4

Profile Scheduling by List
Algorithms

Zhen LIU, INRIA, Centre Sophia Antipolis Eric SANLAVILLE,
Université Pierre et Marie Curie

Abstract: The notion of profile scheduling was first introduced by Ullman in 1975
in the complexity analysis of deterministic scheduling algorithms. In such a model, the
number of processors available to a set of tasks may vary in time. Since the last decade,
this model has been used to deal with systems subject to processor failures, multipro-
grammed systems, or dynamically reconfigured systems. The aim of this paper is to
overview optimal polynomial solutions for scheduling a set of partially ordered tasks in
these systems. Particular attentions are given to a class of algorithms referred to as list
scheduling algorithms. The objective of the scheduling problem is to minimize either
the maximum lateness or the makespan. Results on preemptive and nonpreemptive
deterministic scheduling, and on preemptive stochastic scheduling, are presented.

Keywords: Deterministic Scheduling, Stochastic Scheduling, Profile Scheduling,
List Schedule, Priority Schedule, Precedence Constraints, Lateness, Makespan.

4.1 Introduction

Consider the problem of scheduling a set of partially ordered tasks represented by a
directed acyclic graph, referred to as task graph, where vertices represent tasks and arcs
represent precedence relations. Tasks are executed, subject to precedence constraints,
on a set of parallel identical processors. The number of available processors, referred to
as profile, may vary in time. Task and processor assignments must be nonredundant,

Scheduling Theory and Its Applications. P. Chretienne, E. G. Coffman, J. K. Lenstra, Z. Liu (Eds.)
©1994 John Wiley & Sons Ltd

7. Tiu and E. Sanlaville

i.e., at any time, a task can be assigned to at most one processor, and a processor can
execute at most one task. Each task has a due date. The objective is to minimize the
maximum lateness or, when due dates are not taken into consideration, the makespan.

The notion of profile scheduling was first introduced by Ullman [31] and later used
by Garey et al. [15] in the complexity analysis of deterministic scheduling algorithms.
In this paper we use the notion of profile to deal with systems subject to processor fail-
ures, multiprogrammed systems, or dynamically reconfigured systems. In such cases,
the number of processors available to a set of tasks may vary in time.

The problem of minimizing the maximum lateness and the makespan is in general
NP-hard. We are interested in simple on-line or nearly on-line algorithms which yield
optimal solutions under specific assumptions. Results on three problems will be pre-
sented here, with each result accounting for different task characteristics. The reader
is referred to the survey paper by Lawler et al. [20] for results on optimal scheduling
under a constant profile, i.e., when the number of available processors is constant. The
first results on optimal polynomial solutions for profile scheduling problems are due
to Dolev and Warmuth [9, 10, 11].

The paper is organized as follows. Section 2 is devoted to notation. Section 3 deals
with scheduling of nonpreemptive Unit Execution Time (UET) tasks; optimality re-
sults concerning list schedules on a variable profile are surveyed. Section 4 is concerned
with scheduling of preemptive Real Execution Time (RET) tasks. We exhibit a tight
relation between optimal list schedules and optimal priority schedules, which are coun-
terparts of list schedules for preemptive scheduling. Section 5 focuses on tasks whose
running times are independent and identically distributed random variables with a
common exponential distribution. We prove the optimality of some list policies which
stochastically minimize the makespan in several subproblems.

4.2 Notation

A task graph G = (V, E) is a directed acyclic graph, where V.= {1,2,...,|V|} is the
set of vertices representing the tasks, £ C V x V is the set of arcs representing the
precedence constraints: (i,j) € E if and only if task ¢ must be completed before task
j can start. Denote by p; and d; the respective processing time and due date of task
1€V,

Let p(i) and s(i) be the respective sets of immediate predecessors and successors of
1€V, ie.,

p)={j: (5,0) € B}, s(t) ={j: (i,)) € E}.

Let S(i) be the set of (not necessarily immediate) successors of i € V', i.e.,

Vi: if s(i)=0 then S(i)=0 else S(i)=s()J| |J SU)

J€s(7)

A task without a predecessor (successor) is called an initial (final) task. Denote by I
the level of i, i.e., the number of arcs in a longest path from task ¢ to some final task.
Denote by h; the height of 7, i.e., the sum of the processing times of the tasks in a
longest path from task ¢ to some final task, with final vertex included.

19/2/1994 17:41

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

19/2/1994 17:41

PROFILE SCHEDULING BY LIST ALGORITHMS 3

In the sequel, we will consider different classes of precedence graphs. The three most
interesting classes are the following;:

interval order G € G;,: Each vertex i corresponds to an interval b; of the real line
such that (i,j) € E if and only if z € b; and y € b; imply © < y. These graphs have
the following characteristic property:

Vi,j €V, either S(i) C S(j), or S(j) C S(4).

in-forest G € G,;s: Each vertex has at most one immediate successor: |s(i)] < 1,
i€ V. A vertex i € V is called a leaf of in-forest G if p(i) = 0. A vertex i € V is
called a root of in-forest G if s(i) = 0.

out-forest G € G,s: Each vertex has at most one immediate predecessor: |p(i)] < 1,
i € V. A vertexi € V is called a leaf of out-forest G if s(i) = . A vertex i € V is
called a root of out-forest G if p(i) = 0.

There are K > 1 parallel and identical processors. The set of processors available to
tasks varies in time, due to, e.g., failures of the processors or the execution of higher-
priority tasks. The availability of the processors is referred to as the profile, and is
specified by the sequence M = {a,,m,}>>,, where 0 = a1 < a2, < ... < @, < ...
are the time epochs when the profile is changed, and m,, n > 1, is the number of
processors available during time interval [a,, a,41). Without loss of generality, we
assume that m,, > 1 for all n > 1 . We will assume that the profile is not changed
infinitely often during any finite time interval: for all # € IRT, there is some finite
n > 1 such that a,, > x.

The following three classes of profiles will often be referred to in the paper.

zigzag profiles M € M.: the number of available processors is either K or K — 1.

increasing zigzag profiles M € M,,: the number of available processors can de-
crease by at most one at any time. Between successive decrements, there must be
at least one increase. That is, Vj and Vn > j, m, > m; — 1.

decreasing zigzag profiles M € M,,: a symmetrical definition applies; that is, Vj
and Vn > 3, m, <mj; + 1. Such a profile is illustrated in Figure 4.1.

R N W s~ O
I
I

S

! 1 1 1
1
| : 1 1 1
— Y = - — Ih— = — 1 T ——
H 1 1 1
1 1 1 1
i

a & & 3 & aaa & t

Figure 4.1 Decreasing zigzag profile

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

19/2/1994 17:41

4 7. Tiu and E. Sanlaville

A scheduling algorithm (or policy) decides when an enabled task, i.e. an unassigned,
unfinished task all of whose predecessors have finished, should be assigned to one of the
available processors. A schedule is feasible if assignments are nonredundant and the
constraints relative to the precedence relation and to the variable profile are respected.
Scheduling can be either preemptive, i.e., the execution of a task can be stopped and
later resumed on any processor without penalty, or nonpreemptive: once begun, the
execution of a task continues on the same processor until its completion.

Let S be an arbitrary feasible schedule of task graph G under profile M. Let
Ci(S) be the completion time of task i under S. The lateness of task i is de-
fined as L;(S) = C;(S) — d;. The maximum lateness of schedule S is denoted by
LS(G, M) = maX;cy LZ(S)

When all due dates are set to zero, the maximum lateness becomes the makespan.
Denote by Cs(G, M) = max;cy C;(S) the makespan of (G, M) obtained by schedule
S.

We extend the classical notation scheme of Graham et al. [17] for scheduling prob-
lems to the case of variable profiles. We use P(t) (resp. Q(t), R(t)) to denote machine
environment with identical (resp. uniform, unrelated) parallel processors whose num-
ber varies in time. For example, P(t) | p; = 1, prec | Chyax denotes the nonpreemptive
scheduling for makespan minimization of UET tasks subject to precedence constraints
on identical parallel processors with variable profile.

4.3 Nonpreemptive Profile Scheduling of UET Tasks

In the framework of nonpreemptive profile scheduling, we will consider UET tasks
and integer profiles (those in which profiles change only at integer time epochs).
The problems under consideration can be denoted by P(t) | p; = 1,prec | Cimax Or
P(t) | pi = 1,prec | Limax-

List algorithms are often used in nonpreemptive scheduling. These algorithms put
the enabled tasks in an ordered list. Each time a processor becomes available, the
task at the head of the list is assigned to that processor. The list can be dynamically
updated. The Highest Level First (HLF) and the Earliest Due Date (EDD) algorithms
are well known examples. The reader is referred to [6] for properties of list algorithms.

4.3.1 Complexity Issues

In [31], Ullman exhibited a polynomial reduction from 3-SAT to P(t) | pi =
1,prec | Cmax, and then showed that P | p; = 1,prec | Cmax had the same com-
plexity (It suffices to “fill” the unavailable processors with dummy tasks). This is
immediately generalized to the lateness minimization L ..

Garey et al. [15] also used profile scheduling for the study of opposing forests (union
of in-forest and out-forest). They proved NP-completeness for P(t) decreasing | p; =
1,intree | Cmax (the decreasing profile refers to the case where the number
of available processors is decreasing in time), and consequently for P | p, =
1,0pposing forest | Chpax. For such precedence graphs, however, polynomial algo-
rithms have been found for bounded profiles, i.e., K is fixed (see discussions below).

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 5

4.3.2 Minimization of the Makespan by List Scheduling

Consider first the minimization of the makespan. We focus on the Highest Level First
(HLF) algorithm: tasks are ordered by decreasing level. Note that HLF schedules differ
only in the way ties are broken.

Forests. When the task graph is a forest, Hu [18] proved that HLF yields an optimal
schedule when the task graph is an in-forest and the profile is constant. Bruno [2]
extended this result to out-forests.

For variable profile, Dolev and Warmuth [9, 10, 11] showed that HLF remains
optimal in some special cases of profiles. For that, they first showed the so-called elite
theorem. Define the height of a connected component of G to be the highest level of its
vertices. Let the components be ordered by decreasing height, and h(k) be the height
of the k-th component. Suppose profile M is bounded by K. The median of (G, M) is
defined as p = h(K') + 1. Consider

e H(G): set of components of G whose heights are strictly greater than p (High Part);
e E(G): set of initial tasks of H(G) whose levels are strictly greater than u (Elite);
e L(G): graph obtained from G by removing the components of H(G) (Low Part).

When the graph contains less than K components, the median has value 0 and G =
H(G). These definitions are illustrated in Figure 4.2 where K = 3.

@)

O O

H(G) L(G)

Figure 4.2 FElite of a task graph

We now state the elite theorem of [10]:

19/2/1994 17:41

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

19/2/1994 17:41

6 7. Liu and E. Sanlaville

Theorem 4.3.1 Consider a task graph G and an integer profile M.

1. If |[E(G)| > mq, then there is an optimal schedule such that my tasks of E(G) are
executed during the first time unit.
2. If |[E(G)| < my, then for each set E of my tasks of mazimum levels, there exists an

optimal schedule executing the tasks of E during the first time unit.
3. If E(G) = 0, then any HLF schedule is optimal.

As a consequence, we obtain
Corollary 4.3.1 HLF minimizes the makespan

e when the task graph is an out-forest and the profile is decreasing zigzag;
e or when the task graph is an in-forest and the profile is increasing zigzag.

In the first case, the elite contains less than K tasks, and m; > K — 1. Part 2
of elite theorem states that there exists an optimal schedule that coincides with any
H LF schedule during the first time unit. The same reasoning is used during each time
unit until the graph is empty. To prove the second case, it suffices to reverse the graph
and the profile.

For bounded profiles, Dolev and Warmuth [11] provided a backward dynamic pro-
gramming method whose time complexity is O(n ! -logn) for scheduling an in-tree
of size n on an arbitrary profile bounded by K. This was based on two observations.
First, if an optimal schedule is known for H(G), then according to the merge theo-
rem of [9], an optimal schedule for G may be obtained in linear time with respect
to |L(G)|. Second, If we consider all subgraphs of some in-forest with at most K — 1
components, which could be obtained during the execution under any schedule, these
subgraphs may be partitioned into at most n”* ~! equivalence classes. Here, two graphs
G = (V,E) and G' = (V', E') are equivalent if there is a bijection ¢ between V and V'
such that the set of successors of vertex ¢(v) is {¢(v1),...,¢(v;)}, where {vy,... v}
is the set of successors of v. The dynamic programming method decides whether a
schedule of duration D exists, building schedules backward from D-th time unit. The
logn factor comes from a bisection search to get the right value for D.

This method is then applied to out-forests under bounded profiles by reversing
the directions of the precedence constraints and the profile. Further, such a dynamic
programming algorithm is used to solve the scheduling problem of opposing forests as
mentioned in Section 4.3.1.

In the special case of chains, i.e. G.p, def Gir N Gof, Liu and Sanlaville [21] showed

Theorem 4.3.2 If G is a union of chains and M an arbitrary integer profile, then
any HLF minimizes the makespan.

This was proved by an interchange argument, i.e., from an optimal non-HLF sched-
ule, one can interchange the assignment decisions for two subchains so that the number
of non-HLF decisions is decreased by at least one. Iterating this procedure for at most
n? times yields an optimal HLF schedule. Note that all HLF schedules have the same
makespan in that case.

Interval order graphs. Papadimitriou and Yannakakis [27] have shown that task
graphs with interval order structure have the following property: for any two ver-
tices in the graph, their sets of (all) successors are comparable by inclusion relation:

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 7

one set is included into the other. This property is essential in establishing the opti-
mality of Most Successors First (MSF) schedules (forming a subset of HLF schedules)
which respect the order of inclusion of the sets of successors. This result was obtained
by Papadimitriou and Yannakakis [27] for constant profile and extended to variable
profile in Sanlaville [29].

Theorem 4.3.3 If G is a task graph with an interval order structure and M an
arbitrary integer profile, then any MSF schedule minimizes the makespan.

This result can again be proved using an interchange argument. Consider an optimal
non-MSF schedule p for graph G. Let 7 be the first time when p schedules some vertex
v instead of vertex wu if MSF rule is applied. Note that by definition, all the predecessors
of u and v have finished execution by time 7. Let m be the schedule obtained from
p by interchanging the execution times for u and v. Since G has an interval order
structure, S(v) C S(u), it is easy to see that 7 satisfies the precedence constraints
of G. Moreover, the number of non-MSF decisions in 7 is decreased by one. Iterating
this procedure for at most n? times yields an optimal MSF schedule.

Arbitrary graphs with profiles bounded by 2. Coffman and Graham [7] proved that a
subset of HLF schedules, referred to as Lexicographic Order Schedules (LOS) in this
paper, minimizes the makespan when the profile is constant and equal to two. LOS is
based on a static list of tasks defined by the lexicographic order as follows. Let there
be f final tasks. Assign labels 1, -, f to these final tasks in an arbitrary way. Suppose
now that k& > f tasks have already been labeled by 1,2,...k. Consider all the tasks
whose successors are all labeled. Assign label k+1 to the task such that the decreasing
sequence of the labels of its immediate successors is lexicographically minimal (ties are
broken arbitrarily). Coffman and Graham [7] showed that LOS schedules minimize
the makespan of an arbitrary graph in a 2-processor system. The main idea of their
proof is to cut the Gantt chart of the LOS schedule into several segments such that
each segment is composed of two sets of tasks E; and F;, where F; is a singleton, and
that all tasks of E; are predecessors of F;;1. The optimality of LOS is extended in
Sanlaville [29] to variable profiles with at most 2 processors by a minor modification of
the proof of [7], which consists in assigning fictitious tasks to unavailable processors.

Theorem 4.3.4 Any LOS schedule is optimal for makespan minimization of any task
graph G under any profile M bounded by 2.

Summary and discussion on makespan minimization. These results are summarized
in Figure 4.3, where “constant” and “arbitrary” stand for constant and arbitrary pro-
files. A gray area means that this particular subproblem is NP-hard for arbitrary K.
Since constant profiles are special cases of (increasing and decreasing) zigzag pro-
files which are in turn special cases of arbitrary profiles, the implication relation for
subproblems is clear.

Note that when the number of processors K is fixed, the complexity remains an
open problem, except for the case K = 2 for which LOS algorithm of Coffman and
Graham [7] provides optimal schedules. However, for any fixed K > 3, the scheduling
problem is still of unknown complexity despite extensive research.

Bartush et al [1] presented an interesting work on this problem, viz. scheduling

19/2/1994 17:41

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

19/2/1994 17:41

8 7. Liu and E. Sanlaville

I I I I
profiles | | | |
K<=2 lcons— |zigzag| zigzag| arbi-
tant trary
graphs | Ty
I I I I
chain HLF| """"" [[[>
— — — &+ — _|__|_ S
out-tree HLF| -------- >‘ | HLF|
e e —l_ T
in-tree HLF| ---------- [=] |
1 0 1T T
interval order | MSF -+ [[[>
T T I]
arbitrary LOSI | | |

Figure 4.3 Results on nonpreemptive profile scheduling of UET tasks (Ciax)

with fixed number of processors. The authors provided a general 2-phase solution
scheme. In the first phase, they tried to generalize the consistency notion of [4, 14].
They compute a so-called “test choice” for the problem instance under consideration.
This is derived from bounds on the execution periods of some special tasks. In the
second phase, they construct an optimal schedule in O(n”) time. This is based on
sophisticated dominancy criteria and on the study of special partially ordered sets. The
time complexity of the first phase is simple for the 2-processor case, and is polynomial
for all known polynomial cases (trees, interval-order graphs, etc...). However, its
complexity remains unknown in the general case. It seems that no further research
results concerning this approach have been reported since 1989.

4.3.3 Minimization of the Maximum Lateness by List Scheduling

Consider now the minimization of the maximum lateness. We analyze the Earliest Due
Date (EDD) algorithm. The optimality of the EDD schedules will rely on a two-step
method:

1. modify the due dates so that they satisfy some consistency relation,
2. apply EDD to the modified due dates.

Roughly speaking, the consistency between due dates requires that whenever the
due date of a task is met in some schedule, the due dates of its successors can be met
too, provided there are enough processors. Such a consistency relation is not verified
if, for instance, the due date of some of its predecessors.

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 9

Initially, for any constant profile, Brucker, Garey and Johnson [4] proved that if G
is an in-forest, EDD yields optimal schedules provided the modified due dates d are
defined as follows:

. ds, s(1) = 0;

where, by a harmless abuse of notation, s(i) denotes the unique successor of task i.
Note that such a modification has the purpose of obtaining consistent due dates. It is
shown by Liu and Sanlaville [21] that the optimality of EDD still holds for increasing
zigzag profiles:

Theorem 4.3.5 For any in-forest G € G,y and any increasing zigzag profile M €
M., EDD schedule defined on modified due dates minimizes the maximum lateness.

The proof proceeds by first establishing that EDD defined on the modified due dates
meets all the original due dates if and only if such a feasible schedule exists, and then
by using a standard argument to show the optimality of EDD schedules.

In a slightly more complicated way, Garey and Johnson [13, 14] showed the existence
of modification schemes for the due dates, such that EDD applied to these due dates
yields optimal schedules on two processors, even when release dates are associated with
the tasks. In the latter case, the algorithm is not on-line. These results can be extended
to variable profiles (see [29]). However, even without release dates, the algorithms are
then off-line because the computation of the modified due dates depends not only on
the release dates but also on the profile.

For profile of width K > 3 and general task graphs, there is no simple way to design
some modification scheme so that EDD applied to the modified due dates becomes
optimal. The general problem is NP-hard. In fact, even for out-forests with constant
profiles, the minimization of maximum lateness is NP-hard, as was shown in [4].
Unlike the makespan minimization, the scheduling of out-forests cannot be achieved
by analyzing the “reverse” problem. Indeed, reversing problem P(t) dec. zig. | p; =
1,out tree | Liyax yields problem P(t)inc. zig. | p; = 1,14, intree | Ciax, where release
dates r; are added to the tasks.

4.4 Preemptive Profile Scheduling

We now consider preemptive scheduling. The task processing times and profile change
epochs are arbitrary real numbers. We are interested in optimal priority algorithms.
In what follows, we first describe such algorithms, and then present a tight relation
between optimal nonpreemptive list algorithms and optimal preemptive priority algo-
rithms. Finally, we present simple optimal priority algorithms for specific problems.

4.4.1 Priority Scheduling Algorithms

Parallel to list algorithms, (dynamic) priority algorithms are used in preemptive
scheduling. At any time, enabled tasks are assigned to available processors accord-
ing to a priority list which can change in time and can depend on the partial schedule
already constructed. A general description is given below (see Muntz and Coffman
[25] and Lawler [19]):

19/2/1994 17:41

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

19/2/1994 17:41

10 7. Tiu and E. Sanlaville

e At any time ¢, enabled tasks are ordered according to their priorities, thus forming
subsets Vi, ..., Vi, where all tasks of V; have the same priority and greater priority
than tasks in V.

e Suppose that tasks in Vi,..., V. 4, r < k, are assigned. Let m..(t) be the number
of remaining free processors. If m..(¢t) > |V, |, then one processor is assigned to each
of the tasks in V,, and the algorithm deals with the next subset. Otherwise, the
m,.(t) processors are shared by the tasks of V,. so that each task in V. is executed
at speed v, = m.(t)/|V,].

e This assignment remains unchanged until one of the following events occurs:

1. A task completes (or a new task is enabled, when release dates are considered);
2. The priority order of tasks is changed;
3. The profile changes.

At such moments the processor assignment is re-computed.

In the above scheme, the processor sharing can be achieved by McNaughton’s wrap-
around algorithm (cf. [23]) which is linear in the number of tasks scheduled in each
time interval. An example is illustrated in Figure 4.4 where three tasks are executed
at speed 2/3 on two processors during a unit length interval.

processor 1 | ____ t_ik_,l) _______ = task 1 task 2
processor2 | task3 task 2 task 3
0 1 0 1/3 2/3 1

Figure 4.4 An example of processor sharing with McNaughton’s algorithm

Note that other processor sharing schemes may be used. However, they will generate
the same latenesses of the tasks provided the corresponding task processing speeds are
the same in these processor sharing schemes. Therefore, we will not make any difference
between them.

Denote by p?(t) the remaining processing requirement of task i at time ¢ in schedule
S. Define the laxity of task 7 at time ¢ in this schedule as b7 (t) = d; — p (t). We will
consider SLF (Smallest Laxity First) algorithms. Figure 4.5 shows an SLF schedule
for a set of independent tasks whose characteristics are indicated in Table 4.1.

i | i | di
1101315
2101212
3121215
4121113

Table 4.1 A set of independent tasks

The schedule is optimal, which is not true in general when the maximum lateness
is under consideration.

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

19/2/1994 17:41

PROFILE SCHEDULING BY LIST ALGORITHMS 11

K=3
3! o
1 1 3 ! 3. Lmax=0=L*
20 2 i2i4'4 1 11|
005 152253 4 475 t

Figure 4.5 An example of SLF schedule

Priority schedules are also used for the minimization of makespan. Define the length
of the remaining longest path of task i at time ¢ in preemptive schedule S as r(t) =
h; + p?(t). In an LRP (Longest Remaining Path first) schedule, tasks are ordered by
decreasing length of the remaining longest path. This corresponds to the HLF rule

when tasks have unit execution times.

4.4.2 Relation between Optimal Nonpreemptive List Algorithms
and Preemptive Priority Algorithms

It was shown in Liu and Sanlaville [21] that there is a tight relation between the
conditions under which nonpreemptive list algorithms (EDD, HLF) are optimal and
those under which preemptive priority algorithms (SLF, LRP) are optimal. In order
to state these results, we need the following notions of closure.

A class G of graphs is said to be closed under expansion if the following property is
true for any graph G = (V, E) € G: For any vertex i € V, if G’ is the graph obtained
from G by replacing vertex ¢ with a chain of two vertices 4; and 75 such that:

plin) = p(i), s(in) = {in}, and pia) = {ir}, s(ia) = s(d),

then G’ still belongs to the class G.

A class M of profiles is said to be closed under translation if for any profile M =
{a,,m,}52, in M, all profiles M’ = {al,m,}2, belong to M, provided {a}.}>2, is
an increasing sequence of real numbers.

Theorem 4.4.1 Let M be a class of profiles which is closed under translation and G
a class of graphs which is closed under expansion. If for any integer profile M € M
and for any G € G with UET tasks and integer due dates, there exists an EDD schedule
minimizing the mazimum lateness of G within the class of nonpreemptive policies, then
for any M € M and any G € G, the SLF schedule minimizes the mazimum lateness
of G within the class of preemptive schedules.

The proof proceeds in two steps. In the first step, we prove the result for the case
where the pair (G, M) has commensurable timing, i.e., the task processing times and

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

19/2/1994 17:41

12 7. Tiu and E. Sanlaville

due dates, and the profile change times are mutually commensurable. Real numbers
r1, -, T, € IR are said to be mutually commensurable if there exist w € IR and r
integers aj,---,, such that z; = a;w for all © = 1,---,r. In the second step, we
extend the result to the general case with arbitrary real timing.

The scheme of the proof in the first step is similar to that of Muntz and Coffman
[25]. Roughly speaking, we show that when graph G is sufficiently expanded, i) an
optimal preemptive solution for a pair (G, M) may be approached arbitrarily closely
by considering optimal nonpreemptive schedules, and, ii) nonpreemptive EDD sched-
ules coincide with the preemptive SLF schedule for (G, M). Putting these two points
together yields the desired result. Note that in an expansion, if vertex 4 is split into
two vertices iy and iy, then their processing times and due dates are defined as follows:

Di, =Di, =pi/2, and d;, =d;, d;, =d; — pi,.

In the second step, we show that when (G, M) has real timings, the absolute difference
between the maximum lateness of SLF schedule and the optimal one is bounded by
an arbitrarily small constant. This implies that SLF schedule does yield an optimal
solution.

If the complements of the task heights are taken as due dates, i.e., d; = —h; for all
i € V, then the EDD (resp. SLF) rule coincides with the HLF (resp. LRP) rule. It can
also be shown that in such a case the maximum lateness coincides with the makespan
[21]. Therefore,

Theorem 4.4.2 Let M be a class of profiles which is closed under translation and G
a class of graphs which is closed under expansion. If for any integer profile M € M
and for any G € G with UET tasks, there exists an HLF schedule minimizing the
makespan of G within the class of nonpreemptive policies, then for any M € M
and any G € G, the LRP schedule minimizes the makespan of G within the class of
preemptive schedules.

Note that the above results actually hold in a more general case where the task
executions are subject to release dates.

In the remainder of this section, we apply these results together with the results
of previous section concerning optimal nonpreemptive scheduling in order to obtain
optimal preemptive schedules.

4.4.3 Applications

We first consider the maximum lateness of in-forests. For a given in-forest G € G, with
processing times p1,---,p, and due dates di,---,d,, we define an in-forest G’ € G;;
such that G’ has the same set of tasks, the same precedence constraints and the same
processing times. The due dates in G’ are modified as in (4.1). It can be shown [21]
that such a modification on the due dates does not change the maximum lateness of
any feasible schedule. Tt then follows from Theorems 4.3.5 and 4.4.1 that

Corollary 4.4.1 IfG € G,y is an in-forest, and M € M, is an increasing zigzag pro-
file, then the SLF schedule defined on the modified due dates minimizes the mazimum,
lateness within the class of preemptive schedules.

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 13

Note that this result extends Theorem 7.3 of Lawler [19] to the case of increasing
zigzag variable profile. It is possible to apply Theorem 4.4.1 to the case of arbitrary
task graph and constant profile with two processors. In such a case, a new proof of
Theorem 8.3 of Lawler [19] may be obtained for the case of identical processors (see

29)).

Consider now the makespan minimization problem. For the simplest case of the task
graphs: the chains, it follows from Theorems 4.3.2 and 4.4.2 that

Corollary 4.4.2 For any graph consisting of chains and for any profile, the LRP
schedule is an optimal preemptive schedule for makespan minimization.

Note that in the preemptive case, scheduling problems for a union of disjoint chains
and for a set of independent tasks are equivalent.

In the case of forests, as a consequence of Corollary 4.3.1 and Theorem 4.4.2; we
obtain

Corollary 4.4.3 If G is an in-forest and M is an increasing zigzag profile, or if G is
an out-forest and M is a decreasing zigzag profile, then the LRP schedule minimizes
the makespan within the class of preemptive schedules.

Observe that this result extends a result of Muntz and Coffman [25] to the zigzag
variable profiles.

For an arbitrary task graph, since LOS schedule belongs to the class of HLF sched-
ules, Theorems 4.3.4 and 4.4.2 allow us to conclude that

Corollary 4.4.4 LRP is an optimal preemptive schedule for makespan minimization
of any task graph G under any profile M bounded by 2.

This last result extends a result of Muntz and Coffman [24] to variable profiles.

Note that in order to apply Theorems 4.4.1 and 4.4.2, the class of task graphs under
consideration should be closed under expansion. Thus, we cannot apply Theorems 4.3.3
and 4.4.2 to obtain the optimality of LRP for graphs with interval order structure, as
this class of graphs does not fulfill the condition.

4.5 Stochastic Profile Scheduling

4.5.1 Problem Description

In this section, we consider the problem of stochastic scheduling under variable profile.
We assume that the task processing times are independent and identically distributed
random variables having a common exponential distribution. These processing times
are independent of the profile M = {a,,, m,};>; which is a sequence of random vectors.

We assume that the scheduler has no information on the samples of the (remaining)
processing times of the tasks. At any time ¢, a, < t < a,41, the scheduler may not
have any information on the truncated sequence {al,ml}l"inH. In other words, the
scheduler may not know either the future time epochs when the profile changes or the
number of available processors at any future time. Within such a framework, dynamic
preemptive scheduling is necessary.

We are interested in the stochastic minimization of makespan. A policy =, is said

19/2/1994 17:41

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

19/2/1994 17:41

14 7. Tiu and E. Sanlaville

to stochastically minimize the makespan of (G, M) within the above described class of
policies if for any policy 7 in that class, the makespan of 7, is stochastically smaller
than that of 7w, where a random variable X € IR is said to be stochastically smaller
than a random variable Y € IR, if for all z € IR, P[X < z] > P[Y < z].

4.5.2 Optimal Algorithms for Constant Profiles

When the task graph is an in-forest, and the profile is a constant 2, Chandy and
Reynolds [5] proved that the HLF policy minimizes the expected makespan. Bruno
[3] subsequently showed that HLF stochastically minimizes the makespan. Pinedo
and Weiss [28] extended this last result to the case where tasks at different levels
may have different expected task running times. Frostig [12] further generalized the
result of Pinedo and Weiss to include increasing likelihood ratio distributions for the
task running times. These results do not hold for systems with three processors, see
counterexamples in [5]. However, Papadimitriou and Tsitsiklis [26] proved that for any
arbitrarily fixed number of processors, HLF is asymptotically optimal as the number of
tasks tends to infinity, provided the task processing times have a common exponential
distribution.

Coffman and Liu [8] investigated the stochastic scheduling of out-forests on iden-
tical parallel processors with constant profile. For the uniform out-forests where all
the subtrees are ordered by an embedding relation (see definition below), they showed
that an intuitive priority scheduling policy induced by the embedding relation, referred
to as the Largest Tree First (LTF) policy in this paper, stochastically minimizes the
makespan when there are two processors. If in addition, the out-forests satisfy a uni-
form root-embedding constraint, then the greedy policy stochastically minimizes the
makespan for an arbitrary number of processors.

4.5.3 Optimal Algorithms for Variable Profiles

Stochastic profile scheduling was first investigated by Liu and Sanlaville [22]. They
considered three kinds of task graphs: interval-order graphs, in-forests and out-forests.
The results we are going to present in the remainder of this section are due to [22]
and were actually obtained in a more general framework: uniform processors, where
the processors may have different speeds.

Interval order graphs. Asin the deterministic UET case, MSF (Most Successor First)
is optimal when the task graph has an interval-order structure.

Theorem 4.5.1 For any interval-order graph G € G;, and any profile M, MSF
stochastically minimizes the makespan of G.

The proof uses uniformization technique, i.e., we can consider a coupled processing
model where all processors 1, ---, K, whenever they are available, are continually exe-
cuting tasks. When a completion occurs, and no task was assigned to some processor,
it corresponds to the completion of a fictitious task on this processor. When a task is
assigned to a processor, it is assigned a running time equal to the remainder of the
running time already underway at that processor. Owing to the memoryless property

PAGE PROOFS for John Wiley & Sons Ltd (using jwchme01, Vers 01.02 OCT 1993)

bonas

19/2/1994 17:41

PROFILE SCHEDULING BY LIST ALGORITHMS 15

of exponential distributions, we can see that this coupled model is equivalent in law
to the initial one.

Let G = (V, E) be an interval-order graph, and T(G) = {T1,Ts,---,T,} be a par-
tition of V obtained by the equivalence relation on the sets of successors: for all
1<i<g,u,ve€T;if and only if S(u) = S(v). The sets Ty, - - -, T, are labeled in such
a way that for all 1 <i < j < g, u € T; and v € T imply S(u) D S(v). We define
a majorization relation: Let G = (V1, E') and G? = (V2, E?) be two subgraphs of
G obtained by successively deleting vertices of G having no predecessor in G or in
the previously obtained subgraphs. It is easy to see that G' and G* are in G,,. Let
T/ =T;,NVJ j=1,2,i=1,---,g. Graph G' is said to be majorized by G?, referred
to as G' <, G2, if and only if

)

Vi, 1<i<g: Y ITH <D TR
k=1

k=1

Using now the uniformization technique and the above notion of majorization, one
proves the following properties:

o Let G! = (V! E') and G? = (V?2, E?) be two subgraphs of G € G;, obtained by
successively deleting vertices of G having no predecessor in G or in the previously
obtained subgraphs. If G! <, G2, then under MSF policy, the makespan of G! is
stochastically smaller than that of G2.

e Let G € G;, be a task graph. Let © be a policy which follows the MSF rule all the
time except at the first decision epoch. Then, the makespan of G under MSF is
stochastically smaller than that under 7.

This last property together with a backward induction allow us to conclude Theo-
rem 4.5.1.

In-forests. When the task graph is an in-forest, we have

Theorem 4.5.2 For any in-forest G € G;5 and any profile M bounded by 2, HLF
stochastically minimizes the makespan of G.

The scheme of the proof is similar. However, we have to use another majorization
relation, referred to as “flatter than” in [5]. Let G' = (V' E') and G* = (V?, E?) be
two in-forests. Forest G! is said to be flatter than G?, denoted by G' <; G?, if and
only if

Vi, i>0: Y Ni(G') <D NW(GP),

k>i k>i

where Ni(G) denotes the number of vertices at level &k of graph G.

Out-forests. Suppose now that the task graph is an out-forest. Even for a profile
bounded by two, examples may easily be found for which the HLF policy is not
optimal (even in term of expected makespan), see [8]. Instead of HLF, the greedy
policy LTF introduced in [8] turns out to be optimal in a subclass of out-forests.

Let G = (V,E) € Gos be an out-forest. Vertex v € V and all its successors form a

PAGE PROOFS for John Wiley & Sons Ltd (using jwchme01, Vers 01.02 OCT 1993)

bonas

16

7. Tiu and E. Sanlaville

subtree of G, denoted by T (v) or simply T'(v) when there is no ambiguity. We denote
by |T'(v)| the size of T'(v), i.e. its number of vertices.

The Largest Tree First (LTF) policy is defined as follows: at any decision epoch,
LTF assigns the task v whose subtree T'(v) is the largest among all subtrees of the
enabled tasks to an available processor. In general, policy LTF is not optimal within
the class of out-forests G,;. Counterexamples were provided in [8]. However, within
the classes of uniform and r-uniform out-forests (introduced in [8]), a policy is optimal
if and only if it is LTF.

Let T1,T5 € G,r be two out-trees. Out-tree 17 is said to embed out-tree 15, or 15 is
embedded in T}, denoted by Ty =, Ty or Ty <. T4, if Ty is isomorphic to a subgraph of
T:. Formally, T} embeds T5 if there exists an injective function f from 75 into 7T} such
that Yu,v € Ty, v € s(u) implies f(v) € s(f(u)). Function f is called an embedding
function.

Let 1 and ro be the roots of the out-trees Ty and T3, respectively. If 77 =, T» and
if there is an embedding function f such that f(re) = r1, then f is a root-embedding
function, and we write T} =, Ty or Ty <, T;.

An out-forest G € G,y is said to be uniform (respectively r-uniform) if all its sub-
trees {T'(v), v € G} can be ordered by the embedding (respectively root-embedding)
relation. The class of uniform (respectively r-uniform) forests is denoted by G,,7 (re-
spectively G,o7). It is clear that Grof C Guoy C Goy-

The graph illustrated in Figure 4.6 is a uniform out-forest. However, it is not r-
uniform. An example of r-uniform out-forest is given in Figure 4.7.

@

TN
o $Hv

Figure 4.6 An example of uniform out-forest

J %@b ot

Figure 4.7 An example of r-uniform out-forest

Theorem 4.5.3 LTF stochastically minimizes the makespan of out-forest G,

19/2/1994 17:41

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 17

o if G € Gyuoy is uniform and M is bounded by 2,
o orif G € Gyop is r-uniform and M is arbitrary.

The scheme of the proof is again similar to that of Theorem 4.5.1, with the majoriza-
tion relation being defined as the embedding relation between uniform out-forests: Let
G!' = (VY E') and G? = (V2, E?) be two uniform out-forests. Assume that the ver-
tices of G and G? are indexed in such a way that

Tei(1) =e Tar(2) =e -+ = T (V).

T(;Q(l) e T(;Q(Q) e e T(;Q(VQ‘)
Out-forest G! is embedded in G2, referred to as G! <, G2, if and only if

[V < V2], and Vi, 1<i<|V'|: Tg(i) <e Tge(i).
Similarly, G' <, G? if and only if
Tg1(1) >r TG1(2) bl SR TGI(‘VI‘)7

Toe(1) sp T (2) 5p - T (V7).

VH<VE, and Vi, 1<i <|VY ' Tai(i) <, T (i)

REFERENCES

[1] M. Bartusch, R.H. Mohring, and F.J. Radermacher, “M-machine unit time scheduling:
a report on ongoing research” | Lecture notes in economics and mathematical systems,
304 (1988), pp 165-212, Springer, Berlin.
[2] J.L. Bruno, “Deterministic and stochastic problems with tree-like precedence con-
straints”, NATO conference, Durham England, July 1981.
[3] J.L. Bruno, “On scheduling tasks with exponential service times and in-tree precedence
constraints”, Acta Informatica, 22 (1985), pp 139-148.
[4] P. Brucker, M. R. Garey and D. S. Johnson, “Scheduling equal-length tasks under
treelike precedence constraints to minimize maximum lateness”, Math. of Oper. Res.,
2 (1977), pp 275 284.
[5] K. M. Chandy and P. F. Reynolds, “Scheduling partially ordered tasks with proba-
bilistic execution times”, Operating System Review, 9 (1975), pp 169 177.
[6] E. G. Coffman, Jr. (ed.) Computer and job-shop scheduling theory, Wiley, New York,
1976.
[7] E.G. Coffman, Jr. and R. L. Graham, “Optimal scheduling for two-processor systems”,
Acta Informatica, 1 (1972), pp 200 213.
[8] E. G. Coffman, Jr. and Z. Liu, “On the optimal stochastic scheduling of out-forests”,
Opns Res., 40 (1992), pp S67 S75.
[9] D. Dolev and M. K. Warmuth, “Scheduling precedence graphs of bounded height”, J.
of Algorithms, 5 (1984), pp 48 59.
[10] D. Dolev and M. K. Warmuth, “Scheduling flat graphs”, STAM J. on Comput., 14
(1985), pp 638 657.
[11] D. Dolev and M. K. Warmuth, “Profile scheduling of opposing forests and level orders”,
SIAM J. Alg. Disc. Meth., 6 (1985), pp 665 687.
[12] E. Frostig, “A stochastic scheduling problem with intree precedence constraints”, Opns
Res., 36 (1988), pp 937 943.

19/2/1994 17:41 PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993) bonas

18

[13]
[14]
[15]
[16]

[17]

(18]

[19]

[20]

[21]

22]
23]
[24]
[25]
[26]
[27]

[28]

129]
130]

31]

7. Tiu and E. Sanlaville

M. R. Garey and D. S. Johnson, “Scheduling tasks with nonuniform deadlines on two
processors”, J. of the ACM, 23 (1976), pp 461 467.

M. R. Garey and D. S. Johnson, “Two-processor scheduling with start-times and dead-
lines”, SIAM J. on Computing, 6 (1977), pp 416-426.

M. R. Garey, D. S. Johnson, R. E. Tarjan et M. Yannakakis, “Scheduling opposite
forests”, SIAM J. Alg. Disc. Meth., 4 (1983), pp 72 93.

T. F. Gonzales and D. B. Johnson, “A new algorithm for preemptive scheduling of
trees”, J. of the ACM, 27 (1980), pp 287 312.

R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, “Optimization
and approximation in deterministic sequencing and scheduling: a survey”, Ann. Discr.
Math., 5 (1979), pp 287-326.

T.C. Hu, “Parallel sequencing and assembly line problems”, Opns Res., 9 (1961), pp
841-848.

E. L. Lawler, “Preemptive scheduling of precedence constrained jobs on parallel ma-
chines”, in Deterministic and Stochastic Scheduling, Dempster et al. (editors), Reidel,
1982, pp 101 123.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, “Sequencing
and scheduling: algorithms and complexity”, Report BS-R8909, CWI, Amsterdam,
Holland, 1989.

7. Liu and E. Sanlaville, “Preemptive scheduling with variable profile, precedence con-
straints and due dates”, Rapport de Recherche MASI No. 92.5, Univ. P. et M. Curie,
Paris, 1992, to appear in D.A. M.

7. Liu and E. Sanlaville, “Stochastic scheduling with variable profile and precedence
constraints”. Rapport de Recherche INRIA, No. 1525, 1991, Submitted for publication.
R. McNaughton, “Scheduling with deadlines and loss functions”, Man. Sci., 6 (1959),
pp 1 12.

R. R. Muntz and E. G. Coffman, Jr., “Optimal preemptive scheduling on two-processor
systems”, IEEE Trans. on Comp., C-18 (1969), pp 1014 1020.

R. R. Muntz and E. G. Coffman, Jr., “Preemptive scheduling of real-time tasks on
multiprocessor systems”, J. of the ACM, 17 (1970), pp 325 338.

C. H. Papadimitriou and J. N. Tsitsiklis, “On stochastic scheduling with in-tree prece-
dence constraints”, SIAM J. Comput., 16 (1987), pp 1 6.

C. H. Papadimitriou and M. Yannakakis, “Scheduling interval-ordered tasks”, Report
11.78, center for research in computer technology Harvard, Cambridge Ma, 1978.

M. Pinedo and G. Weiss, “Scheduling jobs with exponentially distributed processing
times and intree precedence constraints on two parallel machines”, Opns Res., 33
(1985), pp 1381-1388.

E. Sanlaville, Conception et analyse d’algorithmes de liste en ordonnancement préemp-
tif. These de I'université P. et M. Curie, Paris, 1992.

G. Schmidt, “Scheduling independent tasks with deadlines on semi-identical proces-
sors”, J. Opnl Res. Soc., 39 (1988), pp 271-277.

J. D. Ullman, “NP-complete scheduling problems” J. Comp. Sys. Sci., 10 (1975), pp
384-393.

Zhen LIU : INRIA, Centre Sophia Antipolis, 2004 Route des Lucioles, B.P. 93,
06902 Sophia Antipolis, FRANCE
Eric SANLAVILLE : Laboratoire LITP, Université Pierre et Marie Curie,

4,

place Jussieu, 75252 Paris Cedex 05, FRANCE

The work of this author was partially supported by INRIA while visiting the
GERAD laboratory, Montréal, Canada.

19/2/1994 17:41

PAGE PROOFS for John Wiley & Sons Ltd (using jwcbme01, Vers 01.02 OCT 1993)

bonas

