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Abstract

This paper describes a general framework for designing purely functional datatypes that
automatically satisfy given size or structural constraints. Using the framework we develop
implementations of different matrix types (eg square matrices) and implementations of
several tree types (eg Braun trees, 2-3 trees). Consider, for instance, representing square
n X n matrices. The usual representation using lists of lists fails to meet the structural
constraints: there is no way to ensure that the outer list and the inner lists have the same
length. The main idea of our approach is to solve in a first step a related, but simpler
problem, namely to generate the multiset of all square numbers. In order to describe this
multiset we employ recursion equations involving finite multisets, multiset union, addition
and multiplication lifted to multisets. In a second step we mechanically derive datatype
definitions from these recursion equations which enforce the ‘squareness’ constraint. The
transformation makes essential use of polymorphic types.

Die ganze Zahl schuf der liebe Gott, alles Ubrige ist Menschenwerk.

— Leopold Kronecker

1 Introduction

Many information structures are defined by certain size or structural constraints.
Take, for instance, the class of perfect leaf trees (Hinze, 1999a): a perfect leaf tree
of height 0 is a leaf and a perfect leaf tree of height h + 1 is a node with two
children, each of which is of height h. How can we represent perfect leaf trees
of arbitrary height such that the structural constraints are enforced? The usual
recursive representation of leaf trees is apparently not very helpful since there is no
way to ensure that the children of a node have the same height. As another example,
consider square nxn matrices (Okasaki, 1999). How do we represent square matrices
such that the matrices are actually square? Again, the standard representation
using lists of lists fails to meet the constraints: the outer list and the inner lists
have not necessarily the same length. In this paper, we present a framework that
allows to design representations of perfect leaf trees, square matrices, and many
other information structures that automatically satisfy the given size or structural
constraints.



2 R. Hinze

Let us illustrate the main ideas by means of example. As a first example, we
will devise a representation of Toeplitz matrices (Cormen et al., 1991) where a
Toeplitz matrix is an n x n matrix (a;;) such that a;; = a;_1 ;1 for 1 <i,j < n.
Clearly, to represent a Toeplitz matrix of size n + 1 it suffices to store 2 xn + 1
elements. Now, instead of designing a representation from the scratch we first solve
a related, but apparently simpler problem, namely, to generate the set of all odd
numbers. Actually, we will work with multisets instead of sets for reasons to be
explained later. In order to describe multisets of natural numbers we employ systems
of recursion equations. The following system, for instance, specifies the multiset of
all odd numbers, ie the multiset which contains one occurrence of each odd number.

odd = (15w {25+ odd

Here, { n§ denotes the singleton multiset which contains n exactly once, (&) denotes
multiset union and (+) is addition lifted to multisets: A+ B ={a+b | a + A;b
BS. We agree upon that (+) binds more tightly than (). Now, how can we turn the
equation into a sensible datatype definition for Toeplitz matrices? The first thing
to note is that we are actually looking for a datatype which is parameterized by
the type of matrix elements. Such a type is also known as a type constructor or as
a functor®. An element of a parameterized type is called a container. The equation
above has the following counterpart in the world of functors.

Odd = Id|(Id x Id) x Odd

Here, Id is the identity functor given by Id a = a. Furthermore, (|) and (x) denote
disjoint sums and products lifted to functors, ie (Fy | F3) a = Fy a | F» a and
(F1 x Fy) a = Fi ax Fy a. Comparing the two equations we see that { 1§ corresponds
to Id, (W) corresponds to (|), and (+) corresponds to (x). This immediately implies
that Id x Id corresponds to {1§+ {1§ = {2§. The relationship is very tight: the
functor corresponding to a multiset M contains, for each member of M, a container
of that size. For instance, Id x Id corresponds to {1§+ {1§ = (2§ as it contains
one container of size 2; Id | Id x Id corresponds to {1§w {1§+4 (1§ = {1,2§ as it
contains one container of size 1 and another one of size 2.

Functor equations are written in a compositional style. To derive a datatype
declaration from a functor equation we simply rewrite it into an applicative form
additionally adding constructor names and possibly making cosmetic changes.?

data Toeplitz a = Corner a | Ezxtend a a (Toeplitz a)

The left upper corner of a Toeplitz matrix is represented by Corner a; Eztend r ¢ m
extends the matrix m by an additional row and an additional column, both of which
are represented by elements.

Of course, this is not the only implementation conceivable. Alternatively, we can

I Categorically speaking, a functor must satisfy additional conditions, see (Bird & de Moor, 1997).
All the type constructors listed in this paper are functors in the category-theoretical sense.
2 Examples are given in the functional language Haskell (Peyton Jones & Hughes, 1998).
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define odd in terms of the set of all even numbers.

odd = [1§+ even
even = (0§W (2§ + even
As innocent as this variation may look it has the advantage that the left upper

corner can be accessed in constant time as opposed to linear time with the first
representation.

data Toeplitz a = Toeplitz a (List2 a)
data List2 a = Nil2 | Cons2 a a (List2 a)
Easier still, we may define odd in terms of the natural numbers using the fact that
each odd number is of the form 1 + n % 2 for some n.
odd = [1§+ nat = {2§
nat = (0§W{1§+ nat
The first equation makes use of the multiplication operation, which is defined anal-
ogous to (+). To which operation on functors does multiplication correspond? We
will see that under certain conditions to be spelled out later () corresponds to the
composition of functors (-) given by (Fy - Fy) a = Fy (F a). The functor equations
derived from odd and nat are
Odd Id x Nat - (Id x Id)
Nat = K Unit|Id x Nat .

Here, K t denotes the constant functor given by K ¢t a = t and Unit is the unit type
containing a single element. Unsurprisingly, Nat models the ubiquitous datatype of
polymorphic lists.

data Toeplitz a = Toeplitz a (List (a,a))

data List a = Nil| Cons a (List a)

Thus, to store an even number of elements we simply use a list of pairs. This
representation has the advantage that the list type can be easily replaced by a
more efficient sequence type.

Next, let us apply the technique to design a representation of perfect leaf trees.
The related problem is simple: we have to generate the multiset of all powers of 2.

power = {1§W power % {2§
The corresponding functor equation is
Power = 1Id| Power - (Id x Id) ,
from which we can easily derive the following datatype definition.

data Perfect a = Zero a | Succ (Perfect (a,a))

Thus, a perfect leaf tree of height 0 is a leaf and a perfect leaf tree of height h + 1
is a perfect leaf tree of height h, whose leaves contain pairs of elements. Note that
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this definition proceeds bottom-up, whereas the definition given in the beginning
proceeds top-down. The type Perfect is an example for a so-called nested datatype
(Bird & Meertens, 1998): the recursive call of Perfect on the right-hand side is not
a copy of the declared type on the left-hand side, ie the type recursion is nested.
It is revealing to have a closer look at the types. The table below illustrates the
construction of an element of type Perfect Int ($ always refers to the expression
in the preceding row).

(((1,2),(3,4)),((5,6),(7,8))) = (((Int,Int),(Int, Int)), ((Int, Int), (Int, Int)))

Zero $ i Perfect (((Int, Int), (Int, Int)), ((Int, Int), (Int, Int)))
Succ $ . Perfect ((Int, Int), (Int, Int))

Succ $ i Perfect (Int, Int)

Succ$ :: Perfect Int

We start with a nested pair of integers. Note that the type expression has the same
size as the value expression. Using the constructor Zero the nested pair is turned
into a leaf. Now, each application of Succ halves the size of the type expression. In
each case the typechecker ensures that the elements are pairs of the same type.

As the final example, let us tackle the problem of representing square matrices.
We soon find that the related problem of generating the multiset of all square
numbers is not quite as easy as before. One could be tempted to define square =
nat*nat. However, this does not work since the resulting multiset contains products
of arbitrary numbers. Incidentally, nat * nat is related to List - List, the lists of
lists implementation we already depraved. We must somehow arrange that () is
only applied to singleton multisets. A trick to achieve this is to first rewrite the
definition of nat into a tail-recursive form.

nat = nat' [0§
nat' n = nWnat' ((1§+ n)

The definition of nat' closely resembles the function from :: Int — [Int] given by
from n = n: from (n + 1), which generates the infinite list of successive integers
beginning with n. Now, to obtain square numbers we simple replace n by n % n in
the second equation.

square square’ {0§

square’ n = mn*n W square’ ({1§+ n)

Using this trick we are, in fact, able to enumerate the codomain of an arbitrary
polynomial. Even more interesting, this trick is applicable to other representations
of sequences, as well. But, we are skipping ahead. For now, let us determine the
datatypes corresponding to square and square’. From the functor equations

Square = Square’ (K Unit)
f-f | Square' (Id x f)

Square' f
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we can derive the following datatype declarations.

type Matriz a = Matriz’ Nil a

data Matriz' t a = Zero (t (¢ a)) | Succ (Matriz' (Cons t) a)
data Nil a = Nil

data Cons t a = Consa(ta)

The type constructors Nil and Cons t correspond to K Unit and Id x f. As an
aside, note that Nil and Cons are obtained by decomposing the List datatype into
a base and into a recursive case. Furthermore, note that Square’ is not a functor
but a higher-order functor as it takes functor to functors. Accordingly, Matriz’'
is a type constructor of kind (* — %) — (* — x). Recall that the kind system
of Haskell specifies the ‘type’ of a type constructor (Jones, 1995). The ‘x’ kind
represents nullary constructors like Bool or Int. The kind ki — k2 represents type
constructors that map type constructors of kind x; to those of kind k2. Though
the type of square matrices looks daunting, it is comparatively easy to construct
elements of that type. Here is a square matrix of size 3.

Suce (Suce (Suce (Zero (Cons (Cons a1 (Cons a1o (Cons a3 Nil)))
(Cons (Cons az; (Cons aza (Cons azz Nil)))
(Cons (Cons azy (Cons agz (Cons ags Nil)))
( )

Nil)))))

Perhaps surprisingly, we have essentially a list of lists! The only difference to the
standard representation is that the size of the matrix is additionally encoded into
a prefix of Zero and Succ constructors. It is this prefix that takes care of the size
constraints. The following table shows the construction of Succ® (Zero m) in more
detail (f™ a means f applied n times to a).

m :: Cons® Nil (Cons® Nil Int)
Zero$ : Matriz' (Cons® Nil) Int
Succ$ :: Matriz' (Cons® Nil) Int
Succ$ ' Matriz' (Cons Nil) Int
Succ$ 1 Matriz' Nil Int = Matriz Int

Roughly speaking, the outer applications of the value constructor Cons make sure
that the inner lists have the same length and Zero checks that the inner lists have
the same length as the outer list.

This completes the overview. The rest of the paper is organized as follows. Sec-
tion 2 introduces multisets and operations on multisets. Furthermore, we show how
to transform equations into a tail-recursive form. Section 3 explains functors and
makes the relationship between multisets and functors precise. A multitude of ex-
amples is presented in Section 4: among other things we study random access lists,
Braun trees, 2-3 trees, and square matrices. Finally, Section 5 reviews related work
and points out directions for future work.
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2 Multisets

A multiset of type {a§ is a collection of elements of type a that takes account of
their number but not of their order. In this paper, we will only consider multisets
formed according to the following grammar.

M = @05 | 115 | (M@ M) | (M + M) | (M M)

Here, & denotes the empty multiset, {n§ denotes the singleton multiset which con-
tains n exactly once, (W) denotes multiset union, (+) and (x) are addition and mul-
tiplication lifted to multisets, ie A® B={a ® b | a + A;b + Bf§ for ® € {+, x}.
If the meaning can be resolved from the context, we abbreviate {n§ by n. Further-
more, we agree upon that multiplication takes precedence over addition, which in
turn takes precedence over multiset union.

Multisets are defined by higher-order recursion equations. Higher-order means
that the equations may not only involve multisets, but also functions over multisets,
function over functions over multisets etc. In this paper, we will, however, restrict
ourselves to first-order equations. The exploration of higher-order kinds is the topic
of future research. The meaning of higher-order recursion equations is given by the
usual least fixpoints semantics.

A multiset is called simple iff it is either the empty multiset or a multiset con-
taining a single element arbitrarily often. Simple multiset are denoted by lower case
letters. A product A B is called simple iff B is simple. For instance, nat*2 is simple
while nat * nat is not. We will see in Section 3 that only simple products corre-
spond to compositions of functors. That is, nat*2 corresponds to Nat - (Id x Id) but
nat * nat does not correspond to Nat - Nat. For that reason, we confine ourselves
to simple products when defining multisets.

A multiset is called unique iff each element occurs at most once. For instance, pos
given by pos = 1 W 1 + pos is unique whereas pos = 1 & pos + pos denotes a non-
unique multiset. Note that the first definition corresponds to non-empty lists and
the second to leaf trees. The ability to distinguish between unique and non-unique
representations is the main reason for using multisets instead of sets.

The multiset operations satisfy a variety of laws listed in Figure 1. The laws
have been chosen so that they hold both for multisets and for the corresponding
operations on functors. This explains why, for instance, a * b = b * a is restricted to
simple sets: the corresponding property on functors, F - G = G - F, does not hold
in general. Of course, for functors the equations state isomorphisms rather than
equalities.

In the introduction we have transformed the recursive definition of the multiset
of all natural numbers into a tail-recursive form. In the rest of this section we will
study this transformation in more detail. A function A ::{a§ — {a§ on multisets is
said to be a homomorphism iff h @ = @ and h (AW B) = h AW h B. For instance,
h N = A+ N % b is a homomorphism while ¢ N = N + N is not. Let hq, ..., hy, be
homomorphisms, let A be a multiset, and let X be given by

X = Awh XW---wh, X .
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{(m§+{n§ = {(m+n] AW (BYW(C) = (A¥B)w(C
(m§*x{n§ = [mxnf§ AYgB = BUWA
A+(B+C) = (A+B)+C YA = A
A+B = B+ A g+A = @
0+4 = A gxA = @
Ax(BxC) = (A=*B)xC (AwB)+C = A+C¥B+C
axb = b=xa (AWB)«C = AxCWB=xC
1+A = A (A+B)xc = Axc+B+xc
Ax1l = A 0xA = 0
A, B, C are multisets a, b, c are simple multisets m, n are natural numbers

Fig. 1. Laws of the operations.

The definition of X is not tail-recursive as the recursive occurrences of X are nested
inside function calls. Note that nat is an instance of this scheme with A = {0§,
n =1,and iy N = {1§+ N. Now, the tail-recursive variant of X is f A with f
given by

fN = NWf(hN)W---&Jf(h, N) .
The definition of f is called tail-recursive for obvious reasons. Note that nat’ {0§ is

the tail-recursive variant of nat. The correctness of the transformation is implied
by the following theorem.

Theorem 1
Let X ::{af, A::{af, and f :: {a§ — {a§ be given as above, then X = f A.

3 Functors

In close analogy to multiset expressions we define the syntax of functor expressions
by the following grammar.

F = K Void |K Unit| Id| (F | F) | (F x F) | (F - F)

Here, K t denotes the constant functor given by K t a = ¢, Void is the empty
type, and Unit is the unit type containing a single element. By Id we denote the
identity functor given by Id a = a; F; - Fy denotes functor composition given
by (Fi - F») a = F; (Fy a). Disjoint sums and products are defined pointwise:
(Fi | Fy) a=Fy a| Fy aand (Fy X F3) a=F a X Fy a.

All these constructs can be easily defined in Haskell. First of all, we require the
following type definitions.

type Unit = ()
data Either a1 aa = Left ay | Right as
data (a1, a») = (a1, a2)

The predefined types Either a; as and (ay, a2) implement disjoint sums and prod-
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ucts. The operations on functors are then defined by

newtype Id a = Ida

newtype K a b = Ka

newtype Sum t; to a = Sum (Either (t; a) (t2 a))
newtype Prod t, 2 a = Prod (t a,t: a)
newtype Comp t1 ta a = Comp (t (&2 a)) .

Using these type constructors it is straightforward to translate a functor equation
into a Haskell datatype definition. For reasons of readability, we will often define
special instances of the general schemes writing Nil instead of K Unit or Cons t
instead of Prod Id t.

The translation of multisets into functors is given by the following table.

mp Mo o {0§ (IS miWme mi+my my*my
f] fg K VOZd K Umt Id f] ‘fg f] X fg f] 'fQ

We say that F' corresponds to M if F is obtained from M using this translation.
In the rest of this section we will briefly sketch the correctness of the translation.
Informally, the functor corresponding to a multiset M contains, for each member of
M, a container of that size. This statement can be made precise using the framework
of polytypic programming (Hinze, 1999b). Briefly, a polytypic function is one which
is defined by induction on the structure of functor expressions. A simple example for
a polytypic function is sum(f)::f N — N which sums a structure of natural numbers.
To make the relationship between multisets and functors precise we furthermore
require the function fan(f)::a — {f a§ which generates the multiset of all structures
of type f a from a given seed of type a.

Theorem 2

If the functor F' corresponds to the multiset M and if M’s definition only involves
simple products, then M = {sum(F') a | a < fan(F) 1§.

The following example shows that it is necessary to restrict products to simple
products: if we compose the functors corresponding to {1, 2§ and {1,3§ we obtain
a functor which corresponds to {1,2,3,4,4,6§. In general, functor composition cor-
responds to the multiset operation (®) given by

A®B = [bi+---+by|a+ A;by « B;...;b, « Bf .

We take a container of type A and fill each of its slots with a container of type B.
Summing the sizes of the B containers yields the overall size. The operations (x)
and (®) coincide only for simple products, ie if the containers of type B all have
equal size.
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4 Examples

In this section we apply the framework to generate efficient implementations of
vectors (aka lists or sequences or arrays) and matrices.

4.1 Lists

A vector or a sequence type contains containers of arbitrary size. The problem
related to designing a sequence type is, of course, to generate the multiset of all
natural numbers. Different ways to describe this set correspond to different imple-
mentations of vectors. Perhaps surprisingly, there is an abundance of ways to solve
this problem. In the introduction we already encountered the most direct solution:

natg = 0W 1+ natg -
If we transform the corresponding functor equation
Natg = K Unit | Id x Natg

into a Haskell datatype, we obtain the ubiquitous datatype of polymorphic lists.

data Vector a = Nil| Cons a (Vector a)

As an example, the list representation of the vector (0,1,2,3,4,5) is

Cons 0 (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 Nil))))) .

The tail-recursive variant of natg is given by

naty = nat} 0

naty n = nWnat] (1+n) .
From the functor equations

Nat, = Nat| (K Unit)

Nat} f = t| Naty (Id x f)

we can derive the following datatype definitions.

type Vector = Vector' Nil
data Vector' t a = Zero (t a) | Succ (Vector' (Cons t) a)

Using this representation the vector (0,1,2,3,4,5) is written somewhat lengthy as

Suce (Suce (Suce (Suce (Suce (Suce (Zero (
Cons 0 (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 Nil)))))))))))) -

Fortunately, we can simplify the definitions slightly. Recall that Vector' is a type
constructor of kind (¥ — %) — (x — x). In this case the ‘higher-orderness’ is,
however, not required. Noting that the first argument of Vector’ is always applied
to the second we can transform Vector' into a first-order functor of kind * — * — *.

type Vector = Vector' ()
data Vector' t @ = Zero t | Succ (Vector' (a,t) a)
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The two variants are related by Vector),, t a = Vector}, (t a) a and Vector}, t a =
Vector),, (K t) a. Note that the type Matriz’ defined in the introduction is not
amenable to this transformation since the first argument of Matriz’ is used at
different instances. Using the first-order definition (0, 1,2, 3,4, 5) is represented by

Suce (Suce (Suce (Suce (Suce (Suce (Zero (0, (1, (2, (3, (4, 5, O)ONNNN))) -

4.2 Random-access lists

The definition of natq is based on the unary representation of the natural numbers:
a natural number is either zero or the successor of a natural number. Of course,
we can also base the definition on the binary number system: a natural number is
either zero, even, or odd.

naty, = 0Wnaty *x2W 14+ naty x2

Transforming the corresponding functor equation

Nat, = K Unit| Naty - (Id x Id) | 1d x Nat, - (Id x Id)

into a Haskell datatype yields

data Vector a = Null | Zero (Vector (a,a)) | One a (Vector (a,a)) .

Interestingly, this definition implements random-access lists (Okasaki, 1998), which
support logarithmic access to individual vector elements. A random-access list is ba-
sically a sequence of perfect leaf trees of increasing height. The vector (0,1,2,3,4,5),
for instance, is represented by

Zero (One (0,1) (One ((2,3),(4,5)) Null)) .

The sequence of Zero and One constructors encodes the size of the vector in bi-
nary representation (with the least significant bit first): we have (011); = 6. The
representation of a vector of size 11 is depicted in Figure 2(a). Note that the repre-
sentation is not unique because of leading zeros: the empty sequence, for example,
can be represented by Null, Zero Null, Zero (Zero Null) etc. There are at least two
ways to repair this defect. The following definition ensures that the leading digit is
always a one.

nats = 0W poss
poss = 1Wposg*x2W 1+ posg x2

More elegantly, one can define a zeroless representation (Okasaki, 1998) which em-
ploys the digits 1 and 2 instead of 0 and 1. We call this variant of the binary number
system 1-2 system.

naty = 0W14+naty*x2W 2+ naty x2

This alternative has the further advantage that accessing the i-th element runs in
O(logi) time (Okasaki, 1998).
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4.3 Fork-node trees

Now, let us transform nat3 into a tail-recursive form.

nats = 0Wposi1
post n = mnWpost (n*2)W poss (14 nx*2)

Note that we may replace n x2 by 2 xn = n + n if posl is called with a simple
multiset as in post 1. The corresponding functor equations look puzzling.

Nats; = K Unit| Post Id
Posy f = f| Poss (f - (Id x Id)) | Post (Id x f - (Id x Id))

In order to improve the readability of the derived datatypes let us define idioms for
2«xn=n+nand 1+2xn=14+n+n.

data Fork t a = Fork (t a) (¢t a)
data Node t a = Node a (t a) (¢t a)

These definitions assume that ¢ is a simple functor. The alternative definitions
newtype Fork t a = Fork (t (a,a)) and data Node ¢ a = Node a (t (a, a)), which
correspond to nx2 and 1+ n %2, work for arbitrary functors but are more awkward
to use. Building upon Fork and Node the Haskell datatypes read

data Vector a = Empty | NonEmpty (Vector' Id a)

data Vector' t @ = Base (t a)
|  Zero (Vector' (Fork t) a)
|  One (Vector' (Node t) a) .

A vector of size n is represented by a complete binary tree of height |log, n] + 1.
A node in the i-th level of this tree is labelled with an element iff the i-th digit
in the binary decomposition of n is one. The lowest level, which corresponds to a
leading one, always contains elements. To the best of the author’s knowledge this
data structure, which we baptize fork-node trees for want of a better name, has
not been described elsewhere. Our running example, the vector (0,1,2,3,4,5), is
represented by

NonEmpty (One (Zero (Base (Fork (Node 0 (Id 1) (Id 2)) (Node 3 (Id 5) (Id 5)))))) .

Again, the size of the vector is encoded into the prefix of constructors: replacing
NonEmpty and One by 1 and Zero by 0 yields the binary decomposition of the size
with the most significant bit first. Figure 2(b) shows a sample vector of 11 elements.
The vector elements are stored in left-to-right preorder: if the tree has a root, it
contains the first element; the elements in the left tree precede the elements in the
right tree. This layout is, however, by no means compelling. Alternatively, one could
store the elements in level order. This choice facilitates the extension of a vector at
the front but complicates accessing a vector element.
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As always for vector types we can ‘firstify’ the type definitions.

data Vector a = FEmpty | NonEmpty (Vector' a a)

data Vector' t a = Baset
|  Zero (Vector' (t,t) a)
|  One (Vector' (a,t,t) a)

The representation of (0,1,2,3,4,5) now consists of nested pairs and triples.

NonEmpty (One (Zero (Base ((0,1,2),(3,4,5)))))

Finally, let us remark that the tail-recursive variant of nat,, which is based on the
1-2 system, yields a similar tree shape: a node on the i-th level contains d elements
where d is the i-th digit in the 1-2 decomposition of the vector’s size.

4.4 Rightist right-perfect trees

The definition of nat, is based on the fact that all natural numbers can be generated
by shifting (n % 2) and setting the least significant bit (1 + n * 2). The following
definition sets bits at arbitrary positions by repeatedly shifting a one.

natg = natg 1
natg p = 0W naty (p*2) W p+ natg (p *2)
Of course, the two definitions are not unrelated, we have
nata xp = mnatgp , (1)

ie naty p generates all multiples of p. In the i-th level of recursion the parameter of
naty equals p*2° if the initial call was nat§ p. Now, transforming the corresponding
functor equations, which assume that f is simple,

Nats = Natg Id
Natg f = f|Natg (f x f)| f x Natg (f x f)

into Haskell datatypes yields

type Vector = Vector' Id

data Vector' t a = Null

| Zero (Vector' (Fork t) a)

|  One (t a) (Vector' (Fork t) a) .

This datatype implements higher-order random-access lists (Hinze, 1998). If we
‘firstify’ the type constructor Vector', we obtain the first-order variant as defined
in Section 4.2. For a discussion of the tradeoffs we refer the interested reader to
(Hinze, 1998). The vector (0,1,2,3,4,5) is represented by

Zero (One (Fork (Id 0) (Id 1)) (One (Fork (Fork (Id 2) (Id 3)) (Fork (Id 4) (Id 6))) Null)) .

Interestingly, using a slight generalization of Theorem 1 we can transform natg
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into a tail-recursive form, as well.

naty = nat, 01

natb, np = nWnath n(p*2)Wnat, (n+p) (p*2)
The function nat’, is related to nats by
n+mnatexp = mnathnp . (2)
Assuming that p is simple we get the following functor equations

Natz = Naty (K Unit) Id
Naty fp = f|Nat;f(pxp)|Naty (f xp)(pxp),

from which we can easily derive the datatype definitions below.

type Vector = Vector' (K Unit) Id

data Vector' t p a = Base (t a)
|  Ewven (Vector' t (Prod p p) a)
| Odd (Vector' (Prod t p) (Prod p p) a)

This datatype implements rightist right-perfect trees or RR-trees (Dielissen &
Kaldewaij, 1995) where the offsprings of the nodes on the left spine form a sequence
of perfect trees of decreasing height. Note that if we change Prod t p to Prod p t
in the last line we obtain leftist left-perfect trees. Here is the vector (0,1,2,3,4,5)
written as an RR-tree.

Even (Odd (Odd (Base (Prod (Prod (K (), Prod (Id 0,1d 1)),
Prod (Prod (Id 2, Id 3), Prod (Id 4, Id 5)))))))

Reading the constructors Fven and Odd as digits (LSB first) gives the size of the
vector. A sample vector of size 11 is shown in Figure 2(c). The ‘firstification’ of
Vector' is left as an exercise to the reader.

4.5 Braun trees

Let us apply the framework to design a representation of Braun trees (Braun &
Rem, 1983). Braun trees are node-oriented trees which are characterized by the
following balance condition: for all subtrees, the size of the left subtree is either
exactly the size of the right subtree, or one element larger. In other words, a Braun
tree of size 2% n + 1 has two children of size n and a Braun tree of size 2 % n + 2 has
a left child of size n + 1 and a right child of size n. This motivates the following
definition.

braun = braun’ 01

braun' nn' = nWbraun' (n+1+n)(n' +1+n)
W braun’ (n' +1+n) (n' +1+n')
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The arguments of braun’ are always two successive natural numbers. From the
corresponding functor equations

Braun = Braun' (K Unit) Id

Braun' f f' = f| Braun' (f x Id x f) (f' x Id x f)
| Braun' (f' x Id x f) (f' x Id x f')

we can derive the following datatype definitions.

data Bin t; t» a = Bin (t1 a) a (2 a)
type Braun = Braun' (K Unit) Id

data Braun' t t' a = Null (¢ a)
|  One (Braun' (Bin t t) (Bin t' t) a)
|  Two (Braun' (Bin t' t) (Bin t' t') a)

Interestingly, Braun trees are based on the 1-2 number system (MSB first). The
vector (0,1,2,3,4,5), for instance, is represented as follows.

Two (Two (Null (Bin (Bin (Id 0) 1 (Id 2)) 3 (Bin (Id 4) 5 (K ())))))

Figure 2(d) displays the representation of a vector of 11 elements. R. Paterson has
described a similar implementation (personal communication).

4-6 2-3 trees

Up to now we have mainly considered unique representations where the shape of
a data structure is completely determined by the number of elements it contains.
Interestingly, unique representations are not well-suited for implementing search
trees: one can prove a lower bound of Q(y/n) for insertion and deletion in this case
(Snyder, 1977). For that reason, popular search tree schemes such as 2-3 trees (Aho
et al., 1983), red-black trees (Guibas & Sedgewick, 1978), or AVL-trees (Adel’son-
Vel’skii & Landis, 1962) are always based on non-unique representations. Let us
consider how to implement, say, 2-3 trees. The other search tree schemes can be
handled analogously. The definition of 2-3 trees is similar to that of perfect leaf
trees: a 2-3 tree of height 0 is a leaf and a 2-3 tree of height h + 1 is a node with
either two or three children, each of which is a 2-3 tree of height h. This similarity
suggests to model 2-3 trees as follows.

tree23 = tree23' 0
tree23' N = N Witree23 (N+1+NWUN+1+N+1+N)

Note that contrary to previous definitions the parameter of the auxiliary function
does not range over simple sets. The corresponding functor equations

Tree23 = Tree23' (K Unit)
Tree23' FF' = F | Tree23 (FxIdxF|F xIdxF xIdxF)



Manufacturing Datatypes 15

NonEmpty
\
Ze‘ro
O‘ne
O‘ne
Oﬁne — One — Zero— One — Null Base
(a) random-access list (b) fork-node tree
O‘dd
O‘dd T1‘U0
Ev‘en One
\
O‘dd One
\
Base Null
0
0 0 0 0
(c) rightist right-perfect tree (d) Braun tree

Fig. 2. Different representations of a vector with 11 elements.

give rise to the following datatype definitions.

type Tree23 a = Tree23' Nil a
data Tree23' t a = Zero (t a) | Succ (Tree23' (Node23 t) a)
data Node23 t a = Node2 (t a) a (t a) | Node3 (t a) a (t a) a (¢ a)

The vector (0,1,2,3,4,5) has three different representations; one alternative is

Suce (Suce (Zero (Node3 (Node3 Nil 0 Nil 1 Nil) 2 (Node2 Nil 3 Nil)
4 (Node2 Nil 5 Nil)))) .

Algorithms for insertion and deletion are described in (Hinze, 1998).
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NonEmpty

\
O‘ne
Ze‘m

Base

Fig. 3. The representation of a 6 x 6 matrix based on fork-node trees.

4.7 Matrices

Let us finally design representations of square matrices and rectangular matrices. In
the introduction we have already discussed the central idea: we take a tail-recursive
definition of the natural numbers (or of the positive numbers)

X = fa
fn = nWfmnw--Wf(h, n)

and replace n by n x n in the second equation:

square = square' a

square’ n = mnxn 4 square’ (hh n) W - square’ (h, n) .

This transformation works provided a is a simple multiset and the h; preserve
simplicity. These conditions hold for all of the examples above with the notable
exception of 2-3 trees. As a concrete example, here is an implementation of square
matrices based on fork-node trees.

data Matriz a = Empty | NonEmpty (Matriz' Id a)
data Matriz' t @ = Base (t (t a))

| Zero (Matriz' (Fork t) a)

|  One (Matriz' (Node t) a)

The representation of a 6 x 6 matrix is shown in Figure 3.
Rectangular matrices are equally easy to implement. In this case we replace n by
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nat * n in the second equation:

rect = rect' a
rect' n = mnatxnWrect’ (hy n)W---Wrect’ (h, n) .

Alternatively, one may use the following scheme.

rect = rect' aa
rect' mn = mxnWrect’' (hy m) (hy n) W---Wrect' (hy m) (hy, n)
W---

W rect’ (h, m) (b n) W - W rect’ (h, m) (hy, n)

This representation requires more constructors than the first one (n? + 1 instead of
n + 1). On the positive side, it can be easily generalized to higher dimensions.

5 Related and future work

This work is inspired by a recent paper of C. Okasaki (Okasaki, 1999) who derives
representations of square matrices from exponentiation algorithms. He shows, in
particular, that the tail-recursive version of the fast exponentiation gives rise to
an implementation based on rightist right-perfect trees. Interestingly, the simpler
implementation based on fork-node trees is not mentioned. The reason is probably
that fast exponentiation algorithms typically process the bits from least to most
significant bit while fork-node trees and Braun trees are based on the reverse order.
The relationship between number systems and data structures is explained at great
length in (Okasaki, 1998). The development in Section 3 can be seen as putting this
design principle on a formal basis.

Directions for future work suggest themselves. It remains to adapt the standard
vector and matrix algorithms to the new representations. Some preparatory work
has been done in this respect. In (1998) the author shows how to adapt search tree
algorithms to nested representations of search trees using constructor classes. It is
conceivable that this approach can be applied to matrix algorithms, as well. Fur-
thermore, many functions like map, listify, sum etc can be generated automatically
using the technique of polytypic programming (Hinze, 1999b). On the theoreti-
cal side, it would be interesting to investigate the expressiveness of the framework
and of higher-order polymorphic types in general. Which class of multisets can be
described using higher-order recursion equations? For instance, it appears to be
impossible to specify the multisets of all prime numbers. Do higher-order kinds
increase the expressiveness?
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