
A General Approach for Run-Time Specializationand its Application to CCharles Consel Fran�cois No�elUniversity of Rennes / IrisaCampus Universitaire de Beaulieu35042 Rennes Cedex, Francefconsel,fnoelg@irisa.frAbstractSpecializing programs with respect to run-time invariants isan optimization technique that has shown to improve theperformance of programs substantially. It allows a programto adapt to execution contexts that are valid for a limitedtime.Run-time specialization is being actively investigated ina variety of areas. For example, recently, major operatingsystem research projects have been focusing on run-timespecialization as a means to obtain e�ciency from highlyextensible and parameterized systems.This paper describes a general approach to run-time spe-cialization. For a given program and a declaration of its run-time invariants, it automatically produces source templatesat compile time, and transforms them so that they can beprocessed by a standard compiler. At run time, only mi-nor operations need to be performed: selecting and copyingtemplates, �lling holes with run-time values, and relocatingjump targets. As a consequence, run-time specialization isperformed very e�ciently and thus does not require the spe-cialized code to be executed many times before its cost isamortized.Our approach improves on previous work in that: (1)templates are automatically produced from the source pro-gram and its invariants, (2) the approach is not machinedependent, (3) it is formally de�ned and proved correct, (4)it is e�cient, as shown by our implementation for the Clanguage.1 IntroductionSpecializing programs at run time with respect to dynamicinvariants is an optimization technique that has already beenexplored in various areas such as operating systems [16] andgraphics [14]. This technique is aimed at adapting programsto execution contexts by using run-time invariants.In the context of �le system operations, examples of run-time invariants include the type of the �le being opened, thedevice where it resides, and whether it is exclusively read.When a �le is being opened, at run time, invariants becomeavailable and can be exploited to specialize read and/orwrite routines. As reported by Pu et al. this specializa-

tion eliminates redundant interpretation of data structuresand yields signi�cant improvements [15].In fact, various forms of run-time specializations havebeen studied on practical systems, and substantial improve-ments have been reported. Locanthi et al., for example,applied specialization to the bitblit procedure [14, 12]; theirspecialized code ran about 4 times faster than a generic im-plementation. In the area of operating system, Massalinand Pu designed an operating system which utilized run-time specialization as a fundamental technique to optimizea wide variety of system components. They report speedupfactors that range from 2 to 40 depending on the systemcomponent considered [13].Although various forms of run-time specializations haveundoubtedly been shown to improve substantially the per-formance of programs, the specialization process has alwaysbeen done manually [9]. The usual approach consists ofde�ning code templates, that is, code fragments parameter-ized with respect to run-time values. Then at run time,templates are linked together depending on the control 
ow,and holes (i.e., template parameters) are �lled with run-timevalues [10]. To minimize the cost of run-time specialization,templates are often represented in a binary form to avoidinvoking an assembler, or even more expensive, a completecompiler, at run time.While the idea of run-time specialization is certainly at-tractive, considering the degree of improvement it can yield,the approaches explored so far have fundamental drawbacks.� They are manual. Usually templates are written by theprogrammer either directly in some low level language,or using some syntactic facilities [6].� They are not clearly de�ned. Although existing ap-proaches have shown their e�ectiveness, the process ofrun-time specialization has always been presented as ablack-box; only the functionalities were described notthe techniques.� They are not portable. When templates are written inassembly language, they are limited to a given proces-sor. Often, templates have to be optimized manuallyto obtain good performance.� They are error-prone. Because templates are directlywritten by the programmer in a low-level language,errors may easily be introduced.In this paper we present a general approach for run-timespecialization and its application to the C programming lan-



guage. Our approach can be decomposed in the follow-ing main stages. At compile time, a program is analyzedfor a given context of invariants declared by the program-mer. This analysis determines the program transformationto be performed for every syntactic construct in the pro-gram. This information is used by a subsequent analysis toproduce a safe approximation of the possible specializationsof this program, in the form of a tree grammar. Then, thistree grammar is used to generate templates automatically atthe source level. These templates capture the dynamic com-putations, that is, the computations that rely on data thatvary. Once compiled by a standard compiler (in the case ofthe C language), various linking information (i.e., labels andholes) is collected from the compiled templates. Finally, theparts of the program corresponding to the static computa-tions, i.e., the computations that rely on the invariants, arecompiled; they represent the run-time specializer. When itis executed at run time, in addition to computing invariants,the run-time specializer also selects templates depending onthe control 
ow, relocates jump targets, and �lls templateholes with the invariant values.Our approach has many advantages compared to the ex-isting ones.� It is automatic. Templates are automatically gener-ated from a description of the possible specializationsof a program, itself produced by an analysis.� It is formally based. We have formally de�ned theapproach for a subset of an imperative language andproved it correct.� It is general. In principle, our approach applies to avariety of languages, from imperative to applicativeones.� It is portable. In our approach, most of the special-ization process is in fact performed at the source level.Only minor operations in the linking phase of tem-plates need to be ported. These operations are limitedto collecting locations of template holes and jump la-bels within templates.� It is e�cient. We have applied the approach to the Clanguage: an implementation of a run-time specializerof C programs has been developed. It has been usedon various kinds of programs. The run-time specializa-tion process incurs a negligible overhead. Preliminaryexperimentation shows that on procedures exhibitinga clear interpretive layer (e.g., variations of printf),run-time specialized code requires as little as 3 runs toamortize the cost of specialization, and it executes 5times faster than the non-specialized version.Our run-time specialization approach is based, in part,on partial evaluation technology [8, 3]. In fact, it is inte-grated in a complete partial evaluation system for C pro-grams that performs compile-time specialization as well asrun-time specialization [4]; this aspect is further discussedin Section 2. This system has been applied to various kindsof programs such as operating system code.Plan. In Section 2, the underlying concepts of partial eval-uation are reviewed. In Section 3, the approach and itsmain components are described; examples are used to illus-trate the presentation. In Section 4, the approach is for-mally de�ned and proved correct. Section 5 then discusses

the related work. Finally, Section 6 gives some concludingremarks, and outlines the future directions of this work.2 Partial EvaluationPartial evaluation is a program transformation techniqueaimed at specializing a program with respect to some partsof its input [8, 3]. There are two main strategies to performpartial evaluation. The �rst strategy, called on-line, consistsof specializing a program in a single pass. As the programgets processed, the program transformations are determinedand performed. Because program transformation occurs inthe presence of concrete values, on-line partial evaluationachieves a high-degree of specialization.The second strategy to partial evaluation, called o�-line,is composed of two parts: preprocessing and specialization.For a given program and a description of its input (known orunknown), the preprocessing phase essentially compiles thespecialization phase. It does so by determining a programtransformation for each syntactic construct in the program.Then, the specialization phase is performed with respect tosome partial input value. This process is solely guided bythe information produced by the preprocessing phase. As aconsequence, specialization is e�cient.Whether on-line or o�-line, partial evaluation has alwaysbeen studied and understood as a source-to-source programtransformation. In this paper, we introduce an approachthat goes beyond this view. We propose to use partial eval-uation as a basis for run-time specialization. In fact, thiswork is part of a complete partial evaluation system whichspecializes C programs at compile time as well as at run time[4]. Let us brie
y outline the salient features of this system.Our partial evaluation system is based on an o�-linestrategy. The preprocessing phase mainly consists of an aliasanalysis, a binding-time analysis, and an action analysis.The alias analysis is needed because of the pointer facilitieso�ered by the C language. The binding-time analysis deter-mines the binding-time property of the variables in a pro-gram, given a program and a description of its context (i.e.,global variables and formals are declared as static/known ordynamic/unknown). While the binding-time analysis deter-mines what to do for each syntactic construct in a program,the action analysis determines how to do it [2]. In otherwords, binding-time information is used to determine whatspecialization action (i.e., program transformation) shouldbe performed. A small subset of the actions used for the Clanguage is presented in Section 4.Once the actions of a program are produced, variousback-ends can exploit this information. Firstly, they can beinterpreted; this situation corresponds to a specializer. Sec-ondly, they can be compiled to produce a dedicated special-izer (also called a generating extension [8]). Finally, actionscan be used to achieve run-time specialization. The last al-ternative comes from the fact that actions de�ne programtransformations and thus can be used as a basis to determinewhat specialized programs an action-analyzed program canyield. In fact, in our approach, an analysis of an action-analyzed program is performed to determine an approxima-tion of this set of possible specialized programs; this set isdescribed as a tree grammar.3 An Approach to Run-Time SpecializationAs mentioned in Section 2, run-time specialization is one



int f(int x, int y) f int f(int x, int y) fint l; int l;l = 2 � x; (l = 2 � x)ev ;redif ( l == 2 ) ifred ( l == 2 )evl = l + y; lid =reb lev +reb yid ;rebelse l = y � x; else lid =reb yid �reb xev ;rebreturn l; (return l)id ;g g(a) Source program (b) Action-analyzed program(x = static, y = dynamic)Figure 1: An example programof the three ways of exploiting action-analyzed programs.This section presents an approach to run-time specializationbased on actions.Let us explain in detail how a program gets annotatedwith actions by taking a concrete example. Actions are in-deed a key aspect of our approach: it is the starting pointof the run-time specialization process.Figure 1-a presents a source program, written in the Clanguage. Figure 1-b shows this program annotated withactions. For readability, the action-analyzed program is rep-resented in concrete syntax and decorated with actions. Letus describe how actions are determined for procedure f inthe example program, assuming that its �rst parameter isstatic and its second parameter dynamic.The �rst command in the procedure is assigned actioneval (ev). This action annotates completely static programfragments. Such program fragments represent computationsthat solely depend on available data. Assuming that thesymbol `;', at the end of the �rst command, is a sequenceconstruct, then it is assigned the action reduce (red) becausethe �rst command will be evaluated away and thus the se-quence command will be reduced. Likewise, the conditionalcommand can also be reduced because the value of the testexpression can be determined at specialization-time. Still,the branches of the conditional command have to be rebuilt.More speci�cally, the assignment in the true branch has tobe rebuilt (reb) because the right-hand side does not par-tially evaluate to a constant. This is caused by variable ywhich is dynamic. As such, this variable represents a com-pletely dynamic code fragment; it is annotated with actionidentity (id). This action denotes code fragments that canbe reproduced verbatim in the specialized program. A sim-ilar situation occurs in the false branch of the conditionalcommand. Finally, the return command is globally anno-tated with id since it is uniformly dynamic.To specialize a program at run time based on its ac-tions, a na��ve approach would simply consist of postponingspecialization until run time, that is, when the specializa-tion values become available. Then, the specialized codewould be compiled and dynamically linked to the runningexecutable. The obvious drawback of this approach is thecost of compilation which would require the run-time spe-cialized program to be run many times to amortize the costof specialization, compilation and linking.In fact, the reason why the compilation of a particularspecialized program has to be postponed until run time isbecause we do not know the set of possible specializationsan action-analyzed program can yield. If we knew such aset, or a description of it, then it could be processed at

compile time instead of run time. Unfortunately, the set ofall possible specializations is in general in�nite (because ofloop unrolling, for example).3.1 Using Tree GrammarsA traditional way to �nitely represent an in�nite set of treesis to use tree grammars. However, determining the exactset of the possible specializations of an action-analyzed pro-gram is undecidable in general, since specialization valuesare unknown at compile time. Yet, an approximation canbe de�ned; it corresponds to the least superset of the exactset. It is safe to consider a tree grammar that describes morespecializations than the actual ones if they are ignored dur-ing run-time specialization; more precisely, if no executioncontext leads to these specializations.We have developed an analysis aimed at computing atree grammar, called specialization grammar in this context,which represents a safe approximation of the set of all pos-sible specializations of an action-analyzed program. Let usconsider an example of a specialization grammar. Figure2-a redisplays the action-analyzed procedure f and Figure2-b shows its corresponding specialization grammar. Likeaction-analyzed programs, specialization grammars are rep-resented in concrete syntax.The �rst rule F describes the possible specializations ofprocedure f . Unlike compile-time specialization, when aprocedure is specialized at run time, it does not need to berenamed. Indeed, during execution, templates have a bi-nary format. Only code addresses are manipulated. Sincelocal variable l is involved in some dynamic computations,it is residual, and thus its declaration remains in the spe-cialized program. Directly following this declaration, in-stead of the �rst command of the original procedure, thenon-terminal S occurs. This non-terminal de�nes the spe-cializations of the conditional command. In fact, the �rstcommand in f is not part of the specialization grammar be-cause it is completely static (ev); consequently, it will beevaluated at specialization-time. Next to the occurrence ofthe non-terminal S, the return command appears. It is iden-tical to the command in the original program because it iscompletely dynamic (id). As for the conditional commanddescribed by rule S, it will be reduced at run time since itstest expression is purely static. As a result, rule S is com-posed of two alternatives, one for each branch. Each branchis an assignment to be rebuilt at run time. However, eachright-hand side of these assignments includes a completelystatic expression: variables l and x. The integer values re-sulting from their run-time evaluation are described by the



int f(int x, int y) f F ! int f t(int y) fint l; int l;(l = 2 � x)ev ;red Sifred ( l == 2 )ev return l;lid =reb lev +reb yid ;reb gelse lid =reb yid �reb xev ;reb(return l)id ; S ! l = Int+ y;g j l = y � Int;(a) Action-analyzed program (b) Specialization grammarFigure 2: Specialization grammar generated from an action-analyzed proceduregeneric terminal Int; it is a placeholder for integer values.At this stage it is important to notice that a special-purpose compiler could be developed to process right-handsides of specialization grammar rules. In other words, sucha tool could compile incomplete syntax trees parameterizedwith constant values. Compilation would be done staticallyand thus run-time specialization would mainly amount toassembling binary fragments and instantiating them withrespect to run-time values. Although this method is pos-sible, it requires one to develop a complete compiler. Thiscompiler would necessitate time and e�ort to be competitivewith advanced optimizing compilers currently available. Abetter approach would consist of modifying an existing com-piler. However, real-size compilers are not as modular asthey claim to be: signi�cant modi�cations may propagatethroughout most of the compilation system. Such modi�-cations may therefore not be necessarily much simpler thanthe previous approach. An even better approach consistsof using an existing compiler as is. This is discussed in thenext sections.3.2 Introducing TemplatesAn existing compiler can be used to process right-hand sidesof specialization grammars. In this section we present atransformation process aimed at converting these right-handsides into source code fragments parameterized with run-time values. We call these fragments source templates. Tem-plate parameters are often called holes in the literature [10].At run time, part of the specialization process consists ofphysically replacing these parameters by values. In otherwords, template holes are �lled with run-time values. Theresulting object is called an instance of the template.Transforming specialization grammars into source leveltemplates mainly amounts to unparsing the right-hand sideof the grammar rules and delimiting individual templates.The former task is fairly straightforward. The only interest-ing aspect is concerned with the treatment of generic termi-nals. This representation for run-time values is transformedinto holes. The concrete representation of a hole depends onboth the language and the compiler being used. To abstractover these issues, holes are just given a unique name withinbrackets (for example [h1] in Figure 3).Delimiting templates can be done in several ways. Letus present two approaches.The �rst approach consists of creating one template perright-hand side in a specialization grammar. For example,based on the specialization grammar presented in Figure 2-b, the �rst approach would yield three templates as shown

in Figure 3-a: one for procedure f , and one per alternativein the conditional command. Just like the right-hand sideof F in the specialization grammar includes non-terminalS, its corresponding template includes a reference to othertemplates. The template to be selected cannot be deter-mined at compile time since it depends on the value of thetest expression of the conditional command. Therefore, aplaceholder (that is, some reserved space) is introduced toinsert the selected template.Although conceptually simple, this approach may be costlyin practice. Indeed, it assumes that the physical layout oftemplate t1 at run time includes enough space to insert ei-ther template t2 or template t3. If they have di�erent sizes,the size of largest template is used. As a result, placehold-ers for templates may have a large size. A more importantdrawback occurs if loops are unrolled. In this case, the sizeof the unrolled loop cannot be determined at compile time.The second approach is aimed at eliminating nested tem-plates such that no space be reserved to insert templates. Todo so, when the right-hand side of a specialization grammarrule includes a non-terminal, a template is created beforeand after this non-terminal. This approach is illustrated byFigure 3-b. Template t1 represents a �rst fragment of thespecialized version of procedure f . Then, either template t2or t3 is appended. Finally, template t4 completes a special-ized procedure.Notice that for the formal de�nition of the run-time spe-cialization process, the �rst approach is used to simplify thepresentation and abstract over these implementation issues.3.3 Compiling Templates StaticallyOnce templates are identi�ed and transformed into concretesyntax, they can be compiled. Because they are availableat compile time, they can be compiled then. They becomeobject templates. Of course, the way templates are compileddepends on the language in which they are written, and thecompiler which is used.In this section we discuss the general issues arising fortemplate compilation, mostly independently of a speci�clanguage or compiler.So far, the templates of a procedure have been describedas separate entities. However, if templates were to be com-piled separately, the quality of the code would be poor sincethe compilation process would not take advantage of thecontext in which they appear. Some compilation aspectssuch as register allocation and instruction scheduling wouldundoubtedly su�er from this situation. To circumvent thisproblem, our approach consists of constructing a source code



int f t(int y) f t1int l;t2 or t3return l;g l = [h1]+y; t2l = y � [h2]; t3(a) Approach 1 int f t(int y) f t1int l;l = [h1]+y; t2l = y � [h2]; t3return l; t4g(b) Approach 2Figure 3: Templates for procedure fint f t(int y) f t1int l;switch unknown fcase 1: l = [h1]+y; t2break;case 2: l = y � [h2]; t3break;greturn l; t4gFigure 4: Source representation of templatesthat combines all the templates and still expresses the un-knowns as far as how exactly these templates can be assem-bled at run time. A concrete example of this transformationis presented in Figure 4.As can be noticed the source representation of templatesfor procedure f follows the structure of the specializationgrammar. In particular, because we do not know prior torun time which alternative of the conditional command willbe included in the specialized version of procedure f , bothalternatives are included in a switch command whose testvalue is unknown (variable unknown) to the compiler. Thislayout is directly derived from the specialization grammar.Even though there is this unknown, the compiler can stillprocess the templates globally, in that it knows the possiblecombinations that can occur. In fact, the source represen-tation of templates includes some form of markers aroundtemplates so that they can be identi�ed and extracted fromthe object code. Object templates are used at run time bythe specializer.Finding an appropriate representation for template holesis an issue that depends on both the language and the com-piler being studied.Once templates are compiled, information from the re-sulting object code must be collected: the address of tem-plate holes needs to be recorded so that the run-time special-izer knows where values need to be installed. Also, templateaddresses have to be determined so that jumps can be relo-cated if needed.

void rt spec f(int x) fint l;dump template(t1);l = 2 � x;if ( l == 2 ) fdump template(t2);instantiate hole(t2, l);g else fdump template(t3);instantiate hole(t3, x);gdump template(t4);gFigure 5: Run-time specializer for f3.4 Producing the Run-Time SpecializerNow that templates have been generated, compiled and ex-tracted from the object code, and that information neededto instantiate them has been collected, we are ready to pro-duce the run-time specializer. This procedure consists ofeval fragments interleaved with operations aimed at select-ing and dumping templates, �lling holes with run-time val-ues, and relocating jump targets. The run-time specializeris generated based on an action-analyzed program.Figure 5 displays the run-time specializer for proceduref . The control 
ow of this procedure can be seen as a subsetof the control 
ow of the original procedure in the sense thatonly the static parts of the original control 
ow graph appearin the run-time specializer.Since parameter x in the original procedure was declaredas static, it appears as a parameter of the run-time spe-cializer. Local variable l was involved both in static anddynamic computations. Therefore it appears in both a tem-plate and the run-time specializer. The �rst operation ofthe run-time specializer is to dump template t1, which isthe header of the specialized procedure. The �rst commandof the original procedure can then be executed since it ispurely static. Next, the conditional command is executed.The test expression can be fully evaluated; the resultingvalue determines whether the �rst or the second templateshould be dumped. The dumped template is then instanti-ated with the appropriate run-time value. Finally templatet4 is dumped; it corresponds to the purely dynamic returncommand, and thus does not require any instantiation.



As can be noticed, the operations to perform the actualspecialization are very simple and introduce little overheadat run time. Relocation of jump targets and hole �lling arecompiled. Copying of templates can be implemented verye�ciently on some processors provided their memory layoutis carefully done.The result of an invocation of the run-time specializer isa specialized code ready to be used. In our implementation,the last operation of the run-time specializer consists of re-turning the address of the specialized code. For a procedure,it returns a procedure pointer which can then be invoked.4 Semantic De�nition of Run-Time SpecializationIn this section, an imperative languague is introduced and itssemantics is de�ned. Then, a set of specialization actions forthis language, as well as their semantics, are presented. Also,the semantic de�nition of the process of generating run-timespecializers is given. Finally, the correctness criterion forthis latter process is stated. It establishes that specializingprograms by interpreting actions, or by evaluating the run-time specializer yields the same specialized program, giventhe same specialization values.Even though this presentation covers a simple impera-tive language and a small set of actions, it still addresssthe important steps of the run-time specialization process.Because this presentation is done in a denotational frame-work, it abstracts over implementation details and focuseson conceptual aspects.4.1 The LanguageVariations of the language being studied (and their semanticde�nition) are used in this presentation. To distinguish eachof them, syntactic domains and variables ranging over thesedomains are indexed by the abbreviated name of the varia-tion (e.g., ci 2 Comi), and similarly for valuation functions.The syntax of the imperative language being studied isdisplayed in Figure 6. The �rst part of the �gure (Comiand Expi) de�nes the language to be handled by the spe-cializer. This initial language consists of commands (emptycommands noted Nop, assignments, sequences, and condi-tionals) and expressions (variables, constants, and primitivecalls).To reason about run-time specialization, the initial lan-guage is extended. To motivate these extensions, let us dis-cuss some issues involved in modeling run-time specializa-tion in a denotational framework.First, as can be expected the denotational de�nition ofrun-time specialization does not manipulate object templates.Instead, it manipulates source templates. More precisely,since source templates are essentially in a one-to-one corre-spondence with the right-hand sides of grammar rules, thelatter ones will now be manipulated by the run-time special-ization process.As a consequence of this change, instead of dumpingtemplates for each non-terminal and instantiating templateswith constant values, run-time specialization now substi-tutes non-terminals by their right-hand side, and genericterminals (encoded as holes) by constant values. Two ex-tensions to our initial language make it possible to performthese operations. Construct Rule(s; crhs) allows a non-terminal s to be replaced by its right-hand side crhs. Con-struct Inst(h; e) substitutes a hole h by a constant resulting

x 2 Id Identi�ersn 2 Num Numberso 2 Oper Binary operatorsh 2 Holes = fh1; : : : ; hmg Holess 2 Nterms = fs1; : : : ; sng Non-terminalsci 2 Comi ::= Nopj Assign(x; ei)j Seq(ci1; ci2)j Cond(ei; ci1; ci2)ei 2 Expi ::= Var(x)j Cst(n)j Call(o; ei1; ei2)c 2 Com ::= Nopj Assign(x; e)j Seq(c1; c2)j Cond(e; c1; c2)j Rule(s; crhs)j Inst(h; e)e 2 Exp = Expicrhs 2 Comrhs ::= Nopj Assign(x; erhs)j Seq(crhs1 ; crhs2 )j Cond(erhs; crhs1 ; crhs2 )j Nterm(s)erhs 2 Exprhs ::= Var(x)j Cst(n)j Call(o; erhs1 ; erhs2 )j Hole(h)Figure 6: Language syntaxfrom the evaluation of an expression e. The extended lan-guage is de�ned by domains Com and Exp.Right-hand sides of grammar rules are de�ned by do-mains Comrhs and Exprhs. Just as templates can be nested,right-hand side terms (rhs-terms) may include non-terminals(Nterm(s)). Also, expressions may include holes (Hole(h)).The end result of run-time specialization now correspondsto the abstract syntax of the specialized program, withoutnon-terminals nor holes.The model we just described does not contradict the factthat source templates are available at compile time and canthus be compiled prior to run-time to achieve e�cient spe-cialization in practice.4.2 Semantic De�nition of the Extended LanguageIn this section the denotational semantics of the extendedlanguage is de�ned. It is not necessary to de�ne the deno-tational semantics of the initial language since it is a subsetof the extended one.The semantic domains as well as the valuation functionsare displayed in Figure 7.Notice that the process of substituting non-terminals bytheir right-hand side, and holes by values is noted ` '.As discussed in the previous section, we de�ne the seman-tics of run-time specialization at the abstract syntax level.To do so, we have introduced extra constructs (Rule andInst) to build a specialized program by repeated substitu-tions. But we also need to de�ne a place where the programbeing specialized can be stored and incrementally built. Tothis end, a special identi�er `x' is introduced; the store maps



i 2 Int Integer valuesf 2 Fun2 = Int� Int! Int Binary, integer functions�; � 2 Store = Id! (Int+Comrhs)?C : Com! Store! StoreC[[Nop]] � = �C[[Assign(x; e)]] � = �[x 7! E[[e]]�]C[[Seq(c1; c2)]] � = C[[c2]](C[[c1]]�)C[[Cond(e; c1; c2)]] � = if E[[e]]� then C[[c1]]� else C[[c2]]�C[[Rule(s; crhs)]] � = �[x 7! �(x)[s crhs]]C[[Inst(h; e)]] � = �[x 7! �(x)[h E[[e]]�]]E : Exp! Store! IntE[[Var(x)]] � = �(x)E[[Cst(n)]] � = N [[n]]E[[Call(o; e1; e2)]] � = O[[o]](E[[e1]]�;E[[e2]]�)N : Num! IntO : Oper ! Fun2Figure 7: Extended semanticsf rule(s0, hjs1; return l;ji)l = 2 � x;if ( l == 2 ) frule(s1, hjl = [h1] + y;ji);inst([h1], l);gelse frule(s1, hjl = y � [h2];ji);inst([h2], x);ggFigure 8: A run-time specializer written in the extendedlanguageit to the specialized program being built. For a specializa-tion grammar of a given program, the initial state of thespecialization process consists of a store mapping identi�erx to the right-hand side of the start symbol of the grammar.Notice that holes and non-terminals are unique, as spec-i�ed by the generator of run-time specializers (see Section4.4).Let us revisit the example of procedure f and examinethe run-time specializer for its body; it is displayed in Figure8. The declaration is omitted, and the return command isleft for the sake of presentation although procedures are notincluded in the initial language.Since identi�er x is initially mapped to the right-handside of the start symbol of the specialization grammar, asthe run-time specializer executes, the non-terminals get re-placed by their right-hand side, and holes get substituted byconstants.4.3 Semantic De�nition of Specialization ActionsNow that the extended language is introduced, let us de�nethe syntax and semantics of specialization actions. Theyrepresent the starting point of the run-time specializationprocess. The set of actions considered for this presentation

ca 2 Coma ::= Eval(ci)j Id(ci)j Rebassign(x; ea)j Rebseq(ca1 ; ca2)j Redseq(ci1; ca2)j Rebcond(ea; ca1; ca2)j Redcond(ei; ca1 ; ca2)ea 2 Expa ::= Eval(ei)j Id(ei)j Rebcall(o; ea1; ea2)Figure 9: Actions syntaxis displayed in Figure 9.The meaning of all these actions has been discussed ear-lier except for Rebseq. This action is assigned to a se-quence command to be rebuilt. Notice that eval and iden-tity commands (and expressions) only involve elements ofthe initial language. Indeed, in either case these commands(and expressions) do not involve any specialization aspectsand should thus be standard. A similar situation occurs forthe �rst argument of both Redseq and Redcond which ispurely static. The semantic de�nition of the actions is givenin Figure 10.As discussed above, the semantic of action Redseq re-quires the �rst command to be purely static; another actioncould be introduced to address the case when the secondcommand is purely static.Lastly, it is important to notice that the actions of a givenprogram are assumed to be correct. Proving the correctnessof actions is outside the scope of this paper. This issue isaddressed by Consel and Khoo in the context of a functionallanguage [5].4.4 Generating Run-time SpecializersGiven that the semantics of actions are de�ned, the re-maining step is aimed at generating the run-time specializerfrom an action-analyzed program. This generator of run-



Ca : Coma ! Store! (Comi � Store)Ca[[Eval(ci)]] � = ([[Nop]];C[[ci]]�)Ca[[Id(ci)]] � = ([[ci]]; �)Ca[[Rebassign(x; ea)]] � = ([[Assign(x;Ea[[ea]]�)]];�)Ca[[Rebseq(ca1; ca2)]] � = ([[Seq(ci1; ci2)]]; �00)where (ci1; �0) = Ca[[ca1]]�(ci2; �00) = Ca[[ca2]]�0Ca[[Redseq(ci1; ca2)]] � = Ca[[ca2]](C[[ci1]]�)Ca[[Rebcond(ea; ca1; ca2)]] � = ([[Cond(Ea[[ea]]�;ci1; ci2)]]; �00)where (ci1; �0) = Ca[[ca1]]�(ci2; �00) = Ca[[ca2]]�0Ca[[Redcond(ei; ca1; ca2)]] � = if E[[ei]]� then Ca[[ca1]]� else Ca[[ca2]]�Ea : Expa ! Store! ExpiEa[[Eval(ei)]] � = [[Cst(E[[ei]]�)]]Ea[[Id(ei)]] � = [[ei]]Ea[[Rebcall(o; ea1; ea2)]] � = [[Call(o;Ea[[ea1]]�;Ea[[ea2]]�)]]Figure 10: Semantic de�nition of actionstime specializers is de�ned as a non-standard interpretationof actions. For a given action-analyzed program, it producestwo results: an rhs-term which corresponds to the unsubsti-tuted specialized program, and a run-time specializer whichincludes substitution operations and eval fragments. Thegenerator is de�ned in Figure 11.Let us describe in detail the treatment of each action,starting with the commands. An eval command producesan rhs-term which consists of the empty command since acommand which can be completely evaluated will not appearin the specialized program. As for the run-time specializer,it corresponds to the command itself since it can be com-pletely evaluated. The inverse situation happens for identitycommands.Rebuilding an assignment means that this construct willbe in the specialized program and thus is included in theresulting rhs-term. This rhs-term corresponds to the originalassignment where eval expressions (in the right-hand side)have been replaced by holes. As for the run-time specializer,it is composed of the instantiation operations that may beneeded to �ll the holes in the right-hand side expression ofthe assignment.Rebuilding a sequence command means that this con-struct will appear in the specialized program, and indeed, itis part of the resulting rhs-term. As for the run-time spe-cializer, it is composed of the eval commands contained inthe arguments of sequence command.When reducing a sequence command, the generated rhs-term only contains the commands from the second argumentof sequence to be rebuilt (the �rst argument can be com-pletely evaluated). The run-time specializer is a sequencecommand which consists of the �rst argument of the originalsequence, and the eval commands from the second argumentof sequence.Rebuilding a conditional command is very similar to re-building a sequence command; its description is thus omit-ted. The reduction of a conditional command involves anew aspect: it produces a fresh non-terminal as the rhs-term. This is due to the fact that, although the conditionalcommand is known to be reduced, the branch to consideris unknown. Therefore, a non-terminal is introduced as a

placeholder for the rhs-term of either branch. Consequently,the run-time specializer produced in this situation consistsof a conditional to be evaluated whose branches substitutethe fresh non-terminal by the rhs-term of the appropriatebranch, in addition to executing the eval commands con-tained in the corresponding branch.In the case of an eval expression, the result of its evalu-ation will be substituted for a hole at run time. Therefore,the analysis of such an expression produces a hole freshlygenerated as the rhs-term. As for the run-time specializer,it consists of an instantiation command aimed at replacingthe hole by a value computed at specialization time.When an identity expression is analyzed, it is reproducedverbatim as the rhs-term. As for the run-time specializer, itconsists of the empty command since the expression is notprocessed during specialization.Rebuilding a primitive call means that the rhs-term con-sists of this construct, the operator, and the rhs-term ofeach operand. The run-time specializer is a sequence con-struct composed of the instantiation commands caused bythe possible eval expressions included in the call arguments.4.5 CorrectnessProving correct the process of generating run-time specializ-ers consists of showing that, for an action-analyzed programand some specialization values, the specialized program pro-duced by interpreting actions is the same as the one pro-duced by executing the run-time specializer using the samespecialization values.This statement is formally expressed in the following the-orem.Theorem 1 (8ca 2 Coma)(8� 2 Store)Let (crhs; c) = Cagen[[ca]]Then, �0 = C[[c]]�[x 7! crhs]) (�0(x); ��0) = Ca[[ca]]��Where 8� 2 Store; �� = �[x 7!?]The proof is included in Appendix A.



Cagen : Coma ! (Comrhs � Com)Cagen[[Eval(ci)]] = ([[Nop]]; [[ci]])Cagen[[Id(ci)]] = ([[ci]]; [[Nop]])Cagen[[Rebassign(x;ea)]] = ([[Assign(x;erhs)]]; [[c]])where (erhs; c) = Eagen[[ea]]Cagen[[Rebseq(ca1 ; ca2)]] = ([[Seq(crhs1 ; crhs2 )]]; [[Seq(c1; c2)]])where (crhs1 ; c1) = Cagen[[ca1]](crhs2 ; c2) = Cagen[[ca2]]Cagen[[Redseq(ci1; ca2)]] = ([[crhs2 ]]; [[Seq(ci1; c2)]])where (crhs2 ; c2) = Cagen[[ca2]]Cagen[[Rebcond(ea; ca1 ; ca2)]] = ([[Cond(erhs; crhs1 ; crhs2 )]]; [[Seq(c;Seq(c1; c2))]])where (erhs; c) = Eagen[[ea]](crhs1 ; c1) = Cagen[[ca1]](crhs2 ; c2) = Cagen[[ca2]]Cagen[[Redcond(ei; ca1 ; ca2)]] = (Nterm(s); [[Cond(ei; Seq(Rule(s; crhs1 ); c1);Seq(Rule(s; crhs2 ); c2))]])where (crhs1 ; c1) = Cagen[[ca1]](crhs2 ; c2) = Cagen[[ca2]]s is a fresh non-terminalEagen : Expa ! (Exprhs � Com)Eagen[[Eval(ei)]] = ([[Hole(h)]]; [[Inst(h; ei)]])where h is a fresh holeEagen[[Id(ei)]] = ([[ei]]; [[Nop]])Eagen[[Rebcall(o; ea1; ea2)]] = ([[Call(o; erhs1 ; erhs2 )]]; [[Seq(c1; c2)]])where (erhs1 ; c1) = Eagen[[ea1]](erhs2 ; c2) = Eagen[[ea2]]Figure 11: Abstract interpretation of the actions5 Related WorkRecently two approaches to run-time code generation havebeen reported by Engler and Proebsting [6], and by Leoneand Lee [11]. These approaches include some aspects of run-time specialization and address issues related to compilingcode at run time.Engler and Proebsting's approach consists of providingthe programmer with operations to construct templates man-ually in the intermediate representation of the LCC compiler(a form of register transfer language) [7]. Then, at run time,the operations to construct templates are executed, and afast code generator is invoked to compile templates into bi-nary code.Not only is this approach error-prone because templatesare written manually, but it also forces the code generationprocess to be overly simple because it needs to be fast (noelaborate register allocation or instruction scheduling is per-formed).Leone and Lee's approach is developed for a �rst-ordersubset of a purely functional language. It is aimed at post-poning certain compilation operations until run time to bet-ter optimize programs. Operations such as register alloca-tion may be performed at run time for some program frag-ments. The binding-time of a given function is de�ned bythe way it is curried.Both approaches su�er from the fact that the run-timecompiler does not have a global view of the program to bespecialized, nor does it know what kind of specialized pro-grams can be produced at run time. Consequently, run-timecode generation is not performed at the level of a procedureor a basic block, it is done at the instruction level. This

strategy makes it di�cult to generate e�cient code.In contrast, our approach enables the compiler to processprogram fragments globally in that it is applied to the pos-sible combinations of templates which can be constructed atrun-time. Because the compiler processes large code frag-ments it is able to produce e�cient code.Many existing approaches (e.g., [11, 6]) emphasize theneed to perform elaborate optimizations at run time basedon the fact that much more information is available then.This is a di�cult challenge because of the con
icting re-quirements of a run-time code generator, namely, produc-ing code at low cost to allow this process to be amortizedquickly, and exploiting as much run-time information as pos-sible to produce highly-optimized code. When the run-timecode generator only focuses on the former requirement, evenif the number of instructions being executed is smaller, thequality of the generated code may be such that performanceis degraded. When the run-time code generator puts toomuch e�ort on optimization, the overhead may be such thatthe process may not be applicable to many situations.Determining what kind of run-time code generation pro-cess is most suitable for a given situation is a di�cult prob-lem. Two important factors need to be taken into account:the overhead introduced by the run-time code generator andthe frequency of execution of the code fragment to be pro-cessed at run time.To some extent run-time specialization simpli�es the is-sue in that it is not aimed at performing general-purposeoptimizations that may or may not improve performance.Rather it is restricted to specializing programs with respectto some run-time invariants. If the program fragments tobe processed o�er good opportunities for specialization, the



run-time specialization process will likely be amortized andperformance should improve, provided the specialized codeis executed many times.Techniques to specialize object-oriented programs at runtime have also been developed [1]. They are aimed at op-timizing frequently executed code sections. However, thesespecialization techniques do not address arbitrary computa-tions: they are limited to the optimization of certain object-oriented mechanisms such as method dispatch.6 Conclusions and Future DirectionsWe have presented an approach to performing specializa-tion at run time, based on partial evaluation technology. Itconsists of producing templates at compile time and trans-forming them so that they can be processed by a standardcompiler. At run time, only minor operations need to beperformed: selecting and copying templates, �lling holeswith run-time values, and relocating jump targets. As aresult, run-time specialization is performed very e�cientlyand thus does not require a specialized code to be executedmany times before its cost is amortized.Our approach has been implemented for the C language,using the GNU C compiler, and is integrated in a partialevaluation system that specializes programs at compile timeas well as at run time.Future directions for this work include conducting a thor-ough experimentation with our C run-time specializer andperforming more measurements, developing speci�c tech-niques to use run-time specialization in operating systemcode where specialized code may be executing when invari-ants become invalid, and applying the approach to di�erentlanguages like ML.AcknowlegmentsThe Partial Evaluation Group at Irisa and the Synthetixgroup at Oregon Graduate Institute provided valuable feed-back on our work and detailed comments on the paper.Thanks also due to Olivier Danvy, Pierre Jouvelot, DavidKeppel and Mark Leone for helpful comments on the paperand stimulating discussions.References[1] C. Chambers and D. Ungar. Customization: optimiz-ing compiler technology for SELF, a dynamically-typedobject-oriented programming language. In ACM SIG-PLAN Conference on Programming Language Designand Implementation, pages 146{160, 1989.[2] C. Consel and O. Danvy. From interpreting to compil-ing binding times. In N. D. Jones, editor, ESOP'90, 3rdEuropean Symposium on Programming, pages 88{105,Springer-Verlag, 1990.[3] C. Consel and O. Danvy. Tutorial notes on partial eval-uation. In ACM Symposium on Principles of Program-ming Languages, pages 493{501, 1993.[4] C. Consel, L. Hornof, F. No�el, J. Noy�e, and N. Volan-schi. A Uniform Approach for Compile-Time and Run-Time Specialization. Technical Report, University ofRennes/Inria, 1995. In preparation.
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A CorrectnessIn this section, the correctness proof of our approach is presented. The proof of the main theorem relies on four lemmaswhich relate the stores being produced by a run-time specializer and by standard interpretation. It also relates specializedexpressions produced by interpretation of actions and by evaluation of a run-time specializer. Because the proofs of theselemmas are simple, they are omitted.De�nition 1 8� 2 Store; �� = �[x 7!?]Lemma 1 states that the evaluation of a command written in the initial language does not a�ect (or depend on) theprogram being specialized stored at location x.Lemma 1 (8ci 2 Comi)(8� 2 Store)(8crhs 2 Comrhs)C[[ci]]�[x 7! crhs] = (C[[ci]]�)[x 7! crhs].Lemma 2 stipulates that for any command written in the extended language, whether or not it is evaluated with a storede�ned at location x does not a�ect the other values contained in the store.Lemma 2 (8c 2 Com)(8� 2 Store) C[[c]]� = C[[c]]��The following two lemmas address a correctness issue regarding the expression included in assigments and conditionals.More precisely, for a given action-analyzed expression and a store, a specialized expression can be produced by interpretingthe actions using Ea. Another alternative is to evaluate the run-time specializer produced by Eagen for this action-analyzedexpression.Lemmas 3 and 4 state that these di�erent evaluation strategies produce the same specialized expression and the samestore modulo the value of the store at location x.Lemma 3 (8x 2 Id)(8ea 2 Expa)(8� 2 Store)Let (erhs; c) = Eagen[[ea]]Then, �0 = C[[c]]�[x 7! Assign(x; erhs)]) �0(x) = Assign(x;Ea[[ea]]��) ^ ��0 = ��The following lemma uses function Hole to collect holes in rhs-terms (expressions and commands).Lemma 4 (8ea 2 Expa)(8crhs1 ; crhs2 2 Comrhs)(8� 2 Store)Let (erhs; c) = Eagen[[ea]]Then, Hole(erhs) \ (Hole(crhs1 ) [Hole(crhs2 )) = ; ^�0 = C[[c]]�[x 7! Cond(erhs; crhs1 ; crhs2 )]) �0(x) = Cond(Ea[[ea]]��; crhs1 ; crhs2 ) ^ ��0 = ��Theorem 1 (8ca 2 Coma)(8� 2 Store)Let (crhs; c) = Cagen[[ca]]Then, �0 = C[[c]]�[x 7! crhs]) (�0(x); ��0) = Ca[[ca]]��Proof: the proof is by structural induction on ca� If ca = Eval(ci)then, Cagen[[ca]] = (Nop; ci)�0 = C[[ci]]�[x 7! Nop]By Lemma 1, �0 = (C[[ci]]�)[x 7! Nop]) (�0(x); ��0) = (Nop;C[[ci]]��) = Ca[[ca]]��� If ca = Id(ci)then, Cagen[[ca]] = (ci;Nop)�0 = C[[Nop]]�[x 7! ci] = �[x 7! ci]) (�0(x); ��0) = (ci; ��) = Ca[[ca]]��� If ca = Rebassign(x; ea)then, Cagen[[ca]] = (Assign(x;erhs); c0) where (erhs; c0) = Eagen[[ea]]�0 = C[[c0]]�[x 7! Assign(x; erhs)]By lemma 3, (�0(x); ��0) = (Assign(x;Ea[[ea]]��); ��)) (�0(x); ��0) = Ca[[ca]]��



� If ca = Rebseq(ca1; ca2)then, Cagen[[ca]] = (Seq(crhs1 ; crhs2 );Seq(c1; c2)) where � (crhs1 ; c1) = Cagen[[ca1]](crhs2 ; c2) = Cagen[[ca2]]�0 = C[[Seq(c1; c2)]]�[x 7! Seq(crhs1 ; crhs2 )] = C[[c2]](C[[c1]]�[x 7! Seq(crhs1 ; crhs2 )])Because only c1(resp. c2) can substitute non-terminals and holes introduced in crhs1 (resp. crhs2 ),�0 = �0[x 7! Seq(�(x); �0(x))] where � � = C[[c1]]�[x 7! crhs1 ]�0 = C[[c2]]�[x 7! crhs2 ]) (�0(x); ��0) = (Seq(�(x); �0(x)); ��0)By induction, � (�(x); ��) = Ca[[ca1]]��(�0(x); ��0) = Ca[[ca2]]��) (�0(x); ��0) = Ca[[ca]]��� If ca = Redseq(ci1; ca2)then, Cagen[[ca]] = (crhs2 ;Seq(ci1; c2)) where (crhs2 ; c2) = Cagen[[ca2]]�0 = C[[Seq(ci1; c2)]]�[x 7! crhs2 ] = C[[c2]](C[[ci1]]�[x 7! crhs2 ])By lemma 1, �0 = C[[c2]](C[[ci1]]�)[x 7! crhs2 ]By induction, (�0(x); ��0) = Ca[[ca2]](C[[ci1]]�)By lemma 2, (�0(x); ��0) = Ca[[ca2]](C[[ci1]]��)) (�0(x); ��0) = Ca[[ca]]��:� If ca = Rebcond(ea; ca1 ; ca2)then, Cagen[[ca]] = (Cond(erhs; crhs1 ; crhs2 );Seq(c0;Seq(c1; c2)))where ( (erhs; c0) = Eagen[[ea]](crhs1 ; c1) = Cagen[[ca1]](crhs2 ; c2) = Cagen[[ca2]]�0 = C[[Seq(c0;Seq(c1; c2))]]�[x 7! Cond(erhs; crhs1 ; crhs2 )]�0 = C[[Seq(c1; c2)]]� where � = C[[c0]]�[x 7! Cond(erhs; crhs1 ; crhs2 )]By construction, erhs, crhs1 and crhs2 do not share holes and lemma 4 gives,�(x) = Cond(Ea[[ea]]��; crhs1 ; crhs2 ) and �� = ��) � = �[x 7! Cond(Ea[[ea]]��; crhs1 ; crhs2 )]) �0 = C[[Seq(c1; c2)]]�[x 7! Cond(Ea[[ea]]��; crhs1 ; crhs2 )�0 = C[[c2]](C[[c1]]�[x 7! Cond(Ea[[ea]]��; crhs1 ; crhs2 )])As in the case of Rebseq, we have,�0 = �00[x 7! Cond(Ea[[ea]]��; �0(x); �00(x))] where � �0 = C[[c1]]�[x 7! crhs1 ]�00 = C[[c2]]�0[x 7! crhs2 ]) (�0(x); ��0) = (Cond(Ea[[ea]]��; �0(x); �00(x)); ��00):By induction, � (�0(x); ��0) = Ca[[ca1]]��(�00(x); ��00) = Ca[[ca2]] ��0) (�0(x); ��0) = Ca[[ca]]��� If ca = Redcond(ei; ca1; ca2)then, Cagen[[ca]] = (Nterm(s);Cond(ei;Seq(Rule(s; crhs1 ); c1);Seq(Rule(s; crhs2 ); c2))where � (crhs1 ; c1) = Cagen[[ca1]](crhs2 ; c2) = Cagen[[ca2]]�0 = C[[Cond(ei;Seq(Rule(s; crhs1 ); c1);Seq(Rule(s; crhs2 ); c2))]]�[x 7! Nterm(s)]�0 = if E[[ei]]�[x 7! Nterm(s)]then C[[c1]](C[[Rule(s; crhs1 )]]�[x 7! Nterm(s)])else C[[c2]](C[[Rule(s; crhs2 )]]�[x 7! Nterm(s)])�0 = if E[[ei]]�� then �1 else �2 where � �1 = C[[c1]]�[x 7! crhs1 ]�2 = C[[c2]]�[x 7! crhs2 ]By induction, � (�1(x); ��1) = Ca[[ca1]]��(�2(x); ��2) = Ca[[ca1]]��) (�0(x); ��0) = if E[[ei]]�� then Ca[[ca1]]�� else Ca[[ca2]]�� = Ca[[ca]]�� 2


