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ABSTRACT

Many modern human-computer interfaces are difficult for people to use. This is often
because these interfaces make no significant attempt to communicate with the people
who use them. In other words, these interfaces are uncooperative: They do not adapt
themselves to their users’ needs and they are insensitive to human foibles. Ordinary
command line interfaces such as that of the UNIX C shell (csh) are intolerant of even
the most simple input errors, even when those errors have obvious corrections. An
“intelligent” UNIX shell interface, on the other hand, would make use of knowledge
and interaction context in order to interpret — and as necessary, correct — its users’
commands.

VALET is a prototype of such an “intelligent” interface to the UNIX C shell. VALET
adds knowledge-based parsing and input correction to the shell by encapsulating an
ordinary C shell process within a framework that allows VALET to control the shell’s input
and output. VALET intercepts shell commands and parses them, using its knowledge of
the most popular UNIX shell commands, its built-in model of the file system, and data
that describe the commands and files most often and recently referenced by individual
users. VALET incorporates heuristics designed to detect and correct the kinds of mistakes
that experienced users make most frequently: typographical errors, file location errors,
and minor syntactic errors.

In order to evaluate the interface, eleven volunteers agreed to use VALET in the course
of their normal work for approximately four weeks. The commands that those people
entered, along with VALET’s responses, were recorded and analyzed in order to measure
the overall usefulness and effectiveness of the system. The data from the experiment
suggest that knowledge-based, error-tolerant, “intelligent” command parsing can have
very beneficial effects. The experiment also pointed to ways in which VALET could be

improved.
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CHAPTER 1

INTRODUCTION

Many modern computer systems are difficult for people to use. To a great extent,
this is because these systems do not make any significant effort to communicate with the
people who use them. In short, today’s computer interfaces are uncooperative. They do
not “speak” in human terms and they are not tolerant of human foibles.

A person using a computer quickly discovers that the machine has a language all its
own and that it insists on using exactly and only that language. Often, that language is
a kind of textual command language that allows a human operator to communicate with
a computer by typing commands on a keyboard. This kind of human-computer interface
is referred to as a command language interface or command line interface. Unfortunately,
many of today’s command languages are poorly designed. They are built around confusing
terms and cryptic syntax, and this causes computer users to make frequent input mistakes.
Rather than help users to fix these mistakes, most command language interfaces instead
compound the problem by being intolerant of even the smallest input errors  even those
that have seemingly “obvious” corrections. These interfaces make absolutely no effort to
determine what their human operators had intended to type. Instead, they simply report
that the user has made an input error and then require the user to retype his or her entire
command.

Because today’s command language interfaces are usually so inflexible and intolerant
of input slips, computer users quickly become frustrated or even intimidated by their
computers’ apparent unwillingness to communicate and “cooperate” with people. The
result is that these computer systems, intended to be popular and powerful tools, are
instead perceived as mysterious, unfriendly, and incomprehensible things.

In order to alleviate this situation, future computer systems must be designed to
communicate more effectively with their human operators. Future command language
interfaces will need to make greater efforts to understand the intentions of their users. In

particular, these new interfaces will need to be tolerant of human errors.



This thesis describes an attempt to create one such interface of the future: VALET.
VALET is an experimental “intelligent” user interface for the standard UNIX' C shell [17].
(The C shell is the program named “/bin/csh” on most UNIX systems.) The C shell
is a program with a command line interface that allows its users to execute other UNIX
programs. The C shell is therefore similar to the DOS command interpreter available on
many personal computers. Although the C shell is a very complex program, it does not
make any significant effort to understand its users’ intentions. That is, the standard C
shell takes input commands at “face value” and never attempts to correct its users’ input
mistakes. This behavior presents problems for both novice and experienced users.

VALET is an improved, “intelligent” interface to the C shell that addresses these prob-
lems. VALET is intelligent in the sense that it analyzes its users’ commands, understands
a more flexible command language, and is able to correct many common input errors
including misspellings, typographical errors, and incorrect references to files. VALET
incorporates a large body of knowledge about the UNIX system on which it runs, and in
addition, it creates and maintains an individual interaction profile for each of its users.
In this way VALET learns and adapts to the behavior of each of its human operators.

In summary, VALET goes to great lengths to understand the shell commands that are
entered by its users. The result is that VALET is a more sophisticated, user-friendly, and

cooperative command shell for UNIX.

1.1 The Need for Improvement

The study of human-computer interaction has grown rapidly in the past fifteen years
along with the distribution of computers into businesses, schools, and homes. As the
number of computer systems exploded, a new class of computer users emerged. These
new users — including office staff, students, teachers, and writers — lacked the extensive
training that had, until then, been a prerequisite for access to computer systems. These
new “casual” users made clear a fact that had until then been largely ignored: Computer
systems can be confusing and difficult to use.

Before the explosion in the availability of computers, computer scientists generally
designed hardware and software systems without serious consideration for the ways in

which people would interact with these products. Computer systems were created by

"UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.



computer professionals for other computer professionals, or for other people with exten-
sive computer training. Little thought needed to be paid to the design of a system’s
interface because both the designers and users of computer systems had similar technical
backgrounds. In addition, the users of computers were much more interested in what
their systems could do than they were in how those systems interacted with their human
operators.

As computers became more and more commonplace, however, the emerging class of
“casual” computer users had very different requirements. Although the computational
features of a system were still very important, it was now equally important that these
features be made easily available and understandable to the operators of the system.
In other words, computer interfaces now had to be user-friendly. People with little
or no computer training now needed to use computers as writing tools, filing tools,
computational tools, and data access tools — all without being required to understand
much if any of the science behind the computer systems.

It quickly became apparent that most systems did not have the user-friendly interface
that was required by the new casual users. In 1985 Bertino wrote [2]:

The recent proliferation of computer equipment has not been accompanied by
a comparable increase in user-friendly interfaces. Users of advanced hardware
machines are often disappointed by the cumbersome data entry procedures,
obscure error messages, intolerant error handling, and confusing sequences
of cluttered screens. In particular, novice users feel frustrated, insecure or

even frightened when they have to deal with a system whose behavior is
incomprehensible, mysterious, and intimidating.

Because many human-computer interfaces were confusing and frustrating, the effec-
tiveness of many computer systems was substantially reduced. It became clear that to a
large degree, the usefulness of a computer system was limited by the effectiveness of the
system’s interface. Particularly for novice computer users, what a system could do was
determined by how the system communicated. Software and hardware designers began to
realize that they had failed to provide effective user interfaces  not just for novices, but
also for themselves and other technical users. The UNIX operating system, for example,
was and still is a very popular operating system for the powerful computers used by
scientists, engineers, and other technically literate people. One might assume that UNIX
computer systems would have the most effective user interfaces that computer scientists

could design, but that assumption would be far from the truth. In fact, UNIX systems to



this day have a well-deserved reputation for being among the most difficult and confusing
systems to use. Even technical professionals find UNIX to be confusing and frustrating.
Norman [25, page 139], for example, wrote that the UNIX operating system’s command
shell was a user interface “disaster.” “It fails both on the scientific principles of human
engineering and even in just plain common sense.”

Because clumsy user interfaces were an obvious impediment to the widespread usability
of computers, the study of human-computer interaction grew quickly. Today, the design
of human-computer interfaces is a major research and commercial concern. It is standard
practice for software companies to evaluate and refine their products’ interfaces through
user-testing experiments in which people are asked to perform various tasks with the
software.

Since the discovery of the importance of interface design, command line interfaces like
the UNIX shell have been widely criticized by researchers as “unfriendly” for a number

of reasons:

Confusing terms. Command languages sometimes contain terms that are meaningful
to the people who design the language but that are not meaningful to the people
who use the language. For example, there is a common UNIX program that prints
a message every time a new electronic mail message arrives for a user. To run this
program, a person must type the program’s name: biff. The name biff is entirely
meaningless to most UNIX users and few novices would guess that biff has anything
to do with electronic mail. (According to folklore, the program was named after a
dog that barked whenever a postal carrier arrived.) Many other UNIX program
names are abbreviations or acronyms  mv, cp, rm, and grep  and although short
names can reduce the need for typing, commands like these ultimately make the
UNIX shell language inaccessible to casual users. Even experienced users can forget

or stumble over poorly chosen terms.

Inflexibility. Command line interfaces are inflexible in the sense that there is often only
one way to phrase a particular command. Commonly, a command language interface
will recognize only one name for each available action, object, or other entity  no
synonyms, abbreviations, or misspellings of the names will be tolerated. Many
languages are based upon strict syntax rules that do not allow the user to phrase

commands in all of the ways that seem natural — for instance, it may not be possible



to specify command options in an arbitrary order. While restrictions such as this
may be acceptable to expert users of a system, inflexibility frustrates people who
are not so familiar with the language. Inflexible systems are perceived by novice
users as intolerant and uncooperative, and sometimes even as intimidating. Not
surprisingly, researchers have shown that flexible command language interfaces are

easier and more enjoyable for novices to use [9].

Inconsistency. Command languages often contain inconsistencies. For example, some
commands may be abbreviations of English words whereas others may be word trun-
cations or phrase acronyms. Some commands in a language may accept arguments
or options that other similar commands do not. Even worse, the syntax of a language
may seem to differ between commands. The various UNIX command shells have
been particularly criticized in this regard [25]. (It is important to note, however,
that most of the UNIX shell’s language is actually interpreted by programs other
than the shell itself. As described in Section 1.3.1, the shell language is inconsistent

largely because these other UNIX programs are inconsistent with each other.)

Lack of feedback. In many situations, command line interfaces provide little or no
response to their human operators. Many interfaces are designed around the prin-
ciple that silence is desirable: Informational messages should be displayed only in
response to specific requests for data or in order to inform the user about exceptional
conditions (e.g., errors). Although this principle can greatly reduce the amount
of unwanted “noise” in an interface, it can also make casual users uncomfortable
because there is no apparent indication that the computer is doing anything in
response to users’ commands. Furthermore, a lack of informational responses tends
to put a burden on users’ memories. Users can quickly forget what state a system is
in. This was demonstrated, for example, in a study of UNIX shell command use by
Hanson et al. [12] who found that 21% of all users’ shell commands were orienting
commands that describe the current environment (e.g., the contents of the current

directory).

One of the most popular ways to handle these command line interface problems has
been to abandon command line interfaces altogether. In recent years many computer

applications have adopted graphical user interfaces, which are often believed to be easier



for casual users to master. Graphical interfaces usually address all of the problems listed
above; for example, graphical interfaces tend to display more orienting information (e.g.,
the set of available commands) than command line interfaces do. It is difficult, however, to
conclude that graphical user interfaces solve the above problems by their very nature. It is
possible to imagine graphical interfaces that provide minimal user feedback, that behave
in inconsistent ways, that use confusing pictures and words, and so on. Rather than
conclude that graphical interfaces are inherently superior to command line interfaces, it
is more reasonable to believe that the designers of graphical interfaces have simply learned
from the mistakes made in older command line interfaces.

Graphical user interfaces are certainly appropriate for many applications, but they are
not the ideal interfaces in all situations. Command language interfaces are widespread on
today’s computer systems and are effectively used in a variety of computer applications —
including command shells, electronic mail programs, debuggers, and information browsers
— on machines ranging from personal computers to supercomputers. Although graphical
user interfaces are becoming increasingly popular, command line interfaces have unique

and important strengths:

1. For many tasks, command language interfaces are considered to be more expressive
than graphical interfaces. Compared to today’s graphical user interfaces, command
line interfaces often provide more powerful ways for users to enter commands. This

is because command line interfaces provide syntax for:

(a) specifying details and command options in a succinct manner;
(b) referring to groups of similarly named objects through the use of patterns;
(¢) combining two or more commands into one larger command unit; and

(d) recalling and reexecuting previously entered commands.

It is often possible for a person to carry out a complex task with only a few keystrokes
to a command line interface when it would require significantly more effort for that
person to perform the same task by “pointing and clicking” with a mouse in a
graphical interface. In general, the disparity between the two interface methods

grows as the task becomes more complicated and detailed.



2. Because command line interfaces are textual, it is straightforward for a person to
create computer files that contain sequences of commands for such interfaces. These
files are called scripts or batch files and are used to simplify and automate complex
tasks. Once written, a script can easily be executed many times. Furthermore, if the
command language is sufficiently powerful, scripts and batch files can behave like
full-fledged programs. They can make decisions and adapt to changing situations

just as ordinary programs do.

Most systems that provide command line interfaces are also able to process batch
files. Current graphical user interfaces, however, generally do not provide similar
facilities. At best, graphical interfaces allow users to record and play back sets of
graphical gestures. Although these recording facilities can be useful, they cannot
offer the kinds of programming features found in many command line interfaces. A
recorded series of gestures cannot make decisions or adapt to the current state of

the system, for example.

The need for script and batch file programming features is demonstrated by com-
puter applications that provide both a graphical interface and a separate scripting
language. In these systems, the scripting language is essentially a noninteractive

command language interface to the program.

3. Finally, existing operating systems (e.g., UNIX and DOS) provide command line

interfaces, and these operating systems will continue to be popular for many years.

For all of the above reasons, command language interfaces will be important to many
computer systems of the future. Therefore it is necessary to identify the problems in
today’s command line interfaces and determine how those interfaces can be improved
in order to meet the needs of their users more effectively. Chapter 2 describes several
attempts to explore and design user-friendly, error-tolerant, and “intelligent” interfaces,

including several efforts to improve the interface of the UNIX shell in particular.

1.2 The Benefits of Improvement
As Card observed [3], when a person uses a computer system with an intelligent
interface, the interaction is less like the use of a tool and more like participation in
a conversation. A tool is generally a passive object; when a person uses a tool, the

person is active and the tool is passive. A tool takes no initiative and makes no attempt



to understand its user’s intentions. Compare this situation to that in a conversation.
In a conversation, all of the participants are active. Initiative is shared; at different
times, different participants may direct the interaction. Responsibility for successful
communication is also shared. The agents in a conversation pay attention to each other
and attempt to understand each other in order to communicate or accomplish a task —
in other words, the agents cooperate.

A primitive human-computer interface forces its user to adapt to the computer; the
computer makes no effort to adapt to its user. Because the interface is fixed and passive
there is no cooperation. The human operator must take all of the initiative in the dialogue,
and responsibility for successful communication with the computer system is entirely up
to the user. This imposes a great burden on the user. When combined with confusing
command languages, obscure syntax, and lack of feedback, these passive, tool-like qualities
are what cause ordinary computer interfaces to appear uncooperative, unfriendly, and
even hostile.

Intelligent interfaces, on the other hand, are better able to cooperate and communicate
with their human operators. An intelligent command line interface makes use of domain-

specific knowledge and contextual information which allows it to:

e accurately correct many errors in users’ input commands;
e accurately interpret user-chosen abbreviations;

e infer users’ intentions and goals;

e predict users’ actions;

e offer context-specific assistance or advice; and

e adapt to the experience levels and idiosyncrasies of individual users.

In combination with user-centered design techniques — the use of familiar terms
and paradigms in the command language, flexible parsing, and appropriate feedback
for users’ actions — these cooperative, conversation-like abilities are what cause intel-
ligent interfaces to appear user-friendly, helpful, unintimidating, and accessible. Both
novice and experienced computer users can benefit from these kinds of improvements in

human-computer interfaces. Because intelligent interfaces remove many of the barriers



that frustrate users, novices will be more willing to use computers, and people at all levels
of experience will be more satisfied and able to use computer systems more productively.

The intelligent features listed above are clearly useful in interactive command language
interfaces such as those described in Chapter 2. In addition, these features can be useful in
other kinds of applications as well. For example, error tolerance and flexible parsing can be
incorporated into batch systems such as compilers and scripting languages. Morgan [23]
did this in 1970 and it was very useful then, so it is surprising that typical modern
software engineering environments do not offer this kind of intelligence today. Intelligent
behavior can also be incorporated into graphical user interfaces and vocal interfaces.
Graphical interfaces have many textual components such as “search and replace” dialogs
that could benefit from intelligent text processing. Vocal interfaces will clearly need
to incorporate conversational qualities in order to understand spoken input, which is
often naturally fragmentary. People are so accustomed to speaking in conversational
modes that in order to be most useful, vocal interfaces will be required to use contextual
information to understand spoken input. Efforts to create intelligent, conversational
command line interfaces today, therefore, will also lead to improvements in tomorrow’s
multimedia interfaces.

In summary, if computers are going to become as widely useful as possible, then
human-computer interfaces must be improved. Future command language interfaces will
need to be conversational and will need to make substantial efforts to understand the
intentions of their users. Today’s interfaces, such as that of the UNIX shell, will need to

be improved.

1.3 An Intelligent UNIX Shell

A UNIX system is a computer that runs a particular kind of operating system and
which offers a certain set of standard utility programs. This set of programs always
includes one or more shells (also called command shells). Essentially, a shell is a special
program that allows its user to invoke and coordinate the other programs and resources
that a computer system provides. A shell is therefore a crucial component of almost all
interactive computer systems  without some kind of command shell, it is impossible for
a person to start new programs.

Because of the shell’s special role, an interactive computer system usually starts a

shell automatically whenever a person begins a computer session. For example, when a
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person logs into a UNIX system, a new shell process is automatically created for that
user. The shell takes control of the user’s terminal and prompts the user for input. By
entering commands to this shell the computer user can run the other programs that
the UNIX system offers — text editors, compilers, debuggers, typesetters, and so on.
Those other programs may temporarily take control of the user’s terminal, but when
those programs terminate, the shell reclaims control of the terminal and prompts the
user for additional commands. Because of this behavior, computer users often perceive
the shell to be the fundamental interface of the computer system itself. The shell appears
automatically at login, allows users to run the system’s programs, and reappears when
those other programs terminate; the shell, therefore, largely defines the personality of the
computer system as a whole. If a computer’s shell is confusing and difficult to use, then
users will generally believe that all of the system is confusing and difficult to use. It is
evident, therefore, that in order for a computer system to be perceived as intelligent and
user-friendly, it is essential that the computer system’s command shell demonstrate these

same qualities.

1.3.1 Shortcomings of the C Shell

Unfortunately for users of UNIX systems, the most commonly used UNIX command
shells are neither intelligent nor user-friendly. One of the most popular UNIX shells is
the C shell [17] the program named “/bin/csh” on most UNIX systems which
implements a command line interface with an expressive command language.? However,
although the C shell is a complex and powerful program, it makes practically no effort
to understand the intentions of its users. It accepts all inputs at “face value” and never
attempts to correct its users’ input mistakes. This uncooperative, unhelpful behavior
frustrates users at all levels of experience, and many computer scientists have complained
that traditional UNIX shells demonstrate a complete disregard for effective user interface

design principles. Gabriel and Steele, for example, have described how frustrating a

typical UNIX shell can be [8]:

Computers have no idea what is going on. You can’t hold a reasonable
conversation with them, even on their own terms. Does the following scenario
look familiar?

2While there are several popular command line shells for UNTX, the standard C shell is both typical
and among the most widely used.
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% lpt /usr/fred/common-lisp-functions
lpt: Command not found.

% lpr <long pause>
/usr/fred/common-lisp-functions <another pause>
~C

% lpr /usr/fred/common-lisp-fucntions
lpr: cannot access /usr/fred/common-lisp-fucntions

% lpr /usr/fred/comon-lisp-functions
lpr: cannot access /usr/fred/comon-lisp-functions

% lpr /usr/fred/common-lisp-functions <typed slowly
and with care>
lpr: cannot access /usr/fred/common-lisp-functions

% ls commonx

% ls /usr/fred/commonx
/usr/fred/common-lisp-fns

% 1lpr common-lisp-fns
lpr: cannot access common-lisp-fns

% /usr/fred/common-lisp-fns
/usr/fred/common-lisp-fns: Permission denied.

% lpr /usr/fred/common-lisp-fns

% <success at last>

In the preceding transcript, the computer user made one small mistake after another
first misspelling the command 1pr, then forgetting to retype the file name in the corrected
command, then mistyping the file name, and so on. The shell itself was no help; it did
nothing to correct these mistakes, nor did it attempt to make plausible interpretations of
the erroneous commands. By the time the user finally entered the command that he or
she originally intended, the user must have been extremely frustrated with the shell. The
above transcript, although unusually extended, truthfully illustrates the kinds of mistakes
that C shell users make every day and the C shell’s typical responses to those mistakes.
In short, the C shell can be very uncooperative  to novice users, even antagonistic.

The C shell also suffers from the other command line interface problems described

in Section 1.1. The input language of the shell is confusing, especially for inexperienced
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users, and there is often little or no feedback in response to users’ input commands. These
problems, however, are largely not caused by the C shell itself but are instead caused by
the other programs that make up a UNIX computer system. Because the purpose of the
C shell is to invoke other programs, the input language of the shell is largely made up of
the names of those other programs. Many of those programs accept arguments — words
that specify or control the behavior of a program — and so the typical command to the
C shell has this form: “program-name argument-1 argument-2 ....” When a C shell user
wants to invoke a program, he or she types the name of that program, followed by zero
or more arguments, as a single command to the shell. The shell then starts the named
program, giving that program the set of arguments that the user typed on the command
line. This is a natural and obvious way for users to invoke UNIX programs, but the result
is that the C shell effectively does not define its own command language. The set of C
shell commands is largely the set of names of the other programs that are available, and
the C shell cannot control that set. Furthermore, each program can interpret command
line arguments in any way it wishes. The C shell does not know what arguments any
other program may expect or how those arguments might be interpreted. Each UNIX
program imposes its own syntax rules on its command line arguments, and although there
are a few general syntax rules that most UNIX programs use (e.g., that an option begins
with the character “~”), many programs apply these rules inconsistently or ignore them
altogether.

Not surprisingly, the ad hoc design of the C shell’s command language causes the
shell to be confusing and hard to use. The names of common commands — such as grep,
biff, and awk  were chosen to be meaningful or clever to the authors of those programs.
Today, however, these program names are nonsensical to most UNIX system users and
this makes the C shell language seem ridiculous and arbitrary. The conflicting rules for
different programs’ command line arguments add to the confusion. Users must remember
the individual command line idiosyncrasies of many different commands, which puts a
large burden on users’ memories and which causes users to be frustrated when they forget.
Finally, many common UNIX programs are designed to print messages only when it is
absolutely necessary to do so (e.g., in response to a specific request for information) or
when an exceptional circumstance arises (e.g., when an error occurs). Many of the most
frequently used UNIX utilities print no messages at all in normal operation. Although

this “silence is golden” behavior is sometimes convenient for sophisticated UNIX users, it
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often leaves novice UNIX users wondering if the commands that they give to the shell are
succeeding or are even being accepted at alll These silent programs make it appear
that the C shell is unwilling to share information with the people who use it. In this way,
the silence of other UNIX programs reflects badly on the shell itself.

The shell in turn reflects on the computer system as a whole. As previously described,
because the shell is such an integral part of the computer system, the shell has a great
influence on its users’ perceptions of the computer system: If the shell is unfriendly, the
entire system appears to be unfriendly. It is not hard, then, to see why UNIX systems
have a widely known reputation for being difficult and confusing to use. UNIX systems
are intimidating because their command shells are confusing. The C shell input language
is confusing and inconsistent, and the shell makes no attempt to correct its users’ input
errors. Because many UNIX programs are usually silent, the command shell itself appears
to be unwilling to share information. The shell does not meet the needs of its human
users, both novice and expert, as effectively as it should, and the result is that UNIX
systems have a well-deserved reputation for being impenetrable.

Norman [25, page 139] wrote that the UNIX shell interface was a user interface
“disaster” that needs to be corrected: “If UNIX is really to become a general system,
then it has got to be fixed. I urge correction to make the elegance of the system design be
reflected as friendliness toward the user, especially the casual user.” The place to start

is with the UNIX command shell.

1.3.2 VALET: An Intelligent C Shell Interface

In order for UNIX systems to best meet the needs of their users, the UNIX command
shell must be changed. It must do more than simply accept command lines from people
and pass that input, uninterpreted, to other UNIX programs. Rather, the shell must
actively assist its users. The shell must attempt to understand the intentions behind its
users’ input commands and it must help its users correct input errors — in other words,
the shell must behave “intelligently.” The VALET interface to the UNIX C shell is a step
in this direction.

VALET is an experimental intelligent interface to the standard UNIX C shell. Through
the use of context as described in Section 2.1.4, VALET attempts to understand its users’
commands. VALET uses knowledge of the UNIX system on which it runs, combined
with data from individual users’ sessions, in order to analyze input commands. This

means that VALET can automatically and accurately correct many common input errors
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including misspellings, typographical errors, and incorrect references to files. VALET
maintains a separate interaction profile for each of its users, so it is able to adapt itself
to the habits of each of its human operators.

Although VALET uses knowledge in order to interpret commands, VALET does not
fundamentally change the ordinary input language of the C shell. Instead, VALET applies
intelligent processing to the existing language. As previously described, rather than being
defined by the C shell itself, the language of the shell is the combined product of the
hundreds of other UNIX programs available on the computer system, and each of those
programs has its own unique quirks. Even though the language of the C shell is far from
optimal, it would be a massive undertaking to replace the shell’s language. One would
either need to change hundreds of existing programs and insure that future programs
adhere to the new interaction guidelines, or one would need to rewrite the shell so that
it offers a new language to its human users and translates that language into the forms
expected by other UNIX programs. Each of these alternatives is untenable. The first
would require one to change long-established and standardized programs and would force
one to rewrite all existing shell scripts and other similar software  a truly monumental
task! The second alternative, changing the shell’s interaction language, would confuse
users because the shell would disguise the native interface to other programs. Because
the shell is not the sole interface to other UNIX programs, it is likely that many users
(especially sophisticated users) would have to know both the new shell language and
the native language of other programs. The shell language would have to be frequently
updated as new programs were added to the system. Moreover, a new shell language
would be objectionable to people who are already comfortable with the existing UNIX
shell interface. For all of these reasons, VALET attempts to interpret rather than replace
the current language of the C shell.

Similarly, VALET does not attempt to change the user interface of any program except
the C shell. VALET does not, for example, attempt to analyze or clarify error messages
from other UNIX programs. Although it might be useful for a shell to do this — in order
to adapt error messages to an individual user’s level of experience, or in order for the
intelligent shell to establish additional context, for example — this task would require
extensive changes to hundreds of pieces of UNIX software. VALET, therefore, is restricted
to the task of analyzing, understanding, and correcting users’ inputs to the C shell.

Although the addition of intelligence to the C shell is clearly important, the shell’s
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language has many features that are not conducive to intelligent parsing:

e Most significantly, most of the shell’s language is implemented by other UNIX
programs as previously explained. This means that rather than being fixed, the
language changes as programs are modified or added to the UNIX system. Normally
the shell has no knowledge of other programs’ interfaces (i.e., the required syntax
of their command line arguments), but an intelligent interface obviously needs this
information. VALET, therefore, has a knowledge base that describes the interfaces
of the most commonly used UNIX programs. The knowledge base cannot describe
every available program, however, so VALET must also deal with programs with
unknown interfaces. (Not surprisingly, VALET is less intelligent when dealing with

these unknown interfaces.)

e The set of available commands and their interfaces are not the only things that
VALET cannot control but must still understand. Many programs expect to receive
file names as arguments, for example, so VALET must maintain its own representa-
tion of the file system. This is complicated by the fact that the file system changes

frequently and that it is very time consuming to scan the file system.

e The shell language is full of features aliases, file name patterns (called globs),
variables, pipelines, and input and output redirection  that can be difficult for an
intelligent interface to handle properly. VALET in fact understands only a subset of

these features.

e Finally, the shell language is generally terse, so it can be difficult for an intelligent
parser to rely on lexical information. This fact is illustrated by the “dc” and “cd”
shell commands. The command “dc” is valid (dc is a standard UNIX program that
simulates a desk calculator) but most users never invoke dc. On the other hand, the
“cd” command, which changes the shell’s current directory, is invoked frequently
by all shell users. An intelligent interface, therefore, must make a decision when a
user enters the command “dc”: Did the user intend to invoke dc, or did the user
made a mistake while typing “cd”? Because these two commands have such similar,
short names, lexical context alone is insufficient for an intelligent shell to make an
accurate determination. For this reason, VALET maintains and refers to other kinds

of context in order to make decisions such as the one described above.
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By making use of many kinds of knowledge, VALET attempts to overcome the above-
described problems with intelligent parsing of shell commands. VALET is therefore able
to understand most of its users’ inputs and can accurately correct the most frequent types
of input error. VALET is not always able to discern its users’ intentions, of course, but it
can almost always make reasonable interpretations within the limitations of its knowledge
bases. VALET is unobtrusive and differs from the standard C shell interface only when it
detects an input error. Overall, because VALET can accurately correct the most common
user input errors, it makes a significant contribution to the effectiveness and friendliness
of the UNIX C shell interface.

Chapter 2 describes research that influenced the design of VALET. Readers with
limited time may wish to skip Chapter 2 and read just the following portions of this
thesis: Section 3.1.3, summarizing the goals and limitations of the interface; Section 3.2,
describing the overall implementation; and Chapter 4, pages 116 through 123, explaining

the user testing experiment and summarizing the results.



CHAPTER 2

PREVIOUS RESEARCH AND SYSTEMS

VALET is not the first attempt to create a more intelligent, more accommodating
command shell for the UNIX operating system. Prior to the design and implementation
of VALET, several other systems demonstrated that it was both possible and useful to
improve the UNIX shell. VALET was influenced by the systems that preceded it, and in
turn, those systems were influenced by the results of even more previous user interface
research. As described in Section 1.1, the need for improved human-computer interfaces
became clear within the past ten or fifteen years as computer systems became more
widespread and typical computer users became less technically oriented. Both novice and
experienced computer users began to demand that more attention be paid to the design of
effective user interfaces. It is not surprising, therefore, that as the UNIX operating system
became increasingly popular, its user interface deficiencies became both more apparent
and more serious, and computer scientists turned their attention toward addressing the
UNIX command shell’s shortcomings.

This chapter describes some of the user interface research that influenced VALET. In
particular, several attempts to improve the UNIX shell interface are presented. Some of
these efforts are research vehicles that explore how certain techniques such as spelling cor-
rection or task-specific knowledge can be employed to improve the UNIX shell interface.
Other systems described in this chapter — the tcsh and zsh command shells in particular
— are in actual widespread use today as replacements for the aging UNIX C shell. These
new UNIX command shells incorporate many improvements over the standard C shell.
VALET incorporates many of the interface improvements offered by those shells and in
addition builds on those ideas by maintaining extensive user interaction contexts. In this

way VALET goes beyond the capabilities of today’s popular UNIX shells.
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2.1 The Potential for Improvement

As described in Section 1.1, many command line interfaces can be difficult for people
to use. Confusing terms, inflexible syntax, inconsistency, and lack of feedback can all
reduce the effectiveness of an interface. Although with training people can adapt to
the requirements of almost any computer system, it is clearly preferable for computer
systems to adapt to the requirements of their users. People at all levels of experience
can benefit from user-friendly interfaces. Fortunately, research with existing command
language interfaces has shown that there are many ways in which these interfaces can be

improved.

2.1.1 Familiar Terms and Syntax

Confusing, hard-to-remember terms in a command language can be replaced with
words that are more familiar to the people who use the interface. Similarly, the syntax
of the language can be changed to be more natural to those users. Several groups of
researchers have shown that these modifications can greatly improve a command line
interface, as evidenced by increased user performance and satisfaction with the system.
Ledgard et al. [19], for example, compared two interfaces for a text editor: a traditional
“notational” interface and a “natural language” interface based on English words and
phrases. Twenty-four paid volunteers with various levels of computer experience were
asked to perform a set of editing tasks with both editor interfaces. Half of the subjects
used the notational editor first; the other half used the English editor first.

The results of this experiment are summarized in Table 2.1. Ledgard and his colleagues
discovered that overall, the test subjects were more productive with the English-based

editor interface. The subjects completed an average of 48% of the editing tasks with the

Table 2.1. A Comparison of Two Editor Interfaces, Adapted from Ledgard et al. [19]

Mean Percentage Mean Percentage
Subjects’ Level of Tasks Completed of Erroneous Commands
of Experience Notational English-based | Notational English-based

Inexperienced 28 42 19 11
Familiar 43 63 18 6.4
Experienced 74 84 9.9 5.6

Average 48 63 16 7.8




19

notational editor, but they completed an average of 63% of the tasks with the English-
based editor. Users at all levels of experience showed significant improvement. (Ledgard
et al. noted, however, that the users tended to improve with exposure to the task and
therefore tended to be more effective with whichever editor they used second.) The test
subjects entered fewer erroneous commands to the English-based editor. In addition,
at the end of the experiment, users at all experience levels clearly preferred the English
editor. Ledgard and his colleagues concluded that command languages based on everyday

speech can lead to increased user efficiency and satisfaction.

2.1.2 Flexible Parsing

Another way to increase user performance is to make command languages more
flexible. As previously described, many of today’s command languages recognize only
one name for each available action, object, or concept in the system. It is straightforward
to correct this situation: Interfaces can be designed or changed to accept synonyms. In
addition, command language syntaxes can also be expanded to accept a wider variety of
command phrasings. These simple changes can have a very powerful effect, as Good et
al. [9] discovered.

In their study, Good et al. set out to determine how a particular command line inter-
face could be modified to accept commands that “seemed reasonable” to inexperienced
computer users. At the beginning of the experiment, the researchers created a command
line interface to a simulated electronic mail system. This original interface was similar
to those of several actual electronic mail systems. The researchers then recruited novice
users, none of whom had any experience with electronic mail, to perform a set of tasks
with the mock system. Each test subject received a brief introduction to the concepts
of electronic mail and a general description of the command line interface; however, the
subjects were not told what commands or syntax the program understood. After each
user’s orientation, the researchers left the user to accomplish the electronic mail tasks
without human guidance or online assistance.

The user testing sessions were divided into several groups. After each round of tests,
Good and his colleagues analyzed the logs from each session and updated their mock
computer mail system accordingly. The researchers enhanced the system’s command
parser to allow it to recognize a greater percentage of the test subjects’ commands. These

enhancements were guided by the commands actually attempted by users; in this way,
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the interface was derived from user behavior.

As the system’s parser became more sophisticated and flexible, it recognized a much
greater percentage of the commands spontaneously entered by the test subjects. Of the
1,070 commands entered during the entire course of the study, only 78 (7%) could be
handled by the initial version of the parser. The final version of the parser, however,
incorporated 30 changes and could correctly recognize 816 (76%) of the commands. The
effectiveness of the parser increased by an order of magnitude, and the final parser could
understand over three-fourths of the novice users’ commands. There was an additional
effect from the improvements in the parser: Users increasingly enjoyed working with the
system. The test subjects were neutral toward the initial version of the interface, but
they liked the final version. Eight experienced computer users were asked to use the final
system and they liked it as well.

Good and his colleagues concluded that the examination of novice user behavior is an
effective technique for creating natural, easy-to-use computer systems. In addition, the
researchers concluded that flexibility is a very important aspect of effective command line

interfaces. Good offered the following guidelines:

1. Command language interfaces should be designed to accept synonyms. Good es-
timated that if a computer system knows only one word for an object or concept,
then there is an 80% to 90% chance that a user will fail to guess the computer’s
word. In the case of the electronic mail system, Good et al. wrote [9, page 1,038]:
“The most effective change [to the interface] permitted the recognition of the three
most widely used synonyms for commands and terms. One-third of all commands

issued required this change for successful parsing.”

2. Command language interfaces should allow objects to be described in flexible ways.
Numbers, for example, might be preceded by “#”. Furthermore, it should be
possible to reference objects through their attributes. In the case of Good’s final
mail system, users could refer to messages by any header field: subject, author, date,

or other.

2.1.3 Tolerance of Errors and Abbreviations
Good et al. improved their program’s interface by expanding its command parser

to recognize the variety of terms and syntaxes that were used by the test subjects in
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their study. This clearly made their interface much more flexible, but by itself, the
addition of new terms to a language enables only a “static” kind of flexibility.! While
a large vocabulary may allow an interface to recognize many different words, it does
not necessarily allow an interface to recognize wvariations or approzimations of those
words. Even if a command line interface is designed to understand synonyms and a
flexible command syntax, in order to be maximally flexible the interface must do more
than accept only and exactly the preprogrammed terms. It must also attempt to handle
dynamically chosen approximations of those terms, including abbreviations, misspellings
and typographical errors.

It is hardly a new idea that computer systems should be tolerant of users’ command
input errors and of user-chosen abbreviations. Over thirty years ago, Damerau [5]
described a technique for correcting input errors in an indexed information retrieval
system. This system compared input index keywords against a master list and rejected
those keywords that were not in the list. Examining these rejected terms, Damerau
discovered that a great majority of the input errors were exceedingly simple. Over 80%
of the unrecognized input terms were simple lexical transformations of terms that were
known to the program.? In particular, Damerau discovered that each of these erroneous
input terms could be classified as the result of exactly one of the following typographical

mistakes:

Omitting one character. The erroneous input term could be produced by deleting
one character from some term in the program’s lexicon. For example, the computer
operator may have entered the term “comuter” when he or she had intended to

enter the (known) term “computer”.

Inserting one character. The erroneous input term was the product of inserting one
character into a known term. For instance, the user may have entered the term

“commputer” when “computer” was intended.

!Good et al. also incorporated a kind of “dynamic” flexibility, spelling correction, into their mail system
interface.

2However, not all of these simple lexical transformations necessarily arose from users’ input errors.
Damerau’s collection of rejected index keywords included those caused by users’ keyboarding mistakes,
equipment failures (especially paper tape equipment failures), and other sources of error peculiar to
Damerau’s data-processing application. Subsequent researchers, however, have supported the general
conclusion that a large percentage of all user input errors can be characterized as simple typographical
errors, similar to those that Damerau found [6, 11, 28].
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Substituting one character. In this case, exactly one of the characters in the input
term was wrong. The user of the system may have entered “compiter” when he or

she had intended to type “computer”, for example.

Transposing two adjacent characters. The erroneous term could be produced by
exchanging the positions of two adjacent characters in a known term  for instance,

the user may have typed “compuetr” instead of “computer”.

Because these kinds of errors are so simple, it is generally straightforward for a
computer program to include appropriate error correction procedures as part of its in-
terface. Most command language interfaces contain some kind of dictionary that defines
the entire set of commands that may be entered. When the computer user enters an
invalid command name, then, it is a simple matter for the interface to consult the
command dictionary and locate the set of command names that are lexically similar
to the unrecognized input word. (This search can run very quickly.) This is the set of
the possible corrections for the user’s misentered command.

Furthermore, because the above-listed types of typographical errors are so common (as
a percentage of all user input errors), appropriate error correction procedures can be very
useful. As Damerau described, over 80% of the index terms rejected by his data retrieval
system simply had one letter missing, extra, incorrect, or transposed with an adjacent
letter. Morgan [23] later incorporated Damerau’s spelling correction techniques into a
batch programming system. Because Morgan’s improved operating system and compiler
could automatically correct many common, simple errors in batch jobs, programmers
made fewer fruitless attempts to submit each job obviously an important benefit to
the computer users who must wait several hours to receive the results of any batch
program submission. Morgan estimated that his batch spelling correction facilities saved
an average of one and a half submissions per job, thereby reducing the average number
of submissions per job to two for CUPL programs and to five for FORTRAN programs.

More recently, Durham et al. [6] demonstrated that simple spelling correction tech-
niques, based on Damerau’s observations, could also be effective as part of interactive
command line interfaces. Durham and his colleagues added such error correction facilities
to an electronic mail system, RdMail, which was in heavy daily use by a community of
several hundred people. Durham’s research is therefore quite different from that of Good

et al., which was previously described. Whereas Good et al. used a simulated electronic
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mail system in order to arrive at a “user-designed” interface, Durham and his colleagues
used an actual, heavily utilized mail system in order to discover how error correction
could be incorporated into an existing interface.

Durham’s modified mail system ran for 41 days and recorded 23,361 sessions. In that
time, RdMail discovered and processed 2,527 erroneous keywords: 2,031 unrecognized
terms and 496 ambiguous abbreviations. Table 2.2 summarizes the performance of the
spelling corrector on these terms.

In total, 27% of the erroneous terms were properly corrected by Durham’s improved
interface. Although the interface offered corrections for 44% of all the erroneous keywords
(spelling corrections in 24% of the cases and disambiguations in another 20% of the cases),
the RdMail users accepted these corrections only some of the time. Users accepted a
spelling correction in only 66% of the cases in which one or more corrections were offered;
users approved only 56% of the interface’s disambiguations. The final result was that
for 27% of all the erroneous input terms, the user corrected the error by choosing one
of the terms offered by the improved RdMail interface. In about half of these cases, the
interface offered exactly one correction which was accepted by the user.

Although this 27% overall success rate may seem low, a closer examination of the
data reveals that Durham’s spelling correction techniques were very good at solving the
problems they were designed to address. Of the erroneous terms that were not corrected

by the new RdMail interface:

Table 2.2. Results of a Command Spelling Corrector,
Adapted from Durham et al. [6]

Corrected Terms Uncorrected Terms
Ambiguity 11.0% | Alphanumeric, 1 2 characters | 20.3%
Typographical error: Alphanumeric, 3+ characters:

Missing letter 4.8% Syntax or vocabulary error | 19.8%
Extra letter 4.0% Typographical error 2.9%
Wrong letter 4.5% Intentional error 3.2%
Transposition 2.7% Rejected good correction 0.4%
Other nonalphanumeric errors | 26.4%

Total 27.0% | Total 73.0%
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e 20.3% of these terms contained only one or two alphanumeric characters. In general,
it is difficult to correct short terms because they contain so little lexical information.
This problem is especially severe for interfaces that attempt to correct mistyped
abbreviations, as the improved RdMail interface did. For these reasons, Durham
et al. disabled many of the RdMail spelling correction techniques for one- and two-

character terms.

e 19.8% of the erroneous terms were due to syntax and vocabulary mistakes. In
these cases the RdMail users apparently forgot the correct term (perhaps using an
unrecognized synonym), omitted a required keyword from a command, or made
some other sort of language error. Durham and his colleagues, however, had no
expectation that their improved RdMail interface would correct these kinds of
mistakes. Language-level errors cannot be addressed through spelling correction
alone; one must incorporate flexible parsing into the interface, as Good et al. did [9],

in order to cope with these kinds of errors.

e 26.4% of the terms were nonalphanumeric terms, which Durham’s spelling corrector
did not attempt to process. These terms included control characters (12.9% of all
erroneous terms), numbers (4.6%), and punctuation (8.9%). Many of the control
characters were apparently due to incorrect use of the Control-s key, which was
used to suspend the output of text to users’ terminals. Many of the numbers and
punctuation marks appeared as the first word of an input line. However, in the
RdMail command language, the first word must be the name of an RdMail command.
Clearly, this is another language issue that is beyond the scope of Durham’s spelling

correction research.

e 3.2% of the erroneous terms were apparently entered intentionally by people who
were exploring the corrector’s capabilities. These items were classified as intentional

errors by the researchers through manual examination of the session transcripts.

e 2.9% of the terms were caused by typographical mistakes that could not be handled
by the corrector. Often, this meant that the user had omitted a space between
two adjacent words. Other errors were apparently caused by system issues: the
placement of the Control key, the ability to “type ahead,” and so on. Only 8 cases

were attributed to multiple typographical errors (e.g., two or more missing letters)
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in a single term.

e 0.4% of the terms (10 cases) were apparently properly corrected or disambiguated,

only to have the user reject the interface’s help.

In summary, although Durham’s claimed overall correction rate of 27% may appear to
be low, in fact, the RdMail spelling corrector did outstandingly well on the problems that
it was designed to address. The improved command interface properly corrected 89.1% of
all the typographical errors and ambiguous terms that it encountered (excepting one- and
two-character terms), although some of these corrections were rejected by the users of
the system. The overall success rate of 27%, then, simply indicates that language issues
— the use of synonyms, flexible descriptions, and “user-centered” design techniques, as
previously described  cannot be overlooked. Spelling correction is useful but it cannot
take the place of careful command language design.

Durham et al. demonstrated that spelling correction and abbreviation processing can
be effective components of a user-friendly command line interface. Durham and his
colleagues also showed that these techniques can be incorporated into existing interfaces
with relative ease. Correction techniques based on Damerau’s observations can be imple-
mented in a straightforward manner, and the results of Durham’s RdMail experiment [6,
page 770] confirm Damerau’s observation that over 80% of all typographical errors are
the result of exactly one trivial error: one letter missing, extra, incorrect, or transposed
with an adjacent letter. The conclusion is that even the most obvious and simple
correction techniques can handle the great percentage of all users’ typographical errors
and dynamically chosen abbreviations.

Other researchers have supported this conclusion. McMillan and Moran [21], for
example, showed that a different but similarly simple technique could accurately recognize
user-chosen abbreviations for a small set of command names. McMillan’s technique was
this: In order to determine which one of the command names “best” matches a user’s

(abbreviated) input term, a command line interface executes the following steps:

1. From the set of all command names, find the set of names that have the greatest
number of characters in common with the user’s input term. The order of the
characters within the words are not considered; only the number of shared characters

is important.
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2. Remove all but the shortest command names (i.e., those names containing the fewest

characters) from the set produced in the previous step.

3. From this remaining set of command names, choose the name that appears first in

an alphabetical ordering of the set.

The command name selected in the final step of the algorithm is the word that “best”
matches the user’s original input, and therefore, this word is assumed to be the intended
expansion of the user’s abbreviation.

McMillan and Moran’s matching algorithm is extremely simple — it does not even
consider the order of the letters in the abbreviation or the command names — but
even this straightforward algorithm can be surprisingly effective. In an experiment,
McMillan and Moran gave a list of 17 commands to 21 college students, none of whom
was an experienced computer user. Each student was asked to choose an abbreviation
for each of the commands, and the researchers used the above-described technique to
match these abbreviations with the original commands. The results were excellent,
particularly in light of the algorithm’s simplicity. For 9 of the 17 commands, 100%
of the students’ abbreviations were correctly recognized. The algorithm worked well for
individual students as well: Of the 21 lists examined, the algorithm correctly recognized
100% of the abbreviations on 7 of the lists and recognized 94% on 7 more. Overall, 88%
of the students’ abbreviations were correctly paired with the full command names.

In summary, McMillan and Moran’s experiment showed that even an unsophisticated
algorithm such as theirs could yield surprisingly accurate results. The researchers demon-
strated that their heuristic could correctly identify a great percentage of user-chosen
abbreviations, and it is clear that the same heuristic could be used as a more general
input matching function to both expand abbreviations and correct simple typographical
errors such as those previously described. Furthermore, it could do all this with an
absolute minimum of information: just the set of acceptable terms and the user’s actual

input.

2.1.4 Use of Context
If such a simple matching heuristic could so accurately discern users’ intentions,
McMillan and Moran reasoned, then it should be possible for a more intelligent technique

to recognize users’ intentions in practically all cases. By making use of more interaction
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context, a sophisticated input parser should be able to approach 100% recognition of
all user inputs. McMillan and Moran suggested for instance that the accuracy of their
matching function would improve if it were changed to take various lexical contexts into
account. The researchers’ original algorithm essentially treated words as unordered sets of
characters. An improved matching algorithm, however, would consider the order of letters
within words and give preference to cases in which the letters of a user’s input matched
in the proper order with the letters of a word from the computer’s lexicon. In addition, a
sophisticated matching function might notice common sequences of letters or give greater
weight to character matches near the beginnings of words. Both of these improvements
make use of lexical context information about the environments in which individual
characters are placed  that can be recognized and used to improve an interface’s ability
to understand the meanings of computer users’ inputs.

Lexical context is information that is present within an individual word. This includes
the characters that make up the word and the arrangement (order) of those characters.
These things provide lexical clues that can be used to expand abbreviations and correct
spelling errors. Additionally, the form of a word may sometimes provide semantic clues
(i.e., information about the intended meaning of the word) as well. In English, for
example, the suffix -tion almost always indicates that the containing word is a noun.
Similarly, in the UNIX C shell, the prefix “-” typically appears only in words that
are command options and the character “/” generally appears only within file names.
Information such as this can be used to guide a shell command parser. Lexical context
is only one kind of context, however. An intelligent interface can make effective use of
several other levels of context as well: syntactic context, short-term interaction context,

long-term interaction context, and other types of general knowledge.

In a typical command language, for example, the first word of every input line is expected
to be the name of a command. This word acts as a verb, naming the action to be
performed. Subsequent input words, called command arguments, may be expected to
name files, specify options, describe input redirection, or name other objects specific to
the command. Certain command arguments may be required to have special features;
for example, it might be necessary that a name refer to an existing file. Often, different
commands interpret arguments in different ways. This means that each command name

(the first word on the user’s input line) must be associated with a specific syntax for
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command arguments.

Syntactic information is obviously important for accurate error-tolerant parsing. When
a spelling error is found in a command line, an intelligent parser can use syntactic
information to constrain the set of possible corrections to only the syntactically acceptable
alternatives. (Once the set of possible corrections is constrained, lexical information can
be used to choose the best correction from the set.) It would be entirely unhelpful for a
parser to correct an erroneous input term to a word that, although lexically similar, is
syntactically invalid  to correct the input word to a command name when a file name
is actually required, for instance.

Another type of context, the short-term interaction context, is defined by an individual
computer user’s recent inputs and the recent states of the computer system itself. The
information at this level of context is different for different people and changes fairly
quickly over time for any individual person.

Interaction context arises from the tasks that a computer user performs — docu-
ment preparation, debugging, and so on and how that person coordinates individual
commands to complete those tasks. In general, a computer user’s commands are not
procedurally isolated from one another. Instead, because it is often necessary for a
person to enter a sequence of several commands in order to complete a task, adjacent
commands are generally related to each other. Hanson, Kraut, and Farber [12], in
their study of UNIX shell commands, discovered that many shell commands fall into
separate functional groups. Commands within a functional group are likely to be used in
conjunction with other commands in that group. Overall, UNIX shell commands cluster
into separate task-oriented groups, and these groups are tied together by orienting and
process management commands. An intelligent interface can use this kind of information
in order to discern or even anticipate a user’s intentions; for example, when an input
error occurs, the parser can be biased towards corrections in the user’s current command
group.

Interaction context is also useful because computer users, both novice and experienced,
tend to “repeat themselves” and enter commands that they have recently entered —
often with exactly the same command arguments. Like Hanson et al., Greenberg and
Witten [10] studied the use of UNIX shell commands by a variety of computer users.
Greenberg and Witten discovered that C shell users repeat themselves with amazing

frequency. On average, for every command that a person enters, there is a 50% probability
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that the command is identical to one of the 10 commands that immediately precede
it in the user’s input history. (There is a 26% chance that the command has never
been entered before by this person, and there is a 24% chance that the command has
been entered before but is not a repetition of one of the previous 10 commands.) Even
though this statistic alone is very impressive, the frequency of matches among the recent
command history can be greatly improved by simply pruning repetitions from the user’s
command history list, maintaining separate history lists for each directory (in order to
approximate task-specific command histories), and allowing for partial matches in which
the user’s current command is an extension of a recent previous command. Employing
these additional strategies, Greenberg and Witten increased the matching frequency by
13%: In other words, there is a 63% chance that a user’s command will match (i.e., be
identical to or an extension of) one of the 10 previously entered commands in the user’s
pruned, directory-sensitive history. Even when commands are not repeated verbatim, it
is often the case that new commands will refer to objects — files, for example — that
were recently referenced by preceding commands. Clearly, an intelligent interface should
take interaction context, both short-term and long-term, into account when discerning
the intent of a user’s command.

Long-term interaction context is produced by a computer user’s actions over a rela-
tively long period of time, generally spanning several sessions with the computer system.
Like short-term history, long-term history can be very useful to an intelligent interface.
Many researchers have shown that computer users tend to use a relatively small set of
commands over and over; for instance, in their study of UNIX command usage, Hanson
et al. wrote [12, page 45]: “Users of the UNIX operating system have a large number
of commands available to them, and yet they used only a small proportion of these
commands with any frequency. For example, although users had well over 400 commands
available to them, in the process data, 10 percent of the commands accounted for almost
90 percent of the command usage.” In a separate study, Greenberg and Witten [10]
discovered that UNIX computer users repeat their shell commands in the long term
(although repetitions most commonly occur in the short term, as previously described).
Greenberg and Witten found that on average, for any shell command that a person enters,
there is a 74% chance that the person has entered that command at some time in the past.
That is, almost three out of every four commands are repetitions of previous actions.

Just as computer users tend to repeat their commands, they should also be likely to
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repeat their mistakes. An intelligent system can automatically keep track of individual
users’ habits frequent actions, frequent misspellings and abbreviations, and so on
over a period of many separate computer sessions. This user profile can be saved and used
to guide the interface’s command interpreter in future sessions. McMillan and Moran [21]
suggested that long-term interaction context for individual users could augment spelling
correction and abbreviation processing by biasing the parser toward the most commonly
used command names. It should also be possible for an intelligent parser to handle
users’ common mistakes, as Hayes et al. wrote [14, page 22]: “A graceful interface should
recognize and adjust to the idiosyncrasies and preferences of its user. This includes the
ability to spot and correct recurring typographical, spelling, or syntactic errors.” In
addition, long-term context can allow users to manually extend a command language by
defining new aliases, synonyms, or abbreviations for future use.

Finally, an intelligent computer system can make use of context that arises from
general knowledge in the domain of discourse. All sorts of data about the computer user,
the computer system, and the human-computer interface itself can be part of this context.
This information can be complex; for example, an intelligent interface might understand
how separate commands can be combined to achieve certain goals, thereby allowing the
computer system to analyze its user’s goals and suggest more efficient ways of meeting
them. General contextual knowledge can also be as simple as Damerau’s rules of thumb,
or as basic as knowledge of the physical arrangement of keys on the computer system’s
keyboard.

Spelling correction algorithms can make particular use of this last item because it is
well known that the layout of a computer’s keyboard greatly affects the likelihoods that
certain typographical errors will occur. In one analysis of keyboarding errors, Grudin [11]
concluded that most substitution errors (i.e., errors in which one letter is replaced by a
different letter) involve adjacent keys. By examining a large corpus of errors Grudin
showed that in 58% of all substitution errors, a correct character was replaced by a
character immediately adjacent to the correct character on the keyboard. In fact, 43%
of all substitution errors involved adjacent keys in the same row; only 15% involved
adjacent keys in the same column. An additional 10% of substitution errors involved
“mirror image” keys that have the same positions on opposite hands. Obviously, all of
these statistics can be used by an intelligent, error-tolerant interface in order to choose

the most likely correction for a user’s erroneous input.
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Each of the above-described levels of context adds to the ability of an intelligent
command line interface to understand its user’s intentions. An interface that corrects
typographical errors, for example, might draw on all of these levels. Using the first level,
lexical context, an intelligent system can select all of the vocabulary words that most
resemble an erroneous input term. The second level of context, syntactic context, allows
the system’s command parser to use the form of the user’s command to prune the set of
candidate corrections to include only the most appropriate terms — command names, file
names, command options, or whatever else is expected. By using short-term interaction
context, the interface could limit the search to the most recently used words, or at least
bias the spelling corrector to favor these recently entered terms. By consulting the user’s
long-term interaction history (the fourth level of context described above) the intelligent
interface might examine a list of the user’s common errors and abbreviations, and by using
the final level of context the intelligent interface could employ general rules of thumb and
inference. For example, as described previously, an interface could make use of the fact
that certain kinds of errors are more common than other kinds of errors.

With so much information available, a well-designed, intelligent command language
interface should be able to understand almost everything that its human operators en-
ter [15, 21]. Moreover, existing systems demonstrate that this kind of intelligent behavior
is in fact possible. One of the earliest and most widely known examples is the “Do What
I Mean” or “DWIM” facility of the Interlisp programming system. The DWIM facility
was an integral part of the Interlisp system and embodied the philosophy that computer
systems should make intelligent interpretations of user’s inputs [33]. DWIM used the
levels of context described above to correct errors in Lisp programs, and at this task
the DWIM facility was amazing successful. Teitelman, one of the implementors of the
Interlisp system, wrote [32, page 17.3]: “We have put a great deal of effort into making
DWIM ‘smart,” and experience with perhaps fifty different users indicates that we have
been very successful; DWIM seldom fails to correct an error the user feels it should have,
and almost never mistakenly corrects an error.” In short, by using DWIM, Interlisp
provided an intelligent interface that effectively met the needs of its users. It is surprising
that today, over twenty years after Teitelman, Morgan, and others demonstrated the
effectiveness of intelligent, error-tolerant user interfaces, these kinds of command line
interfaces are so rare. Fortunately, the situation is starting to improve. Computer

scientists have rediscovered the importance of user interface design and have started
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to reincorporate intelligent features into human-computer interfaces, including that of

the UNIX command shell.

2.2 The metric Library
The metric library [13], written by Hawley, was one of the earliest attempts to
incorporate spelling correction into the UNIX command shell’s interface. Like many other
researchers, Hawley believed that in order to be most useful, interactive computer systems
had to be tolerant of their users’ simple input errors. Hawley wrote [13, pages 1-2]:
One of the simplest and most obvious ways to get a computer system to
“do what I mean, not what I say” is to make the system smart enough
to deal intelligently with misspelled, mistyped, or abbreviated input. In an
interactive command-driven environment (like UNIX)... some simple spelling
correction algorithms running at the system level could have many benefits. . ..
[Wlhenever such trivial spelling errors are made, the system should be able to

proffer a good guess at the intended input, just as a friend looking over one’s
shoulder might, saving the user from the tedium of fixing trivial errors.

As a first step toward this goal, Hawley created the metric library. This library was a
small set of C language functions that other C programs could invoke in order to correct
simple errors such as those described above. At its core the metric library provided a
function named bestmatch. The bestmatch function accepted three arguments: (1) an
input string, (2) a table of strings to be matched against, and (3) a “metric” function
that measured the similarity of any two strings. The bestmatch function then located
and returned the string from the table that “best matched” the input string according
to the given string similarity function. The metric library itself defined two different
spelling metric functions that programs could give to bestmatch. Alternately, a program
could provide its own specialized metric function.

By using the bestmatch function, C programs could correct users’ input terms by
comparing those terms against tables of acceptable inputs. Unfortunately, even though
this sort of spelling correction is highly desirable, it would have taken a Herculean effort
to make bestmatch an integral part of the UNIX system interface. In order to make
direct use of the bestmatch function, hundreds of existing programs would have required
modification, and the required changes would not have always been straightforward.

There were (and still are), however, some specialized kinds of spelling correction that
could easily and usefully be incorporated into almost all UNIX programs — in particular,

the correction of file names. Many programs interpret some of their command line
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arguments as file names. File names are generally longer than most other command line
arguments and are therefore more likely to contain input errors. In addition, the general
length of file names provides lexical context that makes it possible to correct errors in
these arguments with accuracy. Therefore, Hawley reasoned that a function specially
designed to correct file names would be widely useful. Such a function would also be
straightforward to implement and incorporate into existing UNIX programs. Because
most programs use file names in simple, stylized ways, it would take a minimum of effort
to change existing programs to use a function that corrected file names.

For the above reasons, the bestmatch function was not the principal interface to the
metric library. Instead, the most important component of the library was a function
named pfopen. The pfopen function was a “polite” replacement for the function fopen,
which is defined by the standard C language stdio library and which is used by almost all
C programs that manipulate files. Essentially, the standard fopen function accepts a file
name and opens that named file for reading or writing. However, fopen does not attempt
to analyze the file name that it receives, so if that file name is mistyped or misspelled
fopen will fail to open the desired file. Hawley’s new pfopen function was exactly like
the normal fopen function, except that pfopen examined the given file name for simple
typographical errors. In other words, given a possibly mistyped file name, pfopen looked
for an existing file name that “best matched” the possibly mistyped name. When pfopen
detected one or more errors in its original file name, it corrected the name (possibly
with confirmation from the user of the program) and then opened the corresponding file.
Because pfopen was exactly like the standard fopen function except for this new ability,
it was straightforward for Hawley to modify existing programs to use the metric library’s
pfopen function. Hawley made the necessary changes to several standard UNIX utility
programs including cat, pr, and more thereby incorporating a limited amount of
error tolerance into these programs with an absolute minimum of effort.

This is how Hawley improved the UNIX shell interface. As previously discussed in
Section 1.3.1, most of a UNIX shell’s language is defined and interpreted by programs
other than the shell itself. Therefore, in order to add input error tolerance to the shell’s
interface, one can add intelligence either to the shell program itself or to the other
programs that the shell invokes. Hawley adopted the second approach. By making
existing UNIX programs more able to deal with input errors, Hawley effectively added

this same ability to the shell’s command line interface.
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The principal advantages of Hawley’s approach were twofold. First, because the
metric library’s spelling correction functions could be invoked by each program for itself,
it was largely unnecessary to change the UNIX command shell. In other words, Hawley
did not have to teach the shell about the syntax of every other program’s command
line arguments in order to implement error-tolerant command line parsing. The shell
did not need to know which arguments were to be interpreted as file names and which
were to be interpreted as command options or other kinds of arguments; this knowledge
was contained in the individual programs themselves. This allowed the shell itself to
be simple, and in addition, this approach made it easier to add new programs to the
system and to modify old ones because the shell itself did not need to be updated in
response to such changes. The second advantage of Hawley’s approach was that it was
straightforward to incorporate a limited but important kind of error-tolerant parsing into
existing UNIX programs. Programmers, by simply replacing calls to fopen with calls to
pfopen, could quickly enable their programs to detect and correct simple errors in file
names. Other kinds of error tolerance could be implemented gradually. New programs
could be written to make full use of the metric library functions and old programs could
be rewritten over time to make use of the metric library features.

However, Hawley’s approach toward improving the UNIX shell interface also had
important disadvantages. Most significantly, there are many aspects of the shell’s com-
mand language that cannot be changed without modifying the shell program itself. For
example, although programs that used the metric library could detect and correct errors
in their own command line arguments, only the shell can detect and correct errors in
command names themselves (i.e., the names of the programs that the shell invokes).
Hawley, of course, could have modified the UNIX shell to use the metric library in
order to correct command names, while leaving the correction of command arguments
to the other programs on the UNIX system. This illuminates a second problem with
Hawley’s approach; namely, that in order to fully improve the shell’s command line
interface Hawley needed not only to change the shell, but also to change every other
program on the UNIX computer system. As just described above, it is advantageous for
each program to do its own spelling correction because it is easiest to keep the knowledge
of a program’s command line syntax within the program itself. However, this approach is
also disadvantageous because it requires one to change hundreds of existing programs

a massive undertaking. It may, in fact, not be possible to modify some existing programs
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due to a lack of source code or an inscrutable design.

Hawley’s distributed approach to error correction with the metric library had one
final, important shortcoming. Because each program performed its own error detection
and correction, in isolation from all other programs, certain kinds of very useful contextual
information were lost. For example, the pfopen function relied on lexical information
alone in order to correct file names. Hawley described how this lack of context hindered
pfopen [13, page 8]:

The algorithm simply moves through the segments of the path and finds the
best match for each piece. It cannot correct cases which involve a missing
slash in the path (e.g., “/usrbill” instead of “/usr/bill”) or cases which

involve missing or added segments (e.g., “/usr/cmd/cat.c” instead of “/usr/
src/cmd/cat.c”).

The metric library’s pfopen function did not attempt to distinguish one type of file
from another, nor did it remember which files had been recently referenced (possibly
by programs other than the current one), nor did it try to adapt to individual users’
habits. These kinds of data could have helped address the problems described above,
but because there was no persistent, central knowledge base in the metric library, there
was nowhere to store these kinds of contextual data for later use. Hawley realized that
this was a severe handicap and wrote [13, page 9] that “there is good reason to believe
that more contextual information (like profiles of individual user’s habits) can greatly
improve accuracy and response time” in the error correction heuristics. Hawley further
suggested [13, page 5] that the appropriate repository for this contextual data is within
a “smart shell” that keeps track of its users’ interaction histories.

VALET, the intelligent UNIX shell interface described in this thesis, attempts to
implement Hawley’s above suggestion. VALET incorporates error correction techniques
that are similar to those in the metric library. Unlike Hawley’s library, however, VALET
combines these techniques with a large contextual knowledge base that describes such
things as the sets of commands and files recently referenced by the user. This allows
VALET to make corrections that are more accurate and more helpful than those that

could be made by isolated programs using the metric library.

2.3 The tcsh and zsh Shells

Hawley’s metric library allowed UNIX programs to perform their own spelling correc-

tion, and in this way Hawley indirectly improved the UNIX shell’s command line interface.
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However, Hawley realized that in order for the shell’s interface to be as user-friendly as
possible, spelling correction techniques and contextual information had to be incorporated
into the shell program itself, not just into the other programs that the shell invokes.
Following this advice, a few modern command shells for UNIX now provide simple,
context-sensitive error correction facilities. Two such command shells are the popular
tcsh and zsh programs.

The tcsh command shell [27], written by Placeway, Zoulas, and others, is a modern
and enhanced version of the standard UNIX program csh, also known as the C shell [17].
The C shell contains a relatively complicated command parser because the csh input
language provides a wide variety of features: command aliases, variable substitutions,
file name expansions, history references, and similar abbreviation mechanisms. Unfortu-
nately, for all of the sophistication of its parser, the C shell has very little understanding
of the commands that it executes. When the C shell receives a user’s input command,
that command is transformed — in shell terms, the command is “expanded.” Aliases and
history references are resolved, values are substituted for variable names, and so on. Each
of these transformations, however, is entirely syntactic; none of these facilities depends
on the intended meaning of the user’s input. After the user’s input is transformed the C
shell attempts to execute the resultant command string verbatim, again without reference
to the user’s intentions or the context in which the command will be executed. Because
the standard C shell does not make use of relevant contextual information it is unable
to help its user avoid or correct common input errors. The enhanced tcsh command
shell, however, is somewhat more helpful to its users. It includes command completion
and spelling correction facilities that enable users to avoid mistakes and correct those
mistakes that do occur.

The zsh command shell, also known as the Z shell [7], was written by Falstad,
Wischnowsky, and others, and is similar to tcsh. Whereas tcsh is an improved version of
csh, zsh is a modern and enhanced version of the standard UNIX program sh, otherwise
known as the Bourne shell. Like the C shell, the Bourne shell is a widely used, interactive
UNIX command shell. Further like the C shell, the Bourne shell has sophisticated
syntactic abbreviation facilities but fails to make use of contextual information that would
help its users avoid and correct input errors. The Z shell adds such context-based error
correction facilities to the Bourne shell in the same way that tcsh adds such facilities to

the C shell.
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2.3.1 Programmable Command Completion

Both tcsh and zsh provide two separate but related features for context-based input
error avoidance and correction: command completion and spelling correction. The first of
these features reduces typing errors and tedium by enabling the shell to complete partially
entered words within a command. The shell user can, by simply typing the prefix of a
word and then hitting a special key (in both tcsh and zsh, the Tab key), ask the shell to
insert the remaining portion of the word into the command line. For example, suppose
that the computer user wants to see a listing of the files in the directory named sources.
The appropriate UNIX shell command for this action is “1s sources”. Using the shell’s

command completion facility, the user can type just:
1s sou

At this point, before hitting the Return key, the user can have the shell complete
the partially entered directory name. The user can press the Tab key and the shell will

append the letters “rces” to the command line:
1s sources

The user can then execute this completed shell command by pressing the Return key
as usual.?> Command completion becomes more valuable as the words to be completed
become longer. Because this feature reduces the amount of typing that users must do, it
reduces the number of typing errors that users make.

For many years the standard C shell has been able to complete partially entered file
names (as just illustrated), command names, and user login names. For each kind of
completion the user simply presses the Escape key to have the shell finish an incomplete
word. However, because there is no way to tell csh about the command line syntax
required by the various UNIX programs, csh uses simple heuristics to decide when each
kind of completion is appropriate. For example, command name completion is always
used for the first word on the command line. User name completion is invoked for words

WU~

that begin with the character and file name completion is used in all other cases. In

In the example above, it was assumed that the user’s input “sou” was a prefix of exactly one file
name (namely sources) in the current directory. If the prefix “sou” had not been sufficient to uniquely
identify exactly one file name, the shell would have behaved slightly differently. It would have completed
as much of the user’s input possible or displayed a list of possible completions. Details are available in
the documents that describe tcsh [27] and zsh [7].
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the ordinary C shell there is no way to change these rules or specify special lexicons to
be used with certain commands.

The tcsh shell improves on the standard C shell by providing a programmable com-
pletion mechanism. Using programmable completion, shell users can teach tcsh the
command line syntaxes of various commands and specify the lexicons to be examined
during completion. One particularly useful application of this feature is that one can tell
tcsh that the cd command expects its (single) argument to be the name of an existing
directory not just any kind of file. The built-in cd command changes the “current
directory” of the shell itself and is one of the most frequently used shell commands. The
special command complete is used to describe how completion should be applied to other

shell commands; for the example just described, a tcsh user would enter:
complete cd p/1/d/

This command tells tcsh that the first argument (the first positional argument,
indicated by “p/1”) for the cd command must be the name of a directory (indicated

by “d”). A more complex example is this:
complete finger ’c/*@/$hostnames/’ ’n/*/u/@’

The expression “n/*/u/@” specifies that arguments to the finger command will be
completed from the set of user login names, and that when a user name is completed, the
character “@” will be automatically appended to the name. In addition, the expression
“c/*@/$hostnames/” indicates that immediately after the “@” character, completions
should be drawn from the list of words in the shell variable hostnames. This variable
must be set by the shell user and presumably contains the names of frequently consulted
machines.

Clearly, programmable completion is a powerful facility. Because it allows the shell
to accurately complete users’ partial inputs, it reduces input errors and makes the shell
easier to use. Both tcsh and zsh offer programmable completion facilities. All of the
examples shown above are for tcsh, but they could be rewritten for zsh with minimal
effort. Finally, note that in both tcsh and zsh, completion is controlled solely by lexical
and syntactic information. Neither shell consults other kinds of interaction context (as

described in Section 2.1.4) in order to complete partial inputs.
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2.3.2 Spelling Correction

In addition to programmable command completion, tcsh and zsh both provide a
second feature to alleviate the effects of users’ input errors: spelling correction. As
previously described in Section 2.1.3, an overwhelming percentage (over 80%) of all
user input errors are isolated, trivial keyboarding mistakes: the insertion, deletion, or
substitution of a single character in a word, or the transposition of two adjacent characters
within a word. Given such a simply misspelled word and a dictionary of valid input terms,
in almost all cases a command line interface should be able to correct the user’s error
accurately and automatically.

Both tcsh and zsh can apply this type of spelling correction to users’ commands.
Each shell can be told to correct only command names or to correct both command
names and arguments. (The default behavior of each shell, however, is not to attempt
any corrections at all. Spelling correction is a feature that must be enabled by individual
users.) Correction of command names is possible and effective because each shell can
accurately determine for itself the set of valid commands. Correction of command
arguments is much more difficult, however, because neither the tcsh nor zsh spelling
correction facilities normally have any knowledge of the command line syntax used by
any commands not even commands that are built into the shells themselves! Due to
this lack of knowledge, each shell is forced to rely on lexical information alone in order
to determine the domain of each command line argument (e.g., the set of all file names
or the set of all user login names). Although lexical information is certainly significant
and useful, it is often not sufficient; for example, it cannot be used to determine that a
particular argument must name a directory, as opposed to just any kind of file.

Because lexical information is often insufficient for effective spelling correction, tcsh
and zsh need additional information about the commands that they provide. They
need syntactic information. In particular, they need the kind of information that users
already provide to the programmable completion facilities of each shell. 1t would not be
unreasonable to expect that when a user describes the command line syntax of a certain
command to the shell, for use by the command completion facility, that information would
also be available to and used by the spelling corrector. Surprisingly, however, this is not
the case in either tcsh or zsh.

In the current versions of tcsh and zsh, the spelling correction facility does not consult

the syntactic command line information that is provided to the command completion
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facility. Sadly, this flaw reduces the utility of each shell’s spelling correction in
fact, this defect makes full command line checking too cumbersome to really be useful.
Users of tcsh and zsh who enable spelling correction at all generally enable it only for
command names, not for command arguments. Because neither shell utilizes syntactic
information about command line arguments, even when such information is available, the
spelling corrector of each shell is prone to making inappropriate and annoying attempts
at correction.

Figure 2.1 illustrates how troublesome command argument spelling correction can be
in tcsh. In the space of five commands, tcsh makes three nonsensical attempts to correct
its user’s input. The first incorrect attempt can be attributed to tcsh’s lack of syntactic
knowledge about the arguments to the complete command, but the two subsequent
attempts at correction violate syntactic information that was explicitly provided to tcsh
by the user of the shell.

The first erroneous attempt occurs when the user enters a complete command in
order to tell tcsh that the first argument to cd must be a directory name. (The complete
command was previously described in Section 2.3.1.) Although the complete command is

built into the shell itself, the tcsh command correction and completion facilities have no

1 jaguar> set correct = all The wuser enables spelling correc-
tion for both command names and
arguments.

2 jaguar> complete cd ’p/1/d/’ The user tells tcsh that the argument

to cd must be a directory name.
CORRECT>complete cd ./././ (yInlela)? n | tcsh offers to “correct” the second ar-
gument to the complete command to
a nonsensical value.

3 jaguar> complete mkdir ’n/*/d/’ The user tell tcsh that all of the ar-
guments to mkdir must be directory
names.

4 jaguar> touch file The user creates a file named file. ..

5 jaguar> mkdir files ...and a directory named files.

CORRECT>mkdir file (ylnlela)? n tcsh offers to “correct” the argument
to an invalid value.

6 jaguar> cd filed The user makes a typographical error:
“filed”.

CORRECT>cd file (ylnlela)? n Again, tcsh offers a nonsensical
“correction.”

Figure 2.1. An Annotated Transcript of tcsh Spelling Correction
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predefined knowledge of the command line syntax that the complete command requires.
Without this knowledge, tcsh automatically (and incorrectly) assumes that all of the
arguments must be file names. As shown in the transcript, tcsh was unable to find a
file name that was lexically similar to “cd” so no correction is offered for that argument.
However, the second argument “p/1/d/” is handled slightly differently. After discovering
that “p/1/d/” is not the name of an existing file, tcsh decided that the file name “./././”
(which is a very unusual way of referring to the shell’s current directory) was lexically
similar to the original “p/1/d/” argument, and so “./././” was offered as a correction
to the user. Unfortunately, because the argument “p/1/d/” was not intended to refer to
a file, the correction was entirely inappropriate and almost certainly unexpected by the
user.

The second erroneous attempt to correct the user’s input occurs when the user enters
the command “mkdir files” to create a new directory. Although tcsh was previously
told by the user that the arguments to mkdir should name directories, the tcsh spelling
correction facility ignored this information and suggested that the argument “files”
should be corrected to “file” the name of a regular file! Obviously this suggestion
is entirely unhelpful to the user. Likely, the real effect of this attempt at correction is
simply to annoy the user.

The third and final erroneous correction occurs when the user enters the command
“cd filed” which contains a typographical mistake. The word “filed” is lexically very
similar to both file and files, and either would be a reasonable correction based on
lexical data alone. However, because the argument to cd must name a directory, files is
the much superior alternative; because file names a regular file and not a directory, the
command “cd file” is nonsense. Unfortunately this is the correction that tcsh offers.
Even though the user had previously told tcsh that the argument to cd must name a
directory, tcsh’s spelling correction facility ignores this knowledge and relies on lexical

similarity alone to match the input word “filed” against the names of all the files in the

“In truth, the command line arguments given to mkdir should not name existing directories, so the
information about mkdir provided to tcsh in Figure 2.1 is not entirely accurate. The purpose of mkdir is
to create new directories and the arguments given to mkdir are the names of the directories to be created.
Unfortunately, using the complete command, it is not possible to tell tcsh that an argument should
refer to a nonexistent directory. The lie that mkdir’s arguments should be (existing) directory names is
pragmatic, however, because it allows tcsh to complete the directory components of pathnames given
to mkdir. In any case, the point is this: Even though the information provided to tcsh about mkdir is
not entirely accurate, it is nonetheless inappropriate for tcsh to subsequently ignore this user-supplied
information when it attempts to correct its user’s mkdir input commands.
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shell’s current directory. That tcsh ultimately chooses to offer the correction “cd file”
instead of “cd files” is because, given a choice, the tcsh spelling corrector prefers to
assume that the user made an insertion error (i.e., typed one extra character) rather than
a substitution error (i.e., typed one incorrect character).

As the transcript in Figure 2.1 illustrates, the spelling correction facility in tcsh
leaves much to be desired. In fact, tcsh’s correction of command line arguments is so
often unhelpful and cumbersome that most tcsh users disable the feature entirely. The
zsh input correction facility suffers from the same problems found in its tcsh counterpart
because both shells rely on lexical information alone to make corrections in users’ inputs.
Neither shell can correct command line arguments with great accuracy because neither
the tcsh nor zsh spelling correction facilities uses any knowledge of the command line
syntax used by any commands. Each shell is forced to infer the domain from which each
command line argument is drawn (e.g., the set of all file names or the set of all user login
names), and lexical information alone is often insufficient for this task.

VALET addresses the above-described shortcomings in the tcsh and zsh spelling
correction facilities. Unlike the tcsh and zsh shells which are normally ignorant of the
command line syntaxes used by all commands, VALET incorporates a large, predefined
knowledge base that describes the syntaxes used by many of the most commonly used
UNIX commands. For example, VALET automatically knows that the argument given to
a cd command must name an existing directory, and that the arguments given to mkdir
must name nonexistent directories. VALET can also make use of file name extensions in
order to guide its input corrector. VALET knows, for example, that the names of input
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files for the tex and latex programs generally end with the characters “.tex”. Not
only does VALET use lexical and syntactic information to correct users’ input errors, but
it also refers to its users’ short- and long-term interaction contexts in order to make
more sophisticated kinds of corrections. VALET can, for example, often determine when
a referenced file is actually in a different directory than the one that the user indicated.
Finally, VALET offers a command completion facility like the one included in the standard
C shell. Although VALET does not offer a programmable completion facility like those

found in tcsh and zsh, VALET’s input correction facilities are much more sophisticated

than those found in today’s popular UNIX command shells.
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2.4 SAUCI, the Self-Adaptive
User-Computer Interface

As just described, the tcsh and zsh command shells improve upon the standard
UNIX shells while preserving the traditional command line interfaces of those programs.
By providing command completion and spelling correction facilities, tcsh and zsh both
reduce the frequency of input errors and mitigate the effects of those errors that do
occur. However, even with these improvements, tcsh and zsh still do relatively little
to help their users input appropriate, well-formed commands. Although tcsh and zsh
can correct (within the limits previously discussed) inputs once they have been entered,
neither program can effectively describe the commands and command options that are
available to the user.’ Neither can they offer any assistance to the user in formulating
a plan of action; both tcsh and zsh are oriented toward individual commands and
understand nothing of their users’ overall tasks and goals. The authors of tcsh and
zsh are hardly blameworthy for the omission of task-specific guidance in their shells,
however, because neither program was intended to incorporate such novel features. The
tcsh and zsh shells were designed to offer significant but only incremental improvements
over previous UNIX shells. The SAUCI system, however, was designed to replace the
traditional UNIX shell interface altogether.

SAUCI, the Self-Adaptive User-Computer Interface system written by Tyler and Treu
[34, 35], is a research prototype that demonstrates a great variety of modern user interface

design concepts. These ideas include:

a graphical, multiwindow, form-based interface;

adaptation to individual users;

context-specific advice and assistance; and

orientation toward specific high-level tasks.

®Once a command name is entered by the shell user, both tcsh and zsh have the ability to print a help
message for that command. However, such documentation is generally either nonexistent or inappropriate
for quick reference (e.g., the full UNTX “man page”). Neither shell can answer specific questions posed
by the user or tailor its help messages to the user’s level of experience.
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2.4.1 A Graphical User Interface

SAUCI provides a graphical user interface to the UNIX shell. The interface presents
several separate windows to its user, and these windows make it clear that SAUCI divides
the process of command entry and execution into a sequence of unique steps or phases.

The first phase is the prompt phase. To select a command to be executed, the SAUCI
user first chooses the command name from a menu in the “Commands” region of the
display. SAUCI has knowledge of the 50 or so most commonly used UNIX commands (as
determined by Hanson, Kraut, and Farber [12]), and these commands are organized into
functional groups: communication commands, file and directory manipulation commands,
and so on. Each functional group of commands appears within its own menu.

Once the user has chosen the command to be executed, the SAUCI system enters the
parameter phase. A new set of windows appears on the display, allowing the user to specify
the arguments for the command. The contents of these windows are, of course, tailored
specifically to the options available for the just-selected command. One window allows
the user to control the “simple” options — those that are simply enabled or disabled and
which require no further specification. Additional windows present the more complex
command arguments. For each argument requiring text entry (e.g., a file name), SAUCI
creates a separate window and presents it to the user along with appropriate instructions.
Together, all of these parameter phase windows constitute a form that enables the user
to view and specify the arguments for the selected command.

When the user finishes entry of the command arguments, SAUCI enters its system
response phase. SAUCI constructs a valid shell command from the user’s specifications
and submits that command to the UNIX shell. The command and its output appear in a
terminal-like window in the “System Response” region of the display. If the just-executed
command is interactive, the user can communicate with the process through this system
response window. When the command is complete the user returns to SAUCI’s prompt

phase in order to specify and execute another command.

2.4.2 Adaptation to Individual Users
In addition to providing a graphical interface to the UNIX shell, SAUCI adapts this
interface to individual users, according to their experience levels and previous interactions
with SAUCI. The importance of adaptation, as previously described in Section 1.2, is
that through customization SAUCI can intelligently satisfy the differing needs of different

people. By tailoring its own presentations according to individual users’ profiles and
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behaviors, the SAUCI system presents a more cooperative and user-friendly interface to
the UNIX shell.

Both the prompt phase and parameter phase described in Section 2.4.1 are tailored to
individual users of the SAUCI system. In the prompt phase, the contents of the command
selection menus are determined by rules that operate on the current user’s profile. For
instance, SAUCI can choose to display verbose or terse text in its menus based on the
number of times that the corresponding UNIX commands have been successfully invoked
by the current user. Alternately, SAUCI can choose to include or omit commands from
its menus based on the user’s predetermined “class” novice, computer science student,
or system programmer, for example.

The parameter phase of the SAUCI dialogue is similarly customized according to the
current user’s experience with the selected command. SAUCI automatically decides which
command options and arguments to present and how those options should be described,

depending on the user’s profile and interaction history.

2.4.3 Context-Specific Advice

The user’s interaction history also guides SAUCI’s presentations of its own integrated
command documentation and error messages. SAUCI includes built-in synopses of each
of the shell commands that are known to the system. For each command these sum-
maries describe the purpose of the command, provide brief instructions for use of the
command, offer examples and special warnings, and include other similar information.
Not surprisingly, SAUCI tailors these help texts according to the inferred needs of the
person currently using the interface. SAUCI can provide verbose descriptions to novices
and brief descriptions to experts. If the current user has previously made mistakes with
a certain shell command, then SAUCI’s online summary of that command will include
warnings tailored to the user’s past errors.

These same types of customization apply to SAUCI’s own error messages. After a user
has completed the prompt and parameter phases of command entry, SAUCI examines the
user’s command for a variety of errors for example, SAUCI may verify that the files
referenced in the command actually exist and are of the required types. SAUCI can also
determine whether or not the user’s command is appropriate for the current high-level
task. (Task orientation is described in Section 2.4.4.) If any errors are discovered in the
user’'s command, SAUCI presents a description of the errors, tailored according to the

user’s experience and current situation, and then allows the user to correct those errors.
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The user does not need to respecify the entire command from scratch; rather, the user
only needs to edit the contents of the appropriate parameter entry windows as described
in Section 2.4.1 and then resubmit the command to SAUCI.

In summary, SAUCI makes use of specific users’ interaction contexts in order to offer

context-specific advice that is appropriate to its users’ experiences.

2.4.4 Orientation Toward High-Level Tasks

The final user interface innovation that SAUCI includes is task orientation. Tradi-
tionally, human-computer interfaces have been organized around the individual actions
that people may carry out with the underlying systems, with little or no attention paid
to how those separate actions may be combined in order to accomplish the user’s overall
tasks. The responsibility for mapping high-level tasks (e.g., the preparation of a letter)
onto sequences of actions offered by a computer system has, until recently, always been
placed entirely on the user of the system. Unfortunately, this responsibility can be a
significant barrier to inexperienced computer users who may not be familiar with all of
the features of the systems that they use — or who may be intimidated by the wide variety
of actions available in a complex computer system like UNIX. With the increasing use of
computers by people who are not computer specialists, user interface designers realized
that in order to be most user-friendly, systems needed to help their users map specific
tasks onto sequences of coordinated actions. In other words, user interfaces needed to
provide task-specific guidance.

The SAUCI prototype can provide guidance for two different high-level tasks: the
preparation and printing of a text document and the creation and testing of a computer
program in the C programming language. SAUCI represents these tasks by inverted
tree-like structures. Each task is decomposed into an ordered sequence of subtasks; each
subtask may itself be decomposed into further ordered subtasks or into one or more shell
commands that must be executed by the SAUCI user in order to complete the task.

Once the SAUCI user has chosen either the writing or programming task, SAUCI

presents three separate windows in the “Task Guidance” region of the display:

e The first window contains brief, step-by-step English instructions for completing
the task. When the user initiates a new task, this window outlines only the top-

level subtasks. The user can request a more detailed set of directions at any time;
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these directions are, not surprisingly, tailored according to the user’s profile and

interaction history.

e The second window displays a graphical representation of the selected task and the
user’s progress through it. The task components are organized in an inverted tree
structure; the task as a whole is represented by a text label at the top of the tree.
Line segments connect the task label to the labels for the top-level substeps in the
task; beneath each of these steps are the constituent substeps, and so on until at
the bottom of the tree are labels that represent the shell commands to be executed.
The label that represents the user’s current position in the task is highlighted and
the labels for all the previously completed steps are boxed. This display allows the
SAUCI user to track his or her progress through the task.

e The third and final window graphically depicts the files that are involved in the
current task. The files are represented by text labels, each label containing the
corresponding file name and a brief English description of the file contents (e.g.,
“misspelled words”). The relationships between files are represented by line seg-

ments that connect the appropriate labels.

People who have little experience with a certain task can clearly benefit from task-
specific guidance because it enables them to work with reasonable proficiency and with
minimal assistance from human tutors. In addition, people who are already experts with
a task can benefit from the additional orienting context that SAUCI keeps on the display.
Task-specific direction is an integral part of SAUCI’s user-supportive nature, especially
since such direction is tailored to the requirements of individual users. As with all of
SAUCT’s other displays, the information within the task guidance windows is controlled
by rules that customize the presentations to the current user’s individual profile and

history.

2.4.5 SAUCI Results
In summary, SAUCI is a prototype research system that provides a graphical, task-
oriented, context-sensitive, and user-adaptive interface to the UNIX shell. In order to
assess the value of the SAUCI system, Tyler and Treu recruited three students to perform
a large set of tasks with SAUCI [35]. These tasks exercised most of the basic UNIX

commands with which SAUCI is familiar, and in addition there were several document
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preparation and programming exercises. (These are the two high-level tasks for which
SAUCI can provide guidance as described in Section 2.4.4.) Tyler and Treu recruited three
additional students to carry out the same set of tasks with a more traditional terminal-like
interface to the shell. All six students had significant experience with VAX/VMS but little
with UNIX.

The result of the researchers’ experiment was that the students who used SAUCI made
far fewer errors than those who used the traditional shell interface. (For this experiment,
Tyler and Treu counted as errors all user actions that did not achieve the goal of the
exercise at hand.) Furthermore, the subjects who used SAUCI completed the set of tasks
in less time than did those who used the textual interface. Tyler and Treu concluded [35,
pages 323 324]:

[Ulsers of the SAUCI interface generally did better on both measures of
performance, making only about half as many errors in each stage and taking
much less time to complete the tasks for all but the simple commands.

... The SAUCI users came to rely on the help system and the File System
Window to achieve their goals, and mostly made errors involving confusing
subdirectories with files and omitting needed argument prefixes. Users of the
standard interface, on the other hand, made more kinds of errors, including

misordering command arguments, misspelling arguments, and losing track of
their current location in the file system.

Although the researchers noted that their experiment was too informal to be con-
clusive, they suggested that each of SAUCT’s user interface innovations played a role in
SAUCT’s apparent success. The graphical, form-based interface for command specification
both provided important orienting information to users and kept users from entering
syntactically malformed commands (because SAUCI formatted the final textual command
line itself). Task-specific guidance and context-sensitive assistance also played important
roles in helping SAUCI’s users complete their tasks successfully and efficiently. There was
less direct evidence that adaptation to individual users contributed to SAUCI’s usability,
but the researchers noted [35, page 324] that the students who used SAUCI expressed
“erowing comfort with the interface and generally felt that it had become easier to use
after the first few sessions.” Tyler and Treu also suggested that SAUCI’s online advice
and assistance features were so well received by users because these interface components
adapted to users’ individual behaviors.

The ultimate goals of SAUCI and VALET, the UNIX shell interface described in

Chapter 3, are the same: to provide an “intelligent” and user-supportive interface to
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the UNIX shell. However, of all the UNIX shell interfaces described in this chapter,
SAUCI is the least similar to VALET. Even though the two systems’ goals are identical,
the methods by which these systems attempt to meet their goals are very different.

Most obviously, SAUCI replaces the traditional UNIX shell command line interface
with a graphical, multiwindow display. VALET, on the other hand, preserves the shell’s
command line interface. Each approach has its advantages. By abandoning the shell’s
command line interface, SAUCI is able to provide important contextual information to
its users; for instance, SAUCI can display the arguments for a particular command in
a specially tailored form. Moreover, because SAUCI constructs the ultimate command
line itself, SAUCI eliminates a large number of users’ typing errors. VALET, however,
requires its users to enter commands through the shell’s traditional, textual interface.
Under normal circumstances VALET is invisible to its users; VALET makes itself apparent
only when it detects an input error. This has advantages for people who are already
familiar with UNIX: These users may find SAUCI’s graphical user interface to be too
intrusive. Sophisticated users of the UNIX shell make frequent use of the shell’s special
features  file name patterns, command completion, and command history, for example

which are most easily invoked through the standard command language interface.
(The unique strengths of command language interfaces were previously described in
Section 1.1.) Whereas SAUCI disguises these already-existing and useful UNIX shell
features, VALET provides direct access to them.

A second difference is that SAUCI incorporates its own help texts for users. SAUCI
users can ask for help on specific shell commands and SAUCI automatically adapts this
documentation to the experience levels and behaviors of its users. VALET, on the other
hand, does not provide any help facility at all to its users. People who use VALET must
rely on the UNIX documentation facilities which already exist (i.e., the man command).
A final difference between SAUCI and VALET is that SAUCI provides some measure of
task-oriented guidance. Although the SAUCI prototype system understands only two very
narrow tasks, Tyler and Treu demonstrated that the idea of task-oriented assistance can
be very useful, especially to novice users. VALET, however, is designed to interpret only
users’ commands, not users’ goals. VALET is able to detect syntactically or semantically
erroneous commands and offer reasonable corrections for those commands but it
cannot detect circumstances in which a command is erroneous because it fails to fulfill

the user’s intention.
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Both SAUCI and VALET provide “intelligent” user-adaptive interfaces to the UNIX
shell. The kinds of assistance that these systems provide, however, are very different. It
would be interesting to incorporate some of SAUCI’s features into VALET at some future

time; ideas for improving VALET are presented in Chapter 5.

2.5 SUSI, the Smart User System Interface

VALET was preceded and influenced by all of the systems described above: the metric
spelling correction library, the tcsh and zsh command shells, and the SAUCI shell
interface. Of all the systems that preceded VALET, however, the most similar is SUSI,
the Smart User System Interface created by Jerrams-Smith [16].

Like SAUCI, the SUSI system is a research prototype interface to the UNIX shell
program. Unlike SAUCI, however, SUSI is a “transparent” agent between the user and
the shell. A person who uses SUSI communicates with the underlying shell through the
usual command line interface. SUSI interrupts the dialogue only when it detects an error

or a need to offer advice — in this way SUSI is very similar to VALET.

2.5.1 An Analysis of Users’ Errors

Before implementing SUSI, Jerrams-Smith studied the behavior of novice UNIX users
in order to understand the mistakes that such users make. Fifty-five university undergrad-
uate students were recruited. Each was asked to learn to use UNIX well enough so as to
be able to perform some simple tasks: create, format, and print a brief essay and write a
small computer program. (The subjects were not constrained to these tasks, however.) All
of the subjects were familiar with computer science and with other operating systems, but
none had experience with UNIX. At the start of the experiment the researchers provided
a brief lecture on UNIX to the students. The students then used the UNIX system largely
on their own. During the experiment the researchers recorded all of the users’ inputs to
the shell, along with additional context such as the time at which each command was
entered and the set of files that were in the shell’s current directory. In addition, the
students spoke into tape recorders as they worked. They were asked to describe what
they were trying to do, how they were trying to do it, and what their reactions were
to the shell’s execution of their commands. These verbal transcripts provided valuable
insights into the students’ intentions and reactions.

The students learned to use UNIX over a four-week period. After these behavior study

sessions were complete, Jerrams-Smith and her colleagues examined the recorded session
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transcripts, located the students’ errors, and finally classified all of these errors according
to cause. The principal purpose of this exercise, in addition to simply gathering data
on users’ input mistakes, was to understand how the examiners themselves recognized
and inferred the causes of errors. By understanding how human experts interpret input
errors, Jerrams-Smith was later able to incorporate the examiners’ knowledge into an
expert system within the SUSI shell interface.

The experts’ classification of the test subjects’ errors is summarized in Table 2.3. The
researchers enumerated 135 errors in the transcripts from the first two weeks of the study
and 416 errors from the transcripts of the second two weeks. The kinds of errors that
the students made changed as they gained experience, as Table 2.3 shows. The causes of

error included the following;:

Inability to enter a command. Due to basic misunderstanding of the interface or its
documentation, the user was unable to enter the command properly. For example,
this category includes inputs in which the user omitted a space between the com-
mand name and the subsequent command argument. It also includes inputs in which
the user typed metacharacters from the system documentation (e.g., “<cat £1>”).
Although the novice users in the study initially made many errors of this variety,

this source of error disappeared very rapidly as the users gained experience with

UNIX.
Table 2.3. Summary of Errors in Novice Users’” Commands,
Adapted from Jerrams-Smith [16]
Percentage of All Errors During

Error Category Weeks 1-2 Weeks 3—-4 | Entire Study
Inability to enter a command 29.6 3.4 9.8
Failed request for help 12.6 9.4 10.2
Use of previous knowledge 15.6 7.7 9.6
Spelling or typing error 14.8 18.5 17.6
User misunderstanding 3.7 12.0 10.0
Inefficient use of commands 4.4 15.1 12.5
Unknown input 0.0 13.7 10.3
Other causes 19.3 20.2 20.0
Total 100.0 100.0 100.0
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Failed request for help. The user tried to summon online assistance but failed.

Use of previous knowledge. Errors in this category include commands that are avail-
able on other computer operating systems but not on UNIX. The subjects in the
behavior study had experience with other operating systems and tried to transfer
their knowledge onto UNIX. As the users became more familiar with UNIX| this

source of input error became less significant.

Spelling or typing error. The input command contained a simple spelling or typo-
graphical error; for instance, one subject typed “mial” when “mail” was actually
intended. As Table 2.3 illustrates, simple input mistakes were a large source of
error throughout the study. In fact, spelling errors were the single most common
input errors in the study. The researchers counted 97 typographical errors in the
transcripts — the next most common type of error, inefficient use of commands, had
only 61 instances [16, page 274]. In the second half of the study almost one-fifth of
all errors were typographical slips. Additionally, in contrast to the three previous
categories of error, spelling mistakes became a more significant cause of input errors
as students gained experience with UNIX. That is, although experience quickly
reduced the frequency of knowledge-based errors, the students continued to make

typographical errors at a steady rate.

User misunderstanding. The command suggested that the user had an incorrect men-
tal model of the system. For example, the user may be confusing the concept of pipes,
which relay data between processes, with the concept of redirections, which relay
data between processes and files. This source of error became more important as the

students gained UNIX experience and perhaps attempted more complex commands.

Inefficient use of commands. This category applies to input commands that, although
otherwise correct and effective, demonstrate that the user is not making the most
efficient use of the UNIX system. For instance, the user may be using a sequence
of rm commands to delete several files — “rm file-1" followed by “rm file-2" —
when it would be more efficient for the user to enter a single rm command to delete

all of the files at once.

Unknown input. This category includes commands for which the researchers could not
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infer any intention. Examples in this category include “djnf” and “yoo” and other

nonsensical inputs.

Other causes. Jerrams-Smith and her colleagues enumerated several other minor cat-
egories for input errors [16, pages 272 273]; these categories have been combined
under the heading “Other causes” in Table 2.3. Among these other classifications of
errors are apparent guesses, obscenities, mistakes caused by incorrect or misleading

documentation, and general lapses of attention.

From this analysis of novice users’ errors, Jerrams-Smith and her colleagues concluded
that a supportive interface to the UNIX shell would need to address several distinct causes
of errors. Certainly, an ideal shell interface would correct trivial input errors — including
typographical errors reliably and automatically. At a higher level, an ideal shell
interface should detect its users’ misconceptions about UNIX and offer appropriate help
as quickly as possible in order to prevent users from making the same mistakes over and
over again. This means that not only should the interface recognize explicit requests for
help from its user, but that the interface must in addition provide active assistance when
required. Finally, an ideal UNIX shell interface should be able to recognize situations
in which a person is utilizing the system in an inefficient way. The interface would then

offer advice on how commands could be invoked in a more effective manner.

2.5.2 The Design of SUSI

Based on the preceding analysis of novice users’ errors and the causes of those errors,
Jerrams-Smith implemented the SUSI system to recognize and address the most common
difficulties that people have in using the UNIX command shell. In order for SUSI to meet
this goal it incorporates many features; most importantly, SUSI contains a knowledge
base of the most common UNIX commands, a knowledge base for diagnosing the causes
of users’ errors, and an active assistance capability that allows SUSI to provide tutor-
like advice to its users. This advice is tailored according to individual users’ previous
experiences and behavior patterns.

SUSI is a “transparent” agent that mediates the dialogue between the UNIX shell
and its human user. That is to say that SUSI is largely invisible until it detects a need
to assist the user of the shell. A person using SUSI sees the traditional command line

interface to the UNIX shell, with one small difference: The files in the current directory
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are listed above the shell’s prompt. This list is updated as necessary. By providing this
listing SUSI provides important contextual information to its users. The directory listing
also provides feedback; users can, for example, immediately see the results of a cp or rm
command.

When the SUSI user enters a shell command, the command is sent to SUSI, not
directly to the underlying shell. SUSI receives the command line, divides it into separate
components (tokens), and applies “intelligent” spelling correction to each piece [16,
page 283]. The next step is to parse the command. SUSI knows all of the commands that
are available to the user but has detailed knowledge of only the 40 or so most frequently
invoked UNIX commands [12]. SUST’s knowledge of these commands includes the required
syntax for the command line arguments and information about each argument, such as
whether it is required or optional, whether or not it may be repeated, and what kind of
entity (if any) it must name — a file, a user, or something else. In addition, for each
command SUSI keeps a list of synonyms and alternate names; these are names which
novices might use in an attempt to invoke the command. SUSI does not accept these
alternate names as commands, but it does use them in order to provide tutorial assistance
to the user.

SUSI then consults its knowledge base in order to detect and analyze input errors.
The expert system component of the SUSI system contains approximately 70 production
rules that embody the knowledge gleaned from the user behavior study described in Sec-
tion 2.5.1. The methods that the examiners used to diagnose users’ errors are manifested
by forward chaining rules in SUSI’s knowledge base. Some of these rules attempt to
recognize users’ misconceptions about UNIX. For instance, SUSI includes a rule of the
following form [16, page 280] that attempts to determine when the user has confused the
concepts of output redirection (invoked by “>”) and pipes (invoked by “|”):

If “>” is present in the user’s command
and “>” is not followed by the name of an existing file
and “>” is not followed by a mistyping of a file name
and “>” is followed by a UNIX command

then the user may be confusing “>” with “|”.

Other rules attempt to diagnose inefficient use of commands or recognize explicit
requests for help. Rules can also consult the current user’s profile and history, so, for
example, some rules may apply only to novices or only to experts.

SUSI invokes its rules for every input command and updates its model of the current
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SUSI user accordingly. When an error or misconception is detected, the interface offers
immediate assistance to the user. SUSI describes the problem and the user can request
additional instruction. Although most of SUST’s explanations are fixed (and targeted for
novices), portions of the texts are adapted to the user’s current situation. For instance,
tutorial examples will refer to files in the user’s current directory.

Finally, if the command is well-formed and unlikely to cause harm (e.g., the accidental
deletion of files), SUSI submits the command to the UNIX shell. Additional tutorial
information from SUSI, if any, appears after the output of the command but before the

next shell prompt.

2.5.3 SUSI Results

In order to evaluate the effects of SUSI, Jerrams-Smith conducted a second study of
novice user behavior. Thirteen undergraduates, none familiar with UNIX, were recruited
and divided into two groups; six students used the SUSI system and seven used the
normal UNIX shell interface. The researchers designed a set of tasks that exercised
a variety of frequently used UNIX commands and concepts (i.e., those that the SUSI
system supports). The researchers then gave this task list to each student in the study
and asked the subjects to carry out the specified tasks, and only those tasks, in the order
specified. Jerrams-Smith and her colleagues monitored the performance of the students
through the same methods used in the previous behavior study described in Section 2.5.1.

Not surprisingly, the students who used the supportive SUSI system demonstrated
superior performance. Jerrams-Smith wrote [16, page 288], “When compared with the
control group [using the normal UNIX shell interface], the experimental group [using
SUSI] showed a significantly improved ability to use UNIX easily and efficiently.” In

particular, those who used SUSI excelled in three respects:

e Those who used SUSI both attempted and successfully completed more of the
assigned tasks than did those who used the standard shell interface. Most of the
students who used SUSI attempted all 30 of the assigned tasks, whereas those who

used the normal shell attempted only 22 or 23 on average.

e The people who used SUSI worked more efficiently. That is to say that although the
SUSI users completed a larger number of the assigned tasks, they entered far fewer

commands than did their counterparts who used the unassisted shell interface. In
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fact, SUSI users entered on average only 55 commands whereas users of the standard

shell entered over 110 commands on average  twice as many.

e SUSI users made fewer mistakes than did those who used the standard shell. Stu-
dents using the normal shell interface frequently made the same kinds mistakes
over and over. Often, several erroneous commands arose from a single underlying
misconception. Students using SUSI, however, received immediate assistance when
their misconceptions became apparent. Because SUSI offers tutoring in direct
response to errors, the students using SUSI received critical feedback instruction

that prevented future mistakes.

Jerrams-Smith concluded that the SUSI prototype system successfully met the goal
of actively and intelligently supporting users of the UNIX shell [16, page 289]:
[SUSI] helps novices to overcome the initial difficult stage of using UNIX and
enables them to use it more efficiently. The interface allows experts to interact
with UNIX in almost their usual way, but offers advice and guidance when
it detects a novice error. Novices show much less confusion because their
underlying problems are usually solved quickly and although there are some

occasions when the interface is unable to help, the novice is no worse off in
that situation than is the usual novice user of UNIX.

Both SUSI and VALET are research prototypes of supportive shell interfaces. In
fact, VALET is remarkably similar to SUSI in design. Both systems are “transparent”
agents, implemented in Lisp, that mediate communication between their users and the
UNIX shell. Both systems have knowledge of all available UNIX commands and detailed
knowledge of the most commonly used commands which allows these interfaces to parse
and correct users’ inputs. VALET and SUSI both provide spelling correction and actively
assist their users when they detect the need to do so.

However, each system also has features that the other lacks. SUSI, for example, is
able to diagnose novice users’ misconceptions about UNIX and offer tutorial information
in order to correct those misunderstandings. SUSI maintains user models that describe
what its users appear to know and not know about UNIX. VALET, on the other hand,
generally assumes that its users are familiar (but not necessarily experts) with UNIX
and therefore concentrates on addressing the mistakes that more experienced users make

in particular, typographical errors and errors based on interaction context. VALET

incorporates powerful input correction facilities but does not attempt to tutor its users
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in effective use of the UNIX shell. It would be interesting and useful to incorporate
more of SUSI’s knowledge into VALET, along with other improvements such as SUSI’s
omnipresent listing of the files in the shell’s current directory. These and other ideas for
improvement to VALET are described in Chapter 5.

VALET shares features with each of the shells and shell interfaces described in this
chapter: the metric library, the tcsh and zsh UNIX shells, SAUCI, and SUSI. These
systems preceded and influenced the design of VALET, and that design is the topic of
Chapter 3.



CHAPTER 3

VALET

To a very large degree, the perceived nature of an interactive computer system is
defined by the user interface of the system’s command shell. A command shell as
previously described in Section 1.3 is a special program that allows its users to invoke other
programs and otherwise coordinate a computer system’s resources. In general, when a
person begins an interactive session with a computer, the computer system automatically
starts a command shell for that user. This shell is the program with which the user
initially interacts. Further, the user and shell communicate continually throughout the
user’s session. The shell allows its user to invoke other programs, and although those
programs may temporarily take control of the user’s terminal, the shell interface always
reappears when those other programs have finished. Because it is the shell that is present
when the computer is otherwise “doing nothing,” and due to the command shell’s special
role in the computer system, the shell’s interface has an enormous impact on users’
perceptions of the computer system as a whole. The shell is seen as the fundamental
interface of the computer system.

The user-friendliness of a system’s command shell therefore reflects upon the system as
a whole. Unfortunately for users and manufacturers of UNIX systems, the most common
UNIX command shells are largely user-unfriendly — and therefore, UNIX systems as a
whole are widely perceived to be unfriendly and hard to use, even when these systems
offer a wide variety of other, more user-friendly applications. The UNIX shell interface
has been widely criticized for its uncooperative nature [8, 25]. Novice users are often
confused by obscure command names and frustrated by the system’s lack of feedback
and inability to provide intelligent advice. Experienced users are frustrated by the shell’s
inability to detect or correct even the most trivial errors in input commands. All UNIX
users would benefit from a shell that could intelligently interpret its users’ commands
and then act according to its users’ intentions, even when the actual input commands are

incorrect in some way. In other words, people would profit from a command shell that
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attempted to do what its users mean to say.

Although the state of today’s popular UNIX shells is problematic for users of UNIX
systems, the situation provides an obvious opportunity for human-computer interface
researchers to experiment with techniques for improving user interfaces — both the UNIX
shell interface in particular and human-computer interfaces in general. The UNIX shell is
ripe for experimentation: Not only does its interface badly need to be improved, but the
shell is also widely and regularly used, especially within the academic computer science
community. Because so many people use the UNIX shell on a daily basis, improvements
to the UNIX shell are valuable, and it is easy for user interface researchers to find human
test subjects in order to evaluate such improvements.

Several previous attempts to improve the UNIX shell interface were described in
Chapter 2. The remainder of this thesis presents VALET, a new “intelligent” user interface

for the UNIX C shell.

3.1 The Goals and Limitations
of the Interface

In a sentence, the purpose of VALET is to provide a user-supportive interface to the
UNIX C shell [17] that meets the needs of relatively experienced users of that shell. By
meeting this specific goal the VALET interface also serves a greater purpose: namely, to
demonstrate that the ideas embodied in user-supportive, cooperative, and “intelligent”
interfaces are useful, effective, and worthy of incorporation into other human-computer
interfaces.

VALET caters to practiced C shell users because it adds intelligent command analysis
and correction to the standard C shell command line interface without fundamentally
altering that interface. In other words, VALET is an intelligent but largely transparent

agent.

3.1.1 Intelligent Command Processing
VALET is intelligent in the sense that it uses a great deal of knowledge in order to
accurately interpret  and when necessary, correct  its users’ input commands. VALET
uses interaction context, as described in Section 2.1.4, in order to accomplish this task.
This context includes knowledge of the full set of available commands (with a few minor
exceptions), detailed knowledge of the most commonly used commands, knowledge of

the file system, and knowledge of specific users’ interaction histories, both short-term
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and long-term. Because VALET maintains all of this context, it can accurately detect
and correct the most common mistakes that experienced shell users make: typographical
errors, misspellings, errors of location (e.g., the use of a partially incorrect file name),

and other minor syntactic errors.

3.1.2 Transparency

VALET is transparent in the sense that it makes minimal modifications to the command
line interface offered by the standard UNIX C shell. People who use VALET interact with
the C shell as they normally do through a textual, terminal-like interface. The shell
prompts for input and the user enters a command according to the regular C shell input
language. The output generated by the command, unadulterated by VALET, appears in
the terminal-like window and then the process repeats with the shell prompting the user
for additional commands. VALET interrupts this dialogue only when it detects an error
in an input shell command. At that point VALET intercedes and takes appropriate action
(i.e., describes the mistake and offers a reasonable correction if possible).

VALET’s transparent, generally passive nature has both advantages and disadvantages.
Part of VALET’s transparency is that it preserves the usual terminal-like interaction style
with the C shell. VALET utilizes a command line interface although other researchers
have demonstrated that a graphical, point-and-click user interface for the shell can yield
significant improvements in users’ abilities to effectively use a UNIX system. (This was
described in Section 2.4.) However, although a wholesale replacement of the C shell
interface could be beneficial, especially to inexperienced users, the focus of the research
embodied in VALET is to understand and demonstrate how command line interfaces may
be improved through intelligent, context-based processing of commands. Preservation
of the C shell’s normal command line interface may in fact benefit experienced users of
the shell who are already proficient with the interface and who make frequent use of the
special features of the shell’s command language  file name patterns (globs), command
and file name completion, and command history, for example.

This alludes to a second way in which VALET is transparent: namely, that VALET
does not attempt to change the command language of the C shell, even though that
language is far from ideal, both in terms of usability and in terms of conduciveness
to intelligent analysis. Most significantly, as described in Section 1.3.1, almost all of

the C shell’s input language is determined and implemented by programs other than
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the shell itself. The names of most shell commands are simply the names of the other
programs that the shell invokes for example, biff, awk, and grep. These program
names are often inexplicable because the various authors of these programs never thought
to follow a consistent naming scheme. Furthermore, although the C shell invokes other
programs it does not determine the syntax or semantics of other programs’ command line
arguments. Each program incorporates its own parser for command line arguments, and
these parsers can vary widely from program to program. In short, because the shell’s
language has always been determined by programs beyond the shell’s control, the shell’s
language was evolved rather than designed. From a user’s viewpoint this means that
the shell’s input language is full of inconsistencies: Different programs require different
command line syntaxes. From VALET’s viewpoint this “distributed” language design is
problematic because it means that the shell does not control — in fact, has almost no
knowledge of — its own input language. KEven worse, the shell has no programmatic
way to gain knowledge about its command set. This means that an intelligent interface
such as VALET must incorporate a priori knowledge about the programs that users may
invoke. Because there are literally hundreds of programs in a modern UNIX system and
because new programs are created almost continuously, it is impossible for an intelligent
UNIX shell interface to have complete, built-in, detailed knowledge of all the commands
that a user might invoke. Fortunately, however, people use only a very small number of
commands with any frequency [12].

The C shell language has other features that hinder intelligent parsing of users’
input commands. As just described, the set of available commands is not under the
shell’s control. Unfortunately this is not the only uncontrollable domain to which shell
commands refer: The UNIX file system is another such domain. Many commands expect
to receive file names as arguments, so VALET must maintain a detailed model of its
host’s file system. Moreover, because UNIX file systems change frequently, VALET must
continually reexamine its host’s file system in order to keep its internal model current.
This continual rescanning is very time consuming — and even then, because it is not
possible for a UNIX process to ask to be informed of all changes to a file system, VALET’s
file system model is always slightly out of date.

Finally, the C shell command language has lexical and syntactic features that impede
intelligent input processing. Because the language is generally terse the names of

commands and command options are generally very short there is often little lexical
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context that an intelligent interface can use in order to correct users’ input mistakes.
Fortunately, as described in Section 1.3.2, VALET can draw upon other kinds of context
in order to detect and correct errors in terse inputs. Other difficulties arise from the
complexity of the language itself. The shell language provides several kinds of syntactic
shortcuts — including shell variables, file name patterns, and user-definable command
aliases — and in addition provides syntax for directing the inputs and outputs of com-
mands to files and to other commands through “pipelines.” There are special syntaxes
for “quoting” arguments in various ways. Handling all of these mechanisms requires a
sophisticated parser. Ideally an intelligent command line interface to the shell would
understand all of these syntactic features; VALET, however, understands only a subset of
them for reasons described in Section 3.4.1.

In summary, the standard C shell language is a difficult language to parse intelligently.
Some of the language obstacles are due to the shell’s special role as a program that invokes
other programs, and other obstacles arise from the shell’s own syntactic features. Despite
all of these problems with the standard C shell language, however, the VALET interface
is designed to provide transparent access to the normal shell language. Although the
standard shell language is difficult in many ways, it would have taken an incredible
effort to replace this language with an all-new (and presumably, easier to use) command
language. This new language could not possibly have extended to all of the hundreds of
already available UNIX commands, at least not without reverting to the syntax of the
existing shell language, and in any case a new language would likely not be acceptable to
people who are already proficient with the existing shell language. Ultimately, because the
motivation behind VALET was not to create a new shell language but rather to understand
how intelligent command processing could benefit command line interfaces, VALET was
designed to act as a transparent agent that parses the regular UNIX C shell command
language.

A third and final aspect of VALET’s transparent nature is that VALET does not
attempt to parse, process, or augment the output from any of the UNIX programs run
by the shell. Some of this output, particularly error messages, could provide important
contextual information to an intelligent interface such as VALET. Certainly, the output
messages of many programs could be improved or even tailored to the experience levels
of individual users. However, the task of interpreting arbitrary program output is very

large and complicated and is well beyond the scope and purpose of VALET. VALET is



63

therefore transparent in the sense that it does not filter or interpret the output of any
program (except that VALET must locate prompts from the shell for reasons detailed in
Section 3.3.1). VALET is constrained to interpreting its users’ input commands, based on

contextual information derived from sources other than programs’ output.

3.1.3 Summary of Features and Limitations
To summarize, the goal of VALET is to provide an “intelligent” interface to the UNIX
C shell. VALET meets this goal by analyzing the shell commands that its users enter
and by detecting errors in those commands. VALET maintains detailed knowledge bases
that describe the context in which commands are given to the shell, and this knowledge

includes:

e information about the complete set of shell commands available to each user, with

a few minor exceptions described in Section 3.4.4;

e detailed knowledge (e.g., descriptions of command line syntax) of the most com-

monly used UNIX commands;
e a detailed, continually updated model of the UNIX host’s file system;

e information about the state of the current shell session (e.g., the shell’s current

directory);

e both domain-independent and domain-dependent heuristics for correcting the com-

ponents of faulty shell commands; and

e for each user, information about that user’s interaction history, including the sets
of commands and files that have been referenced — both referenced recently and

referenced ever by that user.

Although much of VALET’s knowledge base is static and shared by all of VALET’s
users, VALET also maintains additional context that is specific to individual users. VALET
records a unique interaction profile for each user as just described, and each user’s profile
is preserved between sessions with VALET. These user-tailored profiles greatly improve
VALET’s ability to correct its users’ shell commands.

VALET attempts to correct the input errors that computer users make most frequently:

typographical errors, misspellings, incorrect file references, and other minor slips. VALET
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is also able to interpret many user-chosen abbreviations. When VALET recognizes an
erroneous input command it attempts to correct that command; if VALET can determine
a reasonable correction, it presents the revised command to the user for confirmation.
Otherwise, when VALET cannot suggest a reasonable correction for a faulty input, VALET
simply describes the error to the user and, depending on the error, presents the original
command for editing by the user. In either case, VALET prevents detected erroneous
commands from being received by the underlying UNIX shell.

VALET is an intelligent mediator that interprets communication from the user to the
UNIX C shell. This mediation is largely transparent, however, meaning that VALET
preserves almost all of the familiar UNIX C shell interface. As previously discussed in
Section 3.1.2 VALET does not change the established textual, command-line interface
style of the shell except as necessary to correct users’ input errors. Similarly, VALET
does not attempt to change the command language of the shell, nor does it attempt to
analyze or augment the output of any program invoked by the shell. For these reasons
VALET is most useful to people who are already familiar with the UNIX C shell and
its command language. Although VALET’s capabilities can certainly be useful to novice
users, such users might benefit more from a graphical shell interface or a more intuitive
command language, for example, than they would from VALET’s ability to intelligently
process commands in the existing shell language. Similarly, VALET is not an instructional
tool. Although VALET can correct and explain certain kinds of errors, VALET does not
try to teach its users about UNIX.

Finally, VALET was designed to be an exploratory vehicle for user interface research,
intended to demonstrate the usefulness of intelligent, context-based, error-tolerant user in-
terfaces. Although it is hoped that the ideas embodied in VALET will become widespread,
it was never intended for the initial implementation of VALET to be a “production quality”
or widely used interface to the UNIX shell. Rather, the current implementation of VALET

was designed to be flexible and to support rapid prototyping.

3.2 An Overview of the Implementation
As illustrated in Figure 3.1, VALET is implemented as a collection of several separate
but communicating UNIX processes. Although this may seem complicated, almost all
of this complexity is hidden from VALET’s users; from a user’s perspective VALET is

a unified intelligent shell. Internally, a standard, unmodified UNIX C shell process is
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Figure 3.1. Cooperating Processes Within VALET

encapsulated within a framework that allows VALET to control the user interface of that
shell process. VALET provides a terminal-like window for the shell, and output from the
shell is presented immediately to the user. However, although shell output is sent directly
to the user, user input is not sent directly to the shell. Rather, VALET intercepts and
analyzes its users’ commands. VALET can either pass these commands along to the shell
or it can take other action in particular, it may offer corrections to the user. VALET
can display messages to the user in such a way that they appear to come from the shell
itself. In this way, by carefully insinuating itself between the user and the UNIX shell,
VALET creates the illusion that the user is interacting with a single, unified intelligent
shell process.

At the top of VALET’s process hierarchy, a GNU Emacs [20, 30] process provides both
the actual user interface and the “glue” that connects the UNIX C shell process with
the processes that intelligently interpret users’ shell commands. GNU Emacs is a highly
extensible text editing program and among its many features is the ability to run other
programs. VALET makes extensive use of this feature. When a person begins a session
with VALET, GNU Emacs creates a new C shell process. This shell communicates with its
user through an associated Emacs text buffer; output from the shell and from programs

run by the shell appears in this buffer. GNU Emacs displays the contents of this buffer
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(or a portion thereof) in a terminal-like window on the user’s computer display, thereby
providing the user with the regular textual interface to the UNIX shell. Additional special
features of the GNU Emacs interface to the shell are described in Section 3.3.1.

The person using VALET gives commands to a shell by typing them in the shell buffer
provided by GNU Emacs. However, as previously described these commands are not sent
directly to the shell process. GNU Emacs instead sends the user’s input to a second
process, a Common Lisp [31] process, for intelligent analysis. This Common Lisp process
was silently started by Emacs at the same time that Emacs started the shell. Unlike the
VALET shell process, however, the Common Lisp process is hidden from VALET’s user.
The Common Lisp process communicates with GNU Emacs through an Emacs buffer,
separate from the shell’s buffer, and the Common Lisp’s buffer is never normally displayed
to the user.

This Common Lisp process is at the heart of VALET. It is this process that implements
the intelligent parsing of users’ input commands and determines how those commands
should be answered. As just described, GNU Emacs sends users’ shell commands to the
Common Lisp process for interpretation. The Common Lisp process in turn responds to
GNU Emacs with special instructions. Depending on the situation, the Common Lisp
may tell Emacs to send the user’s command to the shell, or it may tell Emacs to insert
a special message into the shell’s buffer — making it appear as if the message had been
output by the underlying shell itself, not by VALET’s Common Lisp process.

Two additional processes also communicate with VALET’s Common Lisp. Because the
Common Lisp programming language does not provide sufficient means for examining
the UNIX file system, VALET uses a separate program called flunkie for this task. The
Common Lisp process starts and communicates with flunkie, written in the C language,
in order to get up-to-date information about the host’s file system. In addition, a program
named transcribe allows VALET to maintain secure transcripts of its users’ sessions,
detailing users’ inputs and VALET’s responses to those inputs. As described in Section 4.2
these transcript files provide data for evaluating the usefulness of the interface. Although
transcript files could be written by VALET’s Common Lisp process itself, a separate
transcribe process is required in order to ensure that the session transcript files are
stored securely, in a way that prevents unauthorized access to the data.

The decision to implement VALET as a collection of cooperating processes was made

because this architecture provides maximal design flexibility and support for rapid pro-
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totyping  important features for an experimental system such as VALET. Some of the

ways in which VALET benefited from its division into multiple processes are these:

e Most significantly, the division of the system into separate processes made it possible
for VALET’s intelligent command parser to be implemented in Common Lisp rather
than in C, the implementation language of the UNIX C shell. Common Lisp, because
it provides sophisticated facilities for symbolic programming, interactive program
development, and experimentation, was an excellent implementation language for
VALET’s intelligent processing engine. Although a C language implementation could
perhaps have been directly integrated with the C shell program, it would have been
much more difficult to design, implement, and modify VALET’s intelligent command

interpreter in C.

e Once it was decided to implement the core of VALET in Common Lisp, it became
necessary to create a bridge between the Common Lisp part of VALET and the C
shell. GNU Emacs, the programmable editor, was the obvious choice. Not only
did it provide the means to integrate the Common Lisp and shell processes but it
also provided the ability to communicate with the user. GNU Emacs presents a
terminal-like display to the user of the VALET system while in addition acting as
the conduit between the Common Lisp and shell processes. It was possible to create
this interface quickly and change it easily because GNU Emacs provides its own

built-in programming language, Emacs Lisp [20].

e A final benefit of VALET’s division into several processes is that it was easy to
develop and test the individual components separately. Each part of the system

could be tested interactively in isolation from the other parts.

The architecture of the VALET system also posed significant difficulties. Certainly, the
division of the system into separate processes makes the interface slower than it would
have been had VALET been implemented within a single UNIX process (presumably in
the C programming language). In order to alleviate this problem the critical Common
Lisp sections of VALET were carefully written to be very fast, and in general, VALET can
respond to users’ inputs with acceptable speed. More serious obstacles, however, also
arose from the separation of the C shell and the rest of VALET’s components. Two such

problems are the following:
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1. Because the C shell language contains so many features (e.g., command aliases,
history references, and variable substitutions) it is difficult or impossible for an
external command parser to interpret certain kinds of shell commands. In order to
analyze commands that contain variable references, for example, a shell command
parser must have knowledge of all the shell’s variables and their respective values.
This kind of information — information about the shell’s internal state — can be
very difficult or impossible to consult from outside the shell process itself. For
this reason, VALET’s shell command parser, which is implemented in a Common
Lisp process external to the shell, does not recognize certain constructs within shell

commands. The restrictions are explained in Sections 3.4.1 and 3.4.4.

2. The recognition of input shell commands, as opposed to other kinds of input,
is based on heuristics. GNU Emacs has limited information about the state of
the communication channel between itself and the shell. When the shell runs an
interactive program, that new program takes control of the shell’s communication
channel with GNU Emacs. This happens without Emacs’ knowledge, and therefore
it is impossible for Emacs to unequivocally determine which process will receive an
input sent along the shell’s channel; it may be the shell itself or it may be another
program run by the shell. This lack of knowledge is problematic because VALET is
designed only to interpret shell commands, and in order for VALET to work properly
GNU Emacs must direct shell commands to VALET's Common Lisp process while
allowing inputs to other programs to pass through unimpeded. VALET’s heuristic

solution to this problem is described in Section 3.3.1.

Fortunately, however, these and other similar technical problems have little practical
importance for VALET. Although the division between the C shell process and VALET’s
other components prevents the intelligent interface from accessing certain information
about the shell, these limits are acceptable for an experimental, prototype system such as
VALET. The problems caused by these technical difficulties amount to minor nuisances

that are tangential to VALET’s real purpose.

3.3 The GNU Emacs Components
As illustrated in Figure 3.2, GNU Emacs [20, 30] provides the actual interface between

the VALET user and the intelligent UNIX shell. To start a session with VALET, a
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Emacs: Emacs @ asylum.cs.utah.edu

Welcome to Valet, dated July 27, 1993,

1 asylum:~: cd thesis/ tex

2 asylum:~/thesis/tex: ls

defense proposal testing thesis
3 asylum:~/thesis/tex> ls propsoal

I think wou meant:

3 asylum:~/thesis/tex: 1z proposal i

--**_Emacs: *Walet* (Valet: run)----all

Figure 3.2. Appearance of the VALET Interface Within GNU Emacs

person first starts the GNU Emacs editor and issues the following command to Emacs:
“M-x valet”.! The VALET interface then appears in an Emacs window like the one
shown in Figure 3.2. VALET introduces itself and presents the initial input prompt from
the C shell.

VALET can actually provide intelligent interfaces for several independent C shell pro-
cesses, all running simultaneously within a single VALET session. A single GNU Emacs
process manages all of these shells. Each shell process is associated with a unique Emacs
buffer, and each buffer appears in a separate Emacs window. (No matter how many shells
are run, however, VALET creates only a single Common Lisp process to interpret its user’s
input shell commands.) To start each VALET shell process after the first, a person gives
the command “C-u M-x valet”? to Emacs. Each invocation of this command starts a

new VALET shell process running in a new Emacs window.

l“M-x” is the GNU Emacs notation for the character called Meta-x. An Emacs user enters a M-x
character by depressing his or her keyboard’s Meta key and then, while holding the Meta key down,
pressing the X key.

240-u” is the GNU Emacs notation for the character Control-u.
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3.3.1 Communication with the C Shells

Once a VALET shell process is running, a person can enter commands to that shell
by simply typing them in that shell’s buffer and then hitting the Return key, as if the
user and shell were communicating through an ordinary terminal window. GNU Emacs
does not simply act as a terminal, however. The most important difference is that GNU
Emacs silently redirects users’ shell commands to VALET’s Common Lisp process for
intelligent analysis; this treatment was previously described in Section 3.2. A second
difference between a terminal interface and GNU Emacs is that Emacs enhances VALET’s
shell buffers with special features for interaction with the shells. For example, the VALET
interface allows users to edit their input commands to a shell before those commands are
submitted for execution. (Most of these editing capabilities are simply those that GNU
Emacs itself provides for editing all kinds of text.) The VALET interface also defines
special keystrokes for recalling commands that the user previously typed to the VALET
shells. For instance, when a VALET shell buffer is selected, the key M-p recalls the user’s
immediately previous input command, inserting it after the current shell prompt as if the
user had just typed the entire command. The user can submit this just-recalled command
to the shell by hitting the Return key, or the user can edit the recalled command, or
the user can press M-p a second time. A second press of M-p causes the just-recalled
command to be replaced with the user’s second most recent command. In general, M-p
can be repeated as often as required in order to recall increasingly distant commands
from the user’s input history. Other keys iterate through a shell buffer’s input history in
different ways; for example, M-s recalls a previously entered command that starts with a
particular prefix.

VALET’s command editing and recall features are similar to those provided by the tcsh
shell [27] with the important difference that VALET keeps two separate command histories
for each shell process: one that holds inputs to the shell and one that holds inputs to the
other programs run by the shell. The separation of these histories is beneficial to VALET
users because in general, inputs to the shell are not suitable as inputs to other programs
and vice versa. The VALET keystrokes that recall previously entered inputs (e.g., M-p and
M-s) automatically consult the history list that is appropriate to the current situation. If
a VALET shell is waiting for input then that shell’s “shell command history” is searched;
otherwise that shell’s “non-shell input history” is searched. In this way VALET makes it

easier for users to recall relevant prior inputs.
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The separation of users’ inputs into two histories for each shell process requires
VALET’s GNU Emacs component to differentiate between shell commands and other
inputs. Dual histories are convenient but not fundamental to VALET, so one might believe
that the ability to distinguish between shell inputs and other inputs is superfluous to the
intelligent shell interface. That is not true, however. In fact, the ability to distinguish
these two kinds of inputs is essential to VALET. The Common Lisp core of VALET
can intelligently interpret only C shell commands, and all of the user inputs received
by the VALET’s Common Lisp process are treated as if they were shell commands. If
the Common Lisp process were to receive inputs that were not in fact intended for the
shell, the resultant interference with other programs’ inputs would severely aggravate
VALET’s users and effectively overshadow VALET’s merits. For this reason the GNU
Emacs component of VALET must distinguish shell inputs from other inputs and treat
them differently.

VALET’s GNU Emacs interface must direct its users’ C shell commands to VALET’s
Common Lisp component for intelligent processing while allowing inputs intended for
other programs (i.e., the programs run by the shell) to be sent directly to those programs.
Unfortunately, GNU Emacs cannot unequivocally determine which inputs are shell com-
mands and which inputs are not. GNU Emacs has limited information about the states of
the communication channels between itself and the VALET shell processes. For each shell
process there is a unique bidirectional communication channel that connects the shell
with Emacs. Commands sent by Emacs through a shell’s channel may be received by the
associated shell process or they may be received by an interactive program that is being
run by that shell; GNU Emacs cannot distinguish these cases with absolute certainty.
Fortunately there is a reliable heuristic that allows VALET to overcome this problem.
VALET’s GNU Emacs component simply searches the text it receives from each shell’s
channel for the prompts for input issued by the respective C shell processes. Every time a
user input is submitted in a shell’s buffer (i.e., every time the user hits the Return key in a
shell’s buffer), Emacs immediately checks the state of the associated shell channel. If the
output from the channel ends with a shell prompt then Emacs classifies the user’s current
input as a shell command — and therefore, Emacs immediately redirects the input to
VALET’s Common Lisp process. If, however, the output from the shell channel does not
end with a shell prompt, Emacs classifies the user’s current input as non-shell input

not to be interpreted  and sends it through the shell channel. The use of shell prompts
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to distinguish shell inputs from non-shell inputs is highly effective, although it is certainly
not an ideal solution. This heuristic can be fooled easily. In addition, it prevents VALET
users from “typing ahead” by entering shell commands before the corresponding shell
prompts are issued,® and it must be customized for individual users because different C
shell users specify different shell prompt formats. These shortcomings are annoying, but
in most cases VALET's GNU Emacs interface can accurately distinguish its users’ shell
commands from other kinds of input.

Except for the complications caused by the need to distinguish shell commands from
other inputs, communication between Emacs and VALET’s shell processes is straightfor-
ward. When GNU Emacs receives output from a shell (or from a program run by a
shell), Emacs appends the new output to the buffer associated with the shell. Emacs
scans the newly received output for shell prompts and makes the shell’s buffer visible in
an Emacs window if necessary. In addition to handling the output from VALET’s shell
processes, Emacs also regulates the input to those processes. Users’ inputs directed to
programs other than VALET’s shells are sent directly by Emacs to those programs. Users’

commands to the shells, however, are directed first to VALET’s Common Lisp process.

3.3.2 Communication with Common Lisp

Whenever a person begins a session with VALET, GNU Emacs starts not only a new C
shell process but also a new Common Lisp [31] process. VALET presents the new shell to
the user of the system, as shown in Figure 3.2, but the Common Lisp process is hidden
from view. The purpose of this hidden process is to analyze users’ commands to VALET’s
C shell process (or processes) and to direct the VALET interface accordingly. Although
GNU Emacs manages the actual communication with VALET’s C shell processes, the
“intelligence” of the VALET interface is contained not within GNU Emacs but within
the Common Lisp process. Emacs’ task, therefore, is to coordinate the Common Lisp
process and the C shell processes. Emacs informs Common Lisp of events that concern the
VALET shell processes, and in reply, Common Lisp sends instructions to Emacs. Emacs
accepts these instructions and acts upon the shell processes on behalf of the Common
Lisp process. All of this communication between VALET’s Emacs and Common Lisp

components is internal to VALET, completely hidden from the view of VALET’s users.

3A VALET user may type a shell command before the corresponding shell prompt has been issued, but
he or she must not actually submit the command (by pressing the Return key) before the prompt appears
in the appropriate VALET shell’s Emacs buffer.



73

From a user’s perspective the intelligence of the system appears to be contained within
the C shell processes.

VALET’s Emacs and Common Lisp processes communicate by exchanging messages.
Messages sent by Emacs to Common Lisp are received by the Common Lisp process’
interpreter (i.e., the Lisp’s read-eval-print loop or top-level loop), so these messages are
formatted as Lisp symbolic expressions. Table 3.1 summarizes the forms that are sent

from Emacs to Common Lisp. The events that cause messages to be sent are the following:

Initialization of the interface. Immediately after GNU Emacs creates VALET’s Com-
mon Lisp process, Emacs sends certain initialization commands to it. These forms
tell Common Lisp to load the VALET Common Lisp code, initialize its data struc-
tures, load the current user’s saved interaction history, start the flunkie and
transcribe processes, and take other similar actions. Because these introductory

forms are somewhat long and tedious they have been omitted from Table 3.1.

Creation of a shell process. Each time a new C shell process starts, Emacs informs
the Common Lisp process of the event. The valet-new-shell message contains two
arguments. The first, called shell-number, is an integer that Emacs associates with
the new shell process. This number serves to uniquely identify this shell process
in future messages between Emacs and Common Lisp. The second datum in the
valet-new-shell message is a string containing the absolute pathname of the new

shell’s initial working directory.

Termination of a shell process. Just as Emacs reports the creation of new shells,

Emacs also informs Common Lisp whenever a VALET shell process terminates.

Table 3.1. Summary of Messages Sent From GNU Emacs to Common Lisp

Event Message Sent from Emacs to Common Lisp
Initialization e

Creation of a shell (valet-new-shell shell-number directory)
Termination of a shell | (valet-dead-shell shell-number)

User input to a shell (valet-user-input shell-number input index)
User annotation (valet-wrong-correction shell-number ...)
User annotation (valet-user-note notation)

Termination of Emacs | (valet-save)




74

User input to a shell process. GNU Emacs submits input shell commands to the
Common Lisp process by sending a valet-user-input message. Contained in the
message, shell-number is the identifying number of the shell that received input,
and input is a string containing the input. The final datum, indez, is the index of
this input in the shell command history list that Emacs maintains for the shell, as

described in Section 3.3.1. (The indez is currently unused by Common Lisp.)

User annotation. The GNU Emacs interface to VALET provides two ways for a user
of the system to insert messages into his or her VALET session transcript. The
first, valet-wrong-correction, allows a user to record that VALET made an er-
roneous attempt to correct the user’s most recent shell command. The data in
the valet-wrong-correction message include the shell number, the user’s original
input, VALET’s suggested correction, and the correction that was desired by the user.
The second kind of annotation, valet-user-note, permits a user to insert general
comments into the transcript. GNU Emacs defines special keystrokes that allow
users to make each kind of annotation. However, because the session transcript is
maintained by Common Lisp (and its auxiliary transcribe process), Emacs must

relay its users’ comments to VALET’s Common Lisp.

Termination of GNU Emacs. Finally, if the VALET user has attempted to terminate
Emacs itself, then Emacs sends a valet-save message to the Common Lisp process.
This allows VALET to save the user’s session data as described in Section 3.4.6.
Emacs does not actually terminate until the Common Lisp process indicates that

the session data have been safely stored.

With the exception of the final message type, none of the above-listed messages requires
Emacs to wait for a reply or acknowledgment from VALET’s Common Lisp process. Emacs
can perform other tasks if necessary until it receives instructions from Common Lisp.

Just as Emacs sends messages to Common Lisp, Common Lisp sends messages to
Emacs. Emacs reads and evaluates the Lisp expressions that it receives from VALET’s

Common Lisp process, thereby carrying out the Common Lisp’s commands.* Table 3.2

*Because Common Lisp’s commands to Emacs are intermingled with other kinds of output from the
Common Lisp process, Emacs does not attempt to evaluate everything that it receives from Common
Lisp. Instead, VALET’s Emacs code searches for specially marked expressions in the Common Lisp output
and evaluates only those forms.
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Table 3.2. Summary of Messages Sent From Common Lisp to GNU Emacs

Requested Action Message Sent from Common Lisp to Emacs

Send input to a shell (valet-send-to-shell shell-number input)

Output a shell message | (valet-shell-display-message shell-number message)
Reissue a shell prompt | (valet-shell-reprompt shell-number &optional input)

Change directory (valet-shell-cd shell-number directory)
Set correction data (valet-shell-set-cc-info shell-number input data)
Allow Emacs to exit (valet-lisp-saved)

summarizes the instructions that VALET’s Common Lisp process sends to Emacs. These

instructions include:

Send input to a shell process. The first kind of direction tells GNU Emacs to send a
specific string as input to a shell process. The data contained in this message are

obvious.

Output a message from a shell. VALET’s Common Lisp process can instruct GNU
Emacs to insert a message in a shell’s buffer, making the message appear to be
output from the shell process itself. The ability to forge output from VALET’s shell
processes in this way is essential to the illusion created by VALET namely, that
the intelligence of the system is embodied in the shells themselves and not within

an external Common Lisp.

Reissue a shell prompt. The Common Lisp process can also tell Emacs to forge a
prompt from a shell process. This new prompt is identical to the last prompt issued
by the shell. In addition, Common Lisp can specify that an input string should be
inserted after the new prompt, as if it had just been typed by the VALET user. In
general this input string will be VALET’s corrected version of the user’s previously
entered command. With the corrected input already inserted in the shell’s buffer,
VALET’s user can simply press the Return key in order to accept VALET’s corrected

version of the command.

Change a shell buffer’s directory. When VALET’s Common Lisp process determines
that a shell process will change its working directory, Common Lisp tells Emacs to

correspondingly change the directory that Emacs associates with the shell’s buffer.
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The argument directory is the absolute pathname of the new working directory of
the indicated shell process. The ability for Emacs to track shell processes’ directories

is essentially a convenience for VALET’s users.

Set shell command correction data. This message instructs Emacs to remember cer-
tain data about VALET’s interpretation of the last command given to the indicated
shell. This information is used by Emacs if the VALET user asks to annotate the
session transcript and indicate that VALET’s interpretation of the previous shell
command was incorrect. Within the message, input is the user’s previous input to
the shell process and data is either the corrected command or the Lisp symbol nil,

indicating that VALET accepted the user’s input verbatim.

Allow Emacs to terminate. This final message is sent from Common Lisp to Emacs in
order to tell Emacs that VALET has safely saved the data from the current session for
future use. This knowledge allows GNU Emacs to terminate, thereby terminating

all of the VALET interface processes.

As with all but one of Emacs’ messages to Common Lisp, none of the messages sent
from Common Lisp to Emacs require the Common Lisp process to wait for a response
or acknowledgment. This allows the Common Lisp process to send several messages at
one time (e.g., valet-shell-display-message followed immediately by valet-shell-
reprompt) or to send a message to Emacs and then perform other computations.

In summary, the messages exchanged by VALET’s Common Lisp and Emacs compo-
nents allow these separate processes to cooperate in providing a sophisticated interface
to VALET’s C shell processes. When a VALET user enters a shell command, GNU Emacs
silently redirects the input and sends a valet-user-input message containing the user’s
input to Common Lisp. The Common Lisp process in turn interprets the command and
responds to Emacs with instructions perhaps with a valet-send-to-shell message
telling Emacs to send the user’s (valid) command to the appropriate shell process. All
of the transactions between Emacs and Common Lisp are normally hidden within the
VALET system itself. However, because the parts of VALET are implemented as separate
processes it is possible for the implementors of VALET to break the system apart and, for
example, interactively communicate with the Common Lisp components of the system,

even while the interface is operating.
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3.4 The Common Lisp Components

The purpose of the Common Lisp process within the VALET interface is to “intelli-
gently” parse and respond to users’ shell commands. VALET’s shell command parser,
the knowledge bases that support that parser, and the heuristics that correct malformed
commands are all contained within the Common Lisp process.

As previously detailed in Section 3.3.2, VALET’s Common Lisp component receives
messages from GNU Emacs describing the events that occur in the interface. Each
message from Emacs is formatted as a Common Lisp symbolic expression and is received
and executed by the Common Lisp’s read-eval-print loop. The most common  and also
most significant  messages sent from Emacs to Common Lisp are those that pass users’
input shell commands to the Common Lisp process. The function that receives these
messages, valet-user—input, relies on many different modules within the Common Lisp

process in order to produce an appropriate response. These modules include:

e an input tokenizer that divides the command line into a list of separate words;

e an augmented transition network (ATN) parser with the necessary networks and

action functions to interpret and, as necessary, correct the tokenized input;

e knowledge bases for several domains (e.g., the available shell commands and the

UNIX host’s file system) that support the ATN parser’s actions; and

e provisions for preserving the knowledge bases and the user’s interaction history

between separate VALET sessions.

These components of the VALET system are described below.

3.4.1 The Input Tokenizer
The first step in VALET’s interpretation of a shell command is to divide the user’s
input command line into its constituent lexemes also called tokens or informally,
words. The division of a string into lexemes is called lexical analysis or tokenization and
is generally the initial processing step for all programs that interpret some kind of input
language. For many computer languages the process of lexical analysis is straightforward;
however, because the C shell input language [17] defines several different and expressive

abbreviation mechanisms, VALET’s input tokenizer is actually quite complex. In fact, the
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implementation of the tokenizer contains over 1,000 lines of Common Lisp code. The

lexical analysis of a C shell command requires several steps:

e First, the command line is divided into lexemes according to the C shell’s input

conventions.

e Next, tokens that contain braces (“{” and “}”) are expanded; each token that
contains a brace construction is replaced by one or more tokens that contain the

expanded term.

WU~

e Third, abbreviations that refer to users’ home directories ( and “~user”) are

interpreted and resolved.

e Finally, file name patterns (which contain any of the special characters “x”, “?7 “[”
and “]7) are expanded. Each token that contains a file name pattern is replaced

by zero or more tokens that contain the set of matched file names.

The first stage of VALET’s tokenizer divides the original shell command line, a string,
into a list of token data structures; Figure 3.3 contains the definition of the token
structure. Each token is described by several fields. The first, called type, is a symbol
that identifies the syntactic role of the token. For instance, a token may represent a
special construct such as a pipe or an I/O redirection, or it may simply be a command

line argument. The second token slot, input, contains the string of input characters that

1 (defstruct (token ...)

2 (type nil :type symbol :read-only t) ;; Type of this token.
3

4 (input " :type simple-string :read-omly t) ;; Chars as input...

5 (string " :type simple-string :read-omnly t) ;; ...and as read.

6 (quotes nil :type list :read-only t) ;; Quoted char ranges.
7

8 (obscure-p nil :type symbol :read-only t) ;; Understood by Valet?
9 (children nil :type list ) ;; Results of expansion.
10 )

Figure 3.3. Definition of the token Structure
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were parsed in order to produce this token.® This is separate from the string slot because
the C shell input language includes various quotation constructs; these lexical forms called
quotes do not represent input themselves but instead define the lexical properties of other
input characters. The input slot of a token contains the quotation characters, if any, that
appear in the user’s original command line. The string and quotes slots within a token,
on the other hand, describe the input token after quoted constructs within the original
input have been interpreted.

The obscure-p slot is used to mark tokens that, although they are well-formed inputs,
VALET cannot properly interpret. The current VALET system cannot handle several
of the C shell’s input abbreviation facilities; in particular, VALET cannot understand
backquoted strings or variable references or command history references (i.e., “$” and
“17 constructs). These kinds of inputs are difficult or impossible for VALET to interpret
correctly because VALET’s command interpreter is separate from the managed C shell
processes and therefore has limited access to the internal states of those shells. VALET
can and does, however, correctly process most of the abbreviation mechanisms that
are not based on the shells’ internal states. Most significantly, VALET can process file
name patterns. In addition, because VALET’s GNU Emacs component provides its own
command history mechanisms, the effects of the tokenizer’s inability to handle variable
and history references are mitigated. (Nevertheless, as described in Chapter 4, users
occasionally stumbled over VALET’s various limitations.)

The final slot in each token structure, children, is used in the three input expansion
steps listed previously. The initial stage of the tokenizer produces a list of uninterpreted
token structures. The second stage, brace expansion, searches for tokens that contain
brace (“{}”) pairs, and when a token containing a brace construct is found, the construct
is expanded and the resultant list of new tokens is stored in the children slot of the
now-expanded token. For example, brace expansion of the lexeme “program.{c,h}”
produces two new lexemes — “program.c” and “program.h” — that are stored in the
children list of the original “program.{c,h}” token structure. Similarly, when home
directory abbreviations and file name patterns are processed, the resultant file name

tokens are stored in the children slots of the now-expanded parent tokens.

5The input that produced the token is saved principally so that it may be used if VALET later needs to
formulate a corrected command. By saving the user’s original input, VALET can create a new command
that greatly resembles the user’s original input.
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The three input expansion steps are applied in separate stages. The initial brace expan-
sion step is fairly straightforward because brace abbreviations do not refer to data other
than that in the abbreviated lexemes themselves. The replacement of tilde constructs,
however, requires the tokenizer to consult the external flunkie process (described in
Section 3.4.5.2) in order to determine the appropriate users’ home directories. File name
pattern expansion is even more involved — the tokenizer must first compile the patterns
into more manageable forms and then interact with VALET’s file system knowledge base,
which is described in Section 3.4.5. In fact, VALET’s lexical analyzer dynamically compiles
file name patterns into augmented transition networks and then uses the parser described
in Section 3.4.2 to direct the actual file name searches within the file system knowledge
base  quite a task!

Ultimately, the process of token expansion produces a token “tree.” The initial
tokenization step creates a list of token structures, and each of the subsequent token
expansion stages applies only to the “leaves” of the current token tree — in other words,
those tokens that have not already been expanded by a prior pass of the tokenizer. The
leaves of the token tree are the ultimate product of VALET’s lexical analyzer. When all
of the analysis and expansion steps are complete, VALET’s tokenizer creates and returns
a list containing all of the fully expanded tokens. This list of token structures becomes

the input for the next stage of VALET’s shell command interpreter.

3.4.2 The Augmented Transition Network Parser
After VALET has translated its user’s shell command into a list of token structures, the
next task is to actually interpret — and if necessary, correct — the user’s command. This
task is performed by a second module within VALET’s Common Lisp process: an aug-
mented transition network (ATN) parser [4]. VALET’s ATN parser is quite sophisticated

and provides features essential to the intelligent handling of shell commands:

e The parser provides convenient and powerful syntaxes for defining transition net-

works and their constituent actions.
e The parser is fully backtracking and allows for “redoable” actions.

e When a user’s shell command can be neither interpreted nor corrected, the parser

can explain why.
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Ultimately, VALET’s ATN parser is the engine that powers the intelligent processing

of shell commands.

3.4.2.1 Transition Networks

An augmented transition network parser is so called because the operation of the parser
is directed by a set of transition networks. These networks determine the actions that
the parser may take and the choices that it may make in order to produce an interpreted
result from its input. In this way the networks define the language accepted by the parser.
VALET, of course, defines networks that allow the ATN parser to interpret and correct
shell commands.

One may envision a transition network as a directed graph  a set of nodes connected
by directional links that allow an ATN parser to “travel” from one location in the graph
to another. There is a designated initial node of the network and a designated final
node. Further, every link between nodes in the network is associated with an action that
the parser must perform in order to move across the link. Given a transition network,
then, the goal of an ATN parser is to traverse its assigned network by traveling from the
initial network node to the final network node. By accomplishing this task the parser
successfully interprets its input.

The parser, however, is restricted in its movement through the network. As just
described, each link within the network is associated with a specific action that the
parser must perform in order to travel along that link. An action might, for instance,
direct the parser to move a token from its input list to its output list. Depending on the
state of the parser when it comes to this action, the parser may or may not be able to
perform the task (e.g., prior actions may have consumed all of the parser’s input tokens).
If the parser cannot carry out the required task then it cannot travel across the action’s
associated link. Because travel through a transition network is restricted by the actions
that the parser must perform along the way, an ATN parser must in general search for a
path that allows it to traverse its assigned network.

From any node in a transition network there may be any number of links, each with
its own associated action, that lead to other nodes. When several links lead away from

the parser’s current position, the parser must make a choice: It must select one of the

6“Augmented” refers to the parser’s ability to maintain extra state information during its operation,
thereby allowing the parser to base its actions and decisions on context.
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links and attempt to traverse it. Unfortunately, the parser cannot know which of the links
(if any) it should cross in order to proceed toward its ultimate destination. This means
that in attempting to traverse a network the parser is likely to make choices that lead
to “dead ends” — points from which there are no possible paths to the parser’s ultimate
destination.

For this reason VALET’s ATN parser is able to backtrack. VALET’s parser is fully
backtracking, meaning that it remembers every choice that it makes during its operation.
If at any point the parser discovers that it cannot proceed from its current location, the
parser retreats to the most recent point that provides an unexplored alternative. From
that point the parser attempts to move forward along a previously ignored link. If that
newly chosen link leads to another dead end, the parser again backtracks to the most
recent point that provides yet another untested alternative. The process repeats as often
as necessary. Eventually, through methodic exploration of the possibilities, the ATN
parser will either discover a path to its ultimate destination (and thereby successfully
parse its input), or it will exhaust all of the alternatives and thus discover that there is
no path to its destination (and therefore, no way to parse its input).

Although it is easy to visualize transition networks as directed graphs, when describing
a transition network to a computer it is generally more convenient to use a textual
representation of the network. VALET’s transition networks are written in the Lisp-like
notation shown in Table 3.3. (Internally, the notation is compiled into data structures
that resemble directed graphs.) Each of the expressions in Table 3.3 defines a transition

network. Some of the expressions contain other network definitions, so the notation is

recursive.

Table 3.3. The Grammar Used to Define Transition Networks
Expression Meaning
(action-name arg-1 arg-2 ...) Perform the specified action.
(seq net-1 net-2 ...) Traverse the sequence of networks.
(or net-1 net-2 ...) A choice: net-1 or net-2 or ...
(opt net) Traverse net zero or one time.
(opt* net) Traverse net zero or more times.
(one+ net) Traverse net one or more times.
(parse net-name) Traverse network named net-name.
(parse (parse-state-var war)) | Traverse network stored in var.
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The basic network definition “(action-name ...)” simply instructs the ATN parser
to perform the specified action. In terms of the graph metaphor, this form defines the
action associated with a directed link between two nodes in a transition network. Within
the form, action-name is a symbol that names the action to be performed. Additional
data for the action, if any, appear after the action-name as if they were arguments to
a Lisp function. (However, unlike an ordinary Lisp function invocation, the arguments
to a parser action are never evaluated.) As detailed later in Section 3.4.2.2, actions are
essentially special Lisp functions that operate on the parser’s current state. An action
may attempt to consume some of the parser’s unprocessed input, produce output, set or
change the parser’s internal variables, or do all of these things. An action may succeed,
meaning that the parser may continue (i.e., move across the action’s link), or an action
may fail, meaning that the parser must retreat.

The form “(seq net-1 net-2 ...)” defines a network that is a sequence of other
networks. In order for the parser to traverse this sequence, it must travel first through
net-1, then through net-2, and then through all of the other specified networks. There
may be any number of networks within the seq form. It is important to realize that
each of these networks net-1, net-2, and so on may be described by any of the
forms presented in Table 3.3. In other words, the components of a seq may be simple
actions or they may be more complex network descriptions. This is the case for all of the
expressions that contain other network descriptions: seq, or, opt, opt*, and one+.

The form “(or net-1 net-2 ...)" describes a choice: The parser may traverse net-1,
it may traverse net-2, or it may traverse any one of the other networks within the or form.
In terms of the graph metaphor, or defines a set of separate paths that all start from
one node and all end in another. The parser will first attempt to traverse the network
described by net-1. If the parser cannot find a path through net-1, or if the parser later
on discovers that by traversing net-1 it cannot reach its ultimate destination, the parser
will backtrack to the or form and try the next alternative, net-2. The process of choosing
and backtracking continues until either (1) the parser discovers a path to its ultimate
destination, or (2) all of the alternatives in the or form have failed. In the latter case the
parser will backtrack past the or form to a prior choice point.

The opt, opt*, and one+ forms describe other kinds of choices to the ATN parser. The
form “(opt net)” indicates that the parser may choose either to traverse or to ignore

the enclosed net; in other words, the net is optional and may be traversed either zero
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times or one time. The form “(opt* net)” allows the parser to traverse the indicated
net any number of times, including zero times, before moving on. Similarly, the form
“(one+ net)” tells the parser that it may traverse the enclosed net one or more times.
As previously described, VALET’s ATN parser is completely backtracking, so it remembers
and can reconsider the choices it makes while traversing the structures described by opt,
opt*, and one+. The parser may backtrack and decide to traverse a previously ignored
optional network, for example. The opt* and one+ forms describe loops in a transition
network and the parser may backtrack in order to change the number of times it travels
around each loop.

Finally, the parse forms allow transition networks to refer to other transition networks.
The expression “(parse net-name)” is a special action that tells the parser that in order
to cross the associated link, it must first completely traverse the transition network named
by net-name. (The mechanism for naming networks is described below.) In a way, this is
like a subroutine call to the named network. The second form of the parse action tells the
ATN parser than in order to cross the associated link it must first traverse the transition
network stored in the parser variable named wvar. (Transition networks are represented
as first-class Lisp objects. Parser variables are described in Section 3.4.2.2.) If the first
form of parse is like an invocation of a named subroutine, then the second form of parse
is like an invocation of an anonymous subroutine.

Figure 3.4 illustrates how the notation just described is used to create VALET’s tran-
sition networks. The macro define-net creates a named network; the new network can
then be referenced in “(parse mnet-name)” actions. The function make-net, not shown
in the figure, creates an anonymous network. The make-net function compiles a network
description into a Lisp object and then returns that object. This compiled network
can then be stored in a parser variable and later referenced through an appropriate

“(parse (parse-state-var war))” action.

3.4.2.2 Transition Network Actions

The nodes and links within a transition network provide structure, but it is the actions
associated with the links that specify the actual steps of the parsing task. As previously
described, every link within a transition network is labeled with an action that must be
performed by the parser in order for the parser to “travel” over the link. In VALET these
actions, except for parse, are implemented as special Common Lisp functions.

Fundamentally, the purpose of an action is to examine or modify the ATN parser’s
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;;; Parse a simple command along with I/0 redirection and ‘&’.

(define-net command
(seq (set-semantics nil)
(parse simple-command)
(save-semantics)
(no-more-command-arguments)
(no-pretend-equal-var)
(opt* (or (parse input-redirection)
(parse output-redirection))
)

(opt (parse background))
(empty-input)
))

;;; Parse a command name and arguments. The ‘simple-command-name’ action

;33 accepts the command name, locates the network for parsing that command’s

;;; arguments, and stores that network in ‘$$simple-command-net’.

(define-net simple-command
(seq (simple-command-name)
(parse (parse-state-var $$simple-command-net))

))
;;; Parse ‘< file’ or ‘<< word’.

(define-net input-redirection
(seq (or (seq (literal-token :input-from-file)

(file-name (:type :not-directory) (:mode :readable))
)

(seq (literal-token :input-from-stdin)
(eat-arguments :min 1 :max 1 :name "word")
)

)

(mark-as-parsed :input-redirection)

))
;33 Parse ‘> file’ or ‘>> file’ or ‘>& file’ or ‘>>& file’.

(define-net output-redirection
(seq (literal-token :output-to-file :append-output-to-file)
(opt (literal-token :ampersand))
(file-name (:type :not-directory :imaginary) (:mode :writable))
(mark-as-parsed :output-redirection)

))
;3; Parse ‘&’ for background processes.
(define-net background

(seq (literal-token :ampersand)
(mark-as-parsed :background)))

Figure 3.4. Example Transition Network Definitions
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current state. This state includes the current input to the parser, the current output of
the parser, and a set of wariables maintained by the parser. For VALET, the input to
the parser is a list of token structures (as described in Section 3.4.1) and the output of
the parser is a partial parse tree that describes the portion of the input that has been
processed. An action may modify both the parser’s current input (e.g., “consume” an
input token by removing it from the input token list) and output (e.g., produce the parsed
version of that token). In addition, an action may also examine or set one or more of the
parser’s variables. VALET’s parser maintains its own set of variables for use by its actions.
Action functions may examine or set the values of these variables, for example, in order
to remember the properties associated with tokens that have already been parsed.

When an action is able to perform its task for example, modify the parser’s state
in a particular way or verify that a certain condition is true — the action succeeds. This
allows the ATN parser to travel over the link associated with the action as previously
described. On the other hand, an action fails when it cannot perform its task. This
prevents the parser from crossing the action’s associated link and forces the parser to
search for another path though its network in other words, to backtrack. When the
ATN parser is forced to backtrack to a prior choice point, the parser restores its state

input, output, and variables  to the state remembered along with that choice point.
This remembered state is the state the parser had before it moved forward from the choice
point. In effect, by restoring its state the parser “undoes” all of the actions that were
executed since the parser left the choice point. With its state thus restored the parser
may choose a previously unattempted course of action.

A successful action allows the ATN parser to proceed whereas a failed action forces
the parser to backtrack and consider other actions. Sometimes, however, the possible
outcomes of an action are more complex than a simple choice between success and failure.
Sometimes an action can succeed in several different ways, each way resulting in a different
parser state. This situation might occur, for example, in an action designed to correct
spelling. Such an action might read a token from the parser’s current input, apply a
spelling correction algorithm to that token, and then write the corrected token to the
parser’s output. If the correction algorithm were to suggest several different corrections
of the original token, then the action could succeed by choosing any one of the possibilities.
However, it may be that only one of the possibilities will allow the parser to complete its

entire parsing task, and the action may not have enough information to select this one
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“right” correction from the list of alternatives.

Situations like this are typically resolved by dividing the problematic action into
several separate actions. For example, the above-described action could be rewritten
as two actions: The first would consume the input token and produce a list of alternative
corrections, and the second would select one of the untested corrections and move it to
the parser’s output. Arranged in an appropriate network and combined with the parser’s
ability to backtrack, these new actions will eventually choose the “right” correction.

The transformation of one action into several networked actions is an effective tech-
nique, but VALET’s ATN parser provides a second and sometimes more convenient option:
redoable actions. A redoable action is one that can succeed in several different ways,
producing several different parser states as just described. VALET’s ATN parser recog-
nizes redoable actions and treats them specially. Whenever VALET’s parser successfully
executes a redoable action it associates a special choice point with that action. Later,
if the parser needs to backtrack, it may return to this choice point and reexecute the
action. When a redoable action is reexecuted, the state of the parser (input, output, and
variables) is the state that was produced by the previous invocation of the action. This
allows information to be communicated between separate invocations of the action. As
one would expect, when a redoable action is reexecuted, it will either succeed or fail. If
it succeeds, then the parser updates the choice point associated with the redoable action
and then moves forward. Otherwise, if the redoable action fails, the parser backtracks to
the next most recent choice point. In summary, a redoable action is an action that may
be executed repeatedly until it fails. In order to cross a transition network link labeled
with a redoable action, VALET’s ATN parser may invoke the redoable action’s function
several times in order to produce several different parser states.

As previously mentioned, the actions associated with VALET’s transition network links
are implemented by Common Lisp functions that operate upon the parser’s state. When
the parser attempts to perform an action, it invokes the function that implements that
action. Because all action functions share a common structure and must communicate
with the ATN parser in certain stylized ways, VALET’s action functions are defined
through the use of a special macro, define-action. Figure 3.5 contains some examples

of VALET’s action definitions.”

"The definitions shown in Figure 3.5 are actually slightly simplified versions of the definitions that
VALET uses.
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;33 Accept a token of a specified type. If found, move it to the output.

(define-action literal-token
rargs (&rest accept-token-types)
:body (let* ((input (get-input))
(next-token (first input)))
(when (null next-token)
;; There is no next token to accept.
(fail))
(let ((token-type (token-type next-token)))
(if (member token-type accept-token-types)
;3 Move ‘next-token’ to the output and succeed.
(set-in/out (cdr input)
(cons ‘(literal-token ,next-token) (get-output)))
;3 Otherwise, fail.
(fail))
)

;;; Remember that a particular kind of command component has been parsed. If
;3 the parser tries to accept a second instance of the component, fail.

(define-action mark-as-parsed
:args (component)
:vars ($$parsed-components)
:body (if (member component $$parsed-components)
(fail)
(setf $$parsed-components
(cons component $$parsed-components)))
:fail (case component
(:input-redirection '"there was more than one input redirection")
(:output-redirection "there was more than one output redirection")

(:background "there were too many &’s")
(T (format nil "there were too many ~S" component))
)
)
;3; Check the parser variable ‘$pretend-equal-var’. If it is set, fail.

(define-action no-pretend-equal-var
:worth O
:vars ($pretend-equal-var)
:body (when $pretend-equal-var
(fail))
:fail (third $pretend-equal-var) ;; Return the saved explanation.

Figure 3.5. Example Transition Network Action Definitions
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Figure 3.5 shows that every action definition is a collection of parts. Most obviously,
every action has a name. Some actions expect to receive data from the parser each time
they are invoked; these argument values are specified within the transition network links
as described in Section 3.4.2.1. The definition of an action that receives arguments from
the parser must include an :args list that describes those arguments. In Lisp terms, an
:args list is the lambda-list for its action. The :body of an action is the Common Lisp
code that implements that action. The code within the :body of an action may refer to
the arguments passed to that action by the parser, as specified by the action’s :args list.
In addition, the :body of an action may refer to the parser variables listed in the action’s
:vars list as if they were ordinary Lisp variables.® By convention the names of parser
variables begin with “$” but this is not required. Finally, the code within the :body of
an action is simplified by various macros — get-input, get-output, set-in/out, and
others — that the parser defines. These macros provide convenient access to the parser’s
current state and allow actions to perform other common tasks.

As previously explained, an attempt to perform an action will either succeed or fail.
This result is determined by macros. The macro succeed signals to the parser that an
action has succeeded. When invoked within an action’s :body, succeed halts execution
of the action’s :body form and immediately returns control to the parser. The Lisp
value returned to the parser indicates that the action succeeded. Conversely, the macro
fail signals to the parser that an action has failed. The fail macro halts execution of
the current action body, returns control to the parser, and informs the parser that the
just-attempted action was unsuccessful. If the parser is able to execute the entire body of
an action  that is, if control reaches the end of an action’s :body form without invoking
either succeed or fail  then the action is deemed to have succeeded.

Redoable actions, which may succeed in several different ways, contain a :redo form in
addition to a :body form. (The presence of a :redo form in an action definition indicates
that the action is redoable. Because none of the actions shown in Figure 3.5 are redoable,
none of them contain :redo expressions.) The :body and :redo forms are similar except
that they are evaluated at different times. The first time a redoable action is attempted,

the parser executes the action’s :body, as it does for all actions. However, the second

®An action’s :vars list allows for syntactically simple access to the named parser variables. An action
can refer to parser variables that are not contained in its :vars list, but the syntax for doing so is less
elegant.
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and subsequent times that a redoable action is attempted, the parser invokes the action’s
:redo form. As previously described, when a redoable action is reexecuted, the state
of the parser is the state that was produced by the previous invocation of that action.
The purpose of the :redo form, then, is to modify that state, which was produced by
the previous execution of either the action’s :body or :redo forms. Like the :body, the
:redo form may succeed or fail.

It is possible to define local functions within an action by specifying a :funs list,
although none of the actions defined in Figure 3.5 do so. The final two parts of an action
definition, :worth and :fail, are used when the parser is unable to interpret its input
successfully and completely  in other words, when the parser needs to explain why its

input failed to parse.

3.4.2.3 Explanation of Parsing Failures

Given a transition network, the goal of VALET’s ATN parser is to traverse that network
by traveling from the network’s initial node to its final node. In the process of traversing
the network, the ATN parser interprets its input and constructs its output. If the parser
reaches the final node of its network, then it is deemed to have succeeded — successfully
parsed its input. The parser returns a Lisp structure that describes the parser’s final
state, including the parse tree generated from the accepted input. If, however, the ATN
parser cannot find any path to the final node of its network, then the parser is deemed to
have failed, and when the parser fails it simply returns nil. This result is only minimally
informative but fortunately the parser remembers why it failed and can help VALET
construct an appropriate explanation.

During the course of its operation the ATN parser often runs into “dead ends” from
which it must backtrack. Even when the parser is ultimately successful, it may encounter
and retreat from many dead ends before it finally discovers a path through its assigned
network. The fact that the parser encounters dead ends before it succeeds is due to
exploratory nature of the parser itself; in particular, these dead ends do not indicate
that the parser’s input is malformed. Obviously, in order for the parser to succeed (i.e.,
interpret all of its input), the parser’s input must be well-formed according to the language
described by the traversed networks. The situation is somewhat different, however, when
the parser ultimately fails to parse its input — that is, when every possible path through

the parser’s assigned network leads to a dead end. Failure indicates that the parser
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could not process its input and, therefore, that the parser’s input must be malformed
(uninterpretable) in some way. The explanation of how the input is malformed lies in
the set of dead ends that the parser reached before it failed. Some of these dead ends are
reached in the parser’s ordinary course of network exploration, as just described, and are
not useful in identifying the practical nature of the input problem. The remaining dead
ends, however, precisely identify how the input was incorrect.

VALET’s parser distinguishes these “informative” dead ends from the noninformative
ones by examining the parser states associated with these points. The informative dead
ends are those that are associated with the “best” parser states. Parser states are ranked
according to the amounts of unprocessed input that they contain: A state A is better
than a state B if the list of remaining input in A is shorter than the list of remaining
input in B. When two states contain equal amounts of unprocessed input, those states
are compared according to “worth.” The worth of a parser state is a heuristic measure
of the difficulties of the actions performed by the parser in order to produce that state.
As previously shown in Figure 3.5, some action definitions specify a numeric :worth, and
by default the :worth of an action is 1. The worth of a parser state, then, is the sum
of the worths of the actions that were successfully performed in order to produce that
state. In general, the more actions required in order to produce a state, the more valuable
the resultant state is. By ranking parser states by remaining input and worth, VALET’s
ATN parser identifies the dead ends that correspond to the most successful attempts to
interpret its original input. These “best” dead ends describe the furthest limits to which
the parser’s input could be processed, and therefore, when the parser fails it is these
points that best describe how the parser’s input was malformed.

During its normal operation VALET’s ATN parser remembers the set of best dead ends
that it has yet encountered. The parser also remembers the state it had when it came
to (and subsequently retreated from) each of those points. These states are needed in
order to evaluate new dead ends that the parser may encounter, but more importantly,
the state associated with a dead end must be saved so that the actions that blocked the
parser’s progress from that point can explain why they failed.

If the parser ultimately fails, then it can explain the reasons for its failure by consulting
its saved list of best dead ends. Each dead end is a point at which one or more actions
failed, causing the parser to backtrack. These failed actions are responsible for the parser’s

ultimate defeat. Since these failed actions thwarted the parser’s most successful parsing
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attempts, the parser consults each of the actions for an explanation. The parser demands
an explanation from an action by invoking the : fail part of the action’s definition. (Refer
to Figure 3.5. An action that has no :fail part cannot explain itself and is therefore
never asked to do so.) When the parser invokes the :fail part of an action, the state of
the parser is what it was when the :body or :redo part of the action failed. The :fail
part of an action examines this state and returns a value that indicates why the action
failed. In summary, in order to explain a parsing failure, VALET’s ATN parser invokes
the :fail parts of all the actions that caused the parser’s best prospects to fail. The
explanations provided by these individual actions combine to explain why the parser as

a whole ultimately failed to interpret its input.

3.4.2.4 Summary of the ATN Parser

VALET relies on its ATN parser to interpret its users’ input shell commands. When the
parser succeeds, that indicates that a user’s command has been completely interpreted
and possibly corrected — and is ready for final processing. VALET can send the command
to the appropriate shell process, or if the command was corrected, VALET can present
the revised command to its user for confirmation as described in Section 3.1.3. When
VALET’s parser fails, on the other hand, that means that the user’s command could be
neither interpreted nor corrected. In this case, through its failure explanation facility, the
parser can accurately describe why it could not understand the input command. VALET
can present the parser’s explanation to the user and allow the user to edit the unaccepted
command.

In total, VALET’s ATN parser is the engine that drives the intelligent processing of C
shell commands. VALET’s knowledge of shell commands is embodied by the transition
networks defined in VALET’s Common Lisp component. Some of VALET’s networks de-
scribe how shell commands should be processed in general, and other transition networks
describe the syntax and semantics of specific shell commands and their arguments. The
actions invoked within VALET’s networks consult the system’s various knowledge bases
the shell command lexicon and the file system model, for example  and invoke heuristics
in order to correct specific kinds of erroneous inputs. These parser actions, outlined in
Sections 3.4.4 and 3.4.5 below, link the parser’s engine to VALET’s contextual knowledge

and thereby provide “intelligence” to the UNIX C shell interface.
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3.4.3 Lexicons

In order for VALET’s parser to interpret a shell command, parser actions must associate
meanings with the individual words that constitute the command. VALET’s knowledge
bases are therefore implemented as lezicons — dictionaries — that map words to their
definitions. VALET uses many separate lexicons, each for a particular category of terms.
One lexicon contains the names of shell commands, another contains the names of files,
and a third contains the login names of users. Furthermore, every shell command known
to VALET is associated with its own lexicon containing the command line options (i.e.,
flags such as “-c”) for that command. Lexicons are fundamental to VALET, so VALET’s
lexicons are represented by compact data structures that allow for speedy searches.

Because lexicons organize most of VALET’s knowledge, the most important require-
ment for VALET’s lexicons is that they allow for rapid access and searches. VALET’s
parser actions must be able to locate the definitions of words quickly in order for the shell
interface as a whole to be responsive to its users’ commands. Parser actions must also
be able to locate terms within a lexicon that are similar to a given input, in case that
input is erroneous and must be corrected by VALET. Another important requirement for
the lexicons is that they be flexible in size. Some of VALET’s lexicons hold only a few
entries but others contain hundreds or thousands of items. A final criterion for VALET’s
lexicons is that they be compact. Because VALET uses many different lexicons of various
sizes, the Lisp representation of each lexicon should be as small as possible.

For these reasons, each of VALET’s lexicons is represented by a tree-like data structure.
Each node in the tree is a lex-node structure and every link between nodes is associated
with a single character. Given this structure, the function lexicon-lookup takes a word
W and a lexicon L and then locates the definitions associated with W in L. It does this
by following the links associated with the individual characters of W. Starting at the
root node of the lexicon’s tree, lexicon-lookup follows the link labeled with the first
character of W. From the destination node of that link, the function then follows the
link associated with the second character in W. This process of following links repeats
until lexicon-lookup has processed all of the characters in W or until lexicon-lookup
discovers that a required link is missing — in which case, the word W must not have any
definitions in the lexicon being searched. If the lexicon-lookup function successfully
processes all of the characters of W, then the definitions of W, if any, are stored in the

lex-node structure that was finally reached.
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The function lexicon-insert adds a word and its definition to a lexicon, adding
any required new nodes and links to the lexicon. Because words with a common prefix
share an initial sequence of nodes and links within a lexicon, the total number of nodes
required to represent a lexicon is minimized and the lexicon structure is space efficient. In
addition, the representation of each lexicon is further optimized by “compressing” nodes
that are not shared by several words. Every word within a lexicon may be divided into a
prefix that is shared by at least one other word in the lexicon and a suffix that would be
represented by nodes and links unique to that word. VALET’s lexicons save data space by
eliminating the nodes and links that would represent the unshared suffix of each word.
For each word these suffix nodes are replaced by a single cons cell: The car is a string
containing the unshared word suffix and the cdr contains the definitions of the word. Of
course, these optimized suffixes must be handled specially in the functions that modify
and search VALET’s lexicons.

The tree representation of lexicons allows lexicon-lookup to operate quickly and
either locate the definitions of a given word or determine that a word has no defini-
tion within a lexicon. Similarly, because lexicon trees are organized around individual
characters, it is possible for other functions to implement simple and quick spelling
correction by searching for words that are similar to a given (misspelled) word. The
function lexicon-spell, for example, searches a lexicon for defined words that are
simple orthographic transformations of a word W. In particular, lexicon-spell suggests
corrections for W based on knowledge of the most common typographic errors: the
insertion, deletion, or replacement of a single character, as described in Section 2.1.3. The
lexicon-spell function also attempts to correct capitalization errors and determines
if W is a prefix (i.e., an abbreviation) of exactly one word in the current lexicon.
These correction heuristics are extremely fast due to the organization of the lexicon
data structures and can correct the most common kinds of input errors. However, if
lexicon-spell is unable to suggest reasonable corrections for an erroneous term then a
second function, lexicon-guess, can search the current lexicon for the words that are
most similar to a word W according to a numerical similarity measure. This process
is much slower than lexicon-spell, but it is rarely needed because lexicon-spell is
almost always successful at locating accurate corrections.

The functions lexicon-spell and lexicon-guess use lexical context alone in order

to correct input terms. Although this context is clearly very important it is not always
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sufficient (as explained in Section 2.1.4), so VALET combines lexical context with other
kinds of knowledge in order to provide an intelligent shell interface. For example, in order
to correct a mistyped command name VALET uses not only lexical context but also its
knowledge of various commands’ arguments. VALET also remembers which commands
are most frequently invoked by its users and can refer to this information in order to
correct malformed commands. All of VALET’s information about specific shell commands

resides in a single shell command knowledge base.

3.4.4 The Shell Command Knowledge Base

In a typical UNIX system there are hundreds of programs and therefore, hundreds
of different C shell command names. As previously described in Section 1.3.1, most
of the C shell’s input language is determined by the set of external programs that are
known to the shell. The first word of a shell command typically names the program to
be invoked. Although this name may be an absolute or relative pathname to a program
file, in general it is simply the name of a program in the shell’s search path, a list of
directories in which the shell implicitly searches for program files. The most frequently
used programs are usually located along the shell’s search path, so most shell commands
refer to programs in this path. A typical search path, however, provides access not only
to the most frequently invoked programs but also to hundreds of other programs, thereby
defining hundreds of unique shell command names. This large set of commands is further
augmented by various built-in shell commands and user-defined command aliases.

The language of the C shell is therefore complex because it includes several hundred
different command names, most corresponding to programs along the shell’s search path.
In order to provide an intelligent interface to the shell VALET must know about these
commands. At the very least VALET must be aware of the set of available command
names, but in order to accurately correct input shell commands VALET must also have
detailed knowledge of the most commonly used commands. This knowledge is stored in
VALET’s shell command knowledge base.

VALET’s shell command knowledge base is implemented as a lexicon that associates
command names with command data structures; the slots within each command structure
are shown in Figure 3.6. Every shell command known to VALET is represented by its
own command structure. Obviously, the name slot within a command contains the name

of the represented command and the from slot indicates the source of that command.
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1 (defstruct (command ...)

2 (name nil :type simple-string :read-only t)
3 (from nil :read-only t)
4 (net nil :type (or network symbol) :read-only t)
5 (opts nil :type lexicon :read-only t)
6 (last-reference 0 itype fixnum )
7 (heat 0 :type fixnum )
8 )

Figure 3.6. Definition of the command Structure

The value of from is either the symbol :built-in (for the shell’s built-in commands) or
the absolute pathname of the directory that contains the program that implements the
command.

The net slot of a command structure contains a transition network (or the name of
a transition network) that describes the command line arguments for the represented
command. VALET’s ATN parser attempts to traverse this network whenever a user’s input
refers to the corresponding command. For example, suppose that VALET is processing
the input “cd src”. The action that interprets command names accepts the “cd” token,
consults VALET’s shell command lexicon, locates the command structure that represents
the cd command, and stores the network for parsing c¢d command arguments in the
$$simple-command-net parser variable. Once that is done the parser attempts to traverse
the cd argument network in order to interpret the arguments (“src”) in the current cd
command. The simple-command network shown in Figure 3.4 illustrates this process.

The opts slot of a command structure contains a lexicon that describes the command
line options for the represented command. Options are special arguments and are usually
introduced by a “-” character. An option may change the behavior of a command
for instance, the “~1” option changes the output of the 1s program — or an option may
designate the purpose of subsequent command arguments. The lexicon in the opts slot
of a command structure associates option names with data that describe the options for
the represented command. The data for an option indicate whether the option may be
concatenated with other options or data (e.g., whether the options “~1” and “-d” may
be combined into “~1d”). In addition, each option is associated with a transition network
that describes the command line arguments, if any, that must follow the option itself.

The final two slots in a command structure, last-reference and heat, indicate how

recently and frequently the represented command is invoked by a VALET user. Each
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time VALET accepts and parses a well-formed shell command from its user, the value of
the last-reference slot for the just-referenced command is set to the current time. In
this context, the “current time” is proportional to the number of inputs that VALET has
ever received from its current user, spanning all of that user’s sessions with VALET. In
addition to updating the last-reference time VALET also increases the heat value of
the just-invoked command. “Heat” is a heuristic measure of how recently and frequently
a command has been used. The heat of a command increases with each reference and
diminishes slowly over time; therefore, commands that are referenced often are hotter
than those that are referenced infrequently. The value of the heat slot in a command
structure is the temperature of the represented command at the last-reference time.
At later times, the function command-current-heat determines from this information
the current temperature of the command. VALET maintains heat measures in order to
establish context — to indicate which commands are most used — and thereby determine
the best corrections for erroneous command names that its users may enter in the future.

The macro define-command describes a shell command to VALET by creating an
appropriate command structure and adding it to VALET’s command lexicon. Figure 3.7
contains VALET’s definitions of three common UNIX commands: cd, cp, and rm. VALET
has similar definitions for approximately 50 additional shell commands. This means that
although VALET has detailed knowledge of the most frequently invoked shell commands,
that knowledge describes only a small fraction of the hundreds of commands that are
actually available to users of the C shell. It would be intolerable for VALET to limit
its users to the set of commands for which VALET has detailed knowledge, however, so
VALET accommodates “undescribed” programs programs for which VALET has no
explicit knowledge by creating generic command structures for them. For each program
that is unknown to VALET in the shell’s search path, VALET creates a generic command
structure to represent that command.” These generic structures are stored in VALET’s

shell command knowledge base along with the more detailed command structures created

9This is subject to certain restrictions. First, because VALET cannot directly determine the shell’s
search path, it assumes that the shell’s path is equal to the path stored in the UNIX environment variable
PATH. Second, VALET scans the search path only once for each of its users. It typically takes one or two
minutes for VALET to examine a path and create the necessary command data structures for the programs
thus found, so in order to avoid this long delay VALET scans a user’s search path only during that user’s
initial session with the interface. VALET remembers the results of the scan for future sessions as described
in Section 3.4.6. Finally, because each user’s search path is scanned just once, VALET ignores relative file
names (e.g., “.”) in its users’ paths.
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;5; Definition of the "cd" (change directory) built-in shell command. This
;;; command has special sematics that the interface must understand.

(define-command "cd"
:from :built-in
inet (seq (set-semantics (change-directory $destination))
(or (file-name (:type :directory) (:mode :executable)
(:into $destination))
(seq (no-more-command-arguments T)
(set-var $destination (get-file-name "$HOME" T))
))

;3; Definition of the "cp" (copy files) command. All the options are
;33 concatable, require no arguments of their own, and must appear before the
;33 file name arguments.
(define-command "
:from "/bin"
:net (seq (opt* (parse command-option))
(or (seq (file-name (:type :regular))
(file-name (:type :not-directory :imaginary)))
(seq (onet+ (file-name (:type :regular)))
(file-name (:type :directory) (:mode :writable)))

cpll

))
topts (("-i" :concatable T :net no-args)
("-p" :concatable T :net no-args)
("-r" :concatable T :net no-args))

;3; Definition of the "rm" (remove files) command. Notice how the ‘set-var’
;5; and ‘equal-var’ actions interact when a directory is to be removed.

(define-command "rm"
:from "/bin"
:net (seq (set-var $rm-directories nil)
(opt* (parse command-option))
(one+
(or (file-name (:type :not-directory) (:resolve-symlink nil))
(seq (file-name (:type :directory) (:resolve-symlink nil))
(equal-var $rm-directories T
"use the -R option to remove a directory"))

)))
topts (("-d" :concatable T :net (set-var $rm-directories T))
("-f" :concatable T :net no-args)
("-i" :concatable T :net no-args)
("-R" :concatable T :net (set-var $rm-directories T))
("-r" :concatable T :net (set-var $rm-directories T)))

Figure 3.7. Definitions of the cd, cp, and rm Commands
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by define-command. Because VALET creates generic structures for the undescribed
programs in the shell’s search path, VALET’s users can invoke those programs as they
would in a normal command shell. However, since VALET knows nothing about the
command line arguments required by those undescribed programs, VALET is unable to
correct errors that users make in the arguments given to those programs.

VALET could treat user-defined command aliases in the same way that it treats
undescribed commands. However, whereas it is relatively easy for VALET to determine
the set of programs in the C shell’s search path, it is much more difficult for VALET
to determine the set of aliases that its users define. VALET’s “intelligent” Common Lisp
component is separate from the managed C shell processes, so VALET does not have direct
access to the shells’ internal states, including the sets of defined aliases. VALET could

conceivably determine its users’ aliases by parsing its users’ *

‘.cshrc” shell configuration
files, but that parsing task would be complicated. It would require VALET to understand
all of the programming constructs of the C shell language (e.g., conditional statements),
and that level of knowledge is much more than VALET needs in order to interpret users’
interactive commands. Even if VALET simply extracted alias definitions without truly

3

parsing its users’ “.cshrc” files, problems would still arise: VALET would still be required
to parse alias definitions (not always a trivial task) in order to associate semantics with
certain aliases. For example, VALET would have to recognize and interpret aliases that
change the shell’s current directory. Therefore, due to all of the difficulties involved,
VALET does not create command structures for aliases and this means that the command
parser cannot recognize invocations of aliases.!® This shortcoming is a nuisance that
results from VALET’s experimental architecture. Fortunately it does not seriously hurt
VALET’s ability to interpret and correct most common shell commands.

Even without command aliases, VALET’s shell command knowledge base contains
hundreds of entries. The knowledge base stores information about all the programs that
may be invoked through the shell’s command search path, and in addition, the knowledge
base details the command line arguments for many of the most frequently invoked shell

commands. The ATN parser action that interprets command names consults VALET’s

command knowledge base and uses context in order to correct misentered command

0 Although VALET cannot determine its users’ aliases for itself, it was hoped that VALET would allow its
users to manually describe their aliases to the interface. Unfortunately, that ability was not implemented
before the user testing experiment described in Chapter 4 was performed. In retrospect, given the
importance that users placed on their personal aliases, VALET should have handled aliases more gracefully.
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names. This parser action makes use of lexical context by invoking the functions described
in Section 3.4.3 to find command names that are similar to an erroneous command name.
These possible corrections are then evaluated in light of other contextual data stored in
VALET’s command knowledge base: the frequency at which various shell commands are
referenced and the arguments that each command requires. Once the parser has digested
the name of an input command, subsequent ATN parser actions interpret command line
arguments by referring both to data stored in VALET’s shell command knowledge base
(e.g., the appropriate command option lexicon) and also to data stored in VALET’s other
knowledge bases. Most notably, since so many command arguments refer to files, VALET’s

command argument parsing actions make heavy use of VALET’s internal file system model.

3.4.5 The File System Knowledge Base

Knowledge of its UNIX host’s file system is critical to VALET. The file system is one of
the most fundamental and user-visible components of a UNIX computer system because
it provides the principal metaphors through which the operation of the entire system is
understood. Most of the C shell’s command language is determined by the file system;
not only are the shell’s commands determined by the programs located along the shell’s
search path, but more importantly, many command line arguments name files: existing
files to be read, new files to be written, files to be created, consulted, moved, modified, or
destroyed. Therefore, in order for VALET to understand its users’ shell commands it must
have intimate knowledge of its host computer’s file system. This knowledge is contained
in a sophisticated file system knowledge base.

VALET’s file system knowledge base is complex. The code that implements the knowl-
edge base includes approximately 1,500 lines of Common Lisp code and 275 lines of C code
— and these figures refer only to the code that creates and maintains the knowledge base
itself. The parser actions and functions that actually consult the knowledge base amount
to another several hundred lines of Lisp code. The complexity of VALET’s file system

knowledge base is due to the nature of UNIX file systems:

e A typical UNIX file system contains hundreds of directories and thousands of files,
all organized in a single hierarchy. VALET must model these objects and their

organization.
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e The organization of a file system changes almost continuously. New directories and
files are created and existing directories and files are modified, renamed, relocated,
or destroyed. This constant process of change means that VALET must frequently
update its file system knowledge base. Unfortunately, VALET is not informed when
its host’s file system changes — and VALET certainly cannot control such changes
— so it is difficult for VALET to update its file system model appropriately. The

result is that VALET’s model often contains outdated information.

e Examination of a UNIX file system is very time consuming, so VALET must be
judicious when it creates and updates its file system model. It is not feasible for
VALET to represent its host’s entire file system; the storage size of the model would
be too great and the time required to create the model would render the interface
unusable. (Further, due to UNIX file access restrictions, it is generally not possible
for VALET to construct a complete file system model in any case.) For these reasons
VALET’s file system knowledge base is incomplete. The model represents only the
portions of the file system that VALET needs in order to establish context and
interpret its users’ input shell commands. Of course, even this partial representation
needs to be updated regularly in order for VALET to track changes that occur in
the file system. Because examination of the file system is so expensive, however,
VALET is careful to update information only as it is needed. Furthermore, VALET
minimizes its examination of the actual file system by remembering which parts of
its knowledge base are current and which are not. In effect, VALET’s file system

knowledge base acts as a cache of information about the actual file system.

e Finally, the Common Lisp language [31] does not contain functions that would allow
VALET’s Common Lisp component to examine its host’s file system in sufficient
detail. Therefore, VALET communicates with an external process in order to build
its file system model.'! The need to communicate with an external UNIX process
complicates the implementation of the knowledge base and makes examination of
the actual file system even slower, thereby increasing the need for VALET to cache

information and minimize its inspection of its host’s file system.

" The Common Lisp language does not specify functions for communicating with external processes,
either, but most Common Lisp implementations for UNIX provide such functions.
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In short, although VALET needs a great deal of information about its host’s file system,
this knowledge is expensive to acquire and must be continually refreshed. VALET’s file
system knowledge base was therefore implemented very carefully in order to allow the

interface to interpret and correct file names with acceptable speed.

3.4.5.1 Representation of the File System

VALET’s file system knowledge base is implemented by three different organizational
data structures. The first of these is a tree of linked Common Lisp structures that mirrors
the hierarchical organization of the actual file system. The definitions of the structures
in this tree are shown in Figure 3.8. For every unique file known to VALET there is a
corresponding file structure that represents and describes that file. In UNIX terms, a
file structure contains information gathered from a file’s inode: the file’s type and size,
the identity of the file’s owner, the access permissions associated with the file, and so on.
The scan-time slot in a file structure indicates the time at which the inode information
was gathered; the value of scan-time is proportional to the number of shell commands
that VALET has ever received from its current user. It is important to realize that a file
structure does not specify the name of the file that it represents. In a UNIX file system,
the association of names to files is controlled by directory entries as described below.

Most files in VALET’s file system model are represented by file structures, but
symbolic links and directories are represented by instances of special subtypes of the
file structure. A symbolic link is a file that contains the name of another file; VALET
represents symbolic links by special symlink structures in its file system model. A
directory is a second kind of special UNIX file. Every directory contains a list of names,
and each of those names is associated with a particular file in the file system. In VALET’s
file system model, each directory is represented by a dir structure. In addition to the

normal file slots, each dir structure contains three additional slots:

1. The children slot contains a list that describes the entries within the represented

directory. This is a list of dirent structures as described below.

2. The children-current-p slot is a flag that indicates whether or not the entries in
the children list are known to be correct as of the time stored in the dir structure’s
scan-time slot. VALET’s file system knowledge base often updates the information

about a directory (i.e., the values in the dir’s file slots) without immediately



103

© 0 YD A WS~

;3; A ‘file’ contains stat(2) information about an
;3; timestamped by Valet when it is acquired.

(defstruct (file
(type nil
(device
(inode
(mode
(links
(owner
(group
(size
(access-time
(modify-time

O O O OO OO O OO

(change-time

(scan-time 0

)

2
itype
:type
itype
:type
:type
itype
:type
:type
itype
:type
:type

:type

symbol
fixnum
integer
fixnum
fixnum
fixnum
fixnum
integer
integer
integer
integer

fixnum

:read-only t) ;
:read-only t) ;
:read-only t) ;

)

R N S NN N

;5 A ‘symlink’ is a special ‘file’ that represents

(defstruct (symlink (:include file)

(contents nil

)

2

actual file. This data is

; :regular, :directory,

; File device #.

; File inode #.

; UNIX permission bits.

; # of links to this file.
; UID of owner.

; GID of group.

;; File size in bytes.

; Time of last access.
; ...modification.
H ...change in inode.

;3 Time of Valet’s scan.

a symbolic link.

:type (or simple-string null)) ;; Contents of this link.

;5 A ‘dir’ is a special ‘file’ that represents a directory. A directory

;3; contains entries represented by ‘dirent’ structures.

(defstruct (dir (:include file)

(children
(children-current
(parent

)

nil
-p nil
nil

)
:type list ) ;; The entries in this directory.
:type symbol) ;; Is the ‘children’ list current?

) ;; Link to entry in our parent dir.

;3 A ‘dirent’ represents an entry in a directory.

An entry associates a name

;5; (a string) with a file in the file system, or with an "imaginary" file.

(defstruct (dirent
(name
(file
(parent
(last-reference
(heat
)

)
o :type simple-string )
nil :type (or file null) )
nil :type dir :read-only t)
0 :type fixnum ) ;; Valet timestamp
0 :type fixnum ) s and heat val.

Figure 3.8.

Definitions of the File System Model Structures
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updating the information about the contents of that directory. In these cases VALET

may need to remind itself to later reexamine the list of directory entries.

3. The parent slot of a dir structure is a link to the “parent” of the represented
directory. More specifically, the parent slot of a dir D is a link to the dirent
structure that refers to D in the dir structure above D in VALET’s modeled file
system hierarchy. This parent link makes it possible for VALET to immediately

determine the name associated with a given directory.

Every directory in a UNIX file system contains entries that give names to files. In
VALET’s model of the file system, the contents of a directory are represented by a list of
dirent structures within that directory’s dir structure. Each dirent contains a name,
unique to the list in which the dirent is contained, and a reference to the file structure
to which the entry refers. Each dirent also contains three additional fields: a link to the
dir in which the dirent is contained and two timestamps that VALET associates with
the entry. These last two fields, last-reference and heat, are similar to the timestamp
slots contained in VALET’s command structures, previously explained in Section 3.4.4.
Every time an input shell command refers to a directory entry, the last-reference slot
of the corresponding dirent is updated and the heat of the dirent is increased. This
provides important context that VALET uses in order to correct file names in the future.
It is important to understand that VALET associates user reference information with
directory entries  essentially, with file names  and not with the actual files referenced
by those entries. This distinction is important because it is file names, not file inodes,
that are meaningful to users of the C shell. When the entries within a directory change,
VALET takes great care to associate appropriate reference information with each of the
corresponding updated dirent structures in its file system model.

Because users’ references to file names (directory entries) are so important for estab-
lishing interaction context, VALET maintains reference information not only for names
that refer to existent files but also for many names that refer to nonexistent files. It is
not at all uncommon for a shell command to contain file names that are not valid before
the command is executed; for instance, when a file is renamed with the mv command, it
is often the case that the new name for the file does not refer to any file at the time the
mv command is invoked. The new name for the file can be understood as a reference to a

directory entry that will exist in the near future, after the completion of the mv command.
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For situations such as this, VALET’s file system model can create “imaginary” directory
entries.

An imaginary entry is essentially a file name that does not correspond to any file in
the host’s actual file system. In VALET’s file system model, an imaginary directory entry
is represented by a dirent structure that has a name but no associated file structure;
the file slot of an imaginary dirent is nil. By creating imaginary entries, VALET’s file
system knowledge base can keep track of users’ references to file names even when those
file names are invalid at the times at which they are entered. This reference information
is saved in expectation that the file names will become “actual” in the near future. When
the directory entry represented by an imaginary dirent actually appears in the real file
system, the dirent is updated to refer to the appropriate file, dir, or symlink structure.
VALET’s information about references to that previously imaginary entry is preserved.

VALET’s file system knowledge base assembles instances of the data types described
above — file, symlink, dir, and dirent structures — into a single tree-like hierarchy
that models a portion of the actual file system of VALET’s host.'? At the top of this tree
is a single dirent, the *root-dirent*, which corresponds to the UNIX file name “/”.
Below the *root-dirent* are the portions of the file system that VALET needs in order
to establish context and interpret its users’ input shell commands. This tree describes the
“spatial” organization of the actual file system, and VALET’s file system knowledge base
needs two additional organizations in order to serve the intelligent interface. The first of
these is a hash table that allows the knowledge base to locate the file, dir, or symlink
structure that corresponds to a particular inode and device number pair; this table is
internal to the knowledge base itself. The second organizational structure is a lexicon
(the structure described in Section 3.4.3) that maps file names to the dirent structures
that contain those names. Through this lexicon the knowledge base can quickly locate
all of the files with a given name or locate all of the files that have names similar to
a misspelled name. By incorporating both a hierarchical model and a lexicon, the file
system knowledge base offers both “spatial” and lexical context that VALET uses in order
to correct erroneous file names. The reference information within the model’s dirent

structures provides additional context to the intelligent interface. All of the information

12The hierarchy is not entirely acyclic, however, because the UNIX file system itself is not entirely
acyclic. In particular, the “.” and “..” entries within every UNIX directory introduce cycles into the file
system and into VALET’s model.
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in the file system knowledge base is dynamic and must be continually updated as new

data are received from VALET’s flunkie process.

3.4.5.2 Examination of the File System

VALET’s file system knowledge base relies on a separate UNIX process, the file system
flunkie, to provide information about the host’s actual file system to VALET’s Common
Lisp process. When the file system knowledge base determines that it must refresh part
of its file system model, it sends a request to the flunkie, asking that the flunkie
reexamine the appropriate parts of the file system. The flunkie in turn responds with
data about the current states of the examined objects, and VALET incorporates this new
information into its file system model. (In addition to information about the file system,
the flunkie also relays information about the users of the UNIX system  their home
directories and their user and group identification numbers  to VALET’s Common Lisp
component.)

Examination of a UNIX file system is inherently time consuming and the need for
VALET’s Common Lisp process to communicate with a separate flunkie process makes
examination of the file system even slower. Unrestrained perusal of the actual file system
would immediately bring the entire VALET system to a crawl and make the intelligent
shell interface intolerably slow. Therefore, VALET’s file system knowledge base takes great
care to remember which parts of its internal model are up to date and which are not. As
described in Section 3.4.5.1, every file in the model is associated with a scan-time and
every directory in the model contains a children-current-p flag that indicates whether
the entries within the directory are known to be current. By consulting these data and by
updating its model only as necessary, VALET’s file system knowledge base minimizes the
communication between itself and the flunkie, thereby allowing the knowledge base to
operate as quickly as possible. This in turn allows VALET’s file-name ATN parser action
to interpret and correct file names speedily, even when it must consult large amounts of

context in order to do so.

3.4.5.3 Parsing and Correcting File Names

A single ATN parser action called file-name is responsible for interpreting and
correcting file names that appear in input shell commands. Not surprisingly, because
file names are used in so many different circumstances and because there is so much

context to consider when a file name is to be corrected, the file-name parser action
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is the single most complicated parser action defined in VALET. The file-name action
accepts many different arguments as summarized in Table 3.4. The command definitions
in Figure 3.7 illustrate how the file-name action is actually used in command networks.

When the file-name action is invoked, it takes the next available token from the ATN
parser’s input and tries to interpret that token as a file name. The action consults the
file system knowledge base and attempts to locate the dirent structure that corresponds
to the current input token; when the search is successful, the file-name action adds
the file name token and the named dirent to the output of the parser. The arguments
listed in Table 3.4 control how the file-name action operates. Most importantly, the
:type argument lists the kinds of files to which the current file name may refer. The
set of possible types includes the standard UNIX file types (:regular, :directory, and
so on), the aggregate types :not-directory and :any-existent-type, and the special
type :imaginary. As described in Section 3.4.5.1, an imaginary directory entry is one
that does not currently exist in the actual file system; the type :imaginary, then, tells
the file-name action that the current file name may refer to an imaginary dirent.
(The :imaginary keyword gives the file-name action license to create a new imaginary
dirent in VALET’s file system model if necessary. Note, however, that the directory in
which the imaginary dirent is to be created must itself exist.) The default value of the
:type argument is :any-existent-type.

The :resolve-symlink argument determines what the file-name action will do if
the current file name refers to a symbolic link: Should file-name return the directory
entry for the file named by the link (i.e., “resolve” the link) or should file-name return
the directory entry for the link itself? The :mode argument specifies the set of properties

that the named file must have: whether the file must be :readable, :writable, or

Table 3.4. Summary of the file-name Parser Action Arguments

Argument Meaning

(:type ...) Acceptable file types (e.g., :regular).
(:resolve-symlink t-or-nil) | If name refers to a symbolic link, resolve it?
(:mode ...) Required file modes (e.g., :readable).
(:prefer-extension ...) Preferred file name extensions (e.g., “.c”).
(:provide-extension ...) Extensions that may be provided.

(:into ...) Variables in which to store the dirent.
(:accumulate-into ...) Variables in which to store the dirent.
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:executable (in any combination) by VALET’s user.'> The :prefer-extension argu-
ment contains a list of symbols that describe file name extensions (i.e., final name seg-
ments) and the current file name is expected to have one of these extensions. None of the
listed extensions are required to be present in the file name, but the :prefer-extension
list provides useful contextual data in case the file name needs to be corrected. The
:provide-extension list is the set of extensions that the file-name action is allowed
to append to the current file name in order to locate the referenced directory entry.
These do not apply when the current file name already has an extension, however.
Finally, the :into and :accumulate-into arguments name parser variables into which
the file-name action should store the dirent that corresponds to the current input token.
The variables in the :into list are set to contain the located dirent. The variables in the
:accumulate-into list are assumed to already be bound to list values, and the dirent
located by the file-name action is inserted into each of those lists.

Given values for some or all of the above arguments, the file-name action attempts
to interpret the parser’s current input token as a file name. If the token correctly names
a directory entry then the file-name action succeeds or fails depending on the type and
mode of the referenced file. (Unless explicitly told to do so, however, the file-name
action will not allow the input file name to refer to an imaginary directory entry.) If
the input token does not correspond to a directory entry, however, the file-name action
attempts to correct the original file name so that it refers to an appropriate file. The
correction heuristics within the file-name action are driven by context.

The first step in correcting a file name is to interpret the nonterminal components of
the name. Nonterminal components are directory components; for instance, in the file
name “local/src/main.c” the segments local and src are nonterminal components
that are expected to name directories in the file system hierarchy, and the order of these
components reflects the expected file system structure. When the name given to the
file-name action must be corrected, the file-name action examines the nonterminal
components of that file name and produces a set of directories around which it will later
search for the file that best corresponds to the final segment of the name. This set of

startpoint directories is constructed as follows:

1. If the original file name is a relative file name, the startpoint set is initialized to

"3Imaginary files are treated as :writable but neither :readable nor :executable.
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contain the shell process’ current directory. Otherwise, the file name is an absolute

file name and the startpoint set is initialized to contain the root directory.

. The nonterminal components of the file name are processed in order, and the set of

startpoint directories is updated with each step through the list of components. For

each component:

(a)

The “neighborhood” of each directory in the startpoint set is searched for
directories that have names that are identical to or simple variations of the
current file name component. “Simple” variations are those that can be cor-
rected by lexicon-spell as described in Section 3.4.3. The neighborhood of a
directory includes (1) the directory itself, (2) the parent of the directory (i.e.,
the directory that is above the current directory in the file system hierarchy),
(3) the children of the directory (i.e., the directories that are immediately below
the current directory in the file system hierarchy), and (4) the siblings of the
directory (i.e., the other directories that are below the parent of the current
directory). Roughly speaking, by searching the neighborhood of each directory
the file-name action allows for extra, omitted, and incorrect components
within file names. If the search locates any appropriately named directories,
the set of startpoint directories is set to contain the newly found directories and
the control returns to the beginning of step 2 in order to consider the next file

name component.

If, however, the previous search failed to locate any directories at all, then
the neighborhoods of the startpoint directories are searched again, this time
for directories that have names similar to the current file name component
as determined by the function lexicon-guess. If this search locates any
directories, then these are the new startpoint directories and control returns

to the beginning of step 2.

If the previous searches failed to locate any directories, then VALET’s entire file
system model is searched for recently referenced directories with names that are
identical to or simple variations of the current file name component. Because
all directory entries are stored in a lexicon, it is easy and quick to search the
entire model by invoking lexicon-spell. Again, if any directories are located,

they become the new startpoint set and control returns to the start of step 2.
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(d) Finally, if all of the previous searches failed, then the entire file system model
is searched for recently referenced directories with names that are similar to
the current file name component as determined by lexicon-guess. The set of
located directories — even if that set is empty — becomes the new startpoint

set and control returns to the top of step 2.

When the file-name correction heuristic searches the neighborhood of a directory, it
must consult many segments of VALET’s file system knowledge base. Each examination
could potentially cause the knowledge base to communicate with the flunkie process;
left unchecked, the need to update large parts of the file system model would make
the correction of file names intolerably slow. Therefore, portions of the neighborhood
searches described above are coded to examine only data already in VALET’s model.
(This constraint ultimately proved to be too severe as explained in Section 4.2.4.)

After all the nonterminal components of the current file name have been processed as
described above, the final startpoint set is the set of directories around which the file-
name action must search in order to locate the referent of the final file name component.
This process is similar to the search just described. The correction heuristic searches the
neighborhood of each startpoint directory for entries that have names identical or similar
to the final file name component, first directed by the function lexicon-spell and then
by lexicon-guess. As allowed by the :provide-extension argument, the file-name
action may append various extensions to the final file name component in order to find
a matching directory entry. If the neighborhood searches fail then the file-name action
searches VALET’s entire file system model for appropriate directory entries. Ultimately
the final set of located directory entries represents the likely corrections for the original,
incorrect file name. From this set the file-name action chooses the best candidate
correction as determined by context: the set of acceptable file types, the required file
modes, the preferred file name extensions, the heat values associated with the candidate
corrections, and the “distance” to each correction (i.e., the number of components in the
absolute or relative file name required to reference each potential correction).

If VALET’s file-name parses its given input file name  either verbatim or through
the heuristics designed to correct erroneous file references and successfully locates a
directory entry that refers to a file of the required type and mode, the file-name action
adds the parsed and possibly corrected file name to the ATN parser’s output, along with

the dirent structure to which the name refers. Then, if the parser successfully interprets
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the remainder of the user’s input command, VALET updates the dirent structures in
the parser’s output with new values for their last-reference and heat slots. This new
reference information provides context for future commands, both for the current VALET
session and for future sessions. By preserving contextual data through many separate
sessions, VALET’s knowledge bases become tuned to the behaviors of its individual users
and the intelligent shell interface as a whole becomes increasingly proficient at properly

correcting its users’ input errors.

3.4.6 Preservation of Interaction Contexts

Much of VALET’s knowledge describes fixed, unchanging aspects of the UNIX operating
system and the UNIX C shell. For instance, VALET knows the command line syntax
required by the 1s program and this information is applicable to all invocations of 1s
the 1s command does not behave differently for different people. This kind of knowledge,
constant across time and across different users of the C shell, is built into VALET. On
the other hand, VALET also needs knowledge that is specific to each of its users. For
example, in order to correct shell commands accurately, VALET remembers the set of
recently invoked commands and the set of recently referenced file names. These sets are
naturally different for each user of the interface, and in addition, these sets change over
time. Not only do these sets provide context in the short term, but over the course of
hundreds of shell commands these sets come to describe the long-term habits of VALET’s
individual users. Therefore, in order to establish long-term interaction context for each
of its users, VALET preserves its user-specific data across separate invocations of the
interface. When a user ends a session, VALET saves the information specific to that user
in a special file. Later, when that user reinvokes the interface, VALET reads the user’s
file and restores the user’s interaction context.

VALET stores user-specific contextual data in files within its users’ home directories.
Each user’s “.valetrc-host.1” ' file contains forms that preserve the “current time,” the
shell command knowledge base described in Section 3.4.4, and the file system knowledge

base described in Section 3.4.5.

e The saved time is proportional to the number of shell commands that the user has

ever entered to VALET. This time must be preserved and restored in order for VALET

The host portion of the file name is the name of the machine on which VALET runs.
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to interpret the last-reference and heat data within the shell command and file

system forms described below.

e Every command in VALET’s shell command knowledge base is described in the user-
specific context file. For each command VALET remembers the command’s name
and location (i.e., the symbol :built-in or name of the directory that contains
the named program file) and the last-reference and heat values associated with
that command. These saved data, when combined with VALET’s built-in knowledge
of certain commands, make it possible for VALET to restore its shell command
knowledge base completely. In particular, the saved command data generally make
it unnecessary for VALET to scan the shell’s search path, so the VALET session can

start quickly.

e Information about “hot” directory entries is also preserved in users’ context files.
At the end of each user session VALET searches its file system model for all the
directory entries that are still “hot” according to their last-reference and heat
values. For each hot entry VALET remembers the absolute file name of the entry and
the last-reference and heat values for that entry. Later, when the user’s saved
context is restored, VALET recreates the appropriate portions of its file system model
in order to restore the last-reference and heat values for all the directory entries
described in the user’s context file. In the process VALET also recreates the “spatial”
context around each of those entries in the file system model. Overall, the effect is
that VALET recreates all of the recently referenced portions of its file system model

every time the intelligent interface is invoked.

All of the above contextual information is encoded in order to be compact and quickly
interpretable. Every time a new VALET session begins, VALET’s Common Lisp process

loads its user’s *

‘.valetrc-host.1” file, and the forms in that file invoke special functions
that recreate the current user’s context. This context in turn allows VALET to refer to

its user’s past commands in order to accurately correct his or her future input errors.

3.5 The Process of Input Correction
Through knowledge and context, VALET's Common Lisp components the input
tokenizer, the ATN parser, and the various knowledge bases — attempt to interpret and

correct commands entered to the C shell. Consequently, the extent to which VALET can
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successfully understand its users’ inputs is limited by the knowledge contained in the inter-
face. VALET incorporates a great deal of information such as the set of available command
names, descriptions of the command line arguments required by popular commands, an
understanding of file name patterns, data about the file system, data about the users of
the host UNIX system, and timestamps that indicate how frequently various entities have
been referenced in users’ input commands. All of this knowledge is essential in order for
VALET to interpret the kinds of commands that people enter most frequently. In order
to interpret all possible shell commands intelligently, however, VALET would need access
not only to the kinds of information just listed but also to many more obscure domains.
Some of this data would be very difficult or impossible to acquire (e.g., the names of
all users of a remote UNIX system), and even if VALET had access to these data they
would be generally useful for only a relatively small number of user inputs. For these
reasons VALET concentrates on the more important and more common cases. VALET'S
knowledge bases describe the domains that are most important to the interpretation of
shell commands and VALET’s heuristics allow the interface to correct the most frequently
occurring errors in those commands.

In order to interpret an entire command VALET must associate meanings with each
of the individual terms that constitute that command. This means that VALET must
determine the domain to which each term refers (i.e., discover the kind of thing named
by each term). This associative process is carried out by VALET’s ATN parser and its
actions. For each term, the set of domains to which that term may belong is determined
by the “position” of VALET’s ATN parser within its transition network at the time that
term must be interpreted. For example, from a certain position the parser may have a
choice between two actions: one that attempts to parse the next input term as a command
option and another that attempts to parse the next input term as a file name. In general,
the set of acceptable domains for a term is determined by the set of currently available
actions, and that set of actions is determined by the syntax of the current command as
embodied in that command’s transition networks. From the available set of actions the
parser discovers the domain of its current input term through trial-and-error execution
of the actions; a parser action succeeds only if the current term appears to belong to the
domain examined by the action.

In order to interpret an input term reasonably, a parser action must be able to

determine if that term is a member of the action’s domain, either through a priori
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knowledge (e.g., the set of options for a command) or through access to external sources
of information (e.g., the file system). This allows an action to recognize terms within its
domain but does not necessarily allow the action to correct malformed terms. In order
to correct a term an action must be able to do more than simply verify particular names:
It must also be able to search its domain for terms that are similar to a malformed
term, and ideally, it should be able to use various kinds of context in order to locate the
best possible corrections. In VALET’s model, a fully implemented action has access to a
lexicon that completely describes the action’s domain, and further, it uses both general
and domain-specific context in order to correct malformed terms. Ideally there would
be a unique parser action for every possible domain and each of those actions would
have complete knowledge of the domain to which it refers. Unfortunately, neither of
these situations is possible. Due to the nature of the C shell language and the unlimited
number of domains to which that language may refer there will always be some domains
for which VALET has incomplete information. Therefore, some of VALET’s parser actions
fully implement VALET’s interpretation and correction model and some do not. In short,
VALET “understands” different domains to differing degrees.

Some domains shell command names and file names, for instance are vital
to understanding practically all shell commands, so for these domains VALET has very
detailed knowledge bases and sophisticated correction heuristics. VALET acquires data
for these essential kinds of terms even when those data are complex or difficult to acquire,
and the result is that within these domains VALET is very powerful. For example,
unlike the metric library [13] and tcsh [27] and zsh [7] shells described in Chapter 2,
VALET can correct file names that contain extra or missing or even completely wrong
directory components. Furthermore, because VALET remembers context that those other
systems ignore, VALET can search for corrections based on file types and according to the
frequencies at which various files have been previously referenced.

The file system is critical to understanding shell commands, but many other domains
are not so important or are too difficult for VALET to examine practically. For instance,
in order for VALET to interpret or correct arguments given to the UNIX make program,
VALET would need a massive amount of code devoted just to make. Similarly, in order to
verify electronic mail addresses VALET would need to communicate with remote computer
systems. Although the ability to understand make arguments and mail addresses would

be very useful in certain circumstances, the effort that would be required in order for
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VALET to understand these domains would be enormous and only useful for a relatively
special set of shell commands. The value gained is far outweighed by the effort required,
so for many less important kinds of inputs VALET implements only a partial or minimal
interpretation model.

In addition to these limits on interpreting individual words, VALET has limits on its
ability to interpret certain kinds of complete commands. Most obviously, in order to
accurately interpret the arguments within an input command, VALET’s shell command
knowledge base must have a description of the expected command line syntax. This
description is embodied by a transition network particular to the invoked command.
Most of VALET’s command argument networks accept only the syntax required by the
corresponding commands, but it would be possible for these networks to accept more
flexible kinds of inputs. It would be possible, for example, for VALET to define transition
networks that could reorder command arguments — in order to move all options to the
beginning of the argument list as required by some UNIX programs — or insert or delete
tokens in order to make sense of a command line. These features would be occasionally
useful but are almost entirely unimplemented because they do not correspond to the most
frequently occurring types of input errors.'® For similar reasons VALET understands the
command line syntax required by only a small subset of the hundreds of available UNIX
programs: The effort required to describe every command, not just the most popular
ones, would be very large and would reap additional rewards only in relatively seldom
cases. Rather than attempt to handle every circumstance, VALET instead concentrates
on the most common kinds of shell inputs and the most useful correction heuristics.

In conclusion, although its ability to interpret and correct shell commands has certain
limits, VALET nonetheless serves to demonstrate the effectiveness of user-supportive,
context-based, “intelligent” user interfaces. The error correction features that VALET

incorporates are those that are generally most useful to experienced users of the C shell.

5The literal parser action, which looks for and accepts a particular token, may try to insert an
expected token into a command.



CHAPTER 4

EVALUATION

The true test of a human-computer interface is the effectiveness with which that
interface meets the needs of its users. VALET attempts to address its users’ needs by
adding “intelligent” command analysis to the UNIX C shell. VALET’s goal is to provide
an intelligent, user-supportive interface to the C shell, an interface that uses knowledge in
order to interpret and as necessary correct its users’ shell commands. In order to evaluate
how well VALET meets this goal, 11 people were recruited to use the VALET interface in
the course of their everyday work. The commands that these people entered, along with
VALET’s interpretations and responses, were recorded in transcripts. These transcripts
were later analyzed in order to evaluate the interface and answer questions such as the

following;:

e How often do people enter erroneous shell commands? Because VALET’s principal
feature is that it corrects errors, the frequency at which errors are made imposes a

limit on VALET’s overall usefulness.

e What kinds of errors do people actually make, and with what frequencies? This
information determines the importance and applicability of VALET’s various input

correction heuristics.

e How often does VALET properly detect errors? Conversely, how often does VALET
fail to detect errors (i.e., how common are “false negatives”) and how often does
VALET incorrectly decide that a truly valid command contains an error (i.e., how
common are “false positives”)? In addition to providing data for evaluation of the
current system, an understanding of the causes of false positives and negatives is

important for possible future improvement of the interface.

e When an actual mistake is detected, how often can VALET infer its user’s intended

input? How often is the interface unable to offer any correction at all to its user, and
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why is VALET unable to infer reasonable corrections in these cases? The answers
to these questions describe the effectiveness of VALET’s current correction heuristics

and also provide insight for future improvements.

The data gathered during the user testing experiment answer the above questions and
highlight both VALET’s strengths and weaknesses. Section 4.2 below presents a detailed
analysis of the data, but in brief the results suggest that VALET’s style of intelligent
parsing and input correction can be a very effective component of a user interface. VALET
corrected slightly over half of all the erroneous shell commands that were entered during
the user testing experiment, and as described in Section 4.2.4, in most but not all of
these cases VALET’s suggested correction was accepted verbatim by VALET’s user. Most of
VALET’s deficiencies can be attributed to its lack of certain kinds of knowledge, correction
heuristics that were sometimes too conservative, and other restrictions of the current
implementation — in other words, factors that could be alleviated in future intelligent

shell interfaces.

4.1 The Experiment

In order to understand VALET’s performance in “real world” situations, members of
the University of Utah Department of Computer Science were recruited to use VALET.
The study of a new “intelligent” shell interface was announced through electronic mail
and news and 25 people responded. Of those, 11 eventually participated in the testing of
VALET. Most of the rejected volunteers either never used the computer systems on which
VALET ran or were not available to use the interface during the predetermined testing
period.

The 11 volunteer participants in the study included undergraduate students, graduate
students, and faculty members from the Department of Computer Science. Each of
the participants was already familiar with the C shell and with GNU Emacs, and each
agreed to use VALET in the course of his or her normal work during the period of the
study, approximately four weeks. The participants were told that VALET was designed to
interpret shell commands and correct input errors and that the purpose of the experiment
was to study VALET’s abilities in natural situations. Therefore, despite VALET’s abilities
the testers were asked to behave normally and not to make intentional input errors.
Each participant received a brief set of instructions for VALET describing how to start

the interface and how to invoke the system’s special features (e.g., the command history
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described in Section 3.3.1). The instructions also listed the kinds of inputs that VALET
could not understand: aliases, references to the C shell’s built-in command history (e.g.,
the command “!!7), references to shell variables, and other certain constructs. In addition
to instructions, each VALET user also received and signed an informed consent form. This
form described the purpose of the experiment and stated that all of the shell commands
input to VALET would be recorded and later analyzed in order to measure the overall
effectiveness of VALET’s intelligent features.

The VALET system was available for a period of approximately four weeks during July
and August 1993, and in that time VALET recorded information about 1,126 nonempty
inputs to the shell from the group of 11 testers. At the conclusion of the testing period
each user was asked to fill out a brief questionnaire in order to record his or her general
impressions and comments about the interface. None of the VALET testers received any

compensation for taking part in the experiment.

4.2 The Results of the Experiment
Table 4.1 summarizes VALET’s handling of the 1,126 shell commands that were ana-
lyzed and recorded during the user testing experiment. Each input falls into one of three

categories representing VALET’s three types of response:

1. Accepted. An accepted input is one that VALET determined to be correct — in
other words, an input that VALET parsed and sent to the underlying C shell process
verbatim. As described below, a few accepted inputs were actually erroneous; these

inputs contained errors that VALET failed to recognize.

Table 4.1. Distribution of Correct and Incorrect Inputs
Across VALET’s Responses

All All All Unintent’ly
Recorded Correct Incorrect Incorrect
Inputs Inputs Inputs Inputs
Response # % 7# % | # % || # %
Accepted 994  88.3 983 94.0 | 11  13.75 7 15.2
Corrected 60 5.3 19 1.8 |41  51.25 || 18 39.1
Rejected 72 6.4 44 4.2 | 28 35.00 || 21 45.7
Total 1126  100.0 || 1046 100.0 | 80 100.00 || 46 100.0
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2. Corrected. A corrected input is one that VALET recognized as erroneous and for
which VALET offered a correction to the user. For example, in one case, one of the
VALET testers entered the shell command “cd par”. VALET discovered that the
directory par was not in the shell’s current directory but that par was in fact one of
the siblings of the current directory. VALET therefore presented a correction of the
original command to the user, suggesting that “cd ../par” was most likely what
the user intended. Obviously, whenever a user’s input was corrected, that input was
not sent to the underlying C shell process. VALET occasionally offered corrections

for commands that were not in fact erroneous, as described below.

3. Rejected. A rejected input is one that VALET recognized as erroneous but for which
VALET offered no correction. Instead, VALET simply presented an appropriate error
message to the user. (The construction of these error messages was detailed in
Section 3.4.2.3.) Obviously, rejected inputs were not relayed to the C shell process
for execution. As with the set of corrected inputs, not all of the rejected inputs

actually contained errors.

Of the 1,126 total recorded inputs, 994 inputs (88.3%) were accepted by VALET.
In addition, 60 inputs (5.3%) were corrected and 72 inputs (6.4%) were rejected. The
total count of inputs excludes “empty line” inputs, which are normally ignored by the C
shell, and also excludes approximately 232 inputs for which no parsing information was
recorded. Due to technical problems, information about those inputs was lost.

Overall, the number of recorded inputs was substantially less than the number that
was anticipated because several of the 11 volunteers used VALET on only a few occasions.
Table 4.2 summarizes the number of commands entered by each of VALET’s testers.
Clearly, each user contributed to a differing extent — user A by himself entered almost
half of all the recorded commands. Some of the numbers in Table 4.2 are lower than
they should be because certain inputs were not recorded, as just described. The missing
commands include approximately 56 inputs from user A, 26 from user F, 30 from user
H, and 120 from user K. Some of the low figures may reflect disappointment with the
limitations of the interface; in particular, VALET’s inability to recognize aliases may have
reduced the number of commands that some users entered. However, the comments that
users made on their questionnaires did not indicate wholesale dissatisfaction with the

interface. Perhaps the volunteers, most of whom were students, simply had little work to
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Table 4.2. Summary of Users’ Inputs and Errors

Number of Inputs Number of Errors
User | Accepted Corrected Rejected | Unintentional Intentional
A 499 7 23 18
B 153 12 11 10
C 68 12 6 3 7
D 56 21 9 3 24
E 73 3 2
F 56 9 4
G 36 2 6 4
H 15 2 4 2
I 16 1 1
J 13 3 1 2
K 9
Total 994 60 72 46 34

do during the summer, VALET’s testing period, when classes were out of session.

Although VALET’s testers as a group entered fewer commands than expected, a sub-
stantial amount of data was nevertheless collected during the user testing experiment.
The 1,126 recorded commands represent a considerable amount of user interaction. Fur-
thermore, VALET’s recorded inputs are similar in many ways to those recorded in other
user behavior studies [12]. With certain exceptions (described in Section 4.2.1), when
compared to the results of other research efforts, VALET’s users seem to have been typical:
They invoked an ordinary assortment of UNIX commands and made the standard kinds
of errors. In summary, the 1,126 commands recorded by VALET appear to be reasonably
representative of most users’ shell commands, so it is possible to analyze VALET’s users’
commands in order to evaluate VALET’s effectiveness in “real world” situations.

The leftmost section of Table 4.1 describes VALET’s handling of the complete set
of recorded inputs. The middle two sections of the table, however, show how VALET
responded to two disjoint subsets of those inputs: the set of all correct commands and
the set of all incorrect commands. Errors come in many varieties, but for the purpose of
the analysis presented here, the distinction between correct and incorrect commands is
derived from the types of input errors that VALET was designed to recognize and correct.
In particular, a command is considered to be correct if the entered command name
corresponds to an actual command and the command arguments follow the required

command syntax and correctly refer to entities of the required types. A command is
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considered to be erroneous, then, if it does not meet the above criteria for correctness.

This means that a command is considered to be erroneous if, for example:

e the first word of the command does not name an actual shell command;
e the command arguments do not follow the required syntax for the command; or

e any of the command arguments do not properly name objects of the required types.

In other words, the analysis presented below is based on errors of expression, not
errors of intent. The set of erroneous commands does not include commands that are
well-formed but which in the context of a user’s transcript appear not to be what the user
perhaps meant to enter. For example, if a user entered the command “1s” in order to list
the contents in the current directory and then immediately entered “ls -a” in order to
see the names of the “dot files” that were omitted from the first listing, the original “1s”
command would not be considered erroneous. Perhaps the user meant to enter “ls -a”
in the first place, but “1s” itself is a valid command and without detailed knowledge of
the user’s task there is no reason to prefer one of these commands over the other. On the
other hand, in the analysis presented here, correctly formed shell inputs are considered
to be correct even if VALET is unable to interpret them. For example, the input “!!”
which refers to the C shell’s built-in command history is considered to be correct, even
though VALET’s parser cannot understand that input. Similarly, invocations of aliases
are considered to be correct (when they are correctly invoked) even though VALET has
no knowledge of its users’ aliases, as explained previously in Section 3.4.4.

The VALET session transcripts were examined by hand in order to locate all the
recorded erroneous inputs. As Table 4.1 indicates, 80 such inputs were found. Although
the 11 recruited VALET users were asked not to make intentional errors while using the in-
terface, from examination of the transcripts it is obvious that some of the users (especially
user D) explored the system by entering various types of garbled shell commands. Since
the purpose of the experiment was to demonstrate VALET’s ability to process naturally
occurring errors, not fabricated inputs, the set of erroneous commands was divided into
two: those that were apparently unintentional and those that were apparently intentional,
as determined by the context of the errors and the best judgment of the author of VALET.
Intentional errors were not entirely eliminated from the analysis presented here, however,

because although they were artificially constructed they are still actual errors that provide
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insight into VALET’s capabilities. Many of the tables in this chapter therefore present
data for both the set of all erroneous inputs and then for just the set of unintentionally
erroneous inputs. The rightmost portion of Table 4.1 summarizes VALET’s responses to
its users’ unintentionally erroneous inputs.

Because the 11 VALET test subjects were all experienced users of the UNIX C shell,
it was naturally expected that the number of erroneous commands would be low as a
percentage of all inputs. The actual error rate during the experiment, however, was
surprisingly high. As stated above and shown in Table 4.1, 80 erroneous inputs were
located in the VALET session transcripts. This means that 7.1% (about 1 in 14) of all the
recorded inputs contained an error of the sort previously described: an incorrect command
name, an incorrect command argument, a mislocated file name, or other recognizable
input error. Even when only the 46 unintentional errors are considered the overall error
rate remains relatively high at 4.2% — about 1 in 24. These figures suggest that the
kinds of errors that VALET was meant to address actually occur at significant rates in
shell inputs. Apparently there is a great deal of opportunity for a system such as VALET
to improve the shell’s command line interface.

That improvement, of course, depends on the system’s ability to locate input errors
to distinguish between correct and incorrect commands. Table 4.1 shows that in general,
VALET accurately made that distinction. An overwhelming percentage of all correct shell
commands — 94.0% — were accepted by VALET and sent to the shell process verbatim.
Furthermore, the great majority of all erroneous inputs were recognized by the interface
and were withheld from the shell process. VALET offered corrections for 51.25% of all
incorrect inputs and offered error messages for an additional 35%, meaning that over
86% of all erroneous inputs were at least recognized, and in most cases a correction was
offered to the user. The accuracy of VALET’s error recognition is practically unchanged
when only the unintentionally erroneous inputs are considered, although in that domain
VALET rejected a few more inputs than it corrected.

VALET was able to distinguish correct and incorrect inputs in most but not all cases.
Not all actual input errors were recognized, and in some cases, VALET rejected or offered
a correction for an already correct command. As Table 4.1 indicates, 63 truly correct
inputs were misidentified as erroneous: 19 of these were corrected and the remaining
44 were rejected. These 63 misidentified inputs are the false positives resulting from

VALET’s error detection heuristics and constitute 6.0% of all actually correct inputs.



123

As explained in Sections 4.2.2 and 4.2.3 below, most of these false positives arose from
users’ attempts to employ parts of the shell input language that VALET was not designed
to understand: in particular, command aliases and references to the C shell’s built-in
command history. Most of VALET’s users ran into these limitations as indicated by users’
written comments after the experiment. In general, VALET’s testers wrote that VALET’s
intelligent features were useful but that the system’s limitations were “discouraging.”
Comments such as this were typical: “I felt comfortable [with VALET|, except for the fact
that a large chunk of UNIX that I was used to wasn’t really implemented yet. These were
just convenience devices (like ‘!'1’)... but still I felt myself working against the system
at times.” Another user wrote that VALET’s intelligent features were “somewhat useful”
but that they “definitely didn’t make up for the loss of aliases.” The 11 VALET testers
were warned about VALET’s parsing restrictions, but clearly, users’ established habits are
hard to change.

In addition to false positives, the data from the experiment also revealed several false
negatives: cases in which VALET failed to detect actual errors. Eleven truly erroneous
commands were accepted by VALET as correct during the study. In practically all of these
instances, however, VALET’s failure to identify the input error was due to VALET’s lack
of knowledge about the invoked command, as explained later in Section 4.2.4. Without
knowledge of the invoked command’s required syntax, VALET was unable to correct errors
that were present in the command line. Additional knowledge, therefore, would reduce
the number of unrecognized input errors. Greater knowledge and improved correction
heuristics would also improve the ratio of corrected to rejected inputs by enabling VALET
to make reasonable corrections in a greater number of cases.

In summary, Table 4.1 shows that VALET responded appropriately to the great major-
ity of all the shell commands that were entered during the user testing experiment. VALET
in general accepted correct commands and corrected or rejected incorrect commands. The
next three sections of this chapter more closely analyze the inputs within each of VALET’s

three response categories.

4.2.1 Analysis of All Accepted Inputs
VALET accepted 994 inputs during the user testing experiment. Of these, 983 (98.9%)
were correct commands and only 11 (1.1%) were actually incorrect (i.e., unrecognized

errors). As a percentage of all accepted inputs, therefore, the number of unrecognized
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errors is very low. The number of unrecognized errors is small when compared either
to the total number of accepted inputs (994) or to the total number of erroneous inputs
(80).

The high accuracy of VALET’s parser is due in large part to VALET’s knowledge of
the most commonly invoked shell commands. As previously discussed in Section 3.4.4,
VALET’s shell command knowledge base contains detailed descriptions of approximately
50 commands, including many of the most frequently used commands such as cd, 1s, cp,
and rm. Each description provides information about the command line syntax required
by a particular command, and when combined with VALET’s other knowledge bases, these
command definitions allow the intelligent shell interface to recognize and correct errors
within invocations of the described commands. Ultimately, the effectiveness of VALET’s
ability to identify errors in command arguments is determined by both the number of
commands for which VALET has detailed knowledge and the frequency at which each
of those commands is invoked. The fact that VALET accurately distinguished between
correct and incorrect inputs during the experiment only 11 errors were unrecognized

suggests that VALET’s built-in knowledge was applicable to most user inputs, and in
fact the data from the users’ transcripts support this conclusion. Table 4.3 shows that
although VALET has detailed descriptions for only 50 or so commands, those descriptions
applied to most of the commands that were entered by VALET’s users. Overall, 57.5% of all
the accepted, correct inputs entered during the user testing experiment were invocations
of the 50 or so “defined” commands, commands for which VALET has explicit knowledge
of the required command line syntax and arguments. “Generic” commands as described
in Section 3.4.4, on the other hand, are those commands that are known to exist but for
which VALET has no special knowledge.

When all of the accepted correct inputs are considered, VALET’s built-in command

Table 4.3. Categorization of Accepted Correct Inputs

Accepted Correct Inputs

From All Excluding

Users User A
Category # % | # %
Invocation of a defined command | 565 57.5 | 405 83.0
Invocation of a generic command | 418 42.5 | 83 17.0
Total 983 100.0 | 488 100.0
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descriptions applied to 57.5% of all the accepted, correct inputs. This figure is low when
compared to the results of other studies, however. For example, Hanson, Kraut, and
Farber [12] studied the use of UNIX shell commands and found that the 20 most popular
commands accounted for about 70% of all user inputs. In light of this result one would
expect VALET’s set of 50 command definitions to apply to more than 70% of its users’
inputs, and in fact, the lower than expected applicability of VALET’s command knowledge
can be explained by the set of commands entered by user A. During the period of the
VALET experiment, user A was developing a large computer program. User A created
a special suite of scripts designed especially for this task, and not surprisingly he used
these scripts quite frequently. In addition he used other program development tools that
were not explicitly described within VALET. The effect was that many of user A’s inputs
referred to a small, unusual set of “generic” commands, and because user A entered almost
half of all the inputs recorded during the VALET user testing experiment, his uncommon
inputs had a very great effect on the statistics presented above.

When the inputs from user A are excluded, it becomes clear that VALET’s built-in
command descriptions applied to a great majority of its users’ typical inputs. Table 4.3
shows that when the inputs from user A are ignored, 83.0% of the remaining accepted,
correct inputs were invocations of commands explicitly described within VALET. Table 4.4
illustrates this fact in greater detail by listing the commands that were most frequently
invoked during the user testing experiment. When inputs from all users are included, 8 of
the 16 most popular commands are generic; when inputs from user A are excluded, only
3 of the top 16 are generic. The latter list is similar to the list of most popular commands
determined by Hanson et al., which showed that most shell inputs are invocations of
a relatively small set of orienting and data-acquisition commands (e.g., 1s and more),
general manipulation commands (e.g., cd and rm), and social commands (e.g., mail).
Tables 4.3 and 4.4 make it clear that many of user A’s recorded inputs were atypical.
Overall, the results show that VALET’s built-in command knowledge is in fact applicable
to most users’ typical shell inputs, and these results are consistent with the findings of
other researchers.

The overall applicability of VALET’s command knowledge resulted in accurate parsing
of its users’ inputs; as stated previously, 94.0% of all correct inputs were accepted by
VALET and 86.25% of all erroneous inputs were recognized. Only 11 erroneous inputs

were undetected by the interface, and these few instances are summarized in Table 4.5.
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Table 4.4. Summary of the Most Frequently
Invoked Commands

Accepted Correct Inputs
From All Users Excluding User A
Command  # % || Command  # %
1s 169 172 1s 121 248
cd 127 129 | cd 79 16.2
A¢1 70 7.1 exit 34 7.0
Apuild 69 7.0 rm 32 6.6
Gece 48 4.9 | more 25 5.1
rm 44 4.5 pwd 23 47
exit 38 3.9 cat 11 2.3
“on 29 3.0 1pr 11 23
cat 25 25 finger 10 2.0
more 25 2.5 || Cw 10 20
God 24 24 || “clear 8 1.6
pwd 24 24 mail 7T 14
Aplccomp 18 1.8 ps 7T 14
AuclGrep 17 1.7| rlogin 6 1.2
ps 16 1.6 who 6 1.2
Ax 16 1.6 | “du 5 1.0
Total 759 77.2 || Total 395 80.9

A indicates a generic command created by user A.
G indicates a generic but standard UNIX command.

Table 4.5. Categorization of Accepted but
Erroneous Inputs

Type of Error Instances
Mistyped command name
Mislocated file

Argument not in required domains
Argument refers to wrong domain
Wrong number of arguments
Incompatible arguments

Total 1

— = = = = N O
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Almost half of the undetected errors were typographical errors within a command name,
and these errors were undetected because each mistake resulted in a valid command
name in particular, the name of a “generic” command about which VALET knew
almost nothing. This meant that in each case, VALET could not use knowledge about
the referenced command’s required arguments in order to recognize its user’s error. It
should be noted, however, that three of the five mistyped command names were obvious,
deliberate attempts to fool the interface.

In two other cases, a command line argument specified an incorrect location for a
file. In other words, each file was referenced as if it were in a place other than its actual
location. One of these errors was undetected because the invoked command was generic,
and in the other case, VALET accepted the incorrect file name because it was confused
about the shell process’ current directory. Due to the implementation of the interface
as separate processes (as described in Section 3.2), it is possible in rare circumstances
for the GNU Emacs and Common Lisp components of VALET to lose track of the shell
process’ current directory. For example, if VALET were to misidentify a cd command as a
non-shell input, based on the heuristics described in Section 3.3.1, the actual shell process
would change its current directory without the knowledge of VALET’s other components.
Although rare, this kind of disorientation caused VALET to misinterpret six inputs during
the experiment, and one of those inputs contained the mislocated file name noted above.

The remaining unidentified errors occurred in the arguments to generic commands.
One argument was intentionally nonsensical; it did not name any object in the appropriate
domain and it was not a mistyping of an acceptable name. In another case, an argument
named a symbolic link when it was required to name a directory. The final two cases were
input by user A: He invoked one of his personal scripts without its required argument,
and he later invoked a compiler with incompatible arguments.

In summary, most of the 11 unrecognized errors described in Table 4.5 were missed
because VALET lacked knowledge about certain shell commands. In all but one case, the
user’s error might have been detected or even corrected had VALET contained detailed

knowledge of the invoked command.

4.2.2 Analysis of All Corrected Inputs
VALET offered corrections for 60 inputs during the user study, and these cases are
summarized in Table 4.6. As shown, VALET made corrections for 41 erroneous inputs,

including 24 mistyped command names and 1 incorrect command name. The difference
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Table 4.6. Categorization of Corrected Inputs

Corrected
Inputs

Category # %
Actually Erroneous Inputs

Mistyped command name 24

Incorrect command name 1

Mistyped command argument 15

Mislocated file 1

Subtotal 41 68.3
Actually Correct Inputs

Invocation of alias 14

Invocation of program in current directory | 3

Confusion about shell’s current directory 2

Subtotal 19 31.7
Total 60 100.0

between these classifications is that a mistyped command name is the result of an apparent
typographical error, whereas an incorrect command name is not. (In the single case of
an incorrect command name, VALET’s user entered “x -x” when his apparent intent
was actually “ps -x”.) VALET also recognized and corrected 15 typographical errors in
command arguments of various kinds and additionally corrected 1 incorrect reference to
a file. In that instance, VALET’s user entered “cd par” and VALET determined that
“cd ../par” was most likely what the user intended. It was disappointing to discover
that VALET corrected only 1 of the 9 mislocated file names that were entered during the
user testing experiment; although 7 of these errors were recognized, VALET was unable to
offer a reasonable correction for 6 of those errors. The apparent causes of these failures
are described later in Section 4.2.4.

In addition to correcting 41 erroneous inputs, VALET mistakenly identified 19 truly
correct commands as erroneous and offered corrections for them. As Table 4.6 shows,
however, most of these 19 false positives arose from users’ attempts to invoke their
command aliases. Alias names are often short and lexically similar to the names of
other commands. VALET, because it had no knowledge of its users’ aliases (as described

in Section 3.4.4), interpreted many alias names as input errors and therefore offered
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corrections for those commands. If it had been possible for VALET to determine its users’
alias definitions, most (probably all) of these inappropriate corrections would have been
eliminated.

Three more inappropriate corrections arose from users’ attempts to invoke programs
located in the shell’s current directory. It is common for users of the C shell to put
the directory “.” in the shell’s search path, which makes it possible for users to invoke
programs residing in the shell’s current directory simply by typing the names of those
programs as commands. However, the current directory of the shell changes over time,
and VALET scans the shell’s search path only once for each user for reasons previously
described in Section 3.4.4. Because of this limitation, VALET does not understand the
effect of placing “.” in the shell’s path and so does not understand the just-described
method of program invocation. Users were warned of this restriction and were told how
to work around it,! but established habits are difficult to change.

Finally, two inappropriate corrections were made because VALET’s Common Lisp
component had inaccurate data about the shell process’ current directory. In total, only a
very small number of truly correct inputs were misidentified as erroneous by the interface.
The 19 misidentified inputs listed in Table 4.6 amount to just 1.8% of the 1,046 correct

inputs that were recorded during the user testing experiment.

4.2.3 Analysis of All Rejected Inputs

Whenever VALET detected an error in an input command but could not offer any
reasonable correction for that error, VALET simply rejected the entire input command and
displayed an appropriate explanation of the problem to its user. During the user testing
experiment VALET rejected 72 inputs, and these inputs are categorized in Table 4.7. Of
the 72 rejected inputs, 28 (38.9%) were truly incorrect and 44 (61.1%) were truly correct
but misinterpreted by the interface.

Most of the 28 rejected erroneous inputs fall into the categories described previously:
mistyped command names and arguments, mislocated files, and arguments that do not
have any obvious interpretations or corrections within their required domains. Although
all of these errors were detected, none of them were corrected by the interface. In

some cases this was due to a lack of contextual information for example, each of

'"Within VALET, programs in the shell’s current directory can be invoked by prefixing the program
name with “./”. This is the syntax normally required by the C shell when “.” is not in the shell’s
command search path.



Table 4.7. Categorization of Rejected Inputs

Category

Rejected
Inputs
# %

Actually Erroneous Inputs
Mistyped command name
Mistyped command argument
Mislocated file
Argument not in required domains
Argument refers to wrong domain
Missing “required option”
Program not in search path
No match for glob
Whitespace error
Nonsensical input

Subtotal

Actually Correct Inputs
Invocation of alias
Invocation of undefined built-in command
Invocation of program in current directory
Use of command history (!)
Use of shell variable ($)
Use of pipeline (1)
Confusion about shell’s current directory
Bug in VALET’s expansion of globs
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the six file location errors was uncorrected because VALET’s file system knowledge base
had not yet scanned (or rescanned) certain portions of the actual file system, and the
correction heuristics were purposely prevented from updating VALET’s internal file system
model. (The file name correction heuristics are described in Section 3.4.5.3.) In other
circumstances, VALET was simply unable to locate an appropriate, sufficiently similar,
correct alternative for a mistyped term. Many of the uncorrected errors provide insight
into ways in which VALET’s correction heuristics could be improved, as described later in
Section 4.2.4.

In addition to the kinds of erroneous inputs just described, VALET rejected a handful of
inputs that were instances of other miscellaneous kinds of errors. For example, one VALET
user attempted to remove a directory with an rm command and apparently forgot that rm
will remove a directory only when it receives the “~R” option in addition to the directory
name. VALET told that user that he had forgotten to use the “~-R” option. VALET could
have offered the obvious correction in that instance, but the existing transition network
for rm (shown previously in Figure 3.7) was not designed to do so. Other instances of
errors that VALET was not designed to correct include these: one invocation of a program
not in the shell’s search path (and not explicitly described within VALET), two file name
patterns that did not match the names of any actual files, one case of conjoined terms
(in which the user typed “/etc/ping/asylum” instead of “/etc/ping asylum”), and five
inputs that were uninterpretable as shell commands. Two of the nonsensical inputs were
apparently intentionally typed random strings and the other three were actually lines of
hexadecimal output from the UNIX od program!

In addition to rejecting 28 erroneous inputs, VALET also rejected 44 well-formed shell
commands. As Table 4.7 shows, however, the great majority of these rejected but correct
inputs were misunderstood because they made use of language features not known to the
interface. Of the 44 correct but rejected inputs, 17 relied upon unimplemented syntactic
features — history references, shell variables, and command pipelines — and 20 were
attempts to invoke commands that were either unknown to the interface (e.g., aliases) or
located in the shell’s current directory. Due to an oversight, some of the C shell’s built-in
commands were not described to VALET, and this lack of knowledge caused 8 inputs that
should have been parsed to instead be rejected. Finally, 7 inputs were rejected due to
temporary problems within the interface. Confusion about the shell’s current directory

(as described in Section 4.2.1) caused three inappropriate rejections and a programming



132

error in VALET’s input tokenizer caused VALET to misinterpret four file name patterns
and subsequently reject the expanded commands.?

VALET rejected or corrected 63 truly correct shell commands during the user testing
experiment, and almost all of these cases arose from the intentionally chosen limitations
of VALET’s current implementation. Although these false positives amount to just 6.0% of
all the correct commands recorded during the study, at the conclusion of the experiment
many of VALET’s testers complained about the system’s inability to understand aliases
and the other syntactic shortcuts provided by the standard C shell. One user wrote:
“The usefulness of the [VALET] shell was a tradeoff between valid correction of errors and
frustration at not being allowed my favorite aliases. I had not realized how much I relied
upon previously defined aliases until this experiment.” Several other users expressed
similar sentiments (as noted in Section 4.2), so it is apparent that the limitations of
VALET’s current implementation can noticeably hinder experienced users of the C shell.
However, these shortcomings are the result of VALET’s experimental nature and design,
and in spite of its limitations VALET served its purpose and to a great extent met its
goal of providing an “intelligent” interface to the UNIX C shell. The data gathered from
the user testing study demonstrate that on the whole, VALET accurately distinguished
between correct and incorrect inputs and that VALET offered reasonable corrections for

its users’ most frequent input errors.

4.2.4 Analysis of All Erroneous Inputs

Table 4.8 shows that the errors made by VALET’s testers were largely those that
VALET was tailored to recognize and correct. Most of the recorded erroneous inputs
resulted from typographical slips, and by far, most of those slips were isolated “simple”
errors: the insertion, deletion, or substitution of a single character, or the transposition
of two adjacent characters within an input term. Only three unintentional typographical
errors demonstrated more serious mutations. (In one interesting case, one of VALET’s
users apparently misplaced his hand on the computer keyboard and typed “xs” when
he apparently meant to type “cd”. VALET suggested “ls” as a correction.) The fact

that most typographical errors were simple is consistent with the results of other studies

2The problem was that VALET's tokenizer included the names of VALET’s internal “imaginary” direc-
tory entries in the expansions of file name patterns! (Imaginary entries are described in Section 3.4.5.1.)
This problem was corrected immediately once it was discovered, shortly after the start of the user testing
experiment.



Table 4.8. Categorization of Erroneous Inputs by Type

All Unintent’ly
Erroneous | Erroneous
Inputs Inputs
Category # % | # %
Typographical Errors
Simple 38 20
Complex 15 3
Subtotal 53 66.25 | 23 50.0
File Mislocation
Extra directory components 1 1
Missing directory components 7 6
Wrong directory components 1 1
Subtotal 9 11.25 | 8 17.4
Incorrect Command Arguments
Argument not in required domains | 3 2
Argument refers to wrong domain 2 2
Wrong number of arguments 1 1
Incompatible arguments 1 1
Missing “required option” 1 1
Subtotal 8 10.00 | 7 15.2
Other Errors
Incorrect command name 1 1
Program not in search path 1 1
No match for glob 2 2
Whitespace error 1 1
Nonsensical input ) 3
Subtotal 10 1250 | 8 17.4
Total 80  100.00 | 46 100.0
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that characterize users’ typographical errors [5, 6, 11, 28]. In total, typographical errors
were by far the most common type of erroneous input recorded during the VALET study,
accounting for 66.25% of all errors and 50.0% of all unintentional errors. VALET was
tailored to correct these kinds of errors and actually did so, within the limits imposed by
its knowledge bases.

VALET was also intended to correct file location errors, and this type of error actually
arose with significant frequency during the study: 17.4% of all unintentional errors were
file location errors. In six of the nine recorded mislocations, VALET’s user omitted a single
directory component from the required file name, and in all but one of those inputs it was
the first component that was missing. (Often, the incorrectly referenced file was actually
either one level above or below the shell’s current directory in the file system hierarchy.)
In one case a user omitted two directory components and in the remaining mislocated
file names VALET’s user either inserted an extra component or specified an incorrect
component. Clearly, “spatial” context is important for correcting mislocated file names,
and VALET’s heuristics as described in Section 3.4.5.3 make use of that information.
(However, the restrictions placed upon these heuristics caused VALET not to correct
many file location errors, as explained below.) None of the recorded file location errors
were combined with typographical errors, although VALET was designed to handle such
situations.

The remaining types of error listed in Table 4.8 are types that VALET was designed
to detect but for which VALET has no specific correction procedures. VALET’s treatment
of these errors is therefore not surprising: Although more than three-quarters of these
remaining errors were recognized (as previously listed in Table 4.7) by the interface,
VALET did not offer a correction for any of these mistakes. Many of these errors defy
automatic correction because they provide no useful information about the user’s intent;
for example, when an entered command argument is completely unlike any acceptable
argument, VALET has no lexical context from which to make meaningful inferences. Some
of the recognized but uncorrected errors possibly could have been corrected if VALET had
contained special knowledge about its users’ tasks. (SAUCI, the shell interface described
in Section 2.4, incorporates this kind of knowledge for two very specific domains.) Other
recognized but uncorrected errors could have been processed had VALET contained a
wider array of correction heuristics. It would be interesting to add a special heuristic

for correcting whitespace errors, for instance, or one for correcting file name patterns.



135

Those kinds of special-purpose correction procedures, however, would be in general less
useful that the procedures that VALET already contains, which enabled VALET to make
reasonable corrections for most of the input errors recorded during the experiment.

Table 4.9 summarizes VALET’s performance in detecting and correcting errors. VALET
offered a correction for 51.25% of all the erroneous inputs that were recorded, and in about
two-thirds of those cases VALET’s correction was accepted verbatim by VALET’s user. In
other words, in most of the cases in which VALET offered a correction for an erroneous
input, the user’s next command was ezactly the command that VALET had just suggested.
This is true even when only the set of unintentionally erroneous inputs is considered.
(In that smaller domain, however, VALET offered corrections for a somewhat smaller
percentage  39.1% of users’ errors.) It appears, therefore, that VALET’s corrections
were frequently appropriate and useful. Most of VALET’s users agreed. At the end of the
experiment, most indicated that VALET could often but not always detect and correct
their most common mistakes. One user wrote: “[The| mistakes I made (usually simple
typo errors in command names) were speedily picked up by VALET.... My typos were
those (for the most part, say 90% of the time) which VALET could correct.”

Although VALET apparently often discerned its users’ intentions, not all of VALET’s
suggested corrections were confirmed by users. In a few cases VALET’s user changed
the suggested command name or arguments to lexically similar alternatives or added
additional arguments to the corrected command. In other cases, VALET’s user discarded
the interface’s suggestions entirely and entered a completely new command, apparently
because the user had changed his or her mind about what command to enter next. Many
of the cases in which a user appeared to change his or her mind, however, were actually
due to intentional experimentation upon the interface. A few people tested VALET by
purposely entering a variety of incorrect commands in order to discover the capabilities
of the system. In only two cases did VALET’s correction of an unintentional error cause
a user to completely change course.

About half of all erroneous inputs were corrected, which unfortunately means that
about half were not. Out of 80 erroneous inputs, 28 were simply rejected (with explana-
tion, but without correction) and 11 were mistakenly accepted as correct by the interface.
The reasons for which VALET failed to correct these inputs are listed in Table 4.10. In
general, whenever VALET rejected an erroneous input (i.e., correctly detected an input

error but failed to offer any correction for that error), the failure was due to one of



Table 4.9. Categorization of Erroneous Inputs by Outcome

All Unintent’ly
Erroneous | Erroneous
Inputs Inputs
Category # % | # %
Correction Offered to User, and
User Accepted Correction Verbatim
VALET corrected command name 17 7
VALET corrected command arguments 8 5
Subtotal 25 31.25 | 12 26.1
Correction Offered to User, but User
Did Not Accept Correction Verbatim
User changed command name 2 2
User changed command arguments 3 2
User changed his or her mind 11 2
Subtotal 16 20.00 | 6 13.0
Error Recognized, but No Correction
Offered to User
VALET rejected erroneous command 28 21
Subtotal 28 35.00 | 21 45.7
Error Not Recognized
VALET accepted erroneous command 11 7
Subtotal 11 13.75 | 7 15.2
Total 80  100.00 | 46 100.0
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Table 4.10. Categorization of Uncorrected Erroneous Inputs

Category

All

Erroneous

#

Inputs
%

Unintent’ly
Erroneous

#

Inputs

%

Error Recognized, but No Correction
Offered to User
Uncorrected due to lack of context:
Mistyped name of known command
Mistyped name of unknown command
Mislocated file

No lexically similar alternative found for:

Mistyped name of known command
Mistyped command argument
Incorrect (not mistyped) argument

Program not in search path

Argument referred to wrong kind of file

Missing “required option”

No match for glob

Whitespace error

Nonsensical input

o W

Subtotal

Error Not Recognized, so Erroneous
Input Accepted
Lack of knowledge about command
Confusion about shell’s current directory
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two situations: Either VALET lacked the contextual information that would have allowed
the interface to make a correction, or VALET had the necessary context but its spelling
correction heuristics were simply unable to find a sufficiently lexically similar alternative
to the mistyped term. Just as missing knowledge sometimes prevented a correction, it
sometimes caused VALET to accept erroneous inputs. The bottom portion of Table 4.10
shows that in all but one case, each time VALET missed an actual input error, the reason
was that VALET lacked knowledge about the command being invoked.

Lack of knowledge accounts for about half of all the cases in which VALET failed to
correct an error. (This is true even when only unintentional errors are considered.) Ten
of the 11 unrecognized input errors were missed because those inputs referred to generic
commands, commands for which VALET had no knowledge of the required command
line syntax and arguments. In five of those cases (listed previously in Table 4.5) a
typographical error in a command name transformed the intended name into the name of
another command. In each case, however, the error transformed the intended command
name into the name of a generic command, so VALET was unable to use knowledge about
the entered command line arguments in order to detect the user’s input error. In the five
other cases, errors within the arguments given to generic commands went unnoticed due
to the corresponding gaps in VALET’s knowledge. Finally, inaccurate information about
the shell’s true current directory prevented the interface from recognizing one mislocated
file name.

The other cases in which a lack of knowledge prevented VALET from issuing a correction
are listed under the “Uncorrected due to lack of context” heading in Table 4.10. One user
intentionally mistyped the name of a known (but generic) command. VALET failed to
offer the obvious correction because that generic command had never before been invoked
by that user, and VALET’s command corrector does not consider the name of a generic
command to be a candidate correction until that command has been invoked at least
once. In three other cases users mistyped the names of aliases or undefined built-in shell
commands and VALET failed to determine the appropriate corrections because it had no
knowledge of the users’ intended commands. Finally, in six cases, VALET’s file name
correction procedures failed because VALET’s file system knowledge base did not contain
up-to-date data about certain parts of the actual file system.

The failures of the file name correction procedures arose primarily because VALET

constrained those procedures and prevented them from updating VALET’s internal file
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system model in certain situations. These constraints were implemented in order to
increase the speed of the corrector (as described in Section 3.4.5.3), but in retrospect it is
clear that the restrictions were too severe and too greatly diminished VALET’s ability to
correct mislocated file names. For example, one of VALET’s users entered the command
“uncompress Intro.ps.Z” when in fact the file “Intro.ps.Z” had just been created
within the directory atrium, a child of the shell’s current directory. Although VALET
recognized that the entered file name was not valid, the interface was unable to make
the appropriate correction for the following reasons. VALET’s knowledge of the atrium
directory was out of date; the modeled contents of that directory had not been updated
to include the just-created “Intro.ps.Z” file. When VALET’s parser discovered that
the input file name was invalid, it invoked the procedure described in Section 3.4.5.3 to
search the “neighborhood” of the shell’s current directory for a file of the given name.
Unfortunately, that search was restricted: It was not allowed to rescan the contents of any
of the children of the shell’s current directory. (Because the number of children can be very
large, rescanning all of the children of a directory can be very time consuming.) Although
VALET could have discovered the “Intro.ps.Z” file by updating its model of the atrium
directory, the corrector was barred from doing so, and the result was that VALET failed
to offer the appropriate correction to its user. This same restriction prevented VALET
from updating its file system model in other cases as well, each time preventing VALET
from acquiring the context needed in order for it to make an appropriate correction.
The data gathered from the user testing experiment show that the effectiveness of
VALET’s input correction heuristics could be increased by improving VALET’s knowledge.
VALET would benefit from new, fixed kinds of knowledge (e.g., descriptions of additional
commands), and it would also benefit from fine-tuning of its ability to keep its existing
knowledge up to date. The interface would also profit from improved spelling correction
algorithms. As shown in Table 4.10, in a small but significant number of situations
VALET had all the context it required but was still unable to discover an appropriate,
sufficiently similar alternative for a mistyped term. For example, VALET failed to suggest
“whoami” for the intentionally mistyped input “whoajsi” although the two terms are
quite similar. In another instance, VALET failed to suggest “Intro.ps” as a correction
for the unintentionally erroneous file name “Intro.ps.Z”. (The “Intro.ps.Z” file was
mentioned in the previous paragraph. That file was decompressed to create “Intro.ps”

and the original “Intro.ps.Z” file was deleted. After those changes had occurred,
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however, VALET’s user entered the original “Intro.ps.Z” file name in a subsequent
command.) In each of these cases VALET refused to offer the appropriate correction
because the similarity of the input to the correct term (as measured by the functions
lexicon-spell and lexicon-guess described in Section 3.4.3) fell below an arbitrary
predetermined threshold. The examples just described from the user testing experiment
suggest that VALET’s spelling correction heuristics and thresholds could be modified in
order to better handle certain kinds of errors. Combined with additional knowledge and
improved knowledge maintenance, such changes could have allowed VALET to correct,
rather than simply detect, a significant number of the errors recorded during the user
testing experiment.

The preceding paragraphs describe how VALET detected and “came close” to correcting
certain errors. Although it is important to understand how VALET could be improved, it
is also important to realize that the data from the user testing experiment demonstrate
that VALET is already a reasonably “intelligent” interface to the UNIX C shell. Despite
its various limitations, VALET accurately distinguished most correct and incorrect inputs
during the user testing experiment. Experienced users of the C shell appear to make
input mistakes with significant frequency, and the kinds of mistakes that such people
make most often are those that VALET was designed to detect and correct. For about
half of all the recorded erroneous inputs VALET offered a reasonable correction to its
user, and as summarized in Table 4.11 most of these corrections were accepted verbatim
and immediately reinput to the interface. Roughly two-thirds of VALET’s corrections to
erroneous inputs were accepted verbatim, which demonstrates that to a very significant
degree, VALET was actually useful to its users. VALET was able to knowledgeably infer
its users’ intentions in order to correct many of their input errors, thereby providing a

user-supportive and “intelligent” interface to the C shell.

Table 4.11. Categorization of Corrected Erroneous Inputs

All Unintent’ly
Erroneous | Erroneous

Inputs Inputs
Category # % | # %
VALET’s correction was accepted verbatim 25 61.0 | 12 66.7
VALET’s correction was not accepted verbatim | 16 39.0 | 6 33.3
Total 41 100.0 | 18 100.0




CHAPTER 5

CONCLUSION

The results of the experiment described in Chapter 4 show that VALET has both
important strengths and weaknesses. VALET proved that through knowledge and context
it could accurately detect most of the errors in its users’ commands. The errors made
most often by experienced users of the C shell appear to be those that VALET was designed
to recognize and correct, and furthermore, when VALET offered corrections for erroneous
commands, VALET’s users most often accepted the suggestions offered by the interface.
These results suggest that in general, a command line interface that uses knowledge in
order to flexibly interpret its users’ commands can also accurately detect and correct
input errors. Such “intelligent” human-computer interfaces can be more cooperative and
more user-friendly than their “unintelligent” counterparts.

The user testing experiment also highlighted some of VALET’s shortcomings. Just as
VALET’s strengths derive from its incorporated knowledge, most of VALET’s weaknesses
derive from certain gaps in its knowledge. VALET refused to accept a significant number
of well-formed shell inputs because it did not understand such things as user-defined
aliases and references to the C shell’s built-in command history. In addition, a significant
number of actual errors were undetected because VALET had no detailed knowledge of
certain commands. Finally, in some cases, VALET’s out-of-date knowledge prevented it
from making what should have been obvious and easy to determine corrections.

The most obvious way in which VALET could be improved, therefore, would be to
increase the amount of knowledge within the system and also the accuracy of that
knowledge. The most troublesome informational gaps in VALET were caused by the
separation between the intelligent command parser (currently implemented in Common
Lisp) and the actual C shell program. A result of VALET’s prototypical design, this
separation kept VALET from consulting information that was internal to the shell process,
and subsequently, this lack of knowledge made it practically impossible for VALET to

parse such things as aliases and shell variable references. Removing the division between
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VALET’s intelligent Common Lisp components and the actual shell would remove these
barriers to knowledge. It would be possible and very useful, for example, to reimplement
VALET’s Common Lisp components in the C programming language and then integrate
those components directly with the csh (or tcsh [27] or even zsh [7]) program. This
integration would provide the intelligent command parser with access to the shell’s
internal data and would eliminate all of the problems that caused the current VALET
implementation to mistakenly reject or correct truly well-formed commands. Integration
and reimplementation in C would also greatly increase the speed of the system.

Even if it were integrated with the actual shell program, VALET would still need to
contain its own descriptions of the other UNIX programs that are available. VALET’s
shell command knowledge base describes in detail only a small fraction of the hundreds
of programs actually available to VALET’s users, and during the user testing experiment a
number of input errors were unrecognized simply because VALET had no special knowledge
of the programs being invoked. VALET therefore would be improved if it contained
detailed descriptions for a much wider assortment of programs. It would be interesting
for VALET to attempt to “learn” about programs for which it has no explicit knowledge.
Ideally, however, an intelligent UNIX shell would be able to determine the command line
syntax and arguments required by a program by consulting the program itself. That
approach would eliminate the need for the shell to have its own built-in (and therefore,
possibly inaccurate) data about other programs’ expected arguments. Unfortunately,
there is currently no standard way for UNIX programs to communicate their command
line requirements to the shell — and even if such a mechanism were invented, hundreds
of existing UNIX programs would need to be changed in order to adopt the convention.
Despite these barriers, however, it would be very interesting to research ways in which
individual programs could communicate with command shells in order to make computer
systems more user-friendly.

In addition to new command descriptions, VALET could also benefit from completely
new kinds of knowledge. For example, one could incorporate user models into VALET.
User models like those contained in SUSI [16] (described in Section 2.5) could describe
which UNIX concepts are understood and which are not. It would perhaps be useful
for VALET to understand English synonyms for certain UNIX commands; this ability
might benefit inexperienced users and could even allow VALET to be used as a kind of

UNIX training tool. It would also be interesting to explore how task-specific knowledge
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like that built into SAUCI [35] could be added to VALET. The kinds of information
contained in SAUCI and SUSI would need to be expanded in order to be most useful in a
general-purpose command shell such as VALET. Balancing these new kinds of knowledge
with VALET’s existing knowledge and input correction heuristics would be challenging.

VALET’s input correction procedures could also be improved. As described in Sec-
tion 4.2.4, in a small number of cases VALET had all the information it required but
was nonetheless unable to find a sufficiently similar correction for an invalid input term.
VALET’s spelling corrector could be changed in order to handle some of those recorded
inputs. It would also be possible to modify the spelling corrector to consult “character
confusion matrices” or other data [11, 18] in order to rank candidate corrections according
to the likelihoods of various keyboarding errors. VALET’s input correction facilities could
be improved in other ways as well. As explained in Section 4.2.4, the restrictions upon the
file name correction heuristics need to be reduced and the various command definitions
need to be improved in order to allow VALET to offer corrections for more classes of
error. Most likely, this would involve defining some new parser actions in order to insert,
delete, or rearrange input tokens. It would also be useful for the parser and its actions to
evaluate the natures of input errors and their likely corrections in greater detail. VALET
could then in some cases submit corrected inputs for execution without the need for
confirmation by VALET’s user. The need for confirmation would be determined by the
seriousness of the located error, the likelihood that VALET’s inferred correction is truly
the proper correction, and the risk involved in submitting the corrected command without
confirmation from the user. The parser and its actions would need to be changed in order
to compute heuristic measures for each of these attributes.

Other changes could be made to the parser as well. The current parsing scheme has
the disadvantage that ordinarily, once an erroneous token is found, the remainder of the
input is ignored. (Input commands are generally parsed from left to right.) Unfortunately,
the remainder of the command can often provide valuable information about the user’s
intent. VALET’s current parser actions, therefore, sometimes delay the reporting of errors
— in other words, upon recognizing an error they sometimes pretend that no error was
found so that the remainder of the command may be parsed. Later, after all of the input
has been processed, a special parser action determines if a previously unreported error
should be signaled. By delaying parsing failures until the entire input command has been

parsed, VALET can sometimes produce more accurate explanations of parsing failures.
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(The generation of error messages is described in Section 3.4.2.3.) However, the need
to employ tricks such as this indicates that a better parsing scheme could be devised.
It would be interesting to explore other techniques (e.g., “best-first” ATN parsing) for
analyzing VALET’s inputs.

VALET’s purpose was to demonstrate the effectiveness of knowledge-based “intelligent”
interfaces, so it was designed to change only the way in which shell commands were parsed.
Notably, VALET did not make any significant changes to the way in which information was
presented to the shell’s users. It is clear from the results of other studies [10, 12, 26, 35],
however, that the C shell’s user interface could be greatly improved through such changes.
For instance, it would be very useful for the shell to display several separate windows of
information. One window could contain the normal terminal-like session transcript and
additional windows could provide contextual information such as the contents of the shell’s
current directory or the list of the user’s most recently or frequently entered commands.
VALET’s existing GNU Emacs interface could be readily adapted in order to explore these
new interface styles.

Finally, no matter what changes or improvements are made to VALET in the future,
continued testing of the interface is a necessity. Only through actual use can the effective-
ness of a human-computer interface be measured. The results of behavioral experiments
can illustrate both the shortcomings of today’s computer interfaces and the most effective
methods for overcoming those problems in future systems.

Many of today’s human-computer interfaces are difficult for people to use. In order to
correct this situation, interfaces of the future will need to make significant efforts to meet
the needs of their users. A large part of that task will be simply to understand users’
intentions. VALET demonstrates that it is both feasible and profitable for command line
interfaces to be “cooperative” and “intelligent” and tolerant of human error. The ideas
embodied by VALET are valuable and worthy of incorporation into other human-computer
interfaces because ultimately, intelligence is the quality that will characterize the most

user-friendly and popular computer systems of tomorrow.
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