
4Pro�le Scheduling by ListAlgorithmsZhen LIU, INRIA, Centre Sophia Antipolis Eric SANLAVILLE,Universit�e Pierre et Marie CurieAbstract: The notion of pro�le scheduling was �rst introduced by Ullman in 1975in the complexity analysis of deterministic scheduling algorithms. In such a model, thenumber of processors available to a set of tasks may vary in time. Since the last decade,this model has been used to deal with systems subject to processor failures, multipro-grammed systems, or dynamically recon�gured systems. The aim of this paper is tooverview optimal polynomial solutions for scheduling a set of partially ordered tasks inthese systems. Particular attentions are given to a class of algorithms referred to as listscheduling algorithms. The objective of the scheduling problem is to minimize eitherthe maximum lateness or the makespan. Results on preemptive and nonpreemptivedeterministic scheduling, and on preemptive stochastic scheduling, are presented.Keywords: Deterministic Scheduling, Stochastic Scheduling, Pro�le Scheduling,List Schedule, Priority Schedule, Precedence Constraints, Lateness, Makespan.4.1 IntroductionConsider the problem of scheduling a set of partially ordered tasks represented by adirected acyclic graph, referred to as task graph, where vertices represent tasks and arcsrepresent precedence relations. Tasks are executed, subject to precedence constraints,on a set of parallel identical processors. The number of available processors, referred toas pro�le, may vary in time. Task and processor assignments must be nonredundant,Scheduling Theory and Its Applications. P. Chretienne, E. G. Co�man, J. K. Lenstra, Z. Liu (Eds.)c
1994 John Wiley & Sons Ltd

2 Z. Liu and E. Sanlavillei.e., at any time, a task can be assigned to at most one processor, and a processor canexecute at most one task. Each task has a due date. The objective is to minimize themaximum lateness or, when due dates are not taken into consideration, the makespan.The notion of pro�le scheduling was �rst introduced by Ullman [31] and later usedby Garey et al. [15] in the complexity analysis of deterministic scheduling algorithms.In this paper we use the notion of pro�le to deal with systems subject to processor fail-ures, multiprogrammed systems, or dynamically recon�gured systems. In such cases,the number of processors available to a set of tasks may vary in time.The problem of minimizing the maximum lateness and the makespan is in generalNP-hard. We are interested in simple on-line or nearly on-line algorithms which yieldoptimal solutions under speci�c assumptions. Results on three problems will be pre-sented here, with each result accounting for di�erent task characteristics. The readeris referred to the survey paper by Lawler et al. [20] for results on optimal schedulingunder a constant pro�le, i.e., when the number of available processors is constant. The�rst results on optimal polynomial solutions for pro�le scheduling problems are dueto Dolev and Warmuth [9, 10, 11].The paper is organized as follows. Section 2 is devoted to notation. Section 3 dealswith scheduling of nonpreemptive Unit Execution Time (UET) tasks; optimality re-sults concerning list schedules on a variable pro�le are surveyed. Section 4 is concernedwith scheduling of preemptive Real Execution Time (RET) tasks. We exhibit a tightrelation between optimal list schedules and optimal priority schedules, which are coun-terparts of list schedules for preemptive scheduling. Section 5 focuses on tasks whoserunning times are independent and identically distributed random variables with acommon exponential distribution. We prove the optimality of some list policies whichstochastically minimize the makespan in several subproblems.4.2 NotationA task graph G = (V;E) is a directed acyclic graph, where V = f1; 2; : : : ; jV jg is theset of vertices representing the tasks, E � V � V is the set of arcs representing theprecedence constraints: (i; j) 2 E if and only if task i must be completed before taskj can start. Denote by pi and di the respective processing time and due date of taski 2 V .Let p(i) and s(i) be the respective sets of immediate predecessors and successors ofi 2 V , i.e., p(i) = fj : (j; i) 2 Eg; s(i) = fj : (i; j) 2 Eg:Let S(i) be the set of (not necessarily immediate) successors of i 2 V , i.e.,8i : if s(i) = ; then S(i) = ; else S(i) = s(i)[0@ [j2s(i)S(j)1A :A task without a predecessor (successor) is called an initial (�nal) task. Denote by lithe level of i, i.e., the number of arcs in a longest path from task i to some �nal task.Denote by hi the height of i, i.e., the sum of the processing times of the tasks in alongest path from task i to some �nal task, with �nal vertex included.19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 3In the sequel, we will consider di�erent classes of precedence graphs. The three mostinteresting classes are the following:interval order G 2 Gio: Each vertex i corresponds to an interval bi of the real linesuch that (i; j) 2 E if and only if x 2 bi and y 2 bj imply x < y. These graphs havethe following characteristic property:8i; j 2 V; either S(i) � S(j); or S(j) � S(i):in-forest G 2 Gif : Each vertex has at most one immediate successor: js(i)j � 1,i 2 V . A vertex i 2 V is called a leaf of in-forest G if p(i) = ;. A vertex i 2 V iscalled a root of in-forest G if s(i) = ;.out-forest G 2 Gof : Each vertex has at most one immediate predecessor: jp(i)j � 1,i 2 V . A vertex i 2 V is called a leaf of out-forest G if s(i) = ;. A vertex i 2 V iscalled a root of out-forest G if p(i) = ;.There are K � 1 parallel and identical processors. The set of processors available totasks varies in time, due to, e.g., failures of the processors or the execution of higher-priority tasks. The availability of the processors is referred to as the pro�le, and isspeci�ed by the sequence M = fan;mng1n=1, where 0 = a1 < a2; < : : : < an < : : :are the time epochs when the pro�le is changed, and mn, n � 1, is the number ofprocessors available during time interval [an; an+1). Without loss of generality, weassume that mn � 1 for all n � 1 . We will assume that the pro�le is not changedin�nitely often during any �nite time interval: for all x 2 IR+, there is some �niten � 1 such that an > x.The following three classes of pro�les will often be referred to in the paper.zigzag pro�les M 2Mz: the number of available processors is either K or K � 1.increasing zigzag pro�les M 2 Miz: the number of available processors can de-crease by at most one at any time. Between successive decrements, there must beat least one increase. That is, 8j and 8n � j; mn � mj � 1.decreasing zigzag pro�les M 2 Mdz: a symmetrical de�nition applies; that is, 8jand 8n � j; mn � mj + 1. Such a pro�le is illustrated in Figure 4.1.

2

5
4
3
2
1

M

t3 4 5 6 9871a a a a a a aaa

K = 5

Figure 4.1 Decreasing zigzag pro�le19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

4 Z. Liu and E. SanlavilleA scheduling algorithm (or policy) decides when an enabled task, i.e. an unassigned,un�nished task all of whose predecessors have �nished, should be assigned to one of theavailable processors. A schedule is feasible if assignments are nonredundant and theconstraints relative to the precedence relation and to the variable pro�le are respected.Scheduling can be either preemptive, i.e., the execution of a task can be stopped andlater resumed on any processor without penalty, or nonpreemptive: once begun, theexecution of a task continues on the same processor until its completion.Let S be an arbitrary feasible schedule of task graph G under pro�le M . LetCi(S) be the completion time of task i under S. The lateness of task i is de-�ned as Li(S) = Ci(S) � di. The maximum lateness of schedule S is denoted byLS(G;M) = maxi2V Li(S).When all due dates are set to zero, the maximum lateness becomes the makespan.Denote by CS(G;M) = maxi2V Ci(S) the makespan of (G;M) obtained by scheduleS.We extend the classical notation scheme of Graham et al. [17] for scheduling prob-lems to the case of variable pro�les. We use P (t) (resp. Q(t), R(t)) to denote machineenvironment with identical (resp. uniform, unrelated) parallel processors whose num-ber varies in time. For example, P (t) j pi = 1; prec j Cmax denotes the nonpreemptivescheduling for makespan minimization of UET tasks subject to precedence constraintson identical parallel processors with variable pro�le.4.3 Nonpreemptive Pro�le Scheduling of UET TasksIn the framework of nonpreemptive pro�le scheduling, we will consider UET tasksand integer pro�les (those in which pro�les change only at integer time epochs).The problems under consideration can be denoted by P (t) j pi = 1; prec j Cmax orP (t) j pi = 1; prec j Lmax.List algorithms are often used in nonpreemptive scheduling. These algorithms putthe enabled tasks in an ordered list. Each time a processor becomes available, thetask at the head of the list is assigned to that processor. The list can be dynamicallyupdated. The Highest Level First (HLF) and the Earliest Due Date (EDD) algorithmsare well known examples. The reader is referred to [6] for properties of list algorithms.4.3.1 Complexity IssuesIn [31], Ullman exhibited a polynomial reduction from 3-SAT to P (t) j pi =1; prec j Cmax, and then showed that P j pi = 1; prec j Cmax had the same com-plexity (It su�ces to \�ll" the unavailable processors with dummy tasks). This isimmediately generalized to the lateness minimization Lmax.Garey et al. [15] also used pro�le scheduling for the study of opposing forests (unionof in-forest and out-forest). They proved NP-completeness for P (t) decreasing j pi =1; intree j Cmax (the decreasing pro�le refers to the case where the numberof available processors is decreasing in time), and consequently for P j pi =1; opposing forest j Cmax. For such precedence graphs, however, polynomial algo-rithms have been found for bounded pro�les, i.e., K is �xed (see discussions below).19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 54.3.2 Minimization of the Makespan by List SchedulingConsider �rst the minimization of the makespan. We focus on the Highest Level First(HLF) algorithm: tasks are ordered by decreasing level. Note that HLF schedules di�eronly in the way ties are broken.Forests. When the task graph is a forest, Hu [18] proved that HLF yields an optimalschedule when the task graph is an in-forest and the pro�le is constant. Bruno [2]extended this result to out-forests.For variable pro�le, Dolev and Warmuth [9, 10, 11] showed that HLF remainsoptimal in some special cases of pro�les. For that, they �rst showed the so-called elitetheorem. De�ne the height of a connected component of G to be the highest level of itsvertices. Let the components be ordered by decreasing height, and h(k) be the heightof the k-th component. Suppose pro�le M is bounded by K. The median of (G;M) isde�ned as � = h(K) + 1. Consider� H(G): set of components of G whose heights are strictly greater than � (High Part);� E(G): set of initial tasks of H(G) whose levels are strictly greater than � (Elite);� L(G): graph obtained from G by removing the components of H(G) (Low Part).When the graph contains less than K components, the median has value 0 and G =H(G). These de�nitions are illustrated in Figure 4.2 where K = 3.
K = 3

µ

H(G) L(G)

2 41 3Figure 4.2 Elite of a task graphWe now state the elite theorem of [10]:19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

6 Z. Liu and E. SanlavilleTheorem 4.3.1 Consider a task graph G and an integer pro�le M .1. If jE(G)j > m1, then there is an optimal schedule such that m1 tasks of E(G) areexecuted during the �rst time unit.2. If jE(G)j � m1, then for each set E of m1 tasks of maximum levels, there exists anoptimal schedule executing the tasks of E during the �rst time unit.3. If E(G) = ;, then any HLF schedule is optimal.As a consequence, we obtainCorollary 4.3.1 HLF minimizes the makespan� when the task graph is an out-forest and the pro�le is decreasing zigzag;� or when the task graph is an in-forest and the pro�le is increasing zigzag.In the �rst case, the elite contains less than K tasks, and m1 � K � 1. Part 2of elite theorem states that there exists an optimal schedule that coincides with anyHLF schedule during the �rst time unit. The same reasoning is used during each timeunit until the graph is empty. To prove the second case, it su�ces to reverse the graphand the pro�le.For bounded pro�les, Dolev and Warmuth [11] provided a backward dynamic pro-gramming method whose time complexity is O(nK�1 � logn) for scheduling an in-treeof size n on an arbitrary pro�le bounded by K. This was based on two observations.First, if an optimal schedule is known for H(G), then according to the merge theo-rem of [9], an optimal schedule for G may be obtained in linear time with respectto jL(G)j. Second, If we consider all subgraphs of some in-forest with at most K � 1components, which could be obtained during the execution under any schedule, thesesubgraphs may be partitioned into at most nK�1 equivalence classes. Here, two graphsG = (V;E) and G0 = (V 0; E0) are equivalent if there is a bijection � between V and V 0such that the set of successors of vertex �(v) is f�(v1); : : : ; �(vl)g, where fv1; : : : ; vlgis the set of successors of v. The dynamic programming method decides whether aschedule of duration D exists, building schedules backward from D-th time unit. Thelogn factor comes from a bisection search to get the right value for D.This method is then applied to out-forests under bounded pro�les by reversingthe directions of the precedence constraints and the pro�le. Further, such a dynamicprogramming algorithm is used to solve the scheduling problem of opposing forests asmentioned in Section 4.3.1.In the special case of chains, i.e. Gch def= Gif TGof , Liu and Sanlaville [21] showedTheorem 4.3.2 If G is a union of chains and M an arbitrary integer pro�le, thenany HLF minimizes the makespan.This was proved by an interchange argument, i.e., from an optimal non-HLF sched-ule, one can interchange the assignment decisions for two subchains so that the numberof non-HLF decisions is decreased by at least one. Iterating this procedure for at mostn2 times yields an optimal HLF schedule. Note that all HLF schedules have the samemakespan in that case.Interval order graphs. Papadimitriou and Yannakakis [27] have shown that taskgraphs with interval order structure have the following property: for any two ver-tices in the graph, their sets of (all) successors are comparable by inclusion relation:19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 7one set is included into the other. This property is essential in establishing the opti-mality of Most Successors First (MSF) schedules (forming a subset of HLF schedules)which respect the order of inclusion of the sets of successors. This result was obtainedby Papadimitriou and Yannakakis [27] for constant pro�le and extended to variablepro�le in Sanlaville [29].Theorem 4.3.3 If G is a task graph with an interval order structure and M anarbitrary integer pro�le, then any MSF schedule minimizes the makespan.This result can again be proved using an interchange argument. Consider an optimalnon-MSF schedule � for graph G. Let � be the �rst time when � schedules some vertexv instead of vertex u if MSF rule is applied. Note that by de�nition, all the predecessorsof u and v have �nished execution by time � . Let � be the schedule obtained from� by interchanging the execution times for u and v. Since G has an interval orderstructure, S(v) � S(u), it is easy to see that � satis�es the precedence constraintsof G. Moreover, the number of non-MSF decisions in � is decreased by one. Iteratingthis procedure for at most n2 times yields an optimal MSF schedule.Arbitrary graphs with pro�les bounded by 2. Co�man and Graham [7] proved that asubset of HLF schedules, referred to as Lexicographic Order Schedules (LOS) in thispaper, minimizes the makespan when the pro�le is constant and equal to two. LOS isbased on a static list of tasks de�ned by the lexicographic order as follows. Let therebe f �nal tasks. Assign labels 1; � � � ; f to these �nal tasks in an arbitrary way. Supposenow that k � f tasks have already been labeled by 1; 2; : : : k. Consider all the taskswhose successors are all labeled. Assign label k+1 to the task such that the decreasingsequence of the labels of its immediate successors is lexicographically minimal (ties arebroken arbitrarily). Co�man and Graham [7] showed that LOS schedules minimizethe makespan of an arbitrary graph in a 2-processor system. The main idea of theirproof is to cut the Gantt chart of the LOS schedule into several segments such thateach segment is composed of two sets of tasks Ei and Fi, where Fi is a singleton, andthat all tasks of Ei are predecessors of Ei+1. The optimality of LOS is extended inSanlaville [29] to variable pro�les with at most 2 processors by a minor modi�cation ofthe proof of [7], which consists in assigning �ctitious tasks to unavailable processors.Theorem 4.3.4 Any LOS schedule is optimal for makespan minimization of any taskgraph G under any pro�le M bounded by 2.Summary and discussion on makespan minimization. These results are summarizedin Figure 4.3, where \constant" and \arbitrary" stand for constant and arbitrary pro-�les. A gray area means that this particular subproblem is NP-hard for arbitrary K.Since constant pro�les are special cases of (increasing and decreasing) zigzag pro-�les which are in turn special cases of arbitrary pro�les, the implication relation forsubproblems is clear.Note that when the number of processors K is �xed, the complexity remains anopen problem, except for the case K = 2 for which LOS algorithm of Co�man andGraham [7] provides optimal schedules. However, for any �xed K � 3, the schedulingproblem is still of unknown complexity despite extensive research.Bartush et al [1] presented an interesting work on this problem, viz. scheduling19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

8 Z. Liu and E. Sanlaville
zigzag zigzag

trary

arbi-

HLF

HLF

MSF

HLF

HLF

cons-

tant
K<=2

interval order

arbitrary

chain

profiles

graphs

out-tree

in-tree

LOSFigure 4.3 Results on nonpreemptive pro�le scheduling of UET tasks (Cmax)with �xed number of processors. The authors provided a general 2-phase solutionscheme. In the �rst phase, they tried to generalize the consistency notion of [4, 14].They compute a so-called \test choice" for the problem instance under consideration.This is derived from bounds on the execution periods of some special tasks. In thesecond phase, they construct an optimal schedule in O(nK) time. This is based onsophisticated dominancy criteria and on the study of special partially ordered sets. Thetime complexity of the �rst phase is simple for the 2-processor case, and is polynomialfor all known polynomial cases (trees, interval-order graphs, etc: : :). However, itscomplexity remains unknown in the general case. It seems that no further researchresults concerning this approach have been reported since 1989.4.3.3 Minimization of the Maximum Lateness by List SchedulingConsider now the minimization of the maximum lateness. We analyze the Earliest DueDate (EDD) algorithm. The optimality of the EDD schedules will rely on a two-stepmethod:1. modify the due dates so that they satisfy some consistency relation,2. apply EDD to the modi�ed due dates.Roughly speaking, the consistency between due dates requires that whenever thedue date of a task is met in some schedule, the due dates of its successors can be mettoo, provided there are enough processors. Such a consistency relation is not veri�edif, for instance, the due date of some of its predecessors.19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 9Initially, for any constant pro�le, Brucker, Garey and Johnson [4] proved that if Gis an in-forest, EDD yields optimal schedules provided the modi�ed due dates d0i arede�ned as follows: d0i = � di; s(i) = ;;min(di; d0s(i) � 1); s(i) 6= ;; (4.1)where, by a harmless abuse of notation, s(i) denotes the unique successor of task i.Note that such a modi�cation has the purpose of obtaining consistent due dates. It isshown by Liu and Sanlaville [21] that the optimality of EDD still holds for increasingzigzag pro�les:Theorem 4.3.5 For any in-forest G 2 Gif and any increasing zigzag pro�le M 2Miz, EDD schedule de�ned on modi�ed due dates minimizes the maximum lateness.The proof proceeds by �rst establishing that EDD de�ned on the modi�ed due datesmeets all the original due dates if and only if such a feasible schedule exists, and thenby using a standard argument to show the optimality of EDD schedules.In a slightly more complicated way, Garey and Johnson [13, 14] showed the existenceof modi�cation schemes for the due dates, such that EDD applied to these due datesyields optimal schedules on two processors, even when release dates are associated withthe tasks. In the latter case, the algorithm is not on-line. These results can be extendedto variable pro�les (see [29]). However, even without release dates, the algorithms arethen o�-line because the computation of the modi�ed due dates depends not only onthe release dates but also on the pro�le.For pro�le of width K � 3 and general task graphs, there is no simple way to designsome modi�cation scheme so that EDD applied to the modi�ed due dates becomesoptimal. The general problem is NP-hard. In fact, even for out-forests with constantpro�les, the minimization of maximum lateness is NP-hard, as was shown in [4].Unlike the makespan minimization, the scheduling of out-forests cannot be achievedby analyzing the \reverse" problem. Indeed, reversing problem P (t) dec: zig: j pi =1; out tree j Lmax yields problem P (t) inc: zig: j pi = 1; ri; in tree j Cmax, where releasedates ri are added to the tasks.4.4 Preemptive Pro�le SchedulingWe now consider preemptive scheduling. The task processing times and pro�le changeepochs are arbitrary real numbers. We are interested in optimal priority algorithms.In what follows, we �rst describe such algorithms, and then present a tight relationbetween optimal nonpreemptive list algorithms and optimal preemptive priority algo-rithms. Finally, we present simple optimal priority algorithms for speci�c problems.4.4.1 Priority Scheduling AlgorithmsParallel to list algorithms, (dynamic) priority algorithms are used in preemptivescheduling. At any time, enabled tasks are assigned to available processors accord-ing to a priority list which can change in time and can depend on the partial schedulealready constructed. A general description is given below (see Muntz and Co�man[25] and Lawler [19]):19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

10 Z. Liu and E. Sanlaville� At any time t, enabled tasks are ordered according to their priorities, thus formingsubsets V1; : : : ; Vk, where all tasks of Vj have the same priority and greater prioritythan tasks in Vj+1.� Suppose that tasks in V1; : : : ; Vr�1, r � k, are assigned. Let ~mr(t) be the numberof remaining free processors. If ~mr(t) � jVrj, then one processor is assigned to eachof the tasks in Vr, and the algorithm deals with the next subset. Otherwise, the~mr(t) processors are shared by the tasks of Vr so that each task in Vr is executedat speed vr = ~mr(t)=jVr j.� This assignment remains unchanged until one of the following events occurs:1. A task completes (or a new task is enabled, when release dates are considered);2. The priority order of tasks is changed;3. The pro�le changes.At such moments the processor assignment is re-computed.In the above scheme, the processor sharing can be achieved by McNaughton's wrap-around algorithm (cf. [23]) which is linear in the number of tasks scheduled in eachtime interval. An example is illustrated in Figure 4.4 where three tasks are executedat speed 2=3 on two processors during a unit length interval.
2/30 1/3 1

task 2

task 2 task 3

task 1

0 1
processor 2

processor 1

task 3

task 1
task 2Figure 4.4 An example of processor sharing with McNaughton's algorithmNote that other processor sharing schemes may be used. However, they will generatethe same latenesses of the tasks provided the corresponding task processing speeds arethe same in these processor sharing schemes. Therefore, we will not make any di�erencebetween them.Denote by pSi (t) the remaining processing requirement of task i at time t in scheduleS. De�ne the laxity of task i at time t in this schedule as bSi (t) = di � pSi (t). We willconsider SLF (Smallest Laxity First) algorithms. Figure 4.5 shows an SLF schedulefor a set of independent tasks whose characteristics are indicated in Table 4.1.i ri pi di1 0 3 52 0 2 23 2 2 54 2 1 3Table 4.1 A set of independent tasksThe schedule is optimal, which is not true in general when the maximum latenessis under consideration.19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 11
2 2

1

2 4

1

3
3

1 1

3

0 0.5 1.5 2 2.5 3 4 4.75 t

4

K=3

Lmax = 0 = L*

Figure 4.5 An example of SLF schedulePriority schedules are also used for the minimization of makespan. De�ne the lengthof the remaining longest path of task i at time t in preemptive schedule S as rSi (t) =hi + pSi (t). In an LRP (Longest Remaining Path �rst) schedule, tasks are ordered bydecreasing length of the remaining longest path. This corresponds to the HLF rulewhen tasks have unit execution times.4.4.2 Relation between Optimal Nonpreemptive List Algorithmsand Preemptive Priority AlgorithmsIt was shown in Liu and Sanlaville [21] that there is a tight relation between theconditions under which nonpreemptive list algorithms (EDD, HLF) are optimal andthose under which preemptive priority algorithms (SLF, LRP) are optimal. In orderto state these results, we need the following notions of closure.A class G of graphs is said to be closed under expansion if the following property istrue for any graph G = (V;E) 2 G: For any vertex i 2 V , if G0 is the graph obtainedfrom G by replacing vertex i with a chain of two vertices i1 and i2 such that:p(i1) = p(i); s(i1) = fi2g; and p(i2) = fi1g; s(i2) = s(i);then G0 still belongs to the class G.A class M of pro�les is said to be closed under translation if for any pro�le M =far;mrg1r=1 in M, all pro�les M 0 = fa0r;mrg1r=1 belong to M, provided fa0rg1r=1 isan increasing sequence of real numbers.Theorem 4.4.1 Let M be a class of pro�les which is closed under translation and Ga class of graphs which is closed under expansion. If for any integer pro�le M 2 Mand for any G 2 G with UET tasks and integer due dates, there exists an EDD scheduleminimizing the maximum lateness of G within the class of nonpreemptive policies, thenfor any M 2 M and any G 2 G, the SLF schedule minimizes the maximum latenessof G within the class of preemptive schedules.The proof proceeds in two steps. In the �rst step, we prove the result for the casewhere the pair (G;M) has commensurable timing, i.e., the task processing times and19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

12 Z. Liu and E. Sanlavilledue dates, and the pro�le change times are mutually commensurable. Real numbersx1; � � � ; xr 2 IR are said to be mutually commensurable if there exist w 2 IR and rintegers �1; � � � ; �r such that xi = �iw for all i = 1; � � � ; r. In the second step, weextend the result to the general case with arbitrary real timing.The scheme of the proof in the �rst step is similar to that of Muntz and Co�man[25]. Roughly speaking, we show that when graph G is su�ciently expanded, i) anoptimal preemptive solution for a pair (G;M) may be approached arbitrarily closelyby considering optimal nonpreemptive schedules, and, ii) nonpreemptive EDD sched-ules coincide with the preemptive SLF schedule for (G;M). Putting these two pointstogether yields the desired result. Note that in an expansion, if vertex i is split intotwo vertices i1 and i2, then their processing times and due dates are de�ned as follows:pi1 = pi2 = pi=2; and di2 = di; di1 = di � pi2 :In the second step, we show that when (G;M) has real timings, the absolute di�erencebetween the maximum lateness of SLF schedule and the optimal one is bounded byan arbitrarily small constant. This implies that SLF schedule does yield an optimalsolution.If the complements of the task heights are taken as due dates, i.e., di = �hi for alli 2 V , then the EDD (resp. SLF) rule coincides with the HLF (resp. LRP) rule. It canalso be shown that in such a case the maximum lateness coincides with the makespan[21]. Therefore,Theorem 4.4.2 Let M be a class of pro�les which is closed under translation and Ga class of graphs which is closed under expansion. If for any integer pro�le M 2 Mand for any G 2 G with UET tasks, there exists an HLF schedule minimizing themakespan of G within the class of nonpreemptive policies, then for any M 2 Mand any G 2 G, the LRP schedule minimizes the makespan of G within the class ofpreemptive schedules.Note that the above results actually hold in a more general case where the taskexecutions are subject to release dates.In the remainder of this section, we apply these results together with the resultsof previous section concerning optimal nonpreemptive scheduling in order to obtainoptimal preemptive schedules.4.4.3 ApplicationsWe �rst consider the maximum lateness of in-forests. For a given in-forestG 2 Gif withprocessing times p1; � � � ; pn and due dates d1; � � � ; dn, we de�ne an in-forest G0 2 Gifsuch that G0 has the same set of tasks, the same precedence constraints and the sameprocessing times. The due dates in G0 are modi�ed as in (4.1). It can be shown [21]that such a modi�cation on the due dates does not change the maximum lateness ofany feasible schedule. It then follows from Theorems 4.3.5 and 4.4.1 thatCorollary 4.4.1 If G 2 Gif is an in-forest, and M 2 Miz is an increasing zigzag pro-�le, then the SLF schedule de�ned on the modi�ed due dates minimizes the maximumlateness within the class of preemptive schedules.19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 13Note that this result extends Theorem 7.3 of Lawler [19] to the case of increasingzigzag variable pro�le. It is possible to apply Theorem 4.4.1 to the case of arbitrarytask graph and constant pro�le with two processors. In such a case, a new proof ofTheorem 8.3 of Lawler [19] may be obtained for the case of identical processors (see[29]).Consider now the makespan minimization problem. For the simplest case of the taskgraphs: the chains, it follows from Theorems 4.3.2 and 4.4.2 thatCorollary 4.4.2 For any graph consisting of chains and for any pro�le, the LRPschedule is an optimal preemptive schedule for makespan minimization.Note that in the preemptive case, scheduling problems for a union of disjoint chainsand for a set of independent tasks are equivalent.In the case of forests, as a consequence of Corollary 4.3.1 and Theorem 4.4.2, weobtainCorollary 4.4.3 If G is an in-forest and M is an increasing zigzag pro�le, or if G isan out-forest and M is a decreasing zigzag pro�le, then the LRP schedule minimizesthe makespan within the class of preemptive schedules.Observe that this result extends a result of Muntz and Co�man [25] to the zigzagvariable pro�les.For an arbitrary task graph, since LOS schedule belongs to the class of HLF sched-ules, Theorems 4.3.4 and 4.4.2 allow us to conclude thatCorollary 4.4.4 LRP is an optimal preemptive schedule for makespan minimizationof any task graph G under any pro�le M bounded by 2.This last result extends a result of Muntz and Co�man [24] to variable pro�les.Note that in order to apply Theorems 4.4.1 and 4.4.2, the class of task graphs underconsideration should be closed under expansion. Thus, we cannot apply Theorems 4.3.3and 4.4.2 to obtain the optimality of LRP for graphs with interval order structure, asthis class of graphs does not ful�ll the condition.4.5 Stochastic Pro�le Scheduling4.5.1 Problem DescriptionIn this section, we consider the problem of stochastic scheduling under variable pro�le.We assume that the task processing times are independent and identically distributedrandom variables having a common exponential distribution. These processing timesare independent of the pro�leM = fan;mng1n=1 which is a sequence of random vectors.We assume that the scheduler has no information on the samples of the (remaining)processing times of the tasks. At any time t, an � t < an+1, the scheduler may nothave any information on the truncated sequence fal;mlg1l=n+1. In other words, thescheduler may not know either the future time epochs when the pro�le changes or thenumber of available processors at any future time. Within such a framework, dynamicpreemptive scheduling is necessary.We are interested in the stochastic minimization of makespan. A policy �� is said19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

14 Z. Liu and E. Sanlavilleto stochastically minimize the makespan of (G;M) within the above described class ofpolicies if for any policy � in that class, the makespan of �� is stochastically smallerthan that of �, where a random variable X 2 IR is said to be stochastically smallerthan a random variable Y 2 IR, if for all x 2 IR, P [X � x] � P [Y � x].4.5.2 Optimal Algorithms for Constant Pro�lesWhen the task graph is an in-forest, and the pro�le is a constant 2, Chandy andReynolds [5] proved that the HLF policy minimizes the expected makespan. Bruno[3] subsequently showed that HLF stochastically minimizes the makespan. Pinedoand Weiss [28] extended this last result to the case where tasks at di�erent levelsmay have di�erent expected task running times. Frostig [12] further generalized theresult of Pinedo and Weiss to include increasing likelihood ratio distributions for thetask running times. These results do not hold for systems with three processors, seecounterexamples in [5]. However, Papadimitriou and Tsitsiklis [26] proved that for anyarbitrarily �xed number of processors, HLF is asymptotically optimal as the number oftasks tends to in�nity, provided the task processing times have a common exponentialdistribution.Co�man and Liu [8] investigated the stochastic scheduling of out-forests on iden-tical parallel processors with constant pro�le. For the uniform out-forests where allthe subtrees are ordered by an embedding relation (see de�nition below), they showedthat an intuitive priority scheduling policy induced by the embedding relation, referredto as the Largest Tree First (LTF) policy in this paper, stochastically minimizes themakespan when there are two processors. If in addition, the out-forests satisfy a uni-form root-embedding constraint, then the greedy policy stochastically minimizes themakespan for an arbitrary number of processors.4.5.3 Optimal Algorithms for Variable Pro�lesStochastic pro�le scheduling was �rst investigated by Liu and Sanlaville [22]. Theyconsidered three kinds of task graphs: interval-order graphs, in-forests and out-forests.The results we are going to present in the remainder of this section are due to [22]and were actually obtained in a more general framework: uniform processors, wherethe processors may have di�erent speeds.Interval order graphs. As in the deterministic UET case, MSF (Most Successor First)is optimal when the task graph has an interval-order structure.Theorem 4.5.1 For any interval-order graph G 2 Gio and any pro�le M , MSFstochastically minimizes the makespan of G.The proof uses uniformization technique, i.e., we can consider a coupled processingmodel where all processors 1; � � � ;K, whenever they are available, are continually exe-cuting tasks. When a completion occurs, and no task was assigned to some processor,it corresponds to the completion of a �ctitious task on this processor. When a task isassigned to a processor, it is assigned a running time equal to the remainder of therunning time already underway at that processor. Owing to the memoryless property19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 15of exponential distributions, we can see that this coupled model is equivalent in lawto the initial one.Let G = (V;E) be an interval-order graph, and T (G) = fT1; T2; � � � ; Tgg be a par-tition of V obtained by the equivalence relation on the sets of successors: for all1 � i � g, u; v 2 Ti if and only if S(u) = S(v). The sets T1; � � � ; Tg are labeled in sucha way that for all 1 � i < j � g, u 2 Ti and v 2 Tj imply S(u) � S(v). We de�nea majorization relation: Let G1 = (V 1; E1) and G2 = (V 2; E2) be two subgraphs ofG obtained by successively deleting vertices of G having no predecessor in G or inthe previously obtained subgraphs. It is easy to see that G1 and G2 are in Gio. LetT ji = Ti \ V j , j = 1; 2, i = 1; � � � ; g. Graph G1 is said to be majorized by G2, referredto as G1 �s G2, if and only if8i; 1 � i � g : iXk=1 jT 1k j � iXk=1 jT 2k j;Using now the uniformization technique and the above notion of majorization, oneproves the following properties:� Let G1 = (V 1; E1) and G2 = (V 2; E2) be two subgraphs of G 2 Gio obtained bysuccessively deleting vertices of G having no predecessor in G or in the previouslyobtained subgraphs. If G1 �s G2, then under MSF policy, the makespan of G1 isstochastically smaller than that of G2.� Let G 2 Gio be a task graph. Let � be a policy which follows the MSF rule all thetime except at the �rst decision epoch. Then, the makespan of G under MSF isstochastically smaller than that under �.This last property together with a backward induction allow us to conclude Theo-rem 4.5.1.In-forests. When the task graph is an in-forest, we haveTheorem 4.5.2 For any in-forest G 2 Gif and any pro�le M bounded by 2, HLFstochastically minimizes the makespan of G.The scheme of the proof is similar. However, we have to use another majorizationrelation, referred to as \
atter than" in [5]. Let G1 = (V 1; E1) and G2 = (V 2; E2) betwo in-forests. Forest G1 is said to be
atter than G2, denoted by G1 �f G2, if andonly if 8i; i � 0 : Xk�iNk(G1) �Xk�iNk(G2);where Nk(G) denotes the number of vertices at level k of graph G.Out-forests. Suppose now that the task graph is an out-forest. Even for a pro�lebounded by two, examples may easily be found for which the HLF policy is notoptimal (even in term of expected makespan), see [8]. Instead of HLF, the greedypolicy LTF introduced in [8] turns out to be optimal in a subclass of out-forests.Let G = (V;E) 2 Gof be an out-forest. Vertex v 2 V and all its successors form a19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

16 Z. Liu and E. Sanlavillesubtree of G, denoted by TG(v) or simply T (v) when there is no ambiguity. We denoteby jT (v)j the size of T (v), i.e. its number of vertices.The Largest Tree First (LTF) policy is de�ned as follows: at any decision epoch,LTF assigns the task v whose subtree T (v) is the largest among all subtrees of theenabled tasks to an available processor. In general, policy LTF is not optimal withinthe class of out-forests Gof . Counterexamples were provided in [8]. However, withinthe classes of uniform and r-uniform out-forests (introduced in [8]), a policy is optimalif and only if it is LTF.Let T1; T2 2 Gof be two out-trees. Out-tree T1 is said to embed out-tree T2, or T2 isembedded in T1, denoted by T1 �e T2 or T2 �e T1, if T2 is isomorphic to a subgraph ofT1. Formally, T1 embeds T2 if there exists an injective function f from T2 into T1 suchthat 8u; v 2 T2, v 2 s(u) implies f(v) 2 s(f(u)). Function f is called an embeddingfunction.Let r1 and r2 be the roots of the out-trees T1 and T2, respectively. If T1 �e T2 andif there is an embedding function f such that f(r2) = r1, then f is a root-embeddingfunction, and we write T1 �r T2 or T2 �r T1.An out-forest G 2 Gof is said to be uniform (respectively r-uniform) if all its sub-trees fT (v); v 2 Gg can be ordered by the embedding (respectively root-embedding)relation. The class of uniform (respectively r-uniform) forests is denoted by Guof (re-spectively Grof). It is clear that Grof � Guof � Gof .The graph illustrated in Figure 4.6 is a uniform out-forest. However, it is not r-uniform. An example of r-uniform out-forest is given in Figure 4.7.
1

2 3

Figure 4.6 An example of uniform out-forest
1

2 3

Figure 4.7 An example of r-uniform out-forestTheorem 4.5.3 LTF stochastically minimizes the makespan of out-forest G,19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

PROFILE SCHEDULING BY LIST ALGORITHMS 17� if G 2 Guof is uniform and M is bounded by 2,� or if G 2 Grof is r-uniform and M is arbitrary.The scheme of the proof is again similar to that of Theorem 4.5.1, with the majoriza-tion relation being de�ned as the embedding relation between uniform out-forests: LetG1 = (V 1; E1) and G2 = (V 2; E2) be two uniform out-forests. Assume that the ver-tices of G1 and G2 are indexed in such a way thatTG1(1) �e TG1(2) �e � � � �e TG1(jV 1j):TG2(1) �e TG2(2) �e � � � �e TG2(jV 2j):Out-forest G1 is embedded in G2, referred to as G1 �e G2, if and only ifjV 1j � jV 2j; and 8i; 1 � i � jV 1j : TG1(i) �e TG2(i):Similarly, G1 �r G2 if and only ifTG1(1) �r TG1(2) �r � � � �r TG1(jV 1j);TG2(1) �r TG2(2) �r � � � �r TG2(jV 2j);jV 1j � jV 2j; and 8i; 1 � i � jV 1j : TG1(i) �r TG2(i):REFERENCES[1] M. Bartusch, R.H. Mohring, and F.J. Radermacher, \M-machine unit time scheduling:a report on ongoing research", Lecture notes in economics and mathematical systems,304 (1988), pp 165-212, Springer, Berlin.[2] J.L. Bruno, \Deterministic and stochastic problems with tree-like precedence con-straints", NATO conference, Durham England, July 1981.[3] J.L. Bruno, \On scheduling tasks with exponential service times and in-tree precedenceconstraints", Acta Informatica, 22 (1985), pp 139{148.[4] P. Brucker, M. R. Garey and D. S. Johnson, \Scheduling equal-length tasks undertreelike precedence constraints to minimize maximum lateness", Math. of Oper. Res.,2 (1977), pp 275{284.[5] K. M. Chandy and P. F. Reynolds, \Scheduling partially ordered tasks with proba-bilistic execution times", Operating System Review, 9 (1975), pp 169{177.[6] E. G. Co�man, Jr. (ed.) Computer and job-shop scheduling theory, Wiley, New York,1976.[7] E. G. Co�man, Jr. and R. L. Graham, \Optimal scheduling for two-processor systems",Acta Informatica, 1 (1972), pp 200{213.[8] E. G. Co�man, Jr. and Z. Liu, \On the optimal stochastic scheduling of out-forests",Opns Res., 40 (1992), pp S67{S75.[9] D. Dolev and M. K. Warmuth, \Scheduling precedence graphs of bounded height", J.of Algorithms, 5 (1984), pp 48{59.[10] D. Dolev and M. K. Warmuth, \Scheduling
at graphs", SIAM J. on Comput., 14(1985), pp 638{657.[11] D. Dolev and M. K. Warmuth, \Pro�le scheduling of opposing forests and level orders",SIAM J. Alg. Disc. Meth., 6 (1985), pp 665{687.[12] E. Frostig, \A stochastic scheduling problem with intree precedence constraints", OpnsRes., 36 (1988), pp 937{943.19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

18 Z. Liu and E. Sanlaville[13] M. R. Garey and D. S. Johnson, \Scheduling tasks with nonuniform deadlines on twoprocessors", J. of the ACM, 23 (1976), pp 461{467.[14] M. R. Garey and D. S. Johnson, \Two-processor scheduling with start-times and dead-lines", SIAM J. on Computing, 6 (1977), pp 416-426.[15] M. R. Garey, D. S. Johnson, R. E. Tarjan et M. Yannakakis, \Scheduling oppositeforests", SIAM J. Alg. Disc. Meth., 4 (1983), pp 72{93.[16] T. F. Gonzales and D. B. Johnson, \A new algorithm for preemptive scheduling oftrees", J. of the ACM, 27 (1980), pp 287{312.[17] R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinnooy Kan, \Optimizationand approximation in deterministic sequencing and scheduling: a survey", Ann. Discr.Math., 5 (1979), pp 287{326.[18] T.C. Hu, \Parallel sequencing and assembly line problems", Opns Res., 9 (1961), pp841{848.[19] E. L. Lawler, \Preemptive scheduling of precedence constrained jobs on parallel ma-chines", in Deterministic and Stochastic Scheduling, Dempster et al. (editors), Reidel,1982, pp 101{123.[20] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and D. B. Shmoys, \Sequencingand scheduling: algorithms and complexity", Report BS-R8909, CWI, Amsterdam,Holland, 1989.[21] Z. Liu and E. Sanlaville, \Preemptive scheduling with variable pro�le, precedence con-straints and due dates", Rapport de Recherche MASI No. 92.5, Univ. P. et M. Curie,Paris, 1992, to appear in D.A.M.[22] Z. Liu and E. Sanlaville, \Stochastic scheduling with variable pro�le and precedenceconstraints". Rapport de Recherche INRIA, No. 1525, 1991, Submitted for publication.[23] R. McNaughton, \Scheduling with deadlines and loss functions", Man. Sci., 6 (1959),pp 1{12.[24] R. R. Muntz and E. G. Co�man, Jr., \Optimal preemptive scheduling on two-processorsystems", IEEE Trans. on Comp., C-18 (1969), pp 1014{1020.[25] R. R. Muntz and E. G. Co�man, Jr., \Preemptive scheduling of real-time tasks onmultiprocessor systems", J. of the ACM, 17 (1970), pp 325{338.[26] C. H. Papadimitriou and J. N. Tsitsiklis, \On stochastic scheduling with in-tree prece-dence constraints", SIAM J. Comput., 16 (1987), pp 1{6.[27] C. H. Papadimitriou and M. Yannakakis, \Scheduling interval-ordered tasks", Report11.78, center for research in computer technology Harvard, Cambridge Ma, 1978.[28] M. Pinedo and G. Weiss, \Scheduling jobs with exponentially distributed processingtimes and intree precedence constraints on two parallel machines", Opns Res., 33(1985), pp 1381{1388.[29] E. Sanlaville, Conception et analyse d'algorithmes de liste en ordonnancement pr�eemp-tif. Th�ese de l'universit�e P. et M. Curie, Paris, 1992.[30] G. Schmidt, \Scheduling independent tasks with deadlines on semi-identical proces-sors", J. Opnl Res. Soc., 39 (1988), pp 271{277.[31] J. D. Ullman, \NP-complete scheduling problems" J. Comp. Sys. Sci., 10 (1975), pp384{393.
Zhen LIU : INRIA, Centre Sophia Antipolis, 2004 Route des Lucioles, B.P. 93,06902 Sophia Antipolis, FRANCEEric SANLAVILLE : Laboratoire LITP, Universit�e Pierre et Marie Curie,4, place Jussieu, 75252 Paris Cedex 05, FRANCEThe work of this author was partially supported by INRIA while visiting theGERAD laboratory, Montr�eal, Canada.19/2/1994 17:41|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc01, Vers 01.02 OCT 1993)|bonas

