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1 IntroductionIn many situations, we are forced to choose between di�erent alternatives without knowledgeof each alternative's future worth. Our choices must be made in an on-line manner. However,we often have partial information about the future. For example, we may know that with highprobability, certain statistical properties are satis�ed. When making choices to maximize ourfuture gain, it makes sense to incorporate this information into these decisions. Similarly, on-linealgorithms that solve these types of problems can gain signi�cantly by including some knowledgeof the future. In the areas of �nance, economics, and operations research, we �nd examples ofthis kind of decision process[8, 16, 21]. In this paper, we examine the two-way currency tradingproblem against a statistical adversary[17].1.1 Techniques for analyzing on-line algorithmsThe analysis of on-line algorithms has typically involved either distributional analysis or competi-tive analysis. In the former approach, the input is assumed to conform to a \natural" or \typical"probability distribution. Based upon this distribution, one seeks strategies with good average caseperformance. In the latter approach, the input is generated by an adversary. In this case, oneseeks to design on-line algorithms which compare favorably against the optimal o�-line algorithm.In practice, the distributional approach often does not re
ect the nature of the input. Inaddition, even if the input in question follows a particular �xed (or stable) probability distribution,it is often di�cult, to identify or construct a distributional model that accurately re
ects the truedistributions. For instance, a great deal of e�ort has been invested in an attempt to identifyprobability distributions of currency exchange rates. However, there is still no evidence that sucha distribution exists. A wide variety of di�erent opinions about the existence and/or nature ofsuch distributions can be found in (e.g. [8, 9, 20, 15, 16, 18]).The approach of competitive analysis �rst appeared in works on bin packing in the 1970's[2, 11, 12, 22], and then it was explicitly formulated in the 1980's [5, 7, 13, 19]. The idea of com-petitive analysis is to consider input sequences that are generated by an adversary and to measureperformance with respect to the optimal o�-line algorithm using the same input sequence. Underthis model, one avoids making assumptions required by the distributional approach. Instead,the assumption is made that the input will be strictly adversarial. Speci�cally, the input se-quence is chosen to minimize the algorithm's overall performance relative to the optimal o�-linealgorithm. Few restrictions are typically placed on the adversary other than possible limitationson the adversary's knowledge of the on-line algorithm's actions (e.g. important for randomizedalgorithms). Such a powerful adversary often does not re
ect the nature of the input to manypractical problems.Because the input to most problems lies somewhere between the pessimistic approach of com-petitive analysis and the more optimistic distributional approach, a number of other approacheswere introducted [4, 6, 14, 17, 23]. In this paper we focus on Raghavan's statistical adversaryapproach[17]. Here, the underlying idea is to limit the power of the adversary in some way depen-dent on the particular problem. Namely, the adversary is required to generate input sequencessatisfying certain (statistical) properties. For example, the adversary may be required to main-tain certain bounds on the number of requests of a certain type, or to produce input sequences1



of which certain subsequences must satisfy particular constraints. The premise of this approachis that input sequences arising in reality exhibit and conform to certain long-term statistics. Theidea behind this approach is to eliminate the possibility of extremely bad input sequences, whichdo not occur frequently in reality. The hope is to show that one can place limited and realisticrestrictions on an adversary which allows the on-line algorithm to perform well.An important issue regarding the statistical adversary is that of whether the on-line playershould be allowed to make use of the statistical parameters associated with the adversary. Onone hand, it would be more elegant to seek on-line algorithms that perform optimally (or well)for all possible choices of the parameters and use these parameters only for the analysis (i.e. toexpress the performance in terms of these parameters). On the other hand, we may allow ouralgorithms to use these parameters for the purpose of obtaining better performance. We referto algorithms of the former type as universal algorithms, and algorithms of the latter type asnon-universal algorithms. Certainly, universal algorithms are more desirable because they do notassume knowledge of the parameters. However, in the universal approach, the performance of twodi�erent algorithms are likely to depend di�erently upon the parameters. In order to decide whichalgorithm to use, one needs to judge, perhaps by conducting statistical tests, which algorithm willperform better under the particular circumstances. By doing so, one is transforming the twouniversal algorithms into a single non-universal algorithm. In addition, since a non-universalalgorithm is tuned to the parameters, it can be designed to perform signi�cantly better than acorresponding universal algorithm.In this paper we use the framework of the statistical adversary to analyze the two-way tradinggame that is discussed in [10]. Speci�cally, we consider a discrete variant of this problem in whichthe on-line player begins with some money, say dollars, and is given an opportunity to invest inanother currency, say yen, for some period of time. The player would like to maximize his returnsduring this time by taking advantage of 
uctuations in the exchange rates by converting back andforth between dollars and yen. The player assumes that a statistical adversary is controlling thechange in exchange rates. We analyze this problem for adversaries with both weak and strongrestrictions.This problem was �rst analyzed using traditional competitive analysis in [10]. The authorspresent a competitive on-line strategy. However, though this strategy is competitive, it is possibleto experience losses although the o�-line strategy might be pro�table.1.2 Summary of ResultsWe begin by considering a statistical adversary that is forced to generate sequences of exchangerates of a known length, say n, such that the optimal o�-line return on these sequences is largerthan a known quantity, �. Such a constraint, de�ned by the pair, (n;�), is a valid statisticalfeature since it can be learned from historical sequences of exchange rates. Note that the adversaryis completely unrestricted in his choice of the number and size of unfavorable transactions.� We present a general scheme that identi�es optimal on-line strategies against statisticaladversaries constrained by such (and similar) features. Against each particular adversary,this scheme easily yields the optimal on-line strategy in the form of a dynamic programin terms of the statistical parameters. For usage, one can then e�ciently pre-compute the2



on-line algorithm for arbitrary choices of these parameters.� We identify the optimal on-line strategy relative to the above adversary and show that itis money-making as long as � > 1. Unfortunately, it is shown that this strategy can onlyguarantee a very small fraction of the optimal o�-line pro�t.� Next we consider stronger adversaries that do not provide the player with either the valueof n or the value of �. Against these adversaries, we show that it is not possible to designa money-making strategy.� In contrast, we then consider a weaker adversary in which the player has knowledge of theoverall movement of the exchange rates during the n time periods and the factor � > 1 bywhich the exchange rate changes (either up or down) during each time period. We identifyand analyze the corresponding optimal on-line strategy. This strategy exhibits some strikingproperties.{ Aside from being money-making, this strategy always outperforms the optimal o�-linebuy-and-hold strategy whereby during the initial transaction period, the buy-and-holdstrategy either converts all dollars to yen or does not invest at all.{ When the market is stable and active (i.e. there are 
uctuations but the upwardand downward 
uctuations tend to balance each other with respect to the tradingperiod), this strategy yields exponential pro�ts (in n), even if the market has a slightunfavorable trend. This is somewhat surprising. Intuitively, it is reasonable to believethat one should avoid any �nancial transactions during stable periods (in comparison,the buy-and-hold strategy will not make any pro�t in this situation).Based on preliminary experimental results, it appears that this weak adversarial model mayprovide a practical approach to investing strategies.The rest of this paper is organized as follows. In x 2 we formally de�ne the problem. In x 3 weidentify the optimal money-making strategy when the adversary supplies the player with (n;�)and then derive some of its properties. In x 4 we show that by strengthening the adversary weeliminate the possibility of a money-making strategy. Conversely, in x 5 we identify the optimalstrategy against a considerably weaker adversary. This strategy can obtain exponential return,even when the market exhibits a slightly unfavorable trend.2 De�nitions and notationIn this paper we follow the statistical adversary framework to analyze the two-way trading gamethat is also discussed in [10]. Speci�cally, we consider a discrete variant of this problem in whichthe on-line player is given D0 dollars, and is given the job of maximizing his return over a timeperiod of n days by exchanging the money back and forth to/from yen.With these two currencies,there is an associated exchange rate sequence E = e1; e2; : : : ; where ei, the exchange rate for theith day, equals the number of yen that can be purchased for one dollar on that day. The player isrequired to �nish the game with all the money converted back to the initial currency. We assume3



that there are no transaction fees. Our new assumption is that the exchange rate sequences aregenerated by a statistical adversary.For any strategy S and �nite exchange rate sequence E, let RS(E) denote the return of S withthe sequence E when it begins the game with D0 dollars. Let OPT denote the optimal o�-linetwo-way trading strategy. Notice that for a given exchange rate sequence, E, OPT will alwaysconvert all available dollars to yen at all exchange rates which are local maxima in E, and allavailable yen back to dollars at all exchange rates which are local minima, with the exception thatthe last transaction must be yen to dollars. We say that a trading strategy, S, is a money-makingstrategy if for any exchange rate sequence E with ROPT (E) > 1, then RS(E) > 1, as well.3 Optimal trading strategies against the statistical adversaryWe can specify trading strategies in a \normal form" as follows. Every day, the player mightwish to convert some dollars to yen and/or some yen to dollars. It should be clear that only onetransaction (i.e. dollars to yen or yen to dollars) is su�cient. It is convenient to conceptualizeevery such transaction as if the strategy �rst converted all yen back to dollars and then converteda fraction, s, of the total available dollars to yen. Any such transaction can be speci�ed by onenumber, s 2 [0; 1]. In this way, we can specify the activity of any conversion strategy by thesequence s1; s2; : : : ; sn where for each day, i, si is the fraction of dollars that should be convertedto yen, immediately after all available yen are converted to dollars. By the rules of our game, snmust be zero.Suppose that the on-line player knows �, the return of the optimal o�-line player for an n-daygame. We now derive the optimal on-line strategy for any n � 2 number of days. To derive theoptimal strategy we require the following observation. Consider Figure 1, which illustrates anexchange rate sequence of 10 days (yen per dollar). First, notice that the optimal (o�-line) returnis � = �e2e5��e6e7��e8e9� = �e2e3e4e3e4e5��e6e7��e8e9�In general, it can be shown that for any n-day sequence,� = n�1Yi=1 max f1; ei=ei+1g :Any conversion strategy \realizes" its dollar pro�t only on downward runs of the exchange rate
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determine exactly what the optimal o�-line pro�t would be for an (n� 1)-day sequence startingon that day { that is, if the o�-line player were to start a \new game" consisting of n � 1 days.We illustrate this by referring to Figure 1. Since on day 2 we are not in a downward run withrespect to the previous day, the optimal o�-line return must remain at � if a new game is to beginat that moment. On the other hand, on day 3 (knowing only the �rst three rates) we know thatthe o�-line player has just realized a factor e2=e3 of his total dollar return, so the optimal o�-linereturn must be �0 = �= e2e3 if a new game is to be begun at that moment. In this way, the on-lineplayer knows, after each exchange rate is revealed, exactly what the optimal o�-line return wouldbe if a new game were to be started that day.This observation enables a dynamic programming derivation of the optimal on-line strategyusing the Principle of Optimality [3]. In our context it can be stated as follows: the optimal on-line strategy has the property that, whatever the initial rate and the initial choice of how manydollars to trade, the remaining trades must constitute an optimal on-line strategy with regard tothe state resulting from the �rst trade. More formally, for n � 2, let Rn(�; e1) denote the returnof the optimal on-line strategy for an n-day game, given that the �rst exchange rate is e1 and thatthe optimal o�-line return for the entire period is �. Therefore, when exchange rates are chosenby an adversary who tries to minimize the optimal on-line return, we haveRn(�; e1) = maxfraction of dol-lars s1 to trade min2nd dayrate e2 � total worth in dol-lars after 2nd dayrate is revealed � �Rn�1 (updated �; e2)= max0�s1�1 mine2� e1� ��e1e2 � 1� s1 + 1� �Rn�1�min��; �e2e1 � ; e2� (1)where the lower bound, e1� , on possible second day rates, e2, is due to the assumption that thetotal o�-line return is �. In addition, a boundary condition can easily obtained; namely,R2(�; �) = �: (2)Thus, (1) and (2) identify the optimal on-line strategy, which we denote by S�. The �rst trans-action that S� performs is the purchase of yen with a fraction s�1 of its dollars, where s�1 is thequantity which maximizes the right hand side of (1). The proof of the following lemma appearsin the appendix.Lemma 1 S� is a money-making strategy.The task of obtaining a closed form expression for (1) seems to be rather hard. The followinglemma provides an upper bound on the return of S� for any � and n. The proof of the lemmaappears in the appendix.Lemma 2 Rn(�; �) � 11� (1� 1�)n�1The interpretation of Lemma 2 is rather pessimistic. It can be shown that for large �,�1� 1��n�1 = �1� 1���n�1� � e�n�1�Rn(�; �) � 11� e�n�1�5



Also, if � = !(n), then e�n�1� � 1� n�1� , and Rn(�; �) � �n�1 . If � = �(n), then Rn(�; �) = 11�ec .For � = o(n), Rn(�; �) approaches 1.4 Games against stronger adversariesOne can think of several meaningful ways to strengthen the original adversary. Here we considertwo stronger adversaries which correspond to the cases where the on-line player does not know �or does not know n a priori. In either case we prove the nonexistence of a money-making strategyfor non-degenerate strategies. A non-degenerate strategy is one that makes at least one non-zerotransaction. The proof of the following lemmas appear in the appendix.Lemma 3 For any n > 2, and any non-degenerate deterministic on-line strategy S that onlyknows n in advance there is an exchange rate sequence, E = e1; e2; : : : ; en for which RS(E) < 1and ROPT (E) > 1, even if S also knows in advance that there is a positive o�-line pro�t.Lemma 4 For any � > 1, and any non-degenerate deterministic on-line strategy S that onlyknows � in advance, there exists an exchange rate sequence, E = e1; e2; : : : for which RS(E) < 1and ROPT (E) > 1.5 Games against weaker adversariesIn this section we impose more constraints on the adversary. In each of the following examples,the constraints may be estimated from relevant past sequences using simple statistical analysis.� maximum daily 
uctuation ratio: a number � > 1 such that for every day i, the next day'srate, ei+1, is in [ei�; ei�]. Although we measure the time di�erence between two successiveexchange rates by \days", these time di�erences may be of any size (seconds, minutes, etc.),and, in fact, they need not be of a �xed size.� minimum and maximum bounds on exchange rates: numbers, m and M , such that allexchange rates are within the interval [m;M ].� maximum run length: a number � such that there is no monotone increasing (decreasing)subsequence of consecutive exchange rates of length longer than �.� number of extrema points: a number k such that the number of minima and maxima in theexchange rate sequence is k.� statistical functions of exchange rate sequences: \standard" statistical functions like meanand standard deviation may be considered.It is possible to incorporate any of the above constraints in (1) to yield an optimal on-line strategyagainst the corresponding, more constrained adversary. In each case, we have to replace thebounding interval for possible choices of e2 which was originally [ e1� ;1). Intuitively, by includingmore constraints, we should obtain better performance. The appeal of this scheme is that theusers of our strategies may choose their own set of statistical features and obtain optimal on-lineperformance against an adversary that re
ects \�nancial nature" according to their own beliefs.6



Using our scheme, we now derive and analyze the optimal strategy against a weak adversarythat is restricted by a statistical feature which is, in a sense, a hybrid of the (n;�) feature andthe maximum daily 
uctuation ratio as discussed above. To motivate the use of this new feature,let us �rst discuss the limitations of the previous model (in which the feature (n;�) yielded thestrategy S�). In this model, the on-line player is forced to invest very little on most days, since theadversary can eliminate any day's investment by raising the rates arbitrarily high. By imposingadditional features such as the maximum 
uctuation ratio or the number of extrema points, wecan reduce these kinds of unrealistic threats. It is possible to incorporate the (n;�) feature andthe maximum 
uctuation ratio feature into a single feature as follows.The parameters of this new statistical feature are (�;m; n) where � represents a �xed ratiobetween any two successive exchange rates, m denotes the number of downward changes, and nis the total number of changes. Since each downward change in the exchange rate correspondsto a realization of dollar pro�t, we know that for each exchange rate sequence conforming to(�;m; n), the optimal o�-line pro�t is �m. Notice that n in this statistical feature measures thetotal number of the �-changes whereas in the the (n;�) feature, n is the length of the exchangerate sequence.Of course, in real exchange rate sequences, successive exchange rates do not maintain �xedratios. However, sometime after the exchange rate becomes some value v, the exchange rate willeventually change to a value greater than or equal to �v or a value less than or equal to v� . Ineither case, when this occurs, S�� moves into a new \day". Note that the days are no longer �xedmeasures of time, but instead change when the exchange rate changes by a desired amount.The advantage of considering such a �xed change is twofold: �rst, it simpli�es the analysis,and second, it is sometimes very useful from a practical point of view to �lter out negligibletransactions that correspond to miniscule changes. For instance, by choosing a su�ciently large�, one may \�lter out" some of the e�ect of spreads1. Note that choosing � too large can decreasereturns as well; S�� may ignore pro�table 
uctuations of size less than �.We assume that the on-line player knows (�;m; n). The knowledge of this triplet is of sig-ni�cant value. In fact, for sequences conforming to (�;m; n), we expect the exchange rate tochange at a rate of �2mn �1. Hence, even knowledge of the ratio mn may be extremely valuable asit represents the trend during the period in question. Given the knowledge of a particular trend(either downward or upward) one can use standard techniques (via the use of future contracts) toguarantee the pro�t of the buy-and-hold strategy. Moreover, using standard hedging techniques(via put and call options) one does not need to know the direction of the trend and can guaranteethe by-and-hold pro�t corresponding to one direction and hedge against any risk correspondingto the other direction. Hence, of particular interest is the case m = 12n in which exactly half ofthe changes are upward and half the changes are downward. If this is the case, we say that theexchange rate is stable and active.Let R�(m;n) be the optimal on-line return with parameters �, m, and n. When the on-lineplayer invests s, his return is either (�s + 1 � s)R�(m � 1; n � 1) or ( s� + 1 � s)R�(m;n � 1),which, respectively, correspond to a downward change and an upward change. The adversary willchoose the minimum of these two values. Hence, the following recurrence identi�es the optimal1A spread is the di�erence between the bid and ask prices of a certain commodity and re
ects \transaction fees".7



on-line strategy which we call S��.R�(m;n) = max0�s�1min�(�s+ 1� s) �R�(m� 1; n� 1); ( s� + 1� s) �R�(m;n� 1)� ; (3)R�(n; n) = �n;R�(0; n) = 15.1 Some properties of S��We now derive some interesting properties of the strategy S��. First, notice that the left operandof the \min" in (3) is increasing with s while the right operand is decreasing with s. Hence, theoptimal strategy sets s so that (�s+1� s) �R�(m� 1; n� 1) = ( s� +1� s) �R�(m;n� 1). Solvingfor s, s = R�(m;n� 1)� R�(m� 1; n� 1)(�� 1) �R�(m� 1; n� 1)� ( 1� � 1) �R�(m� 1; n� 1)Substituting for s, we obtainR�(m;n) =  (�� 1) � (R�(m;n� 1)� R�(m� 1; n� 1))(�� 1) �R�(m� 1; n� 1) + ��1� �R�(m;n� 1) + 1! �R�(m� 1; n� 1)= �+1� R�(m;n� 1) �R�(m� 1; n� 1)R�(m� 1; n� 1) + 1�R�(m� 1; n� 1)Setting R�1� (m;n) def= 1R�(m;n) and inverting both sides,R�1� (m;n) = ��+ 1R�1� (m;n� 1) + 1�+ 1R�1� (m� 1; n� 1) (4)Set � def= 1�+1 , and let B(k;n; p) def= Pki=0 �ni�pi(1� p)n�i, the partial binomial sum. The followinglemma (whose proof appears in the appendix), provides a solution to (4).Lemma 5 R�1� (cn; n) = B(n(1� c)� 1;n� 1; 1� �) + �n(1�2c)B(cn� 1;n� 1; 1� �)Using the result of Lemma 5, the next lemma characterizes the performance of S��. The proofof the following lemma appears in the appendix.Lemma 6 For m = cn with c 2 (0; 1), the following asymptotic relations hold.� If 0 � c � �, then R�(cn; n)! 1.� If � < c � 12 , then R�(cn; n)! e
(n).� If 12 < c < 1� �, then R�(cn; n)! �n(2c�1)e
(n)� If 1� � � c � 1, then R�(cn; n)! �n(2c�1).The interpretation of Lemma 6 is quite surprising. Consider the behavior of the optimal buy-and-hold strategy. Buy-and-hold will invest all its capital when c > 12 . On the other hand, whenc � 12 it will avoid any transaction. Hence, the return is 1 for c � 12 , and �n(2c�1) for c > 12 . Inthe case where 0 � c � � or 1 � � � c � 1, S�� asymptotically performs the same as buy-and-hold. However, for � < c < 1 � �, S�� performs exponentially better. In particular, for c = 12 ,8



Figure 2: S�� vs. buy-and-hold as c varies (� = 1:01 and n = 500)buy-and-hold will return 1, while S�� yields exponential return. Note that in the case � < c < 12 ,the market is moving unfavorably yet the return is exponential in n. The relative advantage ofS�� over buy-and-hold is the greatest when the market is perfectly stable. This fact is illustratedin the graph of Figure 2.5.2 Implementation and experimental notesBefore running S�� on real data, one must set the parameters n;m, and �. � may be chosen tocapture \signi�cant" changes in the exchange rate sequence. (e.g. one may choose su�cientlylarge � to �lter out \insigni�cant" 
uctuations). For a particular choice of n and �, the on-lineplayer can chooses a value for m according to the player's beliefs, analysis (and risk aversion). Inany case, it would be unrealistic to assume that one knows the exact value of m. Let m� be theactual number of pro�table changes among the n changes.In Figure 3 and Figure 4 , we plot the return of S�� as a function of m. At the point wherem = m�, S�� obtains a maximum. On one hand, if S�� underestimates m�, then S�� investsconservatively, since it \believes" that the number of remaining positive changes will be small.As m approaches zero, the return approaches 1, which is analogous to not trading at all. On theother hand, if S�� overestimates m�, S�� invests more \aggressively" as it expects the exchangerate to be favorable. As m approaches n, the return approaches �2m��n. This case is analogous toinvesting all the money on the �rst trading day and converting back on the last trading day (buy-and-hold). In both cases (overestimating and underestimating), we see exponential convergenceto the limit cases.The graph in Figure 3 illustrates the behavior when m� < 12n. In this case, the o�-line buy-and-hold strategy does not invest and receives a return of 1. S�� always exceeds the buy-and-holdreturn when it underestimates the value of m�. However, if S�� overestimates by too much, S��9



Figure 3: Returns of S�� as a function of m=n, m� < 12may yield a return less than 1. Therefore, if S�� expectsm� < 12n, then it is safe to underestimate.A similar phenomenon is shown in Figure 4 (m� > 12n). The o�-line buy-and-hold strategy willbuy in the initial period and sell in the �nal period. Its return will be �2m��n. If we incorrectlyoverestimate m�, we will always exceed the buy-and-hold return. However, if we underestimate,then our return may be less than the o�-line buy-and-hold return.Based upon these graphs, it would appear that we need very accurate predictions to be success-ful. If we incorrectly estimatem�, we can get returns that are worse than the o�-line buy-and-hold.However, consider what it means for m� to be di�erent than m, where m is our estimate. Then,after n days, the exchange rate will di�er from our expectation by a factor of �(m�m�). It is nosurprise that if we experience an unanticipated expontential change in the exchange rate, thenthe algorithm (or any other algorithm) will perform poorly. Fortunately, actual exchange ratesequences rarely exhibit this behavior. In fact, the simple strategy where we assume m = 12nperforms fairly well on small samples of real data.S�� was tested on historical intra-day data for both US dollars vs. Japanese Yen and USdollars vs. German Marks. The intra-day data consisted of the reported exchange rate every10-120 seconds. Decision points were then inserted every time the rate changed by � (We usedvalues of � ranging from the minimum change to �ve times the minimum change). We thenran S�� on these exchange rate sequences and received very promising results. So far, the dataappears to conform to our model. Although the exchange rate changes frequently, the overalltrends have been quite stable. In a sample exchange rate sequence, the exchange rate changed by5-10 points 2 a minute. But, the total daily change was usually less than 50 points. At this time,our experimental results are too preliminary to be statistically sound.2A point is the smallest unit used to measure exchange rates.10
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AppendixProof of Lemma 1We prove by induction on n � 2 that if � > 1 then Rn(�; �) > 1. The base case, n = 2, clearlyholds.Induction step: Assume that � > 1. We divide the proof into three cases:� case (i) e1 = e2: then min f�;�e2=e1g = �, and Rn(�; e1) = Rn�1(�; e2). By the inductionhypothesis on n� 1 we have that Rn�1(�; e2) > 1.� case (ii) e1 < e2: here again, since e2=e1 > 1, min f�;�e2=e1g = � and by the inductionhypothesis, Rn�1(�; e2) > 1. Let us write Rn�1(�; e2) = 1 + " where " > 0. Even thoughe1=e2 � 1 < 0 it is clear that by choosing a su�ciently small s1, the on-line player canguarantee that Rn > 1. More speci�cally, we shall show that for any choice of e2 > e1 andany choice of s1 < e2"(e2�e1)(1+") , Rn > 1. Let s1 = e2"(e2�e1)(1+") � � for some small positive �.Then, Rn(�; e1) � mine2>e1 ��e1e2 � 1� e2"(e2 � e1)(1 + ") � � + 1� � (1 + ")= mine2>e1�"� � � e1 � e2e2 + 1� � (1 + ")= mine2>e1(1 + ")2 + � � e2 � e1e2 � (1 + ")> (1 + ")2:� case (iii) e1 > e2: now for every positive fraction s1, (e1=e2 � 1)s1 + 1 > 1. If �e2=e1 > 1then by the induction hypothesis, Rn�1(�e2=e1; e2) > 1 as required. Otherwise, S� ceasesall activity from the second day onward, since it is known that no pro�t potential exists inthe remainder of the sequence. In any case, Rn�1 � 1, so Rn > 1.Thus, we have completed the proof.Proof of Lemma 2We begin by restricting the adversary to two possible moves. The adversary can either realizea pro�t � (the entire o�-line pro�t) or cause the investment to be a total loss (set e2 so highthat e1e2 s is negligible). Let Rn(�) be the optimal on-line return against this restricted adversary.When n = 2, R2(�) = �. In the case where the adversary realizes a pro�t �, the on-line playerreceives a return of s�+1� s. Since the entire o�-line pro�t is realized, the trading will stop. Inthe case where the adversary causes the on-line player to completely lose his previous investment,the on-line player will receive a return of (1� s)Rn�1(�). The amount he invested, s, is lost, buthe can still receive the optimal return on the remaining 1� s.The on-line player will set s to maximize his return, while the adversary will choose betweenhis two options to minimize the return. Therefore, the optimal return satis�es the followingRn(�; e1) = max0�s1�1min fs� + 1� s; (1� s)Rn�1(�)giii



Note that s� + 1� s is increasing in s while (1� s)Rn�1(�) is decreasing in s, so the on-lineplayer will choose s such that s�+ 1� s = (1� s)Rn�1(�).Solving for s, s = Rn�1(�)�Rn(�)Rn�1(�)It is not hard to see that 0 � Rn(�) � Rn�1(�), so 0 � s � 1.Substituting for s, we obtainRn(�; �) = (�� 1) (Rn�1(�)� Rn(�))Rn�1(�) + 1Rearranging terms, 1Rn(�) = 1� + �� 1�Rn�1(�)Let R�1n (�) def= 1Rn(�) . Thus, R�1n (�) = 1� + �� 1� R�1n�1(�):Solving this linear recurrence using the base case R�12 (�) = 1� , we obtainR�1n (�) = 1� �1� 1��n�1and thus, Rn(�) = 11� (1� 1�)n�1 : (5)Since (5) is the optimal on-line return against this restricted adversary, it must upper bound thereturn against the unrestricted adversary.Proof of Lemma 3Let n = 3. We show how the adversary can construct a sequence, E = e1; e2; e3 for whichRS(E) < 1 and ROPT (E) > 1. Let e1 be any positive real. If S does not purchase any yen onthe �rst day, then, since S is non-degenerate, it must buy some yen on the second day and theadversary can take e1 � e2 < e3. Clearly, ROPT (E) can be made arbitrarily large and RS(E) < 1.Therefore, assume that S trades s1 > 0 dollars on the �rst day (with rate e1). If s1 = 1, theadversary can take any e1 < e3 < e2 with a clear loss to S and a return of e2=e3 to OPT . Thus,assume that s1 < 1. Let � be any positive real such that � < s1. For any 0 < " < s1��1�s1 lete2 = s1e1(1 + ")s1(1 + ")� "� � ; (6)e3 = e2=(1 + ") (7)First, notice that since � < s1 and " < s1��1�s1 , e2 and e3 are positive and hence, well-de�nedexchange rates. Also, it is easy to see that e2 > e1. Therefore, to perform optimally from thisiv



stage onward, S must convert the remaining dollars to yen on the second day and all yen back todollars on the last day. Thus, RS(E) � s1e1 + (1� s1)e2e3 : (8)Substituting (6) and (7) for e2 and e3 in (8) respectively, it is not hard to verify that RS(E) � 1��.Clearly, ROPT (E) = e2=e3 = 1 + ".It is possible to extend this exchange rate sequence to any length n > 3. Moreover, one canshow that for larger n, the adversary can construct (more complicated) sequences for which theguaranteed o�-line pro�t is larger, while the on-line pro�t remains negative.Proof of Lemma 4We present a sketch. Fix any � > 1. The adversary presents to the on-line player a strictlymonotone increasing exchange rate sequence e1; e1�; e1�2; : : : where e1 is an arbitrary real. Leti be the �rst day for which si� < 1. There must be such a day (after at most d�e days) sinceotherwise it means that the on-line player spends an amount greater than 1=� every day for anin�nite number of days. Then, on the (i+ 1)st day the adversary drops the rates by a factor of�. Thus, the o�-line return is � and the on-line return is si < 1.Proof of Lemma 5Recall the initial conditions of S�� (3). For all n,R�1� (0; n) = 1;R�1� (n; n) = ��n:Intuitively, R�1� (m;n) has no meaning for m > n or m < 0. We now extend R�1� (m;n) tothese cases, while still satisfying both the recurrence and initial conditions.Let R�1� (m;n) = 1; m < 0 and R�1� (m;n) = �(n�2m); m > n. Note that for n = m, �(n�2m) =��n, so the two conditions combine to R�1� (m;n) = �(n�2m); m � nClaim: The extended R�1� (m;n) satis�es the recurrence and the initial conditions.Proof: By induction on n. For the base case, n = 1, we have R�1� (m; 1) = 1 for m � 0, andR�1� (m; 1) = �(1�2m) for m > 0. The initial conditions R�1� (0; 1) = 1 and R�1� (1; 1) = ��1 aresatis�ed. We assume the induction hypothesis for n� 1, and prove it for n.1. For m � 0, R�1� (m;n) = �� + 1R�1� (m;n� 1) + 1�+ 1R�1� (m� 1; n� 1)= �� + 1 � 1 + 1�+ 1 � 1= 12. For m � n, R�1� (m;n) = �� + 1R�1� (m;n� 1) + 1�+ 1R�1� (m� 1; n� 1)v



= �� + 1�n�1�2m + 1�+ 1 � �n�1�2m+2= 1� + 1(�n�2m + �n�2m+1)= �n�2m
111 α −1

α
−3

α −2m+1Figure 5: Directed graph showing the expansion of the recurrenceConsider the directed graph in Figure 5 . Each node is labeled (x; y) with the \root" labeled(m;n). The value stored at each node is R�1� (x; y).For node (x; y), x corresponds to the vertical height in the grid. \Leaf" nodes have height 1,and the \root" has height n. y labels the left-to-right diagonals. The rightmost diagonal is m,the diagonal immediately below is m � 1, etc. The left most diagonal (a single node) is labeledm� n + 1.For a node (x; y), its left child is (x � 1; y � 1) and its right child is (x; y � 1). To computeR�1� (x; y) from its children, we add 1�+1R�1� (x � 1; y � 1) (the contribution of the left child) to��+1R�1� (x; y � 1) (the contribution of the right child) (i.e. R�1� (x; y) = 1�+1R�1� (x � 1; y � 1) +��+1R�1� (x; y � 1)). Thus, we can consider each left branch to be weighed by 1�+1 and each rightbranch by ��+1 .If we expand the recurrence n � 1 times, we obtain an expression in R�1� (m; 1); R�1� (m �1; 1); R�1� (m� 2; 1); : : :R�1� (m� n + 1; 1). The number of times R�1� (m� k; 1) occurs is exactlythe number of paths from (m;n) to (m� k; 1), which is �n�1k �. In addition, each term is weighedby 1�+1 for each left branch and ��+1 for each right branch. Each path to (m� k; 1) has the samenumber of left and right moves, so the weight of each path is identical. Therefore,vi



R�1� (m;n) = Xleaf nodes[R�1� (x; y)] � [Number of paths] � [Weight of path]= n�1Xi=0 R�1� (m� n + 1 + i; 1) n� 1i !� ��+ 1�i � 1�+ 1�(n�1�i)= n�m�1Xi=0 1 �  n� 1i !( ��+ 1)i( 1�+ 1)(n�1�i)+ n�1Xi=n�m�(2n�2m�2i�1) n� 1i !( ��+ 1)i( 1�+ 1)(n�1�i)In the second sum, we substitute j for n� 1� i,R�1� (m;n) = n�m�1Xi=0  n� 1i !( ��+ 1)i( 1�+ 1)(n�1�i)+m�1Xj=0 �(2j�2m+1) n� 1j !( ��+ 1)(n�1�j)( 1�+ 1)j= n�m�1Xi=0  n� 1i !( ��+ 1)i( 1�+ 1)(n�1�i)+�(n�2m) m�1Xj=0  n� 1j !( ��+ 1)j( 1�+ 1)(n�1�j)Proof of Lemma 6Recall thatB(k;n; p) = kXi=0  nk!pi(1� p)n�iR�1� (m;n) = B((1� c)n� 1;n� 1; 1� �) + �(1�2c)nB(cn� 1;n� 1; 1� �)For the sake of brevity, de�neB1 = B((1� c)n� 1;n� 1; 1� �)B2 = B(cn � 1;n� 1; 1� �)To compute the upperbounds on B1 and B2, we make use of the following Cherno� bound [1]:Theorem 1 Let X1; � � � ; Xn be n mutually independent random variables withPr [Xi = 1] = pPr [Xi = 0] = 1� pvii



Let X = X1 + � � �+Xn. Then for a > 0,Pr [X < pn � a] < e�a2=2pnB(k;n; p) is simply the probability that at most k successes occur in a series of n Bernoullitrial and success probability p. We can use this Cherno� bound to bound B1 + �n(1�2c)B2. Weprovide bounds based on the value of c: By the theorem above, when c > �,B1 = B(n(1� c)� 1;n� 1; 1� �)< e�(n�1)2(c��)2=2(1��)(n�1)= e�(n�1)(c��)2=2(1��)= e�
(n)When c < � B1 = B(nc � 1;n� 1; �)> 1� e�(n�1)2(��c)2=2�(n�1)= 1� e�(n�1)(��c)2=2�= 1� e�
(n)When c < 1� � B2 = B(nc � 1;n� 1; 1� �)< e�(n�1)2(1���c)2=2(1��)(n�1)= e�(n�1)(1���c)2=2(1��)= e�
(n)When c > 1� � B2 = 1�B((1� c)n� 1;n� 1; �)> 1� e�(n�1)2(c�(1��))2=2�(n�1)= 1� e�(n�1)(c�(1��))2=2�= 1� e�
(n)We will need tighter bounds than the Cherno� bounds can provide in some of the case analysisbelow. The following theorem provides the necessary bounds. The following theorem can befound in [1]:Theorem 2 For any constants 1 � p > c � 0,B(cn;n; p) = cnXi=0  ni!pi(1� p)n�i= 2n(H(c)+o(1))pcn(1� p)(1�c)n= 2o(n)�pc�cn�1� p1� c�(1�c)nwhere H(c) = �c log c� (1� c) log(1� c) is the entropy function.viii



Using the above bounds we can now derive bounds on B1+ �n(1�2c)B2 for all values of 0 � c � 1.0 � c � �: In this case, B1 ! 1 as n becomes large. Because the entire sum is at most 1, and�n(1�2c)B2 is positive, B1 + �n(1�2c)B2 ! 1. Therefore, R�(m;n)! 1.� < c � 1=2: Here B1 is exponentially small. We wish to show the same for �n(1�2c)B2. Here wewill need the tight bound from Theorem 2.�n(1�2c)B2 = O(�n(1�2c)B(cn;n; 1� �))= 2o(n)�(1�2c)n�1� �c �cn� �1� c�(1�c)n= 2o(n) �1� ��c �cn� ��1� c�(1�c)n= 2o(n) ��c�cn�1� �1� c�(1�c)nTo determine that this function is exponentially small, we need only show that V (c; �) =��c �c �1��1�c�1�c < 1. First note that V (�; �) = 1. To complete the proof, we show thatV (c; �) is strictly decreasing as c increases beyond �. To do this we show that the derivativewith respect to c of ln(V (c; �)) is negative for these values of c.ln0(V (c; �)) = ln � � 1� ln c� ln(1� �) + ln(1� c) + 1= ln � � ln c� ln(1� �) + ln(1� c)Now, ln � � ln c � ln(1 � �) + ln(1 � c) < 0 () �c 1�c1�� < 1. But �c < 1 and 1�c1�� < 1 for� < c � 1=2. So B1 + �n(1�2c)B2 ! e�
(n).Therefore, R�(m;n)! e
(n)1=2 < c < 1� �: In this region, B2 is still exponentially small, so �n(1�2c)B2 is �n(1�2c)e�
(n). Weneed only show that B1 takes the same form. Consider �n(2c�1)B1. We make a substitutionof variables to show that this is exponentially small. Consider d = 1�c. Then �n(2c�1)B1 =�n(1�2d)B((1� d)� 1; n� 1; 1� �) for � < d < 1=2. This is precisely the function analyzedin the previous case, which we showed to be exponentially small. Thus, B1 + �n(1�2c)B2 !�n(1�2c)e�
(n). Therefore, R�(m;n)! �n(2c�1)e
(n).c � 1� �: B1 is exponentially small. B2 is moving exponentially close to 1, so B1+�n(1�2c)B2 !�n(1�2c). Therefore, R�(m;n)! �n(2c�1).
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