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Abstract

Specializing programs with respect to run-time invariants is
an optimization technique that has shown to improve the
performance of programs substantially. It allows a program
to adapt to execution contexts that are valid for a limited
time.

Run-time specialization is being actively investigated in
a variety of areas. For example, recently, major operating
system research projects have been focusing on run-time
specialization as a means to obtain efficiency from highly
extensible and parameterized systems.

This paper describes a general approach to run-time spe-
cialization. For a given program and a declaration of its run-
time invariants, it automatically produces source templates
at compile time, and transforms them so that they can be
processed by a standard compiler. At run time, only mi-
nor operations need to be performed: selecting and copying
templates, filling holes with run-time values, and relocating
jump targets. As a consequence, run-time specialization is
performed very efficiently and thus does not require the spe-
cialized code to be executed many times before its cost is
amortized.

Our approach improves on previous work in that: (1)
templates are automatically produced from the source pro-
gram and its invariants, (2) the approach is not machine
dependent, (3) it is formally defined and proved correct, (4)
it is efficient, as shown by our implementation for the C
language.

1 Introduction

Specializing programs at run time with respect to dynamic
invariants is an optimization technique that has already been
explored in various areas such as operating systems [16] and
graphics [14]. This technique is aimed at adapting programs
to execution contexts by using run-time invariants.

In the context of file system operations, examples of run-
time invariants include the type of the file being opened, the
device where it resides, and whether it is exclusively read.
When a file is being opened, at run time, invariants become
available and can be exploited to specialize read and/or
write routines. As reported by Pu ef al. this specializa-

tion eliminates redundant interpretation of data structures
and yields significant improvements [15].

In fact, various forms of run-time specializations have
been studied on practical systems, and substantial improve-
ments have been reported. Locanthi et al., for example,
applied specialization to the bitblit procedure [14, 12]; their
specialized code ran about 4 times faster than a generic im-
plementation. In the area of operating system, Massalin
and Pu designed an operating system which utilized run-
time specialization as a fundamental technique to optimize
a wide variety of system components. They report speedup
factors that range from 2 to 40 depending on the system
component considered [13].

Although various forms of run-time specializations have
undoubtedly been shown to improve substantially the per-
formance of programs, the specialization process has always
been done manually [9]. The usual approach consists of
defining code templates, that is, code fragments parameter-
ized with respect to run-time values. Then at run time,
templates are linked together depending on the control flow,
and holes (i.e., template parameters) are filled with run-time
values [10]. To minimize the cost of run-time specialization,
templates are often represented in a binary form to avoid
invoking an assembler, or even more expensive, a complete
compiler, at run time.

While the idea of run-time specialization is certainly at-
tractive, considering the degree of improvement it can yield,
the approaches explored so far have fundamental drawbacks.

e They are manual. Usually templates are written by the
programmer either directly in some low level language,
or using some syntactic facilities [6].

e They are not clearly defined. Although existing ap-
proaches have shown their effectiveness, the process of
run-time specialization has always been presented as a
black-box; only the functionalities were described not
the techniques.

e They are not portable. When templates are written in
assembly language, they are limited to a given proces-
sor. Often, templates have to be optimized manually
to obtain good performance.

e They are error-prone. Because templates are directly
written by the programmer in a low-level language,
errors may easily be introduced.

In this paper we present a general approach for run-time
specialization and its application to the C programming lan-



guage. Our approach can be decomposed in the follow-
ing main stages. At compile time, a program is analyzed
for a given context of invariants declared by the program-
mer. This analysis determines the program transformation
to be performed for every syntactic construct in the pro-
gram. This information is used by a subsequent analysis to
produce a safe approximation of the possible specializations
of this program, in the form of a tree grammar. Then, this
tree grammar is used to generate templates automatically at
the source level. These templates capture the dynamic com-
putations, that is, the computations that rely on data that
vary. Once compiled by a standard compiler (in the case of
the Clanguage), various linking information (:.e., labels and
holes) is collected from the compiled templates. Finally, the
parts of the program corresponding to the static computa-
tions, i.e., the computations that rely on the invariants, are
compiled; they represent the run-time specitalizer. When it
is executed at run time, in addition to computing invariants,
the run-time specializer also selects templates depending on
the control flow, relocates jump targets, and fills template
holes with the invariant values.

Our approach has many advantages compared to the ex-
isting ones.

e [t is automatic. Templates are automatically gener-
ated from a description of the possible specializations
of a program, itself produced by an analysis.

e [t is formally based. We have formally defined the
approach for a subset of an imperative language and
proved it correct.

e [t is general. In principle, our approach applies to a
variety of languages, from imperative to applicative
ones.

e [t is portable. In our approach, most of the special-
ization process is in fact performed at the source level.
Only minor operations in the linking phase of tem-
plates need to be ported. These operations are limited
to collecting locations of template holes and jump la-
bels within templates.

o [t is efficient. We have applied the approach to the C
language: an implementation of a run-time specializer
of C programs has been developed. It has been used
on various kinds of programs. The run-time specializa-
tion process incurs a negligible overhead. Preliminary
experimentation shows that on procedures exhibiting
a clear interpretive layer (e.g., variations of printf),
run-time specialized code requires as little as 3 runs to
amortize the cost of specialization, and it executes 5
times faster than the non-specialized version.

Our run-time specialization approach is based, in part,
on partial evaluation technology [8, 3]. In fact, it is inte-
grated in a complete partial evaluation system for C pro-
grams that performs compile-time specialization as well as
run-time specialization [4]; this aspect is further discussed
in Section 2. This system has been applied to various kinds
of programs such as operating system code.

Plan. In Section 2, the underlying concepts of partial eval-
uation are reviewed. In Section 3, the approach and its
main components are described; examples are used to illus-
trate the presentation. In Section 4, the approach is for-
mally defined and proved correct. Section 5 then discusses

the related work. Finally, Section 6 gives some concluding
remarks, and outlines the future directions of this work.

2 Partial Evaluation

Partial evaluation is a program transformation technique
aimed at specializing a program with respect to some parts
of its input [8, 3]. There are two main strategies to perform
partial evaluation. The first strategy, called on-line, consists
of specializing a program in a single pass. As the program
gets processed, the program transformations are determined
and performed. Because program transformation occurs in
the presence of concrete values, on-line partial evaluation
achieves a high-degree of specialization.

The second strategy to partial evaluation, called off-line,
is composed of two parts: preprocessing and specialization.
For a given program and a description of its input (known or
unknown), the preprocessing phase essentially compiles the
specialization phase. It does so by determining a program
transformation for each syntactic construct in the program.
Then, the specialization phase is performed with respect to
some partial input value. This process is solely guided by
the information produced by the preprocessing phase. As a
consequence, specialization is efficient.

Whether on-line or off-line, partial evaluation has always
been studied and understood as a source-to-source program
transformation. In this paper, we introduce an approach
that goes beyond this view. We propose to use partial eval-
uation as a basis for run-time specialization. In fact, this
work is part of a complete partial evaluation system which
specializes C programs at compile time as well as at run time
[4]. Let us briefly outline the salient features of this system.

Our partial evaluation system is based on an off-line
strategy. The preprocessing phase mainly consists of an alias
analysis, a binding-time analysis, and an action analysis.
The alias analysis 1s needed because of the pointer facilities
offered by the C language. The binding-time analysis deter-
mines the binding-time property of the variables in a pro-
gram, given a program and a description of its context (i.e.,
global variables and formals are declared as static/known or
dynamic/unknown). While the binding-time analysis deter-
mines what to do for each syntactic construct in a program,
the action analysis determines how to do it [2]. In other
words, binding-time information is used to determine what
specialization action (i.e., program transformation) should
be performed. A small subset of the actions used for the C
language is presented in Section 4.

Once the actions of a program are produced, various
back-ends can exploit this information. Firstly, they can be
interpreted; this situation corresponds to a specializer. Sec-
ondly, they can be compiled to produce a dedicated special-
izer (also called a generating extension [8]). Finally, actions
can be used to achieve run-time specialization. The last al-
ternative comes from the fact that actions define program
transformations and thus can be used as a basis to determine
what specialized programs an action-analyzed program can
yield. In fact, in our approach, an analysis of an action-
analyzed program is performed to determine an approxima-
tion of this set of possible specialized programs; this set is
described as a tree grammar.

3 An Approach to Run-Time Specialization

As mentioned in Section 2, run-time specialization is one



int f(int =, int y) {
int [;
l=2x*ux;
if(1l==2)
l=1+y
else l = y* x;
return /;

}

a) Source program
(a) prog

Figure 1: An example program

int f(int =, int y) {
int [;
(l — 9% x)ev ;red
ifred ( | ==2 )ev
lid :reb 1ev +reb yid ;reb
else lid :reb yid *reb 7Y ;reb
(return 1)'¢ ;

}

(b) Action-analyzed program
(z = static, y = dynamic)

of the three ways of exploiting action-analyzed programs.
This section presents an approach to run-time specialization
based on actions.

Let us explain in detail how a program gets annotated
with actions by taking a concrete example. Actions are in-
deed a key aspect of our approach: it is the starting point
of the run-time specialization process.

Figure 1-a presents a source program, written in the C
language. Figure 1-b shows this program annotated with
actions. For readability, the action-analyzed program is rep-
resented in concrete syntax and decorated with actions. Let
us describe how actions are determined for procedure f in
the example program, assuming that its first parameter is
static and its second parameter dynamic.

The first command in the procedure is assigned action
eval (ev). This action annotates completely static program
fragments. Such program fragments represent computations
that solely depend on available data. Assuming that the
symbol “;’, at the end of the first command, is a sequence
construct, then it is assigned the action reduce (red) because
the first command will be evaluated away and thus the se-
quence command will be reduced. Likewise, the conditional
command can also be reduced because the value of the test
expression can be determined at specialization-time. Still,
the branches of the conditional command have to be rebuilt.
More specifically, the assignment in the true branch has to
be rebuilt (reb) because the right-hand side does not par-
tially evaluate to a constant. This is caused by variable y
which is dynamic. As such, this variable represents a com-
pletely dynamic code fragment; it is annotated with action
identity (1d). This action denotes code fragments that can
be reproduced verbatim in the specialized program. A sim-
ilar situation occurs in the false branch of the conditional
command. Finally, the return command is globally anno-
tated with id since it is uniformly dynamic.

To specialize a program at run time based on its ac-
tions, a naive approach would simply consist of postponing
specialization until run time, that is, when the specializa-
tion values become available. Then, the specialized code
would be compiled and dynamically linked to the running
executable. The obvious drawback of this approach is the
cost of compilation which would require the run-time spe-
cialized program to be run many times to amortize the cost
of specialization, compilation and linking.

In fact, the reason why the compilation of a particular
specialized program has to be postponed until run time is
because we do not know the set of possible specializations
an action-analyzed program can yield. If we knew such a
set, or a description of it, then it could be processed at

compile time instead of run time. Unfortunately, the set of
all possible specializations is in general infinite (because of
loop unrolling, for example).

3.1 Using Tree Grammars

A traditional way to finitely represent an infinite set of trees
is to use tree grammars. However, determining the exact
set of the possible specializations of an action-analyzed pro-
gram is undecidable in general, since specialization values
are unknown at compile time. Yet, an approximation can
be defined; it corresponds to the least superset of the exact
set. It is safe to consider a tree grammar that describes more
specializations than the actual ones if they are ignored dur-
ing run-time specialization; more precisely, if no execution
context leads to these specializations.

We have developed an analysis aimed at computing a
tree grammar, called specialization grammar in this context,
which represents a safe approximation of the set of all pos-
sible specializations of an action-analyzed program. Let us
consider an example of a specialization grammar. Figure
2-a redisplays the action-analyzed procedure f and Figure
2-b shows its corresponding specialization grammar. Like
action-analyzed programs, specialization grammars are rep-
resented in concrete syntax.

The first rule F' describes the possible specializations of
procedure f. Unlike compile-time specialization, when a
procedure is specialized at run time, it does not need to be
renamed. Indeed, during execution, templates have a bi-
nary format. Only code addresses are manipulated. Since
local variable [ is involved in some dynamic computations,
it 1s residual, and thus its declaration remains in the spe-
cialized program. Directly following this declaration, in-
stead of the first command of the original procedure, the
non-terminal S occurs. This non-terminal defines the spe-
cializations of the conditional command. In fact, the first
command in f is not part of the specialization grammar be-
cause it is completely static (ev); consequently, it will be
evaluated at specialization-time. Next to the occurrence of
the non-terminal .S, the return command appears. It is iden-
tical to the command in the original program because it is
completely dynamic (id). As for the conditional command
described by rule S, it will be reduced at run time since its
test expression is purely static. As a result, rule S is com-
posed of two alternatives, one for each branch. Each branch
is an assignment to be rebuilt at run time. However, each
right-hand side of these assignments includes a completely
static expression: variables [ and z. The integer values re-
sulting from their run-time evaluation are described by the



int f(int =, int y) {
int [;
(l — 9% x)ev ;red
ifred ( | ==2 )ev
lid :reb 1ev +reb yid ;reb

else lid _reb yid *reb 7Y .reb
- )
(return 1)'® ;

}

(a) Action-analyzed program

Figure 2: Specialization grammar generated from an action-analyzed procedure

F — int f_t(int y) {
int [;
S
return /;

}

S — l=1Int+y;
|  I=yxlInt

(b) Specialization grammar

generic terminal Int; it is a placeholder for integer values.

At this stage it is important to notice that a special-
purpose compiler could be developed to process right-hand
sides of specialization grammar rules. In other words, such
a tool could compile incomplete syntax trees parameterized
with constant values. Compilation would be done statically
and thus run-time specialization would mainly amount to
assembling binary fragments and instantiating them with
respect to run-time values. Although this method is pos-
sible, it requires one to develop a complete compiler. This
compiler would necessitate time and effort to be competitive
with advanced optimizing compilers currently available. A
better approach would consist of modifying an existing com-
piler. However, real-size compilers are not as modular as
they claim to be: significant modifications may propagate
throughout most of the compilation system. Such modifi-
cations may therefore not be necessarily much simpler than
the previous approach. An even better approach consists
of using an existing compiler as is. This is discussed in the
next sections.

3.2 Introducing Templates

An existing compiler can be used to process right-hand sides
of specialization grammars. In this section we present a
transformation process aimed at converting these right-hand
sides into source code fragments parameterized with run-
time values. We call these fragments source templates. Tem-
plate parameters are often called holesin the literature [10].
At run time, part of the specialization process consists of
physically replacing these parameters by values. In other
words, template holes are filled with run-time values. The
resulting object is called an instance of the template.

Transforming specialization grammars into source level
templates mainly amounts to unparsing the right-hand side
of the grammar rules and delimiting individual templates.
The former task is fairly straightforward. The only interest-
ing aspect is concerned with the treatment of generic termi-
nals. This representation for run-time values is transformed
into holes. The concrete representation of a hole depends on
both the language and the compiler being used. To abstract
over these issues, holes are just given a unique name within
brackets (for example [h1] in Figure 3).

Delimiting templates can be done in several ways. Let
us present two approaches.

The first approach consists of creating one template per
right-hand side in a specialization grammar. For example,
based on the specialization grammar presented in Figure 2-
b, the first approach would yield three templates as shown

in Figure 3-a: one for procedure f, and one per alternative
in the conditional command. Just like the right-hand side
of F' in the specialization grammar includes non-terminal
S, its corresponding template includes a reference to other
templates. The template to be selected cannot be deter-
mined at compile time since it depends on the value of the
test expression of the conditional command. Therefore, a
placeholder (that is, some reserved space) is introduced to
insert the selected template.

Although conceptually simple, this approach may be costly
in practice. Indeed, it assumes that the physical layout of
template ¢1 at run time includes enough space to insert ei-
ther template ¢z or template ¢5. If they have different sizes,
the size of largest template is used. As a result, placehold-
ers for templates may have a large size. A more important
drawback occurs if loops are unrolled. In this case, the size
of the unrolled loop cannot be determined at compile time.

The second approach is aimed at eliminating nested tem-
plates such that no space be reserved to insert templates. To
do so, when the right-hand side of a specialization grammar
rule includes a non-terminal, a template is created before
and after this non-terminal. This approach is illustrated by
Figure 3-b. Template ¢1 represents a first fragment of the
specialized version of procedure f. Then, either template ¢z
or t3 1s appended. Finally, template ¢4 completes a special-
ized procedure.

Notice that for the formal definition of the run-time spe-
cialization process, the first approach is used to simplify the
presentation and abstract over these implementation issues.

3.3 Compiling Templates Statically

Once templates are identified and transformed into concrete
syntax, they can be compiled. Because they are available
at compile time, they can be compiled then. They become
object templates. Of course, the way templates are compiled
depends on the language in which they are written, and the
compiler which is used.

In this section we discuss the general issues arising for
template compilation, mostly independently of a specific
language or compiler.

So far, the templates of a procedure have been described
as separate entities. However, if templates were to be com-
piled separately, the quality of the code would be poor since
the compilation process would not take advantage of the
context in which they appear. Some compilation aspects
such as register allocation and instruction scheduling would
undoubtedly suffer from this situation. To circumvent this
problem, our approach consists of constructing a source code



Int fi(inty) { | t1
int [;

return [;

| [=Thi]+y; ] t2
| l:y*[hQ];|t3

(a) Approach 1

Figure 3: Templates for procedure f

Int fi(inty) { | ta
int [;

| [=Thi]+y; | ta
| l:y*[hQ];|t3

return /; ta

}
(b) Approach 2

int fi(inty) { | @1
int [;
switch unknown {
case 1:
| [=[]+y; |t
break;
case 2:
| l:y*[hQ];|t3
break;

}

return /; ta

}

Figure 4: Source representation of templates

that combines all the templates and still expresses the un-
knowns as far as how exactly these templates can be assem-
bled at run time. A concrete example of this transformation
is presented in Figure 4.

As can be noticed the source representation of templates
for procedure f follows the structure of the specialization
grammar. In particular, because we do not know prior to
run time which alternative of the conditional command will
be included in the specialized version of procedure f, both
alternatives are included in a switch command whose test
value is unknown (variable unknown) to the compiler. This
layout is directly derived from the specialization grammar.
Even though there is this unknown, the compiler can still
process the templates globally, in that it knows the possible
combinations that can occur. In fact, the source represen-
tation of templates includes some form of markers around
templates so that they can be identified and extracted from
the object code. Object templates are used at run time by
the specializer.

Finding an appropriate representation for template holes
is an issue that depends on both the language and the com-
piler being studied.

Once templates are compiled, information from the re-
sulting object code must be collected: the address of tem-
plate holes needs to be recorded so that the run-time special-
izer knows where values need to be installed. Also, template
addresses have to be determined so that jumps can be relo-
cated if needed.

void rt_spec_f(int =) {
int [;

dump_template(t; );

l=2xux;

if (1==2){
dump_template(t2);
instantiate_hole(t2, 1);

} else {

dump_template(ts);

instantiate_hole(ts, x);

dump_template(s);

}

Figure 5: Run-time specializer for f

3.4 Producing the Run-Time Specializer

Now that templates have been generated, compiled and ex-
tracted from the object code, and that information needed
to instantiate them has been collected, we are ready to pro-
duce the run-time specializer. This procedure consists of
eval fragments interleaved with operations aimed at select-
ing and dumping templates, filling holes with run-time val-
ues, and relocating jump targets. The run-time specializer
is generated based on an action-analyzed program.

Figure 5 displays the run-time specializer for procedure
f. The control flow of this procedure can be seen as a subset
of the control flow of the original procedure in the sense that
only the static parts of the original control flow graph appear
in the run-time specializer.

Since parameter  in the original procedure was declared
as static, it appears as a parameter of the run-time spe-
cializer. Local variable ! was involved both in static and
dynamic computations. Therefore it appears in both a tem-
plate and the run-time specializer. The first operation of
the run-time specializer is to dump template 1, which is
the header of the specialized procedure. The first command
of the original procedure can then be executed since it is
purely static. Next, the conditional command is executed.
The test expression can be fully evaluated; the resulting
value determines whether the first or the second template
should be dumped. The dumped template is then instanti-
ated with the appropriate run-time value. Finally template
ty is dumped; it corresponds to the purely dynamic return
command, and thus does not require any instantiation.



As can be noticed, the operations to perform the actual
specialization are very simple and introduce little overhead
at run time. Relocation of jump targets and hole filling are
compiled. Copying of templates can be implemented very
efficiently on some processors provided their memory layout
is carefully done.

The result of an invocation of the run-time specializer is
a specialized code ready to be used. In our implementation,
the last operation of the run-time specializer consists of re-
turning the address of the specialized code. For a procedure,
it returns a procedure pointer which can then be invoked.

4 Semantic Definition of Run-Time Specialization

In this section, an imperative languague is introduced and its
semantics is defined. Then, a set of specialization actions for
this language, as well as their semantics, are presented. Also,
the semantic definition of the process of generating run-time
specializers is given. Finally, the correctness criterion for
this latter process is stated. It establishes that specializing
programs by interpreting actions, or by evaluating the run-
time specializer yields the same specialized program, given
the same specialization values.

Even though this presentation covers a simple impera-
tive language and a small set of actions, it still addresss
the important steps of the run-time specialization process.
Because this presentation is done in a denotational frame-
work, i1t abstracts over implementation details and focuses
on conceptual aspects.

4.1 The Language

Variations of the language being studied (and their semantic
definition) are used in this presentation. To distinguish each
of them, syntactic domains and variables ranging over these
domains are indexed by the abbreviated name of the varia-
tion (e.g., ¢! € Com'), and similarly for valuation functions.

The syntax of the imperative language being studied is
displayed in Figure 6. The first part of the figure (Com’
and Exp') defines the language to be handled by the spe-
cializer. This initial language consists of commands (empty
commands noted Nop, assignments, sequences, and condi-
tionals) and expressions (variables, constants, and primitive
calls).

To reason about run-time specialization, the initial lan-
guage is extended. To motivate these extensions, let us dis-
cuss some issues involved in modeling run-time specializa-
tion in a denotational framework.

First, as can be expected the denotational definition of

run-time specialization does not manipulate object templates.

Instead, it manipulates source templates. More precisely,
since source templates are essentially in a one-to-one corre-
spondence with the right-hand sides of grammar rules, the
latter ones will now be manipulated by the run-time special-
ization process.

As a consequence of this change, instead of dumping
templates for each non-terminal and instantiating templates
with constant values, run-time specialization now substi-
tutes non-terminals by their right-hand side, and generic
terminals (encoded as holes) by constant values. Two ex-
tensions to our initial language make it possible to perform
these operations. Construct Rule(s,crhs) allows a non-
terminal s to be replaced by its right-hand side ¢"**. Con-
struct Inst(h, ) substitutes a hole & by a constant resulting

Cond(e, ¢1, ¢2)
Rule(s, ™)
Inst(h,e)

x € Id Identifiers
n € Num Numbers
o € Oper Binary operators
h € Holes = {h1,...,hmm} Holes
s € Nterms = {s1,...,5n} Non-terminals
¢t € Com’ = Nop
|  Assign(z,e?)
| Seq(c.ct)
| Cond(e’,ci,ch)
e € Exp' = Var(z)
| Cst(n)
| Call(o, e, es)
c € Com = Nop
| Assign(z,e)
| Seq(cl, C2)
|
|

e € Exp = Exp'
Crhs c Comrhs NOp
Assign(z,e™)
Seq(ci™, c3™)
Cond(e™*, 7™ c3h®)
Nterm(s)

Var(z)

Cst(n)

Call(o, €], e3"*)
Hole(h)

6rhs c ECEpThS

Figure 6: Language syntax

from the evaluation of an expression e. The extended lan-
guage is defined by domains Com and Fzp.

Right-hand sides of grammar rules are defined by do-
mains Com™® and Exp™™®. Just as templates can be nested,
right-hand side terms (rhs-terms) may include non-terminals
(Ntermy(s)). Also, expressions may include holes (Hole(%)).

The end result of run-time specialization now corresponds
to the abstract syntax of the specialized program, without
non-terminals nor holes.

The model we just described does not contradict the fact
that source templates are available at compile time and can
thus be compiled prior to run-time to achieve efficient spe-
cialization in practice.

4.2 Semantic Definition of the Extended Language

In this section the denotational semantics of the extended
language is defined. It is not necessary to define the deno-
tational semantics of the initial language since it is a subset
of the extended one.

The semantic domains as well as the valuation functions
are displayed in Figure 7.

Notice that the process of substituting non-terminals by
their right-hand side, and holes by values is noted ‘—’.

As discussed in the previous section, we define the seman-
tics of run-time specialization at the abstract syntax level.
To do so, we have introduced extra constructs (Rule and
Inst) to build a specialized program by repeated substitu-
tions. But we also need to define a place where the program
being specialized can be stored and incrementally built. To
this end, a special identifier ‘§’ is introduced; the store maps



1 € Int
f € Funy = Int x Int — Int
0',6 € Store = Id — (Int‘i‘COmrhS)J_

C:Com — Store — Store

Integer values
Binary, integer functions

CH:NO[.)]] o = 0o

C[Assign(z,e)] o = o[z E[e]o]

C[Seq(cy, c2)] o = C[[CQ]](C[[cl]]a)
C[Cond(e,c1,¢2)] o = if E[e]o then Clei]o else Clez]o
C[Rule(s,c™)] o = o[§— o(§)[s — ™
ClInst(h,e)] o = o[§— o(§)[h — E[e]o]]

E: Exp — Store — Int

E[Var(z)] o o(z)

E[Cst(n)] o = N[n]
E[Call(o,e1,€e2)] o Ofe](&led]o, E]ez]o)

N : Num — Int
O : Oper — Funz

Figure 7: Extended semantics

rule(sg, {s1; return ;f})

if ( 1:; 2){
rule(s1, {I =[]+ ¥;));
inst([h1], 1);

else {

?ule(sh (U =y = [h2];]);
inst([h2], ©);

}

Figure 8: A run-time specializer written in the extended
language

it to the specialized program being built. For a specializa-
tion grammar of a given program, the initial state of the
specialization process consists of a store mapping identifier
§ to the right-hand side of the start symbol of the grammar.

Notice that holes and non-terminals are unique, as spec-
ified by the generator of run-time specializers (see Section
4.4).

Let us revisit the example of procedure f and examine
the run-time specializer for its body; it is displayed in Figure
8. The declaration is omitted, and the return command is
left for the sake of presentation although procedures are not
included in the initial language.

Since identifier § is initially mapped to the right-hand
side of the start symbol of the specialization grammar, as
the run-time specializer executes, the non-terminals get re-
placed by their right-hand side, and holes get substituted by
constants.

4.3 Semantic Definition of Specialization Actions

Now that the extended language is introduced, let us define
the syntax and semantics of specialization actions. They
represent the starting point of the run-time specialization
process. The set of actions considered for this presentation

c* € Com® = Eval(ci)
1)
Rebassign(z,e®)

Rebseq(cf, c5)
Redseq(ci ,€5)
Rebcond(e?, ¢f, c5)
| Redcond(ei, cf, c5)
e € Frp® = Eval(ei)

Id(e')

Rebcall(o, ef, €5)

Figure 9: Actions syntax

is displayed in Figure 9.

The meaning of all these actions has been discussed ear-
lier except for Rebseq. This action is assigned to a se-
quence command to be rebuilt. Notice that eval and iden-
tity commands (and expressions) only involve elements of
the initial language. Indeed, in either case these commands
(and expressions) do not involve any specialization aspects
and should thus be standard. A similar situation occurs for
the first argument of both Redseq and Redcond which is
purely static. The semantic definition of the actions is given
in Figure 10.

As discussed above, the semantic of action Redseq re-
quires the first command to be purely static; another action
could be introduced to address the case when the second
command is purely static.

Lastly, it is important to notice that the actions of a given
program are assumed to be correct. Proving the correctness
of actions is outside the scope of this paper. This issue is
addressed by Consel and Khoo in the context of a functional
language [5].

4.4 Generating Run-time Specializers

Given that the semantics of actions are defined, the re-
maining step is aimed at generating the run-time specializer
from an action-analyzed program. This generator of run-



C*[Eval(c')] o =
CMId(e")] o =
C*[Rebassign(z, e*)] o =
C*[Rebseq(cf, c5)] o =

q
Il

C*[Redseq(ct, ¢$)]
C*[Rebcond(e?, cf, ¢5)]

q
Il

C“[[Redcond(ei, ot e3)] o =

£ : BExp® — Store — Exp’
E[Eval(e')] o =
E°M1d(e")] o
E£%[Rebcall(o, ef, €5)] o

C*: Com® — Store — (Comi x Store)

Figure 10: Semantic definition of actions

([Nop], C[c']o)
([[Cl]]’ U)
([Assign(z, £4[e“]o)], o)
([Sea(c1, c3)], o)
where (c’l, o'y = Cct]o
(cé, oy = C[c5]o’
C*[es](Clet]o)
([[Cond(f“[[e“]]a, ci,es)], o)
where (c’l, o'y = Cct]o
(ch,0") = C[es]o’

if £[e*]o then C*[c{]o else C*[cS]o

[Cst(£[e'To)]
[e']

[Call(o, £%[ef]o, £ e5T0)]

time specializers is defined as a non-standard interpretation
of actions. For a given action-analyzed program, it produces
two results: an rhs-term which corresponds to the unsubsti-
tuted specialized program, and a run-time specializer which
includes substitution operations and eval fragments. The
generator is defined in Figure 11.

Let us describe in detail the treatment of each action,
starting with the commands. An eval command produces
an rhs-term which consists of the empty command since a
command which can be completely evaluated will not appear
in the specialized program. As for the run-time specializer,
it corresponds to the command itself since it can be com-
pletely evaluated. The inverse situation happens for identity
commands.

Rebuilding an assignment means that this construct will
be in the specialized program and thus is included in the
resulting rhs-term. This rhs-term corresponds to the original
assignment where eval expressions (in the right-hand side)
have been replaced by holes. As for the run-time specializer,
it is composed of the instantiation operations that may be
needed to fill the holes in the right-hand side expression of
the assignment.

Rebuilding a sequence command means that this con-
struct will appear in the specialized program, and indeed, it
is part of the resulting rhs-term. As for the run-time spe-
cializer, it is composed of the eval commands contained in
the arguments of sequence command.

When reducing a sequence command, the generated rhs-
term only contains the commands from the second argument
of sequence to be rebuilt (the first argument can be com-
pletely evaluated). The run-time specializer is a sequence
command which consists of the first argument of the original
sequence, and the eval commands from the second argument
of sequence.

Rebuilding a conditional command is very similar to re-
building a sequence command; its description is thus omit-
ted. The reduction of a conditional command involves a
new aspect: it produces a fresh non-terminal as the rhs-
term. This is due to the fact that, although the conditional
command is known to be reduced, the branch to consider
is unknown. Therefore, a non-terminal is introduced as a

placeholder for the rhs-term of either branch. Consequently,
the run-time specializer produced in this situation consists
of a conditional to be evaluated whose branches substitute
the fresh non-terminal by the rhs-term of the appropriate
branch, in addition to executing the eval commands con-
tained in the corresponding branch.

In the case of an eval expression, the result of its evalu-
ation will be substituted for a hole at run time. Therefore,
the analysis of such an expression produces a hole freshly
generated as the rhs-term. As for the run-time specializer,
it consists of an instantiation command aimed at replacing
the hole by a value computed at specialization time.

When an identity expression is analyzed, it is reproduced
verbatim as the rhs-term. As for the run-time specializer, it
consists of the empty command since the expression is not
processed during specialization.

Rebuilding a primitive call means that the rhs-term con-
sists of this construct, the operator, and the rhs-term of
each operand. The run-time specializer is a sequence con-
struct composed of the instantiation commands caused by
the possible eval expressions included in the call arguments.

4.5 Correctness

Proving correct the process of generating run-time specializ-
ers consists of showing that, for an action-analyzed program
and some specialization values, the specialized program pro-
duced by interpreting actions is the same as the one pro-
duced by executing the run-time specializer using the same
specialization values.

This statement is formally expressed in the following the-
orem.

Theorem 1 (Vc* € Com®)(Vo € Store)
Let (¢, ¢) = Con[c”]
Then, o' = C[c]o[§ — c¢™™] = (o'(§), 0') = C*[*]&

Where Yo € Store, 5 = o[§ —_1]
The proof is included in Appendix A.



C;en :Com® — (C’omrhS x Com)
Cen[Eval(c')]

gen[[Id( )]]
Cg.n.[Rebassign(z,e)]

Cg.n[Rebseq(ct, c5)]

Efen + Erp® — (BEzp™ x Com)
Egen[Eval(e')]

EgenLd(e")]
Egen[Rebcall(o, ef, €5)]

where

Figure 11:

([Nop], [c'])

([c'], [Nop])

([Assign(z,e”
where (erhe c)

(ISea(c;™, ¢5")], [Sea(c1, c2)])

where (clh c1) = Cgenlcf]
) (C;he C2) = ;en[[Cg]]
Cgen[Redseq(ci, c3)] = ([5"].[Seq(ci, c2)])
where (5" ¢e2) = Cnl[cs]
Co.n[Rebcond(e®, cf,c8)] = ([Cond(e™*, c1"™, ;)] [Seq(c,Seq(c1,c2))])
where (™" ) = gen[[e“]]
() er) = Chonfed]
. ( ; ) = en[[c2]]
Cgen[Redcond(e’, cf,c5)] = (Nterm(s), [[Cond( , Seq(Rule(s ™), e1),
Seq(Rule(s, ¢5™), c2))])
where ) = gen[[c‘f]]

(c1"
(c5"

([Hole(h)], [Inst(h, ¢*)])
where h is a fresh hole
([e'], [Nop])

([Call(

0, €1

rhs ghs)]]’ [[Seq(C1, C2)]])
(1" e1) = Egenlef]
(5" ca) = Eenles]

Abstract interpretation of the actions

"I1.LD)

Egenle”]

) = en[[c2]]

is a fresh non- termmal

5 Related Work

Recently two approaches to run-time code generation have
been reported by Engler and Proebsting [6], and by Leone
and Lee [11]. These approaches include some aspects of run-
time specialization and address issues related to compiling
code at run time.

Engler and Proebsting’s approach consists of providing
the programmer with operations to construct templates man-
ually in the intermediate representation of the LCC compiler
(a form of register transfer language) [7]. Then, at run time,
the operations to construct templates are executed, and a
fast code generator is invoked to compile templates into bi-
nary code.

Not only is this approach error-prone because templates
are written manually, but it also forces the code generation
process to be overly simple because it needs to be fast (no
elaborate register allocation or instruction scheduling is per-
formed).

Leone and Lee’s approach is developed for a first-order
subset of a purely functional language. It is aimed at post-
poning certain compilation operations until run time to bet-
ter optimize programs. Operations such as register alloca-
tion may be performed at run time for some program frag-
ments. The binding-time of a given function is defined by
the way it is curried.

Both approaches suffer from the fact that the run-time
compiler does not have a global view of the program to be
specialized, nor does it know what kind of specialized pro-
grams can be produced at run time. Consequently, run-time
code generation is not performed at the level of a procedure
or a basic block, it is done at the instruction level. This

strategy makes it difficult to generate efficient code.

In contrast, our approach enables the compiler to process
program fragments globally in that it is applied to the pos-
sible combinations of templates which can be constructed at
run-time. Because the compiler processes large code frag-
ments it is able to produce efficient code.

Many existing approaches (e.g., [11, 6]) emphasize the
need to perform elaborate optimizations at run time based
on the fact that much more information is available then.
This is a difficult challenge because of the conflicting re-
quirements of a run-time code generator, namely, produc-
ing code at low cost to allow this process to be amortized
quickly, and exploiting as much run-time information as pos-
sible to produce highly-optimized code. When the run-time
code generator only focuses on the former requirement, even
if the number of instructions being executed is smaller, the
quality of the generated code may be such that performance
is degraded. When the run-time code generator puts too
much effort on optimization, the overhead may be such that
the process may not be applicable to many situations.

Determining what kind of run-time code generation pro-
cess 1s most suitable for a given situation is a difficult prob-
lem. Two important factors need to be taken into account:
the overhead introduced by the run-time code generator and
the frequency of execution of the code fragment to be pro-
cessed at run time.

To some extent run-time specialization simplifies the is-
sue in that it is not aimed at performing general-purpose
optimizations that may or may not improve performance.
Rather it is restricted to specializing programs with respect
to some run-time invariants. If the program fragments to
be processed offer good opportunities for specialization, the



run-time specialization process will likely be amortized and
performance should improve, provided the specialized code
is executed many times.

Techniques to specialize object-oriented programs at run
time have also been developed [1]. They are aimed at op-
timizing frequently executed code sections. However, these
specialization techniques do not address arbitrary computa-
tions: they are limited to the optimization of certain object-
oriented mechanisms such as method dispatch.

6 Conclusions and Future Directions

We have presented an approach to performing specializa-
tion at run time, based on partial evaluation technology. It
consists of producing templates at compile time and trans-
forming them so that they can be processed by a standard
compiler. At run time, only minor operations need to be
performed: selecting and copying templates; filling holes
with run-time values, and relocating jump targets. As a
result, run-time specialization is performed very efficiently
and thus does not require a specialized code to be executed
many times before its cost is amortized.

Our approach has been implemented for the C language,
using the GNU C compiler, and is integrated in a partial
evaluation system that specializes programs at compile time
as well as at run time.

Future directions for this work include conducting a thor-
ough experimentation with our C run-time specializer and
performing more measurements, developing specific tech-
niques to use run-time specialization in operating system
code where specialized code may be executing when invari-
ants become invalid, and applying the approach to different
languages like ML.
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A Correctness

In this section, the correctness proof of our approach is presented. The proof of the main theorem relies on four lemmas
which relate the stores being produced by a run-time specializer and by standard interpretation. It also relates specialized
expressions produced by interpretation of actions and by evaluation of a run-time specializer. Because the proofs of these
lemmas are simple, they are omitted.

Definition 1 Vo € Store, 5 = o[§ — 1]

Lemma 1 states that the evaluation of a command written in the initial language does not affect (or depend on) the
program being specialized stored at location §.

Lemma 1 (Ve' € Com"‘)(Vcr € Store)(Ve™™ € Com™)
Cle'ol§ ™) = (Cle'Do)[§ = ™.

Lemma 2 stipulates that for any command written in the extended language, whether or not it is evaluated with a store
defined at location § does not affect the other values contained in the store.

Lemma 2 (Ve € Com)(Vo € Store) C[c]lo = C[c]e

The following two lemmas address a correctness issue regarding the expression included in assigments and conditionals.
More precisely, for a given action-analyzed expression and a store, a specialized expression can be produced by interpreting
the actions using £%. Another alternative is to evaluate the run-time specializer produced by £g., for this action-analyzed
expression.

Lemmas 3 and 4 state that these different evaluation strategies produce the same specialized expression and the same
store modulo the value of the store at location §.

Lemma 3 (V& € Id)(Ve® € Exzp®)(Vo € Store)
Let (7%, ¢) = €5, [e“]
Then, o' = C[c]o[§ — Assign(z,e™*)] = o'(§) = Assign(z, £%[e]5) Aa' =5

The following lemma uses function Hole to collect holes in rhs-terms (expressions and commands).

Lemma 4 (Ve € Exp®)(Vel™, cb™ € Com™)(Yo € Store)
Let (7%, ¢) = €5, [e“]
Then, Hole(e™™) N (Hole(c]™) U Hole(c3™)) =6 A
o’ = C[c]o[§ — Cond(e™, c1"*, c5"*)] = ¢/(§) = Cond(£%[e%]5, 1™, 3" ) A o' =&

Theorem 1 (V¢ € Com®)(Vo € Store)
Let (™, ¢c) = Coenlc®l
Then, o' = C[c]o[§ — c¢™™] = (' (§), ') = C*[c*]&

Proof: the proof is by structural induction on ¢

o If ¢ = Eval(c')
then, Cg.,,[c*] = (Nop, ci)
o' = C[c']o[§ — Nop]
By Lemma 1, o’ = (C[¢']o)[§ — Nop]
= (0/(§), ") = (Nop, C[']o) = €*[c]

o If ¢ = 1d(c") ‘
then, Cg.,,[¢"] = (¢, Nop) ‘
o' = C[Nop]o[§ — ¢'] = o[§ = ']
= (0'(§),0') = (', 7) = C*[c*]7

o If c* = Rebassign(z, e®)
then, Cg.,,[c”] = (Assign(«, €™, co) where (e™,¢) = Egenle]
o’ = Clco]lo[§ — Assign(z,e™™)]
By lemma 3, (6'(§), 0') = (Assign(z, £%[e“]7), 7)
= (0'(§),0") = C*[c"]o



o If c® = Rebseq(cf, c5)
rhs _ a a
then, Cg.,[c"] = (Seq(cl™, 5™, Seq(c1, c2)) where { Ecihs’ilg ; C‘ZZZ%E%
o' = C[Seq(c1, c2)]ol§ — Seq(ci"*, ¢5"*)] = Cle2](CLer]ol§ — Sea(ci™, "))
rhs rhs
(

Because only ¢1(resp. ¢2) can substltute non-terminals and holes introduced in ¢j resp. ¢3"'%),
— rhs
o' = 8§ — Seq(8(5), 5'(5))] where { 6, = Ceoli—ci ]

& = C[c2]6[§ — 5™
= (0'(§),0") = (Seq(8(§), 8'(§)), &)
(8(8),6) = C[ci]o
(8'(§),0") = C[es]6
= (o(§),0') = C*[c“]o

o If ¢* = Redseq(ci, c5)
then, Cg.,,[c*] = (c3 phe Seq(cl, ¢2)) where (5™ ¢c2) = Coenlcs]
o = C[[Seq(ci, c2)]ol§ — c”f“] = C[[Q]](C[[Ci]]a[‘gj — ¢5"])
By lemma 1, o’ = C[e2](C[c3]o)[§ — 5™
By induction, (¢/(§),0’) = C*[c5](C[ci]o)
By lemma 2, (o'(§), 0') = C*[c$](C[ci])
= (0'(§),0') = C*[c*]o.
o If c® = Rebcond(e?, cf,c5)
then, Cg.,[c"] = (Cond(e™ ", c5") Seq(co, Seq(ci, c2)))
() = Egunle’]
where { (c{hs,cl) = gen[[cl]]
(Cghsa C2) = en[[c2]]
o’ = C[Seq(co, Seq(c1, c2))]o[§ — Cond(e™, e[, c5")]
o’ = C[Seq(c1, c2)]6 where § = C[co]o[§ — Cond(e™, c1"*, c5")]

By construction, ™, ¢7** and ¢5™* do not share holes and lemma 4 gives,

8(8) = Cond(f“[[e“]]a et ethyand § =&
=>d=o0[§— Cond(f“[[e“]]a et ephey]

:> o’ = C[Seq(c1, c2)]o[§ — Cond(£°[e%]7, c™*, c5™*)

o’ = Clea](Cler]o[§ — Cond(£%[e*]5, e, c;’“)])

As in the case of Rebseq, we have,

o' = 8"[§ —~ Cond(£°[e*]7,6'(§),6"(§))] where { o Cler]ol§ — ci™]

8" = Clea]6'[§ — 5"
= (0'(§),0") = (Cond(£[e“]7, &' (5), 8" (§)), &)
(¢'(5),6) = C[ei]o
(8"(5),6") = Ces]e’
= (0'(§),0") = C*[c“]o

o If ¢* = Redcond(e, cf, )
then, Cg.,[¢“] = (Nterm(s), Cond(ei, Seq(Rule(s, i), ¢1), Seq(Rule(s, c3™), ¢2))
(C;hsa Cl) = C;en [[C(ll]]
where { (cg’“ C2) _ aen [[CS]]
o’ = C[Cond(e', Seq(Rule(s, ci™*), ¢1), Seq(Rule(s, ¢5™), ¢2))]o[§ — Nterm(s)]
=if £[e']o[§ — Nterm(s)]

then C[c1](C[Rule(s, c;™*)]o[§ — Nterm(s)])
else  Clc2](C[Rule(s, c5™*)]o[§ — Nterm(s)])

By induction,

By induction,

_ rhs

= if £[¢']o then & else 6, where Z; - g%iﬂjg _ 2’1%
~ ~ (81(5), E)—C“[[C‘f]]&
By induction, { (62(8), 62) = C*[c%]o

= (0'(§),0") = if £[e']a then C*[ci]o else C*[cs]o = C[c*]o O



