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AbstractMonte Carlo maximum likelihood for normalized families of distributions(Geyer and Thompson, 1992) can be used for an extremely broad class ofmodels. Given any family f h� : � 2 � g of nonnegative integrable functions,maximum likelihood estimates in the family obtained by normalizing the thefunctions to integrate to one can be approximated by Monte Carlo, the onlyregularity conditions being a compacti�cation of the parameter space suchthat the the evaluation maps � 7! h�(x) remain continuous. Then with prob-ability one the Monte Carlo approximant to the log likelihood hypoconvergesto the exact log likelihood, its maximizer converges to the exact maximumlikelihood estimate, approximations to pro�le likelihoods hypoconverge to theexact pro�le, and level sets of the approximate likelihood (support regions)converge to the exact sets (in Painlev�e-Kuratowski set convergence). Thesame results hold when there are missing data (Thompson and Guo, 1991,Gelfand and Carlin, 1991) if a Wald-type integrability condition is satis�ed.Asymptotic normality of the Monte Carlo error and convergence of the MonteCarlo approximation to the observed Fisher information are also shown.



1 Monte Carlo Maximum Likelihood1.1 Normalized Families of DensitiesSuppose we have a family of nonnegative functions fh� : � 2 � g on a probabilityspace, all of which are integrable with respect to a measure � and none integratingto zero. Let the integrals be denoted c(�) = R h� d�. Then for each � in � thefunction f� de�ned by f�(x) = 1c(�)h�(x)is a probability density with respect to �. We we call a family f f� : � 2 � g of thisform a normalized family of densities. The function � 7! c(�) is the normalizer ofthe family, and the functions h� are the unnormalized densities of the family. Wedenote the distribution corresponding to � by P� and expectation with respect toP� by E�, i. e. P�(A) = RA f� d� and E�g(X) = R gf� d�.Normalized families are interesting because they include the important specialcases of exponential families and Gibbs distributions and the conditional familiesarising in conditional likelihood inference (Geyer and Thompson, 1992). They alsohave two important mathematical properties. For arbitrary functions h� realizationsX1,X2, . . . from P� can be simulatedwithout knowledge of the normalizer c(�) by theMetropolis-Hastings algorithm (Metropolis, et al., 1953; Hastings, 1970). Moreover,maximum likelihood estimation can be carried out, again without knowledge ofthe normalizer or its derivatives, using these Monte Carlo simulations (Geyer andThompson, 1992). Somewhat surprisingly, since there is so little mathematicalstructure to work with, Monte Carlo maximum likelihood converges for any suchfamily under continuity of the maps � 7! h�(x).The log likelihood corresponding to an observation x we take for convenience tobe the log likelihood ratio against an arbitrary �xed parameter point  l(�) = log h�(x)h (x) � log c(�)c( ) = log h�(x)h (x) � logE h�(X)h (X) (1)since E h�(X)h (X) = Z h�(x)h (x)f (x) d�(x) = 1c( ) Z h�(x) d�(x) = c(�)c( ) : (2)Although the notation suggests that  is a point in the parameter space ofinterest, this is not necessary. h can be any nonnegative integrable function suchthat for any � 2 �, if h (x) = 0 then h�(x) = 0 except perhaps for x in a null set thatmay depend on �. This domination condition is necessary so that the set of pointswhere h (x) = 0 can be ignored in the integrals in (2). Similar domination conditionconditions will be assumed without explicit statement throughout the paper.Given a sample X1, . . ., Xn from P generated by the Metropolis-Hastings algo-rithm, the natural Monte Carlo approximation of the log likelihood isln(�) = log h�(x)h (x) � logEn; h�(X)h (X) (3)1



where En; denotes the `empirical' expectation with respect to P de�ned byEn; g(X) = 1n nXi=1 g(Xi):If the Markov chain X1, X2, . . . generated by the Metropolis-Hastings algorithmis irreducible, then En; g(X) converges almost surely to E g(X) for any integrablefunction g. In particular, ln(�) converges almost surely to l(�), for any �xed �.The `almost surely' here means for almost all sample paths of the Monte Carlosimulation; the observation x is considered �xed. Note that the nullset of samplepaths for which convergence fails may depend on �.Let �̂ be the maximizer of l and let �̂n be a maximizer of ln. Geyer and Thompson(1992) show that if the normalized family is an exponential family, then �̂n convergesto �̂ almost surely. They remark that an analogous result should hold outside ofexponential families. Section 2 gives such a theorem.1.2 Missing DataA similar but subtly di�erent application of Monte Carlo maximum likelihood occurswith missing data (Thompson and Guo, 1991), which includes ordinary (non-Bayes)empirical Bayes as a special case. If f�(x; y) is the joint density with x missing andy observed, then the normalizing constant for the conditional distribution of x giveny is the likelihood f�(y). Again for convenience we use the likelihood ratio againstthe �xed parameter point  , then the log likelihood isl(�) = log f�(y)f (y) = logE ( f�(X;Y )f (X;Y ) ����� Y = y) (4)The natural Monte Carlo approximation of the log likelihood is nowln(�) = logEn; ( f�(X;Y )f (X;Y ) ����� Y = y) = log  1n nXi=1 f�(Xi; y)f (Xi; y)! (5)whereX1,X2, . . . are realizations from the conditional distribution ofX given Y = y,typically simulated using the Metropolis-Hastings algorithm when the normalizingconstant f�(y) is unknown.The subtle di�erence between (3) and (5) relates not to the conditioning|in either case we need to simulate from a density known up to a constant ofproportionality|but to the minus sign in (3). To get convergence results, we needto bound ln uniformly from above on neighborhoods, so in (5) the Monte Carlo aver-age must be bounded above, whereas in (3) the average must (because of the minussign) be bounded below. The former requires an integrability assumption like thatimposed by Wald (1949) to obtain consistency of maximum likelihood; the latterdoes not. 2



1.3 Missing Data in Normalized FamiliesA generalization that includes both of the preceding cases has been proposed byGelfand and Carlin (1991) for estimation in normalizing constant families withmissing data. Now the unnormalized densities are h�(x; y) with x missing and yobserved. Then the log likelihood, obtained by integrating over the missing data, isl(�) = logE  h�(X;Y )h (X;Y ) ����� Y = y!� logE h�(X;Y )h (X;Y ) (6)and its natural Monte Carlo approximation isln(�) = logEn;  h�(X;Y )h (X;Y ) ����� Y = y!� logEn; h�(X;Y )h (X;Y )= log 1n nXi=1 h�(X?i ; y)h (X?i ; y)!� log0@ 1n nXj=1 h�(Xj; Yj)h (Xj ; Yj)1A (7)where X?1 , X?2 , . . . are samples from the conditional distribution of X given Y = yand (X1; Y1), (X2; Y2), . . . are samples from the unconditional distribution (bothfor the parameter value  ). Gelfand and Carlin suggest maximizing (7) to obtainan approximation to the MLE. As in the simple missing data problems of the pre-ceding section, a Wald-type integrability condition seems to be required to assureconvergence.This double sampling is necessary only when the �rst term in (6) cannot becalculated exactly. When it can be, it is better to do so (Geyer et al., 1993). Thenthe situation is the same as in Section 1.1. No Wald-type condition is needed forconvergence.2 Likelihood Convergence2.1 Hypoconvergence of the Monte Carlo LikelihoodOur treatment of the convergence of Monte Carlo likelihood for normalized familiesbegins with a proof that the Monte Carlo log likelihood (3) hypoconverges to theexact log likelihood (1). Hypoconvergence is a type of convergence of functions thatis useful in optimization theory (essentially a one-sided locally uniform convergence).The basics of the theory are given in the appendix (or the reader may just takeequations 8a and 8b as a de�nition).Theorem 1 For a normalized family of densities (Section 1.1), if the parameter set� is a separable metric space (e. g., Rd), if the evaluation maps � 7! h�(x) are(a) lower semicontinuous at each � except for x in a P nullset that may depend on�,(b) upper semicontinuous for the observed x and for x not in a P nullset (that doesnot depend on �), 3



and if the Metropolis-Hastings algorithm is irreducible, then the Monte Carlo loglikelihood (3) hypoconverges to the exact log likelihood (1) with probability one. Alsothe exact log likelihood is upper semicontinuous and the normalizer of the family islower semicontinuous.Proof. What is to be shown is that l � h-lim infn ln � h-limsupn ln � l whichfrom (22) in the appendix is equivalent tol(�) � infB2N (�) lim infn!1 sup'2B ln(') (8a)l(�) � infB2N (�) lim supn!1 sup'2B ln(') (8b)where N (�) denotes the set of neighborhoods of the point �.By assumption there is a countable base B = fB1; B2; . . .g for the topology of �.For any point �, let Nc(�) = B \ N (�). Note that the in�ma over the uncountableset N (�) in (8) can be replaced by in�ma over the countable set Nc(�). Choose acountable dense subset �c = f�1; �2; . . .g as follows. For each n let �n be a point ofBn satisfying l(�n) � sup'2Bn l(')� 1nWe will need limn!1En; h�(X)h (X) = E h�(X)h (X) = c(�)c( ) (9)and limn!1En; inf'2B h'(X)h (X) = E inf'2B h'(X)h (X) (10)to hold simultaneously for all � 2 �c and all B 2 B. This follows from the ir-reducibility assumption, since the union of a countable number of nullsets (oneexception set for each limit) is still a nullset. The in�ma in (10) are measurablebecause of assumption (b) in the theorem.First we tackle (8a). If B 2 B and � 2 B \�cl(�) = limn!1 ln(�) � lim infn!1 sup'2B ln(')by (9). So sup'2B\�c l(') � lim infn!1 sup'2B ln(')and infB2Nc(�) sup'2B\�c l(') � infB2Nc(�) lim infn!1 sup'2B ln(')The left hand side is equal to l(�) if l is upper semicontinuous by the construction of�c. Hence upper semicontinuity of l implies (8a). Since � 7! h�(x) is upper semicon-tinuous and since a sum of upper semicontinuous functions is upper semicontinuous,it remains only to be shown that � log[c(�)=c( )] is upper semicontinuous, which4



is true if the normalizer c(�) is lower semicontinuous, which follows from Fatou'slemma and the lower semicontinuity of � 7! h�(X): if �k ! �c(�) � Z �lim infk!1 h�k (x)� d�(x) � lim infk!1 Z h�k(x) d�(x) = lim infk!1 c(�k)This establishes (8a) and the assertions about upper and lower semicontinuity ofthe log likelihood and the normalizer.NowinfB2Nc(�) lim supn!1 sup'2B ln(') � infB2Nc(�) sup'2B log h'(x)h (x) � log lim infn!1 En; inf'2B h'(X)h (X)!= log h�(x)h (x) � log supB2Nc(�) limn!1En; inf'2B h'(X)h (X)= log h�(x)h (x) � log supB2Nc(�)E inf'2B h'(X)h (X)where the inequality follows from the continuity and monotonicity of the logarithmfunction and because of superadditivity of the supremum operation (and subaddi-tivity of the in�mum operation), and the equalities follow from the upper semicon-tinuity of � 7! h�(x) and from (10). The limit will be equal to l(�) and establish(8b) if supB2Nc(�)E inf'2B h'(X)h (X) = c(�)c( )Now the integrand here satis�es0 � inf'2B h'(x)h (x) � h�(x)h (x) ; 8 x (11)(since � 2 B). Since the right hand side is integrable by (2) and the evaluationmaps are assumed lower semicontinuous, dominated convergence impliessupB2Nc(�)E inf'2B h'(X)h (X) ! E supB2Nc(�) inf'2B h'(X)h (X) = E h�(X)h (X) = c(�)c( ) (12)This completes the proof. 2If we attempt to apply the program of the preceding section to either of themissing data models (Sections 1.2 and 1.3), we �nd it doesn't work without addi-tional assumptions. To get a theorem we impose a Wald-type integrability conditionfollowing Wald (1949).Theorem 2 For the simple missing data problem (Section 1.2), if � is a separablemetric space and evaluation maps � 7! f�(x; y) are(a) upper semicontinuous at each � except for x in a P (XjY = y) nullset that maydepend on �, 5



(b) lower semicontinuous except for x in a P (XjY = y) nullset (that does notdepend on �),if the Metropolis-Hastings algorithm is irreducible, and if for every in � 2 � thereis a neighborhood B of � such thatE  sup'2B f'(X;Y )f (X;Y ) ����� Y = y! <1 (13)then the Monte Carlo log likelihood (5) hypoconverges to the exact log likelihood (4)with probability one. Also the exact log likelihood is continuous.If the evaluation maps are actually continuous except for x in a P (XjY = y)nullset (that does not depend on �), then then (5) also epiconverges to (4) withprobability one.Proof. The argument establishing (8a) remains the same except for the invoca-tion of Fatou's lemma. Now dominated convergence is used to prove l(�k) ! l(�),the dominating function being provided by (13), and this gives continuity of l ratherthan just lower semicontinuity. The argument establishing (8b) remains the same,except that in�ma become suprema and vice versa (because of the change of signof the random term) and (11) must be replaced by (13) in justifying dominatedconvergence.If the evaluation maps are almost surely continuous, then the argument in (11)and (12) is still valid and provesl(�) � supB2N (�) lim infn!1 inf'2B ln(')which together with (8b) implies epiconvergence. 2Remark. Simultaneous hypo- and epiconvergence is equivalent to continuousconvergence, i. e., �n ! � implies ln(�n) ! l(�). In a locally compact space (e. g.Rd) it is also equivalent to continuity of l plus convergence of ln to l uniformly oncompact sets (Rockafellar and Wets, forthcoming, Theorem 3D.7).Theorem 3 For a missing data problem in a normalized family (Section 1.3) if theevaluation maps � 7! h�(x; y) are(a) lower semicontinuous at each � except for (x; y) in a P nullset that may dependon �,(b) upper semicontinuous except for (x; y) in a P nullset (that does not depend on�),(c) continuous for the observed y and for x not in a P (XjY = y) nullset (that doesnot depend on �),if the Metropolis-Hastings algorithm is irreducible, and if (13) holds with f� replacedby h�, then the Monte Carlo log likelihood (7) hypoconverges to the exact log likelihood(6) with probability one. Also the exact log likelihood is upper semicontinuous.6



Proof. This is just a combination of the two preceding proofs. The proof ofTheorem 1 shows that the second term in the log likelihood (7) hypoconverges, andthe proof of Theorem 2 shows that the �rst term simultaneously epiconverges andhypoconverges. The sum thus hypoconverges (see the proof of Theorem 2.15 inAttouch, 1984). 22.2 Convergence of the MLE CalculationTheorem 4 If ln h! l with probability one, if a sequence f�̂ng satis�esln(�̂n) � sup�2� ln(�)� �nwith �n ! 0, and if f�̂ng is contained in a compact set almost surely (resp. inprobability), and if there is a unique maximum likelihood estimate �̂, then �̂n ! �̂and ln(�̂n)! l(�̂) almost surely (resp. in probability).Proof. The assertion about almost sure convergence follows directly from thetheorem and Proposition 1 in the appendix. If f�̂ng is contained in a compact set,then every subsequence has a convergent subsubsequence, and each such subsubse-quence must converge to �̂. Hence the whole sequence converges to �̂. Moreover,the optimal values must converge as well.The assertion about convergence in probability follows by almost the same ar-gument. A sequence bounded in probability is tight, hence every subsequence has asubsubsequence which converges in distribution by Prohorov's theorem. By Skoro-hod representation, the convergence can be considered almost sure, in which case theonly possible limit is �̂. Hence the whole sequence and the optimal values convergein distribution to point masses at �̂ and l(�̂) (which is the same as convergence inprobability). 2The theorem applies trivially when the whole parameter space � is a compactset. This is the usual way in which proofs of this sort proceed, following Wald(1949), who used the one-point compacti�cation, Kiefer and Wolfowitz, (1956), whoused more general compacti�cations, and Bahadur (1971), who gives a very generalformulation, showing that most models are compacti�able in the appropriate topol-ogy (the one induced by vague convergence of the associated probability measures).Lacking a suitable compacti�cation, it would be necessary to establish a uniformbound on the estimator by ad hoc methods.2.3 Convergence of Pro�le LikelihoodsSuppose g is a continuous mapping from the original parameter space � to a newparameter space � (both metric spaces). The pro�le likelihood is the function on �de�ned by lp(�) = sup�2g�1(�) l(�):7



Theorem 5 If the Monte Carlo log likelihood hypoconverges to the exact log like-lihood, and the parameter space � is compact, then the Monte Carlo pro�le loglikelihood hypoconverges to the exact pro�le log likelihood.Proof. What is to be established is the analogue of (8) with l and ln replacedby lp and lp;n. For (8a) we may assume lp(�) > �1. Then for any R < lp(�) thereis a � 2 g�1(�) such thatR � l(�) � infB2N (�) lim infn!1 sup�2B ln(�) � infB2N (�) lim infn!1 sup�2g�1(B) ln(�)where the second inequality is just (8a) and the third inequality is true because thein�mum is over a smaller set, each g�1(B) being a neighborhood of �. Since righthand side is h-liminfn lp;n, this establishes the analogue of (8a).For (8b) we may assume lp(�) < +1. Hence for every � > 0 and � 2 g�1(�),there is by (8b) a neighborhood B�(�) of � such thatl(�) + � � lim supn!1 sup�2B�(�) ln(�):By the compactness assumption there are �1, . . ., �m such that W = Smi=1B�(�i)covers g�1(�). Also by compactness there is a neighborhood B of �, such thatg�1(B) �W . Thenlim supn!1 sup�2g�1(B) ln(�) � lim supn!1 sup�2W ln(�) � supi=1;...;m l(�i) + � � lp(�) + �:This establishes the analog of (8b). 22.4 Convergence of Level SetsHypoconvergence also implies Painlev�e-Kuratowski set convergence (Appendix A.1)for level sets of the of the log likelihood lev� l = f � : l(�) � � g which are usedin forming likelihood-based interval estimates (called support regions in Edwards,1972).We may look either at a �xed level � or at a �xed distance 
 down from themaximum. The latter case makes no sense unless ln(�̂n) ! sup l, which need nothappen, though it must under the assumptions for Theorem 4.Theorem 6 If the ln h! l, thenlim supn lev� ln � lev� llim infn lev� ln � lev� l; � > �;and if cl0@ [�>� lev� l1A = lev� l; (14)8



also holds, then limn lev� ln = lev� l: (15)If, in addition, ln(�̂n)! sup l, thenlim supn levln(�̂n)�
 ln � levsup l�
 llim infn levln(�̂n)�
 ln � levsup l�� l; � < 
;and if (14) also holds for � = sup l� 
, thenlimn levln(�̂n)�
 ln = levsup l�
 l (16)Proof. The assertions about limits inferior and superior are direct consequencesof Theorem 3.1 in Beer, et al. (1992), which says that lim supn lev�n ln � lev� l holdsfor every sequence �n ! � and lim infn lev�n ln � lev� l holds for some sequence�n ! �. The assertions about limits follow from the nesting of level sets and thefact that set limits are closed (lev� l is closed because a hypo-limit is always uppersemicontinuous). 2Before leaving the subject of likelihood convergence it is perhaps worth pausingfor a moment and comparing the results obtained here with the results that areobtainable for the exponential family case (Geyer, 1990, Geyer and Thompson,1992). There the log likelihood and its Monte Carlo approximation are concave, andthis has several consequences that improve the preceding results. First, if the exactlog likelihood has a unique maximizer, the boundedness assumptions of Theorem 4can be dropped, because then a hypoconvergent sequence of concave functions isequi-level-bounded (eventually dominated by a function with compact level sets)(Rockafellar and Wets, forthcoming, Propositions 3C.21 and 3C.22). For the samereason the compactness assumption in Theorem 5 can be dropped. Finally, (14) isautomatically true for any level below the maximum (Rockafellar, 1970, Theorem7.6). So (15) and (16) hold for � < sup l.3 Asymptotic NormalityAsymptotic normality of pn(�̂n� �̂) is very similar to the asymptotics of maximumlikelihood.Theorem 7 Suppose the following assumptions hold(a) The MLE �̂ is unique and the parameter space � contains an open neighborhoodof �̂ in Rd.(b) The Monte Carlo MLE �̂n converges in probability to �̂.(c) c(�) = R h� d� can be di�erentiated twice under the integral sign.(d) pnrln(�̂) L�! N(0; A) for some covariance matrix A.9



(e) B = �r2l(�̂) is positive de�nite.(f) r3ln(�) is bounded in probability uniformly in a neighborhood of �̂.then �r2ln(�̂n)! B; in probability (17)and pn(�̂n � �̂) L�! N(0; B�1AB�1) (18)A proof would be entirely classical and is omitted.All of the conditions except (d) are fairly straightforward, and one can imagineverifying them (if they hold) by standard methods. Condition (e) can be veri�edusing dominated convergence and ergodicity if an integrable function can be foundthat dominates third partial derivatives with respect to theta of h�=h .The conclusion (17) is particularly interesting, since it gives an estimate of theobserved Fisher information, which may be of interest aside from its use in (18).This point has also been made by Gelfand and Carlin (1991), Guo and Thompson(1992), and several discussants of Geyer and Thompson (1992).Condition (d) is hard, if Markov chain Monte Carlo is being used for the simu-lations, because it involves a Markov chain central limit theorem. General Markovchain central limit theorems do exist (Nummelin, 1984; Kipnis and Varadhan, 1986),but can be di�cult to apply in practice, except when the state space is �nite andthe CLT is automatic (Chung, 1967, p. 99 �.) The Kipnis-Varadahn theorem is thesimplest for general state spaces, requiring only reversibility and summability of theautocovariances. A Metropolis-Hastings algorithm can always be arranged so thatthe Markov chain is reversible, a point attributed to P. Green in Besag (1986), butthe summability condition is di�cult. For related work in the speci�c context ofMarkov chain Monte Carlo see Shervish and Carlin (1992), Chan (1993), Liu et al.(1991), Tierney (1991), and Geyer (1993).Assuming that (d) holds, the variance A typically cannot be calculated theoret-ically and must be estimated by Monte Carlo.rln(�) = rh�(x)h�(x) � En; rh�(X)h (X)En; h�(X)h (X) = En; h�t�(x)� t�(X)� h�(X)h (X)iEn; h�(X)h (X) (19)where t�(X) = rh�(X)=h�(X). Using assumption (c) to di�erentiate under theintegral sign rl(�) = rh�(x)h�(x) � rc(�)c(�)= rh�(x)h�(x) � Z rh�(x)h�(x) h�(x)c(�) d�(x)= t�(x)� E�t�(X);10



and this is zero when � = �̂. The denominator in (19) converges to c(�)=c( ); theexpectation of the numerator with respect to P isE (�t�(x)� t�(X)�h�(X)h (X)) = c(�)c( ) Z �t�(x)� t�(y)�f�(y) d�(y)= c(�)c( )�t�(x)�E�t�(X)�;which is also zero when � = �̂. Thus the numerator is the sample mean for afunctional of the Markov chainz�(X) = �t�(x)� t�(X)�h�(X)h (X)which has expectation zero under the stationary distribution. Hence by the contin-uous mapping theorem 1pn nXi=1 z�(Xi) L�! c( )c(�)N(0; A)Let 
(t) = 
(�t) be the lag t autocovariance of z�(Xi) at stationarity, i. e.
(t) = Cov (z�(X0); z�(Xt))when the starting position X0 of the Markov chain is a realization from P , thenfor reversible chains (Kipnis and Varadhan, 1986)A = c(�)2c( )2 +1Xt=�1 
(t) (20)Both factors in (20) can be estimated, c(�)=c( ) by the denominator in (19), andthe sum by standard time series methods (for a review see Geyer, 1993; see alsoHastings, 1970; Geweke, 1992; Han, 1991; and Green and Han, 1992).4 Discussion`Normalized families of densities' are an important class of statistical models. Wenow have two interesting properties that hold for the whole class. The Metropolis-Hastings algorithm can be used to simulate realizations from any distribution in themodel, and Monte Carlo likelihood approximation can be used to do likelihood-basedstatistical inference. When there are no missing data, mere continuity is enough toguarantee convergence. With missing data, Wald-type integrability conditions arerequired. This class is extremely 
exible, allowing a very wide scope for modelingand supporting the notion of a `model liberation movement' called for by ProfessorA. F. M. Smith in his discussion of Geyer and Thompson (1992).11



Monte Carlo likelihood may be useful even in missing data problems where wherethe EM algorithm can be used to calculate the MLE, since the Monte Carlo approx-imates the whole likelihood surface. The use of (17) to approximate the observedFisher information may be useful in problems where analytical methods (Sundberg,1974; Louis, 1982) are intractable. It is especially useful in conjunction with MonteCarlo EM (Tanner and Wei, 1990; Guo and Thompson, 1992), but may also be acompetitor for the SEM algorithm (Meng and Rubin, 1991).AcknowledgementsConversations with Elizabeth Thompson, Julian Besag, and Michael Newton helpedchange my focus from exponential families to the general `normalized families' ofSection 1. The whole approach to convergence of optimization problems used in thispaper comes from a course taught by Terry Rockafellar in 1990 at the University ofWashington using a draft of the book (Rockafellar and Wets, forthcoming). RogerWets provided the reference to Beer et al. (1992), and suggested the approach used inproving Theorem 5. Xiaotong Shen found a mistake in my �rst proof of Theorem 1.A AppendixA.1 Set ConvergenceAt several points the concept of Painlev�e-Kuratowski set convergence (Sec 1.4.1 inAttouch, 1984) was needed. Given a sequence of sets Cn, the set limit superior isthe set lim supn!1 Cn = 1\m=1 cl 1[n=mCn!and the limit inferior is the setlim infn!1 Cn = cl 1[m=1 1\n=m clCn!Note that these are topological convergence notions, di�erent from the set theoreticnotions commonly used in probability theory (de�ned by the same formulas withoutthe closure operations). In a metric space the following de�nitions are equivalentto the preceding ones (Proposition 1.34 in Attouch, 1984). The set limit superior isthe set of points x such that there is a subsequence xnk ! x with xnk 2 Cnk , andthe set limit inferior is the set of points x such that there is a sequence xn ! x withxn 2 Cn for all n after some n0. In short, the limit superior is the set of clusterpoints and the limit inferior is the set of limit points. If the set limits superior andinferior agree, then their common value is said to be the limit of the sequence.12
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