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ABSTRACTMany modern human-computer interfaces are di�cult for people to use. This is oftenbecause these interfaces make no signi�cant attempt to communicate with the peoplewho use them. In other words, these interfaces are uncooperative: They do not adaptthemselves to their users' needs and they are insensitive to human foibles. Ordinarycommand line interfaces such as that of the UNIX C shell (csh) are intolerant of eventhe most simple input errors, even when those errors have obvious corrections. An\intelligent" UNIX shell interface, on the other hand, would make use of knowledgeand interaction context in order to interpret | and as necessary, correct | its users'commands.Valet is a prototype of such an \intelligent" interface to the UNIX C shell. Valetadds knowledge-based parsing and input correction to the shell by encapsulating anordinary C shell process within a framework that allowsValet to control the shell's inputand output. Valet intercepts shell commands and parses them, using its knowledge ofthe most popular UNIX shell commands, its built-in model of the �le system, and datathat describe the commands and �les most often and recently referenced by individualusers. Valet incorporates heuristics designed to detect and correct the kinds of mistakesthat experienced users make most frequently: typographical errors, �le location errors,and minor syntactic errors.In order to evaluate the interface, eleven volunteers agreed to use Valet in the courseof their normal work for approximately four weeks. The commands that those peopleentered, along with Valet's responses, were recorded and analyzed in order to measurethe overall usefulness and e�ectiveness of the system. The data from the experimentsuggest that knowledge-based, error-tolerant, \intelligent" command parsing can havevery bene�cial e�ects. The experiment also pointed to ways in which Valet could beimproved.
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CHAPTER 1INTRODUCTIONMany modern computer systems are di�cult for people to use. To a great extent,this is because these systems do not make any signi�cant e�ort to communicate with thepeople who use them. In short, today's computer interfaces are uncooperative. They donot \speak" in human terms and they are not tolerant of human foibles.A person using a computer quickly discovers that the machine has a language all itsown | and that it insists on using exactly and only that language. Often, that language isa kind of textual command language that allows a human operator to communicate witha computer by typing commands on a keyboard. This kind of human-computer interfaceis referred to as a command language interface or command line interface. Unfortunately,many of today's command languages are poorly designed. They are built around confusingterms and cryptic syntax, and this causes computer users to make frequent input mistakes.Rather than help users to �x these mistakes, most command language interfaces insteadcompound the problem by being intolerant of even the smallest input errors | even thosethat have seemingly \obvious" corrections. These interfaces make absolutely no e�ort todetermine what their human operators had intended to type. Instead, they simply reportthat the user has made an input error and then require the user to retype his or her entirecommand.Because today's command language interfaces are usually so in
exible and intolerantof input slips, computer users quickly become frustrated or even intimidated by theircomputers' apparent unwillingness to communicate and \cooperate" with people. Theresult is that these computer systems, intended to be popular and powerful tools, areinstead perceived as mysterious, unfriendly, and incomprehensible things.In order to alleviate this situation, future computer systems must be designed tocommunicate more e�ectively with their human operators. Future command languageinterfaces will need to make greater e�orts to understand the intentions of their users. Inparticular, these new interfaces will need to be tolerant of human errors.



2This thesis describes an attempt to create one such interface of the future: Valet.Valet is an experimental \intelligent" user interface for the standard UNIX1 C shell [17].(The C shell is the program named \/bin/csh" on most UNIX systems.) The C shellis a program with a command line interface that allows its users to execute other UNIXprograms. The C shell is therefore similar to the DOS command interpreter available onmany personal computers. Although the C shell is a very complex program, it does notmake any signi�cant e�ort to understand its users' intentions. That is, the standard Cshell takes input commands at \face value" and never attempts to correct its users' inputmistakes. This behavior presents problems for both novice and experienced users.Valet is an improved, \intelligent" interface to the C shell that addresses these prob-lems. Valet is intelligent in the sense that it analyzes its users' commands, understandsa more 
exible command language, and is able to correct many common input errorsincluding misspellings, typographical errors, and incorrect references to �les. Valetincorporates a large body of knowledge about the UNIX system on which it runs, and inaddition, it creates and maintains an individual interaction pro�le for each of its users.In this way Valet learns and adapts to the behavior of each of its human operators.In summary, Valet goes to great lengths to understand the shell commands that areentered by its users. The result is that Valet is a more sophisticated, user-friendly, andcooperative command shell for UNIX.1.1 The Need for ImprovementThe study of human-computer interaction has grown rapidly in the past �fteen yearsalong with the distribution of computers into businesses, schools, and homes. As thenumber of computer systems exploded, a new class of computer users emerged. Thesenew users | including o�ce sta�, students, teachers, and writers | lacked the extensivetraining that had, until then, been a prerequisite for access to computer systems. Thesenew \casual" users made clear a fact that had until then been largely ignored: Computersystems can be confusing and di�cult to use.Before the explosion in the availability of computers, computer scientists generallydesigned hardware and software systems without serious consideration for the ways inwhich people would interact with these products. Computer systems were created by1UNIX is a registered trademark in the United States and other countries, licensed exclusively throughX/Open Company Limited.



3computer professionals for other computer professionals, or for other people with exten-sive computer training. Little thought needed to be paid to the design of a system'sinterface because both the designers and users of computer systems had similar technicalbackgrounds. In addition, the users of computers were much more interested in whattheir systems could do than they were in how those systems interacted with their humanoperators.As computers became more and more commonplace, however, the emerging class of\casual" computer users had very di�erent requirements. Although the computationalfeatures of a system were still very important, it was now equally important that thesefeatures be made easily available and understandable to the operators of the system.In other words, computer interfaces now had to be user-friendly. People with littleor no computer training now needed to use computers as writing tools, �ling tools,computational tools, and data access tools | all without being required to understandmuch if any of the science behind the computer systems.It quickly became apparent that most systems did not have the user-friendly interfacethat was required by the new casual users. In 1985 Bertino wrote [2]:The recent proliferation of computer equipment has not been accompanied bya comparable increase in user-friendly interfaces. Users of advanced hardwaremachines are often disappointed by the cumbersome data entry procedures,obscure error messages, intolerant error handling, and confusing sequencesof cluttered screens. In particular, novice users feel frustrated, insecure oreven frightened when they have to deal with a system whose behavior isincomprehensible, mysterious, and intimidating.Because many human-computer interfaces were confusing and frustrating, the e�ec-tiveness of many computer systems was substantially reduced. It became clear that to alarge degree, the usefulness of a computer system was limited by the e�ectiveness of thesystem's interface. Particularly for novice computer users, what a system could do wasdetermined by how the system communicated. Software and hardware designers began torealize that they had failed to provide e�ective user interfaces | not just for novices, butalso for themselves and other technical users. The UNIX operating system, for example,was and still is a very popular operating system for the powerful computers used byscientists, engineers, and other technically literate people. One might assume that UNIXcomputer systems would have the most e�ective user interfaces that computer scientistscould design, but that assumption would be far from the truth. In fact, UNIX systems to



4this day have a well-deserved reputation for being among the most di�cult and confusingsystems to use. Even technical professionals �nd UNIX to be confusing and frustrating.Norman [25, page 139], for example, wrote that the UNIX operating system's commandshell was a user interface \disaster." \It fails both on the scienti�c principles of humanengineering and even in just plain common sense."Because clumsy user interfaces were an obvious impediment to the widespread usabilityof computers, the study of human-computer interaction grew quickly. Today, the designof human-computer interfaces is a major research and commercial concern. It is standardpractice for software companies to evaluate and re�ne their products' interfaces throughuser-testing experiments in which people are asked to perform various tasks with thesoftware.Since the discovery of the importance of interface design, command line interfaces likethe UNIX shell have been widely criticized by researchers as \unfriendly" for a numberof reasons:Confusing terms. Command languages sometimes contain terms that are meaningfulto the people who design the language but that are not meaningful to the peoplewho use the language. For example, there is a common UNIX program that printsa message every time a new electronic mail message arrives for a user. To run thisprogram, a person must type the program's name: biff. The name biff is entirelymeaningless to most UNIX users and few novices would guess that biff has anythingto do with electronic mail. (According to folklore, the program was named after adog that barked whenever a postal carrier arrived.) Many other UNIX programnames are abbreviations or acronyms | mv, cp, rm, and grep | and although shortnames can reduce the need for typing, commands like these ultimately make theUNIX shell language inaccessible to casual users. Even experienced users can forgetor stumble over poorly chosen terms.In
exibility. Command line interfaces are in
exible in the sense that there is often onlyone way to phrase a particular command. Commonly, a command language interfacewill recognize only one name for each available action, object, or other entity | nosynonyms, abbreviations, or misspellings of the names will be tolerated. Manylanguages are based upon strict syntax rules that do not allow the user to phrasecommands in all of the ways that seem natural | for instance, it may not be possible



5to specify command options in an arbitrary order. While restrictions such as thismay be acceptable to expert users of a system, in
exibility frustrates people whoare not so familiar with the language. In
exible systems are perceived by noviceusers as intolerant and uncooperative, and sometimes even as intimidating. Notsurprisingly, researchers have shown that 
exible command language interfaces areeasier and more enjoyable for novices to use [9].Inconsistency. Command languages often contain inconsistencies. For example, somecommands may be abbreviations of English words whereas others may be word trun-cations or phrase acronyms. Some commands in a language may accept argumentsor options that other similar commands do not. Even worse, the syntax of a languagemay seem to di�er between commands. The various UNIX command shells havebeen particularly criticized in this regard [25]. (It is important to note, however,that most of the UNIX shell's language is actually interpreted by programs otherthan the shell itself. As described in Section 1.3.1, the shell language is inconsistentlargely because these other UNIX programs are inconsistent with each other.)Lack of feedback. In many situations, command line interfaces provide little or noresponse to their human operators. Many interfaces are designed around the prin-ciple that silence is desirable: Informational messages should be displayed only inresponse to speci�c requests for data or in order to inform the user about exceptionalconditions (e.g., errors). Although this principle can greatly reduce the amountof unwanted \noise" in an interface, it can also make casual users uncomfortablebecause there is no apparent indication that the computer is doing anything inresponse to users' commands. Furthermore, a lack of informational responses tendsto put a burden on users' memories. Users can quickly forget what state a system isin. This was demonstrated, for example, in a study of UNIX shell command use byHanson et al. [12] who found that 21% of all users' shell commands were orientingcommands that describe the current environment (e.g., the contents of the currentdirectory).One of the most popular ways to handle these command line interface problems hasbeen to abandon command line interfaces altogether. In recent years many computerapplications have adopted graphical user interfaces, which are often believed to be easier



6for casual users to master. Graphical interfaces usually address all of the problems listedabove; for example, graphical interfaces tend to display more orienting information (e.g.,the set of available commands) than command line interfaces do. It is di�cult, however, toconclude that graphical user interfaces solve the above problems by their very nature. It ispossible to imagine graphical interfaces that provide minimal user feedback, that behavein inconsistent ways, that use confusing pictures and words, and so on. Rather thanconclude that graphical interfaces are inherently superior to command line interfaces, itis more reasonable to believe that the designers of graphical interfaces have simply learnedfrom the mistakes made in older command line interfaces.Graphical user interfaces are certainly appropriate for many applications, but they arenot the ideal interfaces in all situations. Command language interfaces are widespread ontoday's computer systems and are e�ectively used in a variety of computer applications |including command shells, electronic mail programs, debuggers, and information browsers| on machines ranging from personal computers to supercomputers. Although graphicaluser interfaces are becoming increasingly popular, command line interfaces have uniqueand important strengths:1. For many tasks, command language interfaces are considered to be more expressivethan graphical interfaces. Compared to today's graphical user interfaces, commandline interfaces often provide more powerful ways for users to enter commands. Thisis because command line interfaces provide syntax for:(a) specifying details and command options in a succinct manner;(b) referring to groups of similarly named objects through the use of patterns;(c) combining two or more commands into one larger command unit; and(d) recalling and reexecuting previously entered commands.It is often possible for a person to carry out a complex task with only a few keystrokesto a command line interface when it would require signi�cantly more e�ort for thatperson to perform the same task by \pointing and clicking" with a mouse in agraphical interface. In general, the disparity between the two interface methodsgrows as the task becomes more complicated and detailed.



72. Because command line interfaces are textual, it is straightforward for a person tocreate computer �les that contain sequences of commands for such interfaces. These�les are called scripts or batch �les and are used to simplify and automate complextasks. Once written, a script can easily be executed many times. Furthermore, if thecommand language is su�ciently powerful, scripts and batch �les can behave likefull-
edged programs. They can make decisions and adapt to changing situationsjust as ordinary programs do.Most systems that provide command line interfaces are also able to process batch�les. Current graphical user interfaces, however, generally do not provide similarfacilities. At best, graphical interfaces allow users to record and play back sets ofgraphical gestures. Although these recording facilities can be useful, they cannoto�er the kinds of programming features found in many command line interfaces. Arecorded series of gestures cannot make decisions or adapt to the current state ofthe system, for example.The need for script and batch �le programming features is demonstrated by com-puter applications that provide both a graphical interface and a separate scriptinglanguage. In these systems, the scripting language is essentially a noninteractivecommand language interface to the program.3. Finally, existing operating systems (e.g., UNIX and DOS) provide command lineinterfaces, and these operating systems will continue to be popular for many years.For all of the above reasons, command language interfaces will be important to manycomputer systems of the future. Therefore it is necessary to identify the problems intoday's command line interfaces and determine how those interfaces can be improvedin order to meet the needs of their users more e�ectively. Chapter 2 describes severalattempts to explore and design user-friendly, error-tolerant, and \intelligent" interfaces,including several e�orts to improve the interface of the UNIX shell in particular.1.2 The Bene�ts of ImprovementAs Card observed [3], when a person uses a computer system with an intelligentinterface, the interaction is less like the use of a tool and more like participation ina conversation. A tool is generally a passive object; when a person uses a tool, theperson is active and the tool is passive. A tool takes no initiative and makes no attempt



8to understand its user's intentions. Compare this situation to that in a conversation.In a conversation, all of the participants are active. Initiative is shared; at di�erenttimes, di�erent participants may direct the interaction. Responsibility for successfulcommunication is also shared. The agents in a conversation pay attention to each otherand attempt to understand each other in order to communicate or accomplish a task |in other words, the agents cooperate.A primitive human-computer interface forces its user to adapt to the computer; thecomputer makes no e�ort to adapt to its user. Because the interface is �xed and passivethere is no cooperation. The human operator must take all of the initiative in the dialogue,and responsibility for successful communication with the computer system is entirely upto the user. This imposes a great burden on the user. When combined with confusingcommand languages, obscure syntax, and lack of feedback, these passive, tool-like qualitiesare what cause ordinary computer interfaces to appear uncooperative, unfriendly, andeven hostile.Intelligent interfaces, on the other hand, are better able to cooperate and communicatewith their human operators. An intelligent command line interface makes use of domain-speci�c knowledge and contextual information which allows it to:� accurately correct many errors in users' input commands;� accurately interpret user-chosen abbreviations;� infer users' intentions and goals;� predict users' actions;� o�er context-speci�c assistance or advice; and� adapt to the experience levels and idiosyncrasies of individual users.In combination with user-centered design techniques | the use of familiar termsand paradigms in the command language, 
exible parsing, and appropriate feedbackfor users' actions | these cooperative, conversation-like abilities are what cause intel-ligent interfaces to appear user-friendly, helpful, unintimidating, and accessible. Bothnovice and experienced computer users can bene�t from these kinds of improvements inhuman-computer interfaces. Because intelligent interfaces remove many of the barriers



9that frustrate users, novices will be more willing to use computers, and people at all levelsof experience will be more satis�ed and able to use computer systems more productively.The intelligent features listed above are clearly useful in interactive command languageinterfaces such as those described in Chapter 2. In addition, these features can be useful inother kinds of applications as well. For example, error tolerance and 
exible parsing can beincorporated into batch systems such as compilers and scripting languages. Morgan [23]did this in 1970 and it was very useful then, so it is surprising that typical modernsoftware engineering environments do not o�er this kind of intelligence today. Intelligentbehavior can also be incorporated into graphical user interfaces and vocal interfaces.Graphical interfaces have many textual components such as \search and replace" dialogsthat could bene�t from intelligent text processing. Vocal interfaces will clearly needto incorporate conversational qualities in order to understand spoken input, which isoften naturally fragmentary. People are so accustomed to speaking in conversationalmodes that in order to be most useful, vocal interfaces will be required to use contextualinformation to understand spoken input. E�orts to create intelligent, conversationalcommand line interfaces today, therefore, will also lead to improvements in tomorrow'smultimedia interfaces.In summary, if computers are going to become as widely useful as possible, thenhuman-computer interfaces must be improved. Future command language interfaces willneed to be conversational and will need to make substantial e�orts to understand theintentions of their users. Today's interfaces, such as that of the UNIX shell, will need tobe improved. 1.3 An Intelligent UNIX ShellA UNIX system is a computer that runs a particular kind of operating system andwhich o�ers a certain set of standard utility programs. This set of programs alwaysincludes one or more shells (also called command shells). Essentially, a shell is a specialprogram that allows its user to invoke and coordinate the other programs and resourcesthat a computer system provides. A shell is therefore a crucial component of almost allinteractive computer systems | without some kind of command shell, it is impossible fora person to start new programs.Because of the shell's special role, an interactive computer system usually starts ashell automatically whenever a person begins a computer session. For example, when a



10person logs into a UNIX system, a new shell process is automatically created for thatuser. The shell takes control of the user's terminal and prompts the user for input. Byentering commands to this shell the computer user can run the other programs thatthe UNIX system o�ers | text editors, compilers, debuggers, typesetters, and so on.Those other programs may temporarily take control of the user's terminal, but whenthose programs terminate, the shell reclaims control of the terminal and prompts theuser for additional commands. Because of this behavior, computer users often perceivethe shell to be the fundamental interface of the computer system itself. The shell appearsautomatically at login, allows users to run the system's programs, and reappears whenthose other programs terminate; the shell, therefore, largely de�nes the personality of thecomputer system as a whole. If a computer's shell is confusing and di�cult to use, thenusers will generally believe that all of the system is confusing and di�cult to use. It isevident, therefore, that in order for a computer system to be perceived as intelligent anduser-friendly, it is essential that the computer system's command shell demonstrate thesesame qualities. 1.3.1 Shortcomings of the C ShellUnfortunately for users of UNIX systems, the most commonly used UNIX commandshells are neither intelligent nor user-friendly. One of the most popular UNIX shells isthe C shell [17] | the program named \/bin/csh" on most UNIX systems | whichimplements a command line interface with an expressive command language.2 However,although the C shell is a complex and powerful program, it makes practically no e�ortto understand the intentions of its users. It accepts all inputs at \face value" and neverattempts to correct its users' input mistakes. This uncooperative, unhelpful behaviorfrustrates users at all levels of experience, and many computer scientists have complainedthat traditional UNIX shells demonstrate a complete disregard for e�ective user interfacedesign principles. Gabriel and Steele, for example, have described how frustrating atypical UNIX shell can be [8]:Computers have no idea what is going on. You can't hold a reasonableconversation with them, even on their own terms. Does the following scenariolook familiar?2While there are several popular command line shells for UNIX, the standard C shell is both typicaland among the most widely used.



11% lpt /usr/fred/common-lisp-functionslpt: Command not found.% lpr <long pause>/usr/fred/common-lisp-functions <another pause>^C% lpr /usr/fred/common-lisp-fucntionslpr: cannot access /usr/fred/common-lisp-fucntions% lpr /usr/fred/comon-lisp-functionslpr: cannot access /usr/fred/comon-lisp-functions% lpr /usr/fred/common-lisp-functions <typed slowlyand with care>lpr: cannot access /usr/fred/common-lisp-functions% ls common*% ls /usr/fred/common*/usr/fred/common-lisp-fns% lpr common-lisp-fnslpr: cannot access common-lisp-fns% /usr/fred/common-lisp-fns/usr/fred/common-lisp-fns: Permission denied.% lpr /usr/fred/common-lisp-fns% <success at last>In the preceding transcript, the computer user made one small mistake after another |�rst misspelling the command lpr, then forgetting to retype the �le name in the correctedcommand, then mistyping the �le name, and so on. The shell itself was no help; it didnothing to correct these mistakes, nor did it attempt to make plausible interpretations ofthe erroneous commands. By the time the user �nally entered the command that he orshe originally intended, the user must have been extremely frustrated with the shell. Theabove transcript, although unusually extended, truthfully illustrates the kinds of mistakesthat C shell users make every day and the C shell's typical responses to those mistakes.In short, the C shell can be very uncooperative | to novice users, even antagonistic.The C shell also su�ers from the other command line interface problems describedin Section 1.1. The input language of the shell is confusing, especially for inexperienced



12users, and there is often little or no feedback in response to users' input commands. Theseproblems, however, are largely not caused by the C shell itself but are instead caused bythe other programs that make up a UNIX computer system. Because the purpose of theC shell is to invoke other programs, the input language of the shell is largely made up ofthe names of those other programs. Many of those programs accept arguments | wordsthat specify or control the behavior of a program | and so the typical command to theC shell has this form: \program-name argument-1 argument-2 : : : ." When a C shell userwants to invoke a program, he or she types the name of that program, followed by zeroor more arguments, as a single command to the shell. The shell then starts the namedprogram, giving that program the set of arguments that the user typed on the commandline. This is a natural and obvious way for users to invoke UNIX programs, but the resultis that the C shell e�ectively does not de�ne its own command language. The set of Cshell commands is largely the set of names of the other programs that are available, andthe C shell cannot control that set. Furthermore, each program can interpret commandline arguments in any way it wishes. The C shell does not know what arguments anyother program may expect or how those arguments might be interpreted. Each UNIXprogram imposes its own syntax rules on its command line arguments, and although thereare a few general syntax rules that most UNIX programs use (e.g., that an option beginswith the character \-"), many programs apply these rules inconsistently or ignore themaltogether.Not surprisingly, the ad hoc design of the C shell's command language causes theshell to be confusing and hard to use. The names of common commands | such as grep,biff, and awk|were chosen to be meaningful or clever to the authors of those programs.Today, however, these program names are nonsensical to most UNIX system users andthis makes the C shell language seem ridiculous and arbitrary. The con
icting rules fordi�erent programs' command line arguments add to the confusion. Users must rememberthe individual command line idiosyncrasies of many di�erent commands, which puts alarge burden on users' memories and which causes users to be frustrated when they forget.Finally, many common UNIX programs are designed to print messages only when it isabsolutely necessary to do so (e.g., in response to a speci�c request for information) orwhen an exceptional circumstance arises (e.g., when an error occurs). Many of the mostfrequently used UNIX utilities print no messages at all in normal operation. Althoughthis \silence is golden" behavior is sometimes convenient for sophisticated UNIX users, it



13often leaves novice UNIX users wondering if the commands that they give to the shell aresucceeding | or are even being accepted at all! These silent programs make it appearthat the C shell is unwilling to share information with the people who use it. In this way,the silence of other UNIX programs re
ects badly on the shell itself.The shell in turn re
ects on the computer system as a whole. As previously described,because the shell is such an integral part of the computer system, the shell has a greatin
uence on its users' perceptions of the computer system: If the shell is unfriendly, theentire system appears to be unfriendly. It is not hard, then, to see why UNIX systemshave a widely known reputation for being di�cult and confusing to use. UNIX systemsare intimidating because their command shells are confusing. The C shell input languageis confusing and inconsistent, and the shell makes no attempt to correct its users' inputerrors. Because many UNIX programs are usually silent, the command shell itself appearsto be unwilling to share information. The shell does not meet the needs of its humanusers, both novice and expert, as e�ectively as it should, and the result is that UNIXsystems have a well-deserved reputation for being impenetrable.Norman [25, page 139] wrote that the UNIX shell interface was a user interface\disaster" that needs to be corrected: \If UNIX is really to become a general system,then it has got to be �xed. I urge correction to make the elegance of the system design bere
ected as friendliness toward the user, especially the casual user." The place to startis with the UNIX command shell.1.3.2 Valet: An Intelligent C Shell InterfaceIn order for UNIX systems to best meet the needs of their users, the UNIX commandshell must be changed. It must do more than simply accept command lines from peopleand pass that input, uninterpreted, to other UNIX programs. Rather, the shell mustactively assist its users. The shell must attempt to understand the intentions behind itsusers' input commands and it must help its users correct input errors | in other words,the shell must behave \intelligently." The Valet interface to the UNIX C shell is a stepin this direction.Valet is an experimental intelligent interface to the standard UNIX C shell. Throughthe use of context as described in Section 2.1.4, Valet attempts to understand its users'commands. Valet uses knowledge of the UNIX system on which it runs, combinedwith data from individual users' sessions, in order to analyze input commands. Thismeans that Valet can automatically and accurately correct many common input errors



14including misspellings, typographical errors, and incorrect references to �les. Valetmaintains a separate interaction pro�le for each of its users, so it is able to adapt itselfto the habits of each of its human operators.Although Valet uses knowledge in order to interpret commands, Valet does notfundamentally change the ordinary input language of the C shell. Instead, Valet appliesintelligent processing to the existing language. As previously described, rather than beingde�ned by the C shell itself, the language of the shell is the combined product of thehundreds of other UNIX programs available on the computer system, and each of thoseprograms has its own unique quirks. Even though the language of the C shell is far fromoptimal, it would be a massive undertaking to replace the shell's language. One wouldeither need to change hundreds of existing programs and insure that future programsadhere to the new interaction guidelines, or one would need to rewrite the shell so thatit o�ers a new language to its human users and translates that language into the formsexpected by other UNIX programs. Each of these alternatives is untenable. The �rstwould require one to change long-established and standardized programs and would forceone to rewrite all existing shell scripts and other similar software | a truly monumentaltask! The second alternative, changing the shell's interaction language, would confuseusers because the shell would disguise the native interface to other programs. Becausethe shell is not the sole interface to other UNIX programs, it is likely that many users(especially sophisticated users) would have to know both the new shell language andthe native language of other programs. The shell language would have to be frequentlyupdated as new programs were added to the system. Moreover, a new shell languagewould be objectionable to people who are already comfortable with the existing UNIXshell interface. For all of these reasons, Valet attempts to interpret rather than replacethe current language of the C shell.Similarly, Valet does not attempt to change the user interface of any program exceptthe C shell. Valet does not, for example, attempt to analyze or clarify error messagesfrom other UNIX programs. Although it might be useful for a shell to do this | in orderto adapt error messages to an individual user's level of experience, or in order for theintelligent shell to establish additional context, for example | this task would requireextensive changes to hundreds of pieces of UNIX software. Valet, therefore, is restrictedto the task of analyzing, understanding, and correcting users' inputs to the C shell.Although the addition of intelligence to the C shell is clearly important, the shell's



15language has many features that are not conducive to intelligent parsing:� Most signi�cantly, most of the shell's language is implemented by other UNIXprograms as previously explained. This means that rather than being �xed, thelanguage changes as programs are modi�ed or added to the UNIX system. Normallythe shell has no knowledge of other programs' interfaces (i.e., the required syntaxof their command line arguments), but an intelligent interface obviously needs thisinformation. Valet, therefore, has a knowledge base that describes the interfacesof the most commonly used UNIX programs. The knowledge base cannot describeevery available program, however, so Valet must also deal with programs withunknown interfaces. (Not surprisingly, Valet is less intelligent when dealing withthese unknown interfaces.)� The set of available commands and their interfaces are not the only things thatValet cannot control but must still understand. Many programs expect to receive�le names as arguments, for example, so Valet must maintain its own representa-tion of the �le system. This is complicated by the fact that the �le system changesfrequently and that it is very time consuming to scan the �le system.� The shell language is full of features | aliases, �le name patterns (called globs),variables, pipelines, and input and output redirection | that can be di�cult for anintelligent interface to handle properly. Valet in fact understands only a subset ofthese features.� Finally, the shell language is generally terse, so it can be di�cult for an intelligentparser to rely on lexical information. This fact is illustrated by the \dc" and \cd"shell commands. The command \dc" is valid (dc is a standard UNIX program thatsimulates a desk calculator) but most users never invoke dc. On the other hand, the\cd" command, which changes the shell's current directory, is invoked frequentlyby all shell users. An intelligent interface, therefore, must make a decision when auser enters the command \dc": Did the user intend to invoke dc, or did the usermade a mistake while typing \cd"? Because these two commands have such similar,short names, lexical context alone is insu�cient for an intelligent shell to make anaccurate determination. For this reason, Valet maintains and refers to other kindsof context in order to make decisions such as the one described above.



16By making use of many kinds of knowledge, Valet attempts to overcome the above-described problems with intelligent parsing of shell commands. Valet is therefore ableto understand most of its users' inputs and can accurately correct the most frequent typesof input error. Valet is not always able to discern its users' intentions, of course, but itcan almost always make reasonable interpretations within the limitations of its knowledgebases. Valet is unobtrusive and di�ers from the standard C shell interface only when itdetects an input error. Overall, because Valet can accurately correct the most commonuser input errors, it makes a signi�cant contribution to the e�ectiveness and friendlinessof the UNIX C shell interface.Chapter 2 describes research that in
uenced the design of Valet. Readers withlimited time may wish to skip Chapter 2 and read just the following portions of thisthesis: Section 3.1.3, summarizing the goals and limitations of the interface; Section 3.2,describing the overall implementation; and Chapter 4, pages 116 through 123, explainingthe user testing experiment and summarizing the results.



CHAPTER 2PREVIOUS RESEARCH AND SYSTEMSValet is not the �rst attempt to create a more intelligent, more accommodatingcommand shell for the UNIX operating system. Prior to the design and implementationof Valet, several other systems demonstrated that it was both possible and useful toimprove the UNIX shell. Valet was in
uenced by the systems that preceded it, and inturn, those systems were in
uenced by the results of even more previous user interfaceresearch. As described in Section 1.1, the need for improved human-computer interfacesbecame clear within the past ten or �fteen years as computer systems became morewidespread and typical computer users became less technically oriented. Both novice andexperienced computer users began to demand that more attention be paid to the design ofe�ective user interfaces. It is not surprising, therefore, that as the UNIX operating systembecame increasingly popular, its user interface de�ciencies became both more apparentand more serious, and computer scientists turned their attention toward addressing theUNIX command shell's shortcomings.This chapter describes some of the user interface research that in
uenced Valet. Inparticular, several attempts to improve the UNIX shell interface are presented. Some ofthese e�orts are research vehicles that explore how certain techniques such as spelling cor-rection or task-speci�c knowledge can be employed to improve the UNIX shell interface.Other systems described in this chapter | the tcsh and zsh command shells in particular| are in actual widespread use today as replacements for the aging UNIX C shell. Thesenew UNIX command shells incorporate many improvements over the standard C shell.Valet incorporates many of the interface improvements o�ered by those shells and inaddition builds on those ideas by maintaining extensive user interaction contexts. In thisway Valet goes beyond the capabilities of today's popular UNIX shells.



182.1 The Potential for ImprovementAs described in Section 1.1, many command line interfaces can be di�cult for peopleto use. Confusing terms, in
exible syntax, inconsistency, and lack of feedback can allreduce the e�ectiveness of an interface. Although with training people can adapt tothe requirements of almost any computer system, it is clearly preferable for computersystems to adapt to the requirements of their users. People at all levels of experiencecan bene�t from user-friendly interfaces. Fortunately, research with existing commandlanguage interfaces has shown that there are many ways in which these interfaces can beimproved. 2.1.1 Familiar Terms and SyntaxConfusing, hard-to-remember terms in a command language can be replaced withwords that are more familiar to the people who use the interface. Similarly, the syntaxof the language can be changed to be more natural to those users. Several groups ofresearchers have shown that these modi�cations can greatly improve a command lineinterface, as evidenced by increased user performance and satisfaction with the system.Ledgard et al. [19], for example, compared two interfaces for a text editor: a traditional\notational" interface and a \natural language" interface based on English words andphrases. Twenty-four paid volunteers with various levels of computer experience wereasked to perform a set of editing tasks with both editor interfaces. Half of the subjectsused the notational editor �rst; the other half used the English editor �rst.The results of this experiment are summarized in Table 2.1. Ledgard and his colleaguesdiscovered that overall, the test subjects were more productive with the English-basededitor interface. The subjects completed an average of 48% of the editing tasks with theTable 2.1. A Comparison of Two Editor Interfaces, Adapted from Ledgard et al. [19]Mean Percentage Mean PercentageSubjects' Level of Tasks Completed of Erroneous Commandsof Experience Notational English-based Notational English-basedInexperienced 28 42 19 11Familiar 43 63 18 6.4Experienced 74 84 9.9 5.6Average 48 63 16 7.8



19notational editor, but they completed an average of 63% of the tasks with the English-based editor. Users at all levels of experience showed signi�cant improvement. (Ledgardet al. noted, however, that the users tended to improve with exposure to the task andtherefore tended to be more e�ective with whichever editor they used second.) The testsubjects entered fewer erroneous commands to the English-based editor. In addition,at the end of the experiment, users at all experience levels clearly preferred the Englisheditor. Ledgard and his colleagues concluded that command languages based on everydayspeech can lead to increased user e�ciency and satisfaction.2.1.2 Flexible ParsingAnother way to increase user performance is to make command languages more
exible. As previously described, many of today's command languages recognize onlyone name for each available action, object, or concept in the system. It is straightforwardto correct this situation: Interfaces can be designed or changed to accept synonyms. Inaddition, command language syntaxes can also be expanded to accept a wider variety ofcommand phrasings. These simple changes can have a very powerful e�ect, as Good etal. [9] discovered.In their study, Good et al. set out to determine how a particular command line inter-face could be modi�ed to accept commands that \seemed reasonable" to inexperiencedcomputer users. At the beginning of the experiment, the researchers created a commandline interface to a simulated electronic mail system. This original interface was similarto those of several actual electronic mail systems. The researchers then recruited noviceusers, none of whom had any experience with electronic mail, to perform a set of taskswith the mock system. Each test subject received a brief introduction to the conceptsof electronic mail and a general description of the command line interface; however, thesubjects were not told what commands or syntax the program understood. After eachuser's orientation, the researchers left the user to accomplish the electronic mail taskswithout human guidance or online assistance.The user testing sessions were divided into several groups. After each round of tests,Good and his colleagues analyzed the logs from each session and updated their mockcomputer mail system accordingly. The researchers enhanced the system's commandparser to allow it to recognize a greater percentage of the test subjects' commands. Theseenhancements were guided by the commands actually attempted by users; in this way,



20the interface was derived from user behavior.As the system's parser became more sophisticated and 
exible, it recognized a muchgreater percentage of the commands spontaneously entered by the test subjects. Of the1,070 commands entered during the entire course of the study, only 78 (7%) could behandled by the initial version of the parser. The �nal version of the parser, however,incorporated 30 changes and could correctly recognize 816 (76%) of the commands. Thee�ectiveness of the parser increased by an order of magnitude, and the �nal parser couldunderstand over three-fourths of the novice users' commands. There was an additionale�ect from the improvements in the parser: Users increasingly enjoyed working with thesystem. The test subjects were neutral toward the initial version of the interface, butthey liked the �nal version. Eight experienced computer users were asked to use the �nalsystem and they liked it as well.Good and his colleagues concluded that the examination of novice user behavior is ane�ective technique for creating natural, easy-to-use computer systems. In addition, theresearchers concluded that 
exibility is a very important aspect of e�ective command lineinterfaces. Good o�ered the following guidelines:1. Command language interfaces should be designed to accept synonyms. Good es-timated that if a computer system knows only one word for an object or concept,then there is an 80% to 90% chance that a user will fail to guess the computer'sword. In the case of the electronic mail system, Good et al. wrote [9, page 1,038]:\The most e�ective change [to the interface] permitted the recognition of the threemost widely used synonyms for commands and terms. One-third of all commandsissued required this change for successful parsing."2. Command language interfaces should allow objects to be described in 
exible ways.Numbers, for example, might be preceded by \#". Furthermore, it should bepossible to reference objects through their attributes. In the case of Good's �nalmail system, users could refer to messages by any header �eld: subject, author, date,or other. 2.1.3 Tolerance of Errors and AbbreviationsGood et al. improved their program's interface by expanding its command parserto recognize the variety of terms and syntaxes that were used by the test subjects in



21their study. This clearly made their interface much more 
exible, but by itself, theaddition of new terms to a language enables only a \static" kind of 
exibility.1 Whilea large vocabulary may allow an interface to recognize many di�erent words, it doesnot necessarily allow an interface to recognize variations or approximations of thosewords. Even if a command line interface is designed to understand synonyms and a
exible command syntax, in order to be maximally 
exible the interface must do morethan accept only and exactly the preprogrammed terms. It must also attempt to handledynamically chosen approximations of those terms, including abbreviations, misspellingsand typographical errors.It is hardly a new idea that computer systems should be tolerant of users' commandinput errors and of user-chosen abbreviations. Over thirty years ago, Damerau [5]described a technique for correcting input errors in an indexed information retrievalsystem. This system compared input index keywords against a master list and rejectedthose keywords that were not in the list. Examining these rejected terms, Dameraudiscovered that a great majority of the input errors were exceedingly simple. Over 80%of the unrecognized input terms were simple lexical transformations of terms that wereknown to the program.2 In particular, Damerau discovered that each of these erroneousinput terms could be classi�ed as the result of exactly one of the following typographicalmistakes:Omitting one character. The erroneous input term could be produced by deletingone character from some term in the program's lexicon. For example, the computeroperator may have entered the term \comuter" when he or she had intended toenter the (known) term \computer".Inserting one character. The erroneous input term was the product of inserting onecharacter into a known term. For instance, the user may have entered the term\commputer" when \computer" was intended.1Good et al. also incorporated a kind of \dynamic" 
exibility, spelling correction, into their mail systeminterface.2However, not all of these simple lexical transformations necessarily arose from users' input errors.Damerau's collection of rejected index keywords included those caused by users' keyboarding mistakes,equipment failures (especially paper tape equipment failures), and other sources of error peculiar toDamerau's data-processing application. Subsequent researchers, however, have supported the generalconclusion that a large percentage of all user input errors can be characterized as simple typographicalerrors, similar to those that Damerau found [6, 11, 28].



22Substituting one character. In this case, exactly one of the characters in the inputterm was wrong. The user of the system may have entered \compiter" when he orshe had intended to type \computer", for example.Transposing two adjacent characters. The erroneous term could be produced byexchanging the positions of two adjacent characters in a known term | for instance,the user may have typed \compuetr" instead of \computer".Because these kinds of errors are so simple, it is generally straightforward for acomputer program to include appropriate error correction procedures as part of its in-terface. Most command language interfaces contain some kind of dictionary that de�nesthe entire set of commands that may be entered. When the computer user enters aninvalid command name, then, it is a simple matter for the interface to consult thecommand dictionary and locate the set of command names that are lexically similarto the unrecognized input word. (This search can run very quickly.) This is the set ofthe possible corrections for the user's misentered command.Furthermore, because the above-listed types of typographical errors are so common (asa percentage of all user input errors), appropriate error correction procedures can be veryuseful. As Damerau described, over 80% of the index terms rejected by his data retrievalsystem simply had one letter missing, extra, incorrect, or transposed with an adjacentletter. Morgan [23] later incorporated Damerau's spelling correction techniques into abatch programming system. Because Morgan's improved operating system and compilercould automatically correct many common, simple errors in batch jobs, programmersmade fewer fruitless attempts to submit each job | obviously an important bene�t tothe computer users who must wait several hours to receive the results of any batchprogram submission. Morgan estimated that his batch spelling correction facilities savedan average of one and a half submissions per job, thereby reducing the average numberof submissions per job to two for CUPL programs and to �ve for Fortran programs.More recently, Durham et al. [6] demonstrated that simple spelling correction tech-niques, based on Damerau's observations, could also be e�ective as part of interactivecommand line interfaces. Durham and his colleagues added such error correction facilitiesto an electronic mail system, RdMail, which was in heavy daily use by a community ofseveral hundred people. Durham's research is therefore quite di�erent from that of Goodet al., which was previously described. Whereas Good et al. used a simulated electronic



23mail system in order to arrive at a \user-designed" interface, Durham and his colleaguesused an actual, heavily utilized mail system in order to discover how error correctioncould be incorporated into an existing interface.Durham's modi�ed mail system ran for 41 days and recorded 23,361 sessions. In thattime, RdMail discovered and processed 2,527 erroneous keywords: 2,031 unrecognizedterms and 496 ambiguous abbreviations. Table 2.2 summarizes the performance of thespelling corrector on these terms.In total, 27% of the erroneous terms were properly corrected by Durham's improvedinterface. Although the interface o�ered corrections for 44% of all the erroneous keywords(spelling corrections in 24% of the cases and disambiguations in another 20% of the cases),the RdMail users accepted these corrections only some of the time. Users accepted aspelling correction in only 66% of the cases in which one or more corrections were o�ered;users approved only 56% of the interface's disambiguations. The �nal result was thatfor 27% of all the erroneous input terms, the user corrected the error by choosing oneof the terms o�ered by the improved RdMail interface. In about half of these cases, theinterface o�ered exactly one correction which was accepted by the user.Although this 27% overall success rate may seem low, a closer examination of thedata reveals that Durham's spelling correction techniques were very good at solving theproblems they were designed to address. Of the erroneous terms that were not correctedby the new RdMail interface:Table 2.2. Results of a Command Spelling Corrector,Adapted from Durham et al. [6]Corrected Terms Uncorrected TermsAmbiguity 11.0% Alphanumeric, 1{2 characters 20.3%Typographical error: Alphanumeric, 3+ characters:Missing letter 4.8% Syntax or vocabulary error 19.8%Extra letter 4.0% Typographical error 2.9%Wrong letter 4.5% Intentional error 3.2%Transposition 2.7% Rejected good correction 0.4%Other nonalphanumeric errors 26.4%Total 27.0% Total 73.0%



24� 20.3% of these terms contained only one or two alphanumeric characters. In general,it is di�cult to correct short terms because they contain so little lexical information.This problem is especially severe for interfaces that attempt to correct mistypedabbreviations, as the improved RdMail interface did. For these reasons, Durhamet al. disabled many of the RdMail spelling correction techniques for one- and two-character terms.� 19.8% of the erroneous terms were due to syntax and vocabulary mistakes. Inthese cases the RdMail users apparently forgot the correct term (perhaps using anunrecognized synonym), omitted a required keyword from a command, or madesome other sort of language error. Durham and his colleagues, however, had noexpectation that their improved RdMail interface would correct these kinds ofmistakes. Language-level errors cannot be addressed through spelling correctionalone; one must incorporate 
exible parsing into the interface, as Good et al. did [9],in order to cope with these kinds of errors.� 26.4% of the terms were nonalphanumeric terms, which Durham's spelling correctordid not attempt to process. These terms included control characters (12.9% of allerroneous terms), numbers (4.6%), and punctuation (8.9%). Many of the controlcharacters were apparently due to incorrect use of the Control-s key, which wasused to suspend the output of text to users' terminals. Many of the numbers andpunctuation marks appeared as the �rst word of an input line. However, in theRdMail command language, the �rst word must be the name of an RdMail command.Clearly, this is another language issue that is beyond the scope of Durham's spellingcorrection research.� 3.2% of the erroneous terms were apparently entered intentionally by people whowere exploring the corrector's capabilities. These items were classi�ed as intentionalerrors by the researchers through manual examination of the session transcripts.� 2.9% of the terms were caused by typographical mistakes that could not be handledby the corrector. Often, this meant that the user had omitted a space betweentwo adjacent words. Other errors were apparently caused by system issues: theplacement of the Control key, the ability to \type ahead," and so on. Only 8 caseswere attributed to multiple typographical errors (e.g., two or more missing letters)



25in a single term.� 0.4% of the terms (10 cases) were apparently properly corrected or disambiguated,only to have the user reject the interface's help.In summary, although Durham's claimed overall correction rate of 27% may appear tobe low, in fact, the RdMail spelling corrector did outstandingly well on the problems thatit was designed to address. The improved command interface properly corrected 89.1% ofall the typographical errors and ambiguous terms that it encountered (excepting one- andtwo-character terms), although some of these corrections were rejected by the users ofthe system. The overall success rate of 27%, then, simply indicates that language issues| the use of synonyms, 
exible descriptions, and \user-centered" design techniques, aspreviously described | cannot be overlooked. Spelling correction is useful but it cannottake the place of careful command language design.Durham et al. demonstrated that spelling correction and abbreviation processing canbe e�ective components of a user-friendly command line interface. Durham and hiscolleagues also showed that these techniques can be incorporated into existing interfaceswith relative ease. Correction techniques based on Damerau's observations can be imple-mented in a straightforward manner, and the results of Durham's RdMail experiment [6,page 770] con�rm Damerau's observation that over 80% of all typographical errors arethe result of exactly one trivial error: one letter missing, extra, incorrect, or transposedwith an adjacent letter. The conclusion is that even the most obvious and simplecorrection techniques can handle the great percentage of all users' typographical errorsand dynamically chosen abbreviations.Other researchers have supported this conclusion. McMillan and Moran [21], forexample, showed that a di�erent but similarly simple technique could accurately recognizeuser-chosen abbreviations for a small set of command names. McMillan's technique wasthis: In order to determine which one of the command names \best" matches a user's(abbreviated) input term, a command line interface executes the following steps:1. From the set of all command names, �nd the set of names that have the greatestnumber of characters in common with the user's input term. The order of thecharacters within the words are not considered; only the number of shared charactersis important.



262. Remove all but the shortest command names (i.e., those names containing the fewestcharacters) from the set produced in the previous step.3. From this remaining set of command names, choose the name that appears �rst inan alphabetical ordering of the set.The command name selected in the �nal step of the algorithm is the word that \best"matches the user's original input, and therefore, this word is assumed to be the intendedexpansion of the user's abbreviation.McMillan and Moran's matching algorithm is extremely simple | it does not evenconsider the order of the letters in the abbreviation or the command names | buteven this straightforward algorithm can be surprisingly e�ective. In an experiment,McMillan and Moran gave a list of 17 commands to 21 college students, none of whomwas an experienced computer user. Each student was asked to choose an abbreviationfor each of the commands, and the researchers used the above-described technique tomatch these abbreviations with the original commands. The results were excellent,particularly in light of the algorithm's simplicity. For 9 of the 17 commands, 100%of the students' abbreviations were correctly recognized. The algorithm worked well forindividual students as well: Of the 21 lists examined, the algorithm correctly recognized100% of the abbreviations on 7 of the lists and recognized 94% on 7 more. Overall, 88%of the students' abbreviations were correctly paired with the full command names.In summary, McMillan and Moran's experiment showed that even an unsophisticatedalgorithm such as theirs could yield surprisingly accurate results. The researchers demon-strated that their heuristic could correctly identify a great percentage of user-chosenabbreviations, and it is clear that the same heuristic could be used as a more generalinput matching function to both expand abbreviations and correct simple typographicalerrors such as those previously described. Furthermore, it could do all this with anabsolute minimum of information: just the set of acceptable terms and the user's actualinput. 2.1.4 Use of ContextIf such a simple matching heuristic could so accurately discern users' intentions,McMillan and Moran reasoned, then it should be possible for a more intelligent techniqueto recognize users' intentions in practically all cases. By making use of more interaction



27context, a sophisticated input parser should be able to approach 100% recognition ofall user inputs. McMillan and Moran suggested for instance that the accuracy of theirmatching function would improve if it were changed to take various lexical contexts intoaccount. The researchers' original algorithm essentially treated words as unordered sets ofcharacters. An improved matching algorithm, however, would consider the order of letterswithin words and give preference to cases in which the letters of a user's input matchedin the proper order with the letters of a word from the computer's lexicon. In addition, asophisticated matching function might notice common sequences of letters or give greaterweight to character matches near the beginnings of words. Both of these improvementsmake use of lexical context | information about the environments in which individualcharacters are placed | that can be recognized and used to improve an interface's abilityto understand the meanings of computer users' inputs.Lexical context is information that is present within an individual word. This includesthe characters that make up the word and the arrangement (order) of those characters.These things provide lexical clues that can be used to expand abbreviations and correctspelling errors. Additionally, the form of a word may sometimes provide semantic clues(i.e., information about the intended meaning of the word) as well. In English, forexample, the su�x -tion almost always indicates that the containing word is a noun.Similarly, in the UNIX C shell, the pre�x \-" typically appears only in words thatare command options and the character \/" generally appears only within �le names.Information such as this can be used to guide a shell command parser. Lexical contextis only one kind of context, however. An intelligent interface can make e�ective use ofseveral other levels of context as well: syntactic context, short-term interaction context,long-term interaction context, and other types of general knowledge.Syntactic context is information that arises from the syntax (structure) of a language.In a typical command language, for example, the �rst word of every input line is expectedto be the name of a command. This word acts as a verb, naming the action to beperformed. Subsequent input words, called command arguments, may be expected toname �les, specify options, describe input redirection, or name other objects speci�c tothe command. Certain command arguments may be required to have special features;for example, it might be necessary that a name refer to an existing �le. Often, di�erentcommands interpret arguments in di�erent ways. This means that each command name(the �rst word on the user's input line) must be associated with a speci�c syntax for



28command arguments.Syntactic information is obviously important for accurate error-tolerant parsing. Whena spelling error is found in a command line, an intelligent parser can use syntacticinformation to constrain the set of possible corrections to only the syntactically acceptablealternatives. (Once the set of possible corrections is constrained, lexical information canbe used to choose the best correction from the set.) It would be entirely unhelpful for aparser to correct an erroneous input term to a word that, although lexically similar, issyntactically invalid | to correct the input word to a command name when a �le nameis actually required, for instance.Another type of context, the short-term interaction context, is de�ned by an individualcomputer user's recent inputs and the recent states of the computer system itself. Theinformation at this level of context is di�erent for di�erent people and changes fairlyquickly over time for any individual person.Interaction context arises from the tasks that a computer user performs | docu-ment preparation, debugging, and so on | and how that person coordinates individualcommands to complete those tasks. In general, a computer user's commands are notprocedurally isolated from one another. Instead, because it is often necessary for aperson to enter a sequence of several commands in order to complete a task, adjacentcommands are generally related to each other. Hanson, Kraut, and Farber [12], intheir study of UNIX shell commands, discovered that many shell commands fall intoseparate functional groups. Commands within a functional group are likely to be used inconjunction with other commands in that group. Overall, UNIX shell commands clusterinto separate task-oriented groups, and these groups are tied together by orienting andprocess management commands. An intelligent interface can use this kind of informationin order to discern or even anticipate a user's intentions; for example, when an inputerror occurs, the parser can be biased towards corrections in the user's current commandgroup.Interaction context is also useful because computer users, both novice and experienced,tend to \repeat themselves" and enter commands that they have recently entered |often with exactly the same command arguments. Like Hanson et al., Greenberg andWitten [10] studied the use of UNIX shell commands by a variety of computer users.Greenberg and Witten discovered that C shell users repeat themselves with amazingfrequency. On average, for every command that a person enters, there is a 50% probability



29that the command is identical to one of the 10 commands that immediately precedeit in the user's input history. (There is a 26% chance that the command has neverbeen entered before by this person, and there is a 24% chance that the command hasbeen entered before but is not a repetition of one of the previous 10 commands.) Eventhough this statistic alone is very impressive, the frequency of matches among the recentcommand history can be greatly improved by simply pruning repetitions from the user'scommand history list, maintaining separate history lists for each directory (in order toapproximate task-speci�c command histories), and allowing for partial matches in whichthe user's current command is an extension of a recent previous command. Employingthese additional strategies, Greenberg and Witten increased the matching frequency by13%: In other words, there is a 63% chance that a user's command will match (i.e., beidentical to or an extension of) one of the 10 previously entered commands in the user'spruned, directory-sensitive history. Even when commands are not repeated verbatim, itis often the case that new commands will refer to objects | �les, for example | thatwere recently referenced by preceding commands. Clearly, an intelligent interface shouldtake interaction context, both short-term and long-term, into account when discerningthe intent of a user's command.Long-term interaction context is produced by a computer user's actions over a rela-tively long period of time, generally spanning several sessions with the computer system.Like short-term history, long-term history can be very useful to an intelligent interface.Many researchers have shown that computer users tend to use a relatively small set ofcommands over and over; for instance, in their study of UNIX command usage, Hansonet al. wrote [12, page 45]: \Users of the UNIX operating system have a large numberof commands available to them, and yet they used only a small proportion of thesecommands with any frequency. For example, although users had well over 400 commandsavailable to them, in the process data, 10 percent of the commands accounted for almost90 percent of the command usage." In a separate study, Greenberg and Witten [10]discovered that UNIX computer users repeat their shell commands in the long term(although repetitions most commonly occur in the short term, as previously described).Greenberg and Witten found that on average, for any shell command that a person enters,there is a 74% chance that the person has entered that command at some time in the past.That is, almost three out of every four commands are repetitions of previous actions.Just as computer users tend to repeat their commands, they should also be likely to



30repeat their mistakes. An intelligent system can automatically keep track of individualusers' habits | frequent actions, frequent misspellings and abbreviations, and so on |over a period of many separate computer sessions. This user pro�le can be saved and usedto guide the interface's command interpreter in future sessions. McMillan and Moran [21]suggested that long-term interaction context for individual users could augment spellingcorrection and abbreviation processing by biasing the parser toward the most commonlyused command names. It should also be possible for an intelligent parser to handleusers' common mistakes, as Hayes et al. wrote [14, page 22]: \A graceful interface shouldrecognize and adjust to the idiosyncrasies and preferences of its user. This includes theability to spot and correct recurring typographical, spelling, or syntactic errors." Inaddition, long-term context can allow users to manually extend a command language byde�ning new aliases, synonyms, or abbreviations for future use.Finally, an intelligent computer system can make use of context that arises fromgeneral knowledge in the domain of discourse. All sorts of data about the computer user,the computer system, and the human-computer interface itself can be part of this context.This information can be complex; for example, an intelligent interface might understandhow separate commands can be combined to achieve certain goals, thereby allowing thecomputer system to analyze its user's goals and suggest more e�cient ways of meetingthem. General contextual knowledge can also be as simple as Damerau's rules of thumb,or as basic as knowledge of the physical arrangement of keys on the computer system'skeyboard.Spelling correction algorithms can make particular use of this last item because it iswell known that the layout of a computer's keyboard greatly a�ects the likelihoods thatcertain typographical errors will occur. In one analysis of keyboarding errors, Grudin [11]concluded that most substitution errors (i.e., errors in which one letter is replaced by adi�erent letter) involve adjacent keys. By examining a large corpus of errors Grudinshowed that in 58% of all substitution errors, a correct character was replaced by acharacter immediately adjacent to the correct character on the keyboard. In fact, 43%of all substitution errors involved adjacent keys in the same row; only 15% involvedadjacent keys in the same column. An additional 10% of substitution errors involved\mirror image" keys that have the same positions on opposite hands. Obviously, all ofthese statistics can be used by an intelligent, error-tolerant interface in order to choosethe most likely correction for a user's erroneous input.



31Each of the above-described levels of context adds to the ability of an intelligentcommand line interface to understand its user's intentions. An interface that correctstypographical errors, for example, might draw on all of these levels. Using the �rst level,lexical context, an intelligent system can select all of the vocabulary words that mostresemble an erroneous input term. The second level of context, syntactic context, allowsthe system's command parser to use the form of the user's command to prune the set ofcandidate corrections to include only the most appropriate terms | command names, �lenames, command options, or whatever else is expected. By using short-term interactioncontext, the interface could limit the search to the most recently used words, or at leastbias the spelling corrector to favor these recently entered terms. By consulting the user'slong-term interaction history (the fourth level of context described above) the intelligentinterface might examine a list of the user's common errors and abbreviations, and by usingthe �nal level of context the intelligent interface could employ general rules of thumb andinference. For example, as described previously, an interface could make use of the factthat certain kinds of errors are more common than other kinds of errors.With so much information available, a well-designed, intelligent command languageinterface should be able to understand almost everything that its human operators en-ter [15, 21]. Moreover, existing systems demonstrate that this kind of intelligent behavioris in fact possible. One of the earliest and most widely known examples is the \Do WhatI Mean" or \DWIM" facility of the Interlisp programming system. The DWIM facilitywas an integral part of the Interlisp system and embodied the philosophy that computersystems should make intelligent interpretations of user's inputs [33]. DWIM used thelevels of context described above to correct errors in Lisp programs, and at this taskthe DWIM facility was amazing successful. Teitelman, one of the implementors of theInterlisp system, wrote [32, page 17.3]: \We have put a great deal of e�ort into makingDWIM `smart,' and experience with perhaps �fty di�erent users indicates that we havebeen very successful; DWIM seldom fails to correct an error the user feels it should have,and almost never mistakenly corrects an error." In short, by using DWIM, Interlispprovided an intelligent interface that e�ectively met the needs of its users. It is surprisingthat today, over twenty years after Teitelman, Morgan, and others demonstrated thee�ectiveness of intelligent, error-tolerant user interfaces, these kinds of command lineinterfaces are so rare. Fortunately, the situation is starting to improve. Computerscientists have rediscovered the importance of user interface design and have started



32to reincorporate intelligent features into human-computer interfaces, including that ofthe UNIX command shell.2.2 The metric LibraryThe metric library [13], written by Hawley, was one of the earliest attempts toincorporate spelling correction into the UNIX command shell's interface. Like many otherresearchers, Hawley believed that in order to be most useful, interactive computer systemshad to be tolerant of their users' simple input errors. Hawley wrote [13, pages 1{2]:One of the simplest and most obvious ways to get a computer system to\do what I mean, not what I say" is to make the system smart enoughto deal intelligently with misspelled, mistyped, or abbreviated input. In aninteractive command-driven environment (like UNIX): : : some simple spellingcorrection algorithms running at the system level could have many bene�ts: : : .[W]henever such trivial spelling errors are made, the system should be able topro�er a good guess at the intended input, just as a friend looking over one'sshoulder might, saving the user from the tedium of �xing trivial errors.As a �rst step toward this goal, Hawley created the metric library. This library was asmall set of C language functions that other C programs could invoke in order to correctsimple errors such as those described above. At its core the metric library provided afunction named bestmatch. The bestmatch function accepted three arguments: (1) aninput string, (2) a table of strings to be matched against, and (3) a \metric" functionthat measured the similarity of any two strings. The bestmatch function then locatedand returned the string from the table that \best matched" the input string accordingto the given string similarity function. The metric library itself de�ned two di�erentspelling metric functions that programs could give to bestmatch. Alternately, a programcould provide its own specialized metric function.By using the bestmatch function, C programs could correct users' input terms bycomparing those terms against tables of acceptable inputs. Unfortunately, even thoughthis sort of spelling correction is highly desirable, it would have taken a Herculean e�ortto make bestmatch an integral part of the UNIX system interface. In order to makedirect use of the bestmatch function, hundreds of existing programs would have requiredmodi�cation, and the required changes would not have always been straightforward.There were (and still are), however, some specialized kinds of spelling correction thatcould easily and usefully be incorporated into almost all UNIX programs | in particular,the correction of �le names. Many programs interpret some of their command line



33arguments as �le names. File names are generally longer than most other command linearguments and are therefore more likely to contain input errors. In addition, the generallength of �le names provides lexical context that makes it possible to correct errors inthese arguments with accuracy. Therefore, Hawley reasoned that a function speciallydesigned to correct �le names would be widely useful. Such a function would also bestraightforward to implement and incorporate into existing UNIX programs. Becausemost programs use �le names in simple, stylized ways, it would take a minimum of e�ortto change existing programs to use a function that corrected �le names.For the above reasons, the bestmatch function was not the principal interface to themetric library. Instead, the most important component of the library was a functionnamed pfopen. The pfopen function was a \polite" replacement for the function fopen,which is de�ned by the standard C language stdio library and which is used by almost allC programs that manipulate �les. Essentially, the standard fopen function accepts a �lename and opens that named �le for reading or writing. However, fopen does not attemptto analyze the �le name that it receives, so if that �le name is mistyped or misspelledfopen will fail to open the desired �le. Hawley's new pfopen function was exactly likethe normal fopen function, except that pfopen examined the given �le name for simpletypographical errors. In other words, given a possibly mistyped �le name, pfopen lookedfor an existing �le name that \best matched" the possibly mistyped name. When pfopendetected one or more errors in its original �le name, it corrected the name (possiblywith con�rmation from the user of the program) and then opened the corresponding �le.Because pfopen was exactly like the standard fopen function except for this new ability,it was straightforward for Hawley to modify existing programs to use the metric library'spfopen function. Hawley made the necessary changes to several standard UNIX utilityprograms | including cat, pr, and more | thereby incorporating a limited amount oferror tolerance into these programs with an absolute minimum of e�ort.This is how Hawley improved the UNIX shell interface. As previously discussed inSection 1.3.1, most of a UNIX shell's language is de�ned and interpreted by programsother than the shell itself. Therefore, in order to add input error tolerance to the shell'sinterface, one can add intelligence either to the shell program itself or to the otherprograms that the shell invokes. Hawley adopted the second approach. By makingexisting UNIX programs more able to deal with input errors, Hawley e�ectively addedthis same ability to the shell's command line interface.



34The principal advantages of Hawley's approach were twofold. First, because themetric library's spelling correction functions could be invoked by each program for itself,it was largely unnecessary to change the UNIX command shell. In other words, Hawleydid not have to teach the shell about the syntax of every other program's commandline arguments in order to implement error-tolerant command line parsing. The shelldid not need to know which arguments were to be interpreted as �le names and whichwere to be interpreted as command options or other kinds of arguments; this knowledgewas contained in the individual programs themselves. This allowed the shell itself tobe simple, and in addition, this approach made it easier to add new programs to thesystem and to modify old ones because the shell itself did not need to be updated inresponse to such changes. The second advantage of Hawley's approach was that it wasstraightforward to incorporate a limited but important kind of error-tolerant parsing intoexisting UNIX programs. Programmers, by simply replacing calls to fopen with calls topfopen, could quickly enable their programs to detect and correct simple errors in �lenames. Other kinds of error tolerance could be implemented gradually. New programscould be written to make full use of the metric library functions and old programs couldbe rewritten over time to make use of the metric library features.However, Hawley's approach toward improving the UNIX shell interface also hadimportant disadvantages. Most signi�cantly, there are many aspects of the shell's com-mand language that cannot be changed without modifying the shell program itself. Forexample, although programs that used the metric library could detect and correct errorsin their own command line arguments, only the shell can detect and correct errors incommand names themselves (i.e., the names of the programs that the shell invokes).Hawley, of course, could have modi�ed the UNIX shell to use the metric library inorder to correct command names, while leaving the correction of command argumentsto the other programs on the UNIX system. This illuminates a second problem withHawley's approach; namely, that in order to fully improve the shell's command lineinterface Hawley needed not only to change the shell, but also to change every otherprogram on the UNIX computer system. As just described above, it is advantageous foreach program to do its own spelling correction because it is easiest to keep the knowledgeof a program's command line syntax within the program itself. However, this approach isalso disadvantageous because it requires one to change hundreds of existing programs |a massive undertaking. It may, in fact, not be possible to modify some existing programs



35due to a lack of source code or an inscrutable design.Hawley's distributed approach to error correction with the metric library had one�nal, important shortcoming. Because each program performed its own error detectionand correction, in isolation from all other programs, certain kinds of very useful contextualinformation were lost. For example, the pfopen function relied on lexical informationalone in order to correct �le names. Hawley described how this lack of context hinderedpfopen [13, page 8]:The algorithm simply moves through the segments of the path and �nds thebest match for each piece. It cannot correct cases which involve a missingslash in the path (e.g., \/usrbill" instead of \/usr/bill") or cases whichinvolve missing or added segments (e.g., \/usr/cmd/cat.c" instead of \/usr/src/cmd/cat.c").The metric library's pfopen function did not attempt to distinguish one type of �lefrom another, nor did it remember which �les had been recently referenced (possiblyby programs other than the current one), nor did it try to adapt to individual users'habits. These kinds of data could have helped address the problems described above,but because there was no persistent, central knowledge base in the metric library, therewas nowhere to store these kinds of contextual data for later use. Hawley realized thatthis was a severe handicap and wrote [13, page 9] that \there is good reason to believethat more contextual information (like pro�les of individual user's habits) can greatlyimprove accuracy and response time" in the error correction heuristics. Hawley furthersuggested [13, page 5] that the appropriate repository for this contextual data is withina \smart shell" that keeps track of its users' interaction histories.Valet, the intelligent UNIX shell interface described in this thesis, attempts toimplement Hawley's above suggestion. Valet incorporates error correction techniquesthat are similar to those in the metric library. Unlike Hawley's library, however, Valetcombines these techniques with a large contextual knowledge base that describes suchthings as the sets of commands and �les recently referenced by the user. This allowsValet to make corrections that are more accurate and more helpful than those thatcould be made by isolated programs using the metric library.2.3 The tcsh and zsh ShellsHawley's metric library allowed UNIX programs to perform their own spelling correc-tion, and in this way Hawley indirectly improved the UNIX shell's command line interface.



36However, Hawley realized that in order for the shell's interface to be as user-friendly aspossible, spelling correction techniques and contextual information had to be incorporatedinto the shell program itself, not just into the other programs that the shell invokes.Following this advice, a few modern command shells for UNIX now provide simple,context-sensitive error correction facilities. Two such command shells are the populartcsh and zsh programs.The tcsh command shell [27], written by Placeway, Zoulas, and others, is a modernand enhanced version of the standard UNIX program csh, also known as the C shell [17].The C shell contains a relatively complicated command parser because the csh inputlanguage provides a wide variety of features: command aliases, variable substitutions,�le name expansions, history references, and similar abbreviation mechanisms. Unfortu-nately, for all of the sophistication of its parser, the C shell has very little understandingof the commands that it executes. When the C shell receives a user's input command,that command is transformed | in shell terms, the command is \expanded." Aliases andhistory references are resolved, values are substituted for variable names, and so on. Eachof these transformations, however, is entirely syntactic; none of these facilities dependson the intended meaning of the user's input. After the user's input is transformed the Cshell attempts to execute the resultant command string verbatim, again without referenceto the user's intentions or the context in which the command will be executed. Becausethe standard C shell does not make use of relevant contextual information it is unableto help its user avoid or correct common input errors. The enhanced tcsh commandshell, however, is somewhat more helpful to its users. It includes command completionand spelling correction facilities that enable users to avoid mistakes and correct thosemistakes that do occur.The zsh command shell, also known as the Z shell [7], was written by Falstad,Wischnowsky, and others, and is similar to tcsh. Whereas tcsh is an improved version ofcsh, zsh is a modern and enhanced version of the standard UNIX program sh, otherwiseknown as the Bourne shell. Like the C shell, the Bourne shell is a widely used, interactiveUNIX command shell. Further like the C shell, the Bourne shell has sophisticatedsyntactic abbreviation facilities but fails to make use of contextual information that wouldhelp its users avoid and correct input errors. The Z shell adds such context-based errorcorrection facilities to the Bourne shell in the same way that tcsh adds such facilities tothe C shell.



372.3.1 Programmable Command CompletionBoth tcsh and zsh provide two separate but related features for context-based inputerror avoidance and correction: command completion and spelling correction. The �rst ofthese features reduces typing errors and tedium by enabling the shell to complete partiallyentered words within a command. The shell user can, by simply typing the pre�x of aword and then hitting a special key (in both tcsh and zsh, the Tab key), ask the shell toinsert the remaining portion of the word into the command line. For example, supposethat the computer user wants to see a listing of the �les in the directory named sources.The appropriate UNIX shell command for this action is \ls sources". Using the shell'scommand completion facility, the user can type just:ls souAt this point, before hitting the Return key, the user can have the shell completethe partially entered directory name. The user can press the Tab key and the shell willappend the letters \rces" to the command line:ls sourcesThe user can then execute this completed shell command by pressing the Return keyas usual.3 Command completion becomes more valuable as the words to be completedbecome longer. Because this feature reduces the amount of typing that users must do, itreduces the number of typing errors that users make.For many years the standard C shell has been able to complete partially entered �lenames (as just illustrated), command names, and user login names. For each kind ofcompletion the user simply presses the Escape key to have the shell �nish an incompleteword. However, because there is no way to tell csh about the command line syntaxrequired by the various UNIX programs, csh uses simple heuristics to decide when eachkind of completion is appropriate. For example, command name completion is alwaysused for the �rst word on the command line. User name completion is invoked for wordsthat begin with the character \~" and �le name completion is used in all other cases. In3In the example above, it was assumed that the user's input \sou" was a pre�x of exactly one �lename (namely sources) in the current directory. If the pre�x \sou" had not been su�cient to uniquelyidentify exactly one �le name, the shell would have behaved slightly di�erently. It would have completedas much of the user's input possible or displayed a list of possible completions. Details are available inthe documents that describe tcsh [27] and zsh [7].



38the ordinary C shell there is no way to change these rules or specify special lexicons tobe used with certain commands.The tcsh shell improves on the standard C shell by providing a programmable com-pletion mechanism. Using programmable completion, shell users can teach tcsh thecommand line syntaxes of various commands and specify the lexicons to be examinedduring completion. One particularly useful application of this feature is that one can telltcsh that the cd command expects its (single) argument to be the name of an existingdirectory | not just any kind of �le. The built-in cd command changes the \currentdirectory" of the shell itself and is one of the most frequently used shell commands. Thespecial command complete is used to describe how completion should be applied to othershell commands; for the example just described, a tcsh user would enter:complete cd p/1/d/This command tells tcsh that the �rst argument (the �rst positional argument,indicated by \p/1") for the cd command must be the name of a directory (indicatedby \d"). A more complex example is this:complete finger 'c/*@/$hostnames/' 'n/*/u/@'The expression \n/*/u/@" speci�es that arguments to the finger command will becompleted from the set of user login names, and that when a user name is completed, thecharacter \@" will be automatically appended to the name. In addition, the expression\c/*@/$hostnames/" indicates that immediately after the \@" character, completionsshould be drawn from the list of words in the shell variable hostnames. This variablemust be set by the shell user and presumably contains the names of frequently consultedmachines.Clearly, programmable completion is a powerful facility. Because it allows the shellto accurately complete users' partial inputs, it reduces input errors and makes the shelleasier to use. Both tcsh and zsh o�er programmable completion facilities. All of theexamples shown above are for tcsh, but they could be rewritten for zsh with minimale�ort. Finally, note that in both tcsh and zsh, completion is controlled solely by lexicaland syntactic information. Neither shell consults other kinds of interaction context (asdescribed in Section 2.1.4) in order to complete partial inputs.



392.3.2 Spelling CorrectionIn addition to programmable command completion, tcsh and zsh both provide asecond feature to alleviate the e�ects of users' input errors: spelling correction. Aspreviously described in Section 2.1.3, an overwhelming percentage (over 80%) of alluser input errors are isolated, trivial keyboarding mistakes: the insertion, deletion, orsubstitution of a single character in a word, or the transposition of two adjacent characterswithin a word. Given such a simply misspelled word and a dictionary of valid input terms,in almost all cases a command line interface should be able to correct the user's erroraccurately and automatically.Both tcsh and zsh can apply this type of spelling correction to users' commands.Each shell can be told to correct only command names or to correct both commandnames and arguments. (The default behavior of each shell, however, is not to attemptany corrections at all. Spelling correction is a feature that must be enabled by individualusers.) Correction of command names is possible and e�ective because each shell canaccurately determine for itself the set of valid commands. Correction of commandarguments is much more di�cult, however, because neither the tcsh nor zsh spellingcorrection facilities normally have any knowledge of the command line syntax used byany commands | not even commands that are built into the shells themselves! Due tothis lack of knowledge, each shell is forced to rely on lexical information alone in orderto determine the domain of each command line argument (e.g., the set of all �le namesor the set of all user login names). Although lexical information is certainly signi�cantand useful, it is often not su�cient; for example, it cannot be used to determine that aparticular argument must name a directory, as opposed to just any kind of �le.Because lexical information is often insu�cient for e�ective spelling correction, tcshand zsh need additional information about the commands that they provide. Theyneed syntactic information. In particular, they need the kind of information that usersalready provide to the programmable completion facilities of each shell. It would not beunreasonable to expect that when a user describes the command line syntax of a certaincommand to the shell, for use by the command completion facility, that information wouldalso be available to and used by the spelling corrector. Surprisingly, however, this is notthe case in either tcsh or zsh.In the current versions of tcsh and zsh, the spelling correction facility does not consultthe syntactic command line information that is provided to the command completion



40facility. Sadly, this 
aw reduces the utility of each shell's spelling correction | infact, this defect makes full command line checking too cumbersome to really be useful.Users of tcsh and zsh who enable spelling correction at all generally enable it only forcommand names, not for command arguments. Because neither shell utilizes syntacticinformation about command line arguments, even when such information is available, thespelling corrector of each shell is prone to making inappropriate and annoying attemptsat correction.Figure 2.1 illustrates how troublesome command argument spelling correction can bein tcsh. In the space of �ve commands, tcsh makes three nonsensical attempts to correctits user's input. The �rst incorrect attempt can be attributed to tcsh's lack of syntacticknowledge about the arguments to the complete command, but the two subsequentattempts at correction violate syntactic information that was explicitly provided to tcshby the user of the shell.The �rst erroneous attempt occurs when the user enters a complete command inorder to tell tcsh that the �rst argument to cd must be a directory name. (The completecommand was previously described in Section 2.3.1.) Although the complete command isbuilt into the shell itself, the tcsh command correction and completion facilities have no1 jaguar> set correct = all The user enables spelling correc-tion for both command names andarguments.2 jaguar> complete cd 'p/1/d/' The user tells tcsh that the argumentto cd must be a directory name.CORRECT>complete cd ./././ (y|n|e|a)? n tcsh o�ers to \correct" the second ar-gument to the complete command toa nonsensical value.3 jaguar> complete mkdir 'n/*/d/' The user tell tcsh that all of the ar-guments to mkdir must be directorynames.4 jaguar> touch file The user creates a �le named file: : :5 jaguar> mkdir files : : : and a directory named files.CORRECT>mkdir file (y|n|e|a)? n tcsh o�ers to \correct" the argumentto an invalid value.6 jaguar> cd filed The user makes a typographical error:\filed".CORRECT>cd file (y|n|e|a)? n Again, tcsh o�ers a nonsensical\correction."Figure 2.1. An Annotated Transcript of tcsh Spelling Correction



41prede�ned knowledge of the command line syntax that the complete command requires.Without this knowledge, tcsh automatically (and incorrectly) assumes that all of thearguments must be �le names. As shown in the transcript, tcsh was unable to �nd a�le name that was lexically similar to \cd" so no correction is o�ered for that argument.However, the second argument \p/1/d/" is handled slightly di�erently. After discoveringthat \p/1/d/" is not the name of an existing �le, tcsh decided that the �le name \./././"(which is a very unusual way of referring to the shell's current directory) was lexicallysimilar to the original \p/1/d/" argument, and so \./././" was o�ered as a correctionto the user. Unfortunately, because the argument \p/1/d/" was not intended to refer toa �le, the correction was entirely inappropriate and almost certainly unexpected by theuser.The second erroneous attempt to correct the user's input occurs when the user entersthe command \mkdir files" to create a new directory. Although tcsh was previouslytold by the user that the arguments to mkdir should name directories,4 the tcsh spellingcorrection facility ignored this information and suggested that the argument \files"should be corrected to \file" | the name of a regular �le! Obviously this suggestionis entirely unhelpful to the user. Likely, the real e�ect of this attempt at correction issimply to annoy the user.The third and �nal erroneous correction occurs when the user enters the command\cd filed" which contains a typographical mistake. The word \filed" is lexically verysimilar to both file and files, and either would be a reasonable correction based onlexical data alone. However, because the argument to cd must name a directory, files isthe much superior alternative; because file names a regular �le and not a directory, thecommand \cd file" is nonsense. Unfortunately this is the correction that tcsh o�ers.Even though the user had previously told tcsh that the argument to cd must name adirectory, tcsh's spelling correction facility ignores this knowledge and relies on lexicalsimilarity alone to match the input word \filed" against the names of all the �les in the4In truth, the command line arguments given to mkdir should not name existing directories, so theinformation about mkdir provided to tcsh in Figure 2.1 is not entirely accurate. The purpose of mkdir isto create new directories and the arguments given to mkdir are the names of the directories to be created.Unfortunately, using the complete command, it is not possible to tell tcsh that an argument shouldrefer to a nonexistent directory. The lie that mkdir's arguments should be (existing) directory names ispragmatic, however, because it allows tcsh to complete the directory components of pathnames givento mkdir. In any case, the point is this: Even though the information provided to tcsh about mkdir isnot entirely accurate, it is nonetheless inappropriate for tcsh to subsequently ignore this user-suppliedinformation when it attempts to correct its user's mkdir input commands.



42shell's current directory. That tcsh ultimately chooses to o�er the correction \cd file"instead of \cd files" is because, given a choice, the tcsh spelling corrector prefers toassume that the user made an insertion error (i.e., typed one extra character) rather thana substitution error (i.e., typed one incorrect character).As the transcript in Figure 2.1 illustrates, the spelling correction facility in tcshleaves much to be desired. In fact, tcsh's correction of command line arguments is sooften unhelpful and cumbersome that most tcsh users disable the feature entirely. Thezsh input correction facility su�ers from the same problems found in its tcsh counterpartbecause both shells rely on lexical information alone to make corrections in users' inputs.Neither shell can correct command line arguments with great accuracy because neitherthe tcsh nor zsh spelling correction facilities uses any knowledge of the command linesyntax used by any commands. Each shell is forced to infer the domain from which eachcommand line argument is drawn (e.g., the set of all �le names or the set of all user loginnames), and lexical information alone is often insu�cient for this task.Valet addresses the above-described shortcomings in the tcsh and zsh spellingcorrection facilities. Unlike the tcsh and zsh shells which are normally ignorant of thecommand line syntaxes used by all commands, Valet incorporates a large, prede�nedknowledge base that describes the syntaxes used by many of the most commonly usedUNIX commands. For example, Valet automatically knows that the argument given toa cd command must name an existing directory, and that the arguments given to mkdirmust name nonexistent directories. Valet can also make use of �le name extensions inorder to guide its input corrector. Valet knows, for example, that the names of input�les for the tex and latex programs generally end with the characters \.tex". Notonly does Valet use lexical and syntactic information to correct users' input errors, butit also refers to its users' short- and long-term interaction contexts in order to makemore sophisticated kinds of corrections. Valet can, for example, often determine whena referenced �le is actually in a di�erent directory than the one that the user indicated.Finally, Valet o�ers a command completion facility like the one included in the standardC shell. Although Valet does not o�er a programmable completion facility like thosefound in tcsh and zsh, Valet's input correction facilities are much more sophisticatedthan those found in today's popular UNIX command shells.



432.4 SAUCI, the Self-AdaptiveUser-Computer InterfaceAs just described, the tcsh and zsh command shells improve upon the standardUNIX shells while preserving the traditional command line interfaces of those programs.By providing command completion and spelling correction facilities, tcsh and zsh bothreduce the frequency of input errors and mitigate the e�ects of those errors that dooccur. However, even with these improvements, tcsh and zsh still do relatively littleto help their users input appropriate, well-formed commands. Although tcsh and zshcan correct (within the limits previously discussed) inputs once they have been entered,neither program can e�ectively describe the commands and command options that areavailable to the user.5 Neither can they o�er any assistance to the user in formulatinga plan of action; both tcsh and zsh are oriented toward individual commands andunderstand nothing of their users' overall tasks and goals. The authors of tcsh andzsh are hardly blameworthy for the omission of task-speci�c guidance in their shells,however, because neither program was intended to incorporate such novel features. Thetcsh and zsh shells were designed to o�er signi�cant but only incremental improvementsover previous UNIX shells. The SAUCI system, however, was designed to replace thetraditional UNIX shell interface altogether.SAUCI, the Self-Adaptive User-Computer Interface system written by Tyler and Treu[34, 35], is a research prototype that demonstrates a great variety of modern user interfacedesign concepts. These ideas include:� a graphical, multiwindow, form-based interface;� adaptation to individual users;� context-speci�c advice and assistance; and� orientation toward speci�c high-level tasks.5Once a command name is entered by the shell user, both tcsh and zsh have the ability to print a helpmessage for that command. However, such documentation is generally either nonexistent or inappropriatefor quick reference (e.g., the full UNIX \man page"). Neither shell can answer speci�c questions posedby the user or tailor its help messages to the user's level of experience.



442.4.1 A Graphical User InterfaceSAUCI provides a graphical user interface to the UNIX shell. The interface presentsseveral separate windows to its user, and these windows make it clear that SAUCI dividesthe process of command entry and execution into a sequence of unique steps or phases.The �rst phase is the prompt phase. To select a command to be executed, the SAUCIuser �rst chooses the command name from a menu in the \Commands" region of thedisplay. SAUCI has knowledge of the 50 or so most commonly used UNIX commands (asdetermined by Hanson, Kraut, and Farber [12]), and these commands are organized intofunctional groups: communication commands, �le and directory manipulation commands,and so on. Each functional group of commands appears within its own menu.Once the user has chosen the command to be executed, the SAUCI system enters theparameter phase. A new set of windows appears on the display, allowing the user to specifythe arguments for the command. The contents of these windows are, of course, tailoredspeci�cally to the options available for the just-selected command. One window allowsthe user to control the \simple" options | those that are simply enabled or disabled andwhich require no further speci�cation. Additional windows present the more complexcommand arguments. For each argument requiring text entry (e.g., a �le name), SAUCIcreates a separate window and presents it to the user along with appropriate instructions.Together, all of these parameter phase windows constitute a form that enables the userto view and specify the arguments for the selected command.When the user �nishes entry of the command arguments, SAUCI enters its systemresponse phase. SAUCI constructs a valid shell command from the user's speci�cationsand submits that command to the UNIX shell. The command and its output appear in aterminal-like window in the \System Response" region of the display. If the just-executedcommand is interactive, the user can communicate with the process through this systemresponse window. When the command is complete the user returns to SAUCI's promptphase in order to specify and execute another command.2.4.2 Adaptation to Individual UsersIn addition to providing a graphical interface to the UNIX shell, SAUCI adapts thisinterface to individual users, according to their experience levels and previous interactionswith SAUCI. The importance of adaptation, as previously described in Section 1.2, isthat through customization SAUCI can intelligently satisfy the di�ering needs of di�erentpeople. By tailoring its own presentations according to individual users' pro�les and



45behaviors, the SAUCI system presents a more cooperative and user-friendly interface tothe UNIX shell.Both the prompt phase and parameter phase described in Section 2.4.1 are tailored toindividual users of the SAUCI system. In the prompt phase, the contents of the commandselection menus are determined by rules that operate on the current user's pro�le. Forinstance, SAUCI can choose to display verbose or terse text in its menus based on thenumber of times that the corresponding UNIX commands have been successfully invokedby the current user. Alternately, SAUCI can choose to include or omit commands fromits menus based on the user's predetermined \class" | novice, computer science student,or system programmer, for example.The parameter phase of the SAUCI dialogue is similarly customized according to thecurrent user's experience with the selected command. SAUCI automatically decides whichcommand options and arguments to present and how those options should be described,depending on the user's pro�le and interaction history.2.4.3 Context-Speci�c AdviceThe user's interaction history also guides SAUCI's presentations of its own integratedcommand documentation and error messages. SAUCI includes built-in synopses of eachof the shell commands that are known to the system. For each command these sum-maries describe the purpose of the command, provide brief instructions for use of thecommand, o�er examples and special warnings, and include other similar information.Not surprisingly, SAUCI tailors these help texts according to the inferred needs of theperson currently using the interface. SAUCI can provide verbose descriptions to novicesand brief descriptions to experts. If the current user has previously made mistakes witha certain shell command, then SAUCI's online summary of that command will includewarnings tailored to the user's past errors.These same types of customization apply to SAUCI's own error messages. After a userhas completed the prompt and parameter phases of command entry, SAUCI examines theuser's command for a variety of errors | for example, SAUCI may verify that the �lesreferenced in the command actually exist and are of the required types. SAUCI can alsodetermine whether or not the user's command is appropriate for the current high-leveltask. (Task orientation is described in Section 2.4.4.) If any errors are discovered in theuser's command, SAUCI presents a description of the errors, tailored according to theuser's experience and current situation, and then allows the user to correct those errors.



46The user does not need to respecify the entire command from scratch; rather, the useronly needs to edit the contents of the appropriate parameter entry windows as describedin Section 2.4.1 and then resubmit the command to SAUCI.In summary, SAUCI makes use of speci�c users' interaction contexts in order to o�ercontext-speci�c advice that is appropriate to its users' experiences.2.4.4 Orientation Toward High-Level TasksThe �nal user interface innovation that SAUCI includes is task orientation. Tradi-tionally, human-computer interfaces have been organized around the individual actionsthat people may carry out with the underlying systems, with little or no attention paidto how those separate actions may be combined in order to accomplish the user's overalltasks. The responsibility for mapping high-level tasks (e.g., the preparation of a letter)onto sequences of actions o�ered by a computer system has, until recently, always beenplaced entirely on the user of the system. Unfortunately, this responsibility can be asigni�cant barrier to inexperienced computer users who may not be familiar with all ofthe features of the systems that they use | or who may be intimidated by the wide varietyof actions available in a complex computer system like UNIX. With the increasing use ofcomputers by people who are not computer specialists, user interface designers realizedthat in order to be most user-friendly, systems needed to help their users map speci�ctasks onto sequences of coordinated actions. In other words, user interfaces needed toprovide task-speci�c guidance.The SAUCI prototype can provide guidance for two di�erent high-level tasks: thepreparation and printing of a text document and the creation and testing of a computerprogram in the C programming language. SAUCI represents these tasks by invertedtree-like structures. Each task is decomposed into an ordered sequence of subtasks; eachsubtask may itself be decomposed into further ordered subtasks or into one or more shellcommands that must be executed by the SAUCI user in order to complete the task.Once the SAUCI user has chosen either the writing or programming task, SAUCIpresents three separate windows in the \Task Guidance" region of the display:� The �rst window contains brief, step-by-step English instructions for completingthe task. When the user initiates a new task, this window outlines only the top-level subtasks. The user can request a more detailed set of directions at any time;



47these directions are, not surprisingly, tailored according to the user's pro�le andinteraction history.� The second window displays a graphical representation of the selected task and theuser's progress through it. The task components are organized in an inverted treestructure; the task as a whole is represented by a text label at the top of the tree.Line segments connect the task label to the labels for the top-level substeps in thetask; beneath each of these steps are the constituent substeps, and so on until atthe bottom of the tree are labels that represent the shell commands to be executed.The label that represents the user's current position in the task is highlighted andthe labels for all the previously completed steps are boxed. This display allows theSAUCI user to track his or her progress through the task.� The third and �nal window graphically depicts the �les that are involved in thecurrent task. The �les are represented by text labels, each label containing thecorresponding �le name and a brief English description of the �le contents (e.g.,\misspelled words"). The relationships between �les are represented by line seg-ments that connect the appropriate labels.People who have little experience with a certain task can clearly bene�t from task-speci�c guidance because it enables them to work with reasonable pro�ciency and withminimal assistance from human tutors. In addition, people who are already experts witha task can bene�t from the additional orienting context that SAUCI keeps on the display.Task-speci�c direction is an integral part of SAUCI's user-supportive nature, especiallysince such direction is tailored to the requirements of individual users. As with all ofSAUCI's other displays, the information within the task guidance windows is controlledby rules that customize the presentations to the current user's individual pro�le andhistory. 2.4.5 SAUCI ResultsIn summary, SAUCI is a prototype research system that provides a graphical, task-oriented, context-sensitive, and user-adaptive interface to the UNIX shell. In order toassess the value of the SAUCI system, Tyler and Treu recruited three students to performa large set of tasks with SAUCI [35]. These tasks exercised most of the basic UNIXcommands with which SAUCI is familiar, and in addition there were several document



48preparation and programming exercises. (These are the two high-level tasks for whichSAUCI can provide guidance as described in Section 2.4.4.) Tyler and Treu recruited threeadditional students to carry out the same set of tasks with a more traditional terminal-likeinterface to the shell. All six students had signi�cant experience with VAX/VMS but littlewith UNIX.The result of the researchers' experiment was that the students who used SAUCI madefar fewer errors than those who used the traditional shell interface. (For this experiment,Tyler and Treu counted as errors all user actions that did not achieve the goal of theexercise at hand.) Furthermore, the subjects who used SAUCI completed the set of tasksin less time than did those who used the textual interface. Tyler and Treu concluded [35,pages 323{324]:[U]sers of the SAUCI interface generally did better on both measures ofperformance, making only about half as many errors in each stage and takingmuch less time to complete the tasks for all but the simple commands.: : :The SAUCI users came to rely on the help system and the File SystemWindow to achieve their goals, and mostly made errors involving confusingsubdirectories with �les and omitting needed argument pre�xes. Users of thestandard interface, on the other hand, made more kinds of errors, includingmisordering command arguments, misspelling arguments, and losing track oftheir current location in the �le system.Although the researchers noted that their experiment was too informal to be con-clusive, they suggested that each of SAUCI's user interface innovations played a role inSAUCI's apparent success. The graphical, form-based interface for command speci�cationboth provided important orienting information to users and kept users from enteringsyntactically malformed commands (because SAUCI formatted the �nal textual commandline itself). Task-speci�c guidance and context-sensitive assistance also played importantroles in helping SAUCI's users complete their tasks successfully and e�ciently. There wasless direct evidence that adaptation to individual users contributed to SAUCI's usability,but the researchers noted [35, page 324] that the students who used SAUCI expressed\growing comfort with the interface and generally felt that it had become easier to useafter the �rst few sessions." Tyler and Treu also suggested that SAUCI's online adviceand assistance features were so well received by users because these interface componentsadapted to users' individual behaviors.The ultimate goals of SAUCI and Valet, the UNIX shell interface described inChapter 3, are the same: to provide an \intelligent" and user-supportive interface to



49the UNIX shell. However, of all the UNIX shell interfaces described in this chapter,SAUCI is the least similar to Valet. Even though the two systems' goals are identical,the methods by which these systems attempt to meet their goals are very di�erent.Most obviously, SAUCI replaces the traditional UNIX shell command line interfacewith a graphical, multiwindow display. Valet, on the other hand, preserves the shell'scommand line interface. Each approach has its advantages. By abandoning the shell'scommand line interface, SAUCI is able to provide important contextual information toits users; for instance, SAUCI can display the arguments for a particular command ina specially tailored form. Moreover, because SAUCI constructs the ultimate commandline itself, SAUCI eliminates a large number of users' typing errors. Valet, however,requires its users to enter commands through the shell's traditional, textual interface.Under normal circumstances Valet is invisible to its users; Valet makes itself apparentonly when it detects an input error. This has advantages for people who are alreadyfamiliar with UNIX: These users may �nd SAUCI's graphical user interface to be toointrusive. Sophisticated users of the UNIX shell make frequent use of the shell's specialfeatures | �le name patterns, command completion, and command history, for example| which are most easily invoked through the standard command language interface.(The unique strengths of command language interfaces were previously described inSection 1.1.) Whereas SAUCI disguises these already-existing and useful UNIX shellfeatures, Valet provides direct access to them.A second di�erence is that SAUCI incorporates its own help texts for users. SAUCIusers can ask for help on speci�c shell commands and SAUCI automatically adapts thisdocumentation to the experience levels and behaviors of its users. Valet, on the otherhand, does not provide any help facility at all to its users. People who use Valet mustrely on the UNIX documentation facilities which already exist (i.e., the man command).A �nal di�erence between SAUCI and Valet is that SAUCI provides some measure oftask-oriented guidance. Although the SAUCI prototype system understands only two verynarrow tasks, Tyler and Treu demonstrated that the idea of task-oriented assistance canbe very useful, especially to novice users. Valet, however, is designed to interpret onlyusers' commands, not users' goals. Valet is able to detect syntactically or semanticallyerroneous commands | and o�er reasonable corrections for those commands | but itcannot detect circumstances in which a command is erroneous because it fails to ful�llthe user's intention.



50Both SAUCI and Valet provide \intelligent" user-adaptive interfaces to the UNIXshell. The kinds of assistance that these systems provide, however, are very di�erent. Itwould be interesting to incorporate some of SAUCI's features into Valet at some futuretime; ideas for improving Valet are presented in Chapter 5.2.5 SUSI, the Smart User System InterfaceValet was preceded and in
uenced by all of the systems described above: the metricspelling correction library, the tcsh and zsh command shells, and the SAUCI shellinterface. Of all the systems that preceded Valet, however, the most similar is SUSI,the Smart User System Interface created by Jerrams-Smith [16].Like SAUCI, the SUSI system is a research prototype interface to the UNIX shellprogram. Unlike SAUCI, however, SUSI is a \transparent" agent between the user andthe shell. A person who uses SUSI communicates with the underlying shell through theusual command line interface. SUSI interrupts the dialogue only when it detects an erroror a need to o�er advice | in this way SUSI is very similar to Valet.2.5.1 An Analysis of Users' ErrorsBefore implementing SUSI, Jerrams-Smith studied the behavior of novice UNIX usersin order to understand the mistakes that such users make. Fifty-�ve university undergrad-uate students were recruited. Each was asked to learn to use UNIX well enough so as tobe able to perform some simple tasks: create, format, and print a brief essay and write asmall computer program. (The subjects were not constrained to these tasks, however.) Allof the subjects were familiar with computer science and with other operating systems, butnone had experience with UNIX. At the start of the experiment the researchers provideda brief lecture on UNIX to the students. The students then used the UNIX system largelyon their own. During the experiment the researchers recorded all of the users' inputs tothe shell, along with additional context such as the time at which each command wasentered and the set of �les that were in the shell's current directory. In addition, thestudents spoke into tape recorders as they worked. They were asked to describe whatthey were trying to do, how they were trying to do it, and what their reactions wereto the shell's execution of their commands. These verbal transcripts provided valuableinsights into the students' intentions and reactions.The students learned to use UNIX over a four-week period. After these behavior studysessions were complete, Jerrams-Smith and her colleagues examined the recorded session



51transcripts, located the students' errors, and �nally classi�ed all of these errors accordingto cause. The principal purpose of this exercise, in addition to simply gathering dataon users' input mistakes, was to understand how the examiners themselves recognizedand inferred the causes of errors. By understanding how human experts interpret inputerrors, Jerrams-Smith was later able to incorporate the examiners' knowledge into anexpert system within the SUSI shell interface.The experts' classi�cation of the test subjects' errors is summarized in Table 2.3. Theresearchers enumerated 135 errors in the transcripts from the �rst two weeks of the studyand 416 errors from the transcripts of the second two weeks. The kinds of errors thatthe students made changed as they gained experience, as Table 2.3 shows. The causes oferror included the following:Inability to enter a command. Due to basic misunderstanding of the interface or itsdocumentation, the user was unable to enter the command properly. For example,this category includes inputs in which the user omitted a space between the com-mand name and the subsequent command argument. It also includes inputs in whichthe user typed metacharacters from the system documentation (e.g., \<cat f1>").Although the novice users in the study initially made many errors of this variety,this source of error disappeared very rapidly as the users gained experience withUNIX. Table 2.3. Summary of Errors in Novice Users' Commands,Adapted from Jerrams-Smith [16]Percentage of All Errors DuringError Category Weeks 1{2 Weeks 3{4 Entire StudyInability to enter a command 29.6 3.4 9.8Failed request for help 12.6 9.4 10.2Use of previous knowledge 15.6 7.7 9.6Spelling or typing error 14.8 18.5 17.6User misunderstanding 3.7 12.0 10.0Ine�cient use of commands 4.4 15.1 12.5Unknown input 0.0 13.7 10.3Other causes 19.3 20.2 20.0Total 100.0 100.0 100.0



52Failed request for help. The user tried to summon online assistance but failed.Use of previous knowledge. Errors in this category include commands that are avail-able on other computer operating systems but not on UNIX. The subjects in thebehavior study had experience with other operating systems and tried to transfertheir knowledge onto UNIX. As the users became more familiar with UNIX, thissource of input error became less signi�cant.Spelling or typing error. The input command contained a simple spelling or typo-graphical error; for instance, one subject typed \mial" when \mail" was actuallyintended. As Table 2.3 illustrates, simple input mistakes were a large source oferror throughout the study. In fact, spelling errors were the single most commoninput errors in the study. The researchers counted 97 typographical errors in thetranscripts | the next most common type of error, ine�cient use of commands, hadonly 61 instances [16, page 274]. In the second half of the study almost one-�fth ofall errors were typographical slips. Additionally, in contrast to the three previouscategories of error, spelling mistakes became a more signi�cant cause of input errorsas students gained experience with UNIX. That is, although experience quicklyreduced the frequency of knowledge-based errors, the students continued to maketypographical errors at a steady rate.User misunderstanding. The command suggested that the user had an incorrect men-tal model of the system. For example, the user may be confusing the concept of pipes,which relay data between processes, with the concept of redirections, which relaydata between processes and �les. This source of error became more important as thestudents gained UNIX experience and perhaps attempted more complex commands.Ine�cient use of commands. This category applies to input commands that, althoughotherwise correct and e�ective, demonstrate that the user is not making the moste�cient use of the UNIX system. For instance, the user may be using a sequenceof rm commands to delete several �les | \rm file-1" followed by \rm file-2" |when it would be more e�cient for the user to enter a single rm command to deleteall of the �les at once.Unknown input. This category includes commands for which the researchers could not



53infer any intention. Examples in this category include \djnf" and \yoo" and othernonsensical inputs.Other causes. Jerrams-Smith and her colleagues enumerated several other minor cat-egories for input errors [16, pages 272{273]; these categories have been combinedunder the heading \Other causes" in Table 2.3. Among these other classi�cations oferrors are apparent guesses, obscenities, mistakes caused by incorrect or misleadingdocumentation, and general lapses of attention.From this analysis of novice users' errors, Jerrams-Smith and her colleagues concludedthat a supportive interface to the UNIX shell would need to address several distinct causesof errors. Certainly, an ideal shell interface would correct trivial input errors | includingtypographical errors | reliably and automatically. At a higher level, an ideal shellinterface should detect its users' misconceptions about UNIX and o�er appropriate helpas quickly as possible in order to prevent users from making the same mistakes over andover again. This means that not only should the interface recognize explicit requests forhelp from its user, but that the interface must in addition provide active assistance whenrequired. Finally, an ideal UNIX shell interface should be able to recognize situationsin which a person is utilizing the system in an ine�cient way. The interface would theno�er advice on how commands could be invoked in a more e�ective manner.2.5.2 The Design of SUSIBased on the preceding analysis of novice users' errors and the causes of those errors,Jerrams-Smith implemented the SUSI system to recognize and address the most commondi�culties that people have in using the UNIX command shell. In order for SUSI to meetthis goal it incorporates many features; most importantly, SUSI contains a knowledgebase of the most common UNIX commands, a knowledge base for diagnosing the causesof users' errors, and an active assistance capability that allows SUSI to provide tutor-like advice to its users. This advice is tailored according to individual users' previousexperiences and behavior patterns.SUSI is a \transparent" agent that mediates the dialogue between the UNIX shelland its human user. That is to say that SUSI is largely invisible until it detects a needto assist the user of the shell. A person using SUSI sees the traditional command lineinterface to the UNIX shell, with one small di�erence: The �les in the current directory



54are listed above the shell's prompt. This list is updated as necessary. By providing thislisting SUSI provides important contextual information to its users. The directory listingalso provides feedback; users can, for example, immediately see the results of a cp or rmcommand.When the SUSI user enters a shell command, the command is sent to SUSI, notdirectly to the underlying shell. SUSI receives the command line, divides it into separatecomponents (tokens), and applies \intelligent" spelling correction to each piece [16,page 283]. The next step is to parse the command. SUSI knows all of the commands thatare available to the user but has detailed knowledge of only the 40 or so most frequentlyinvoked UNIX commands [12]. SUSI's knowledge of these commands includes the requiredsyntax for the command line arguments and information about each argument, such aswhether it is required or optional, whether or not it may be repeated, and what kind ofentity (if any) it must name | a �le, a user, or something else. In addition, for eachcommand SUSI keeps a list of synonyms and alternate names; these are names whichnovices might use in an attempt to invoke the command. SUSI does not accept thesealternate names as commands, but it does use them in order to provide tutorial assistanceto the user.SUSI then consults its knowledge base in order to detect and analyze input errors.The expert system component of the SUSI system contains approximately 70 productionrules that embody the knowledge gleaned from the user behavior study described in Sec-tion 2.5.1. The methods that the examiners used to diagnose users' errors are manifestedby forward chaining rules in SUSI's knowledge base. Some of these rules attempt torecognize users' misconceptions about UNIX. For instance, SUSI includes a rule of thefollowing form [16, page 280] that attempts to determine when the user has confused theconcepts of output redirection (invoked by \>") and pipes (invoked by \|"):If \>" is present in the user's commandand \>" is not followed by the name of an existing �leand \>" is not followed by a mistyping of a �le nameand \>" is followed by a UNIX commandthen the user may be confusing \>" with \|".Other rules attempt to diagnose ine�cient use of commands or recognize explicitrequests for help. Rules can also consult the current user's pro�le and history, so, forexample, some rules may apply only to novices or only to experts.SUSI invokes its rules for every input command and updates its model of the current



55SUSI user accordingly. When an error or misconception is detected, the interface o�ersimmediate assistance to the user. SUSI describes the problem and the user can requestadditional instruction. Although most of SUSI's explanations are �xed (and targeted fornovices), portions of the texts are adapted to the user's current situation. For instance,tutorial examples will refer to �les in the user's current directory.Finally, if the command is well-formed and unlikely to cause harm (e.g., the accidentaldeletion of �les), SUSI submits the command to the UNIX shell. Additional tutorialinformation from SUSI, if any, appears after the output of the command but before thenext shell prompt. 2.5.3 SUSI ResultsIn order to evaluate the e�ects of SUSI, Jerrams-Smith conducted a second study ofnovice user behavior. Thirteen undergraduates, none familiar with UNIX, were recruitedand divided into two groups; six students used the SUSI system and seven used thenormal UNIX shell interface. The researchers designed a set of tasks that exerciseda variety of frequently used UNIX commands and concepts (i.e., those that the SUSIsystem supports). The researchers then gave this task list to each student in the studyand asked the subjects to carry out the speci�ed tasks, and only those tasks, in the orderspeci�ed. Jerrams-Smith and her colleagues monitored the performance of the studentsthrough the same methods used in the previous behavior study described in Section 2.5.1.Not surprisingly, the students who used the supportive SUSI system demonstratedsuperior performance. Jerrams-Smith wrote [16, page 288], \When compared with thecontrol group [using the normal UNIX shell interface], the experimental group [usingSUSI] showed a signi�cantly improved ability to use UNIX easily and e�ciently." Inparticular, those who used SUSI excelled in three respects:� Those who used SUSI both attempted and successfully completed more of theassigned tasks than did those who used the standard shell interface. Most of thestudents who used SUSI attempted all 30 of the assigned tasks, whereas those whoused the normal shell attempted only 22 or 23 on average.� The people who used SUSI worked more e�ciently. That is to say that although theSUSI users completed a larger number of the assigned tasks, they entered far fewercommands than did their counterparts who used the unassisted shell interface. In



56fact, SUSI users entered on average only 55 commands whereas users of the standardshell entered over 110 commands on average | twice as many.� SUSI users made fewer mistakes than did those who used the standard shell. Stu-dents using the normal shell interface frequently made the same kinds mistakesover and over. Often, several erroneous commands arose from a single underlyingmisconception. Students using SUSI, however, received immediate assistance whentheir misconceptions became apparent. Because SUSI o�ers tutoring in directresponse to errors, the students using SUSI received critical feedback instructionthat prevented future mistakes.Jerrams-Smith concluded that the SUSI prototype system successfully met the goalof actively and intelligently supporting users of the UNIX shell [16, page 289]:[SUSI] helps novices to overcome the initial di�cult stage of using UNIX andenables them to use it more e�ciently. The interface allows experts to interactwith UNIX in almost their usual way, but o�ers advice and guidance whenit detects a novice error. Novices show much less confusion because theirunderlying problems are usually solved quickly and although there are someoccasions when the interface is unable to help, the novice is no worse o� inthat situation than is the usual novice user of UNIX.Both SUSI and Valet are research prototypes of supportive shell interfaces. Infact, Valet is remarkably similar to SUSI in design. Both systems are \transparent"agents, implemented in Lisp, that mediate communication between their users and theUNIX shell. Both systems have knowledge of all available UNIX commands and detailedknowledge of the most commonly used commands which allows these interfaces to parseand correct users' inputs. Valet and SUSI both provide spelling correction and activelyassist their users when they detect the need to do so.However, each system also has features that the other lacks. SUSI, for example, isable to diagnose novice users' misconceptions about UNIX and o�er tutorial informationin order to correct those misunderstandings. SUSI maintains user models that describewhat its users appear to know and not know about UNIX. Valet, on the other hand,generally assumes that its users are familiar (but not necessarily experts) with UNIXand therefore concentrates on addressing the mistakes that more experienced users make| in particular, typographical errors and errors based on interaction context. Valetincorporates powerful input correction facilities but does not attempt to tutor its users



57in e�ective use of the UNIX shell. It would be interesting and useful to incorporatemore of SUSI's knowledge into Valet, along with other improvements such as SUSI'somnipresent listing of the �les in the shell's current directory. These and other ideas forimprovement to Valet are described in Chapter 5.Valet shares features with each of the shells and shell interfaces described in thischapter: the metric library, the tcsh and zsh UNIX shells, SAUCI, and SUSI. Thesesystems preceded and in
uenced the design of Valet, and that design is the topic ofChapter 3.



CHAPTER 3VALETTo a very large degree, the perceived nature of an interactive computer system isde�ned by the user interface of the system's command shell. A command shell aspreviously described in Section 1.3 is a special program that allows its users to invoke otherprograms and otherwise coordinate a computer system's resources. In general, when aperson begins an interactive session with a computer, the computer system automaticallystarts a command shell for that user. This shell is the program with which the userinitially interacts. Further, the user and shell communicate continually throughout theuser's session. The shell allows its user to invoke other programs, and although thoseprograms may temporarily take control of the user's terminal, the shell interface alwaysreappears when those other programs have �nished. Because it is the shell that is presentwhen the computer is otherwise \doing nothing," and due to the command shell's specialrole in the computer system, the shell's interface has an enormous impact on users'perceptions of the computer system as a whole. The shell is seen as the fundamentalinterface of the computer system.The user-friendliness of a system's command shell therefore re
ects upon the system asa whole. Unfortunately for users and manufacturers of UNIX systems, the most commonUNIX command shells are largely user-unfriendly | and therefore, UNIX systems as awhole are widely perceived to be unfriendly and hard to use, even when these systemso�er a wide variety of other, more user-friendly applications. The UNIX shell interfacehas been widely criticized for its uncooperative nature [8, 25]. Novice users are oftenconfused by obscure command names and frustrated by the system's lack of feedbackand inability to provide intelligent advice. Experienced users are frustrated by the shell'sinability to detect or correct even the most trivial errors in input commands. All UNIXusers would bene�t from a shell that could intelligently interpret its users' commandsand then act according to its users' intentions, even when the actual input commands areincorrect in some way. In other words, people would pro�t from a command shell that



59attempted to do what its users mean to say.Although the state of today's popular UNIX shells is problematic for users of UNIXsystems, the situation provides an obvious opportunity for human-computer interfaceresearchers to experiment with techniques for improving user interfaces | both the UNIXshell interface in particular and human-computer interfaces in general. The UNIX shell isripe for experimentation: Not only does its interface badly need to be improved, but theshell is also widely and regularly used, especially within the academic computer sciencecommunity. Because so many people use the UNIX shell on a daily basis, improvementsto the UNIX shell are valuable, and it is easy for user interface researchers to �nd humantest subjects in order to evaluate such improvements.Several previous attempts to improve the UNIX shell interface were described inChapter 2. The remainder of this thesis presents Valet, a new \intelligent" user interfacefor the UNIX C shell.3.1 The Goals and Limitationsof the InterfaceIn a sentence, the purpose of Valet is to provide a user-supportive interface to theUNIX C shell [17] that meets the needs of relatively experienced users of that shell. Bymeeting this speci�c goal the Valet interface also serves a greater purpose: namely, todemonstrate that the ideas embodied in user-supportive, cooperative, and \intelligent"interfaces are useful, e�ective, and worthy of incorporation into other human-computerinterfaces.Valet caters to practiced C shell users because it adds intelligent command analysisand correction to the standard C shell command line interface without fundamentallyaltering that interface. In other words, Valet is an intelligent but largely transparentagent. 3.1.1 Intelligent Command ProcessingValet is intelligent in the sense that it uses a great deal of knowledge in order toaccurately interpret | and when necessary, correct | its users' input commands. Valetuses interaction context, as described in Section 2.1.4, in order to accomplish this task.This context includes knowledge of the full set of available commands (with a few minorexceptions), detailed knowledge of the most commonly used commands, knowledge ofthe �le system, and knowledge of speci�c users' interaction histories, both short-term



60and long-term. Because Valet maintains all of this context, it can accurately detectand correct the most common mistakes that experienced shell users make: typographicalerrors, misspellings, errors of location (e.g., the use of a partially incorrect �le name),and other minor syntactic errors.3.1.2 TransparencyValet is transparent in the sense that it makes minimal modi�cations to the commandline interface o�ered by the standard UNIX C shell. People who use Valet interact withthe C shell as they normally do through a textual, terminal-like interface. The shellprompts for input and the user enters a command according to the regular C shell inputlanguage. The output generated by the command, unadulterated by Valet, appears inthe terminal-like window and then the process repeats with the shell prompting the userfor additional commands. Valet interrupts this dialogue only when it detects an errorin an input shell command. At that point Valet intercedes and takes appropriate action(i.e., describes the mistake and o�ers a reasonable correction if possible).Valet's transparent, generally passive nature has both advantages and disadvantages.Part of Valet's transparency is that it preserves the usual terminal-like interaction stylewith the C shell. Valet utilizes a command line interface although other researchershave demonstrated that a graphical, point-and-click user interface for the shell can yieldsigni�cant improvements in users' abilities to e�ectively use a UNIX system. (This wasdescribed in Section 2.4.) However, although a wholesale replacement of the C shellinterface could be bene�cial, especially to inexperienced users, the focus of the researchembodied in Valet is to understand and demonstrate how command line interfaces maybe improved through intelligent, context-based processing of commands. Preservationof the C shell's normal command line interface may in fact bene�t experienced users ofthe shell who are already pro�cient with the interface and who make frequent use of thespecial features of the shell's command language | �le name patterns (globs), commandand �le name completion, and command history, for example.This alludes to a second way in which Valet is transparent: namely, that Valetdoes not attempt to change the command language of the C shell, even though thatlanguage is far from ideal, both in terms of usability and in terms of conducivenessto intelligent analysis. Most signi�cantly, as described in Section 1.3.1, almost all ofthe C shell's input language is determined and implemented by programs other than



61the shell itself. The names of most shell commands are simply the names of the otherprograms that the shell invokes | for example, biff, awk, and grep. These programnames are often inexplicable because the various authors of these programs never thoughtto follow a consistent naming scheme. Furthermore, although the C shell invokes otherprograms it does not determine the syntax or semantics of other programs' command linearguments. Each program incorporates its own parser for command line arguments, andthese parsers can vary widely from program to program. In short, because the shell'slanguage has always been determined by programs beyond the shell's control, the shell'slanguage was evolved rather than designed. From a user's viewpoint this means thatthe shell's input language is full of inconsistencies: Di�erent programs require di�erentcommand line syntaxes. From Valet's viewpoint this \distributed" language design isproblematic because it means that the shell does not control | in fact, has almost noknowledge of | its own input language. Even worse, the shell has no programmaticway to gain knowledge about its command set. This means that an intelligent interfacesuch as Valet must incorporate a priori knowledge about the programs that users mayinvoke. Because there are literally hundreds of programs in a modern UNIX system andbecause new programs are created almost continuously, it is impossible for an intelligentUNIX shell interface to have complete, built-in, detailed knowledge of all the commandsthat a user might invoke. Fortunately, however, people use only a very small number ofcommands with any frequency [12].The C shell language has other features that hinder intelligent parsing of users'input commands. As just described, the set of available commands is not under theshell's control. Unfortunately this is not the only uncontrollable domain to which shellcommands refer: The UNIX �le system is another such domain. Many commands expectto receive �le names as arguments, so Valet must maintain a detailed model of itshost's �le system. Moreover, because UNIX �le systems change frequently, Valet mustcontinually reexamine its host's �le system in order to keep its internal model current.This continual rescanning is very time consuming | and even then, because it is notpossible for a UNIX process to ask to be informed of all changes to a �le system, Valet's�le system model is always slightly out of date.Finally, the C shell command language has lexical and syntactic features that impedeintelligent input processing. Because the language is generally terse | the names ofcommands and command options are generally very short | there is often little lexical



62context that an intelligent interface can use in order to correct users' input mistakes.Fortunately, as described in Section 1.3.2, Valet can draw upon other kinds of contextin order to detect and correct errors in terse inputs. Other di�culties arise from thecomplexity of the language itself. The shell language provides several kinds of syntacticshortcuts | including shell variables, �le name patterns, and user-de�nable commandaliases | and in addition provides syntax for directing the inputs and outputs of com-mands to �les and to other commands through \pipelines." There are special syntaxesfor \quoting" arguments in various ways. Handling all of these mechanisms requires asophisticated parser. Ideally an intelligent command line interface to the shell wouldunderstand all of these syntactic features; Valet, however, understands only a subset ofthem for reasons described in Section 3.4.1.In summary, the standard C shell language is a di�cult language to parse intelligently.Some of the language obstacles are due to the shell's special role as a program that invokesother programs, and other obstacles arise from the shell's own syntactic features. Despiteall of these problems with the standard C shell language, however, the Valet interfaceis designed to provide transparent access to the normal shell language. Although thestandard shell language is di�cult in many ways, it would have taken an incrediblee�ort to replace this language with an all-new (and presumably, easier to use) commandlanguage. This new language could not possibly have extended to all of the hundreds ofalready available UNIX commands, at least not without reverting to the syntax of theexisting shell language, and in any case a new language would likely not be acceptable topeople who are already pro�cient with the existing shell language. Ultimately, because themotivation behindValet was not to create a new shell language but rather to understandhow intelligent command processing could bene�t command line interfaces, Valet wasdesigned to act as a transparent agent that parses the regular UNIX C shell commandlanguage.A third and �nal aspect of Valet's transparent nature is that Valet does notattempt to parse, process, or augment the output from any of the UNIX programs runby the shell. Some of this output, particularly error messages, could provide importantcontextual information to an intelligent interface such as Valet. Certainly, the outputmessages of many programs could be improved or even tailored to the experience levelsof individual users. However, the task of interpreting arbitrary program output is verylarge and complicated and is well beyond the scope and purpose of Valet. Valet is



63therefore transparent in the sense that it does not �lter or interpret the output of anyprogram (except that Valet must locate prompts from the shell for reasons detailed inSection 3.3.1). Valet is constrained to interpreting its users' input commands, based oncontextual information derived from sources other than programs' output.3.1.3 Summary of Features and LimitationsTo summarize, the goal of Valet is to provide an \intelligent" interface to the UNIXC shell. Valet meets this goal by analyzing the shell commands that its users enterand by detecting errors in those commands. Valet maintains detailed knowledge basesthat describe the context in which commands are given to the shell, and this knowledgeincludes:� information about the complete set of shell commands available to each user, witha few minor exceptions described in Section 3.4.4;� detailed knowledge (e.g., descriptions of command line syntax) of the most com-monly used UNIX commands;� a detailed, continually updated model of the UNIX host's �le system;� information about the state of the current shell session (e.g., the shell's currentdirectory);� both domain-independent and domain-dependent heuristics for correcting the com-ponents of faulty shell commands; and� for each user, information about that user's interaction history, including the setsof commands and �les that have been referenced | both referenced recently andreferenced ever by that user.Although much of Valet's knowledge base is static and shared by all of Valet'susers, Valet also maintains additional context that is speci�c to individual users. Valetrecords a unique interaction pro�le for each user as just described, and each user's pro�leis preserved between sessions with Valet. These user-tailored pro�les greatly improveValet's ability to correct its users' shell commands.Valet attempts to correct the input errors that computer users make most frequently:typographical errors, misspellings, incorrect �le references, and other minor slips. Valet



64is also able to interpret many user-chosen abbreviations. When Valet recognizes anerroneous input command it attempts to correct that command; if Valet can determinea reasonable correction, it presents the revised command to the user for con�rmation.Otherwise, when Valet cannot suggest a reasonable correction for a faulty input, Valetsimply describes the error to the user and, depending on the error, presents the originalcommand for editing by the user. In either case, Valet prevents detected erroneouscommands from being received by the underlying UNIX shell.Valet is an intelligent mediator that interprets communication from the user to theUNIX C shell. This mediation is largely transparent, however, meaning that Valetpreserves almost all of the familiar UNIX C shell interface. As previously discussed inSection 3.1.2 Valet does not change the established textual, command-line interfacestyle of the shell except as necessary to correct users' input errors. Similarly, Valetdoes not attempt to change the command language of the shell, nor does it attempt toanalyze or augment the output of any program invoked by the shell. For these reasonsValet is most useful to people who are already familiar with the UNIX C shell andits command language. Although Valet's capabilities can certainly be useful to noviceusers, such users might bene�t more from a graphical shell interface or a more intuitivecommand language, for example, than they would from Valet's ability to intelligentlyprocess commands in the existing shell language. Similarly, Valet is not an instructionaltool. Although Valet can correct and explain certain kinds of errors, Valet does nottry to teach its users about UNIX.Finally, Valet was designed to be an exploratory vehicle for user interface research,intended to demonstrate the usefulness of intelligent, context-based, error-tolerant user in-terfaces. Although it is hoped that the ideas embodied in Valet will become widespread,it was never intended for the initial implementation ofValet to be a \production quality"or widely used interface to the UNIX shell. Rather, the current implementation of Valetwas designed to be 
exible and to support rapid prototyping.3.2 An Overview of the ImplementationAs illustrated in Figure 3.1, Valet is implemented as a collection of several separatebut communicating UNIX processes. Although this may seem complicated, almost allof this complexity is hidden from Valet's users; from a user's perspective Valet isa uni�ed intelligent shell. Internally, a standard, unmodi�ed UNIX C shell process is
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transcribeflunkieFigure 3.1. Cooperating Processes Within Valetencapsulated within a framework that allows Valet to control the user interface of thatshell process. Valet provides a terminal-like window for the shell, and output from theshell is presented immediately to the user. However, although shell output is sent directlyto the user, user input is not sent directly to the shell. Rather, Valet intercepts andanalyzes its users' commands. Valet can either pass these commands along to the shellor it can take other action | in particular, it may o�er corrections to the user. Valetcan display messages to the user in such a way that they appear to come from the shellitself. In this way, by carefully insinuating itself between the user and the UNIX shell,Valet creates the illusion that the user is interacting with a single, uni�ed intelligentshell process.At the top of Valet's process hierarchy, a GNU Emacs [20, 30] process provides boththe actual user interface and the \glue" that connects the UNIX C shell process withthe processes that intelligently interpret users' shell commands. GNU Emacs is a highlyextensible text editing program and among its many features is the ability to run otherprograms. Valet makes extensive use of this feature. When a person begins a sessionwith Valet, GNU Emacs creates a new C shell process. This shell communicates with itsuser through an associated Emacs text bu�er; output from the shell and from programsrun by the shell appears in this bu�er. GNU Emacs displays the contents of this bu�er



66(or a portion thereof) in a terminal-like window on the user's computer display, therebyproviding the user with the regular textual interface to the UNIX shell. Additional specialfeatures of the GNU Emacs interface to the shell are described in Section 3.3.1.The person using Valet gives commands to a shell by typing them in the shell bu�erprovided by GNU Emacs. However, as previously described these commands are not sentdirectly to the shell process. GNU Emacs instead sends the user's input to a secondprocess, a Common Lisp [31] process, for intelligent analysis. This Common Lisp processwas silently started by Emacs at the same time that Emacs started the shell. Unlike theValet shell process, however, the Common Lisp process is hidden from Valet's user.The Common Lisp process communicates with GNU Emacs through an Emacs bu�er,separate from the shell's bu�er, and the Common Lisp's bu�er is never normally displayedto the user.This Common Lisp process is at the heart of Valet. It is this process that implementsthe intelligent parsing of users' input commands and determines how those commandsshould be answered. As just described, GNU Emacs sends users' shell commands to theCommon Lisp process for interpretation. The Common Lisp process in turn responds toGNU Emacs with special instructions. Depending on the situation, the Common Lispmay tell Emacs to send the user's command to the shell, or it may tell Emacs to inserta special message into the shell's bu�er | making it appear as if the message had beenoutput by the underlying shell itself, not by Valet's Common Lisp process.Two additional processes also communicate with Valet's Common Lisp. Because theCommon Lisp programming language does not provide su�cient means for examiningthe UNIX �le system, Valet uses a separate program called flunkie for this task. TheCommon Lisp process starts and communicates with flunkie, written in the C language,in order to get up-to-date information about the host's �le system. In addition, a programnamed transcribe allows Valet to maintain secure transcripts of its users' sessions,detailing users' inputs and Valet's responses to those inputs. As described in Section 4.2these transcript �les provide data for evaluating the usefulness of the interface. Althoughtranscript �les could be written by Valet's Common Lisp process itself, a separatetranscribe process is required in order to ensure that the session transcript �les arestored securely, in a way that prevents unauthorized access to the data.The decision to implement Valet as a collection of cooperating processes was madebecause this architecture provides maximal design 
exibility and support for rapid pro-



67totyping | important features for an experimental system such as Valet. Some of theways in which Valet bene�ted from its division into multiple processes are these:� Most signi�cantly, the division of the system into separate processes made it possiblefor Valet's intelligent command parser to be implemented in Common Lisp ratherthan in C, the implementation language of the UNIX C shell. Common Lisp, becauseit provides sophisticated facilities for symbolic programming, interactive programdevelopment, and experimentation, was an excellent implementation language forValet's intelligent processing engine. Although a C language implementation couldperhaps have been directly integrated with the C shell program, it would have beenmuch more di�cult to design, implement, and modify Valet's intelligent commandinterpreter in C.� Once it was decided to implement the core of Valet in Common Lisp, it becamenecessary to create a bridge between the Common Lisp part of Valet and the Cshell. GNU Emacs, the programmable editor, was the obvious choice. Not onlydid it provide the means to integrate the Common Lisp and shell processes but italso provided the ability to communicate with the user. GNU Emacs presents aterminal-like display to the user of the Valet system while in addition acting asthe conduit between the Common Lisp and shell processes. It was possible to createthis interface quickly and change it easily because GNU Emacs provides its ownbuilt-in programming language, Emacs Lisp [20].� A �nal bene�t of Valet's division into several processes is that it was easy todevelop and test the individual components separately. Each part of the systemcould be tested interactively in isolation from the other parts.The architecture of the Valet system also posed signi�cant di�culties. Certainly, thedivision of the system into separate processes makes the interface slower than it wouldhave been had Valet been implemented within a single UNIX process (presumably inthe C programming language). In order to alleviate this problem the critical CommonLisp sections of Valet were carefully written to be very fast, and in general, Valet canrespond to users' inputs with acceptable speed. More serious obstacles, however, alsoarose from the separation of the C shell and the rest of Valet's components. Two suchproblems are the following:



681. Because the C shell language contains so many features (e.g., command aliases,history references, and variable substitutions) it is di�cult or impossible for anexternal command parser to interpret certain kinds of shell commands. In order toanalyze commands that contain variable references, for example, a shell commandparser must have knowledge of all the shell's variables and their respective values.This kind of information | information about the shell's internal state | can bevery di�cult or impossible to consult from outside the shell process itself. Forthis reason, Valet's shell command parser, which is implemented in a CommonLisp process external to the shell, does not recognize certain constructs within shellcommands. The restrictions are explained in Sections 3.4.1 and 3.4.4.2. The recognition of input shell commands, as opposed to other kinds of input,is based on heuristics. GNU Emacs has limited information about the state ofthe communication channel between itself and the shell. When the shell runs aninteractive program, that new program takes control of the shell's communicationchannel with GNU Emacs. This happens without Emacs' knowledge, and thereforeit is impossible for Emacs to unequivocally determine which process will receive aninput sent along the shell's channel; it may be the shell itself or it may be anotherprogram run by the shell. This lack of knowledge is problematic because Valet isdesigned only to interpret shell commands, and in order for Valet to work properlyGNU Emacs must direct shell commands to Valet's Common Lisp process whileallowing inputs to other programs to pass through unimpeded. Valet's heuristicsolution to this problem is described in Section 3.3.1.Fortunately, however, these and other similar technical problems have little practicalimportance for Valet. Although the division between the C shell process and Valet'sother components prevents the intelligent interface from accessing certain informationabout the shell, these limits are acceptable for an experimental, prototype system such asValet. The problems caused by these technical di�culties amount to minor nuisancesthat are tangential to Valet's real purpose.3.3 The GNU Emacs ComponentsAs illustrated in Figure 3.2, GNU Emacs [20, 30] provides the actual interface betweenthe Valet user and the intelligent UNIX shell. To start a session with Valet, a
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Figure 3.2. Appearance of the Valet Interface Within GNU Emacsperson �rst starts the GNU Emacs editor and issues the following command to Emacs:\M-x valet".1 The Valet interface then appears in an Emacs window like the oneshown in Figure 3.2. Valet introduces itself and presents the initial input prompt fromthe C shell.Valet can actually provide intelligent interfaces for several independent C shell pro-cesses, all running simultaneously within a single Valet session. A single GNU Emacsprocess manages all of these shells. Each shell process is associated with a unique Emacsbu�er, and each bu�er appears in a separate Emacs window. (No matter how many shellsare run, however, Valet creates only a single Common Lisp process to interpret its user'sinput shell commands.) To start each Valet shell process after the �rst, a person givesthe command \C-u M-x valet"2 to Emacs. Each invocation of this command starts anew Valet shell process running in a new Emacs window.1\M-x" is the GNU Emacs notation for the character called Meta-x. An Emacs user enters a M-xcharacter by depressing his or her keyboard's Meta key and then, while holding the Meta key down,pressing the X key.2\C-u" is the GNU Emacs notation for the character Control-u.



703.3.1 Communication with the C ShellsOnce a Valet shell process is running, a person can enter commands to that shellby simply typing them in that shell's bu�er and then hitting the Return key, as if theuser and shell were communicating through an ordinary terminal window. GNU Emacsdoes not simply act as a terminal, however. The most important di�erence is that GNUEmacs silently redirects users' shell commands to Valet's Common Lisp process forintelligent analysis; this treatment was previously described in Section 3.2. A seconddi�erence between a terminal interface and GNU Emacs is that Emacs enhances Valet'sshell bu�ers with special features for interaction with the shells. For example, the Valetinterface allows users to edit their input commands to a shell before those commands aresubmitted for execution. (Most of these editing capabilities are simply those that GNUEmacs itself provides for editing all kinds of text.) The Valet interface also de�nesspecial keystrokes for recalling commands that the user previously typed to the Valetshells. For instance, when a Valet shell bu�er is selected, the key M-p recalls the user'simmediately previous input command, inserting it after the current shell prompt as if theuser had just typed the entire command. The user can submit this just-recalled commandto the shell by hitting the Return key, or the user can edit the recalled command, orthe user can press M-p a second time. A second press of M-p causes the just-recalledcommand to be replaced with the user's second most recent command. In general, M-pcan be repeated as often as required in order to recall increasingly distant commandsfrom the user's input history. Other keys iterate through a shell bu�er's input history indi�erent ways; for example, M-s recalls a previously entered command that starts with aparticular pre�x.Valet's command editing and recall features are similar to those provided by the tcshshell [27] with the important di�erence that Valet keeps two separate command historiesfor each shell process: one that holds inputs to the shell and one that holds inputs to theother programs run by the shell. The separation of these histories is bene�cial to Valetusers because in general, inputs to the shell are not suitable as inputs to other programsand vice versa. The Valet keystrokes that recall previously entered inputs (e.g., M-p andM-s) automatically consult the history list that is appropriate to the current situation. Ifa Valet shell is waiting for input then that shell's \shell command history" is searched;otherwise that shell's \non-shell input history" is searched. In this way Valet makes iteasier for users to recall relevant prior inputs.



71The separation of users' inputs into two histories for each shell process requiresValet's GNU Emacs component to di�erentiate between shell commands and otherinputs. Dual histories are convenient but not fundamental to Valet, so one might believethat the ability to distinguish between shell inputs and other inputs is super
uous to theintelligent shell interface. That is not true, however. In fact, the ability to distinguishthese two kinds of inputs is essential to Valet. The Common Lisp core of Valetcan intelligently interpret only C shell commands, and all of the user inputs receivedby the Valet's Common Lisp process are treated as if they were shell commands. Ifthe Common Lisp process were to receive inputs that were not in fact intended for theshell, the resultant interference with other programs' inputs would severely aggravateValet's users and e�ectively overshadow Valet's merits. For this reason the GNUEmacs component of Valet must distinguish shell inputs from other inputs and treatthem di�erently.Valet's GNU Emacs interface must direct its users' C shell commands to Valet'sCommon Lisp component for intelligent processing while allowing inputs intended forother programs (i.e., the programs run by the shell) to be sent directly to those programs.Unfortunately, GNU Emacs cannot unequivocally determine which inputs are shell com-mands and which inputs are not. GNU Emacs has limited information about the states ofthe communication channels between itself and the Valet shell processes. For each shellprocess there is a unique bidirectional communication channel that connects the shellwith Emacs. Commands sent by Emacs through a shell's channel may be received by theassociated shell process or they may be received by an interactive program that is beingrun by that shell; GNU Emacs cannot distinguish these cases with absolute certainty.Fortunately there is a reliable heuristic that allows Valet to overcome this problem.Valet's GNU Emacs component simply searches the text it receives from each shell'schannel for the prompts for input issued by the respective C shell processes. Every time auser input is submitted in a shell's bu�er (i.e., every time the user hits the Return key in ashell's bu�er), Emacs immediately checks the state of the associated shell channel. If theoutput from the channel ends with a shell prompt then Emacs classi�es the user's currentinput as a shell command | and therefore, Emacs immediately redirects the input toValet's Common Lisp process. If, however, the output from the shell channel does notend with a shell prompt, Emacs classi�es the user's current input as non-shell input |not to be interpreted | and sends it through the shell channel. The use of shell prompts



72to distinguish shell inputs from non-shell inputs is highly e�ective, although it is certainlynot an ideal solution. This heuristic can be fooled easily. In addition, it prevents Valetusers from \typing ahead" by entering shell commands before the corresponding shellprompts are issued,3 and it must be customized for individual users because di�erent Cshell users specify di�erent shell prompt formats. These shortcomings are annoying, butin most cases Valet's GNU Emacs interface can accurately distinguish its users' shellcommands from other kinds of input.Except for the complications caused by the need to distinguish shell commands fromother inputs, communication between Emacs and Valet's shell processes is straightfor-ward. When GNU Emacs receives output from a shell (or from a program run by ashell), Emacs appends the new output to the bu�er associated with the shell. Emacsscans the newly received output for shell prompts and makes the shell's bu�er visible inan Emacs window if necessary. In addition to handling the output from Valet's shellprocesses, Emacs also regulates the input to those processes. Users' inputs directed toprograms other than Valet's shells are sent directly by Emacs to those programs. Users'commands to the shells, however, are directed �rst to Valet's Common Lisp process.3.3.2 Communication with Common LispWhenever a person begins a session with Valet, GNU Emacs starts not only a new Cshell process but also a new Common Lisp [31] process. Valet presents the new shell tothe user of the system, as shown in Figure 3.2, but the Common Lisp process is hiddenfrom view. The purpose of this hidden process is to analyze users' commands to Valet'sC shell process (or processes) and to direct the Valet interface accordingly. AlthoughGNU Emacs manages the actual communication with Valet's C shell processes, the\intelligence" of the Valet interface is contained not within GNU Emacs but withinthe Common Lisp process. Emacs' task, therefore, is to coordinate the Common Lispprocess and the C shell processes. Emacs informs Common Lisp of events that concern theValet shell processes, and in reply, Common Lisp sends instructions to Emacs. Emacsaccepts these instructions and acts upon the shell processes on behalf of the CommonLisp process. All of this communication between Valet's Emacs and Common Lispcomponents is internal to Valet, completely hidden from the view of Valet's users.3A Valet user may type a shell command before the corresponding shell prompt has been issued, buthe or she must not actually submit the command (by pressing the Return key) before the prompt appearsin the appropriate Valet shell's Emacs bu�er.



73From a user's perspective the intelligence of the system appears to be contained withinthe C shell processes.Valet's Emacs and Common Lisp processes communicate by exchanging messages.Messages sent by Emacs to Common Lisp are received by the Common Lisp process'interpreter (i.e., the Lisp's read-eval-print loop or top-level loop), so these messages areformatted as Lisp symbolic expressions. Table 3.1 summarizes the forms that are sentfrom Emacs to Common Lisp. The events that cause messages to be sent are the following:Initialization of the interface. Immediately after GNU Emacs creates Valet's Com-mon Lisp process, Emacs sends certain initialization commands to it. These formstell Common Lisp to load the Valet Common Lisp code, initialize its data struc-tures, load the current user's saved interaction history, start the flunkie andtranscribe processes, and take other similar actions. Because these introductoryforms are somewhat long and tedious they have been omitted from Table 3.1.Creation of a shell process. Each time a new C shell process starts, Emacs informsthe Common Lisp process of the event. The valet-new-shellmessage contains twoarguments. The �rst, called shell-number, is an integer that Emacs associates withthe new shell process. This number serves to uniquely identify this shell processin future messages between Emacs and Common Lisp. The second datum in thevalet-new-shell message is a string containing the absolute pathname of the newshell's initial working directory.Termination of a shell process. Just as Emacs reports the creation of new shells,Emacs also informs Common Lisp whenever a Valet shell process terminates.Table 3.1. Summary of Messages Sent From GNU Emacs to Common LispEvent Message Sent from Emacs to Common LispInitialization : : :Creation of a shell (valet-new-shell shell-number directory)Termination of a shell (valet-dead-shell shell-number)User input to a shell (valet-user-input shell-number input index)User annotation (valet-wrong-correction shell-number : : : )User annotation (valet-user-note notation)Termination of Emacs (valet-save)



74User input to a shell process. GNU Emacs submits input shell commands to theCommon Lisp process by sending a valet-user-input message. Contained in themessage, shell-number is the identifying number of the shell that received input,and input is a string containing the input. The �nal datum, index, is the index ofthis input in the shell command history list that Emacs maintains for the shell, asdescribed in Section 3.3.1. (The index is currently unused by Common Lisp.)User annotation. The GNU Emacs interface to Valet provides two ways for a userof the system to insert messages into his or her Valet session transcript. The�rst, valet-wrong-correction, allows a user to record that Valet made an er-roneous attempt to correct the user's most recent shell command. The data inthe valet-wrong-correctionmessage include the shell number, the user's originalinput,Valet's suggested correction, and the correction that was desired by the user.The second kind of annotation, valet-user-note, permits a user to insert generalcomments into the transcript. GNU Emacs de�nes special keystrokes that allowusers to make each kind of annotation. However, because the session transcript ismaintained by Common Lisp (and its auxiliary transcribe process), Emacs mustrelay its users' comments to Valet's Common Lisp.Termination of GNU Emacs. Finally, if the Valet user has attempted to terminateEmacs itself, then Emacs sends a valet-savemessage to the Common Lisp process.This allows Valet to save the user's session data as described in Section 3.4.6.Emacs does not actually terminate until the Common Lisp process indicates thatthe session data have been safely stored.With the exception of the �nal message type, none of the above-listed messages requiresEmacs to wait for a reply or acknowledgment fromValet's Common Lisp process. Emacscan perform other tasks if necessary until it receives instructions from Common Lisp.Just as Emacs sends messages to Common Lisp, Common Lisp sends messages toEmacs. Emacs reads and evaluates the Lisp expressions that it receives from Valet'sCommon Lisp process, thereby carrying out the Common Lisp's commands.4 Table 3.24Because Common Lisp's commands to Emacs are intermingled with other kinds of output from theCommon Lisp process, Emacs does not attempt to evaluate everything that it receives from CommonLisp. Instead, Valet's Emacs code searches for specially marked expressions in the Common Lisp outputand evaluates only those forms.



75Table 3.2. Summary of Messages Sent From Common Lisp to GNU EmacsRequested Action Message Sent from Common Lisp to EmacsSend input to a shell (valet-send-to-shell shell-number input)Output a shell message (valet-shell-display-message shell-number message)Reissue a shell prompt (valet-shell-reprompt shell-number &optional input)Change directory (valet-shell-cd shell-number directory)Set correction data (valet-shell-set-cc-info shell-number input data)Allow Emacs to exit (valet-lisp-saved)summarizes the instructions that Valet's Common Lisp process sends to Emacs. Theseinstructions include:Send input to a shell process. The �rst kind of direction tells GNU Emacs to send aspeci�c string as input to a shell process. The data contained in this message areobvious.Output a message from a shell. Valet's Common Lisp process can instruct GNUEmacs to insert a message in a shell's bu�er, making the message appear to beoutput from the shell process itself. The ability to forge output from Valet's shellprocesses in this way is essential to the illusion created by Valet | namely, thatthe intelligence of the system is embodied in the shells themselves and not withinan external Common Lisp.Reissue a shell prompt. The Common Lisp process can also tell Emacs to forge aprompt from a shell process. This new prompt is identical to the last prompt issuedby the shell. In addition, Common Lisp can specify that an input string should beinserted after the new prompt, as if it had just been typed by the Valet user. Ingeneral this input string will be Valet's corrected version of the user's previouslyentered command. With the corrected input already inserted in the shell's bu�er,Valet's user can simply press the Return key in order to accept Valet's correctedversion of the command.Change a shell bu�er's directory. When Valet's Common Lisp process determinesthat a shell process will change its working directory, Common Lisp tells Emacs tocorrespondingly change the directory that Emacs associates with the shell's bu�er.



76The argument directory is the absolute pathname of the new working directory ofthe indicated shell process. The ability for Emacs to track shell processes' directoriesis essentially a convenience for Valet's users.Set shell command correction data. This message instructs Emacs to remember cer-tain data about Valet's interpretation of the last command given to the indicatedshell. This information is used by Emacs if the Valet user asks to annotate thesession transcript and indicate that Valet's interpretation of the previous shellcommand was incorrect. Within the message, input is the user's previous input tothe shell process and data is either the corrected command or the Lisp symbol nil,indicating that Valet accepted the user's input verbatim.Allow Emacs to terminate. This �nal message is sent from Common Lisp to Emacs inorder to tell Emacs that Valet has safely saved the data from the current session forfuture use. This knowledge allows GNU Emacs to terminate, thereby terminatingall of the Valet interface processes.As with all but one of Emacs' messages to Common Lisp, none of the messages sentfrom Common Lisp to Emacs require the Common Lisp process to wait for a responseor acknowledgment. This allows the Common Lisp process to send several messages atone time (e.g., valet-shell-display-message followed immediately by valet-shell-reprompt) or to send a message to Emacs and then perform other computations.In summary, the messages exchanged by Valet's Common Lisp and Emacs compo-nents allow these separate processes to cooperate in providing a sophisticated interfaceto Valet's C shell processes. When a Valet user enters a shell command, GNU Emacssilently redirects the input and sends a valet-user-input message containing the user'sinput to Common Lisp. The Common Lisp process in turn interprets the command andresponds to Emacs with instructions | perhaps with a valet-send-to-shell messagetelling Emacs to send the user's (valid) command to the appropriate shell process. Allof the transactions between Emacs and Common Lisp are normally hidden within theValet system itself. However, because the parts of Valet are implemented as separateprocesses it is possible for the implementors of Valet to break the system apart and, forexample, interactively communicate with the Common Lisp components of the system,even while the interface is operating.



773.4 The Common Lisp ComponentsThe purpose of the Common Lisp process within the Valet interface is to \intelli-gently" parse and respond to users' shell commands. Valet's shell command parser,the knowledge bases that support that parser, and the heuristics that correct malformedcommands are all contained within the Common Lisp process.As previously detailed in Section 3.3.2, Valet's Common Lisp component receivesmessages from GNU Emacs describing the events that occur in the interface. Eachmessage from Emacs is formatted as a Common Lisp symbolic expression and is receivedand executed by the Common Lisp's read-eval-print loop. The most common | and alsomost signi�cant | messages sent from Emacs to Common Lisp are those that pass users'input shell commands to the Common Lisp process. The function that receives thesemessages, valet-user-input, relies on many di�erent modules within the Common Lispprocess in order to produce an appropriate response. These modules include:� an input tokenizer that divides the command line into a list of separate words;� an augmented transition network (ATN) parser with the necessary networks andaction functions to interpret and, as necessary, correct the tokenized input;� knowledge bases for several domains (e.g., the available shell commands and theUNIX host's �le system) that support the ATN parser's actions; and� provisions for preserving the knowledge bases and the user's interaction historybetween separate Valet sessions.These components of the Valet system are described below.3.4.1 The Input TokenizerThe �rst step in Valet's interpretation of a shell command is to divide the user'sinput command line into its constituent lexemes | also called tokens | or informally,words. The division of a string into lexemes is called lexical analysis or tokenization andis generally the initial processing step for all programs that interpret some kind of inputlanguage. For many computer languages the process of lexical analysis is straightforward;however, because the C shell input language [17] de�nes several di�erent and expressiveabbreviation mechanisms, Valet's input tokenizer is actually quite complex. In fact, the



78implementation of the tokenizer contains over 1,000 lines of Common Lisp code. Thelexical analysis of a C shell command requires several steps:� First, the command line is divided into lexemes according to the C shell's inputconventions.� Next, tokens that contain braces (\{" and \}") are expanded; each token thatcontains a brace construction is replaced by one or more tokens that contain theexpanded term.� Third, abbreviations that refer to users' home directories (\~" and \~user") areinterpreted and resolved.� Finally, �le name patterns (which contain any of the special characters \*", \?", \[ ",and \ ]") are expanded. Each token that contains a �le name pattern is replacedby zero or more tokens that contain the set of matched �le names.The �rst stage of Valet's tokenizer divides the original shell command line, a string,into a list of token data structures; Figure 3.3 contains the de�nition of the tokenstructure. Each token is described by several �elds. The �rst, called type, is a symbolthat identi�es the syntactic role of the token. For instance, a token may represent aspecial construct such as a pipe or an I/O redirection, or it may simply be a commandline argument. The second token slot, input, contains the string of input characters that1 (defstruct (token ...)2 (type nil :type symbol :read-only t) ;; Type of this token.34 (input "" :type simple-string :read-only t) ;; Chars as input...5 (string "" :type simple-string :read-only t) ;; ...and as read.6 (quotes nil :type list :read-only t) ;; Quoted char ranges.78 (obscure-p nil :type symbol :read-only t) ;; Understood by Valet?9 (children nil :type list ) ;; Results of expansion.10 ) Figure 3.3. De�nition of the token Structure



79were parsed in order to produce this token.5 This is separate from the string slot becausethe C shell input language includes various quotation constructs; these lexical forms calledquotes do not represent input themselves but instead de�ne the lexical properties of otherinput characters. The input slot of a token contains the quotation characters, if any, thatappear in the user's original command line. The string and quotes slots within a token,on the other hand, describe the input token after quoted constructs within the originalinput have been interpreted.The obscure-p slot is used to mark tokens that, although they are well-formed inputs,Valet cannot properly interpret. The current Valet system cannot handle severalof the C shell's input abbreviation facilities; in particular, Valet cannot understandbackquoted strings or variable references or command history references (i.e., \$" and\!" constructs). These kinds of inputs are di�cult or impossible for Valet to interpretcorrectly because Valet's command interpreter is separate from the managed C shellprocesses and therefore has limited access to the internal states of those shells. Valetcan and does, however, correctly process most of the abbreviation mechanisms thatare not based on the shells' internal states. Most signi�cantly, Valet can process �lename patterns. In addition, because Valet's GNU Emacs component provides its owncommand history mechanisms, the e�ects of the tokenizer's inability to handle variableand history references are mitigated. (Nevertheless, as described in Chapter 4, usersoccasionally stumbled over Valet's various limitations.)The �nal slot in each token structure, children, is used in the three input expansionsteps listed previously. The initial stage of the tokenizer produces a list of uninterpretedtoken structures. The second stage, brace expansion, searches for tokens that containbrace (\{}") pairs, and when a token containing a brace construct is found, the constructis expanded and the resultant list of new tokens is stored in the children slot of thenow-expanded token. For example, brace expansion of the lexeme \program.{c,h}"produces two new lexemes | \program.c" and \program.h" | that are stored in thechildren list of the original \program.{c,h}" token structure. Similarly, when homedirectory abbreviations and �le name patterns are processed, the resultant �le nametokens are stored in the children slots of the now-expanded parent tokens.5The input that produced the token is saved principally so that it may be used if Valet later needs toformulate a corrected command. By saving the user's original input, Valet can create a new commandthat greatly resembles the user's original input.



80The three input expansion steps are applied in separate stages. The initial brace expan-sion step is fairly straightforward because brace abbreviations do not refer to data otherthan that in the abbreviated lexemes themselves. The replacement of tilde constructs,however, requires the tokenizer to consult the external flunkie process (described inSection 3.4.5.2) in order to determine the appropriate users' home directories. File namepattern expansion is even more involved | the tokenizer must �rst compile the patternsinto more manageable forms and then interact with Valet's �le system knowledge base,which is described in Section 3.4.5. In fact, Valet's lexical analyzer dynamically compiles�le name patterns into augmented transition networks and then uses the parser describedin Section 3.4.2 to direct the actual �le name searches within the �le system knowledgebase | quite a task!Ultimately, the process of token expansion produces a token \tree." The initialtokenization step creates a list of token structures, and each of the subsequent tokenexpansion stages applies only to the \leaves" of the current token tree | in other words,those tokens that have not already been expanded by a prior pass of the tokenizer. Theleaves of the token tree are the ultimate product of Valet's lexical analyzer. When allof the analysis and expansion steps are complete, Valet's tokenizer creates and returnsa list containing all of the fully expanded tokens. This list of token structures becomesthe input for the next stage of Valet's shell command interpreter.3.4.2 The Augmented Transition Network ParserAfterValet has translated its user's shell command into a list of token structures, thenext task is to actually interpret | and if necessary, correct | the user's command. Thistask is performed by a second module within Valet's Common Lisp process: an aug-mented transition network (ATN) parser [4]. Valet's ATN parser is quite sophisticatedand provides features essential to the intelligent handling of shell commands:� The parser provides convenient and powerful syntaxes for de�ning transition net-works and their constituent actions.� The parser is fully backtracking and allows for \redoable" actions.� When a user's shell command can be neither interpreted nor corrected, the parsercan explain why.



81Ultimately, Valet's ATN parser is the engine that powers the intelligent processingof shell commands.3.4.2.1 Transition NetworksAn augmented transition network parser is so called because the operation of the parseris directed by a set of transition networks.6 These networks determine the actions thatthe parser may take and the choices that it may make in order to produce an interpretedresult from its input. In this way the networks de�ne the language accepted by the parser.Valet, of course, de�nes networks that allow the ATN parser to interpret and correctshell commands.One may envision a transition network as a directed graph | a set of nodes connectedby directional links that allow an ATN parser to \travel" from one location in the graphto another. There is a designated initial node of the network and a designated �nalnode. Further, every link between nodes in the network is associated with an action thatthe parser must perform in order to move across the link. Given a transition network,then, the goal of an ATN parser is to traverse its assigned network by traveling from theinitial network node to the �nal network node. By accomplishing this task the parsersuccessfully interprets its input.The parser, however, is restricted in its movement through the network. As justdescribed, each link within the network is associated with a speci�c action that theparser must perform in order to travel along that link. An action might, for instance,direct the parser to move a token from its input list to its output list. Depending on thestate of the parser when it comes to this action, the parser may or may not be able toperform the task (e.g., prior actions may have consumed all of the parser's input tokens).If the parser cannot carry out the required task then it cannot travel across the action'sassociated link. Because travel through a transition network is restricted by the actionsthat the parser must perform along the way, an ATN parser must in general search for apath that allows it to traverse its assigned network.From any node in a transition network there may be any number of links, each withits own associated action, that lead to other nodes. When several links lead away fromthe parser's current position, the parser must make a choice: It must select one of the6\Augmented" refers to the parser's ability to maintain extra state information during its operation,thereby allowing the parser to base its actions and decisions on context.



82links and attempt to traverse it. Unfortunately, the parser cannot know which of the links(if any) it should cross in order to proceed toward its ultimate destination. This meansthat in attempting to traverse a network the parser is likely to make choices that leadto \dead ends" | points from which there are no possible paths to the parser's ultimatedestination.For this reason Valet's ATN parser is able to backtrack. Valet's parser is fullybacktracking, meaning that it remembers every choice that it makes during its operation.If at any point the parser discovers that it cannot proceed from its current location, theparser retreats to the most recent point that provides an unexplored alternative. Fromthat point the parser attempts to move forward along a previously ignored link. If thatnewly chosen link leads to another dead end, the parser again backtracks to the mostrecent point that provides yet another untested alternative. The process repeats as oftenas necessary. Eventually, through methodic exploration of the possibilities, the ATNparser will either discover a path to its ultimate destination (and thereby successfullyparse its input), or it will exhaust all of the alternatives and thus discover that there isno path to its destination (and therefore, no way to parse its input).Although it is easy to visualize transition networks as directed graphs, when describinga transition network to a computer it is generally more convenient to use a textualrepresentation of the network. Valet's transition networks are written in the Lisp-likenotation shown in Table 3.3. (Internally, the notation is compiled into data structuresthat resemble directed graphs.) Each of the expressions in Table 3.3 de�nes a transitionnetwork. Some of the expressions contain other network de�nitions, so the notation isrecursive. Table 3.3. The Grammar Used to De�ne Transition NetworksExpression Meaning(action-name arg-1 arg-2 : : : ) Perform the speci�ed action.(seq net-1 net-2 : : : ) Traverse the sequence of networks.(or net-1 net-2 : : : ) A choice: net-1 or net-2 or : : :(opt net) Traverse net zero or one time.(opt* net) Traverse net zero or more times.(one+ net) Traverse net one or more times.(parse net-name) Traverse network named net-name.(parse (parse-state-var var)) Traverse network stored in var.



83The basic network de�nition \(action-name : : : )" simply instructs the ATN parserto perform the speci�ed action. In terms of the graph metaphor, this form de�nes theaction associated with a directed link between two nodes in a transition network. Withinthe form, action-name is a symbol that names the action to be performed. Additionaldata for the action, if any, appear after the action-name as if they were arguments toa Lisp function. (However, unlike an ordinary Lisp function invocation, the argumentsto a parser action are never evaluated.) As detailed later in Section 3.4.2.2, actions areessentially special Lisp functions that operate on the parser's current state. An actionmay attempt to consume some of the parser's unprocessed input, produce output, set orchange the parser's internal variables, or do all of these things. An action may succeed,meaning that the parser may continue (i.e., move across the action's link), or an actionmay fail, meaning that the parser must retreat.The form \(seq net-1 net-2 : : : )" de�nes a network that is a sequence of othernetworks. In order for the parser to traverse this sequence, it must travel �rst throughnet-1, then through net-2, and then through all of the other speci�ed networks. Theremay be any number of networks within the seq form. It is important to realize thateach of these networks | net-1, net-2, and so on | may be described by any of theforms presented in Table 3.3. In other words, the components of a seq may be simpleactions or they may be more complex network descriptions. This is the case for all of theexpressions that contain other network descriptions: seq, or, opt, opt*, and one+.The form \(or net-1 net-2 : : : )" describes a choice: The parser may traverse net-1,it may traverse net-2, or it may traverse any one of the other networks within the or form.In terms of the graph metaphor, or de�nes a set of separate paths that all start fromone node and all end in another. The parser will �rst attempt to traverse the networkdescribed by net-1. If the parser cannot �nd a path through net-1, or if the parser lateron discovers that by traversing net-1 it cannot reach its ultimate destination, the parserwill backtrack to the or form and try the next alternative, net-2. The process of choosingand backtracking continues until either (1) the parser discovers a path to its ultimatedestination, or (2) all of the alternatives in the or form have failed. In the latter case theparser will backtrack past the or form to a prior choice point.The opt, opt*, and one+ forms describe other kinds of choices to the ATN parser. Theform \(opt net)" indicates that the parser may choose either to traverse or to ignorethe enclosed net ; in other words, the net is optional and may be traversed either zero



84times or one time. The form \(opt* net)" allows the parser to traverse the indicatednet any number of times, including zero times, before moving on. Similarly, the form\(one+ net)" tells the parser that it may traverse the enclosed net one or more times.As previously described,Valet's ATN parser is completely backtracking, so it remembersand can reconsider the choices it makes while traversing the structures described by opt,opt*, and one+. The parser may backtrack and decide to traverse a previously ignoredoptional network, for example. The opt* and one+ forms describe loops in a transitionnetwork and the parser may backtrack in order to change the number of times it travelsaround each loop.Finally, the parse forms allow transition networks to refer to other transition networks.The expression \(parse net-name)" is a special action that tells the parser that in orderto cross the associated link, it must �rst completely traverse the transition network namedby net-name. (The mechanism for naming networks is described below.) In a way, this islike a subroutine call to the named network. The second form of the parse action tells theATN parser than in order to cross the associated link it must �rst traverse the transitionnetwork stored in the parser variable named var. (Transition networks are representedas �rst-class Lisp objects. Parser variables are described in Section 3.4.2.2.) If the �rstform of parse is like an invocation of a named subroutine, then the second form of parseis like an invocation of an anonymous subroutine.Figure 3.4 illustrates how the notation just described is used to create Valet's tran-sition networks. The macro define-net creates a named network; the new network canthen be referenced in \(parse net-name)" actions. The function make-net, not shownin the �gure, creates an anonymous network. The make-net function compiles a networkdescription into a Lisp object and then returns that object. This compiled networkcan then be stored in a parser variable and later referenced through an appropriate\(parse (parse-state-var var))" action.3.4.2.2 Transition Network ActionsThe nodes and links within a transition network provide structure, but it is the actionsassociated with the links that specify the actual steps of the parsing task. As previouslydescribed, every link within a transition network is labeled with an action that must beperformed by the parser in order for the parser to \travel" over the link. In Valet theseactions, except for parse, are implemented as special Common Lisp functions.Fundamentally, the purpose of an action is to examine or modify the ATN parser's



851 ;;; Parse a simple command along with I/O redirection and `&'.23 (define-net command4 (seq (set-semantics nil)5 (parse simple-command)6 (save-semantics)7 (no-more-command-arguments)8 (no-pretend-equal-var)9 (opt* (or (parse input-redirection)10 (parse output-redirection))11 )12 (opt (parse background))13 (empty-input)14 ))1516 ;;; Parse a command name and arguments. The `simple-command-name' action17 ;;; accepts the command name, locates the network for parsing that command's18 ;;; arguments, and stores that network in `$$simple-command-net'.1920 (define-net simple-command21 (seq (simple-command-name)22 (parse (parse-state-var $$simple-command-net))23 ))2425 ;;; Parse `< file' or `<< word'.2627 (define-net input-redirection28 (seq (or (seq (literal-token :input-from-file)29 (file-name (:type :not-directory) (:mode :readable))30 )31 (seq (literal-token :input-from-stdin)32 (eat-arguments :min 1 :max 1 :name "word")33 )34 )35 (mark-as-parsed :input-redirection)36 ))3738 ;;; Parse `> file' or `>> file' or `>& file' or `>>& file'.3940 (define-net output-redirection41 (seq (literal-token :output-to-file :append-output-to-file)42 (opt (literal-token :ampersand))43 (file-name (:type :not-directory :imaginary) (:mode :writable))44 (mark-as-parsed :output-redirection)45 ))4647 ;;; Parse `&' for background processes.4849 (define-net background50 (seq (literal-token :ampersand)51 (mark-as-parsed :background)))Figure 3.4. Example Transition Network De�nitions



86current state. This state includes the current input to the parser, the current output ofthe parser, and a set of variables maintained by the parser. For Valet, the input tothe parser is a list of token structures (as described in Section 3.4.1) and the output ofthe parser is a partial parse tree that describes the portion of the input that has beenprocessed. An action may modify both the parser's current input (e.g., \consume" aninput token by removing it from the input token list) and output (e.g., produce the parsedversion of that token). In addition, an action may also examine or set one or more of theparser's variables. Valet's parser maintains its own set of variables for use by its actions.Action functions may examine or set the values of these variables, for example, in orderto remember the properties associated with tokens that have already been parsed.When an action is able to perform its task | for example, modify the parser's statein a particular way or verify that a certain condition is true | the action succeeds. Thisallows the ATN parser to travel over the link associated with the action as previouslydescribed. On the other hand, an action fails when it cannot perform its task. Thisprevents the parser from crossing the action's associated link and forces the parser tosearch for another path though its network | in other words, to backtrack. When theATN parser is forced to backtrack to a prior choice point, the parser restores its state| input, output, and variables | to the state remembered along with that choice point.This remembered state is the state the parser had before it moved forward from the choicepoint. In e�ect, by restoring its state the parser \undoes" all of the actions that wereexecuted since the parser left the choice point. With its state thus restored the parsermay choose a previously unattempted course of action.A successful action allows the ATN parser to proceed whereas a failed action forcesthe parser to backtrack and consider other actions. Sometimes, however, the possibleoutcomes of an action are more complex than a simple choice between success and failure.Sometimes an action can succeed in several di�erent ways, each way resulting in a di�erentparser state. This situation might occur, for example, in an action designed to correctspelling. Such an action might read a token from the parser's current input, apply aspelling correction algorithm to that token, and then write the corrected token to theparser's output. If the correction algorithm were to suggest several di�erent correctionsof the original token, then the action could succeed by choosing any one of the possibilities.However, it may be that only one of the possibilities will allow the parser to complete itsentire parsing task, and the action may not have enough information to select this one



87\right" correction from the list of alternatives.Situations like this are typically resolved by dividing the problematic action intoseveral separate actions. For example, the above-described action could be rewrittenas two actions: The �rst would consume the input token and produce a list of alternativecorrections, and the second would select one of the untested corrections and move it tothe parser's output. Arranged in an appropriate network and combined with the parser'sability to backtrack, these new actions will eventually choose the \right" correction.The transformation of one action into several networked actions is an e�ective tech-nique, but Valet's ATN parser provides a second and sometimes more convenient option:redoable actions. A redoable action is one that can succeed in several di�erent ways,producing several di�erent parser states as just described. Valet's ATN parser recog-nizes redoable actions and treats them specially. Whenever Valet's parser successfullyexecutes a redoable action it associates a special choice point with that action. Later,if the parser needs to backtrack, it may return to this choice point and reexecute theaction. When a redoable action is reexecuted, the state of the parser (input, output, andvariables) is the state that was produced by the previous invocation of the action. Thisallows information to be communicated between separate invocations of the action. Asone would expect, when a redoable action is reexecuted, it will either succeed or fail. Ifit succeeds, then the parser updates the choice point associated with the redoable actionand then moves forward. Otherwise, if the redoable action fails, the parser backtracks tothe next most recent choice point. In summary, a redoable action is an action that maybe executed repeatedly until it fails. In order to cross a transition network link labeledwith a redoable action, Valet's ATN parser may invoke the redoable action's functionseveral times in order to produce several di�erent parser states.As previously mentioned, the actions associated with Valet's transition network linksare implemented by Common Lisp functions that operate upon the parser's state. Whenthe parser attempts to perform an action, it invokes the function that implements thataction. Because all action functions share a common structure and must communicatewith the ATN parser in certain stylized ways, Valet's action functions are de�nedthrough the use of a special macro, define-action. Figure 3.5 contains some examplesof Valet's action de�nitions.77The de�nitions shown in Figure 3.5 are actually slightly simpli�ed versions of the de�nitions thatValet uses.



88
1 ;;; Accept a token of a specified type. If found, move it to the output.23 (define-action literal-token4 :args (&rest accept-token-types)5 :body (let* ((input (get-input))6 (next-token (first input)))7 (when (null next-token)8 ;; There is no next token to accept.9 (fail))10 (let ((token-type (token-type next-token)))11 (if (member token-type accept-token-types)12 ;; Move `next-token' to the output and succeed.13 (set-in/out (cdr input)14 (cons `(literal-token ,next-token) (get-output)))15 ;; Otherwise, fail.16 (fail))17 ))18 )1920 ;;; Remember that a particular kind of command component has been parsed. If21 ;;; the parser tries to accept a second instance of the component, fail.2223 (define-action mark-as-parsed24 :args (component)25 :vars ($$parsed-components)26 :body (if (member component $$parsed-components)27 (fail)28 (setf $$parsed-components29 (cons component $$parsed-components)))30 :fail (case component31 (:input-redirection "there was more than one input redirection")32 (:output-redirection "there was more than one output redirection")33 (:background "there were too many &'s")34 (T (format nil "there were too many ~S" component))35 )36 )3738 ;;; Check the parser variable `$pretend-equal-var'. If it is set, fail.3940 (define-action no-pretend-equal-var41 :worth 042 :vars ($pretend-equal-var)43 :body (when $pretend-equal-var44 (fail))45 :fail (third $pretend-equal-var) ;; Return the saved explanation.46 ) Figure 3.5. Example Transition Network Action De�nitions



89Figure 3.5 shows that every action de�nition is a collection of parts. Most obviously,every action has a name. Some actions expect to receive data from the parser each timethey are invoked; these argument values are speci�ed within the transition network linksas described in Section 3.4.2.1. The de�nition of an action that receives arguments fromthe parser must include an :args list that describes those arguments. In Lisp terms, an:args list is the lambda-list for its action. The :body of an action is the Common Lispcode that implements that action. The code within the :body of an action may refer tothe arguments passed to that action by the parser, as speci�ed by the action's :args list.In addition, the :body of an action may refer to the parser variables listed in the action's:vars list as if they were ordinary Lisp variables.8 By convention the names of parservariables begin with \$" but this is not required. Finally, the code within the :body ofan action is simpli�ed by various macros | get-input, get-output, set-in/out, andothers | that the parser de�nes. These macros provide convenient access to the parser'scurrent state and allow actions to perform other common tasks.As previously explained, an attempt to perform an action will either succeed or fail.This result is determined by macros. The macro succeed signals to the parser that anaction has succeeded. When invoked within an action's :body, succeed halts executionof the action's :body form and immediately returns control to the parser. The Lispvalue returned to the parser indicates that the action succeeded. Conversely, the macrofail signals to the parser that an action has failed. The fail macro halts execution ofthe current action body, returns control to the parser, and informs the parser that thejust-attempted action was unsuccessful. If the parser is able to execute the entire body ofan action | that is, if control reaches the end of an action's :body form without invokingeither succeed or fail | then the action is deemed to have succeeded.Redoable actions, which may succeed in several di�erent ways, contain a :redo form inaddition to a :body form. (The presence of a :redo form in an action de�nition indicatesthat the action is redoable. Because none of the actions shown in Figure 3.5 are redoable,none of them contain :redo expressions.) The :body and :redo forms are similar exceptthat they are evaluated at di�erent times. The �rst time a redoable action is attempted,the parser executes the action's :body, as it does for all actions. However, the second8An action's :vars list allows for syntactically simple access to the named parser variables. An actioncan refer to parser variables that are not contained in its :vars list, but the syntax for doing so is lesselegant.



90and subsequent times that a redoable action is attempted, the parser invokes the action's:redo form. As previously described, when a redoable action is reexecuted, the stateof the parser is the state that was produced by the previous invocation of that action.The purpose of the :redo form, then, is to modify that state, which was produced bythe previous execution of either the action's :body or :redo forms. Like the :body, the:redo form may succeed or fail.It is possible to de�ne local functions within an action by specifying a :funs list,although none of the actions de�ned in Figure 3.5 do so. The �nal two parts of an actionde�nition, :worth and :fail, are used when the parser is unable to interpret its inputsuccessfully and completely | in other words, when the parser needs to explain why itsinput failed to parse.3.4.2.3 Explanation of Parsing FailuresGiven a transition network, the goal of Valet's ATN parser is to traverse that networkby traveling from the network's initial node to its �nal node. In the process of traversingthe network, the ATN parser interprets its input and constructs its output. If the parserreaches the �nal node of its network, then it is deemed to have succeeded | successfullyparsed its input. The parser returns a Lisp structure that describes the parser's �nalstate, including the parse tree generated from the accepted input. If, however, the ATNparser cannot �nd any path to the �nal node of its network, then the parser is deemed tohave failed, and when the parser fails it simply returns nil. This result is only minimallyinformative but fortunately the parser remembers why it failed and can help Valetconstruct an appropriate explanation.During the course of its operation the ATN parser often runs into \dead ends" fromwhich it must backtrack. Even when the parser is ultimately successful, it may encounterand retreat from many dead ends before it �nally discovers a path through its assignednetwork. The fact that the parser encounters dead ends before it succeeds is due toexploratory nature of the parser itself; in particular, these dead ends do not indicatethat the parser's input is malformed. Obviously, in order for the parser to succeed (i.e.,interpret all of its input), the parser's input must be well-formed according to the languagedescribed by the traversed networks. The situation is somewhat di�erent, however, whenthe parser ultimately fails to parse its input | that is, when every possible path throughthe parser's assigned network leads to a dead end. Failure indicates that the parser



91could not process its input and, therefore, that the parser's input must be malformed(uninterpretable) in some way. The explanation of how the input is malformed lies inthe set of dead ends that the parser reached before it failed. Some of these dead ends arereached in the parser's ordinary course of network exploration, as just described, and arenot useful in identifying the practical nature of the input problem. The remaining deadends, however, precisely identify how the input was incorrect.Valet's parser distinguishes these \informative" dead ends from the noninformativeones by examining the parser states associated with these points. The informative deadends are those that are associated with the \best" parser states. Parser states are rankedaccording to the amounts of unprocessed input that they contain: A state A is betterthan a state B if the list of remaining input in A is shorter than the list of remaininginput in B. When two states contain equal amounts of unprocessed input, those statesare compared according to \worth." The worth of a parser state is a heuristic measureof the di�culties of the actions performed by the parser in order to produce that state.As previously shown in Figure 3.5, some action de�nitions specify a numeric :worth, andby default the :worth of an action is 1. The worth of a parser state, then, is the sumof the worths of the actions that were successfully performed in order to produce thatstate. In general, the more actions required in order to produce a state, the more valuablethe resultant state is. By ranking parser states by remaining input and worth, Valet'sATN parser identi�es the dead ends that correspond to the most successful attempts tointerpret its original input. These \best" dead ends describe the furthest limits to whichthe parser's input could be processed, and therefore, when the parser fails it is thesepoints that best describe how the parser's input was malformed.During its normal operation Valet's ATN parser remembers the set of best dead endsthat it has yet encountered. The parser also remembers the state it had when it cameto (and subsequently retreated from) each of those points. These states are needed inorder to evaluate new dead ends that the parser may encounter, but more importantly,the state associated with a dead end must be saved so that the actions that blocked theparser's progress from that point can explain why they failed.If the parser ultimately fails, then it can explain the reasons for its failure by consultingits saved list of best dead ends. Each dead end is a point at which one or more actionsfailed, causing the parser to backtrack. These failed actions are responsible for the parser'sultimate defeat. Since these failed actions thwarted the parser's most successful parsing



92attempts, the parser consults each of the actions for an explanation. The parser demandsan explanation from an action by invoking the :fail part of the action's de�nition. (Referto Figure 3.5. An action that has no :fail part cannot explain itself and is thereforenever asked to do so.) When the parser invokes the :fail part of an action, the state ofthe parser is what it was when the :body or :redo part of the action failed. The :failpart of an action examines this state and returns a value that indicates why the actionfailed. In summary, in order to explain a parsing failure, Valet's ATN parser invokesthe :fail parts of all the actions that caused the parser's best prospects to fail. Theexplanations provided by these individual actions combine to explain why the parser asa whole ultimately failed to interpret its input.3.4.2.4 Summary of the ATN ParserValet relies on its ATN parser to interpret its users' input shell commands. When theparser succeeds, that indicates that a user's command has been completely interpreted |and possibly corrected | and is ready for �nal processing. Valet can send the commandto the appropriate shell process, or if the command was corrected, Valet can presentthe revised command to its user for con�rmation as described in Section 3.1.3. WhenValet's parser fails, on the other hand, that means that the user's command could beneither interpreted nor corrected. In this case, through its failure explanation facility, theparser can accurately describe why it could not understand the input command. Valetcan present the parser's explanation to the user and allow the user to edit the unacceptedcommand.In total, Valet's ATN parser is the engine that drives the intelligent processing of Cshell commands. Valet's knowledge of shell commands is embodied by the transitionnetworks de�ned in Valet's Common Lisp component. Some of Valet's networks de-scribe how shell commands should be processed in general, and other transition networksdescribe the syntax and semantics of speci�c shell commands and their arguments. Theactions invoked withinValet's networks consult the system's various knowledge bases |the shell command lexicon and the �le system model, for example | and invoke heuristicsin order to correct speci�c kinds of erroneous inputs. These parser actions, outlined inSections 3.4.4 and 3.4.5 below, link the parser's engine to Valet's contextual knowledgeand thereby provide \intelligence" to the UNIX C shell interface.



933.4.3 LexiconsIn order forValet's parser to interpret a shell command, parser actions must associatemeanings with the individual words that constitute the command. Valet's knowledgebases are therefore implemented as lexicons | dictionaries | that map words to theirde�nitions. Valet uses many separate lexicons, each for a particular category of terms.One lexicon contains the names of shell commands, another contains the names of �les,and a third contains the login names of users. Furthermore, every shell command knownto Valet is associated with its own lexicon containing the command line options (i.e.,
ags such as \-c") for that command. Lexicons are fundamental to Valet, so Valet'slexicons are represented by compact data structures that allow for speedy searches.Because lexicons organize most of Valet's knowledge, the most important require-ment for Valet's lexicons is that they allow for rapid access and searches. Valet'sparser actions must be able to locate the de�nitions of words quickly in order for the shellinterface as a whole to be responsive to its users' commands. Parser actions must alsobe able to locate terms within a lexicon that are similar to a given input, in case thatinput is erroneous and must be corrected by Valet. Another important requirement forthe lexicons is that they be 
exible in size. Some of Valet's lexicons hold only a fewentries but others contain hundreds or thousands of items. A �nal criterion for Valet'slexicons is that they be compact. Because Valet uses many di�erent lexicons of varioussizes, the Lisp representation of each lexicon should be as small as possible.For these reasons, each of Valet's lexicons is represented by a tree-like data structure.Each node in the tree is a lex-node structure and every link between nodes is associatedwith a single character. Given this structure, the function lexicon-lookup takes a wordW and a lexicon L and then locates the de�nitions associated with W in L. It does thisby following the links associated with the individual characters of W. Starting at theroot node of the lexicon's tree, lexicon-lookup follows the link labeled with the �rstcharacter of W. From the destination node of that link, the function then follows thelink associated with the second character in W. This process of following links repeatsuntil lexicon-lookup has processed all of the characters in W or until lexicon-lookupdiscovers that a required link is missing | in which case, the word W must not have anyde�nitions in the lexicon being searched. If the lexicon-lookup function successfullyprocesses all of the characters of W, then the de�nitions of W, if any, are stored in thelex-node structure that was �nally reached.



94The function lexicon-insert adds a word and its de�nition to a lexicon, addingany required new nodes and links to the lexicon. Because words with a common pre�xshare an initial sequence of nodes and links within a lexicon, the total number of nodesrequired to represent a lexicon is minimized and the lexicon structure is space e�cient. Inaddition, the representation of each lexicon is further optimized by \compressing" nodesthat are not shared by several words. Every word within a lexicon may be divided into apre�x that is shared by at least one other word in the lexicon and a su�x that would berepresented by nodes and links unique to that word. Valet's lexicons save data space byeliminating the nodes and links that would represent the unshared su�x of each word.For each word these su�x nodes are replaced by a single cons cell: The car is a stringcontaining the unshared word su�x and the cdr contains the de�nitions of the word. Ofcourse, these optimized su�xes must be handled specially in the functions that modifyand search Valet's lexicons.The tree representation of lexicons allows lexicon-lookup to operate quickly andeither locate the de�nitions of a given word or determine that a word has no de�ni-tion within a lexicon. Similarly, because lexicon trees are organized around individualcharacters, it is possible for other functions to implement simple and quick spellingcorrection by searching for words that are similar to a given (misspelled) word. Thefunction lexicon-spell, for example, searches a lexicon for de�ned words that aresimple orthographic transformations of a wordW. In particular, lexicon-spell suggestscorrections for W based on knowledge of the most common typographic errors: theinsertion, deletion, or replacement of a single character, as described in Section 2.1.3. Thelexicon-spell function also attempts to correct capitalization errors and determinesif W is a pre�x (i.e., an abbreviation) of exactly one word in the current lexicon.These correction heuristics are extremely fast due to the organization of the lexicondata structures and can correct the most common kinds of input errors. However, iflexicon-spell is unable to suggest reasonable corrections for an erroneous term then asecond function, lexicon-guess, can search the current lexicon for the words that aremost similar to a word W according to a numerical similarity measure. This processis much slower than lexicon-spell, but it is rarely needed because lexicon-spell isalmost always successful at locating accurate corrections.The functions lexicon-spell and lexicon-guess use lexical context alone in orderto correct input terms. Although this context is clearly very important it is not always



95su�cient (as explained in Section 2.1.4), so Valet combines lexical context with otherkinds of knowledge in order to provide an intelligent shell interface. For example, in orderto correct a mistyped command name Valet uses not only lexical context but also itsknowledge of various commands' arguments. Valet also remembers which commandsare most frequently invoked by its users and can refer to this information in order tocorrect malformed commands. All of Valet's information about speci�c shell commandsresides in a single shell command knowledge base.3.4.4 The Shell Command Knowledge BaseIn a typical UNIX system there are hundreds of programs and therefore, hundredsof di�erent C shell command names. As previously described in Section 1.3.1, mostof the C shell's input language is determined by the set of external programs that areknown to the shell. The �rst word of a shell command typically names the program tobe invoked. Although this name may be an absolute or relative pathname to a program�le, in general it is simply the name of a program in the shell's search path, a list ofdirectories in which the shell implicitly searches for program �les. The most frequentlyused programs are usually located along the shell's search path, so most shell commandsrefer to programs in this path. A typical search path, however, provides access not onlyto the most frequently invoked programs but also to hundreds of other programs, therebyde�ning hundreds of unique shell command names. This large set of commands is furtheraugmented by various built-in shell commands and user-de�ned command aliases.The language of the C shell is therefore complex because it includes several hundreddi�erent command names, most corresponding to programs along the shell's search path.In order to provide an intelligent interface to the shell Valet must know about thesecommands. At the very least Valet must be aware of the set of available commandnames, but in order to accurately correct input shell commands Valet must also havedetailed knowledge of the most commonly used commands. This knowledge is stored inValet's shell command knowledge base.Valet's shell command knowledge base is implemented as a lexicon that associatescommand names with command data structures; the slots within each command structureare shown in Figure 3.6. Every shell command known to Valet is represented by itsown command structure. Obviously, the name slot within a command contains the nameof the represented command and the from slot indicates the source of that command.



961 (defstruct (command ...)2 (name nil :type simple-string :read-only t)3 (from nil :read-only t)4 (net nil :type (or network symbol) :read-only t)5 (opts nil :type lexicon :read-only t)6 (last-reference 0 :type fixnum )7 (heat 0 :type fixnum )8 ) Figure 3.6. De�nition of the command StructureThe value of from is either the symbol :built-in (for the shell's built-in commands) orthe absolute pathname of the directory that contains the program that implements thecommand.The net slot of a command structure contains a transition network (or the name ofa transition network) that describes the command line arguments for the representedcommand. Valet's ATN parser attempts to traverse this network whenever a user's inputrefers to the corresponding command. For example, suppose that Valet is processingthe input \cd src". The action that interprets command names accepts the \cd" token,consults Valet's shell command lexicon, locates the command structure that representsthe cd command, and stores the network for parsing cd command arguments in the$$simple-command-net parser variable. Once that is done the parser attempts to traversethe cd argument network in order to interpret the arguments (\src") in the current cdcommand. The simple-command network shown in Figure 3.4 illustrates this process.The opts slot of a command structure contains a lexicon that describes the commandline options for the represented command. Options are special arguments and are usuallyintroduced by a \-" character. An option may change the behavior of a command |for instance, the \-l" option changes the output of the ls program | or an option maydesignate the purpose of subsequent command arguments. The lexicon in the opts slotof a command structure associates option names with data that describe the options forthe represented command. The data for an option indicate whether the option may beconcatenated with other options or data (e.g., whether the options \-l" and \-d" maybe combined into \-ld"). In addition, each option is associated with a transition networkthat describes the command line arguments, if any, that must follow the option itself.The �nal two slots in a command structure, last-reference and heat, indicate howrecently and frequently the represented command is invoked by a Valet user. Each



97time Valet accepts and parses a well-formed shell command from its user, the value ofthe last-reference slot for the just-referenced command is set to the current time. Inthis context, the \current time" is proportional to the number of inputs that Valet hasever received from its current user, spanning all of that user's sessions with Valet. Inaddition to updating the last-reference time Valet also increases the heat value ofthe just-invoked command. \Heat" is a heuristic measure of how recently and frequentlya command has been used. The heat of a command increases with each reference anddiminishes slowly over time; therefore, commands that are referenced often are hotterthan those that are referenced infrequently. The value of the heat slot in a commandstructure is the temperature of the represented command at the last-reference time.At later times, the function command-current-heat determines from this informationthe current temperature of the command. Valet maintains heat measures in order toestablish context | to indicate which commands are most used | and thereby determinethe best corrections for erroneous command names that its users may enter in the future.The macro define-command describes a shell command to Valet by creating anappropriate command structure and adding it to Valet's command lexicon. Figure 3.7contains Valet's de�nitions of three common UNIX commands: cd, cp, and rm. Valethas similar de�nitions for approximately 50 additional shell commands. This means thatalthough Valet has detailed knowledge of the most frequently invoked shell commands,that knowledge describes only a small fraction of the hundreds of commands that areactually available to users of the C shell. It would be intolerable for Valet to limitits users to the set of commands for which Valet has detailed knowledge, however, soValet accommodates \undescribed" programs | programs for which Valet has noexplicit knowledge | by creating generic command structures for them. For each programthat is unknown to Valet in the shell's search path, Valet creates a generic commandstructure to represent that command.9 These generic structures are stored in Valet'sshell command knowledge base along with the more detailed command structures created9This is subject to certain restrictions. First, because Valet cannot directly determine the shell'ssearch path, it assumes that the shell's path is equal to the path stored in the UNIX environment variablePATH. Second, Valet scans the search path only once for each of its users. It typically takes one or twominutes for Valet to examine a path and create the necessary command data structures for the programsthus found, so in order to avoid this long delay Valet scans a user's search path only during that user'sinitial session with the interface. Valet remembers the results of the scan for future sessions as describedin Section 3.4.6. Finally, because each user's search path is scanned just once, Valet ignores relative �lenames (e.g., \.") in its users' paths.



981 ;;; Definition of the "cd" (change directory) built-in shell command. This2 ;;; command has special sematics that the interface must understand.34 (define-command "cd"5 :from :built-in6 :net (seq (set-semantics (change-directory $destination))7 (or (file-name (:type :directory) (:mode :executable)8 (:into $destination))9 (seq (no-more-command-arguments T)10 (set-var $destination (get-file-name "$HOME" T))11 ))12 )13 )1415 ;;; Definition of the "cp" (copy files) command. All the options are16 ;;; concatable, require no arguments of their own, and must appear before the17 ;;; file name arguments.1819 (define-command "cp"20 :from "/bin"21 :net (seq (opt* (parse command-option))22 (or (seq (file-name (:type :regular))23 (file-name (:type :not-directory :imaginary)))24 (seq (one+ (file-name (:type :regular)))25 (file-name (:type :directory) (:mode :writable)))26 ))27 :opts (("-i" :concatable T :net no-args)28 ("-p" :concatable T :net no-args)29 ("-r" :concatable T :net no-args))30 )3132 ;;; Definition of the "rm" (remove files) command. Notice how the `set-var'33 ;;; and `equal-var' actions interact when a directory is to be removed.3435 (define-command "rm"36 :from "/bin"37 :net (seq (set-var $rm-directories nil)38 (opt* (parse command-option))39 (one+40 (or (file-name (:type :not-directory) (:resolve-symlink nil))41 (seq (file-name (:type :directory) (:resolve-symlink nil))42 (equal-var $rm-directories T43 "use the -R option to remove a directory"))44 )))45 :opts (("-d" :concatable T :net (set-var $rm-directories T))46 ("-f" :concatable T :net no-args)47 ("-i" :concatable T :net no-args)48 ("-R" :concatable T :net (set-var $rm-directories T))49 ("-r" :concatable T :net (set-var $rm-directories T)))50 ) Figure 3.7. De�nitions of the cd, cp, and rm Commands



99by define-command. Because Valet creates generic structures for the undescribedprograms in the shell's search path, Valet's users can invoke those programs as theywould in a normal command shell. However, since Valet knows nothing about thecommand line arguments required by those undescribed programs, Valet is unable tocorrect errors that users make in the arguments given to those programs.Valet could treat user-de�ned command aliases in the same way that it treatsundescribed commands. However, whereas it is relatively easy for Valet to determinethe set of programs in the C shell's search path, it is much more di�cult for Valetto determine the set of aliases that its users de�ne. Valet's \intelligent" Common Lispcomponent is separate from the managed C shell processes, so Valet does not have directaccess to the shells' internal states, including the sets of de�ned aliases. Valet couldconceivably determine its users' aliases by parsing its users' \.cshrc" shell con�guration�les, but that parsing task would be complicated. It would require Valet to understandall of the programming constructs of the C shell language (e.g., conditional statements),and that level of knowledge is much more than Valet needs in order to interpret users'interactive commands. Even if Valet simply extracted alias de�nitions without trulyparsing its users' \.cshrc" �les, problems would still arise: Valet would still be requiredto parse alias de�nitions (not always a trivial task) in order to associate semantics withcertain aliases. For example, Valet would have to recognize and interpret aliases thatchange the shell's current directory. Therefore, due to all of the di�culties involved,Valet does not create command structures for aliases and this means that the commandparser cannot recognize invocations of aliases.10 This shortcoming is a nuisance thatresults from Valet's experimental architecture. Fortunately it does not seriously hurtValet's ability to interpret and correct most common shell commands.Even without command aliases, Valet's shell command knowledge base containshundreds of entries. The knowledge base stores information about all the programs thatmay be invoked through the shell's command search path, and in addition, the knowledgebase details the command line arguments for many of the most frequently invoked shellcommands. The ATN parser action that interprets command names consults Valet'scommand knowledge base and uses context in order to correct misentered command10Although Valet cannot determine its users' aliases for itself, it was hoped that Valet would allow itsusers to manually describe their aliases to the interface. Unfortunately, that ability was not implementedbefore the user testing experiment described in Chapter 4 was performed. In retrospect, given theimportance that users placed on their personal aliases, Valet should have handled aliases more gracefully.



100names. This parser action makes use of lexical context by invoking the functions describedin Section 3.4.3 to �nd command names that are similar to an erroneous command name.These possible corrections are then evaluated in light of other contextual data stored inValet's command knowledge base: the frequency at which various shell commands arereferenced and the arguments that each command requires. Once the parser has digestedthe name of an input command, subsequent ATN parser actions interpret command linearguments by referring both to data stored in Valet's shell command knowledge base(e.g., the appropriate command option lexicon) and also to data stored in Valet's otherknowledge bases. Most notably, since so many command arguments refer to �les, Valet'scommand argument parsing actions make heavy use ofValet's internal �le system model.3.4.5 The File System Knowledge BaseKnowledge of its UNIX host's �le system is critical to Valet. The �le system is one ofthe most fundamental and user-visible components of a UNIX computer system becauseit provides the principal metaphors through which the operation of the entire system isunderstood. Most of the C shell's command language is determined by the �le system;not only are the shell's commands determined by the programs located along the shell'ssearch path, but more importantly, many command line arguments name �les: existing�les to be read, new �les to be written, �les to be created, consulted, moved, modi�ed, ordestroyed. Therefore, in order for Valet to understand its users' shell commands it musthave intimate knowledge of its host computer's �le system. This knowledge is containedin a sophisticated �le system knowledge base.Valet's �le system knowledge base is complex. The code that implements the knowl-edge base includes approximately 1,500 lines of Common Lisp code and 275 lines of C code| and these �gures refer only to the code that creates and maintains the knowledge baseitself. The parser actions and functions that actually consult the knowledge base amountto another several hundred lines of Lisp code. The complexity of Valet's �le systemknowledge base is due to the nature of UNIX �le systems:� A typical UNIX �le system contains hundreds of directories and thousands of �les,all organized in a single hierarchy. Valet must model these objects and theirorganization.



101� The organization of a �le system changes almost continuously. New directories and�les are created and existing directories and �les are modi�ed, renamed, relocated,or destroyed. This constant process of change means that Valet must frequentlyupdate its �le system knowledge base. Unfortunately, Valet is not informed whenits host's �le system changes | and Valet certainly cannot control such changes| so it is di�cult for Valet to update its �le system model appropriately. Theresult is that Valet's model often contains outdated information.� Examination of a UNIX �le system is very time consuming, so Valet must bejudicious when it creates and updates its �le system model. It is not feasible forValet to represent its host's entire �le system; the storage size of the model wouldbe too great and the time required to create the model would render the interfaceunusable. (Further, due to UNIX �le access restrictions, it is generally not possiblefor Valet to construct a complete �le system model in any case.) For these reasonsValet's �le system knowledge base is incomplete. The model represents only theportions of the �le system that Valet needs in order to establish context andinterpret its users' input shell commands. Of course, even this partial representationneeds to be updated regularly in order for Valet to track changes that occur inthe �le system. Because examination of the �le system is so expensive, however,Valet is careful to update information only as it is needed. Furthermore, Valetminimizes its examination of the actual �le system by remembering which parts ofits knowledge base are current and which are not. In e�ect, Valet's �le systemknowledge base acts as a cache of information about the actual �le system.� Finally, the Common Lisp language [31] does not contain functions that would allowValet's Common Lisp component to examine its host's �le system in su�cientdetail. Therefore, Valet communicates with an external process in order to buildits �le system model.11 The need to communicate with an external UNIX processcomplicates the implementation of the knowledge base and makes examination ofthe actual �le system even slower, thereby increasing the need for Valet to cacheinformation and minimize its inspection of its host's �le system.11The Common Lisp language does not specify functions for communicating with external processes,either, but most Common Lisp implementations for UNIX provide such functions.



102In short, althoughValet needs a great deal of information about its host's �le system,this knowledge is expensive to acquire and must be continually refreshed. Valet's �lesystem knowledge base was therefore implemented very carefully in order to allow theinterface to interpret and correct �le names with acceptable speed.3.4.5.1 Representation of the File SystemValet's �le system knowledge base is implemented by three di�erent organizationaldata structures. The �rst of these is a tree of linked Common Lisp structures that mirrorsthe hierarchical organization of the actual �le system. The de�nitions of the structuresin this tree are shown in Figure 3.8. For every unique �le known to Valet there is acorresponding file structure that represents and describes that �le. In UNIX terms, afile structure contains information gathered from a �le's inode: the �le's type and size,the identity of the �le's owner, the access permissions associated with the �le, and so on.The scan-time slot in a file structure indicates the time at which the inode informationwas gathered; the value of scan-time is proportional to the number of shell commandsthat Valet has ever received from its current user. It is important to realize that a filestructure does not specify the name of the �le that it represents. In a UNIX �le system,the association of names to �les is controlled by directory entries as described below.Most �les in Valet's �le system model are represented by file structures, butsymbolic links and directories are represented by instances of special subtypes of thefile structure. A symbolic link is a �le that contains the name of another �le; Valetrepresents symbolic links by special symlink structures in its �le system model. Adirectory is a second kind of special UNIX �le. Every directory contains a list of names,and each of those names is associated with a particular �le in the �le system. In Valet's�le system model, each directory is represented by a dir structure. In addition to thenormal file slots, each dir structure contains three additional slots:1. The children slot contains a list that describes the entries within the representeddirectory. This is a list of dirent structures as described below.2. The children-current-p slot is a 
ag that indicates whether or not the entries inthe children list are known to be correct as of the time stored in the dir structure'sscan-time slot. Valet's �le system knowledge base often updates the informationabout a directory (i.e., the values in the dir's file slots) without immediately



103
1 ;;; A `file' contains stat(2) information about an actual file. This data is2 ;;; timestamped by Valet when it is acquired.34 (defstruct (file ...)5 (type nil :type symbol :read-only t) ;; :regular, :directory, ...6 (device 0 :type fixnum :read-only t) ;; File device #.7 (inode 0 :type integer :read-only t) ;; File inode #.8 (mode 0 :type fixnum ) ;; UNIX permission bits.9 (links 0 :type fixnum ) ;; # of links to this file.10 (owner 0 :type fixnum ) ;; UID of owner.11 (group 0 :type fixnum ) ;; GID of group.12 (size 0 :type integer ) ;; File size in bytes.13 (access-time 0 :type integer ) ;; Time of last access.14 (modify-time 0 :type integer ) ;; ...modification.15 (change-time 0 :type integer ) ;; ...change in inode.1617 (scan-time 0 :type fixnum ) ;; Time of Valet's scan.18 )1920 ;;; A `symlink' is a special `file' that represents a symbolic link.2122 (defstruct (symlink (:include file) ...)23 (contents nil :type (or simple-string null)) ;; Contents of this link.24 )2526 ;;; A `dir' is a special `file' that represents a directory. A directory27 ;;; contains entries represented by `dirent' structures.2829 (defstruct (dir (:include file) ...)30 (children nil :type list ) ;; The entries in this directory.31 (children-current-p nil :type symbol) ;; Is the `children' list current?32 (parent nil ) ;; Link to entry in our parent dir.33 )3435 ;;; A `dirent' represents an entry in a directory. An entry associates a name36 ;;; (a string) with a file in the file system, or with an "imaginary" file.3738 (defstruct (dirent ...)39 (name "" :type simple-string )40 (file nil :type (or file null) )41 (parent nil :type dir :read-only t)42 (last-reference 0 :type fixnum ) ;; Valet timestamp43 (heat 0 :type fixnum ) ;; and heat val.44 ) Figure 3.8. De�nitions of the File System Model Structures



104updating the information about the contents of that directory. In these cases Valetmay need to remind itself to later reexamine the list of directory entries.3. The parent slot of a dir structure is a link to the \parent" of the representeddirectory. More speci�cally, the parent slot of a dir D is a link to the direntstructure that refers to D in the dir structure above D in Valet's modeled �lesystem hierarchy. This parent link makes it possible for Valet to immediatelydetermine the name associated with a given directory.Every directory in a UNIX �le system contains entries that give names to �les. InValet's model of the �le system, the contents of a directory are represented by a list ofdirent structures within that directory's dir structure. Each dirent contains a name,unique to the list in which the dirent is contained, and a reference to the file structureto which the entry refers. Each dirent also contains three additional �elds: a link to thedir in which the dirent is contained and two timestamps that Valet associates withthe entry. These last two �elds, last-reference and heat, are similar to the timestampslots contained in Valet's command structures, previously explained in Section 3.4.4.Every time an input shell command refers to a directory entry, the last-reference slotof the corresponding dirent is updated and the heat of the dirent is increased. Thisprovides important context that Valet uses in order to correct �le names in the future.It is important to understand that Valet associates user reference information withdirectory entries | essentially, with �le names | and not with the actual �les referencedby those entries. This distinction is important because it is �le names, not �le inodes,that are meaningful to users of the C shell. When the entries within a directory change,Valet takes great care to associate appropriate reference information with each of thecorresponding updated dirent structures in its �le system model.Because users' references to �le names (directory entries) are so important for estab-lishing interaction context, Valet maintains reference information not only for namesthat refer to existent �les but also for many names that refer to nonexistent �les. It isnot at all uncommon for a shell command to contain �le names that are not valid beforethe command is executed; for instance, when a �le is renamed with the mv command, itis often the case that the new name for the �le does not refer to any �le at the time themv command is invoked. The new name for the �le can be understood as a reference to adirectory entry that will exist in the near future, after the completion of the mv command.



105For situations such as this, Valet's �le system model can create \imaginary" directoryentries.An imaginary entry is essentially a �le name that does not correspond to any �le inthe host's actual �le system. In Valet's �le system model, an imaginary directory entryis represented by a dirent structure that has a name but no associated file structure;the file slot of an imaginary dirent is nil. By creating imaginary entries, Valet's �lesystem knowledge base can keep track of users' references to �le names even when those�le names are invalid at the times at which they are entered. This reference informationis saved in expectation that the �le names will become \actual" in the near future. Whenthe directory entry represented by an imaginary dirent actually appears in the real �lesystem, the dirent is updated to refer to the appropriate file, dir, or symlink structure.Valet's information about references to that previously imaginary entry is preserved.Valet's �le system knowledge base assembles instances of the data types describedabove | file, symlink, dir, and dirent structures | into a single tree-like hierarchythat models a portion of the actual �le system of Valet's host.12 At the top of this treeis a single dirent, the *root-dirent*, which corresponds to the UNIX �le name \/".Below the *root-dirent* are the portions of the �le system that Valet needs in orderto establish context and interpret its users' input shell commands. This tree describes the\spatial" organization of the actual �le system, and Valet's �le system knowledge baseneeds two additional organizations in order to serve the intelligent interface. The �rst ofthese is a hash table that allows the knowledge base to locate the file, dir, or symlinkstructure that corresponds to a particular inode and device number pair; this table isinternal to the knowledge base itself. The second organizational structure is a lexicon(the structure described in Section 3.4.3) that maps �le names to the dirent structuresthat contain those names. Through this lexicon the knowledge base can quickly locateall of the �les with a given name or locate all of the �les that have names similar toa misspelled name. By incorporating both a hierarchical model and a lexicon, the �lesystem knowledge base o�ers both \spatial" and lexical context that Valet uses in orderto correct erroneous �le names. The reference information within the model's direntstructures provides additional context to the intelligent interface. All of the information12The hierarchy is not entirely acyclic, however, because the UNIX �le system itself is not entirelyacyclic. In particular, the \." and \.." entries within every UNIX directory introduce cycles into the �lesystem and into Valet's model.



106in the �le system knowledge base is dynamic and must be continually updated as newdata are received from Valet's flunkie process.3.4.5.2 Examination of the File SystemValet's �le system knowledge base relies on a separate UNIX process, the �le systemflunkie, to provide information about the host's actual �le system to Valet's CommonLisp process. When the �le system knowledge base determines that it must refresh partof its �le system model, it sends a request to the flunkie, asking that the flunkiereexamine the appropriate parts of the �le system. The flunkie in turn responds withdata about the current states of the examined objects, and Valet incorporates this newinformation into its �le system model. (In addition to information about the �le system,the flunkie also relays information about the users of the UNIX system | their homedirectories and their user and group identi�cation numbers | to Valet's Common Lispcomponent.)Examination of a UNIX �le system is inherently time consuming and the need forValet's Common Lisp process to communicate with a separate flunkie process makesexamination of the �le system even slower. Unrestrained perusal of the actual �le systemwould immediately bring the entire Valet system to a crawl and make the intelligentshell interface intolerably slow. Therefore, Valet's �le system knowledge base takes greatcare to remember which parts of its internal model are up to date and which are not. Asdescribed in Section 3.4.5.1, every �le in the model is associated with a scan-time andevery directory in the model contains a children-current-p 
ag that indicates whetherthe entries within the directory are known to be current. By consulting these data and byupdating its model only as necessary, Valet's �le system knowledge base minimizes thecommunication between itself and the flunkie, thereby allowing the knowledge base tooperate as quickly as possible. This in turn allows Valet's file-name ATN parser actionto interpret and correct �le names speedily, even when it must consult large amounts ofcontext in order to do so.3.4.5.3 Parsing and Correcting File NamesA single ATN parser action called file-name is responsible for interpreting andcorrecting �le names that appear in input shell commands. Not surprisingly, because�le names are used in so many di�erent circumstances and because there is so muchcontext to consider when a �le name is to be corrected, the file-name parser action



107is the single most complicated parser action de�ned in Valet. The file-name actionaccepts many di�erent arguments as summarized in Table 3.4. The command de�nitionsin Figure 3.7 illustrate how the file-name action is actually used in command networks.When the file-name action is invoked, it takes the next available token from the ATNparser's input and tries to interpret that token as a �le name. The action consults the�le system knowledge base and attempts to locate the dirent structure that correspondsto the current input token; when the search is successful, the file-name action addsthe �le name token and the named dirent to the output of the parser. The argumentslisted in Table 3.4 control how the file-name action operates. Most importantly, the:type argument lists the kinds of �les to which the current �le name may refer. Theset of possible types includes the standard UNIX �le types (:regular, :directory, andso on), the aggregate types :not-directory and :any-existent-type, and the specialtype :imaginary. As described in Section 3.4.5.1, an imaginary directory entry is onethat does not currently exist in the actual �le system; the type :imaginary, then, tellsthe file-name action that the current �le name may refer to an imaginary dirent.(The :imaginary keyword gives the file-name action license to create a new imaginarydirent in Valet's �le system model if necessary. Note, however, that the directory inwhich the imaginary dirent is to be created must itself exist.) The default value of the:type argument is :any-existent-type.The :resolve-symlink argument determines what the file-name action will do ifthe current �le name refers to a symbolic link: Should file-name return the directoryentry for the �le named by the link (i.e., \resolve" the link) or should file-name returnthe directory entry for the link itself? The :mode argument speci�es the set of propertiesthat the named �le must have: whether the �le must be :readable, :writable, orTable 3.4. Summary of the file-name Parser Action ArgumentsArgument Meaning(:type : : : ) Acceptable �le types (e.g., :regular).(:resolve-symlink t-or-nil) If name refers to a symbolic link, resolve it?(:mode : : : ) Required �le modes (e.g., :readable).(:prefer-extension : : : ) Preferred �le name extensions (e.g., \.c").(:provide-extension : : : ) Extensions that may be provided.(:into : : : ) Variables in which to store the dirent.(:accumulate-into : : : ) Variables in which to store the dirent.



108:executable (in any combination) by Valet's user.13 The :prefer-extension argu-ment contains a list of symbols that describe �le name extensions (i.e., �nal name seg-ments) and the current �le name is expected to have one of these extensions. None of thelisted extensions are required to be present in the �le name, but the :prefer-extensionlist provides useful contextual data in case the �le name needs to be corrected. The:provide-extension list is the set of extensions that the file-name action is allowedto append to the current �le name in order to locate the referenced directory entry.These do not apply when the current �le name already has an extension, however.Finally, the :into and :accumulate-into arguments name parser variables into whichthe file-name action should store the dirent that corresponds to the current input token.The variables in the :into list are set to contain the located dirent. The variables in the:accumulate-into list are assumed to already be bound to list values, and the direntlocated by the file-name action is inserted into each of those lists.Given values for some or all of the above arguments, the file-name action attemptsto interpret the parser's current input token as a �le name. If the token correctly namesa directory entry then the file-name action succeeds or fails depending on the type andmode of the referenced �le. (Unless explicitly told to do so, however, the file-nameaction will not allow the input �le name to refer to an imaginary directory entry.) Ifthe input token does not correspond to a directory entry, however, the file-name actionattempts to correct the original �le name so that it refers to an appropriate �le. Thecorrection heuristics within the file-name action are driven by context.The �rst step in correcting a �le name is to interpret the nonterminal components ofthe name. Nonterminal components are directory components; for instance, in the �lename \local/src/main.c" the segments local and src are nonterminal componentsthat are expected to name directories in the �le system hierarchy, and the order of thesecomponents re
ects the expected �le system structure. When the name given to thefile-name action must be corrected, the file-name action examines the nonterminalcomponents of that �le name and produces a set of directories around which it will latersearch for the �le that best corresponds to the �nal segment of the name. This set ofstartpoint directories is constructed as follows:1. If the original �le name is a relative �le name, the startpoint set is initialized to13Imaginary �les are treated as :writable but neither :readable nor :executable.



109contain the shell process' current directory. Otherwise, the �le name is an absolute�le name and the startpoint set is initialized to contain the root directory.2. The nonterminal components of the �le name are processed in order, and the set ofstartpoint directories is updated with each step through the list of components. Foreach component:(a) The \neighborhood" of each directory in the startpoint set is searched fordirectories that have names that are identical to or simple variations of thecurrent �le name component. \Simple" variations are those that can be cor-rected by lexicon-spell as described in Section 3.4.3. The neighborhood of adirectory includes (1) the directory itself, (2) the parent of the directory (i.e.,the directory that is above the current directory in the �le system hierarchy),(3) the children of the directory (i.e., the directories that are immediately belowthe current directory in the �le system hierarchy), and (4) the siblings of thedirectory (i.e., the other directories that are below the parent of the currentdirectory). Roughly speaking, by searching the neighborhood of each directorythe file-name action allows for extra, omitted, and incorrect componentswithin �le names. If the search locates any appropriately named directories,the set of startpoint directories is set to contain the newly found directories andthe control returns to the beginning of step 2 in order to consider the next �lename component.(b) If, however, the previous search failed to locate any directories at all, thenthe neighborhoods of the startpoint directories are searched again, this timefor directories that have names similar to the current �le name componentas determined by the function lexicon-guess. If this search locates anydirectories, then these are the new startpoint directories and control returnsto the beginning of step 2.(c) If the previous searches failed to locate any directories, then Valet's entire �lesystem model is searched for recently referenced directories with names that areidentical to or simple variations of the current �le name component. Becauseall directory entries are stored in a lexicon, it is easy and quick to search theentire model by invoking lexicon-spell. Again, if any directories are located,they become the new startpoint set and control returns to the start of step 2.



110(d) Finally, if all of the previous searches failed, then the entire �le system modelis searched for recently referenced directories with names that are similar tothe current �le name component as determined by lexicon-guess. The set oflocated directories | even if that set is empty | becomes the new startpointset and control returns to the top of step 2.When the file-name correction heuristic searches the neighborhood of a directory, itmust consult many segments of Valet's �le system knowledge base. Each examinationcould potentially cause the knowledge base to communicate with the flunkie process;left unchecked, the need to update large parts of the �le system model would makethe correction of �le names intolerably slow. Therefore, portions of the neighborhoodsearches described above are coded to examine only data already in Valet's model.(This constraint ultimately proved to be too severe as explained in Section 4.2.4.)After all the nonterminal components of the current �le name have been processed asdescribed above, the �nal startpoint set is the set of directories around which the file-name action must search in order to locate the referent of the �nal �le name component.This process is similar to the search just described. The correction heuristic searches theneighborhood of each startpoint directory for entries that have names identical or similarto the �nal �le name component, �rst directed by the function lexicon-spell and thenby lexicon-guess. As allowed by the :provide-extension argument, the file-nameaction may append various extensions to the �nal �le name component in order to �nda matching directory entry. If the neighborhood searches fail then the file-name actionsearches Valet's entire �le system model for appropriate directory entries. Ultimatelythe �nal set of located directory entries represents the likely corrections for the original,incorrect �le name. From this set the file-name action chooses the best candidatecorrection as determined by context: the set of acceptable �le types, the required �lemodes, the preferred �le name extensions, the heat values associated with the candidatecorrections, and the \distance" to each correction (i.e., the number of components in theabsolute or relative �le name required to reference each potential correction).If Valet's file-name parses its given input �le name | either verbatim or throughthe heuristics designed to correct erroneous �le references | and successfully locates adirectory entry that refers to a �le of the required type and mode, the file-name actionadds the parsed and possibly corrected �le name to the ATN parser's output, along withthe dirent structure to which the name refers. Then, if the parser successfully interprets



111the remainder of the user's input command, Valet updates the dirent structures inthe parser's output with new values for their last-reference and heat slots. This newreference information provides context for future commands, both for the current Valetsession and for future sessions. By preserving contextual data through many separatesessions, Valet's knowledge bases become tuned to the behaviors of its individual usersand the intelligent shell interface as a whole becomes increasingly pro�cient at properlycorrecting its users' input errors.3.4.6 Preservation of Interaction ContextsMuch ofValet's knowledge describes �xed, unchanging aspects of the UNIX operatingsystem and the UNIX C shell. For instance, Valet knows the command line syntaxrequired by the ls program and this information is applicable to all invocations of ls |the ls command does not behave di�erently for di�erent people. This kind of knowledge,constant across time and across di�erent users of the C shell, is built into Valet. Onthe other hand, Valet also needs knowledge that is speci�c to each of its users. Forexample, in order to correct shell commands accurately, Valet remembers the set ofrecently invoked commands and the set of recently referenced �le names. These sets arenaturally di�erent for each user of the interface, and in addition, these sets change overtime. Not only do these sets provide context in the short term, but over the course ofhundreds of shell commands these sets come to describe the long-term habits of Valet'sindividual users. Therefore, in order to establish long-term interaction context for eachof its users, Valet preserves its user-speci�c data across separate invocations of theinterface. When a user ends a session, Valet saves the information speci�c to that userin a special �le. Later, when that user reinvokes the interface, Valet reads the user's�le and restores the user's interaction context.Valet stores user-speci�c contextual data in �les within its users' home directories.Each user's \.valetrc-host.l"14 �le contains forms that preserve the \current time," theshell command knowledge base described in Section 3.4.4, and the �le system knowledgebase described in Section 3.4.5.� The saved time is proportional to the number of shell commands that the user hasever entered to Valet. This time must be preserved and restored in order forValet14The host portion of the �le name is the name of the machine on which Valet runs.



112to interpret the last-reference and heat data within the shell command and �lesystem forms described below.� Every command in Valet's shell command knowledge base is described in the user-speci�c context �le. For each command Valet remembers the command's nameand location (i.e., the symbol :built-in or name of the directory that containsthe named program �le) and the last-reference and heat values associated withthat command. These saved data, when combined with Valet's built-in knowledgeof certain commands, make it possible for Valet to restore its shell commandknowledge base completely. In particular, the saved command data generally makeit unnecessary for Valet to scan the shell's search path, so the Valet session canstart quickly.� Information about \hot" directory entries is also preserved in users' context �les.At the end of each user session Valet searches its �le system model for all thedirectory entries that are still \hot" according to their last-reference and heatvalues. For each hot entry Valet remembers the absolute �le name of the entry andthe last-reference and heat values for that entry. Later, when the user's savedcontext is restored, Valet recreates the appropriate portions of its �le system modelin order to restore the last-reference and heat values for all the directory entriesdescribed in the user's context �le. In the process Valet also recreates the \spatial"context around each of those entries in the �le system model. Overall, the e�ect isthat Valet recreates all of the recently referenced portions of its �le system modelevery time the intelligent interface is invoked.All of the above contextual information is encoded in order to be compact and quicklyinterpretable. Every time a new Valet session begins, Valet's Common Lisp processloads its user's \.valetrc-host.l" �le, and the forms in that �le invoke special functionsthat recreate the current user's context. This context in turn allows Valet to refer toits user's past commands in order to accurately correct his or her future input errors.3.5 The Process of Input CorrectionThrough knowledge and context, Valet's Common Lisp components | the inputtokenizer, the ATN parser, and the various knowledge bases | attempt to interpret andcorrect commands entered to the C shell. Consequently, the extent to which Valet can



113successfully understand its users' inputs is limited by the knowledge contained in the inter-face. Valet incorporates a great deal of information such as the set of available commandnames, descriptions of the command line arguments required by popular commands, anunderstanding of �le name patterns, data about the �le system, data about the users ofthe host UNIX system, and timestamps that indicate how frequently various entities havebeen referenced in users' input commands. All of this knowledge is essential in order forValet to interpret the kinds of commands that people enter most frequently. In orderto interpret all possible shell commands intelligently, however, Valet would need accessnot only to the kinds of information just listed but also to many more obscure domains.Some of this data would be very di�cult or impossible to acquire (e.g., the names ofall users of a remote UNIX system), and even if Valet had access to these data theywould be generally useful for only a relatively small number of user inputs. For thesereasons Valet concentrates on the more important and more common cases. Valet'sknowledge bases describe the domains that are most important to the interpretation ofshell commands and Valet's heuristics allow the interface to correct the most frequentlyoccurring errors in those commands.In order to interpret an entire command Valet must associate meanings with eachof the individual terms that constitute that command. This means that Valet mustdetermine the domain to which each term refers (i.e., discover the kind of thing namedby each term). This associative process is carried out by Valet's ATN parser and itsactions. For each term, the set of domains to which that term may belong is determinedby the \position" of Valet's ATN parser within its transition network at the time thatterm must be interpreted. For example, from a certain position the parser may have achoice between two actions: one that attempts to parse the next input term as a commandoption and another that attempts to parse the next input term as a �le name. In general,the set of acceptable domains for a term is determined by the set of currently availableactions, and that set of actions is determined by the syntax of the current command asembodied in that command's transition networks. From the available set of actions theparser discovers the domain of its current input term through trial-and-error executionof the actions; a parser action succeeds only if the current term appears to belong to thedomain examined by the action.In order to interpret an input term reasonably, a parser action must be able todetermine if that term is a member of the action's domain, either through a priori



114knowledge (e.g., the set of options for a command) or through access to external sourcesof information (e.g., the �le system). This allows an action to recognize terms within itsdomain but does not necessarily allow the action to correct malformed terms. In orderto correct a term an action must be able to do more than simply verify particular names:It must also be able to search its domain for terms that are similar to a malformedterm, and ideally, it should be able to use various kinds of context in order to locate thebest possible corrections. In Valet's model, a fully implemented action has access to alexicon that completely describes the action's domain, and further, it uses both generaland domain-speci�c context in order to correct malformed terms. Ideally there wouldbe a unique parser action for every possible domain and each of those actions wouldhave complete knowledge of the domain to which it refers. Unfortunately, neither ofthese situations is possible. Due to the nature of the C shell language and the unlimitednumber of domains to which that language may refer there will always be some domainsfor which Valet has incomplete information. Therefore, some of Valet's parser actionsfully implement Valet's interpretation and correction model and some do not. In short,Valet \understands" di�erent domains to di�ering degrees.Some domains | shell command names and �le names, for instance | are vitalto understanding practically all shell commands, so for these domains Valet has verydetailed knowledge bases and sophisticated correction heuristics. Valet acquires datafor these essential kinds of terms even when those data are complex or di�cult to acquire,and the result is that within these domains Valet is very powerful. For example,unlike the metric library [13] and tcsh [27] and zsh [7] shells described in Chapter 2,Valet can correct �le names that contain extra or missing or even completely wrongdirectory components. Furthermore, because Valet remembers context that those othersystems ignore, Valet can search for corrections based on �le types and according to thefrequencies at which various �les have been previously referenced.The �le system is critical to understanding shell commands, but many other domainsare not so important or are too di�cult for Valet to examine practically. For instance,in order for Valet to interpret or correct arguments given to the UNIX make program,Valet would need a massive amount of code devoted just to make. Similarly, in order toverify electronic mail addressesValet would need to communicate with remote computersystems. Although the ability to understand make arguments and mail addresses wouldbe very useful in certain circumstances, the e�ort that would be required in order for



115Valet to understand these domains would be enormous and only useful for a relativelyspecial set of shell commands. The value gained is far outweighed by the e�ort required,so for many less important kinds of inputs Valet implements only a partial or minimalinterpretation model.In addition to these limits on interpreting individual words, Valet has limits on itsability to interpret certain kinds of complete commands. Most obviously, in order toaccurately interpret the arguments within an input command, Valet's shell commandknowledge base must have a description of the expected command line syntax. Thisdescription is embodied by a transition network particular to the invoked command.Most of Valet's command argument networks accept only the syntax required by thecorresponding commands, but it would be possible for these networks to accept more
exible kinds of inputs. It would be possible, for example, for Valet to de�ne transitionnetworks that could reorder command arguments | in order to move all options to thebeginning of the argument list as required by some UNIX programs | or insert or deletetokens in order to make sense of a command line. These features would be occasionallyuseful but are almost entirely unimplemented because they do not correspond to the mostfrequently occurring types of input errors.15 For similar reasons Valet understands thecommand line syntax required by only a small subset of the hundreds of available UNIXprograms: The e�ort required to describe every command, not just the most popularones, would be very large and would reap additional rewards only in relatively seldomcases. Rather than attempt to handle every circumstance, Valet instead concentrateson the most common kinds of shell inputs and the most useful correction heuristics.In conclusion, although its ability to interpret and correct shell commands has certainlimits, Valet nonetheless serves to demonstrate the e�ectiveness of user-supportive,context-based, \intelligent" user interfaces. The error correction features that Valetincorporates are those that are generally most useful to experienced users of the C shell.
15The literal parser action, which looks for and accepts a particular token, may try to insert anexpected token into a command.



CHAPTER 4EVALUATIONThe true test of a human-computer interface is the e�ectiveness with which thatinterface meets the needs of its users. Valet attempts to address its users' needs byadding \intelligent" command analysis to the UNIX C shell. Valet's goal is to providean intelligent, user-supportive interface to the C shell, an interface that uses knowledge inorder to interpret and as necessary correct its users' shell commands. In order to evaluatehow well Valet meets this goal, 11 people were recruited to use the Valet interface inthe course of their everyday work. The commands that these people entered, along withValet's interpretations and responses, were recorded in transcripts. These transcriptswere later analyzed in order to evaluate the interface and answer questions such as thefollowing:� How often do people enter erroneous shell commands? Because Valet's principalfeature is that it corrects errors, the frequency at which errors are made imposes alimit on Valet's overall usefulness.� What kinds of errors do people actually make, and with what frequencies? Thisinformation determines the importance and applicability of Valet's various inputcorrection heuristics.� How often does Valet properly detect errors? Conversely, how often does Valetfail to detect errors (i.e., how common are \false negatives") and how often doesValet incorrectly decide that a truly valid command contains an error (i.e., howcommon are \false positives")? In addition to providing data for evaluation of thecurrent system, an understanding of the causes of false positives and negatives isimportant for possible future improvement of the interface.� When an actual mistake is detected, how often can Valet infer its user's intendedinput? How often is the interface unable to o�er any correction at all to its user, and



117why is Valet unable to infer reasonable corrections in these cases? The answersto these questions describe the e�ectiveness of Valet's current correction heuristicsand also provide insight for future improvements.The data gathered during the user testing experiment answer the above questions andhighlight both Valet's strengths and weaknesses. Section 4.2 below presents a detailedanalysis of the data, but in brief the results suggest that Valet's style of intelligentparsing and input correction can be a very e�ective component of a user interface. Valetcorrected slightly over half of all the erroneous shell commands that were entered duringthe user testing experiment, and as described in Section 4.2.4, in most but not all ofthese cases Valet's suggested correction was accepted verbatim byValet's user. Most ofValet's de�ciencies can be attributed to its lack of certain kinds of knowledge, correctionheuristics that were sometimes too conservative, and other restrictions of the currentimplementation | in other words, factors that could be alleviated in future intelligentshell interfaces. 4.1 The ExperimentIn order to understand Valet's performance in \real world" situations, members ofthe University of Utah Department of Computer Science were recruited to use Valet.The study of a new \intelligent" shell interface was announced through electronic mailand news and 25 people responded. Of those, 11 eventually participated in the testing ofValet. Most of the rejected volunteers either never used the computer systems on whichValet ran or were not available to use the interface during the predetermined testingperiod.The 11 volunteer participants in the study included undergraduate students, graduatestudents, and faculty members from the Department of Computer Science. Each ofthe participants was already familiar with the C shell and with GNU Emacs, and eachagreed to use Valet in the course of his or her normal work during the period of thestudy, approximately four weeks. The participants were told that Valet was designed tointerpret shell commands and correct input errors and that the purpose of the experimentwas to study Valet's abilities in natural situations. Therefore, despite Valet's abilitiesthe testers were asked to behave normally and not to make intentional input errors.Each participant received a brief set of instructions for Valet describing how to startthe interface and how to invoke the system's special features (e.g., the command history



118described in Section 3.3.1). The instructions also listed the kinds of inputs that Valetcould not understand: aliases, references to the C shell's built-in command history (e.g.,the command \!!"), references to shell variables, and other certain constructs. In additionto instructions, each Valet user also received and signed an informed consent form. Thisform described the purpose of the experiment and stated that all of the shell commandsinput to Valet would be recorded and later analyzed in order to measure the overalle�ectiveness of Valet's intelligent features.The Valet system was available for a period of approximately four weeks during Julyand August 1993, and in that time Valet recorded information about 1,126 nonemptyinputs to the shell from the group of 11 testers. At the conclusion of the testing periodeach user was asked to �ll out a brief questionnaire in order to record his or her generalimpressions and comments about the interface. None of the Valet testers received anycompensation for taking part in the experiment.4.2 The Results of the ExperimentTable 4.1 summarizes Valet's handling of the 1,126 shell commands that were ana-lyzed and recorded during the user testing experiment. Each input falls into one of threecategories representing Valet's three types of response:1. Accepted. An accepted input is one that Valet determined to be correct | inother words, an input that Valet parsed and sent to the underlying C shell processverbatim. As described below, a few accepted inputs were actually erroneous; theseinputs contained errors that Valet failed to recognize.Table 4.1. Distribution of Correct and Incorrect InputsAcross Valet's ResponsesAll All All Unintent'lyRecorded Correct Incorrect IncorrectInputs Inputs Inputs InputsResponse # % # % # % # %Accepted 994 88.3 983 94.0 11 13.75 7 15.2Corrected 60 5.3 19 1.8 41 51.25 18 39.1Rejected 72 6.4 44 4.2 28 35.00 21 45.7Total 1126 100.0 1046 100.0 80 100.00 46 100.0



1192. Corrected. A corrected input is one that Valet recognized as erroneous and forwhich Valet o�ered a correction to the user. For example, in one case, one of theValet testers entered the shell command \cd par". Valet discovered that thedirectory par was not in the shell's current directory but that par was in fact one ofthe siblings of the current directory. Valet therefore presented a correction of theoriginal command to the user, suggesting that \cd ../par" was most likely whatthe user intended. Obviously, whenever a user's input was corrected, that input wasnot sent to the underlying C shell process. Valet occasionally o�ered correctionsfor commands that were not in fact erroneous, as described below.3. Rejected. A rejected input is one thatValet recognized as erroneous but for whichValet o�ered no correction. Instead, Valet simply presented an appropriate errormessage to the user. (The construction of these error messages was detailed inSection 3.4.2.3.) Obviously, rejected inputs were not relayed to the C shell processfor execution. As with the set of corrected inputs, not all of the rejected inputsactually contained errors.Of the 1,126 total recorded inputs, 994 inputs (88.3%) were accepted by Valet.In addition, 60 inputs (5.3%) were corrected and 72 inputs (6.4%) were rejected. Thetotal count of inputs excludes \empty line" inputs, which are normally ignored by the Cshell, and also excludes approximately 232 inputs for which no parsing information wasrecorded. Due to technical problems, information about those inputs was lost.Overall, the number of recorded inputs was substantially less than the number thatwas anticipated because several of the 11 volunteers used Valet on only a few occasions.Table 4.2 summarizes the number of commands entered by each of Valet's testers.Clearly, each user contributed to a di�ering extent | user A by himself entered almosthalf of all the recorded commands. Some of the numbers in Table 4.2 are lower thanthey should be because certain inputs were not recorded, as just described. The missingcommands include approximately 56 inputs from user A, 26 from user E, 30 from userH, and 120 from user K. Some of the low �gures may re
ect disappointment with thelimitations of the interface; in particular, Valet's inability to recognize aliases may havereduced the number of commands that some users entered. However, the comments thatusers made on their questionnaires did not indicate wholesale dissatisfaction with theinterface. Perhaps the volunteers, most of whom were students, simply had little work to



120Table 4.2. Summary of Users' Inputs and ErrorsNumber of Inputs Number of ErrorsUser Accepted Corrected Rejected Unintentional IntentionalA 499 7 23 18B 153 12 11 10C 68 12 6 3 7D 56 21 9 3 24E 73 3 2F 56 9 4G 36 2 6 4H 15 2 4 2I 16 1 1J 13 3 1 2K 9Total 994 60 72 46 34do during the summer, Valet's testing period, when classes were out of session.Although Valet's testers as a group entered fewer commands than expected, a sub-stantial amount of data was nevertheless collected during the user testing experiment.The 1,126 recorded commands represent a considerable amount of user interaction. Fur-thermore, Valet's recorded inputs are similar in many ways to those recorded in otheruser behavior studies [12]. With certain exceptions (described in Section 4.2.1), whencompared to the results of other research e�orts, Valet's users seem to have been typical:They invoked an ordinary assortment of UNIX commands and made the standard kindsof errors. In summary, the 1,126 commands recorded by Valet appear to be reasonablyrepresentative of most users' shell commands, so it is possible to analyze Valet's users'commands in order to evaluate Valet's e�ectiveness in \real world" situations.The leftmost section of Table 4.1 describes Valet's handling of the complete setof recorded inputs. The middle two sections of the table, however, show how Valetresponded to two disjoint subsets of those inputs: the set of all correct commands andthe set of all incorrect commands. Errors come in many varieties, but for the purpose ofthe analysis presented here, the distinction between correct and incorrect commands isderived from the types of input errors that Valet was designed to recognize and correct.In particular, a command is considered to be correct if the entered command namecorresponds to an actual command and the command arguments follow the requiredcommand syntax and correctly refer to entities of the required types. A command is



121considered to be erroneous, then, if it does not meet the above criteria for correctness.This means that a command is considered to be erroneous if, for example:� the �rst word of the command does not name an actual shell command;� the command arguments do not follow the required syntax for the command; or� any of the command arguments do not properly name objects of the required types.In other words, the analysis presented below is based on errors of expression, noterrors of intent. The set of erroneous commands does not include commands that arewell-formed but which in the context of a user's transcript appear not to be what the userperhaps meant to enter. For example, if a user entered the command \ls" in order to listthe contents in the current directory and then immediately entered \ls -a" in order tosee the names of the \dot �les" that were omitted from the �rst listing, the original \ls"command would not be considered erroneous. Perhaps the user meant to enter \ls -a"in the �rst place, but \ls" itself is a valid command and without detailed knowledge ofthe user's task there is no reason to prefer one of these commands over the other. On theother hand, in the analysis presented here, correctly formed shell inputs are consideredto be correct even if Valet is unable to interpret them. For example, the input \!!"which refers to the C shell's built-in command history is considered to be correct, eventhough Valet's parser cannot understand that input. Similarly, invocations of aliasesare considered to be correct (when they are correctly invoked) even though Valet hasno knowledge of its users' aliases, as explained previously in Section 3.4.4.The Valet session transcripts were examined by hand in order to locate all therecorded erroneous inputs. As Table 4.1 indicates, 80 such inputs were found. Althoughthe 11 recruited Valet users were asked not to make intentional errors while using the in-terface, from examination of the transcripts it is obvious that some of the users (especiallyuser D) explored the system by entering various types of garbled shell commands. Sincethe purpose of the experiment was to demonstrate Valet's ability to process naturallyoccurring errors, not fabricated inputs, the set of erroneous commands was divided intotwo: those that were apparently unintentional and those that were apparently intentional,as determined by the context of the errors and the best judgment of the author of Valet.Intentional errors were not entirely eliminated from the analysis presented here, however,because although they were arti�cially constructed they are still actual errors that provide



122insight into Valet's capabilities. Many of the tables in this chapter therefore presentdata for both the set of all erroneous inputs and then for just the set of unintentionallyerroneous inputs. The rightmost portion of Table 4.1 summarizes Valet's responses toits users' unintentionally erroneous inputs.Because the 11 Valet test subjects were all experienced users of the UNIX C shell,it was naturally expected that the number of erroneous commands would be low as apercentage of all inputs. The actual error rate during the experiment, however, wassurprisingly high. As stated above and shown in Table 4.1, 80 erroneous inputs werelocated in the Valet session transcripts. This means that 7.1% (about 1 in 14) of all therecorded inputs contained an error of the sort previously described: an incorrect commandname, an incorrect command argument, a mislocated �le name, or other recognizableinput error. Even when only the 46 unintentional errors are considered the overall errorrate remains relatively high at 4.2% | about 1 in 24. These �gures suggest that thekinds of errors that Valet was meant to address actually occur at signi�cant rates inshell inputs. Apparently there is a great deal of opportunity for a system such as Valetto improve the shell's command line interface.That improvement, of course, depends on the system's ability to locate input errors |to distinguish between correct and incorrect commands. Table 4.1 shows that in general,Valet accurately made that distinction. An overwhelming percentage of all correct shellcommands | 94.0% | were accepted by Valet and sent to the shell process verbatim.Furthermore, the great majority of all erroneous inputs were recognized by the interfaceand were withheld from the shell process. Valet o�ered corrections for 51.25% of allincorrect inputs and o�ered error messages for an additional 35%, meaning that over86% of all erroneous inputs were at least recognized, and in most cases a correction waso�ered to the user. The accuracy of Valet's error recognition is practically unchangedwhen only the unintentionally erroneous inputs are considered, although in that domainValet rejected a few more inputs than it corrected.Valet was able to distinguish correct and incorrect inputs in most but not all cases.Not all actual input errors were recognized, and in some cases, Valet rejected or o�ereda correction for an already correct command. As Table 4.1 indicates, 63 truly correctinputs were misidenti�ed as erroneous: 19 of these were corrected and the remaining44 were rejected. These 63 misidenti�ed inputs are the false positives resulting fromValet's error detection heuristics and constitute 6.0% of all actually correct inputs.



123As explained in Sections 4.2.2 and 4.2.3 below, most of these false positives arose fromusers' attempts to employ parts of the shell input language that Valet was not designedto understand: in particular, command aliases and references to the C shell's built-incommand history. Most of Valet's users ran into these limitations as indicated by users'written comments after the experiment. In general, Valet's testers wrote that Valet'sintelligent features were useful but that the system's limitations were \discouraging."Comments such as this were typical: \I felt comfortable [with Valet], except for the factthat a large chunk of UNIX that I was used to wasn't really implemented yet. These werejust convenience devices (like `!!'): : : but still I felt myself working against the systemat times." Another user wrote that Valet's intelligent features were \somewhat useful"but that they \de�nitely didn't make up for the loss of aliases." The 11 Valet testerswere warned about Valet's parsing restrictions, but clearly, users' established habits arehard to change.In addition to false positives, the data from the experiment also revealed several falsenegatives: cases in which Valet failed to detect actual errors. Eleven truly erroneouscommands were accepted by Valet as correct during the study. In practically all of theseinstances, however, Valet's failure to identify the input error was due to Valet's lackof knowledge about the invoked command, as explained later in Section 4.2.4. Withoutknowledge of the invoked command's required syntax, Valet was unable to correct errorsthat were present in the command line. Additional knowledge, therefore, would reducethe number of unrecognized input errors. Greater knowledge and improved correctionheuristics would also improve the ratio of corrected to rejected inputs by enabling Valetto make reasonable corrections in a greater number of cases.In summary, Table 4.1 shows that Valet responded appropriately to the great major-ity of all the shell commands that were entered during the user testing experiment. Valetin general accepted correct commands and corrected or rejected incorrect commands. Thenext three sections of this chapter more closely analyze the inputs within each of Valet'sthree response categories.4.2.1 Analysis of All Accepted InputsValet accepted 994 inputs during the user testing experiment. Of these, 983 (98.9%)were correct commands and only 11 (1.1%) were actually incorrect (i.e., unrecognizederrors). As a percentage of all accepted inputs, therefore, the number of unrecognized



124errors is very low. The number of unrecognized errors is small when compared eitherto the total number of accepted inputs (994) or to the total number of erroneous inputs(80).The high accuracy of Valet's parser is due in large part to Valet's knowledge ofthe most commonly invoked shell commands. As previously discussed in Section 3.4.4,Valet's shell command knowledge base contains detailed descriptions of approximately50 commands, including many of the most frequently used commands such as cd, ls, cp,and rm. Each description provides information about the command line syntax requiredby a particular command, and when combined withValet's other knowledge bases, thesecommand de�nitions allow the intelligent shell interface to recognize and correct errorswithin invocations of the described commands. Ultimately, the e�ectiveness of Valet'sability to identify errors in command arguments is determined by both the number ofcommands for which Valet has detailed knowledge and the frequency at which eachof those commands is invoked. The fact that Valet accurately distinguished betweencorrect and incorrect inputs during the experiment | only 11 errors were unrecognized| suggests that Valet's built-in knowledge was applicable to most user inputs, and infact the data from the users' transcripts support this conclusion. Table 4.3 shows thatalthough Valet has detailed descriptions for only 50 or so commands, those descriptionsapplied to most of the commands that were entered byValet's users. Overall, 57.5% of allthe accepted, correct inputs entered during the user testing experiment were invocationsof the 50 or so \de�ned" commands, commands for which Valet has explicit knowledgeof the required command line syntax and arguments. \Generic" commands as describedin Section 3.4.4, on the other hand, are those commands that are known to exist but forwhich Valet has no special knowledge.When all of the accepted correct inputs are considered, Valet's built-in commandTable 4.3. Categorization of Accepted Correct InputsAccepted Correct InputsFrom All ExcludingUsers User ACategory # % # %Invocation of a de�ned command 565 57.5 405 83.0Invocation of a generic command 418 42.5 83 17.0Total 983 100.0 488 100.0



125descriptions applied to 57.5% of all the accepted, correct inputs. This �gure is low whencompared to the results of other studies, however. For example, Hanson, Kraut, andFarber [12] studied the use of UNIX shell commands and found that the 20 most popularcommands accounted for about 70% of all user inputs. In light of this result one wouldexpect Valet's set of 50 command de�nitions to apply to more than 70% of its users'inputs, and in fact, the lower than expected applicability of Valet's command knowledgecan be explained by the set of commands entered by user A. During the period of theValet experiment, user A was developing a large computer program. User A createda special suite of scripts designed especially for this task, and not surprisingly he usedthese scripts quite frequently. In addition he used other program development tools thatwere not explicitly described within Valet. The e�ect was that many of user A's inputsreferred to a small, unusual set of \generic" commands, and because user A entered almosthalf of all the inputs recorded during the Valet user testing experiment, his uncommoninputs had a very great e�ect on the statistics presented above.When the inputs from user A are excluded, it becomes clear that Valet's built-incommand descriptions applied to a great majority of its users' typical inputs. Table 4.3shows that when the inputs from user A are ignored, 83.0% of the remaining accepted,correct inputs were invocations of commands explicitly described withinValet. Table 4.4illustrates this fact in greater detail by listing the commands that were most frequentlyinvoked during the user testing experiment. When inputs from all users are included, 8 ofthe 16 most popular commands are generic; when inputs from user A are excluded, only3 of the top 16 are generic. The latter list is similar to the list of most popular commandsdetermined by Hanson et al., which showed that most shell inputs are invocations ofa relatively small set of orienting and data-acquisition commands (e.g., ls and more),general manipulation commands (e.g., cd and rm), and social commands (e.g., mail).Tables 4.3 and 4.4 make it clear that many of user A's recorded inputs were atypical.Overall, the results show that Valet's built-in command knowledge is in fact applicableto most users' typical shell inputs, and these results are consistent with the �ndings ofother researchers.The overall applicability of Valet's command knowledge resulted in accurate parsingof its users' inputs; as stated previously, 94.0% of all correct inputs were accepted byValet and 86.25% of all erroneous inputs were recognized. Only 11 erroneous inputswere undetected by the interface, and these few instances are summarized in Table 4.5.
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Table 4.4. Summary of the Most FrequentlyInvoked CommandsAccepted Correct InputsFrom All Users Excluding User ACommand # % Command # %ls 169 17.2 ls 121 24.8cd 127 12.9 cd 79 16.2Atl 70 7.1 exit 34 7.0Abuild 69 7.0 rm 32 6.6Gcc 48 4.9 more 25 5.1rm 44 4.5 pwd 23 4.7exit 38 3.9 cat 11 2.3Aon 29 3.0 lpr 11 2.3cat 25 2.5 finger 10 2.0more 25 2.5 Gw 10 2.0God 24 2.4 Gclear 8 1.6pwd 24 2.4 mail 7 1.4Aplccomp 18 1.8 ps 7 1.4AuclGrep 17 1.7 rlogin 6 1.2ps 16 1.6 who 6 1.2Ax 16 1.6 Gdu 5 1.0Total 759 77.2 Total 395 80.9A indicates a generic command created by user A.G indicates a generic but standard UNIX command.
Table 4.5. Categorization of Accepted butErroneous InputsType of Error InstancesMistyped command name 5Mislocated �le 2Argument not in required domains 1Argument refers to wrong domain 1Wrong number of arguments 1Incompatible arguments 1Total 11



127Almost half of the undetected errors were typographical errors within a command name,and these errors were undetected because each mistake resulted in a valid commandname | in particular, the name of a \generic" command about which Valet knewalmost nothing. This meant that in each case, Valet could not use knowledge aboutthe referenced command's required arguments in order to recognize its user's error. Itshould be noted, however, that three of the �ve mistyped command names were obvious,deliberate attempts to fool the interface.In two other cases, a command line argument speci�ed an incorrect location for a�le. In other words, each �le was referenced as if it were in a place other than its actuallocation. One of these errors was undetected because the invoked command was generic,and in the other case, Valet accepted the incorrect �le name because it was confusedabout the shell process' current directory. Due to the implementation of the interfaceas separate processes (as described in Section 3.2), it is possible in rare circumstancesfor the GNU Emacs and Common Lisp components of Valet to lose track of the shellprocess' current directory. For example, if Valet were to misidentify a cd command as anon-shell input, based on the heuristics described in Section 3.3.1, the actual shell processwould change its current directory without the knowledge of Valet's other components.Although rare, this kind of disorientation caused Valet to misinterpret six inputs duringthe experiment, and one of those inputs contained the mislocated �le name noted above.The remaining unidenti�ed errors occurred in the arguments to generic commands.One argument was intentionally nonsensical; it did not name any object in the appropriatedomain and it was not a mistyping of an acceptable name. In another case, an argumentnamed a symbolic link when it was required to name a directory. The �nal two cases wereinput by user A: He invoked one of his personal scripts without its required argument,and he later invoked a compiler with incompatible arguments.In summary, most of the 11 unrecognized errors described in Table 4.5 were missedbecause Valet lacked knowledge about certain shell commands. In all but one case, theuser's error might have been detected or even corrected had Valet contained detailedknowledge of the invoked command.4.2.2 Analysis of All Corrected InputsValet o�ered corrections for 60 inputs during the user study, and these cases aresummarized in Table 4.6. As shown, Valet made corrections for 41 erroneous inputs,including 24 mistyped command names and 1 incorrect command name. The di�erence



128Table 4.6. Categorization of Corrected InputsCorrectedInputsCategory # %Actually Erroneous InputsMistyped command name 24Incorrect command name 1Mistyped command argument 15Mislocated �le 1Subtotal 41 68.3Actually Correct InputsInvocation of alias 14Invocation of program in current directory 3Confusion about shell's current directory 2Subtotal 19 31.7Total 60 100.0between these classi�cations is that a mistyped command name is the result of an apparenttypographical error, whereas an incorrect command name is not. (In the single case ofan incorrect command name, Valet's user entered \x -x" when his apparent intentwas actually \ps -x".) Valet also recognized and corrected 15 typographical errors incommand arguments of various kinds and additionally corrected 1 incorrect reference toa �le. In that instance, Valet's user entered \cd par" and Valet determined that\cd ../par" was most likely what the user intended. It was disappointing to discoverthat Valet corrected only 1 of the 9 mislocated �le names that were entered during theuser testing experiment; although 7 of these errors were recognized, Valet was unable too�er a reasonable correction for 6 of those errors. The apparent causes of these failuresare described later in Section 4.2.4.In addition to correcting 41 erroneous inputs, Valet mistakenly identi�ed 19 trulycorrect commands as erroneous and o�ered corrections for them. As Table 4.6 shows,however, most of these 19 false positives arose from users' attempts to invoke theircommand aliases. Alias names are often short and lexically similar to the names ofother commands. Valet, because it had no knowledge of its users' aliases (as describedin Section 3.4.4), interpreted many alias names as input errors and therefore o�ered



129corrections for those commands. If it had been possible for Valet to determine its users'alias de�nitions, most (probably all) of these inappropriate corrections would have beeneliminated.Three more inappropriate corrections arose from users' attempts to invoke programslocated in the shell's current directory. It is common for users of the C shell to putthe directory \." in the shell's search path, which makes it possible for users to invokeprograms residing in the shell's current directory simply by typing the names of thoseprograms as commands. However, the current directory of the shell changes over time,and Valet scans the shell's search path only once for each user for reasons previouslydescribed in Section 3.4.4. Because of this limitation, Valet does not understand thee�ect of placing \." in the shell's path and so does not understand the just-describedmethod of program invocation. Users were warned of this restriction and were told howto work around it,1 but established habits are di�cult to change.Finally, two inappropriate corrections were made because Valet's Common Lispcomponent had inaccurate data about the shell process' current directory. In total, only avery small number of truly correct inputs were misidenti�ed as erroneous by the interface.The 19 misidenti�ed inputs listed in Table 4.6 amount to just 1.8% of the 1,046 correctinputs that were recorded during the user testing experiment.4.2.3 Analysis of All Rejected InputsWhenever Valet detected an error in an input command but could not o�er anyreasonable correction for that error, Valet simply rejected the entire input command anddisplayed an appropriate explanation of the problem to its user. During the user testingexperiment Valet rejected 72 inputs, and these inputs are categorized in Table 4.7. Ofthe 72 rejected inputs, 28 (38.9%) were truly incorrect and 44 (61.1%) were truly correctbut misinterpreted by the interface.Most of the 28 rejected erroneous inputs fall into the categories described previously:mistyped command names and arguments, mislocated �les, and arguments that do nothave any obvious interpretations or corrections within their required domains. Althoughall of these errors were detected, none of them were corrected by the interface. Insome cases this was due to a lack of contextual information | for example, each of1Within Valet, programs in the shell's current directory can be invoked by pre�xing the programname with \./". This is the syntax normally required by the C shell when \." is not in the shell'scommand search path.
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Table 4.7. Categorization of Rejected InputsRejectedInputsCategory # %Actually Erroneous InputsMistyped command name 5Mistyped command argument 4Mislocated �le 6Argument not in required domains 2Argument refers to wrong domain 1Missing \required option" 1Program not in search path 1No match for glob 2Whitespace error 1Nonsensical input 5Subtotal 28 38.9Actually Correct InputsInvocation of alias 5Invocation of unde�ned built-in command 8Invocation of program in current directory 7Use of command history (!) 11Use of shell variable ($) 1Use of pipeline (|) 5Confusion about shell's current directory 3Bug in Valet's expansion of globs 4Subtotal 44 61.1Total 72 100.0



131the six �le location errors was uncorrected because Valet's �le system knowledge basehad not yet scanned (or rescanned) certain portions of the actual �le system, and thecorrection heuristics were purposely prevented from updatingValet's internal �le systemmodel. (The �le name correction heuristics are described in Section 3.4.5.3.) In othercircumstances, Valet was simply unable to locate an appropriate, su�ciently similar,correct alternative for a mistyped term. Many of the uncorrected errors provide insightinto ways in which Valet's correction heuristics could be improved, as described later inSection 4.2.4.In addition to the kinds of erroneous inputs just described,Valet rejected a handful ofinputs that were instances of other miscellaneous kinds of errors. For example, one Valetuser attempted to remove a directory with an rm command and apparently forgot that rmwill remove a directory only when it receives the \-R" option in addition to the directoryname. Valet told that user that he had forgotten to use the \-R" option. Valet couldhave o�ered the obvious correction in that instance, but the existing transition networkfor rm (shown previously in Figure 3.7) was not designed to do so. Other instances oferrors that Valet was not designed to correct include these: one invocation of a programnot in the shell's search path (and not explicitly described within Valet), two �le namepatterns that did not match the names of any actual �les, one case of conjoined terms(in which the user typed \/etc/ping/asylum" instead of \/etc/ping asylum"), and �veinputs that were uninterpretable as shell commands. Two of the nonsensical inputs wereapparently intentionally typed random strings and the other three were actually lines ofhexadecimal output from the UNIX od program!In addition to rejecting 28 erroneous inputs, Valet also rejected 44 well-formed shellcommands. As Table 4.7 shows, however, the great majority of these rejected but correctinputs were misunderstood because they made use of language features not known to theinterface. Of the 44 correct but rejected inputs, 17 relied upon unimplemented syntacticfeatures | history references, shell variables, and command pipelines | and 20 wereattempts to invoke commands that were either unknown to the interface (e.g., aliases) orlocated in the shell's current directory. Due to an oversight, some of the C shell's built-incommands were not described to Valet, and this lack of knowledge caused 8 inputs thatshould have been parsed to instead be rejected. Finally, 7 inputs were rejected due totemporary problems within the interface. Confusion about the shell's current directory(as described in Section 4.2.1) caused three inappropriate rejections and a programming



132error in Valet's input tokenizer caused Valet to misinterpret four �le name patternsand subsequently reject the expanded commands.2Valet rejected or corrected 63 truly correct shell commands during the user testingexperiment, and almost all of these cases arose from the intentionally chosen limitationsof Valet's current implementation. Although these false positives amount to just 6.0% ofall the correct commands recorded during the study, at the conclusion of the experimentmany of Valet's testers complained about the system's inability to understand aliasesand the other syntactic shortcuts provided by the standard C shell. One user wrote:\The usefulness of the [Valet] shell was a tradeo� between valid correction of errors andfrustration at not being allowed my favorite aliases. I had not realized how much I reliedupon previously de�ned aliases until this experiment." Several other users expressedsimilar sentiments (as noted in Section 4.2), so it is apparent that the limitations ofValet's current implementation can noticeably hinder experienced users of the C shell.However, these shortcomings are the result of Valet's experimental nature and design,and in spite of its limitations Valet served its purpose and to a great extent met itsgoal of providing an \intelligent" interface to the UNIX C shell. The data gathered fromthe user testing study demonstrate that on the whole, Valet accurately distinguishedbetween correct and incorrect inputs and that Valet o�ered reasonable corrections forits users' most frequent input errors.4.2.4 Analysis of All Erroneous InputsTable 4.8 shows that the errors made by Valet's testers were largely those thatValet was tailored to recognize and correct. Most of the recorded erroneous inputsresulted from typographical slips, and by far, most of those slips were isolated \simple"errors: the insertion, deletion, or substitution of a single character, or the transpositionof two adjacent characters within an input term. Only three unintentional typographicalerrors demonstrated more serious mutations. (In one interesting case, one of Valet'susers apparently misplaced his hand on the computer keyboard and typed \xs" whenhe apparently meant to type \cd". Valet suggested \ls" as a correction.) The factthat most typographical errors were simple is consistent with the results of other studies2The problem was that Valet's tokenizer included the names of Valet's internal \imaginary" direc-tory entries in the expansions of �le name patterns! (Imaginary entries are described in Section 3.4.5.1.)This problem was corrected immediately once it was discovered, shortly after the start of the user testingexperiment.
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Table 4.8. Categorization of Erroneous Inputs by TypeAll Unintent'lyErroneous ErroneousInputs InputsCategory # % # %Typographical ErrorsSimple 38 20Complex 15 3Subtotal 53 66.25 23 50.0File MislocationExtra directory components 1 1Missing directory components 7 6Wrong directory components 1 1Subtotal 9 11.25 8 17.4Incorrect Command ArgumentsArgument not in required domains 3 2Argument refers to wrong domain 2 2Wrong number of arguments 1 1Incompatible arguments 1 1Missing \required option" 1 1Subtotal 8 10.00 7 15.2Other ErrorsIncorrect command name 1 1Program not in search path 1 1No match for glob 2 2Whitespace error 1 1Nonsensical input 5 3Subtotal 10 12.50 8 17.4Total 80 100.00 46 100.0



134that characterize users' typographical errors [5, 6, 11, 28]. In total, typographical errorswere by far the most common type of erroneous input recorded during the Valet study,accounting for 66.25% of all errors and 50.0% of all unintentional errors. Valet wastailored to correct these kinds of errors and actually did so, within the limits imposed byits knowledge bases.Valet was also intended to correct �le location errors, and this type of error actuallyarose with signi�cant frequency during the study: 17.4% of all unintentional errors were�le location errors. In six of the nine recorded mislocations, Valet's user omitted a singledirectory component from the required �le name, and in all but one of those inputs it wasthe �rst component that was missing. (Often, the incorrectly referenced �le was actuallyeither one level above or below the shell's current directory in the �le system hierarchy.)In one case a user omitted two directory components and in the remaining mislocated�le names Valet's user either inserted an extra component or speci�ed an incorrectcomponent. Clearly, \spatial" context is important for correcting mislocated �le names,and Valet's heuristics as described in Section 3.4.5.3 make use of that information.(However, the restrictions placed upon these heuristics caused Valet not to correctmany �le location errors, as explained below.) None of the recorded �le location errorswere combined with typographical errors, although Valet was designed to handle suchsituations.The remaining types of error listed in Table 4.8 are types that Valet was designedto detect but for which Valet has no speci�c correction procedures. Valet's treatmentof these errors is therefore not surprising: Although more than three-quarters of theseremaining errors were recognized (as previously listed in Table 4.7) by the interface,Valet did not o�er a correction for any of these mistakes. Many of these errors defyautomatic correction because they provide no useful information about the user's intent;for example, when an entered command argument is completely unlike any acceptableargument, Valet has no lexical context from which to make meaningful inferences. Someof the recognized but uncorrected errors possibly could have been corrected if Valet hadcontained special knowledge about its users' tasks. (SAUCI, the shell interface describedin Section 2.4, incorporates this kind of knowledge for two very speci�c domains.) Otherrecognized but uncorrected errors could have been processed had Valet contained awider array of correction heuristics. It would be interesting to add a special heuristicfor correcting whitespace errors, for instance, or one for correcting �le name patterns.



135Those kinds of special-purpose correction procedures, however, would be in general lessuseful that the procedures that Valet already contains, which enabled Valet to makereasonable corrections for most of the input errors recorded during the experiment.Table 4.9 summarizes Valet's performance in detecting and correcting errors. Valeto�ered a correction for 51.25% of all the erroneous inputs that were recorded, and in abouttwo-thirds of those cases Valet's correction was accepted verbatim by Valet's user. Inother words, in most of the cases in which Valet o�ered a correction for an erroneousinput, the user's next command was exactly the command that Valet had just suggested.This is true even when only the set of unintentionally erroneous inputs is considered.(In that smaller domain, however, Valet o�ered corrections for a somewhat smallerpercentage | 39.1% | of users' errors.) It appears, therefore, that Valet's correctionswere frequently appropriate and useful. Most of Valet's users agreed. At the end of theexperiment, most indicated that Valet could often but not always detect and correcttheir most common mistakes. One user wrote: \[The] mistakes I made (usually simpletypo errors in command names) were speedily picked up by Valet: : : . My typos werethose (for the most part, say 90% of the time) which Valet could correct."Although Valet apparently often discerned its users' intentions, not all of Valet'ssuggested corrections were con�rmed by users. In a few cases Valet's user changedthe suggested command name or arguments to lexically similar alternatives or addedadditional arguments to the corrected command. In other cases, Valet's user discardedthe interface's suggestions entirely and entered a completely new command, apparentlybecause the user had changed his or her mind about what command to enter next. Manyof the cases in which a user appeared to change his or her mind, however, were actuallydue to intentional experimentation upon the interface. A few people tested Valet bypurposely entering a variety of incorrect commands in order to discover the capabilitiesof the system. In only two cases did Valet's correction of an unintentional error causea user to completely change course.About half of all erroneous inputs were corrected, which unfortunately means thatabout half were not. Out of 80 erroneous inputs, 28 were simply rejected (with explana-tion, but without correction) and 11 were mistakenly accepted as correct by the interface.The reasons for which Valet failed to correct these inputs are listed in Table 4.10. Ingeneral, whenever Valet rejected an erroneous input (i.e., correctly detected an inputerror but failed to o�er any correction for that error), the failure was due to one of
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Table 4.9. Categorization of Erroneous Inputs by OutcomeAll Unintent'lyErroneous ErroneousInputs InputsCategory # % # %Correction O�ered to User, andUser Accepted Correction VerbatimValet corrected command name 17 7Valet corrected command arguments 8 5Subtotal 25 31.25 12 26.1Correction O�ered to User, but UserDid Not Accept Correction VerbatimUser changed command name 2 2User changed command arguments 3 2User changed his or her mind 11 2Subtotal 16 20.00 6 13.0Error Recognized, but No CorrectionO�ered to UserValet rejected erroneous command 28 21Subtotal 28 35.00 21 45.7Error Not RecognizedValet accepted erroneous command 11 7Subtotal 11 13.75 7 15.2Total 80 100.00 46 100.0
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Table 4.10. Categorization of Uncorrected Erroneous InputsAll Unintent'lyErroneous ErroneousInputs InputsCategory # % # %Error Recognized, but No CorrectionO�ered to UserUncorrected due to lack of context:Mistyped name of known command 1Mistyped name of unknown command 3 3Mislocated �le 6 6No lexically similar alternative found for:Mistyped name of known command 1Mistyped command argument 4 1Incorrect (not mistyped) argument 2 2Program not in search path 1 1Argument referred to wrong kind of �le 1 1Missing \required option" 1 1No match for glob 2 2Whitespace error 1 1Nonsensical input 5 3Subtotal 28 71.8 21 75.0Error Not Recognized, so ErroneousInput AcceptedLack of knowledge about command 10 6Confusion about shell's current directory 1 1Subtotal 11 28.2 7 25.0Total 39 100.0 28 100.0



138two situations: Either Valet lacked the contextual information that would have allowedthe interface to make a correction, or Valet had the necessary context but its spellingcorrection heuristics were simply unable to �nd a su�ciently lexically similar alternativeto the mistyped term. Just as missing knowledge sometimes prevented a correction, itsometimes caused Valet to accept erroneous inputs. The bottom portion of Table 4.10shows that in all but one case, each time Valet missed an actual input error, the reasonwas that Valet lacked knowledge about the command being invoked.Lack of knowledge accounts for about half of all the cases in which Valet failed tocorrect an error. (This is true even when only unintentional errors are considered.) Tenof the 11 unrecognized input errors were missed because those inputs referred to genericcommands, commands for which Valet had no knowledge of the required commandline syntax and arguments. In �ve of those cases (listed previously in Table 4.5) atypographical error in a command name transformed the intended name into the name ofanother command. In each case, however, the error transformed the intended commandname into the name of a generic command, so Valet was unable to use knowledge aboutthe entered command line arguments in order to detect the user's input error. In the �veother cases, errors within the arguments given to generic commands went unnoticed dueto the corresponding gaps in Valet's knowledge. Finally, inaccurate information aboutthe shell's true current directory prevented the interface from recognizing one mislocated�le name.The other cases in which a lack of knowledge preventedValet from issuing a correctionare listed under the \Uncorrected due to lack of context" heading in Table 4.10. One userintentionally mistyped the name of a known (but generic) command. Valet failed too�er the obvious correction because that generic command had never before been invokedby that user, and Valet's command corrector does not consider the name of a genericcommand to be a candidate correction until that command has been invoked at leastonce. In three other cases users mistyped the names of aliases or unde�ned built-in shellcommands and Valet failed to determine the appropriate corrections because it had noknowledge of the users' intended commands. Finally, in six cases, Valet's �le namecorrection procedures failed because Valet's �le system knowledge base did not containup-to-date data about certain parts of the actual �le system.The failures of the �le name correction procedures arose primarily because Valetconstrained those procedures and prevented them from updating Valet's internal �le



139system model in certain situations. These constraints were implemented in order toincrease the speed of the corrector (as described in Section 3.4.5.3), but in retrospect it isclear that the restrictions were too severe and too greatly diminished Valet's ability tocorrect mislocated �le names. For example, one of Valet's users entered the command\uncompress Intro.ps.Z" when in fact the �le \Intro.ps.Z" had just been createdwithin the directory atrium, a child of the shell's current directory. Although Valetrecognized that the entered �le name was not valid, the interface was unable to makethe appropriate correction for the following reasons. Valet's knowledge of the atriumdirectory was out of date; the modeled contents of that directory had not been updatedto include the just-created \Intro.ps.Z" �le. When Valet's parser discovered thatthe input �le name was invalid, it invoked the procedure described in Section 3.4.5.3 tosearch the \neighborhood" of the shell's current directory for a �le of the given name.Unfortunately, that search was restricted: It was not allowed to rescan the contents of anyof the children of the shell's current directory. (Because the number of children can be verylarge, rescanning all of the children of a directory can be very time consuming.) AlthoughValet could have discovered the \Intro.ps.Z" �le by updating its model of the atriumdirectory, the corrector was barred from doing so, and the result was that Valet failedto o�er the appropriate correction to its user. This same restriction prevented Valetfrom updating its �le system model in other cases as well, each time preventing Valetfrom acquiring the context needed in order for it to make an appropriate correction.The data gathered from the user testing experiment show that the e�ectiveness ofValet's input correction heuristics could be increased by improving Valet's knowledge.Valet would bene�t from new, �xed kinds of knowledge (e.g., descriptions of additionalcommands), and it would also bene�t from �ne-tuning of its ability to keep its existingknowledge up to date. The interface would also pro�t from improved spelling correctionalgorithms. As shown in Table 4.10, in a small but signi�cant number of situationsValet had all the context it required but was still unable to discover an appropriate,su�ciently similar alternative for a mistyped term. For example, Valet failed to suggest\whoami" for the intentionally mistyped input \whoajsi" although the two terms arequite similar. In another instance, Valet failed to suggest \Intro.ps" as a correctionfor the unintentionally erroneous �le name \Intro.ps.Z". (The \Intro.ps.Z" �le wasmentioned in the previous paragraph. That �le was decompressed to create \Intro.ps"and the original \Intro.ps.Z" �le was deleted. After those changes had occurred,



140however, Valet's user entered the original \Intro.ps.Z" �le name in a subsequentcommand.) In each of these cases Valet refused to o�er the appropriate correctionbecause the similarity of the input to the correct term (as measured by the functionslexicon-spell and lexicon-guess described in Section 3.4.3) fell below an arbitrarypredetermined threshold. The examples just described from the user testing experimentsuggest that Valet's spelling correction heuristics and thresholds could be modi�ed inorder to better handle certain kinds of errors. Combined with additional knowledge andimproved knowledge maintenance, such changes could have allowed Valet to correct,rather than simply detect, a signi�cant number of the errors recorded during the usertesting experiment.The preceding paragraphs describe howValet detected and \came close" to correctingcertain errors. Although it is important to understand how Valet could be improved, itis also important to realize that the data from the user testing experiment demonstratethat Valet is already a reasonably \intelligent" interface to the UNIX C shell. Despiteits various limitations, Valet accurately distinguished most correct and incorrect inputsduring the user testing experiment. Experienced users of the C shell appear to makeinput mistakes with signi�cant frequency, and the kinds of mistakes that such peoplemake most often are those that Valet was designed to detect and correct. For abouthalf of all the recorded erroneous inputs Valet o�ered a reasonable correction to itsuser, and as summarized in Table 4.11 most of these corrections were accepted verbatimand immediately reinput to the interface. Roughly two-thirds of Valet's corrections toerroneous inputs were accepted verbatim, which demonstrates that to a very signi�cantdegree, Valet was actually useful to its users. Valet was able to knowledgeably inferits users' intentions in order to correct many of their input errors, thereby providing auser-supportive and \intelligent" interface to the C shell.Table 4.11. Categorization of Corrected Erroneous InputsAll Unintent'lyErroneous ErroneousInputs InputsCategory # % # %Valet's correction was accepted verbatim 25 61.0 12 66.7Valet's correction was not accepted verbatim 16 39.0 6 33.3Total 41 100.0 18 100.0



CHAPTER 5CONCLUSIONThe results of the experiment described in Chapter 4 show that Valet has bothimportant strengths and weaknesses. Valet proved that through knowledge and contextit could accurately detect most of the errors in its users' commands. The errors mademost often by experienced users of the C shell appear to be those thatValet was designedto recognize and correct, and furthermore, when Valet o�ered corrections for erroneouscommands, Valet's users most often accepted the suggestions o�ered by the interface.These results suggest that in general, a command line interface that uses knowledge inorder to 
exibly interpret its users' commands can also accurately detect and correctinput errors. Such \intelligent" human-computer interfaces can be more cooperative andmore user-friendly than their \unintelligent" counterparts.The user testing experiment also highlighted some of Valet's shortcomings. Just asValet's strengths derive from its incorporated knowledge, most of Valet's weaknessesderive from certain gaps in its knowledge. Valet refused to accept a signi�cant numberof well-formed shell inputs because it did not understand such things as user-de�nedaliases and references to the C shell's built-in command history. In addition, a signi�cantnumber of actual errors were undetected because Valet had no detailed knowledge ofcertain commands. Finally, in some cases, Valet's out-of-date knowledge prevented itfrom making what should have been obvious and easy to determine corrections.The most obvious way in which Valet could be improved, therefore, would be toincrease the amount of knowledge within the system and also the accuracy of thatknowledge. The most troublesome informational gaps in Valet were caused by theseparation between the intelligent command parser (currently implemented in CommonLisp) and the actual C shell program. A result of Valet's prototypical design, thisseparation kept Valet from consulting information that was internal to the shell process,and subsequently, this lack of knowledge made it practically impossible for Valet toparse such things as aliases and shell variable references. Removing the division between



142Valet's intelligent Common Lisp components and the actual shell would remove thesebarriers to knowledge. It would be possible and very useful, for example, to reimplementValet's Common Lisp components in the C programming language and then integratethose components directly with the csh (or tcsh [27] or even zsh [7]) program. Thisintegration would provide the intelligent command parser with access to the shell'sinternal data and would eliminate all of the problems that caused the current Valetimplementation to mistakenly reject or correct truly well-formed commands. Integrationand reimplementation in C would also greatly increase the speed of the system.Even if it were integrated with the actual shell program, Valet would still need tocontain its own descriptions of the other UNIX programs that are available. Valet'sshell command knowledge base describes in detail only a small fraction of the hundredsof programs actually available to Valet's users, and during the user testing experiment anumber of input errors were unrecognized simply becauseValet had no special knowledgeof the programs being invoked. Valet therefore would be improved if it containeddetailed descriptions for a much wider assortment of programs. It would be interestingfor Valet to attempt to \learn" about programs for which it has no explicit knowledge.Ideally, however, an intelligent UNIX shell would be able to determine the command linesyntax and arguments required by a program by consulting the program itself. Thatapproach would eliminate the need for the shell to have its own built-in (and therefore,possibly inaccurate) data about other programs' expected arguments. Unfortunately,there is currently no standard way for UNIX programs to communicate their commandline requirements to the shell | and even if such a mechanism were invented, hundredsof existing UNIX programs would need to be changed in order to adopt the convention.Despite these barriers, however, it would be very interesting to research ways in whichindividual programs could communicate with command shells in order to make computersystems more user-friendly.In addition to new command descriptions, Valet could also bene�t from completelynew kinds of knowledge. For example, one could incorporate user models into Valet.User models like those contained in SUSI [16] (described in Section 2.5) could describewhich UNIX concepts are understood and which are not. It would perhaps be usefulfor Valet to understand English synonyms for certain UNIX commands; this abilitymight bene�t inexperienced users and could even allow Valet to be used as a kind ofUNIX training tool. It would also be interesting to explore how task-speci�c knowledge



143like that built into SAUCI [35] could be added to Valet. The kinds of informationcontained in SAUCI and SUSI would need to be expanded in order to be most useful in ageneral-purpose command shell such as Valet. Balancing these new kinds of knowledgewith Valet's existing knowledge and input correction heuristics would be challenging.Valet's input correction procedures could also be improved. As described in Sec-tion 4.2.4, in a small number of cases Valet had all the information it required butwas nonetheless unable to �nd a su�ciently similar correction for an invalid input term.Valet's spelling corrector could be changed in order to handle some of those recordedinputs. It would also be possible to modify the spelling corrector to consult \characterconfusion matrices" or other data [11, 18] in order to rank candidate corrections accordingto the likelihoods of various keyboarding errors. Valet's input correction facilities couldbe improved in other ways as well. As explained in Section 4.2.4, the restrictions upon the�le name correction heuristics need to be reduced and the various command de�nitionsneed to be improved in order to allow Valet to o�er corrections for more classes oferror. Most likely, this would involve de�ning some new parser actions in order to insert,delete, or rearrange input tokens. It would also be useful for the parser and its actions toevaluate the natures of input errors and their likely corrections in greater detail. Valetcould then in some cases submit corrected inputs for execution without the need forcon�rmation by Valet's user. The need for con�rmation would be determined by theseriousness of the located error, the likelihood that Valet's inferred correction is trulythe proper correction, and the risk involved in submitting the corrected command withoutcon�rmation from the user. The parser and its actions would need to be changed in orderto compute heuristic measures for each of these attributes.Other changes could be made to the parser as well. The current parsing scheme hasthe disadvantage that ordinarily, once an erroneous token is found, the remainder of theinput is ignored. (Input commands are generally parsed from left to right.) Unfortunately,the remainder of the command can often provide valuable information about the user'sintent. Valet's current parser actions, therefore, sometimes delay the reporting of errors| in other words, upon recognizing an error they sometimes pretend that no error wasfound so that the remainder of the command may be parsed. Later, after all of the inputhas been processed, a special parser action determines if a previously unreported errorshould be signaled. By delaying parsing failures until the entire input command has beenparsed, Valet can sometimes produce more accurate explanations of parsing failures.



144(The generation of error messages is described in Section 3.4.2.3.) However, the needto employ tricks such as this indicates that a better parsing scheme could be devised.It would be interesting to explore other techniques (e.g., \best-�rst" ATN parsing) foranalyzing Valet's inputs.Valet's purpose was to demonstrate the e�ectiveness of knowledge-based \intelligent"interfaces, so it was designed to change only the way in which shell commands were parsed.Notably, Valet did not make any signi�cant changes to the way in which information waspresented to the shell's users. It is clear from the results of other studies [10, 12, 26, 35],however, that the C shell's user interface could be greatly improved through such changes.For instance, it would be very useful for the shell to display several separate windows ofinformation. One window could contain the normal terminal-like session transcript andadditional windows could provide contextual information such as the contents of the shell'scurrent directory or the list of the user's most recently or frequently entered commands.Valet's existing GNU Emacs interface could be readily adapted in order to explore thesenew interface styles.Finally, no matter what changes or improvements are made to Valet in the future,continued testing of the interface is a necessity. Only through actual use can the e�ective-ness of a human-computer interface be measured. The results of behavioral experimentscan illustrate both the shortcomings of today's computer interfaces and the most e�ectivemethods for overcoming those problems in future systems.Many of today's human-computer interfaces are di�cult for people to use. In order tocorrect this situation, interfaces of the future will need to make signi�cant e�orts to meetthe needs of their users. A large part of that task will be simply to understand users'intentions. Valet demonstrates that it is both feasible and pro�table for command lineinterfaces to be \cooperative" and \intelligent" and tolerant of human error. The ideasembodied by Valet are valuable and worthy of incorporation into other human-computerinterfaces because ultimately, intelligence is the quality that will characterize the mostuser-friendly and popular computer systems of tomorrow.
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