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Abstract

The distributional approach and competitive analysis have traditionally been
used for the design and analysis of on-line algorithms. The former assumes a
specific distribution on inputs, while the latter assumes inputs are chosen by an
unrestricted adversary. This paper employs the statistical adversary (recently
proposed by Raghavan) to analyze and design on-line algorithms for two-way
currency trading. The statistical adversary approach may be viewed as a hybrid
of the distributional approach and competitive analysis. By statistical adversary,
we mean an adversary that generates input sequences, where each sequence must
satisfy certain general statistical properties. The on-line algorithms presented in
this paper have some very attractive properties. For instance, the algorithms are
money-making; they are guaranteed to be profitable when the optimal off-line
algorithm is profitable. Previous on-line algorithms although “competitive”, can
lose money, even though the optimal off-line algorithm makes money. Against
a weak statistical adversary, our methods yield an algorithm that outperforms
the optimal off-line “buy-and-hold” strategy. Furthermore, it is guaranteed to
make a substantial profit when it is known that the market is active and stable
(i.e. there are fluctuations but the upward and downward fluctuations tend to
balance each other). In fact, our algorithm even makes money when the market
exhibits a slightly unfavorable trend.
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1 Introduction

In many situations, we are forced to choose between different alternatives without knowledge
of each alternative’s future worth. Our choices must be made in an on-line manner. However,
we often have partial information about the future. For example, we may know that with high
probability, certain statistical properties are satisfied. When making choices to maximize our
future gain, it makes sense to incorporate this information into these decisions. Similarly, on-line
algorithms that solve these types of problems can gain significantly by including some knowledge
of the future. In the areas of finance, economics, and operations research, we find examples of
this kind of decision process[8, 16, 21]. In this paper, we examine the two-way currency trading
problem against a statistical adversary[17].

1.1 Techniques for analyzing on-line algorithms

The analysis of on-line algorithms has typically involved either distributional analysis or competi-
tive analysis. In the former approach, the input is assumed to conform to a “natural” or “typical”
probability distribution. Based upon this distribution, one seeks strategies with good average case
performance. In the latter approach, the input is generated by an adversary. In this case, one
seeks to design on-line algorithms which compare favorably against the optimal off-line algorithm.

In practice, the distributional approach often does not reflect the nature of the input. In
addition, even if the input in question follows a particular fixed (or stable) probability distribution,
it is often difficult, to identify or construct a distributional model that accurately reflects the true
distributions. For instance, a great deal of effort has been invested in an attempt to identify
probability distributions of currency exchange rates. However, there is still no evidence that such
a distribution exists. A wide variety of different opinions about the existence and/or nature of
such distributions can be found in (e.g. [8, 9, 20, 15, 16, 18]).

The approach of competitive analysis first appeared in works on bin packing in the 1970’s
[2, 11, 12, 22], and then it was explicitly formulated in the 1980’s [5, 7, 13, 19]. The idea of com-
petitive analysis is to consider input sequences that are generated by an adversary and to measure
performance with respect to the optimal off-line algorithm using the same input sequence. Under
this model, one avoids making assumptions required by the distributional approach. Instead,
the assumption is made that the input will be strictly adversarial. Specifically, the input se-
quence is chosen to minimize the algorithm’s overall performance relative to the optimal off-line
algorithm. Few restrictions are typically placed on the adversary other than possible limitations
on the adversary’s knowledge of the on-line algorithm’s actions (e.g. important for randomized
algorithms). Such a powerful adversary often does not reflect the nature of the input to many
practical problems.

Because the input to most problems lies somewhere between the pessimistic approach of com-
petitive analysis and the more optimistic distributional approach, a number of other approaches
were introducted [4, 6, 14, 17, 23]. In this paper we focus on Raghavan’s statistical adversary
approach[17]. Here, the underlying idea is to limit the power of the adversary in some way depen-
dent on the particular problem. Namely, the adversary is required to generate input sequences
satisfying certain (statistical) properties. For example, the adversary may be required to main-
tain certain bounds on the number of requests of a certain type, or to produce input sequences



of which certain subsequences must satisfy particular constraints. The premise of this approach
is that input sequences arising in reality exhibit and conform to certain long-term statistics. The
idea behind this approach is to eliminate the possibility of extremely bad input sequences, which
do not occur frequently in reality. The hope is to show that one can place limited and realistic
restrictions on an adversary which allows the on-line algorithm to perform well.

An important issue regarding the statistical adversary is that of whether the on-line player
should be allowed to make use of the statistical parameters associated with the adversary. On
one hand, it would be more elegant to seek on-line algorithms that perform optimally (or well)
for all possible choices of the parameters and use these parameters only for the analysis (i.e. to
express the performance in terms of these parameters). On the other hand, we may allow our
algorithms to use these parameters for the purpose of obtaining better performance. We refer
to algorithms of the former type as universal algorithms, and algorithms of the latter type as
non-universal algorithms. Certainly, universal algorithms are more desirable because they do not
assume knowledge of the parameters. However, in the universal approach, the performance of two
different algorithms are likely to depend differently upon the parameters. In order to decide which
algorithm to use, one needs to judge, perhaps by conducting statistical tests, which algorithm will
perform better under the particular circumstances. By doing so, one is transforming the two
universal algorithms into a single non-universal algorithm. In addition, since a non-universal
algorithm is tuned to the parameters, it can be designed to perform significantly better than a
corresponding universal algorithm.

In this paper we use the framework of the statistical adversary to analyze the two-way trading
game that is discussed in [10]. Specifically, we consider a discrete variant of this problem in which
the on-line player begins with some money, say dollars, and is given an opportunity to invest in
another currency, say yen, for some period of time. The player would like to maximize his returns
during this time by taking advantage of fluctuations in the exchange rates by converting back and
forth between dollars and yen. The player assumes that a statistical adversary is controlling the
change in exchange rates. We analyze this problem for adversaries with both weak and strong
restrictions.

This problem was first analyzed using traditional competitive analysis in [10]. The authors
present a competitive on-line strategy. However, though this strategy is competitive, it is possible

to experience losses although the off-line strategy might be profitable.

1.2 Summary of Results

We begin by considering a statistical adversary that is forced to generate sequences of exchange
rates of a known length, say n, such that the optimal off-line return on these sequences is larger
than a known quantity, 1. Such a constraint, defined by the pair, (n,Il), is a valid statistical
feature since it can be learned from historical sequences of exchange rates. Note that the adversary
is completely unrestricted in his choice of the number and size of unfavorable transactions.

o We present a general scheme that identifies optimal on-line strategies against statistical
adversaries constrained by such (and similar) features. Against each particular adversary,
this scheme easily yields the optimal on-line strategy in the form of a dynamic program
in terms of the statistical parameters. For usage, one can then efficiently pre-compute the



on-line algorithm for arbitrary choices of these parameters.

o We identify the optimal on-line strategy relative to the above adversary and show that it
is money-making as long as Il > 1. Unfortunately, it is shown that this strategy can only
guarantee a very small fraction of the optimal off-line profit.

o Next we consider stronger adversaries that do not provide the player with either the value
of n or the value of II. Against these adversaries, we show that it is not possible to design
a money-making strategy.

e In contrast, we then consider a weaker adversary in which the player has knowledge of the
overall movement of the exchange rates during the n time periods and the factor @ > 1 by
which the exchange rate changes (either up or down) during each time period. We identify
and analyze the corresponding optimal on-line strategy. This strategy exhibits some striking
properties.

— Aside from being money-making, this strategy always outperforms the optimal off-line
buy-and-hold strategy whereby during the initial transaction period, the buy-and-hold
strategy either converts all dollars to yen or does not invest at all.

— When the market is stable and active (i.e. there are fluctuations but the upward
and downward fluctuations tend to balance each other with respect to the trading
period), this strategy vields exponential profits (in n), even if the market has a slight
unfavorable trend. This is somewhat surprising. Intuitively, it is reasonable to believe
that one should avoid any financial transactions during stable periods (in comparison,

the buy-and-hold strategy will not make any profit in this situation).

Based on preliminary experimental results, it appears that this weak adversarial model may
provide a practical approach to investing strategies.

The rest of this paper is organized as follows. In § 2 we formally define the problem. In § 3 we
identify the optimal money-making strategy when the adversary supplies the player with (n,II)
and then derive some of its properties. In § 4 we show that by strengthening the adversary we
eliminate the possibility of a money-making strategy. Conversely, in § 5 we identify the optimal
strategy against a considerably weaker adversary. This strategy can obtain exponential return,

even when the market exhibits a slightly unfavorable trend.

2 Definitions and notation

In this paper we follow the statistical adversary framework to analyze the two-way trading game
that is also discussed in [10]. Specifically, we consider a discrete variant of this problem in which
the on-line player is given Dy dollars, and is given the job of maximizing his return over a time
period of n days by exchanging the money back and forth to/from yen.With these two currencies,
there is an associated exchange rate sequence F = ey, es,..., where e;, the exchange rate for the
1th day, equals the number of yen that can be purchased for one dollar on that day. The player is
required to finish the game with all the money converted back to the initial currency. We assume



that there are no transaction fees. Our new assumption is that the exchange rate sequences are
generated by a statistical adversary.

For any strategy 5 and finite exchange rate sequence E,let Rs(F) denote the return of S with
the sequence I/ when it begins the game with D, dollars. Let O PT denote the optimal off-line
two-way trading strategy. Notice that for a given exchange rate sequence, F, O PT will always
convert all available dollars to yen at all exchange rates which are local maxima in F, and all
available yen back to dollars at all exchange rates which are local minima, with the exception that
the last transaction must be yen to dollars. We say that a trading strategy, 5, is a money-making
strategy if for any exchange rate sequence F with Ropr(#) > 1, then Rg(FE) > 1, as well.

3 Optimal trading strategies against the statistical adversary

We can specify trading strategies in a “normal form” as follows. Every day, the player might
wish to convert some dollars to yen and/or some yen to dollars. It should be clear that only one
transaction (i.e. dollars to yen or yen to dollars) is sufficient. It is convenient to conceptualize
every such transaction as if the strategy first converted all yen back to dollars and then converted
a fraction, s, of the total available dollars to yen. Any such transaction can be specified by one
number, s € [0,1]. In this way, we can specify the activity of any conversion strategy by the
sequence $i, 8, ...,S, where for each day, 7, s; is the fraction of dollars that should be converted
to yen, immediately after all available yen are converted to dollars. By the rules of our game, s,
must be zero.

Suppose that the on-line player knows II, the return of the optimal off-line player for an n-day
game. We now derive the optimal on-line strategy for any n > 2 number of days. To derive the
optimal strategy we require the following observation. Consider Figure 1, which illustrates an
exchange rate sequence of 10 days (yen per dollar). First, notice that the optimal (off-line) return

= () () 0) =G @ E)

In general, it can be shown that for any n-day sequence,
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n—1
II= H max {1,e;/e;11}.
i=1

Any conversion strategy “realizes” its dollar profit only on downward runs of the exchange rate

€,

Figure 1: Realization of profit in a 10-day game

sequence. If Il is known at the beginning of the sequence, then on each day, the on-line player can



determine exactly what the optimal off-line profit would be for an (n — 1)-day sequence starting
on that day — that is, if the off-line player were to start a “new game” consisting of n — 1 days.
We illustrate this by referring to Figure 1. Since on day 2 we are not in a downward run with
respect to the previous day, the optimal off-line return must remain at Il if a new game is to begin
at that moment. On the other hand, on day 3 (knowing only the first three rates) we know that
the off-line player has just realized a factor e, /e3 of his total dollar return, so the optimal off-line
return must be II’ = H/:—j if a new game is to be begun at that moment. In this way, the on-line
player knows, after each exchange rate is revealed, exactly what the optimal off-line return would
be if a new game were to be started that day.

This observation enables a dynamic programming derivation of the optimal on-line strategy
using the Principle of Optimality [3]. In our context it can be stated as follows: the optimal on-
line strategy has the property that, whatever the initial rate and the initial choice of how many
dollars to trade, the remaining trades must constitute an optimal on-line strategy with regard to
the state resulting from the first trade. More formally, for n > 2, let R, (I, ;) denote the return
of the optimal on-line strategy for an n-day game, given that the first exchange rate is e; and that
the optimal off-line return for the entire period is II. Therefore, when exchange rates are chosen
by an adversary who tries to minimize the optimal on-line return, we have

R,(Il,e;) = max min
fraction of dol- 2nd day

lars s1 to trade  rate es

II
= max min [(6—1 - 1) sy + 1] - R4 (min {H, ﬁ} ,62) (1)
0<s51<1 ep> L €9 €

’ eﬁlv
total off-line return is II. In addition, a boundary condition can easily obtained; namely,

Ro(11, ) = 10 (2)

total worth in dol-
[ lars after 2nd day :| . Rn—l (updated H,@z)

rate is revealed

where the lower bound on possible second day rates, e,, is due to the assumption that the

Thus, (1) and (2) identify the optimal on-line strategy, which we denote by 5*. The first trans-
action that S* performs is the purchase of yen with a fraction s} of its dollars, where s is the
quantity which maximizes the right hand side of (1). The proof of the following lemma appears
in the appendix.
Lemma 1 5" is a money-making strategy.

The task of obtaining a closed form expression for (1) seems to be rather hard. The following
lemma provides an upper bound on the return of 5* for any Il and n. The proof of the lemma
appears in the appendix.

Lemma 2

R,(1L,-) < ==Ly

The interpretation of Lemma 2 is rather pessimistic. It can be shown that for large II,

1\" L
R A
il il

R,(11,-)
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Also, if IT = w(n), then e™*T ~ 1 — %=L and R,(II,-) ~ L. If Il = O(n), then R,(II,-) = .
For Il = o(n), R,(Il,-) approaches 1.

4 Games against stronger adversaries

One can think of several meaningful ways to strengthen the original adversary. Here we consider
two stronger adversaries which correspond to the cases where the on-line player does not know II
or does not know n a priori. In either case we prove the nonexistence of a money-making strategy
for non-degenerate strategies. A non-degenerate strategy is one that makes at least one non-zero
transaction. The proof of the following lemmas appear in the appendix.

Lemma 3 For any n > 2, and any non-degenerate deterministic on-line strategy S that only
knows n in advance there is an exchange rate sequence, E' = ey, e, ..., €, for which Rg(F) < 1
and Ropr(E) > 1, even if S also knows in advance that there is a positive off-line profit.

Lemma 4 For any 1l > 1, and any non-degenerate deterministic on-line strategy S that only
knows 11 in advance, there exists an exchange rate sequence, = ey, es, ... for which Rg(F) < 1
and ROPT(E) > 1.

5 Games against weaker adversaries

In this section we impose more constraints on the adversary. In each of the following examples,
the constraints may be estimated from relevant past sequences using simple statistical analysis.

o mazimum daily fluctuation ratio: a number a > 1 such that for every day 7, the next day’s
rate, €;,1, is in [e;a, e;a]. Although we measure the time difference between two successive
exchange rates by “days”, these time differences may be of any size (seconds, minutes, etc.),
and, in fact, they need not be of a fixed size.

o minimum and mazximum bounds on exchange rates: numbers, m and M, such that all
exchange rates are within the interval [m, M].

o maximum run length: a number p such that there is no monotone increasing (decreasing)
subsequence of consecutive exchange rates of length longer than p.

o number of extrema points: a number k such that the number of minima and maxima in the
exchange rate sequence is k.

o statistical functions of exchange rate sequences: “standard” statistical functions like mean
and standard deviation may be considered.

It is possible to incorporate any of the above constraints in (1) to yield an optimal on-line strategy
against the corresponding, more constrained adversary. In each case, we have to replace the
bounding interval for possible choices of e, which was originally [$, oc). Intuitively, by including
more constraints, we should obtain better performance. The appeal of this scheme is that the
users of our strategies may choose their own set of statistical features and obtain optimal on-line
performance against an adversary that reflects “financial nature” according to their own beliefs.



Using our scheme, we now derive and analyze the optimal strategy against a weak adversary
that is restricted by a statistical feature which is, in a sense, a hybrid of the (n,II) feature and
the mazimum daily fluctuation ratio as discussed above. To motivate the use of this new feature,
let us first discuss the limitations of the previous model (in which the feature (n,Il) yielded the
strategy 5*). In this model, the on-line player is forced to invest very little on most days, since the
adversary can eliminate any day’s investment by raising the rates arbitrarily high. By imposing
additional features such as the maximum fluctuation ratio or the number of extrema points, we
can reduce these kinds of unrealistic threats. It is possible to incorporate the (n,Il) feature and
the maximum fluctuation ratio feature into a single feature as follows.

The parameters of this new statistical feature are (a,m,n) where a represents a fixed ratio
between any two successive exchange rates, m denotes the number of downward changes, and n
is the total number of changes. Since each downward change in the exchange rate corresponds
to a realization of dollar profit, we know that for each exchange rate sequence conforming to
(a,m,n), the optimal off-line profit is a”. Notice that n in this statistical feature measures the
total number of the a-changes whereas in the the (n,1l) feature, n is the length of the exchange
rate sequence.

Of course, in real exchange rate sequences, successive exchange rates do not maintain fixed
ratios. However, sometime after the exchange rate becomes some value v, the exchange rate will

L In
o

eventually change to a value greater than or equal to av or a value less than or equal to
either case, when this occurs, 5** moves into a new “day”. Note that the days are no longer fixed
measures of time, but instead change when the exchange rate changes by a desired amount.

The advantage of considering such a fized change is twofold: first, it simplifies the analysis,
and second, it is sometimes very useful from a practical point of view to filter out negligible
transactions that correspond to miniscule changes. For instance, by choosing a sufficiently large
a, one may “filter out” some of the effect of spreads'. Note that choosing a too large can decrease
returns as well; S** may ignore profitable fluctuations of size less than a.

We assume that the on-line player knows (a,m,n). The knowledge of this triplet is of sig-

nificant value. In fact, for sequences conforming to (a,m,n), we expect the exchange rate to

om_q m
n

change at a rate of « . Hence, even knowledge of the ratio ”* may be extremely valuable as
it represents the trend during the period in question. Given the knowledge of a particular trend
(either downward or upward) one can use standard techniques (via the use of future contracts) to
guarantee the profit of the buy-and-hold strategy. Moreover, using standard hedging techniques
(via put and call options) one does not need to know the direction of the trend and can guarantee
the by-and-hold profit corresponding to one direction and hedge against any risk corresponding
to the other direction. Hence, of particular interest is the case m = %n in which exactly half of
the changes are upward and half the changes are downward. If this is the case, we say that the
exchange rate is stable and active.

Let R.(m,n) be the optimal on-line return with parameters a, m, and n. When the on-line
player invests s, his return is either (as + 1 - s)Ro(m — L,n— 1) or (£ +1 = s)R.(m,n — 1),
which, respectively, correspond to a downward change and an upward change. The adversary will

choose the minimum of these two values. Hence, the following recurrence identifies the optimal

1A spreadis the difference between the bid and ask prices of a certain commodity and reflects “transaction fees”.



on-line strategy which we call 5™,

Ro(m,n) = Q%mm%w+l—Qimm—Ln—m €+1<QRJWn—U}CD
R,(n,n) = a",
R,(0,n) = 1

5.1 Some properties of 5**

We now derive some interesting properties of the strategy 5**. First, notice that the left operand
of the “min” in (3) is increasing with s while the right operand is decreasing with s. Hence, the
optimal strategy sets s so that (as+1—s5)-R,(m—1,n—1)=(24+1—-5)-R,(m,n—1). Solving

for s,
B Ry(m,n—1)— R,(m—1,n—1)

B (a—1)-Ra(m—1,n—1)—?5—1)-Ra(m—1,n—1)

Substituting for s, we obtain

_ [ _(e=1)(Ra(min—1) = Ru(m = 1,0~ 1)
“THRa(m,n—l)'Ra(m_Ln_l)

Ry (m—-1,n—1)+ <R, (m—1,n-1)

)—I—l) “Ro(m—1,n—-1)

def

Setting R;*(m,n) = m and inverting both sides,
R (mon) = —— R (myn— 1)+ —— R (m—1n—1) (4)
o ? Q -I— 1 a ? a -I— 1 a b
Set ! a%l_l, and let B(k;n,p) ! S (")p'(1 — p)"~*, the partial binomial sum. The following

lemma (whose proof appears in the appendix), provides a solution to (4).
Lemma 5 R;'(cn,n)= B(n(l—c¢)—1L;n—1,1-3)+ a2 B(en — 1;n - 1,1 - 3)

Using the result of Lemma 5, the next lemma characterizes the performance of 57*. The proof
of the following lemma appears in the appendix.

Lemma 6 For m = cn with ¢ € (0,1), the following asymptotic relations hold.
o [f0<c<p, then Ry(en,n) — 1.
o If3<c<4, then Ry(cn,n)— eSUn),
o If £ <c< 1=, then Ry(cn,n) — an2e=Deflin)
e If1—p3<c<1, then Ry(cn,n) — o271,

The interpretation of Lemma 6 is quite surprising. Consider the behavior of the optimal buy-

and-hold strategy. Buy-and-hold will invest all its capital when ¢ > % On the other hand, when

c < % it will avoid any transaction. Hence, the return is 1 for ¢ < %, and o"?*=Y for ¢ > % In

the case where 0 < ¢ < forl—p <e¢ <1, 5 asymptotically performs the same as buy-and-

hold. However, for § < ¢ < 1 — 3, §** performs exponentially better. In particular, for ¢ = %,



Return

1.8 T T T T T T T

Sxe —

Buy—and-hold

46 47 438 49 50 51 52 53 54

Fercent

Figure 2: 5** vs. buy-and-hold as ¢ varies (a = 1.01 and n = 500)

buy-and-hold will return 1, while §** yields exponential return. Note that in the case 8 < ¢ < %,
the market is moving unfavorably yet the return is exponential in n. The relative advantage of
S** over buy-and-hold is the greatest when the market is perfectly stable. This fact is illustrated
in the graph of Figure 2.

5.2 Implementation and experimental notes

Before running 5** on real data, one must set the parameters n, m, and a. o may be chosen to
capture “significant” changes in the exchange rate sequence. (e.g. one may choose sufficiently
large a to filter out “insignificant” fluctuations). For a particular choice of n and a, the on-line
player can chooses a value for m according to the player’s beliefs, analysis (and risk aversion). In
any case, it would be unrealistic to assume that one knows the exact value of m. Let m* be the
actual number of profitable changes among the n changes.

In Figure 3 and Figure 4 , we plot the return of §** as a function of m. At the point where
m = m”, 57 obtains a maximum. On one hand, if 5" underestimates m*, then 5™ invests
conservatively, since it “believes” that the number of remaining positive changes will be small.
As m approaches zero, the return approaches 1, which is analogous to not trading at all. On the
other hand, if 5** overestimates m™, §** invests more “aggressively” as it expects the exchange
rate to be favorable. As m approaches n, the return approaches a®™ =", This case is analogous to
investing all the money on the first trading day and converting back on the last trading day (buy-
and-hold). In both cases (overestimating and underestimating), we see exponential convergence
to the limit cases.

The graph in Figure 3 illustrates the behavior when m* < %n In this case, the off-line buy-
and-hold strategy does not invest and receives a return of 1. 5*" always exceeds the buy-and-hold
return when it underestimates the value of m*. However, if 5 overestimates by too much, 5**
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Figure 3: Returns of $** as a function of m/n, m* < {

may yield a return less than 1. Therefore, if S** expects m™ < %n, then it is safe to underestimate.
A similar phenomenon is shown in Figure 4 (m* > %n) The off-line buy-and-hold strategy will

buy in the initial period and sell in the final period. Its return will be a2™ =7

. If we incorrectly
overestimate m”*, we will always exceed the buy-and-hold return. However, if we underestimate,
then our return may be less than the off-line buy-and-hold return.

Based upon these graphs, it would appear that we need very accurate predictions to be success-
ful. If we incorrectly estimate m*, we can get returns that are worse than the off-line buy-and-hold.
However, consider what it means for m* to be different than m, where m is our estimate. Then,
after n days, the exchange rate will differ from our expectation by a factor of o=, It is no
surprise that if we experience an unanticipated expontential change in the exchange rate, then
the algorithm (or any other algorithm) will perform poorly. Fortunately, actual exchange rate
sequences rarely exhibit this behavior. In fact, the simple strategy where we assume m = %n
performs fairly well on small samples of real data.

5" was tested on historical intra-day data for both US dollars vs. Japanese Yen and US
dollars vs. German Marks. The intra-day data consisted of the reported exchange rate every
10-120 seconds. Decision points were then inserted every time the rate changed by o (We used
values of a ranging from the minimum change to five times the minimum change). We then
ran 5™ on these exchange rate sequences and received very promising results. So far, the data
appears to conform to our model. Although the exchange rate changes frequently, the overall
trends have been quite stable. In a sample exchange rate sequence, the exchange rate changed by
5-10 points ? a minute. But, the total daily change was usually less than 50 points. At this time,
our experimental results are too preliminary to be statistically sound.

2A point is the smallest unit used to measure exchange rates.
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Figure 4: Returns of $** as a function of m/n, m* > 1
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Appendix

Proof of Lemma 1

We prove by induction on n > 2 that if Il > 1 then R,(Il,-) > 1. The base case, n = 2, clearly
holds.

Induction step: Assume that II > 1. We divide the proof into three cases:

o case (i) e; = e5: then min{Il, lles/e;} =11, and R,(Il,e;) = R, _1(1l, e5). By the induction
hypothesis on n — 1 we have that R,,_,(Il,e;) > 1.

e case (ii) €; < ey: here again, since e;/e; > 1, min {Il,les/e;} = I and by the induction
hypothesis, R,_1(Il,e3) > 1. Let us write R,_;(Il,e3) = 1 4 ¢ where ¢ > 0. Even though
e1/es — 1 < 0 it is clear that by choosing a sufficiently small s;, the on-line player can
guarantee that R, > 1. More specifically, we shall show that for any choice of e, > e; and

any choice of s; < m, R, > 1. Let s; = m — ¢ for some small positive §.
Then,
. €1 €98
R, (Il,e >  min ——1 —(5—|—1]-1—|—€
(M) 2 ea>e1 [(62 ) (e2 —e1)(1+¢) ( )
= min(g_é.m+1).(1+g)
ea>eq €9
_ . 2 €2 — €
= min(1+¢e)°+6- (1+4¢)
ea>eq €9
> (1+e)

e case (iii) e; > es: now for every positive fraction s;, (e;/es — 1)s; +1 > 1. If Iley/e; > 1
then by the induction hypothesis, R,_i(Iles/e;,e5) > 1 as required. Otherwise, 5* ceases
all activity from the second day onward, since it is known that no profit potential exists in
the remainder of the sequence. In any case, B,_; > 1,s0 R, > 1.

Thus, we have completed the proof.

Proof of Lemma 2

We begin by restricting the adversary to two possible moves. The adversary can either realize
a profit I (the entire off-line profit) or cause the investment to be a total loss (set e; so high
that {5 is negligible). Let R,(Il) be the optimal on-line return against this restricted adversary.
When n = 2, Ry(1) = II. In the case where the adversary realizes a profit II, the on-line player
receives a return of sIl + 1 — s. Since the entire off-line profit is realized, the trading will stop. In
the case where the adversary causes the on-line player to completely lose his previous investment,
the on-line player will receive a return of (1 — s)R,_;(II). The amount he invested, s, is lost, but
he can still receive the optimal return on the remaining 1 — s.

The on-line player will set s to maximize his return, while the adversary will choose between

his two options to minimize the return. Therefore, the optimal return satisfies the following

R,(Il,e;) = max min{sll + 1 —s,(1 —s)R,_1(1)}

0<s:<1
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Note that sIl + 1 — s is increasing in s while (1 — s)R,,_1(Il) is decreasing in s, so the on-line
player will choose s such that sIl + 1 —s = (1 —s)R,_1(1I).
Solving for s,

. R, (1) = R,(II)
R,_,(1I)
It is not hard to see that 0 < R,,(II) < R,,_1(Il),s0 0 < s < 1.
Substituting for s, we obtain

R,(1, ) = D +1
Rearranging terms, . . _
R,(I) ~ T ' TR,_,(II)
Let Ry1(IT) = 7t Thus,

1 II-1
RN = ot TR;il(H)'

n

Solving this linear recurrence using the base case Ry '(II) = &, we obtain

RN =1 - (1 — %)n_l

and thus,
1

Rl = oy

(5)

Since (5) is the optimal on-line return against this restricted adversary, it must upper bound the
return against the unrestricted adversary.

Proof of Lemma 3

Let n = 3. We show how the adversary can construct a sequence, £ = ey, e5,e5 for which
Re(F) < 1 and Ropr(F) > 1. Let e; be any positive real. If S does not purchase any yen on
the first day, then, since S is non-degenerate, it must buy some yen on the second day and the
adversary can take e; > e; < e3. Clearly, Ropr(F) can be made arbitrarily large and Rs(FE) < 1.
Therefore, assume that S trades s; > 0 dollars on the first day (with rate e;). If s; = 1, the
adversary can take any e; < e3 < e, with a clear loss to S and a return of e,/e3 to OPT. Thus,
assume that s; < 1. Let 6 be any positive real such that § < s;. For any 0 < ¢ < % let

sieg(l4+¢)
°2 si(l4+e)—e—4¢ (6)
es = ef(l+e¢) (7)

First, notice that since 6 < s; and ¢ < es and ez are positive and hence, well-defined

1—3s7"

exchange rates. Also, it is easy to see that e; > e;. Therefore, to perform optimally from this
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stage onward, S5 must convert the remaining dollars to yen on the second day and all yen back to

dollars on the last day. Thus,

Ry(E) < otz s)e (8)

€3

Substituting (6) and (7) for e; and e5 in (8) respectively, it is not hard to verify that Rg(£) < 1-46.
Clearly, Ropr(F) =es/es =1+ ¢.

It is possible to extend this exchange rate sequence to any length n > 3. Moreover, one can
show that for larger n, the adversary can construct (more complicated) sequences for which the

guaranteed off-line profit is larger, while the on-line profit remains negative.

Proof of Lemma 4

We present a sketch. Fix any II > 1. The adversary presents to the on-line player a strictly
monotone increasing exchange rate sequence ey, e Il, e;I1%,... where e; is an arbitrary real. Let
i be the first day for which s;II < 1. There must be such a day (after at most [II] days) since
otherwise it means that the on-line player spends an amount greater than 1/II every day for an
infinite number of days. Then, on the (i 4+ 1)st day the adversary drops the rates by a factor of

II. Thus, the off-line return is II and the on-line return is s; < 1.

Proof of Lemma 5

Recall the initial conditions of 5** (3). For all n,

RZ'(0,n) = 1,

R (n,n) = a™".

Intuitively, R;*(m,n) has no meaning for m > n or m < 0. We now extend R*(m,n) to
these cases, while still satisfying both the recurrence and initial conditions.

Let R7Y(m,n) = 1,m < 0 and RZ'(m,n) = a"~? m > n. Note that for n = m, a(*=2™) =
o™, so the two conditions combine to R;*(m,n) = a»~2 m > n
Claim: The extended R;'(m,n) satisfies the recurrence and the initial conditions.
Proof: By induction on n. For the base case, n = 1, we have R *(m,1) = 1 for m < 0, and
R;Y(m,1) = o'~ for m > 0. The initial conditions R7*(0,1) = 1 and R;'(1,1) = a~! are
satisfied. We assume the induction hypothesis for n — 1, and prove it for n.

1. For m <0,
-1 N R _ i _
R (m,n) = a—l—lRa (m,n 1)+a-|-1R“ (m—1,n—1)
B Q 14 1
T oa+1 a+1
= 1
2. For m > n,
R (m,n) LR_l(m n—1)+ ;R_l(m —-1,n—1)
o ? a—l—l a ? a—l—l a b



— an 1-2m ‘an 1-2m+2
a+1 a+1
o 1 n—2m n—2m+1
= o7 1(& + a )
— an—Zm
[ |
m
(m,n)
m-1 A : n
m-2 (m-1,n—;)/\ /Q:” n-1
N NS "
, YN /\ /‘\’\A\
\\/\ / 3

m-n+2 ’// ¥ \/\ A/ \’ \ 2
m-n+1 '/\\ N \/\/ \// \\//\\ i

1- . . . . . . oq el
(m-n+1,1) (- 1,1) 0,m) (1,1) (2,1) (m,1)

Figure 5: Directed graph showing the expansion of the recurrence

Consider the directed graph in Figure 5 . Each node is labeled (z,y) with the “root” labeled
(m,n). The value stored at each node is R} (z,y).

For node (z,y), « corresponds to the vertical height in the grid. “Leaf” nodes have height 1,
and the “root” has height n. y labels the left-to-right diagonals. The rightmost diagonal is m,
the diagonal immediately below is m — 1, etc. The left most diagonal (a single node) is labeled
m—n+ 1.

For a node (z,y), its left child is (x — 1,y — 1) and its right child is (z,y — 1). To compute
R (2, y) from its children, we add —5R;'(z — 1,y — 1) (the contribution of the left child) to
2R,y — 1) (the contribution of the right child) (i.e. RN z,y) = =R Yz —1,y— 1)+

a+1 a+1

Ry Y2,y —1)). Thus, we can consider each left branch to be weighed by a_+1 and each right

branch by =5
If we expand the recurrence n — 1 times, we obtain an expression in R;'(m,1), R;'(m —
1L,1),R;Y(m—2,1),...R;*(m —n+ 1,1). The number of times R;*(m — k,1) occurs is exactly

a
n—1

the number of paths from (m, n) to (m — k,1), which is (";"). In addition, each term is weighed
by +1 for each left branch and —S~ for each right branch. Each path to (m — k, 1) has the same

number of left and right moves, so the weight of each path is identical. Therefore,
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RZY(m,n) = Z [R;'(x,y)] - [Number of paths] - [Weight of path]

(a4

leaf nodes

- TSR_l(m—n—l-l—l-il) n—l ( “ )( L )(n_l_i)
o e ’ : a+1 a+1
n—m-—1
—1 . 1 .
= X e ) e
P 7 a+1 "a+1

n—1
n—2m-—2i— n—1 @ i 1 n—1—1
£ 57 e () e

7 a+1 "at+1

i=n—m

In the second sum, we substitute j for n — 1 — ¢,

7 a+1 "at+1

) n—m—1 n—1 a : 1 (n—1—1)
RyY(m,mn) = Y - )'( )
7=0
m-1 n—1 o 1
(25 —2m+1) (n—1-j)_ = \J

_ n—'m_ (n—l)( «Q )i(#)(n—l—i)

1

Proof of Lemma 6
Recall that

B(k;n,p) = Z(Z)pi(l—p)”‘i

i=0

R'(m,n) = B(1-c¢n—1Lin—1,1-8)4+a'*"Blen - 1;n—1,1-j)

(a4

For the sake of brevity, define

B, = B((l—-¢n—-1;n-1,1-7)
By, = B(en—1;n-1,1-0)

To compute the upperbounds on By and B, we make use of the following Chernoff bound [1]:
Theorem 1 Let X,,---, X, be n mutually independent random variables with

PriX;=1 = »p
PriX;,=0 = 1-p



Let X =X, +---+ X,. Then for a > 0,
Pr[X < pn—al < e */%n

B(k;n,p) is simply the probability that at most &k successes occur in a series of n Bernoulli
trial and success probability p. We can use this Chernoff bound to bound B; + a”!=?9B,. We
provide bounds based on the value of ¢: By the theorem above, when ¢ > 3,

B,

Bn(l—¢)-1;in—-1,1-75)
< e~ (=1)(e=p)*/2(1-p)(n—1)
_ o (n=1)(e=B)/2(1-B)
e—ﬂ(n)
When ¢ < 3
By = B(ne-1;n-1,5)
o - (=1(B=e)/2p(n-1)
L m(n=1)(s—e)?/28
= 1 — %M
When e <1 -7
By = B(ne—1;n-1,1-7)
< e~ (n=17(1=B=2)*/2(1=p)(n-1)
_ = )(1=g=e)*/2(1-p)
o—5n)
When ¢ >1-p5
B, = 1-B((l-¢)n—1;n—-1,08)
o ] _ (=D e=(1-8)?/28(n 1)
C | em(n=D)(e=(1=p))/28

= 1—¢ )

We will need tighter bounds than the Chernoff bounds can provide in some of the case analysis
below. The following theorem provides the necessary bounds. The following theorem can be
found in [1]:

Theorem 2 For any constants 1 > p > ¢ > 0,

B(ensn,p) = i(?)pi(l—p)””

_ 2n(H(c)+o(1))pcn(1 _ p)(l—c)n

_ e (2) (Az)
c l1-c¢

where H(c) = —clogec — (1 — ¢)log(1 — ¢) is the entropy function.
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Using the above bounds we can now derive bounds on By + a2 B, for all values of 0 < ¢ < 1.

0 < ¢ < B: In this case, By — 1 as n becomes large. Because the entire sum is at most 1, and
a2 By is positive, By + 1729 B, — 1. Therefore, R,(m,n) — 1.

< ¢ <1/2: Here By is exponentially small. We wish to show the same for a”*=2%)B,. Here we
will need the tight bound from Theorem 2.

172, = 0>« B(en;n, 1 — 3))

= 20(”)a(1—20)n (ﬂ) cn ( ﬁ )(1—C)n
C 1—2¢
= (1—ﬂ)c”( of )“—@”
- ac 1_¢
— 9on) (ﬁ) o (ﬂ)(l—c)n
¢ 1—c

To determine that this function is exponentially small, we need only show that V(c, ) =

¢ 1—e¢
(g) (ﬂ) < 1. First note that V(5,5) = 1. To complete the proof, we show that

¢ 1—e¢
V (e, 3) is strictly decreasing as ¢ increases beyond 3. To do this we show that the derivative

with respect to ¢ of In(V(c, 3)) is negative for these values of c.

In'(V(e,3)) = Inp—1—-Inc—1In(1—-4)+In(l—-¢c)+1
= Inf—-Inc—In(1-08)+In(1-r¢)

< 1 for

Now,Infg —Inec—In(1-8)+In(l —¢) < 0 <= %i:; < 1. But £ < 1 and 11:[;

B<c<1/2. So By +a*1=2) By — =),

Therefore, R,(m,n) — eXn)

1/2 < ¢ < 1 — B: In this region, B, is still exponentially small, so a"(!=2%) B, is a"(172¢)e=%") We
need only show that B; takes the same form. Consider o***~Y B;. We make a substitution
of variables to show that this is exponentially small. Consider d = 1 —¢. Then o>~V B, =
a2 DB((1—d)—1,n—1,1— 8) for 8 < d < 1/2. This is precisely the function analyzed
in the previous case, which we showed to be exponentially small. Thus, B; + a”!=29 B, —
an1=22)e=n)  Therefore, R,(m,n) — a"(2= 1),

¢>1— (3: By is exponentially small. B, is moving exponentially close to 1, so B, +a*!=?9B, —
a™1=2¢) Therefore, R,(m,n) — a™?~1).

X



