
1Manufacturing DatatypesApril 1999RALF HINZEInstitut f�ur Informatik III, Universit�at BonnR�omerstra�e 164, 53117 Bonn, Germany(e-mail: ralf@informatik.uni-bonn.de)AbstractThis paper describes a general framework for designing purely functional datatypes thatautomatically satisfy given size or structural constraints. Using the framework we developimplementations of di�erent matrix types (eg square matrices) and implementations ofseveral tree types (eg Braun trees, 2-3 trees). Consider, for instance, representing squaren � n matrices. The usual representation using lists of lists fails to meet the structuralconstraints: there is no way to ensure that the outer list and the inner lists have the samelength. The main idea of our approach is to solve in a �rst step a related, but simplerproblem, namely to generate the multiset of all square numbers. In order to describe thismultiset we employ recursion equations involving �nite multisets, multiset union, additionand multiplication lifted to multisets. In a second step we mechanically derive datatypede�nitions from these recursion equations which enforce the `squareness' constraint. Thetransformation makes essential use of polymorphic types.Die ganze Zahl schuf der liebe Gott, alles �Ubrige ist Menschenwerk.| Leopold Kronecker1 IntroductionMany information structures are de�ned by certain size or structural constraints.Take, for instance, the class of perfect leaf trees (Hinze, 1999a): a perfect leaf treeof height 0 is a leaf and a perfect leaf tree of height h + 1 is a node with twochildren, each of which is of height h. How can we represent perfect leaf treesof arbitrary height such that the structural constraints are enforced? The usualrecursive representation of leaf trees is apparently not very helpful since there is noway to ensure that the children of a node have the same height. As another example,consider square n�nmatrices (Okasaki, 1999). How do we represent square matricessuch that the matrices are actually square? Again, the standard representationusing lists of lists fails to meet the constraints: the outer list and the inner listshave not necessarily the same length. In this paper, we present a framework thatallows to design representations of perfect leaf trees, square matrices, and manyother information structures that automatically satisfy the given size or structuralconstraints.

2 R. HinzeLet us illustrate the main ideas by means of example. As a �rst example, wewill devise a representation of Toeplitz matrices (Cormen et al., 1991) where aToeplitz matrix is an n� n matrix (aij) such that aij = ai�1;j�1 for 1 < i; j 6 n.Clearly, to represent a Toeplitz matrix of size n + 1 it su�ces to store 2 � n + 1elements. Now, instead of designing a representation from the scratch we �rst solvea related, but apparently simpler problem, namely, to generate the set of all oddnumbers. Actually, we will work with multisets instead of sets for reasons to beexplained later. In order to describe multisets of natural numbers we employ systemsof recursion equations. The following system, for instance, speci�es the multiset ofall odd numbers, ie the multiset which contains one occurrence of each odd number.odd = H1I] H2I+ oddHere, HnI denotes the singleton multiset which contains n exactly once, (]) denotesmultiset union and (+) is addition lifted to multisets: A+B = Ha+ b j a A; b BI. We agree upon that (+) binds more tightly than (]). Now, how can we turn theequation into a sensible datatype de�nition for Toeplitz matrices? The �rst thingto note is that we are actually looking for a datatype which is parameterized bythe type of matrix elements. Such a type is also known as a type constructor or asa functor1. An element of a parameterized type is called a container. The equationabove has the following counterpart in the world of functors.Odd = Id j (Id � Id)�OddHere, Id is the identity functor given by Id a = a. Furthermore, (j) and (�) denotedisjoint sums and products lifted to functors, ie (F1 j F2) a = F1 a j F2 a and(F1�F2) a = F1 a�F2 a. Comparing the two equations we see that H1I correspondsto Id , (]) corresponds to (j), and (+) corresponds to (�). This immediately impliesthat Id � Id corresponds to H1I + H1I = H2I. The relationship is very tight: thefunctor corresponding to a multiset M contains, for each member of M , a containerof that size. For instance, Id � Id corresponds to H1I + H1I = H2I as it containsone container of size 2; Id j Id � Id corresponds to H1I] H1I + H1I = H1; 2I as itcontains one container of size 1 and another one of size 2.Functor equations are written in a compositional style. To derive a datatypedeclaration from a functor equation we simply rewrite it into an applicative form|additionally adding constructor names and possibly making cosmetic changes.2data Toeplitz a = Corner a j Extend a a (Toeplitz a)The left upper corner of a Toeplitz matrix is represented by Corner a; Extend r c mextends the matrixm by an additional row and an additional column, both of whichare represented by elements.Of course, this is not the only implementation conceivable. Alternatively, we can1 Categorically speaking, a functor must satisfy additional conditions, see (Bird & de Moor, 1997).All the type constructors listed in this paper are functors in the category-theoretical sense.2 Examples are given in the functional language Haskell (Peyton Jones & Hughes, 1998).

Manufacturing Datatypes 3de�ne odd in terms of the set of all even numbers.odd = H1I+ eveneven = H0I] H2I+ evenAs innocent as this variation may look it has the advantage that the left uppercorner can be accessed in constant time as opposed to linear time with the �rstrepresentation. data Toeplitz a = Toeplitz a (List2 a)data List2 a = Nil2 j Cons2 a a (List2 a)Easier still, we may de�ne odd in terms of the natural numbers using the fact thateach odd number is of the form 1 + n � 2 for some n.odd = H1I+ nat � H2Inat = H0I] H1I+ natThe �rst equation makes use of the multiplication operation, which is de�ned anal-ogous to (+). To which operation on functors does multiplication correspond? Wewill see that under certain conditions to be spelled out later (�) corresponds to thecomposition of functors (�) given by (F1 � F2) a = F1 (F2 a). The functor equationsderived from odd and nat areOdd = Id �Nat � (Id � Id)Nat = K Unit j Id �Nat :Here, K t denotes the constant functor given by K t a = t and Unit is the unit typecontaining a single element. Unsurprisingly, Nat models the ubiquitous datatype ofpolymorphic lists. data Toeplitz a = Toeplitz a (List (a; a))data List a = Nil j Cons a (List a)Thus, to store an even number of elements we simply use a list of pairs. Thisrepresentation has the advantage that the list type can be easily replaced by amore e�cient sequence type.Next, let us apply the technique to design a representation of perfect leaf trees.The related problem is simple: we have to generate the multiset of all powers of 2.power = H1I] power � H2IThe corresponding functor equation isPower = Id j Power � (Id � Id) ;from which we can easily derive the following datatype de�nition.data Perfect a = Zero a j Succ (Perfect (a; a))Thus, a perfect leaf tree of height 0 is a leaf and a perfect leaf tree of height h + 1is a perfect leaf tree of height h, whose leaves contain pairs of elements. Note that

4 R. Hinzethis de�nition proceeds bottom-up, whereas the de�nition given in the beginningproceeds top-down. The type Perfect is an example for a so-called nested datatype(Bird & Meertens, 1998): the recursive call of Perfect on the right-hand side is nota copy of the declared type on the left-hand side, ie the type recursion is nested.It is revealing to have a closer look at the types. The table below illustrates theconstruction of an element of type Perfect Int ($ always refers to the expressionin the preceding row).(((1; 2); (3; 4)); ((5; 6); (7; 8))) :: (((Int ; Int); (Int ; Int)); ((Int ; Int); (Int ; Int)))Zero $:: Perfect (((Int ; Int); (Int ; Int)); ((Int ; Int); (Int ; Int)))Succ $:: Perfect ((Int ; Int); (Int ; Int))Succ $:: Perfect (Int ; Int)Succ $:: Perfect IntWe start with a nested pair of integers. Note that the type expression has the samesize as the value expression. Using the constructor Zero the nested pair is turnedinto a leaf. Now, each application of Succ halves the size of the type expression. Ineach case the typechecker ensures that the elements are pairs of the same type.As the �nal example, let us tackle the problem of representing square matrices.We soon �nd that the related problem of generating the multiset of all squarenumbers is not quite as easy as before. One could be tempted to de�ne square =nat�nat . However, this does not work since the resulting multiset contains productsof arbitrary numbers. Incidentally, nat � nat is related to List � List , the lists oflists implementation we already depraved. We must somehow arrange that (�) isonly applied to singleton multisets. A trick to achieve this is to �rst rewrite thede�nition of nat into a tail-recursive form.nat = nat 0 H0Inat 0 n = n] nat 0 (H1I+ n)The de�nition of nat 0 closely resembles the function from :: Int ! [Int] given byfrom n = n : from (n + 1), which generates the in�nite list of successive integersbeginning with n. Now, to obtain square numbers we simple replace n by n � n inthe second equation.square = square 0 H0Isquare 0 n = n � n] square 0 (H1I+ n)Using this trick we are, in fact, able to enumerate the codomain of an arbitrarypolynomial. Even more interesting, this trick is applicable to other representationsof sequences, as well. But, we are skipping ahead. For now, let us determine thedatatypes corresponding to square and square 0. From the functor equationsSquare = Square 0 (K Unit)Square 0 f = f � f j Square 0 (Id � f)

Manufacturing Datatypes 5we can derive the following datatype declarations.type Matrix a = Matrix 0 Nil adata Matrix 0 t a = Zero (t (t a)) j Succ (Matrix 0 (Cons t) a)data Nil a = Nildata Cons t a = Cons a (t a)The type constructors Nil and Cons t correspond to K Unit and Id � f . As anaside, note that Nil and Cons are obtained by decomposing the List datatype intoa base and into a recursive case. Furthermore, note that Square 0 is not a functorbut a higher-order functor as it takes functor to functors. Accordingly, Matrix 0is a type constructor of kind (� ! �) ! (� ! �). Recall that the kind systemof Haskell speci�es the `type' of a type constructor (Jones, 1995). The `�' kindrepresents nullary constructors like Bool or Int . The kind �1 ! �2 represents typeconstructors that map type constructors of kind �1 to those of kind �2. Thoughthe type of square matrices looks daunting, it is comparatively easy to constructelements of that type. Here is a square matrix of size 3.Succ (Succ (Succ (Zero (Cons (Cons a11 (Cons a12 (Cons a13 Nil)))(Cons (Cons a21 (Cons a22 (Cons a23 Nil)))(Cons (Cons a31 (Cons a32 (Cons a33 Nil)))(Nil)))))))Perhaps surprisingly, we have essentially a list of lists! The only di�erence to thestandard representation is that the size of the matrix is additionally encoded intoa pre�x of Zero and Succ constructors. It is this pre�x that takes care of the sizeconstraints. The following table shows the construction of Succ3 (Zero m) in moredetail (f n a means f applied n times to a).m :: Cons3 Nil (Cons3 Nil Int)Zero $:: Matrix 0 (Cons3 Nil) IntSucc $:: Matrix 0 (Cons2 Nil) IntSucc $:: Matrix 0 (Cons Nil) IntSucc $:: Matrix 0 Nil Int =Matrix IntRoughly speaking, the outer applications of the value constructor Cons make surethat the inner lists have the same length and Zero checks that the inner lists havethe same length as the outer list.This completes the overview. The rest of the paper is organized as follows. Sec-tion 2 introduces multisets and operations on multisets. Furthermore, we show howto transform equations into a tail-recursive form. Section 3 explains functors andmakes the relationship between multisets and functors precise. A multitude of ex-amples is presented in Section 4: among other things we study random access lists,Braun trees, 2-3 trees, and square matrices. Finally, Section 5 reviews related workand points out directions for future work.

6 R. Hinze2 MultisetsA multiset of type HaI is a collection of elements of type a that takes account oftheir number but not of their order. In this paper, we will only consider multisetsformed according to the following grammar.M ::= ? j H0I j H1I j (M] M) j (M +M) j (M �M)Here, ? denotes the empty multiset, HnI denotes the singleton multiset which con-tains n exactly once, (]) denotes multiset union, (+) and (�) are addition and mul-tiplication lifted to multisets, ie A
 B = Ha
 b j a A; b BI for
 2 f+; �g.If the meaning can be resolved from the context, we abbreviate HnI by n. Further-more, we agree upon that multiplication takes precedence over addition, which inturn takes precedence over multiset union.Multisets are de�ned by higher-order recursion equations. Higher-order meansthat the equations may not only involve multisets, but also functions over multisets,function over functions over multisets etc. In this paper, we will, however, restrictourselves to �rst-order equations. The exploration of higher-order kinds is the topicof future research. The meaning of higher-order recursion equations is given by theusual least �xpoints semantics.A multiset is called simple i� it is either the empty multiset or a multiset con-taining a single element arbitrarily often. Simple multiset are denoted by lower caseletters. A product A�B is called simple i� B is simple. For instance, nat �2 is simplewhile nat � nat is not. We will see in Section 3 that only simple products corre-spond to compositions of functors. That is, nat �2 corresponds to Nat � (Id�Id) butnat � nat does not correspond to Nat � Nat . For that reason, we con�ne ourselvesto simple products when de�ning multisets.A multiset is called unique i� each element occurs at most once. For instance, posgiven by pos = 1] 1 + pos is unique whereas pos = 1] pos + pos denotes a non-unique multiset. Note that the �rst de�nition corresponds to non-empty lists andthe second to leaf trees. The ability to distinguish between unique and non-uniquerepresentations is the main reason for using multisets instead of sets.The multiset operations satisfy a variety of laws listed in Figure 1. The lawshave been chosen so that they hold both for multisets and for the correspondingoperations on functors. This explains why, for instance, a � b = b �a is restricted tosimple sets: the corresponding property on functors, F � G = G � F , does not holdin general. Of course, for functors the equations state isomorphisms rather thanequalities.In the introduction we have transformed the recursive de�nition of the multisetof all natural numbers into a tail-recursive form. In the rest of this section we willstudy this transformation in more detail. A function h :: HaI! HaI on multisets issaid to be a homomorphism i� h ? = ? and h (A] B) = h A] h B . For instance,h N = A+N � b is a homomorphism while g N = N +N is not. Let h1, . . . , hn behomomorphisms, let A be a multiset, and let X be given byX = A] h1 X] � � �] hn X :

Manufacturing Datatypes 7HmI+ HnI = Hm + nIHmI � HnI = Hm � nI A] (B] C) = (A] B)] CA] B = B] AA+ (B + C) = (A+B) + CA+ B = B +A0 +A = A ?] A = A?+A = ?? �A = ?A � (B � C) = (A � B) � Ca � b = b � a1 � A = AA � 1 = A (A] B) + C = A+ C] B + C(A] B) � C = A � C] B � C(A+B) � c = A � c +B � c0 � A = 0A, B , C are multisets a, b, c are simple multisets m, n are natural numbersFig. 1. Laws of the operations.The de�nition of X is not tail-recursive as the recursive occurrences of X are nestedinside function calls. Note that nat is an instance of this scheme with A = H0I,n = 1, and h1 N = H1I + N . Now, the tail-recursive variant of X is f A with fgiven by f N = N] f (h1 N)] � � �] f (hn N) :The de�nition of f is called tail-recursive for obvious reasons. Note that nat 0 H0I isthe tail-recursive variant of nat . The correctness of the transformation is impliedby the following theorem.Theorem 1Let X :: HaI, A :: HaI, and f :: HaI! HaI be given as above, then X = f A.3 FunctorsIn close analogy to multiset expressions we de�ne the syntax of functor expressionsby the following grammar.F ::= K Void j K Unit j Id j (F j F) j (F � F) j (F � F)Here, K t denotes the constant functor given by K t a = t , Void is the emptytype, and Unit is the unit type containing a single element. By Id we denote theidentity functor given by Id a = a; F1 � F2 denotes functor composition givenby (F1 � F2) a = F1 (F2 a). Disjoint sums and products are de�ned pointwise:(F1 j F2) a = F1 a j F2 a and (F1 � F2) a = F1 a � F2 a.All these constructs can be easily de�ned in Haskell. First of all, we require thefollowing type de�nitions.type Unit = ()data Either a1 a2 = Left a1 j Right a2data (a1; a2) = (a1; a2)The prede�ned types Either a1 a2 and (a1; a2) implement disjoint sums and prod-

8 R. Hinzeucts. The operations on functors are then de�ned bynewtype Id a = Id anewtype K a b = K anewtype Sum t1 t2 a = Sum (Either (t1 a) (t2 a))newtype Prod t1 t2 a = Prod (t1 a; t2 a)newtype Comp t1 t2 a = Comp (t1 (t2 a)) :Using these type constructors it is straightforward to translate a functor equationinto a Haskell datatype de�nition. For reasons of readability, we will often de�nespecial instances of the general schemes writing Nil instead of K Unit or Cons tinstead of Prod Id t .The translation of multisets into functors is given by the following table.m1 m2 ? H0I H1I m1] m2 m1 +m2 m1 �m2f1 f2 K Void K Unit Id f1 j f2 f1 � f2 f1 � f2We say that F corresponds to M if F is obtained from M using this translation.In the rest of this section we will briey sketch the correctness of the translation.Informally, the functor corresponding to a multiset M contains, for each member ofM , a container of that size. This statement can be made precise using the frameworkof polytypic programming (Hinze, 1999b). Briey, a polytypic function is one whichis de�ned by induction on the structure of functor expressions. A simple example fora polytypic function is sumhf i::f N ! N which sums a structure of natural numbers.To make the relationship between multisets and functors precise we furthermorerequire the function fanhf i::a ! Hf aI which generates the multiset of all structuresof type f a from a given seed of type a.Theorem 2If the functor F corresponds to the multiset M and if M 's de�nition only involvessimple products, then M = HsumhF i a j a fanhF i 1I.The following example shows that it is necessary to restrict products to simpleproducts: if we compose the functors corresponding to H1; 2I and H1; 3I we obtaina functor which corresponds to H1; 2; 3; 4; 4; 6I. In general, functor composition cor-responds to the multiset operation (�) given byA� B = Hb1 + � � �+ ba j a A; b1 B ; : : : ; ba BI :We take a container of type A and �ll each of its slots with a container of type B .Summing the sizes of the B containers yields the overall size. The operations (�)and (�) coincide only for simple products, ie if the containers of type B all haveequal size.

Manufacturing Datatypes 94 ExamplesIn this section we apply the framework to generate e�cient implementations ofvectors (aka lists or sequences or arrays) and matrices.4.1 ListsA vector or a sequence type contains containers of arbitrary size. The problemrelated to designing a sequence type is, of course, to generate the multiset of allnatural numbers. Di�erent ways to describe this set correspond to di�erent imple-mentations of vectors. Perhaps surprisingly, there is an abundance of ways to solvethis problem. In the introduction we already encountered the most direct solution:nat0 = 0] 1 + nat0 :If we transform the corresponding functor equationNat0 = K Unit j Id � Nat0into a Haskell datatype, we obtain the ubiquitous datatype of polymorphic lists.data Vector a = Nil j Cons a (Vector a)As an example, the list representation of the vector (0; 1; 2; 3; 4; 5) isCons 0 (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 Nil))))) :The tail-recursive variant of nat0 is given bynat1 = nat 01 0nat 01 n = n] nat 01 (1 + n) :From the functor equationsNat1 = Nat 01 (K Unit)Nat 01 f = t j Nat 01 (Id � f)we can derive the following datatype de�nitions.type Vector = Vector 0 Nildata Vector 0 t a = Zero (t a) j Succ (Vector 0 (Cons t) a)Using this representation the vector (0; 1; 2; 3; 4; 5) is written somewhat lengthy asSucc (Succ (Succ (Succ (Succ (Succ (Zero (Cons 0 (Cons 1 (Cons 2 (Cons 3 (Cons 4 (Cons 5 Nil)))))))))))) :Fortunately, we can simplify the de�nitions slightly. Recall that Vector 0 is a typeconstructor of kind (� ! �) ! (� ! �). In this case the `higher-orderness' is,however, not required. Noting that the �rst argument of Vector 0 is always appliedto the second we can transform Vector 0 into a �rst-order functor of kind � ! � ! �.type Vector = Vector 0 ()data Vector 0 t a = Zero t j Succ (Vector 0 (a; t) a)

10 R. HinzeThe two variants are related by Vector 0ho t a = Vector 0fo (t a) a and Vector 0fo t a =Vector 0ho (K t) a. Note that the type Matrix 0 de�ned in the introduction is notamenable to this transformation since the �rst argument of Matrix 0 is used atdi�erent instances. Using the �rst-order de�nition (0; 1; 2; 3; 4; 5) is represented bySucc (Succ (Succ (Succ (Succ (Succ (Zero (0; (1; (2; (3; (4; (5; ())))))))))))) :4.2 Random-access listsThe de�nition of nat0 is based on the unary representation of the natural numbers:a natural number is either zero or the successor of a natural number. Of course,we can also base the de�nition on the binary number system: a natural number iseither zero, even, or odd.nat2 = 0] nat2 � 2] 1 + nat2 � 2Transforming the corresponding functor equationNat2 = K Unit j Nat2 � (Id � Id) j Id �Nat2 � (Id � Id)into a Haskell datatype yieldsdata Vector a = Null j Zero (Vector (a; a)) j One a (Vector (a; a)) :Interestingly, this de�nition implements random-access lists (Okasaki, 1998), whichsupport logarithmic access to individual vector elements. A random-access list is ba-sically a sequence of perfect leaf trees of increasing height. The vector (0; 1; 2; 3; 4; 5),for instance, is represented byZero (One (0; 1) (One ((2; 3); (4; 5)) Null)) :The sequence of Zero and One constructors encodes the size of the vector in bi-nary representation (with the least signi�cant bit �rst): we have (011)2 = 6. Therepresentation of a vector of size 11 is depicted in Figure 2(a). Note that the repre-sentation is not unique because of leading zeros: the empty sequence, for example,can be represented by Null , Zero Null , Zero (Zero Null) etc. There are at least twoways to repair this defect. The following de�nition ensures that the leading digit isalways a one. nat3 = 0] pos3pos3 = 1] pos3 � 2] 1 + pos3 � 2More elegantly, one can de�ne a zeroless representation (Okasaki, 1998) which em-ploys the digits 1 and 2 instead of 0 and 1. We call this variant of the binary numbersystem 1-2 system. nat4 = 0] 1 + nat4 � 2] 2 + nat4 � 2This alternative has the further advantage that accessing the i-th element runs inO(log i) time (Okasaki, 1998).

Manufacturing Datatypes 114.3 Fork-node treesNow, let us transform nat3 into a tail-recursive form.nat5 = 0] pos 05 1pos 05 n = n] pos 05 (n � 2)] pos 05 (1 + n � 2)Note that we may replace n � 2 by 2 � n = n + n if pos 05 is called with a simplemultiset as in pos 05 1. The corresponding functor equations look puzzling.Nat5 = K Unit j Pos 05 IdPos 05 f = f j Pos 05 (f � (Id � Id)) j Pos 05 (Id � f � (Id � Id))In order to improve the readability of the derived datatypes let us de�ne idioms for2 � n = n + n and 1 + 2 � n = 1 + n + n.data Fork t a = Fork (t a) (t a)data Node t a = Node a (t a) (t a)These de�nitions assume that t is a simple functor. The alternative de�nitionsnewtype Fork t a = Fork (t (a; a)) and data Node t a = Node a (t (a; a)), whichcorrespond to n �2 and 1+n �2, work for arbitrary functors but are more awkwardto use. Building upon Fork and Node the Haskell datatypes readdata Vector a = Empty j NonEmpty (Vector 0 Id a)data Vector 0 t a = Base (t a)j Zero (Vector 0 (Fork t) a)j One (Vector 0 (Node t) a) :A vector of size n is represented by a complete binary tree of height blog2 nc + 1.A node in the i-th level of this tree is labelled with an element i� the i-th digitin the binary decomposition of n is one. The lowest level, which corresponds to aleading one, always contains elements. To the best of the author's knowledge thisdata structure, which we baptize fork-node trees for want of a better name, hasnot been described elsewhere. Our running example, the vector (0; 1; 2; 3; 4; 5), isrepresented byNonEmpty (One (Zero (Base (Fork (Node 0 (Id 1) (Id 2)) (Node 3 (Id 5) (Id 5)))))) :Again, the size of the vector is encoded into the pre�x of constructors: replacingNonEmpty and One by 1 and Zero by 0 yields the binary decomposition of the sizewith the most signi�cant bit �rst. Figure 2(b) shows a sample vector of 11 elements.The vector elements are stored in left-to-right preorder: if the tree has a root, itcontains the �rst element; the elements in the left tree precede the elements in theright tree. This layout is, however, by no means compelling. Alternatively, one couldstore the elements in level order. This choice facilitates the extension of a vector atthe front but complicates accessing a vector element.

12 R. HinzeAs always for vector types we can `�rstify' the type de�nitions.data Vector a = Empty j NonEmpty (Vector 0 a a)data Vector 0 t a = Base tj Zero (Vector 0 (t ; t) a)j One (Vector 0 (a; t ; t) a)The representation of (0; 1; 2; 3; 4; 5) now consists of nested pairs and triples.NonEmpty (One (Zero (Base ((0; 1; 2); (3; 4; 5)))))Finally, let us remark that the tail-recursive variant of nat4, which is based on the1-2 system, yields a similar tree shape: a node on the i-th level contains d elementswhere d is the i-th digit in the 1-2 decomposition of the vector's size.4.4 Rightist right-perfect treesThe de�nition of nat2 is based on the fact that all natural numbers can be generatedby shifting (n � 2) and setting the least signi�cant bit (1 + n � 2). The followingde�nition sets bits at arbitrary positions by repeatedly shifting a one.nat6 = nat 06 1nat 06 p = 0] nat 06 (p � 2)] p + nat 06 (p � 2)Of course, the two de�nitions are not unrelated, we havenat2 � p = nat 06 p ; (1)ie nat 06 p generates all multiples of p. In the i-th level of recursion the parameter ofnat 06 equals p �2i if the initial call was nat 06 p. Now, transforming the correspondingfunctor equations, which assume that f is simple,Nat6 = Nat 06 IdNat 06 f = f j Nat 06 (f � f) j f �Nat 06 (f � f)into Haskell datatypes yieldstype Vector = Vector 0 Iddata Vector 0 t a = Nullj Zero (Vector 0 (Fork t) a)j One (t a) (Vector 0 (Fork t) a) :This datatype implements higher-order random-access lists (Hinze, 1998). If we`�rstify' the type constructor Vector 0, we obtain the �rst-order variant as de�nedin Section 4.2. For a discussion of the tradeo�s we refer the interested reader to(Hinze, 1998). The vector (0; 1; 2; 3; 4; 5) is represented byZero (One (Fork (Id 0) (Id 1)) (One (Fork (Fork (Id 2) (Id 3)) (Fork (Id 4) (Id 6))) Null)) :Interestingly, using a slight generalization of Theorem 1 we can transform nat 06

Manufacturing Datatypes 13into a tail-recursive form, as well.nat7 = nat 07 0 1nat 07 n p = n] nat 07 n (p � 2)] nat 07 (n + p) (p � 2)The function nat 07 is related to nat2 byn + nat2 � p = nat 07 n p : (2)Assuming that p is simple we get the following functor equationsNat7 = Nat 07 (K Unit) IdNat 07 f p = f j Nat 07 f (p � p) j Nat 07 (f � p) (p � p) ;from which we can easily derive the datatype de�nitions below.type Vector = Vector 0 (K Unit) Iddata Vector 0 t p a = Base (t a)j Even (Vector 0 t (Prod p p) a)j Odd (Vector 0 (Prod t p) (Prod p p) a)This datatype implements rightist right-perfect trees or RR-trees (Dielissen &Kaldewaij, 1995) where the o�springs of the nodes on the left spine form a sequenceof perfect trees of decreasing height. Note that if we change Prod t p to Prod p tin the last line we obtain leftist left-perfect trees. Here is the vector (0; 1; 2; 3; 4; 5)written as an RR-tree.Even (Odd (Odd (Base (Prod (Prod (K ();Prod (Id 0; Id 1));Prod (Prod (Id 2; Id 3);Prod (Id 4; Id 5)))))))Reading the constructors Even and Odd as digits (LSB �rst) gives the size of thevector. A sample vector of size 11 is shown in Figure 2(c). The `�rsti�cation' ofVector 0 is left as an exercise to the reader.4.5 Braun treesLet us apply the framework to design a representation of Braun trees (Braun &Rem, 1983). Braun trees are node-oriented trees which are characterized by thefollowing balance condition: for all subtrees, the size of the left subtree is eitherexactly the size of the right subtree, or one element larger. In other words, a Brauntree of size 2 �n+1 has two children of size n and a Braun tree of size 2 �n+2 hasa left child of size n + 1 and a right child of size n. This motivates the followingde�nition. braun = braun 0 0 1braun 0 n n 0 = n] braun 0 (n + 1 + n) (n 0 + 1 + n)] braun 0 (n 0 + 1 + n) (n 0 + 1 + n 0)

14 R. HinzeThe arguments of braun 0 are always two successive natural numbers. From thecorresponding functor equationsBraun = Braun 0 (K Unit) IdBraun 0 f f 0 = f j Braun 0 (f � Id � f) (f 0 � Id � f)j Braun 0 (f 0 � Id � f) (f 0 � Id � f 0)we can derive the following datatype de�nitions.data Bin t1 t2 a = Bin (t1 a) a (t2 a)type Braun = Braun 0 (K Unit) Iddata Braun 0 t t 0 a = Null (t a)j One (Braun 0 (Bin t t) (Bin t 0 t) a)j Two (Braun 0 (Bin t 0 t) (Bin t 0 t 0) a)Interestingly, Braun trees are based on the 1-2 number system (MSB �rst). Thevector (0; 1; 2; 3; 4; 5), for instance, is represented as follows.Two (Two (Null (Bin (Bin (Id 0) 1 (Id 2)) 3 (Bin (Id 4) 5 (K ())))))Figure 2(d) displays the representation of a vector of 11 elements. R. Paterson hasdescribed a similar implementation (personal communication).4.6 2-3 treesUp to now we have mainly considered unique representations where the shape ofa data structure is completely determined by the number of elements it contains.Interestingly, unique representations are not well-suited for implementing searchtrees: one can prove a lower bound of
(pn) for insertion and deletion in this case(Snyder, 1977). For that reason, popular search tree schemes such as 2-3 trees (Ahoet al., 1983), red-black trees (Guibas & Sedgewick, 1978), or AVL-trees (Adel'son-Vel'ski�� & Landis, 1962) are always based on non-unique representations. Let usconsider how to implement, say, 2-3 trees. The other search tree schemes can behandled analogously. The de�nition of 2-3 trees is similar to that of perfect leaftrees: a 2-3 tree of height 0 is a leaf and a 2-3 tree of height h + 1 is a node witheither two or three children, each of which is a 2-3 tree of height h. This similaritysuggests to model 2-3 trees as follows.tree23 = tree23 0 0tree23 0 N = N] tree23 0 (N + 1 +N] N + 1 +N + 1 +N)Note that contrary to previous de�nitions the parameter of the auxiliary functiondoes not range over simple sets. The corresponding functor equationsTree23 = Tree23 0 (K Unit)Tree23 0 F = F j Tree23 0 (F � Id � F j F � Id � F � Id � F)

Manufacturing Datatypes 15
One One Zero One Null

(a) random-access list

NonEmptyZeroOneOneBase
(b) fork-node treeOddOddEvenOddBase() (c) rightist right-perfect tree

TwoOneOneNull
() () () ()(d) Braun treeFig. 2. Di�erent representations of a vector with 11 elements.give rise to the following datatype de�nitions.type Tree23 a = Tree23 0 Nil adata Tree23 0 t a = Zero (t a) j Succ (Tree23 0 (Node23 t) a)data Node23 t a = Node2 (t a) a (t a) j Node3 (t a) a (t a) a (t a)The vector (0; 1; 2; 3; 4; 5) has three di�erent representations; one alternative isSucc (Succ (Zero (Node3 (Node3 Nil 0 Nil 1 Nil) 2 (Node2 Nil 3 Nil)4 (Node2 Nil 5 Nil)))) :Algorithms for insertion and deletion are described in (Hinze, 1998).

16 R. HinzeNonEmptyOneZeroBase

Fig. 3. The representation of a 6� 6 matrix based on fork-node trees.4.7 MatricesLet us �nally design representations of square matrices and rectangular matrices. Inthe introduction we have already discussed the central idea: we take a tail-recursivede�nition of the natural numbers (or of the positive numbers)X = f af n = n] f (h1 n)] � � �] f (hn n)and replace n by n � n in the second equation:square = square 0 asquare 0 n = n � n] square 0 (h1 n)] � � �] square 0 (hn n) :This transformation works provided a is a simple multiset and the hi preservesimplicity. These conditions hold for all of the examples above with the notableexception of 2-3 trees. As a concrete example, here is an implementation of squarematrices based on fork-node trees.data Matrix a = Empty j NonEmpty (Matrix 0 Id a)data Matrix 0 t a = Base (t (t a))j Zero (Matrix 0 (Fork t) a)j One (Matrix 0 (Node t) a)The representation of a 6� 6 matrix is shown in Figure 3.Rectangular matrices are equally easy to implement. In this case we replace n by

Manufacturing Datatypes 17nat � n in the second equation:rect = rect 0 arect 0 n = nat � n] rect 0 (h1 n)] � � �] rect 0 (hn n) :Alternatively, one may use the following scheme.rect = rect 0 a arect 0 m n = m � n] rect 0 (h1 m) (h1 n)] � � �] rect 0 (h1 m) (hn n)] � � �] rect 0 (hn m) (h1 n)] � � �] rect 0 (hn m) (hn n)This representation requires more constructors than the �rst one (n2+1 instead ofn+ 1). On the positive side, it can be easily generalized to higher dimensions.5 Related and future workThis work is inspired by a recent paper of C. Okasaki (Okasaki, 1999) who derivesrepresentations of square matrices from exponentiation algorithms. He shows, inparticular, that the tail-recursive version of the fast exponentiation gives rise toan implementation based on rightist right-perfect trees. Interestingly, the simplerimplementation based on fork-node trees is not mentioned. The reason is probablythat fast exponentiation algorithms typically process the bits from least to mostsigni�cant bit while fork-node trees and Braun trees are based on the reverse order.The relationship between number systems and data structures is explained at greatlength in (Okasaki, 1998). The development in Section 3 can be seen as putting thisdesign principle on a formal basis.Directions for future work suggest themselves. It remains to adapt the standardvector and matrix algorithms to the new representations. Some preparatory workhas been done in this respect. In (1998) the author shows how to adapt search treealgorithms to nested representations of search trees using constructor classes. It isconceivable that this approach can be applied to matrix algorithms, as well. Fur-thermore, many functions like map, listify , sum etc can be generated automaticallyusing the technique of polytypic programming (Hinze, 1999b). On the theoreti-cal side, it would be interesting to investigate the expressiveness of the frameworkand of higher-order polymorphic types in general. Which class of multisets can bedescribed using higher-order recursion equations? For instance, it appears to beimpossible to specify the multisets of all prime numbers. Do higher-order kindsincrease the expressiveness? ReferencesAdel'son-Vel'ski��, G.M., & Landis, Y.M. (1962). An algorithm for the organization ofinformation. Doklady akademiia nauk SSSR, 146, 263{266. English translation inSoviet Math. Dokl. 3, pp. 1259{1263.Aho, Alfred V., Hopcroft, John E., & Ullman, Je�rey D. (1983). Data structures andalgorithms. Addison-Wesley Publishing Company.

18 R. HinzeBird, Richard, & de Moor, Oege. (1997). Algebra of programming. London: Prentice HallEurope.Bird, Richard, &Meertens, Lambert. (1998). Nested datatypes. Pages 52{67 of: Jeuring, J.(ed), Fourth international conference on mathematics of program construction, MPC'98,Marstrand, Sweden. Lecture Notes in Computer Science, vol. 1422. Springer Verlag.Braun, W., & Rem, M. (1983). A logarithmic implementation of exible arrays. Memo-randum MR83/4, Eindhoven University of Technology.Cormen, Thomas H., Leiserson, Charles E., & Rivest, Ronald L. (1991). Introduction toalgorithms. Cambridge, Massachusetts: The MIT Press.Dielissen, Victor J., & Kaldewaij, Anne. (1995). A simple, e�cient, and exible im-plementation of exible arrays. Pages 232{241 of: Third international conference onmathematics of program construction (MPC'95). Lecture Notes in Computer Science,vol. 947. Springer Verlag.Guibas, Leo J., & Sedgewick, Robert. (1978). A diochromatic framework for balancedtrees. Pages 8{21 of: Proceedings of the 19th annual symposium on foundations ofcomputer science. IEEE Computer Society.Hinze, Ralf. 1998 (December). Numerical representations as higher-order nested datatypes.Tech. rept. IAI-TR-98-12. Institut f�ur Informatik III, Universit�at Bonn.Hinze, Ralf. 1999a (March). Perfect trees and bit-reversal permutations. Tech. rept. IAI-TR-99-4. Institut f�ur Informatik III, Universit�at Bonn.Hinze, Ralf. 1999b (March). Polytypic functions over nested datatypes (extended ab-stract). 3rd latin-american conference on functional programming (CLaPF'99).Jones, Mark P. (1995). Functional programming with overloading and higher-order poly-morphism. Pages 97{136 of: First international spring school on advanced functionalprogramming techniques. Lecture Notes in Computer Science, vol. 925. Springer Verlag.Okasaki, Chris. (1998). Purely functional data structures. Cambridge University Press.Okasaki, Chris. (1999). From fast exponentiation to square matrices: An adventure intypes. Submitted for publication.Peyton Jones, Simon, & Hughes, John (eds). 1998 (December). Haskell 98 | A non-strict,purely functional language.Snyder, Lawrence. (1977). On uniquely represented data structures (extended abstract).Pages 142{146 of: 18th annual symposium on foundations of computer science, Provi-dence. Long Beach, Ca., USA: IEEE Computer Society Press.

