T races are quoted in the same w a y as lists, for example

[1 ; 2 ; 0 ; 3]. This means that at time zero there w as one task activ e, at time t w o there w ere t w o

tasks activ e, at time three there w ere no tasks activ e and at time four there w ere three tasks

activ e. The total execution time is four time units.

The v aluation function M is:

M : E ! Env ! Time ! A ns

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 216

The seman tic equations are the same as previously except for the parallelism tracing information.

The old seman tics domains are augmen ted with traces th us:

A ns = D � T r ac e � Time

tr 2 T r ac e = 1 + (Nat � T r ac e)

�; � 2 D = Basic + F un + List

Basic = B � Time

F un = (Time ! D ! A ns) � Time

List = (nil + (D � List)) � Time

t 2 Time = Nat

?

� 2 Env = V ar ! D

B = constan ts and primitiv e functions including in tegers and b o oleans

The A ns domain no w b ecomes triples of v alues, traces and times. The T r ac e domain represen ts

the parallel execution trace of an ev aluation.

The seman tic equations are the same as previously except for the parallelism tracing information.

The meanings of let and plet are:

M [[let v = E

1

in E

2

]] � t = h � ; t

2

; tr

2

+ + tr

2

i

h � ; t

2

; tr

2

i = M [[E

2

]] � [v 7! �] t

1

h �; t

1

; tr

1

i = M [[E

1

]] � t

M [[plet v = E

1

in E

2

]] � t = h � ; t

2

; tr

1

k tr

2

i

h � ; t

2

; tr

2

i = M [[E

2

]] � [v 7! �] t

h �; ; tr

1

i = M [[E

1

]] � t

Notice ho w they di�er in the time at whic h E

2

is ev aluated and the w a y in whic h the traces, for

the executions of E

1

and E

2

, are com bined. The let construct ev aluates E

1

and then E

2

, th us

the trace for E

1

is app ended to the trace for E

2

to form the result trace. F or plet , E

1

and E

2

are ev aluated in parallel so their traces are com bined using k .

The meaning of + is:

M [[E

1

+ E

2

]] � t = h n1 + n2 ; t

0

; tr

1

+ + tr

2

+ + z i

t

0

= max t

1

t

3

t

4

z = zer os (t

0

� t

4

)

hh n1 ; t

1

i ; t

2

; tr

1

i = M [[E

1

]] � t

hh n2 ; t

3

i ; t

4

; tr

2

i = M [[E

2

]] � t

2

As b efore, the seman tics of + states that eac h argumen t is ev aluated and then the v alues of

the argumen ts are a w aited. Th us the left argumen t to + is ev aluated at time t . A t time t

2

the

ev aluation of E

1

, b y the curren t task, �nishes and the ev aluation of E

2

ma y start. A t time t

4

the ev aluation of E

2

, b y the curren t task, �nishes. The v alues of the t w o argumen ts are then

a w aited. Th us, the addition happ ens at the latest of the times t

4

, t

1

and t

3

. Since the argumen ts

are ev aluated sequen tially their traces are concatenated. After ev aluating the t w o argumen ts,

the curren t task ma y ha v e to w ait for their v alues. F or ev ery unit of time sp en t w aiting, this

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 217

ev aluation is not activ e. Therefore there is a trace of zeros, corresp onding to the time sp en t

w aiting: zer os (t

0

� t

4

). If t

0

is less than or equal to t

4

there is no dela y and hence the empt y

trace is pro duced. Otherwise a trace of zeros corresp onding to the di�erence b et w een t

4

and the

latest v alue to b ecome a v ailable will result.

The meaning giv en to case is:

M [[case E of

[] -> E

1

(x : xs) -> E

2

]] � t

= c ase M [[E]] � t

hh nil ; t

1

i ; t

2

; tr i : h �; t

4

; tr + + zer os (t

1

� t

2

) + + tr

0

i

h �; t

4

; tr

0

i = M [[E

1

]] � (max t

1

t

2

)

hh c ons � � ; t

1

i ; t

2

; tr i : h �; t

4

; tr + + zer os (t

1

� t

2

) + + tr

0

i

h �; t

4

; tr

0

i = M [[E

2

]] �

0

(max t

1

t

2

)

�

0

= � [x 7! �; xs 7! �]

The v alue of (t

1

� t

2

) is the time sp en t w aiting for v alue of E to b ecome a v ailable. The v alues

of t

1

and t

2

are natural n um b ers hence if t

1

is less than t

2

then the time sp en t w aiting is 0. F or

ev ery unit of time sp en t w aiting, this ev aluation is not activ e. Therefore after ev aluating E and

b efore ev aluating E

1

or E

2

there is a trace of zeros, corresp onding to the dela y: zer os (t

1

� t

2

).

The seman tics for { E } is the same as in the previous seman tics except that it app ends a unit

trace of v alue [1] to the parallelism trace for E; since this represen ts a single time unit of activit y:

M [[{ E }]] � t = hh a; t

1

+ 1 i ; t

2

+ 1 ; tr + + [1] i

hh a; t

1

i ; t

2

; tr i = M [[E]] � t

The full seman tics is sho wn in Figures 8.4 and 8.5.

Man y other forms of information can b e `collected' b y the seman tics; this includes: task length

statistics, blo c king (w aiting statistics), the n um b er of tasks, and comm unication statistics: sho w-

ing the comm unication of v alues b et w een tasks.

8.5.3 A limited n um b er of pro cessors

This section concerns ho w ev aluation information ma y b e collected suc h that sim ulation with

a limited n um b er of pro cessors ma y b e p erformed. P erformance with a limited n um b er of

pro cessors is m uc h less general than with a un b ounded n um b er of pro cessors. Ho w ev er it is

useful to b e able to v ary the degree of sim ulation as has b een previously men tioned.

Unfortunately it is di�cult to directly enco de ev aluation with a �xed n um b er of pro cessors in to

the seman tics. Instead the seman tics will b e used to generate task dep endency information.

This information can then b e used to p erform the actual sim ulation. This idea has b een used b y

Desc hner [35] to pro duce an e�cien t sim ulator for the parallel ev aluation of functional languages.

The information necessary to describ e p oten tial tasks is:

� when w ork is p erformed

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 218

M [[E]] � ? = h? ; ? ; ?i

If t 6= ? :

M [[v]] � t = h � [v] ; t; [] i

M [[E

1

E

2

]] � t = h � ; t

f a

; tr

f

+ + tr

a

+ + tr

f a

i

h � ; t

f a

; tr

f a

i = f t

a

�

hh f ; i ; t

f

; tr

f

i = M [[E

1

]] � t

h �; t

a

; tr

a

i = M [[E

2

]] � t

f

M [[\ v . E]] � t = hh �t

0

: ��: M [[E]] � [v 7! �] t

0

; t i ; t; [] i

M [[let v = E

1

in E

2

]] � t = h � ; t

2

; tr

2

+ + tr

2

i

h � ; t

2

; tr

2

i = M [[E

2

]] � [v 7! �] t

1

h �; t

1

; tr

1

i = M [[E

1

]] � t

M [[letrec v = E

1

in E

2

]] � t = h
 ; t

2

; tr

1

+ + tr

2

i

h
 ; t

2

; tr

2

i = M [[E

2

]] � [v 7! �] t

1

h � ; t

1

; tr

1

i = �x (� h �; ; i : M [[E

1

]] � [v 7! �] t)

M [[plet v = E

1

in E

2

]] � t = h � ; t

2

; tr

1

k tr

2

i

h � ; t

2

; tr

2

i = M [[E

2

]] � [v 7! �] t

h �; ; tr

1

i = M [[E

1

]] � t

Figure 8.4: P arallelism pro�ling seman tics

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 219

M [[E

1

+ E

2

]] � t = h n1 + n2 ; t

0

; tr

1

+ + tr

2

+ + z i

t

0

= max t

1

t

3

t

4

z = zer os (t

0

� t

4

)

hh n1 ; t

1

i ; t

2

; tr

1

i = M [[E

1

]] � t

hh n2 ; t

3

i ; t

4

; tr

2

i = M [[E

2

]] � t

2

M [[[]]] � t = hh nil ; t i ; t; [] i

M [[E

1

: E

2

]] � t = hh c ons � � ; t i ; t

2

; tr

1

+ + tr

2

i

h �; t

1

; tr

1

i = M [[E

1

]] � t

h � ; t

2

; tr

2

i = M [[E

2

]] � t

1

M [[case E of

[] -> E

1

(x : xs) -> E

2

]] � t

= c ase M [[E]] � t

hh nil ; t

1

i ; t

2

; tr i : h �; t

4

; tr + + zs + + tr

0

i

h �; t

4

; tr

0

i = M [[E

1

]] � t

3

t

3

= max t

1

t

2

zs = zer os (t

1

� t

2

)

hh c ons � � ; t

1

i ; t

2

; tr i : h �; t

4

; tr + + zs + + tr

0

i

h �; t

4

; tr

0

i = M [[E

2

]] �

0

t

3

t

3

= max t

1

t

2

zs = zer os (t

1

� t

2

)

�

0

= � [x 7! �; xs 7! �]

M [[{ E }]] � t = hh a; t

1

+ 1 i ; t

2

+ 1 ; tr + + [1] i

hh a; t

1

i ; t

2

; tr i = M [[E]] � t

Figure 8.5: P arallelism pro�ling seman tics

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 220

�

.

.

.

.

.

�

.

.

.

.

.

.

.

.

.

.

R

.

.

.

.

.

�

.

.

.

.

.

R

.

.

.

.

.

R

.

.

.

.

.

.

.

.

.

.

-

-

-

-

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

Time

task A

task D

task C

task B

0

2

1

101

2 2

3

5

4

Figure 8.6: T ask execution graph

� when new tasks are spark ed

� when a task requires a v alue computed b y another task

This information m ust b e collected b y the seman tics. T o simplify the seman tics lists are omitted

from the language. In actual fact only pip elin ing is a problem so strict lists could b e in tro duced.

This means that all tasks compute a single v alue and then die. With this constrain t tasks

sync hronisation is simple since if a task requires the v alue of another task the `requiring' task

just w aits for the other task to terminate. If pip elin ing ma y o ccur then it is necessary to kno w

when v alues b ecome a v ailable to other tasks. Without pip elinin g tasks sync hronise on other

tasks and not on the v alues they compute. If a task requires a v alue computed b y another task

it simply w aits for that other task to complete.

The ob vious represen tation for a parallel programs execution is as a graph: see Figure 8.6.

This diagram sho ws the execution of four tasks. Eac h tasks execution is represen ted b y a solid

arro w; dotted arro ws represen t tasks b eing spark ed and tasks results b eing demanded. Th us

task A sparks task B; task B sparks task C then it sparks task D, after whic h it demands the

result of task C then the result of task D. Num b ers indicate w ork whic h is p erformed b et w een

other actions. The execution time with an un b ounded n um b er of pro cessors corresp onds to the

longest path through the graph. With a limited n um b er of pro cessors demands for task v alues

in tro duce constrain ts on whic h tasks can b e run. If pip elined parallelism w as supp orted, this

w ould manifest itself as m ultiple arro ws from di�eren t parts of one tasks trace (arro w) to another

paren t task. This w ould represen t m ultiple demands, for di�eren t parts of some data, from one

task to another.

Th us the most natural represen tation of the seman tic information represen ting the constrain ts

b et w een tasks is as a directed graph. Ho w ev er graphs are di�cult to manipulate and so trees

are used instead. The graph sho wn in Figure 8.6 will b e represen ted b y the tree sho wn in Figure

8.7. This tree has the same form as the graph except all demands ha v e b een made explicit.

All demands for tasks results are represen ted b y explicit demands. Demand i means that this

task requires the v alue of the (i + 1)th last spark ed task. F or example in the example when task

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 221

�

.

.

.

.

.

�

.

.

.

.

.

.

.

.

.

.

�

.

.

.

.

.

-

-

-

-

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

5

(demand 1) (demand 0)

(demand 0)

Time

task A

task D

task C

task B

0

2

1

101

2 2

3

4

Figure 8.7: T ask execution tree

B requires the v alue of task D it do es a \demand 1" action.

The tree is called a T r ac etr e e and it has the follo wing de�nition in the seman tics:

T r ac etr e e = work T r ac etr e e +

sp ark T r ac etr e e � T r ac etr e e +

demand Sp arkc ount � T r ac etr e e +

end

Sp arkc ount = Nat

?

Note, work , sp ark , demand and end are all lab els for the di�eren t parts of the sum construction:

lik e constructors in programming languages. The work elemen t represen ts a unit of w ork p er-

formed b y a task. The sp ark elemen t represen ts the creation of a new task; its �rst argumen t

is the T r ac etr e e for the new task and its second argumen t is the curren t tasks con tin uation.

A demand i elemen t represen ts a demand for the v alue of the i th last spark ed task. The end

elemen t is used to indicate the termination of a task (T r ac etr e e).

F rom this information it is p ossible to get: execution times, parallelism pro�les, task length

statistics, task blo c king statistics and comm unication information for an un b ounded, or b ounded,

n um b er of pro cessors.

The previous example has the follo wing seman tic represen tation:

A = w 1 (sp ark B (w 10 (demand 0 (w 2 end))))

B = w 2 (sp ark C (w 2 (sp ark D (w 4 (demand 1 (demand 0 (w 1 end)))))))

C = w 3 end

D = w 5 end

w n t = work

n

t

Since only a unit cost is used in the seman tics (work) a shorthand for m ultiple work s is used:

w . The w function is not used in the seman tics.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 222

The seman tic domains are:

D = V alue � (T r ac etr e e ! T r ac etr e e)

�; � 2 V alue = Basic + (V alue ! Sp arkc ount ! D)

Basic = constan ts and primitiv e functions includin g in tegers and b o oleans

� 2 Env = V ar ! Sp arkc ount ! D

n 2 Sp arkc ount = Nat

?

Rather than enforce the strictness of this seman tics, it is left lazy . Th us an in�nite computation

will pro duce an in�nite T r ac etr e e . If desired, strictness could b e easily enforced.

The v aluation function M is:

M : E ! Env ! Sp arkc ount ! D

Result triples (D) consist of v alues, functions from T r ac etr e e s to T r ac etr e e s and Sp arkc ount s.

T ask executions are represen ted as functions whic h add their argumen t T r ac etr e e to the end of

their curren t T r ac etr e e : forms of data con tin uations. In this w a y sequen tial comp osition of tasks

executions simply b ecomes functional comp osition of their T r ac etr e e functions.

Since task executions amoun t to essen tially unfolding programs, it is necessary to pass Sp ark-

c ount s through the seman tic functions in order to coun t the n um b er of sparks. This is necessary

to ensure that demand s can b e matc hed to their correct tasks.

The meaning of let is:

M [[let v = E

1

in E

2

]] � n = h � ; t

1

� t

2

i

h �; t

1

i = M [[E

1

]] � n

h � ; t

2

i = M [[E

2

]] � [v 7! �n: h �; id i] n

There are t w o imp ortan t p oin ts to note. Firstly the traces (trace functions) are sequen tially com-

p osed using function comp osition b ecause let is sequen tial (t

1

� t

2

). Secondly when �n: h �; id i ,

the v alue that v is b ound to, is applied to a Sp arkc ount , it discards the Sp arkc ount and returns

a D , whic h consists of the calculated � and the iden tit y function for the trace function. The

iden tit y function corresp onds to the n ull trace, an empt y execution, the no-op. This is correct

b ecause accessing a v ariable whic h has already b een ev aluated, causes no T r ac etr e e actions to

tak e place.

This ma y b e compared with the meaning of plet :

M [[plet v = E

1

in E

2

]] � n = h � ; sp ark (t

1

end) � t

2

i

h �; t

1

i = M [[E

1

]] � (n + 1)

h � ; t

2

i = M [[E

2

]] � [v 7! x] (n + 1)

x = �n

0

: h �; demand (n

0

� n) i

Since plet sparks a task (ev aluation) for E

1

the t w o trace trees (T r ac etr e e functions) t

1

and t

2

are

com bined using sp ark . The spark ed task's ev aluation �nishes after this, hence it is applied to end .

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 223

Note, sp ark tak es t w o argumen ts; the �rst argumen t represen ts the spark ed task's ev aluation, and

the second argumen t represen ts the paren t task's ev aluation. Another ma jor di�erence b et w een

let and plet is the binding of the v ariable v; in plet v is b ound to a demand . This is b ecause if

the main task tries to access the spark ed tasks v alue, this constitutes a sync hronisation constrain t

b et w een the tasks. In particular when a demand o ccurs the demanding task m ust w ait for the

demanded task's v alue to b e ev aluated. The (n � n

0

) argumen t to demand iden ti�es the task

whose result is required. Th us demand (n � n

0

) represen ts a demand for the (n � n

0

)th last task

spark ed. Notice also ho w the ev aluations for b oth E

1

and E

2

ha v e the n um b er of spark ed tasks

incremen ted, since a spark has o ccurred.

The meaning for a v ariable is:

M [[v]] � n = � [v] n

The v alue asso ciated with the v ariable v in the en vironmen t � is lo ok ed-up and applied to the

curren t n um b er of sparks. This application will either return a no-op T r ac etr e e function or

the function will b e a demand . In the former case the no-op T r ac etr e e function is the iden tit y

function, see for example the sequen tial let binding. The latter case, see plet , corresp onds to

a sync hronisation constrain t; the demanded task m ust complete b efore this task ma y con tin ue.

The w ork annotation { E } has the follo wing meaning:

M [[{ E }]] � n = h �; t � work i

h �; t i = M [[E]] � n

It app ends a work T r ac etr e e function (constructor) to the T r ac etr e e function for E.

The full set of seman tic equations are sho wn in Figure 8.8.

Using the tracetree seman tics for sim ulation

This section describ es an informal use of the previous T r ac etr e e seman tics. Although the seman-

tics w as only used to guide the implemen tation, it w ould ha v e b een p ossible, if a little tedious,

to formally deriv e the implemen tation.

Since a lenien t language w as not a v ailable the exp erimen ts w ere p erformed in a lazy language.

F or strict adherence to the seman tics, the strictness of sequen tial bindings m ust b e enforced. If

this is not enforced some programs ma y terminate whic h otherwise w ould not do so.

The T r ac etr e e data structure w as implemen ted in the ob vious w a y:

> tracetree ::= Spark tracetree tracetree |

> Work num tracetree |

> Demand num tracetree |

> End

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 224

M [[v]] � n = � [v] n

M [[E

1

E

2

]] � n = h f a; t

1

� t

2

� t

3

i

h f ; t

1

i = M [[E

1

]] � n

h a; t

2

i = M [[E

2

]] � n

h f a; t

3

i = f a n

M [[\ v . E]] � n = h ��: �n

0

: M [[E]] � [v 7! �n: h �; id i] n

0

; id i

M [[let v = E

1

in E

2

]] � n = h � ; t

1

� t

2

i

h �; t

1

i = M [[E

1

]] � n

h � ; t

2

i = M [[E

2

]] � [v 7! �n: h �; id i] n

M [[letrec v = E

1

in E

2

]] � n = h
 ; t

1

� t

2

i

h � ; t

1

i = �x (� h �; i : M [[E

1

]] � [v 7! x] n

x = �n: h �; id i)

h
 ; t

2

i = M [[E

2

]] � [v 7! �n: h � ; id i] n

M [[plet v = E

1

in E

2

]] � n = h � ; sp ark (t

1

end) � t

2

i

h �; t

1

i = M [[E

1

]] � (n + 1)

h � ; t

2

i = M [[E

2

]] � [v 7! x] (n + 1)

x = �n

0

: h �; demand (n

0

� n) i

M [[E

1

+ E

2

]] � n = h v1 + v2 ; t

1

� t

2

i

h v1 ; t

1

i = M [[E

1

]] � n

h v2 ; t

2

i = M [[E

2

]] � n

M [[{ E }]] � n = h �; t � work i

h �; t i = M [[E]] � n

where id = �t: t

Figure 8.8: T race tree seman tics

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 225

Note that a parameterised work has b een used Work . The Demand constructor has a n umeric

argumen t represen ting the n th last task whic h is b eing demanded, exactly as demand do es in

the seman tics.

The sim ulated function sho wn here is a parallel divide and conquer com binator. It is based on

the simple divide and conquer com binator sho wn in Section 3.4.3.

> dc:: (*->(**->**->**,*,*,tracet ree->tr acetree, tracetr ee->tra cetree))

> -> (*->bool)

> -> (*->(**,tracetree->trac etree))

> -> *

> -> (**,num,tracetree)

> dc div' isleaf solve

> = f 0 End

> where

> f ns tt x = (solveval, ns, solvett tt), isleaf x

> = (comb v1 v2, ns, divtt (Spark l r)), otherwise

> where

> (v2,z,r) = f ns End s2

> (v1,rns,l) = f (ns+1) tr s1

> tr = Demand (rns-ns) (combtt tt)

> (comb, s1, s2,

> divtt, combtt) = div' x

> (solveval, solvett) = solve x

Conceptually t w o t yp es of op erations o ccur: the computation of real results and the sim ulation

of parallel ev aluation. The functions div' , isleaf and solve p erform the division, leaf testing

and solution of problems. In addition to the result information whic h they normally generate

they also generate sim ulation information. The functions divtt , combtt and solvett pro duce

the sim ulated ev aluation for the division, com bination and solution of problems resp ectiv ely .

These are in turn represen ted as tracetree s.

The result of a D&C com binator application is a triple comprising the result v alue, the n um b er of

sparks (do wn the leftmost branc h) and a tracetree of the ev aluation. The subsidiary function f

has three argumen ts: ns , tt and x . These represen t the n um b er of sparks so far, the tracetree

con tin uation and the `real' result. The tracetree con tin uation represen ts the ev aluation to

o ccur once eac h leaf task completes. An alternativ e to this w ould b e write the D&C com binator

using a con tin uation passing st yle; this w ould more closely mimic the real ev aluation order of

the function.

An example application of the com binator is sho wn b elo w:

> bsum:: (num,num) -> (num,num,tracetree)

> bsum = dc div' isleaf solve

> where

> isleaf (a,b) = a = b

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 226

> div' (lo,hi) = ((+), (lo,mid), (mid+1,hi), Work 1, Work 1)

> where

> mid = (lo+hi) div 2

> solve (lo, hi) = (lo, id)

The bsum function tak es a pair of n um b ers, represen ting a range, as argumen t and uses the

divide and conquer function to sum the range of n um b ers. Dividing and com bining problems

b oth ha v e a tracetree function indicating a constan t cost of one (Work 1). Solving a problem

causes no ev aluation to tak e place; hence the tracetree function for this is the iden tit y function.

A more complex function suc h as the quad-tree matrix m ultiplication will pro duce m uc h more

complicated tracetree s for div' . In fact quad-tree matrix m ultiplication will use the D&C

com binator to p erform matrix addition for com bining matrix m ultiplication sub-problems.

A function for in terpreting tracetree s is sho wn b elo w:

> trace:: tracetree -> ([num],num,num)

> trace = trace' [] 0

> trace':: [num] -> num -> tracetree -> ([num],num,num)

> trace' sl pt End = ([],pt,0)

> trace' sl pt (Work w tt) = (rep w 1 ++ p, pt', st+w)

> where

> (p,pt',st) = trace' sl (pt+w) tt

>

> trace' sl pt (Spark l r) = (addlist ppl ppr, ptl, stl+str)

> where

> (ppl,ptl,stl) = trace' (ptr:sl) pt l

> (ppr,ptr,str) = trace' sl pt r

>

> trace' sl pt (Demand n tt) = (rep (spt-pt) 0 ++ pp, pt', st)

> where

> (pp,pt',st) = trace' sl (max [pt,spt]) tt

> spt = sl!(n-1)

> rep 0 e = []

> rep n e = e : rep (n-1) e

> addlist = ziplist (+)

> ziplist op [] l = l

> ziplist op l [] = l

> ziplist op (x:xs) (y:ys) = op x y : ziplist op xs ys

The trace function tak es a tracetree and pro duces a triple represen ting: the parallelism trace

(giv en an un b ounded n um b er of pro cessors), the parallel execution time and the sequen tial

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 227

execution time. The function trace' tak es three argumen ts. The �rst is a list of times at whic h

tasks �nish along the curren t tracetree branc h; this is arranged in task sparking order. By

arranging the �rst argumen t in this w a y Demand s ma y simply lo ok-up when the demanded task

�nished. The second represen ts the parallel time and the third is the tracetree .

Notice that esp ecially in the trace function lazy ev aluation has b een v ery useful. This w ould

not b e p ossible in the prop osed lenien t language unless suc h lists etc. w ere alw a ys ev aluated in

parallel. Th us lazy languages are more expressiv e, but at the cost of not b eing able to reason

ab out their op erational b eha viour.

In general this tec hnique of abstract sim ulation w as found to b e v ery useful. Its usefulness stems

from its v ersatilit y . It giv es the programmer great con trol o v er sim ulation and it do es not require

a sim ulator. Of particular imp ortance is the abilit y to mo del the b eha viour of functions in order

to aid understanding of their p erformance.

8.6 Debugging

8.6.1 General

This section describ es ho w p o orly p erforming programs ma y b e debugged. In particular pro-

gramming errors rather than algorithmic errors are tac kled. A distinction is made b et w een the

program expressing a parallel algorithm and the algorithm itself. Ideally the appro ximate p er-

formance of an algorithm should b e calculated b efore the program is tested. Ho w ev er in practice

the p erformance is only lik ely to b e calculated when a program p erforms p o orly . This section

considers ho w program errors ma y b e disco v ered b y testing; in practice it also ma y pin-p oin t

expressions whose cost should b e formally analysed. T esting alone is not su�cien t to determine

inheren t p o or p erformance in an algorithm.

The basic tec hniques for p erformance debugging are the same as for an y form of debugging.

Di�eren t parts of the program are tested in isolation to try and lo cate an y bugs: in this case

expressions with a high ev aluation cost. This ma y pro ceed top do wn or b ottom up. Bottom up

testing is straigh t forw ard. It amoun ts to testing functions on data whic h they t ypically could

b e applied to during a program run. T op do wn testing requires abstraction o v er comp onen t

expressions. This ma y b e ac hiev ed b y using tec hniques, as describ ed in the previous c hapter,

to mo del functions b eha viour and v alue. A particularly useful function for mo delling other

functions b eha viour is delay :

> delay 0 x = x

> delay n x = delay (n-1) x

The delay function in tro duces an arti�cial dela y prop ortional to its �rst argumen t. This ma y

b e pro vided as a primitiv e so that an ev en t driv en sim ulator need not actually p erform the

dela y . Example uses of delay o ccur in subsequen t sections. Throughout p erformance debugging,

program meaning is irrelev an t: program b eha viour is the c hief concern.

Man y p erformance errors arise from lazy ev aluation. Lazy ev aluation ma y dela y the ev aluation

of an expression and hence reduce the amoun t of w ork a task ma y do. This can mean that the

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 228

w ork tasks could ha v e done is p erformed sequen tially b y a single task. F or example w ork ma y

b e lo c k ed-up in a closure whic h is the argumen t to a constructor. Man y of these errors caused

b y laziness could b e eliminated if compilers p erform strictness analysis of programs and cause

strict functions to ev aluate their argumen ts using call b y v alue ev aluation. This is a little ironic

since strictness analysis is b eing used to c hange the sequen tial order of ev aluation whic h ma y

in turn aid parallel ev aluation. Ho w ev er, all parallelism is expressed b y the programmer. The

problem with this approac h is that the strictness analysis is in visible to the programmer. The

programmer do es not kno w whether strictness analysis is b eing p erformed and if it is b eing done,

ho w go o d suc h an analysis is. The alternativ e is to use seq expressions to force ev aluation of

strict argumen ts and to force the ev aluation of data structures b ey ond WHNF. This is discussed

further in Section 9.1.

All the follo wing example errors w ere ones actually made b y the author. The tec hniques sho wn

w ere used to eliminate these bugs. Ho w ev er for some of these, and in general for more complex

programs, some blind alleys will b e in v estigated to o.

8.6.2 Example: n-queens

This n-queens program w as deriv ed as sho wn in the Squigol c hapter. Ho w ev er, a mistak e w as

made in its translation from Squigol in to the functional language. The program sho wn b elo w

computes the correct v alues but only has an a v erage parallelism of just o v er one.

> queens n = power n g' [[]]

> where

> g' = foldl gg []

> where

> gg a b = par x (x++a) where x = f' b

> f' y = foldl ff [] ([1..n]--y)

> where

> ff a b = par x (x++a) where x = h' y b

> h' y e = [], delta' y e

> = [e:y], otherwise

> delta' r p = (exists . parlist id . map (check' (1,p)))

> (zip [2..n] r)

> check' (i,j) (m,n) = (j=n) \/ (i+j = m+n) \/ (i-j = m-n)

> exists = foldl (\/) False

> res = queens 4

A single iteration of power g should ev aluate in parallel. Therefore the program w as brok en up

in to in to its constituen t functions, so that they could b e tested individuall y . The parallelism in

g arises from applying f in parallel to the elemen ts of g 's list argumen t. Hence g w as giv en a

test argumen t of [[1],[2],[3],[4]] , whic h is the result of the �rst power iteration and this

should result in some parallel ev aluation.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 229

> g' = foldl gg []

> where

> gg a b = par x (x++a) where x = f' b

> f' y = foldl ff [] ([1..n]--y)

> where

> ff a b = par x (x++a) where x = h' y b

> h' y e = [], delta' y e

> = [e:y], otherwise

> delta' r p = (exists . parlist id . map (check' (1,p))) (zip [2..n] r)

> check' (i,j) (m,n) = (j=n) \/ (i+j = m+n) \/ (i-j = m-n)

> exists = foldl (\/) False

> n = 4

> res = g [[1],[2],[3],[4]]

The g function did not ev aluate in parallel. Therefore its structure w as scrutinised. Either the

function f it should b e applying in parallel do es not do m uc h w ork, or f is not b eing applied in

parallel. The latter seems most lik ely and so it w as tac kled �rst. A substitute for f w as required

whic h w as guaran teed to do some w ork. This is exactly what delay is designed to do. Th us, f

w as replaced b y a function whic h crudely mo delled its b eha viour:

> g' = foldl gg []

> where

> gg a b = par x (x++a) where x = delay 100 b

> res = g [[1],[2],[3],[4]]

This still pro duced little parallelism. Hence the problem m ust lie with g itself. Close insp ection

led to the realisation that a not x should b e spark ed. T o test this h yp othesis the previous test

w as rep eated except a w as spark ed instead of x :

> g' = foldl gg []

> where

> gg a b = par a (x++a) where x = delay 100 b

> res = g [[1],[2],[3],[4]]

No w g did ev aluate in parallel. The original n-queens program w as then tested with this c hange:

> queens n = power n g' [[]]

> where

> g' = foldl gg []

> where

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 230

> gg a b = par a (x++a) where x = f' b

> f' y = foldl ff [] ([1..n]--y)

> where

> ff a b = par a (x++a) where x = h' y b

> h' y e = [], delta' y e

> = [e:y], otherwise

> delta' r p = (exists . parlist id . map (check' (1,p)))

> (zip [2..n] r)

> check' (i,j) (m,n) = (j=n) \/ (i+j = m+n) \/ (i-j = m-n)

> exists = foldl (\/) False

> res = queens 4

This ev aluated with a v ery high a v erage parallelism.

This error in v olving foldl ma y not ha v e o ccurred if the Squigol had b een translated to use

flatmap rather than to use foldl . Nev ertheless this example is still a useful debugging demon-

stration and if flatmap had b een used then a di�eren t programming error ma y ha v e o ccurred:

as it do es in the next example.

8.6.3 Example: primes

This program generates all the prime n um b ers less than 2000. Lik e n-queens it pro duces the

correct results, but ev aluates with little parallelism. It w orks b y testing eac h n um b er for divis-

ibilit y b y an y of the prime n um b ers less than its square ro ot. If no prime less than its square

ro ot divides it exactly , then the n um b er is prime, otherwise it is not prime. This algorithm is

discussed in Section 3.4.2.

The erroneous program is sho wn b elo w:

> prim ((p,sqrp):ps) n = [], n mod p = 0

> = [(n,n*n)], sqrp > n

> = prim ps n, otherwise

> primes = (2,4) : flatmap (prim primes) [3..1999]

> flatmap f [] = []

> flatmap f (x:xs) = f x ++ flatmap f xs

> res = map fst (parlist id primes)

One reason for the lac k of parallelism ma y b e that primes are b eing generated to o slo wly . The

calculation of eac h prime requires all the previous primes less than its square ro ot. T o determine

whether this is the case and to try and simplify the recursiv e nature of the data structure, primes

will b e giv en a pre-computed list of primes primes' . This eliminates the recursion of primes

and an y dela ys in calculating the primes list due to bac kw ards dep endencies.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 231

> prim ((p,sqrp):ps) n = [], n mod p = 0

> = [(n,n*n)], sqrp > n

> = prim ps n, otherwise

> primes' = [(3,9),(5,25),(7,49),(11,121) ,(13,16 9),(17,2 89),

> (19,391),(23,529),(29,841),(31,961) ,(37,136 9),

> (41,1681),(43,1849),(47,2209)]

> primes = (2,4) : flatmap (prim primes') [3..1999]

> flatmap f [] = []

> flatmap f (x:xs) = f x ++ flatmap f xs

> res = map fst (parlist id primes)

Ho w ev er this still p erforms little parallel ev aluation. Th us either the function (prim primes')

do es little ev aluation or there is something wrong with the w a y res has b een expressed. T o test

this the function (prim primes') is mo delled b y using delay . This will ascertain whether the

problem lies with (prim primes') or the structure of res .

> primes = flatmap f [3..1999]

> f x = delay 100 [x]

> flatmap f [] = []

> flatmap f (x:xs) = f x ++ flatmap f xs

> res = parlist id primes

This still has little parallelism, hence the problem m ust lie with the structure of res . By running

the previous program on pap er and with a little careful though t the problem is rev ealed to b e

parlist comp osed with flatmap . The parallel ev aluation, b y parlist , of a list pro duced from

flatmap f l cannot pro ceed from one application of f to the next un til the previous application

of f has pro duced the spine of its resulting list. The h yp othesis is that a sp ecial parallel flatmap

is required. This is tested b elo w:

> primes = parflatmap f [3..1999]

> f x = delay 100 [x]

> parflatmap f [] = []

> parflatmap f (x:xs) = par r (f x ++ r)

> where

> r = parflatmap f xs

> res = primes

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 232

The result of the ab o v e con�rm the h yp othesis that a sp ecial parallel flatmap is required. The

primes program then ma y b e rewritten th us:

> prim ((p,sqrp):ps) n = [], n mod p = 0

> = [(n,n*n)], sqrp > n

> = prim ps n, otherwise

> primes = (2,4) : parflatmap (prim primes) [3..1999]

> parflatmap f [] = []

> parflatmap f (x:xs) = par r (f x ++ r)

> where

> r = parflatmap f xs

> res = map fst primes

This v ersion of primes do es ev aluate in parallel. P arallel �lter exhibits a similar prop ert y that:

> res = parlist id (filter p l)

exhibits little parallelism. Lik e flatmap a sp ecial parallel v ersion is required:

> parfilter p [] = []

> parfilter p (x:xs) = par rest l

> where

> l = (x:rest), p x

> = rest, otherwise

> rest = parfilter p xs

8.6.4 Example: matrix addition

The �nal example is matrix addition. This is exactly the same as has b een used b efore except

that it has b een enco ded directly rather than with a divide and conquer com binator.

> matrix * ::= Scalar * |

> Quad (matrix *) (matrix *) (matrix *) (matrix *)

> add (Scalar n1) (Scalar n2) = Scalar (n1+n2)

> add (Quad a b c d) (Quad e f g h) = (par m1 . par m2 . par m3 . seq m4)

> (Quad m1 m2 m3 m4)

> where

> m1 = add a e

> m2 = add b f

> m3 = add c g

> m4 = add d h

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 233

Num b er

of

tasks

Time

0

20

40

60

80

0 50 100 150 200 250 300

Figure 8.9: Matrix addition (erroneous)

> res = add test test

The test matrix is a 64 elemen t matrix. This program has a high a v erage parallelism; ho w ev er

its parallelism pro�le sho ws a long sequen tial `tail', Figure 8.9. This tail ma y b e accoun ted for

b y the output time for the matrix. The sim ulator whic h w as used tak es one reduction cycle to

output eac h constructor or basic v alue. Also the symmetric nature of the program (quad-trees

w ere balanced) means that once all but one task has died in the parallelism trace, only output

can b e o ccurring. Output of the 64 elemen t result matrix should tak e: 64 n um b ers + 64 Scalar

constructors + 1 + 4 + 16 Quad constructors, a total of 149 cycles. (See Chapter 4 for more

details of the sim ulator whic h w as used.) Ho w ev er the sequen tial output tail is w ell o v er 200

reduction cycles long. By dry-running the program with a small four elemen t matrix it b ecame

ob vious that the extra time w as due to the non-strictness of Scalar constructors. The n um b er

additions w ere b eing forced b y the output driv er, during the output phase.

T o remedy this, the scalar additions w ere forced in the matrix addition function b y using seq :

> matrix * ::= Scalar * |

> Quad (matrix *) (matrix *) (matrix *) (matrix *)

> add (Scalar n1) (Scalar n2) = seq x (Scalar x) where x = n1+n2

> add (Quad a b c d) (Quad e f g h) = (par m1 . par m2 . par m3 . seq m4)

> (Quad m1 m2 m3 m4)

> where

> m1 = add a e

> m2 = add b f

> m3 = add c g

> m4 = add d h

> res = add test test

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 234

Num b er

of

tasks

Time

0

20

40

60

80

0 50 100 150 200 250 300

Figure 8.10: Matrix addition (correct)

This resulted in the new parallelism pro�le sho wn in Figure 8.10. This has an output tail of the

predicted length.

8.7 Summary

This c hapter has considered reasoning ab out p erformance and p erformance debugging. It has

b een argued that p erformance analysis and di�eren t lev els of p erformance measuremen t are

all complemen tary and that they are all necessary for p erformance debugging. Starting with

a simple, general analysis of program p erformance and mo ving to more detailed analyses and

measuremen ts, this c hapter has in v estigated p erformance issues of parallel functional program-

ming.

The �rst section used a simple general analysis to sho w that some seemingly go o d parallel

algorithms do not exhibit a go o d sp eed-up, for example Quic ksort using lists. Some generic

divide and conquer algorithms w ere analysed and their sp eed-up calculated. This generated

simple constrain ts whic h can b e used to determine whether a divide and conquer algorithm is

a go o d parallel algorithm or not. It also b ecame apparen t that some problems ha v e sequen tial

algorithms whic h do substan tially less w ork than parallel algorithms for that problem, notably

scan (parallel pre�x). Th us for some problems e�cien t parallel algorithms should b e h ybrid

parallel and sequen tial algorithms. These should use a parallel algorithm to distribute w ork

across pro cessors and an e�cien t sequen tial algorithm to solv e problems on individual pro cessors.

The naiv e analysis used for analysing D&C algorithms w as simple but o v erly sync hronous. In

particular it did not p ermit pip elined parallelism; hence a more detailed analysis w as devised.

A seman tics w as designed for calculating the p erformance of lenien t programs, whic h p ermit

pip elined parallelism. The seman tics w as quite complex, re
ecting the op erational complexit y

of lenien t languages. It w as p ossible to reason ab out small programs, but ev en so this w as

quite complicated. A pip elined v ersion of Quic ksort w as analysed; this o ccupies �v e pages! This

sho w ed that the pip elined v ersion of Quic ksort w as t wice as fast as the previously analysed

sync hronous one. Lenien t languages represen t a compromise b et w een strict and lazy languages;

ho w ev er, it seems di�cult to extend the seman tics to describ e parallel lazy languages.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 235

A di�eren t use of the p erformance seman tics for the lenien t language w as to regard it as a

sp eci�cation of a parallel in terpreter or sim ulator. By treating the seman tic equations as trans-

formation rules, parallel program sim ulation could b e p erformed b y program transformation.

This represen ted an abstract form of p erformance measuremen t, rather than analysis. Also, it

w as sho wn ho w more detailed information suc h as parallelism pro�les could b e generated from

the p erformance seman tics. With the help of a clev er compiler, sim ulation b y transformation

could b e made v ery e�cien t; e�ectiv ely sim ulation could b e compiled in to programs, rather lik e

instrumen ting them. F or sim ulating parallel ev aluation with a limited n um b er of pro cessors, a

seman tics w as designed whic h generates a history trace represen ting a programs ev aluation. This

tree ma yb e tra v ersed in di�eren t w a ys to represen t ev aluation b y di�eren t n um b ers of pro cessors

and di�eren t sc heduling strategies.

Finally , it has b een sho wn ho w a sim ulator, suc h as the one outlined in Chapter 4 or the one

deriv ed from the p erformance seman tics, can b e used to detect some programming errors whic h

result in programs with p o or p erformances. This can in v olv e scrutinising parallelism pro�les

at quite a detailed lev el. Th us this represen ts p erformance debugging at a v ery detailed lev el,

using p erformance measuremen ts rather than analyses.

8.8 Conclusions

The main conclusions of this c hapter are:

� It has b een sho wn that di�eren t lev els of p erformance debugging are necessary . This has

b een demonstrated b y measuring and debugging the p erformance of programs at di�eren t

lev els of abstraction.

� F ormal metho ds are necessary for reasoning ab out p erformance. This has b een sho wn b y

measuring the p erformance of some seemingly go o d parallel algorithms, whic h are rev ealed

to b e p o or parallel algorithms.

� Pip elined parallelism is imp ortan t for the p erformance of some parallel algorithms, for

example the siev e of Eratosthenes and T rinder's functional database [109]. T o this end

a formal seman tics for reasoning ab out the p erformance of a lenien t language has b een

devised (lenien t languages p ermit pip elined parallelism).

� Sometimes h ybrid parallel and sequen tial algorithms are necessary for e�cien t implemen ta-

tion on MIMD mac hines. This is b ecause some parallel algorithms are ine�cien t sequen tial

algorithms. This has b een demonstrated b y analysing the p erformance of v arious parallel

and sequen tial scan functions.

� An in terpreter or sim ulator is useful for lo w lev el p erformance debugging. P articularly in

the case that an algorithm is kno wn to ha v e a go o d parallel p erformance, but a mistak e has

b een made in enco ding it in a functional language. Three real examples ha v e demonstrated

this.

� A
exible sim ulator ma y b e dev elop ed directly from a p erformance seman tics. This enables

sim ulation to b e ac hiev ed b y program transformation. This allo ws the programmer great

con trol o v er the detail of sim ulation. It w as found useful to mo del programs' p erformance

b y constructing functional programs.

CHAPTER 8. PERF ORMANCE ANAL YSIS AND DEBUGGING 236

� An adv an tage of programming using parallelism abstractions, is that it is p ossible to �nd

constrain ts whic h guaran tee an algorithms go o d parallel p erformance. This has b een done

for a divide and conquer parallelism abstraction.

Chapter 9

F urther w ork

This c hapter discusses directions for further w ork. Some sp eci�c problems from the preceding

c hapters are discussed and ideas for alleviating them are considered. Three main areas are

discussed: parallelism expression and parallel algorithms, parallelism con trol and p erformance

analysis.

9.1 Expressing parallelism and parallel algorithms

9.1.1 Non-determinism and algorithmic sk eletons

Determinism is b oth the sa viour and curse of parallel functional programs. Man y parallel algo-

rithms require non-determinism, for example branc h and b ound algorithms. It is imp ortan t to

b e able to express suc h algorithms; for example it has b een claimed that: \Branc h and b ound

algorithms are the most frequen tly used metho ds in practice for the solution of com binatorial

optimisation problems" (Karp and Zhang [69]). Unfortunately functional languages cannot ex-

press parallel branc h and b ound algorithms. Addressing this problem, Burton and Hughes ha v e

describ ed w a ys of handling non-determinism in a functional language without compromising the

abilit y to reason ab out suc h programs. These are describ ed in Chapter 7. Also in this c hapter,

bags are prop osed, whic h p ermit a limited form of non-determinism to b e expressed. Ho w ev er

there are problems with all of these approac hes.

An alternativ e approac h is to pro vide the programmer with a library of non-deterministic algo-

rithmic sk eletons [29]. These abstractions could b e giv en sp ecial non-deterministic implemen-

tation in another language. If in ter-language w orking w as supp orted, new abstractions could

also b e de�ned. The results of abstractions could b e truly non-deterministic, in whic h case

Hughes-st yle sets could b e used to represen t these [57]. Alternativ ely abstraction results could

b e deterministic, with an implicit pro of obligation of determinacy , lik e bags.

The problem with this approac h is the additional complexit y of using t w o languages: the func-

tional language and the sk eleton implemen tation language. Reasoning can b e aided b y pro viding

a functional sp eci�cation of what abstractions do. Ho w ev er it is di�cult to transform applica-

tions of sk eletons, since these consist of a mixture of t w o languages.

237

CHAPTER 9. FUR THER W ORK 238

A branc h and b ound algorithmic sk eleton

This section describ es an example of a non-deterministic algorithmic sk eleton, whic h implemen ts

branc h and b ound algorithms. The branc h and b ound com binator (bb) has t yp e:

> bb :: (val -> val -> bool) -> || an ordering on val

> (prb -> val) -> || fun for a problems cost (val)

> (prb -> [prb]) -> || problem division

> (prb -> bool) -> || is a leaf problem?

> prb -> || the problem to be solved

> (prb,val) || the least cost solution and its cost

A t ypical application of bb w ould migh t lo ok lik e:

> res = bb (<=) cost div isleaf problem

The bb com binator �nds the least cost solution to a problem. It returns a pair of the solution and

its cost. The �rst argumen t of bb represen ts an ordering on costs (val). The second argumen t

(cost) determines the cost of solving a problem. The third argumen t (div) divides a problem

in to a list of sub-problems. The fourth argumen t (isleaf) determines whether a problem is

solv able.

An exhaustiv e searc h sp eci�cation of bb ma y b e de�ned th us:

> es :: (val -> val -> bool) -> || an ordering on val

> (prb -> val) -> || fun for a problems cost (val)

> (prb -> [prb]) -> || problem division

> (prb -> bool) -> || is a leaf problem?

> prb -> || the problem to be solved

> (prb,val) || the least cost solution and its cost

> es rel cst div isl a = (a,cst a), isl a

> = (foldl1 sel . map f . div) a, otherwise

> where

> f = es rel cst div isl

> sel a b = a, (snd a) $rel (snd b)

> = b, otherwise

The op eration and parallelisation of this function should b e ob vious.

Branc h and b ound algorithms are optimised searc h algorithms. They w ork b y computing a lo w er

b ound on the cost of a sub-problem's solution. Suc h lo w er b ounds can b e used to guide the order

in whic h sub-problems are solv ed, or to detect that sub-problems need not b e considered, see

[48 , 93] for further details. In order for es to b e equal to bb the follo wing conditions m ust hold:

1. The cost function m ust giv e a lo w er b ound on sub-problems' solutions:

8 p 2 prb : (cost p) $rel (es rel cost div isleaf p)

CHAPTER 9. FUR THER W ORK 239

2. The rel relation m ust b e a total ordering on val .

3. The bb function ma y not expand all the problems whic h es do es; therefore problems and

their sub-problems m ust b e completely de�ned.

If these conditions hold then: es = bb . These conditions are left as a pro of obligation for the

programmer who uses bb .

A problem for the implemen tation of bb is that it m ust mimic the same searc h order as es .

This searc h order is induced b y sel in es ; sel fa v ours its left op erand in the case that the

t w o op erands ha v e the same cost. The bb implemen tation m ust either re
ect this or it m ust b e

ensured that the costs of di�eren t sub-problems are nev er the same. That is, it ma yb e necessary

to add the constrain t that cost is injectiv e in order for the implemen tation to giv e precisely the

same results as the exhaustiv e searc h.

F or details of ho w bb migh t b e implemen ted see the imp erativ e implemen tations describ ed in

[48 , 93]. The e�ects of parallelising branc h and b ound algorithms are considered in [73].

V ery recen tly McKeo wn et al. [79] ha v e suggested a similar idea to this parallel branc h and

b ound abstraction.

The utilit y of bb is unkno wn. An implemen tation of it is required in order to test it. There are

a n um b er of p ossible implemen tations. Some exp erimen tation is needed to determine whether a

single com binator for expressing parallel branc h and b ound algorithms can b e b oth general and

e�cien t.

9.1.2 Sp eculativ e parallelism

It is useful to classify sp eculativ e ev aluation in to t w o classes:

general: this sp eculativ e ev aluation is used to impro v e the p erformance of an algorithm b y

sp eculativ ely ev aluating expressions. This is an attempt to try and utilise spare pro cessing

resources. Man y expressions are randomly selected for parallel ev aluation.

sp eci�c: this sp eci�c sp eculativ e ev aluation is fundamen tal to some parallel algorithms. It

is t ypi�ed b y parallel searc h algorithms; whose only source of parallelism is sp eculativ e

parallelism. This parallelism usually only arises in a few places in an algorithm.

General sp eculativ e ev aluation, in an y language, is di�cult to manage. The p erformance b ene�ts

of this kind of random sp eculativ e parallelism are also dubious; since the o v erheads of supp orting

this parallelism will b e high and deciding whic h expressions to sp eculativ ely ev aluate is di�cult.

Ho w ev er it is clear that sp eci�c sp eculativ e parallelism can b e fundamen tal to an algorithm's

p erformance.

Therefore it seems desirable to supp ort sp eci�c sp eculativ e parallelism and to express this ex-

plicitly , for example a simple parallel searc h:

> bintree * :: = Node (bintree *) (bintree *) |

CHAPTER 9. FUR THER W ORK 240

> Leaf *

> found * :: = Yes * | No

> search :: (*->**) -> ** -> (bintree *) -> found *

> search f key (Leaf e) = Yes e, key = f e

> = No, otherwise

> search f key (Node l r) = spec_par sr (sl $sel sr)

> where

> sl = search f key l

> sr = search f key r

> sel No y = y

> sel x y = x

An alternativ e to using spec_par w ould b e to use a generic parallel com binator for sp eculativ e

and conserv ativ e parallelism. By p erforming a strictness analysis it could b e determined whic h

kind of parallel com binator w as required: conserv ativ e (par), or sp eculativ e (spec_par). Ex-

plicitly indicating sp eculativ e parallelism, ev en via a generic parallel com binator, can decrease

the o v erheads of implemen ting sp eculativ e parallelism.

Implemen tation di�culties can b e further reduced b y constraining the form of sp eculativ e par-

allelism whic h can b e expressed. Man y of the problems asso ciated with sp eculativ e parallelism

are caused b y sharing . If sp eculativ e tasks are only referenced b y exactly one other task man y

problems are alleviated. This ma y b e ensured b y either p erforming a sharing analysis to ensure

that this is the case, or b y enforcing linearit y , for example via linear logic [116]. By analysing

o ccurrences of spec_par it should b e p ossible to determine where tasks b ecome dereferenced (in

the same w a y that it is p ossible to determine where cells can b e reclaimed with linear logic) and

hence where the necessary task killing mec hanism needs to b e implemen ted. Ho w ev er, there are

still problems ensuring that all redundan t sp eculativ e tasks are killed.

F or optimal sp eculativ e ev aluation it ma y b e necessary to analyse patterns of ev aluation to

determine a go o d sc hedule for sp eculativ e tasks. This corresp onds to assigning priorities to

tasks. In the example ab o v e the sc heduling of sp eculativ e tasks should b e optimised for a depth

�rst left to righ t searc h.

A lot more further w ork is necessary to dev elop these ideas. It is ho w ev er essen tial that algo-

rithms, lik e the one ab o v e, can b e expressed and implemen ted in a parallel functional language.

9.1.3 Hybrid programs

In Section 8.2.3 it w as sho wn that e�cien t parallel algorithms ma y need to consist of t w o parts: a

parallel algorithm for distributing w ork across pro cessors and a sequen tial algorithm for solving

w ork on individual pro cessors. The parallel language whic h has b een prop osed is not suited

to expressing suc h algorithms. In particular, generating a �xed n um b er of tasks to run on the

mac hine can b e v ery di�cult. The n um b er of tasks whic h m ust b e generated is also dep enden t on

the mac hines loading; this information cannot easily b e obtained at run-time. It w ould b e easier

CHAPTER 9. FUR THER W ORK 241

to sp ecify suc h algorithms using an explicit mapping sc heme, whic h enables the programmer

to explicitly map tasks to pro cessors. Ho w ev er, for a shared memory mac hine a more abstract

metho d is desirable. One p ossibilit y is no w outlined.

It should b e p ossible to sp ecify a parallel and sequen tial algorithm and to indicate where

in the parallel algorithm c hoice b et w een the algorithms should b e made, according to the

system load. One w a y to ac hiev e this is b y using a non-deterministic c hoice op erator:

(choose paralg seqalg) . The choose `function' is non-deterministic, it c ho oses (returns)

its �rst argumen t if the system is ligh tly loaded and its second argumen t if the system is hea vily

loaded. The argumen ts of choose m ust ha v e the same v alue in order for it to b e determinate,

and for it to mak e sense! In order to reason ab out programs using choose oracles could b e used,

see [2, 24]. It ma y b e necessary to tak e the `size' of problem b eing solv ed in to consideration:

: : : (if (small prob) then seqalg else (choose paralg seqalg)) prob : : :

If a hea vily loaded mac hine subsequen tly b ecomes ligh tly loaded then parallelism will b e lost.

This can b e circum v en ted b y inserting a choose paralg seqalg in to the sequen tial algorithm.

A v ersion of the sequen tial algorithm with no choose s ma y b e required for when ev aluating

`small' problems.

The utilit y of choose is unkno wn. Some imp ortan t algorithms do ha v e more e�cien t sequen-

tial solutions than parallel solutions. Hence some metho d of expressing h ybrid algorithms is

required. Exp erimen tation is required to test the e�ectiv eness of choose . It should b e p ossible

to implemen t choose v ery e�cien tly .

9.1.4 par placemen t

The placemen t of par s can sometimes b e di�cult. It is desirable for the programmer to indicate

where parallelism o ccurs in a program; ho w ev er p erhaps this need not b e as rigorous as b y

using par s and seq s. One particular problem is that often strict or parallel data structures are

required. It w ould b e useful if these could b e de�ned or denoted as strict or sequen tial via some

sp ecial explicit t yp e information.

Often the di�cult y with placing par s and seq s is ensuring that par s are ev aluated as so on

as p ossible and that par s p erform as m uc h ev aluation as p ossible. An ironic situation arises:

strictness analysis could b e used to insert seq s in to a program. It could ensure that par s are

ev aluated as so on as p ossible and that par s p erform as m uc h ev aluation as p ossible.

This ma y b e to o di�cult to do. In this case an alternativ e approac h is to design to ols suc h as

in terpreters and debuggers for v erifying that par s and seq s are correctly placed. A concurren t

in terpreter could allo w all par and seq argumen ts to b e insp ected b efore they w ere ev aluated. In

this w a y it could b e v eri�ed that par s and seq s w ere p erforming the desired amoun t of w ork. It

w ould b e in teresting to extend the sim ulator whic h w as used to p erform exp erimen ts, Chapter 4,

to generate this information, or alternativ ely to go via the sim ulation b y transformation route,

Section 8.5.

CHAPTER 9. FUR THER W ORK 242

9.1.5 Pip elining, par and seq

It can sometimes b e di�cult to get the desired op erational b eha viour from par and seq . Some-

times either to o man y tasks m ust b e generated or pip elin ing m ust b e sacri�ced. As frequen tly

men tioned in this thesis generating to o man y tasks can reduce programs' e�ciency .

F or example consider a simple parallel tree map:

> bintree * ::= Node (bintree *) (bintree *) | Leaf *

> tmap f (Leaf x) = seq y (Leaf y) where y = (f x)

> tmap f (Node l r) = par rr (seq ll (Node ll rr))

> where

> ll = tmap f l

> rr = tmap f r

This map de�nition do es not supp ort pip elin ed parallelism b ecause Node s are not built un til ll

terminates. An alternativ e de�nition whic h do es supp ort pip elined parallelism could replace the

expression par rr (seq ll (Node ll rr)) with par rr (par ll (Node ll rr)) . Ho w ev er

this de�nition generates man y redundan t tasks. It migh t b e exp ected that a tree with n lea v es

w ould generate n or n + 1 tasks. Ho w ev er this new de�nition whic h do es supp ort pip elini ng

generates 2 � n tasks.

The problem stems from seq . The seq com binator ev aluates its �rst argumen t and then p erforms

the up date with its second argumen t. Th us access to seq 's result, and hence pip elinin g if its

result is a data structure, is prev en ted un til it has ev aluated its �rst argumen t. This ma y b e

prev en ted b y c hanging the op erational b eha viour of seq . (Note that in a real implemen tation

full applications of seq should b e `compiled-a w a y'.) Rather than ev aluating its �rst argumen t

and then returning its second, seq a b should initially sa v e, but not ev aluate, its �rst argumen t

(for example push it on a stac k) then it should return its second argumen t and ev aluate that.

Once its second argumen t b ecomes blo c k ed or is in WHNF, its sa v ed seq argumen ts should b e

ev aluated. Th us seq b ecomes rather lik e par , the �rst argumen t to seq is put in a p o ol for later

ev aluation. Ho w ev er other pro cessors ma y not tak e sparks from this p o ol. Only the curren t

pro cessor ma y do this.

The problems with this approac h is that normally seq s can b e compiled to pro duce v ery e�cien t

co de. With this approac h they cannot. An alternativ e approac h is to do some program analysis.

The problem only arises when the second argumen t to seq is a data structure. Only in suc h

cases can pip elin ing b e lost and hence seq needs to b eha v e di�eren tly .

9.1.6 Spark discarding

If GRIP-st yle par s are used whic h ma y discard sparks then crucial parallelism can b e lost. F or

example, consider parlist :

> parlist f l = par (p l) l

> where

CHAPTER 9. FUR THER W ORK 243

> p [] = ()

> p (x:xs) = par (f x) (p xs)

If the �rst par happ ened to b e discarded al l the parallelism w ould b e lost forev er! Th us some

parallel functions are not `safe'. T o detect this safet y is di�cult since it in v olv es essen tially

a sharing analysis to determine whether all par com binators o ccurring in an expression e1 of

par e1 e2 are accessible (shared) in e2 . W riting safe programs means that data structures m ust

b e constructed using parallel constructors. This manifests itself as a loss of some abstraction.

Since for example a list cannot b e built and then ev aluated in parallel, it m ust b e built with a

view to parallel ev aluation. An example of a parallel constructor is pcons , sho wn b elo w:

> pcons h t = par h (par t (h:t))

> parmap f [] = []

> parmap f (x:xs) = f x $pcons parmap f xs

This su�ers from the problem discussed in the previous section, that of generating to o man y

tasks. One w ould exp ect pmap f l where #l = n to generate n or n + 1 tasks, in fact it generates

2 � n tasks. If pcons is de�ned as b elo w then some pip elini ng ma y b e lost.

> pcons h t = par t (seq h (h:t))

An alternativ e is to in tro duce t w o forms of par : par_may whic h ma y or ma y not spark a task

and par_must whic h alw a ys will spark a task. Essen tially the idea is to prioritise some par s

o v er others. F or example the parlist function ma y b e expressed th us:

> parlist f l = par_must (p l) l

> where

> p [] = ()

> p (x:xs) = par_may (f x) (p xs)

The dra wbac k with this approac h is that it requires more w ork from the programmer, than if

just par s are used.

9.1.7 Resparking and parallelism abstractions

A mac hines task mec hanism should discard useless tasks. That is a task mec hanism should

discard a task if when it is �rst ev aluated its graph is already in WHNF or its graph is b eing

ev aluated b y another task. In this w a y some resparking ma y b e a v oided. Unfortunately the use

of parallelism abstractions can prev en t the detection of some tasks b eing in WHNF. F or example

consider parlist id [1,2,3,4] , where parlist is de�ned th us:

> parlist f l = par (p l) l

> where

CHAPTER 9. FUR THER W ORK 244

> p [] = ()

> p (x:xs) = par (f x) (p xs)

> id x = x

This application will create �v e tasks. An implemen tation of ev aluation transformers could

record the degree to whic h the list [1,2,3,4] w as ev aluated and hence w ould not create an y

redundan t tasks. If partial ev aluation is emplo y ed or if a sp eci�c parallelism abstraction is

written instead, for example pp [1,2,3,4] where pp is de�ned th us:

> pp l = par (p l) l

> where

> p [] = ()

> p (x:xs) = par x (p xs)

(pp = parlist id) then only one extra task will b e created; this will just tra v erse the list.

Ho w ev er it is not alw a ys p ossible to statically determine what the argumen t to parlist will b e.

Another solution to this problem is to use pcons as de�ned in the previous section. This has the

dra wbac k though that it will create extra tasks initially , in order to supp ort pip elined parallelism.

The pcons constructor is describ ed in the previous section.

9.2 P arallelism con trol

9.2.1 Analysis of dela y ed sparking and GRIP task size con trol

In Section 6.6.1 a limited form of dela y ed sparking is analysed. It w ould b e in teresting to

generalise this. In addition, if the GRIP task size con trol w as also analysed it w ould b e p ossible to

compare the t w o metho ds. This w ould b e useful for determining whic h problems the approac hes

are b est suited to. It w ould also b e useful to determine the e�ect of di�eren t sc heduling strategies

on these t w o approac hes. A simple analysis of the GRIP task size con trol strategy rev eals that the

n um b er of small tasks pro duced from a balanced tree of tasks, when there are man y more tasks

than pro cessors, should b e logarithmic in the original n um b er of tasks. Ho w ev er exp erimen tal

results pro duced man y more small tasks than this, esp ecially with un balanced task trees and

other shap es of task net w orks. This needs further analytical and exp erimen tal in v estigation.

9.2.2 P ortable parallelism con trol

As describ ed in Chapter 6 it is necessary to con trol programs parallelism in order to mak e them

e�cien t. It is also desirable to mak e programs p ortable. Ho w ev er, these issues are p oten tially in

con ten tion, since incorp orating parallelism con trols, whic h are mac hine sp eci�c, in to a program,

is not going to mak e a program p ortable. T o mak e programs p ortable and to allo w mac hine

sp eci�c parallelism con trol, programs m ust b e parameterised with con trol information. This

ma y b e ac hiev ed b y pro viding prede�ned constan ts at compile time, or input from the mac hine

at run-time.

CHAPTER 9. FUR THER W ORK 245

F or shared memory MIMD mac hines, task sizes and task n um b ers m ust b e con trolled. T o con trol

task n um b ers a program needs to `kno w' the n um b er of pro cessors a mac hine has. The n um b er

of idle pro cessors will v ary at run-time; nev ertheless it is useful to ha v e a limit on the n um b er

of a v ailable pro cessors. This information could, for example, b e used b y a program to go v ern

ho w large bu�ers it should use for con trolling pip elined parallelism.

T ask size con trol needs t w o measures to c haracterise a mac hine. Firstly the minim um amoun t

of pro cessing a task should do is required; since there will b e some �xed mac hine o v erheads

asso ciated tasks. Secondly a measure of the execution cost to comm unications cost ratio is

required. This c haracterises ho w m uc h execution in relation to a tasks comm unication cost m ust

b e p erformed in order for a task to b e w orth ev aluating on a di�eren t pro cessor. Some simple

metrics are required to measure this. Execution cost can b e measured in terms of reductions.

Comm unication cost can b e measured in terms of graph no des whic h m ust b e comm unicated.

Measuring these will b e v ery appro ximate; ho w ev er this should b e su�cien t. Dep ending on

the particular algorithm, these measures ma y b e redundan t. F or example the execution cost to

comm unications cost ratio ma y b e in v arian t for some divide and conquer algorithms.

Th us a program ma y con trol parallelism via some abstract measuremen ts. These measuremen ts

can b e compared with parallelism con trol measuremen ts whic h are pro vided b y a particular

implemen tation. F or example an algorithm ma y b e able to calculate the appro ximate n um b er

of reductions that are required to sort an y giv en tree. The compiler ma y pro vide a prede�ned

constan t worth_sparking whic h is a lo w er b ound on the n um b er of reductions a task m ust do

to b e w orth sparking. Th us b y comparing the appro ximate n um b er of reductions it will tak e

to sort a tree, with worth_sparking , it can b e determined whether a task is w orth sparking or

not.

A y et more sophisticated system is also en visaged. This system automatically tunes a program's

parallelism con trol. It is aimed at divide and conquer algorithms. Rather than the programmer

ha ving to pro vide absolute measuremen ts, suc h as reduction coun ts, for sp ecifying task sizes and

comm unication costs, abstract measuremen ts could instead b e used. F or example if a balanced

tree is to b e sorted, rather than calculating an appro ximation to the n um b er of reductions

required to sort a tree of heigh t h , h could b e used as an abstract task size measuremen t. These

abstract measuremen ts should b e in teger v alues whic h increase, as task sizes do. P arallelism

con trol could b e incorp orated in to a sp ecial com binator. Essen tially this w ould b e a parallel

com binator whic h ma y or ma y not spark one of its argumen ts, dep ending on the other argumen ts'

v alues. The parallel com binator w ould tak e sev eral argumen ts: what p oten tially to spark and

some abstract task size and comm unication cost measuremen ts for that p oten tial task.

A program con taining these sp ecial parallel com binators and some test input for the program

should b e submitted to an automatic tuning system. This system will rep eatedly run the

program with the test data. Eac h run will try to impro v e parallelism con trol b y c hanging

in teger b ounds used b y instances of the sp ecial parallel com binator. These b ounds determine

whether a task should b e spark ed or not. The b ounds are automatically devised b y the tuning

system. The in teger v alues whic h in some w a y represen t task sizes and comm unication costs,

are supplied b y the programmer, via the sp ecial parallel com binators. Th us the system ma y

automatically tune a program's parallelism con trol, in order to pro duce w orth while tasks. It is

necessary for the test data to pro duce a wide v ariet y of task sizes.

This system needs to b e implemen ted in order to test it. It is p oten tially v ery useful b ecause it

enables the programmer to con trol parallelism with v ery little e�ort.

CHAPTER 9. FUR THER W ORK 246

9.2.3 Pip elined parallelism

Bu�ering is required to con trol pip elined parallelism. Unfortunately not all forms of bu�ering

can b e implemen ted in a functional language. In e�ect additional sync hronisation is required

b et w een tasks, in order to implemen t bu�ering.

Consider the expression: f l , to ev aluate the list l in parallel with f the follo wing expression

could b e used:

> res = f $pipe l

> pipe f l = par (seqlist l) (f l)

Th us f and l are ev aluated in a pip eline d fashion. T o limit the n um b er of tasks whic h are

generated and to reduce the space usage, it is desirable to ha v e some form of bu�ering. The

pro duction (ev aluation) and consumption of the list l should b e sync hronised. Bu�ering could

b e expressed th us:

> res = f $(buf k) l

The bu�er can b e written to pro duce a new task for eac h elemen t of the list; this w as originally

describ ed b y Hughes in [58] and it has b een exp erimen ted with in Section 6.5. Ho w ev er some-

times it is required to just ha v e t w o or three sequen tial tasks; one for the consumer, one for the

pro ducer and p ossibly one for managing the bu�er. Ho w ev er this cannot b e implemen ted in the

parallel functional language.

Since this kind of pip eline d b eha viour is usually sough t only of lists, a sp ecial primitiv e could

b e pro vided to implemen t this. There are t w o reasons for desiring this b eha viour. The �rst is to

constrain space usage, to prev en t the whole list b eing ev aluated and then consumed. Secondly

for an in�nite or v ery long list, lik e a stream in an op erating system, some fairness is required

in the sc heduling, in order to guaran tee that the system mak es reasonable progress.

An alternativ e is to implemen t the kind of bu�ering previously describ ed using logical v ari-

ables, as used b y Josephs in [66]. Logical v ariables are a non-functional extension to functional

languages, whic h enable a greater con trol of sync hronisation than is p ossible with just a pure

functional language. A great deal of use has b een made of logical v ariables in parallel logic

programming, see [96].

The bu�er function ma y b e de�ned th us:

> buf k f l = par (seq (seqlist init) (ff ctrl rest)) (f l')

> where

> l' = zipwith gg ctrl l

> init = take k l

> rest = drop k l

> ctrl = inf_lst_log_vars

> ff c [] = ()

CHAPTER 9. FUR THER W ORK 247

> ff (GO:c) (x:xs) = seq x (ff c xs)

> gg c x = seq (c:=GO) x

> zipwith f [] y = []

> zipwith f x [] = []

> zipwith f (x:xs) (y:ys) = f x y : zipwith f xs ys

Notice that only one task is spark ed. Sync hronisation is ac hiev ed via the ctrl list; this is a list

of, initially , uninstan tiated logical v ariables. The expression c:=GO instan tiates a logical v ariable

to GO . The function ff blo c ks un til an elemen t of c is instan tiated to GO . (This requires a fairly

simple extension to the implemen tation of tasks so that tasks ma y blo c k on uninstan tiated

v ariables and b e resumed when suc h v ariables are instan tiated.) Only when this o ccurs is the

b o dy of ff ev aluated, and hence the next list elemen t x ev aluated. When the consumer f

ev aluates an elemen t of l' it causes a logical v ariable to b e instan tiated, via gg . This represen ts

the sync hronisation b et w een the consumer f and the pro ducer ff ctrl rest .

This implemen tation is quite complicated. It ma y b e p ossible to ac hiev e the same e�ect more

simply b y using some some higher lev el abstractions, for expressing sync hronisation constrain ts.

F urther w ork is required to determine ho w useful buf is and whether it is su�cien t to just ha v e

one built-in function for this, or whether a more general facilit y lik e logical v ariables is required.

Also, an implemen tation of buf is required for exp erimen tation. I b eliev e that the same e�ect

as using logical v ariables to increase sync hronisation can also b e ac hiev ed b y using Hughes's

synch , see [58].

9.3 P erformance

9.3.1 GRIP's spark discarding and Eager's result

As men tioned in Section 2.6, GRIP's sc heduling discipline means that tec hnically Eager's result is

not applicable to GRIP . This is b ecause GRIP ma y discard sparks and hence GRIP's sc heduling

discipline is not parallelism conserving. If no sparks are discarded, lik e in the sim ulator used

for exp erimen tation, then Eager's result will hold. Clearly as the spark reten tion limit is raised

there is less p oten tial for losing p erformance. Ho w ev er, it w ould b e reassuring to analyse the

GRIP sparking regime to determine conditions under whic h Eager's result do es apply .

9.3.2 P erformance measureme n t

Throughout this thesis p erformance has b een measured using Eager's metric of sp eed-up. Ho w-

ev er this is not alw a ys accurate; in particular when an e�cien t sequen tial algorithm exists, whic h

is b etter than an e�cien t parallel algorithm run sequen tially . In suc h cases an e�cien t parallel

algorithm m ust b e compared with an e�cien t sequen tial algorithm. F urthermore for MIMD

mac hines an e�cien t parallel algorithm ma y use a sequen tial algorithm to run on individual

pro cessors. Sometimes algorithms will not b e so separable; th us di�eren t algorithms ma y b e

suited to mac hines with di�eren t n um b ers of pro cessors. Therefore, sometimes it is desirable

CHAPTER 9. FUR THER W ORK 248

to kno w the p erformance of a parallel program with a giv en n um b er of pro cessors. This can

b e di�cult to calculate b ecause of sc heduling issues. Ho w ev er usually a parallel algorithm will

either ha v e man y more tasks than pro cessors or there will b e exactly one task p er pro cessor.

Analysing these programs' p erformance on mac hines with a �xed n um b er of pro cessors is rela-

tiv ely simple. The sp eed-up of programs lying b et w een these extremes ma y b e v ery dep enden t

up on sc heduling. Suc h algorithms will generally need to sp ecify an exact sc hedule; it is hard to

analyse their p erformance without an exact sc hedule since it ma y v ary so m uc h.

P arallel programs with man y more tasks than pro cessors ma y b e analysed using a w eigh ted

Eager's result. The sp eed-up giv en b y Eager's result m ust b e w eigh ted b y the ratio of an e�cien t

sequen tial algorithm's p erformance, against the parallel algorithm's sequen tial p erformance.

This will yield a b ound on the sp eed-up with a giv en n um b er of pro cessors, compared with an

e�cien t sequen tial algorithm. If there is exactly one task p er pro cessor, the parallel p erformance

will b e equal to the p erformance with an un b ounded n um b er of pro cessors. This is one of the

basic measures whic h are normally calculated.

9.3.3 P erformance analysis

Reasoning ab out the p erformance of programs written in parallel lazy languages is inheren tly

di�cult. P arallel strict languages are are simple to reason ab out but they are not as expressiv e as

one w ould lik e. Therefore, in Section 8.3 a compromise is made b et w een parallel lazy languages

and parallel strict languages: a lenien t language is used. Ho w ev er, reasoning ab out ev en lenien t

programs is quite complicated, despite lenien t languages b eing a compromise. There are at least

three p ossible approac hes to simplifying reasoning ab out the p erformance of parallel functional

programs:

mec hanisation: reasoning ab out programs' p erformance could b e semi-automated. This w ould

simplify reasoning b y puting some of the burden on the mac hine.

language simpli�cation: man y researc hers adv o cate a seman tics �rst approac h to program-

ming language design. Th us a simpler language could b e designed with a simpler op era-

tional seman tics (and a simple meaning seman tics). F or example sharing constrain ts could

b e enforced b et w een tasks, to mak e reasoning and implemen tation easier. Alternativ ely

a parallel strict language with restricted pip elined parallelism, suc h as streams, could b e

used.

assume programs are not complex: another approac h is to assume that most parallel pro-

grams con tain few places where parallel ev aluation is required. Th us man y simplifying

rules could b e dev elop ed for sp ecial cases whic h frequen tly arise. F or example purely se-

quen tial expressions could b e reasoned ab out using a di�eren t, simpler, seman tics. Where

parallelism do es exist, dep endency and sharing information could b e used to simplify rea-

soning.

The latter approac h seems particularly attractiv e for simplifying reasoning ab out the p erfor-

mance of parallel functional programs. It is desirable to in v estigate this further.

Chapter 10

Conclusions

P arallel programming is b ecoming increasingly necessary . Unfortunately there are man y di�cul-

ties in v olv ed with parallel programming, notably non-determinism. Using functional languages

to express parallel programs eliminates man y of these di�culties, at the exp ense of some ex-

pressiv eness. Essen tially functional language's determinism eliminates the problems of deadlo c k

and correctness. Unfortunately this also means that non-deterministic algorithms cannot b e ex-

pressed. In addition comm unication and sync hronisation need not b e sp eci�ed since they o ccur

implicitly .

Starting from the premises ab o v e this thesis in v estigates the implications of parallel programming

using functional languages. The main conclusion is that when applic able functional languages

are an excellen t v ehicle for parallel programming. The follo wing sections discuss the results of

this thesis' main c hapters: 3, 5, 6, 7 and 8 resp ectiv ely .

10.1 A parallel functional language

Throughout this thesis it has b een sho wn ho w parallel algorithms ma y b e written in a parallel

functional language. As a result of assuming quite a conserv ativ e implemen tation (a shared

memory MIMD mac hine), man y p oten tial problems with parallelism w ere alleviated. In par-

ticular the only issue whic h needed to b e addressed w as: what to sp ark ? It w as argued that

parallelism (sparking) should b e explicitly expressed. This w as realised in a simple parallel

functional language whic h used par com binators to express parallel ev aluation. In addition se-

quen tial ev aluation sometimes needed to b e expressed; this w as done with a seq com binator. By

using higher order functions, parallelism abstractions could easily b e de�ned in the language.

These w ere found to b e v ery useful for structuring programs. In particular, they simpli�ed the

programmers task of placing par s. They also made the op erational reading of programs simpler.

In general it w as found that only a few par com binators w ere required in order to express parallel

algorithms.

249

CHAPTER 10. CONCLUSIONS 250

10.2 Squigol

One of the adv an tages of parallel programming with functional languages is that standard func-

tional programming tec hniques ma y b e used. Chapter 5 discusses the deriv ation of parallel

functional programs using program transformation. The Squigol v ariet y of algebraic program

transformation w as used. Previously this has mostly b een used for sequen tial program deriv a-

tion. Although all Squigol la ws and theorems are seman tically v alid for program transformation,

not all of them w ere suitable for deriving parallel programs.

It w as sho wn that sp eci�cations should b e inher ently parallel. Th us the ob ject of deriv ations

w as to deriv e an e�cien t parallel algorithm from an ine�cien t one. T ypically these deriv ations

reduced the total amoun t of parallelism and they reduced the total amoun t of w ork whic h w as

p erformed, in order to pro duce an algorithm whic h is e�cien t for a real mac hine with a limited

n um b er of pro cessors. An imp ortan t set of rules, promotion rules, w ere sho wn to conserv e

parallelism. Other rules, suc h as re�ning general reductions to directed reductions, w ere found

to b e sp eci�cally sequen tial optimisations.

In Squigol m uc h use is made of homomorphisms and their prop erties. Homomorphisms w ere

found to corresp ond to forms of divide and conquer algorithms, whic h often w ere suitable for

parallel ev aluation. Squigol expressions t ypically consist of comp ositions of maps and reduces.

Generally comp osition of list v alued functions ga v e rise to pip eline d parallelism, and map and

reductions ga v e rise to p artitione d parallelism. T o aid the op erational reading of Squigol expres-

sions they w ere sometimes annotated with parallel lab els.

It is unkno wn ho w generally useful Squigol is for deriving parallel programs. Ho w ev er it has

b een sho wn that some parallel programs can b e usefully deriv ed with it.

10.3 P arallelism con trol

Whereas Chapter 3 is concerned with expr essing parallel algorithms, Chapter 6 is concerned

with the e�ciency of parallel algorithms. In particular the e�ciency implications of when to

spark w ere considered. It w as sho wn that task sizes (parallelism gran ularit y), task residency

and storage residency m ust b e con trolled for a shared memory MIMD mac hine. F urthermore it

w as sho wn that these issues are all related.

F or con trolling divide and conquer algorithms' parallelism, in particular task sizes, a run-time

strategy for con trolling parallelism (the ev aluate-and-die task mo del) w as compared with v ar-

ious programmer con trolled ones. It w as disco v ered that a com bination of the run-time and

programmer con trolled strategies w ork ed b est. The run-time strategy increased task sizes b y

coalescing them; ho w ev er it also pro duced a signi�can t n um b er of small tasks. The solution w as

to use the run-time strategy to increase the gran ularit y of tasks, whilst the programmer enforced

a lo w er b ound on task sizes.

The dela y ed sparking approac h to parallelism con trol w as implemen ted in the parallel functional

language. This p erformed w ell considering that it used no problem information sp eci�ed b y the

programmer. Ho w ev er, this approac h is p erhaps b etter suited to incorp oration in to a mac hine's

run-time system.

CHAPTER 10. CONCLUSIONS 251

F or con trolling data parallelism, the run-time strategy did not w ork. Three program tec hniques

for con trolling this form of parallelism w ere tried. These tec hniques are suited to con trolling

di�eren t asp ects of parallelism. Th us dep ending on the particular algorithm and mac hine, an y

one of these tec hniques migh t b e appropriate.

10.4 Bags

Determinism mak es parallel programming with functional languages relativ ely simple. Unfortu-

nately this is also a curse for functional languages since non-deterministic computation cannot

b e expressed. Non-deterministic computation is v ery desirable for MIMD mac hines since it

prev en ts needless sync hronisation and hence needless sequen tialit y .

Chapter 7 prop osed a limited form of non-determinism via a bag abstract data t yp e. Pro viding

com bining op erations on bags are asso ciativ e and comm utativ e, bag expressions are determin-

istic. This is left as a pro of obligation to the programmer. Bags are sho wn to b e useful for

b oth sequen tial and parallel programming. Bags p ermit greater parallelism than is otherwise

p ossible. Alternativ ely bags can eliminate some op erations, suc h as tree balancing, whic h can

b e necessary to ensure parallelism.

A parallel implemen tation of bags is sk etc hed in Chapter 7 and this w as used to implemen t bags

in the sim ulator. The implemen tation w as based on non-deterministic rewriting systems, whic h

w ere pro v en correct. This w as useful b ecause the non-deterministic parallel implemen tation of

bags is quite di�cult.

The utilit y of bags is di�cult to assess; certainly for some problems they are v ery useful. Only

through greater exp erience with parallel functional programming can their utilit y really b e

judged.

10.5 P erformance

Although writing parallel programs is not particularly di�cult, writing ones whic h demonstrate

go o d p erformance is m uc h harder. The goal of designing a parallel program is to pro duce a

program with a go o d p erformance compared with an e�cien t sequen tial program for the same

problem. F or example it is sho wn that Quic ksort, using lists, pro duces lots of parallelism (tasks);

ho w ev er it has a v ery p o or sp eed-up (parallel p erformance). This result w as obtained via an

informal analysis, and it w as v eri�ed exp erimen tally . A generalisation of the analysis yielded

conditions under whic h divide and conquer algorithms will giv e a go o d sp eed-up.

F or some problems, suc h as scan and sorting, e�cien t parallel algorithms are not e�cien t sequen-

tial algorithms. Th us for an e�cien t MIMD implemen tation h ybrid algorithms m ust b e used.

These use a parallel algorithm to distribute w ork across pro cessors and an e�cien t sequen tial

algorithm to solv e the problem on eac h individual pro cessor of a mac hine. This means that

the goal of writing a parallel program is not to pro duce a program with maximal parallelism.

Both the sequen tial and parallel p erformance of a program m ust b e considered. The e�ciency

of parallel programs is m uc h more arc hitecture dep enden t than migh t b e exp ected.

Analysing pip eline d algorithms pro v ed di�cult, and hence error prone. Therefore rather than

CHAPTER 10. CONCLUSIONS 252

using an informal metho d for analysis, a formal metho d for reasoning ab out programs' parallel

p erformance w as dev elop ed. Reasoning ab out a lazy language pro v ed v ery di�cult; therefore a

compromise w as made and a lenien t language w as used. A non-standard denotational seman tics

w as used to reason ab out programs written in the lenien t language. This w as quite complicated

but adequate for reasoning ab out `small' algorithms and program fragmen ts.

The seman tics w as also sho wn to b e capable of collecting other information, for example paral-

lelism pro�les. It is di�cult to reason ab out this information, but it did form a no v el sp eci�cation

for a concurrency sim ulator. In fact b y treating the seman tics as a set of transformation rules,

concurrency sim ulation could b e ac hiev ed b y program transformation.

10.6 A �nal commen t

This thesis has demonstrated that functional languages are viable for writing some parallel

programs; just as functional languages are viable for writing some sequen tial programs. In

particular functional languages are suited to expressing a v ariet y of parallel algorithms, esp ecially

divide and conquer algorithms. The p o w erful abstraction facilities of functional languages are

v ery useful for de�ning parallelism abstractions. The abilit y to reason simply ab out parallel

functional programs and to not ha v e an y concerns ab out deadlo c k, seems to far out w eigh their

inabilit y to express non-deterministic algorithms.

Biblio graph y

[1] H Ab elson and G Sussman. Structur e and Interpr etation of Computer Pr o gr ams . MIT

Press/McGra w Hill, 1984.

[2] S Abramsky . SECD-M: a virtual mac hine for applicativ e m ultipro cessing. T ec hnical rep ort,

In ternal Rep ort. Dept. Computer Science, Queen Mary College, London, No v em b er 1982.

[3] S Abramsky . Strictness analysis and p olymorphic in v ariance. In H Ganzinger and N Jones,

editors, Pr o c e e dings of the Workshop on Pr o gr ams as Data Obje cts, Cop enhagen , LNCS

217. Springer-V erlag, 1985.

[4] S G Akl. The Design and A nalysis of Par al lel A lgorithms . Pren tice-Hall In ternational,

1989.

[5] Arvind and R S Nikhil. Executing a program on the MIT tagged-tok en data
o w arc hitec-

ture. In Pr o c. P ARLE Confer enc e, Eindhoven, The Netherlands . Springer V erlag LNCS,

1987.

[6] Arvind, R S Nikhil, and K K Pingali. I-structures: Data structures for parallel computing.

In Gr aph R e duction Workshop. Santa F � e , pages 336{369. Springer-V erlag, No v em b er 1986.

[7] J Bac kus. Can programming b e lib erated from the v on Neumann st yle? A functional st yle

and its algebra of programs. CA CM , 21(8):613{64 1, 1978.

[8] J-P Ban^ atre, A Coutan t, and D LeM � eta y er. A formalism for parallel program construction

and its distributed implemen tation. In E Chiricozzi and A D'Amico, editors, Par al lel

Pr o c essing and Applic ations , pages 51{58. North-Holland, 1988.

[9] J-P Ban^ atre and D LeM � eta y er. Chemical reaction as a computational mo del. In K Da vis

and J Hughes, editors, F unctional Pr o gr amming: Pr o c e e dings of the 1989 Glasgow Work-

shop, 21-23 A ugust 1989, F r aserbur gh, Sc otland , Springer W orkshops in Computing.

Springer V erlag, July 1990.

[10] M Ben-Ari. Principles of Concurr ent Pr o gr amming . Pren tice Hall In ternational, 1982.

[11] R Bird and P W adler. A n Intr o duction to F unctional Pr o gr amming . Pren tice Hall In ter-

national, 1988.

[12] R Bird and P W adler. A n Intr o duction to F unctional Pr o gr amming , pages 222{231. Pren-

tice Hall In ternational, 1988.

[13] R S Bird. A calculus of functions for program deriv ations. T ec hnical monograph 64, PR G,

Oxford Univ ersit y , Decem b er 1987.

253

BIBLIOGRAPHY 254

[14] R S Bird. Lecture notes on constructiv e functional programming. T ec hnical monograph 69,

PR G, Oxford Univ ersit y , Septem b er 1988.

[15] B Bjerner and S Holmstrom. A comp ositional approac h to time analysis of �rst order lazy

functional programs. In 1989 A CM Confer enc e on F unctional Pr o gr amming L anguages

and Computer A r chite ctur e, L ondon , pages 157{165, 1989.

[16] A Bloss and P Hudak. P ath seman tics. In Pr o c. 3r d Workshop on Mathematic al F ounda-

tions of Pr o gr amming L anguages . Springer V erlag, 1988.

[17] M Bro y . Applicativ e real-time programming. IFIP, North-Hol land , pages 259{264, 1983.

[18] G Burn. Ev aluation transformers | A mo del for the parallel ev aluation of functional lan-

guages (extended abstract). In Pr o c e e dings of IFIP Confer enc e on F unctional Pr o gr am-

ming L anguages and Computer A r chite ctur e, Portland , pages 446{470. Springer V erlag

LNCS 274, Septem b er 1987.

[19] G L Burn. Implemen ting the ev aluation transformer mo del of reduction on parallel ma-

c hines. to app e ar in Journal of F unctional Pr o gr amming , 1(2), April 1991.

[20] G L Burn. The ev aluation transformer mo del of reduction and its correctness. In T AP-

SOFT 91, Brighton, UK, 8-12 April 1991 , to app ear.

[21] G L Burn, C L Hankin, and S Abramsky . Strictness analysis for higher order functions.

Scienc e of Computer Pr o gr amming , 7:249{278, No v em b er 1986.

[22] F W Burton. Annotations to con trol parallelism and reduction order in the distributed

ev aluation of functional languages. A CM T r ansactions on Pr o gr amming L anguages and

Systems , 6(2):159{174 , April 1984.

[23] F W Burton. Sp eculativ e computation, parallelism and functional programming. IEEE

T r ansactions on Computers , C-34(12):1190{11 93, 1985.

[24] F W Burton. Nondeterminism with referen tial transparency in functional programming

languages. T ec hnical rep ort, Dept. of Computer Science, Univ ersit y of Utah, Salt Lak e

Cit y , Utah, June 1986.

[25] F W Burton and M R Sleep. Executing functional programs on a virtual tree of pro cessors.

In Confer enc e on F unctional Pr o gr amming L anguages and Computer A r chite ctur e , pages

187{194, P ortsmouth, New Hampshire, Octob er 1982.

[26] N Carriero and D Gelern ter. Ho w to write parallel programs: A guide to the p erplexed.

A CM Computing Surveys , 21(3):323{357 , Septem b er 1989.

[27] C Clac k, S L P eyton Jones, and J Salkild. E�cien t parallel graph reduction on GRIP. In

A CM Confer enc e on Lisp and F unctional Pr o gr amming , 1988.

[28] C D Clac k and S L P eyton Jones. Finding �xp oin ts in abstract in terpretation. In S Abram-

sky and C Hankin, editors, A bstr act Interpr etation of De clar ative L anguages . Ellis Hor-

w o o d, 1987.

[29] M Cole. A lgorithmic Skeletons: A Structur e d Appr o ach to the Management of Par al lel

Computation . PhD thesis, Dept. Computer Science, Univ ersit y of Edin burgh, Octob er

1988.

BIBLIOGRAPHY 255

[30] M Cole. Higher order functions for parallel ev aluation. In C Hall, J Hughes, and

J O'Donnell, editors, Pr o c e e dings of the 1988 Glasgow Workshop on F unctional Pr o-

gr amming, A ugust 2-5, 1988, R othesay, Isle of Bute, Sc otland . Researc h rep ort 89/R4,

Computing Science Dept. Univ ersit y of Glasgo w, F ebruary 1989.

[31] M D Cripps, A J Field, and M J Reev e. The Design and Implementation of ALICE: A

Par al lel Gr aph R e duction Machine . Ellis Horw o o d Pub. Ltd, 1986.

[32] J Darlington, M Reev e, and S W righ t. Programming parallel computer systems using

functional languages and program transformation. T ec hnical rep ort, Dept. Computing,

Imp erial College of Science and T ec hnology , 1989.

[33] K Da vis and P W adler. Strictness analysis in 4D. In S L P eyton Jones, C K Holst,

and G Hutton, editors, F unctional Pr o gr amming: Pr o c e e dings of the 1990 Glasgow Work-

shop, 13-15 A ugust 1990, Ul lap o ol, Sc otland , Springer W orkshops in Computing. Springer

V erlag, to b e published 1991.

[34] O de Mo or. Indeterminacy in optimisation problems. Lecture notes from the In ternational

Summer Sc ho ol on Constructiv e Algorithmics, Ameland, Holland, Septem b er 1989.

[35] J Desc hner. Sim ulating the parallel execution of functional programs. Master's thesis,

Departmen t of Computing Science, Univ ersit y of Glasgo w, in preparation.

[36] D L Eager, J Zahorjan, and E D Lazo wsk a. Sp eedup v ersus e�ciency in parallel systems.

T ec hnical Rep ort 86-08-01, Dept. of Computational Science, Univ ersit y of Sask etc hew an,

August 1986.

[37] D P F riedman and D S Wise. Applicativ e m ultiprogramming. T ec hnical Rep ort 72,

Computer Science Dept, Indiana Univ ersit y , Decem b er 1978.

[38] B Goldb erg. Multipr o c essor Exe cution of F unctional Pr o gr ams . PhD thesis, Dept. of

Computer Science, Y ale Univ ersit y , April 1988.

[39] K Hammond and S L P eyton Jones. Some early exp erimen ts on the GRIP parallel re-

ducer. In Pr o c. 2nd International Workshop on Implementation of F unctional L anguages

on Par al lel A r chite ctur es, Nijme gen, The Netherlands, June 1990 . T ec hnical Rep ort 90-16,

Departmen t of Informatics, Univ ersit y of Nijmegen, Octob er 1990.

[40] C Hankin, G Burn, and S L P eyton Jones. A safe approac h to parallel com binator reduc-

tion. The or etic al Computer Scienc e , 56:17{36, 1988.

[41] D Harrison. Ruth: A functional language for real-time programming. In P ARLE , pages

297{314, 1987.

[42] P H Hartel. Performanc e analysis of stor age management in c ombinator gr aph r e duction .

PhD thesis, Computing Science Departmen t,Univ ersit y of Amsterdam, Holland, Octob er

1988.

[43] C T Ha ynes and D P F riedman. Engines build pro cess abstractions. In A CM Confer enc e

on Lisp and F unctional Pr o gr amming , 1984.

[44] P Henderson. F unctional Pr o gr amming: Applic ation and Implementation , c hapter De-

la y ed ev aluation - A functional approac h to parallelism, pages 214{241. Pren tice-Hall

In ternational, 1980.

BIBLIOGRAPHY 256

[45] M Hennessy . A lgebr aic The ory of Pr o c esses . MIT Press, 1988.

[46] W D Hillis. The Conne ction Machine . MIT Press, Cam bridge, Massac h usetts, 1985.

[47] W D Hillis and G L Steele. Data parallel algorithms. CA CM , 29(12), Decem b er 1986.

[48] E Horo witz and S Sahni. F undamentals of Computer A lgorithms , c hapter Branc h and

Bound, pages 370{421. Pitman, 1978.

[49] P Hudak. Distributed task and memory managemen t. In Pr o c e e dings of the A CM Sym-

p osium on Principles of Distribute d Computing , pages 277{289, August 1983.

[50] P Hudak. Arra ys, non-determinism, side-e�ects, and parallelism: A functional p ersp ectiv e

(extended abstract). In Gr aph R e duction Workshop. Santa F � e , pages 312{327. Springer-

V erlag, No v em b er 1986.

[51] P Hudak and S Anderson. P omset in terpretations of parallel functional programs. In

1987 A CM Confer enc e on F unctional Pr o gr amming L anguages and Computer A r chite ctur e,

Portland , pages 234{256. Springer V erlag LNCS 274, Septem b er 1987.

[52] P Hudak and B Goldb erg. Serial com binators: \Optimal" grains of parallelism. In F unc-

tional Pr o gr amming L anguages and Computer A r chite ctur e , v olume 201 of LNCS , pages

382{399. Springer V erlag, 1985.

[53] P Hudak and E Mohr. Graphinators and the dualit y of SIMD and MIMD. In A CM

Confer enc e on Lisp and F unctional Pr o gr amming , 1988.

[54] P Hudak and L Smith. P ara-functional programming: A paradigm for programming

m ultipro cessor systems. In Principles of Pr o gr amming L anguages , Florida, 1986.

[55] P Hudak, P L W adler, Arvind, B Boutel, J F airbairn, J F asel, K Hammond, J Hughes,

T Johnsson, R Kieburtz, R S Nikhil, S L P eyton Jones, M Reev e, D Wise, and J Y oung.

Rep ort on the functional programming language Hask ell. T ec hnical rep ort, Dept. of Com-

puting Science, Univ ersit y of Glasgo w, 1990.

[56] J Hughes. Wh y functional programming matters. Computer Journal , 32(2), April 1989.

[57] J Hughes and J O'Donnel. Expressing and reasoning ab out non-deterministic functional

programs. In K Da vis and J Hughes, editors, F unctional Pr o gr amming: Pr o c e e dings of the

1989 Glasgow Workshop, 21-23 A ugust 1989, F r aserbur gh, Sc otland , Springer W orkshops

in Computing. Springer V erlag, July 1990.

[58] R J M Hughes. The Design and Implementation of Pr o gr amming L anguages . PhD thesis,

Oxford Univ ersit y , 1983.

[59] R J M Hughes. Bac kw ards analysis of functional programs. T ec hnical Rep ort 87/R3,

Dept. of Computing Science, Univ ersit y of Glasgo w, Marc h 1987.

[60] R J M Hughes. Abstract in terpretation of �rst-order p olymorphic functions. In Pr o c.

Workshop on Implementation of L azy F unctional L anguages, Asp enas . Programming

Metho dology Group, Chalmers Univ ersit y , Sw eden, 1988.

[61] R J M Hughes. Pro jections for p olymorphic strictness analysis. In Pr o c IFIP Confer enc e

on Cate gory The ory and Computer Scienc e, Manchester , LNCS. Springer V erlag, 1989.

BIBLIOGRAPHY 257

[62] S Hun t. PERs generalise pro jections for strictness analysis. In S L P eyton Jones, C K

Holst, and G Hutton, editors, F unctional Pr o gr amming: Pr o c e e dings of the 1990 Glasgow

Workshop, 13-15 A ugust 1990, Ul lap o ol, Sc otland , Springer W orkshops in Computing.

Springer V erlag, to b e published 1991.

[63] T Johnsson. The neu G-mac hine: An abstract mac hine for parallel graph reduction. In

1989 A CM Confer enc e on F unctional Pr o gr amming L anguages and Computer A r chite ctur e,

L ondon , 1989.

[64] G Jones. F actorising fourier for fastness. In F unctional Pr o gr amming: Pr o c e e dings of

the 1989 Glasgow Workshop, 21-23 A ugust 1989, F r aserbur gh, Sc otland . Springer V erlag,

August 1989.

[65] S B Jones. In v estigation of p erformance ac hiev able with highly concurren t in terpretations

of functional programs. Final Rep ort, ESPIRIT pro ject 302, Octob er 1987.

[66] M B Josephs. F unctional Pr o gr amming With Side-E�e cts . PhD thesis, Oxford Univ erist y ,

June 1986.

[67] A H Karp and H P Flatt. Measuring parallel pro cessor p erformance. CA CM , 33(5):539{

543, Ma y 1990.

[68] A H Karp and R G Babb I I. A comparison of 12 parallel Fortran dialects. IEEE Softwar e ,

5(5):52{67, Septem b er 1988.

[69] R M Karp and Y Zhang. A randomized parallel branc h-and-b ound pro cedure. In Pr o c.

20th A CM Symp osium on the The ory of Computing , 1988.

[70] P Kelly . F unctional Pr o gr amming for L o osely-Couple d Multipr o c essors . PhD thesis, Im-

p erial College of Science and T ec hnology , 1988.

[71] H Kingdon, D R Lester, and G L Burn. A transputer-based HDG-mac hine. to app e ar in

The Computer Journal, Sp e cial Issue on Par al lelism , 1991.

[72] E Knapp. An exercise in the formal deriv ation of parallel programs: Maxim um
o ws in

graphs. A CM T r ansactions on Pr o gr amming L anguages and Systems , 12(2):203{22 3, 1990.

[73] T en-Hw ang Lai and S Sahni. Anomalies in parallel branc h-and-b ound algorithms. CA CM ,

27(6):594{602 , June 1984.

[74] D LeM � eta y er. Mec hanical analysis of program complexit y . A CM SIGPLAN Symp osium

on Pr o gr amming L anguages and Pr o gr amming Envir onments , 20(7), 1985.

[75] INMOS Limited. Oc c am Pr o gr amming Manual . Pren tice Hall In ternational, 1984.

[76] G Malcolm. Homomorphisms and promotabilit y . Lecture notes from the In ternational

Summer Sc ho ol on Constructiv e Algorithmics, Ameland, Holland, Septem b er 1989.

[77] G Marino and G Succi. Data structures for the parallel execution of functional languages.

In E Odijk, M Rem, and J C Syre, editors, LNCS 365-6 P ARLE, Eindhoven, The Nether-

lands , pages 346{356. Springer V erlag, 1989.

[78] D McBurney and M R Sleep. T ransputer-based exp erimen ts with the ZAPP arc hitecture.

T ec hnical Rep ort SYS-C86-10, Univ ersit y of East Anglia, No v em b er 1986.

BIBLIOGRAPHY 258

[79] G P McKeo wn, V J Ra yw ard-Smith, and H J T urpin. Branc h-and-b ound as a higher-order

function. T ec hnical rep ort, Sc ho ol of Information Systems, Univ ersit y of East Anglia,

Norwic h, 1990.

[80] L Meertens. Algorithmics { to w ards programming as a mathematical activit y . In J W

deBakk er, M Hazewink el, and L K Lenstra, editors, CWI Symp osium on Mathematics and

Computer Scienc e, V ol.1 , pages 289{334. CWI monographs, North-Holland, 1986.

[81] L Meertens. Lecture notes on the generic theory of binary structures. Lecture notes

from the In ternational Summer Sc ho ol on Constructiv e Algorithmics, Ameland, Holland,

Septem b er 1989.

[82] R Milner. Communic ation and Concurr ency . Pren tice Hall In ternational, 1989.

[83] Z G Mou and P Hudak. An algebraic mo del for divide and conquer and its parallelism.

The Journal of Sup er c omputing , 2:257{258, 1988.

[84] R S Nikhil, K Pingali, and Arvind. Id Nouv eau. T ec hnical Rep ort memo 265, Computa-

tional Structures Group, Lab oratory for Computer Science, MIT, July 1986.

[85] J T O'Donnell. F unctional microprogramming for a data parallel arc hitecture. In C Hall,

J Hughes, and J O'Donnell, editors, Pr o c e e dings of the 1988 Glasgow Workshop on F unc-

tional Pr o gr amming, A ugust 2-5, 1988, R othesay, Isle of Bute, Sc otland . Researc h rep ort

89/R4, Computing Science Dept. Univ ersit y of Glasgo w, F ebruary 1989.

[86] A Ohori, P Buneman, and V Breazu-T annen. Database programming in Mac hia v elli {

A p olymorphic language with static t yp e inference. T ec hnical rep ort, Dept. Computer

Science and Information Science, Univ ersit y of P ennsylv ania, F ebruary 1989.

[87] A S P artridge. Dynamic Asp e cts of Distribute d Gr aph R e duction . PhD thesis, Univ ersit y

of T asmania, Jan uary 1990.

[88] S L P eyton Jones. The Implementation of F unctional Pr o gr amming L anguages . Pren tice

Hall In ternational, 1987.

[89] S L P eyton Jones. The Implementation of F unctional Pr o gr amming L anguages , c hapter

23: The Pragmatics of Graph Reduction. Pren tice Hall In ternational, 1987.

[90] S L P eyton Jones. FLIC { A functional language in termediate co de. SIGPLAN Notic es ,

23(8), 1988.

[91] S L P eyton Jones. P arallel implemen tations of functional programming languages. Com-

puter Journal , 32(2):175{186 , April 1989.

[92] S L P eyton Jones et al. GRIP { A high p erformance arc hitecture for parallel graph

reduction. In 1987 A CM Confer enc e on F unctional Pr o gr amming L anguages and Computer

A r chite ctur e, Portland . Springer V erlag LNCS 274, Septem b er 1987.

[93] M J Quinn. Designing E�cient A lgorithms for Par al lel Computers . McGra w-Hill In ter-

national, 1987.

[94] F Rabhi and G Manson. Using complexit y functions to con trol parallelism in functional

programs. Researc h rep ort CS-90-1, Dept. Computer Science, The Univ ersit y of She�eld,

Jan uary 1990.

BIBLIOGRAPHY 259

[95] S Rank a, Y W on, and S Sahni. Programming a h yp ercub e m ulticomputer. IEEE Softwar e ,

5(5):69{77, Septem b er 1988.

[96] G A Ringw o o d. P arlog86 and the dining logicians. CA CM , 31(1):10{25, Jan uary 1988.

[97] M Rosendahl. Automatic complexit y analysis. In 1989 A CM Confer enc e on F unctional

Pr o gr amming L anguages and Computer A r chite ctur e, L ondon , pages 144{156, 1989.

[98] D Sands. Complexit y analysis for a higher order language. T ec hnical Rep ort DOC 88/14,

Dept. of Computing, Imp erial College of Science and T ec hnology , 1988.

[99] D Sands. Complexit y analysis for a lazy higher order language. In K Da vis and J Hughes,

editors, F unctional Pr o gr amming: Pr o c e e dings of the 1989 Glasgow Workshop, 21-23 A u-

gust 1989, F r aserbur gh, Sc otland , Springer W orkshops in Computing. Springer V erlag, July

1990.

[100] V Sark ar. Partitioning and sche duling p ar al lel pr o gr ams for multipr o c essors . MIT Press,

1989.

[101] V Sark ar and J Hennessy . P artitioning parallel programs for macro-data
o w. In A CM Con-

fer enc e on Lisp and F unctional Pr o gr amming , pages 202{211, Cam bridge, Massac h usetts,

August 1986.

[102] D Sc hmidt. Denotational Semantics: A Metho dolo gy for L anguage Development , c hapter

Nondeterminism and Concurrency . Allyn and Bacon, Newton, Massac h usetts, 1986.

[103] R Sedgewic k. A lgorithms , pages 85{86. Addison-W esley , 1983.

[104] M Sheeran. Describing hardw are algorithms in Rub y . In F unctional Pr o gr amming:

Pr o c e e dings of the 1989 Glasgow Workshop, 21-23 A ugust 1989, F r aserbur gh, Sc otland .

Springer V erlag, August 1989.

[105] D R Smith. Applications of a strategy for designing divide-and-conquer algorithms. Scienc e

of Computer Pr o gr amming , 8:213{229, 1987.

[106] D F Stanat and D F McAllister. Discr ete Mathematics in Computer Scienc e , pages 248{

256. Pren tice Hall In ternational, 1977.

[107] G L Steele and W D Hillis. Connection Mac hine Lisp: Fine-grained parallel sym b olic

pro cessing. In A CM Confer enc e on Lisp and F unctional Pr o gr amming , pages 279{297,

August 1986.

[108] P T rinder and P W adler. Impro ving list comprehension database queries. T ec hnical Rep ort

CSC 90/R4, Dept. of Computing Science, Univ ersit y of Glasgo w, Jan uary 1990.

[109] P W T rinder. A functional datab ase . PhD thesis, Oxford Univ ersit y , Decem b er 1989.

[110] D A T urner. F unctional programs as executable sp eci�cations. In C A R Hoare and

J C Shepherdson, editors, Mathematic al L o gic and Pr o gr amming L anguages , pages 29{54.

Pren tice Hall In ternational, 1985.

[111] M C J D v an Eek elen, M J Plasmeijer, and J E W Smetsers. P arallel graph rewriting

on lo osely coupled mac hine arc hitectures. T ec hnical rep ort, F acult y of Mathematics and

Computer Science, Univ ersit y of Nijmegen, The Netherlands, 1990.

BIBLIOGRAPHY 260

[112] W G V ree. Design c onsider ations for a p ar al lel r e duction machine . PhD thesis, Univ ersit y

of Amsterdam, 1989.

[113] P W adler. A new arra y op eration. In Gr aph R e duction Workshop. Santa F � e , pages 328{

335. Springer-V erlag, No v em b er 1986.

[114] P W adler. List comprehensions. In S L P eyton Jones, editor, The Implementation of

F unctional Pr o gr amming L anguages . Pren tice Hall In ternational, 1987.

[115] P W adler. Comprehending monads. In 1990 A CM Confer enc e on Lisp and F unctional

Pr o gr amming, Nic e , June 1990.

[116] P W adler. Linear t yp es can c hange the w orld! In IFIP TC 2 Working Confer enc e on

Pr o gr amming Conc epts and Metho ds, Isr ael , 1990.

[117] P W adler and R J M Hughes. Pro jections for strictness analysis. In 1987 A CM Confer enc e

on F unctional Pr o gr amming L anguages and Computer A r chite ctur e, Portland , pages 385{

407. Springer V erlag LNCS 274, Septem b er 1987.

[118] P W atson and I W atson. Ev aluating functional programs on the Flagship mac hine. In

1987 A CM Confer enc e on F unctional Pr o gr amming L anguages and Computer A r chite ctur e,

Portland , pages 80{97. Springer V erlag LNCS 274, Septem b er 1987.

[119] B W egreit. Mec hnical program analysis. CA CM , 18(9):528{53 9, 1975.

[120] D A Wise. Matrix algebra and applicativ e m ultiprogramming. In 1987 A CM Confer enc e

on F unctional Pr o gr amming L anguages and Computer A r chite ctur e, Portland , pages 134{

153. Springer V erlag LNCS 274, Septem b er 1987.

[121] K Zink and S Tighe. Engines as a metho d of con trolling sp eculativ e ev aluation. T ec hnical

rep ort, MCC, 1989.

