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Abstract

Monte Carlo maximum likelihood for normalized families of distributions
(Geyer and Thompson, 1992) can be used for an extremely broad class of
models. Given any family { hy : 8 € O } of nonnegative integrable functions,
maximum likelihood estimates in the family obtained by normalizing the the
functions to integrate to one can be approximated by Monte Carlo, the only
regularity conditions being a compactification of the parameter space such
that the the evaluation maps 6 — hg(2) remain continuous. Then with prob-
ability one the Monte Carlo approximant to the log likelihood hypoconverges
to the exact log likelihood, its maximizer converges to the exact maximum
likelihood estimate, approximations to profile likelihoods hypoconverge to the
exact profile, and level sets of the approximate likelihood (support regions)
converge to the exact sets (in Painlevé-Kuratowski set convergence). The
same results hold when there are missing data (Thompson and Guo, 1991,
Gelfand and Carlin, 1991) if a Wald-type integrability condition is satisfied.
Asymptotic normality of the Monte Carlo error and convergence of the Monte
Carlo approximation to the observed Fisher information are also shown.



1 Monte Carlo Maximum Likelihood

1.1 Normalized Families of Densities

Suppose we have a family of nonnegative functions { kg : § € © } on a probability
space, all of which are integrable with respect to a measure g and none integrating
to zero. Let the integrals be denoted ¢(8) = [ hgdp. Then for each § in © the
function fy defined by

folw) = —=

is a probability density with respect to y. We we call a family { fy : 6 € © } of this
form a normalized family of densities. The function 6 +— ¢(9) is the normalizer of
the family, and the functions hy are the unnormalized densities of the family. We
denote the distribution corresponding to 6 by P, and expectation with respect to
Py by Fg,i.e. Po(A) = [, fodp and Egg(X) = [ gfodp.

Normalized families are interesting because they include the important special
cases of exponential families and Gibbs distributions and the conditional families
arising in conditional likelihood inference (Geyer and Thompson, 1992). They also
have two important mathematical properties. For arbitrary functions hy realizations
X1, Xa, ... from Py can be simulated without knowledge of the normalizer ¢(8) by the
Metropolis-Hastings algorithm (Metropolis, et al., 1953; Hastings, 1970). Moreover,
maximum likelihood estimation can be carried out, again without knowledge of
the normalizer or its derivatives, using these Monte Carlo simulations (Geyer and
Thompson, 1992). Somewhat surprisingly, since there is so little mathematical
structure to work with, Monte Carlo maximum likelihood converges for any such
family under continuity of the maps 6 — hg(x).

The log likelihood corresponding to an observation = we take for convenience to
be the log likelihood ratio against an arbitrary fixed parameter point

[(0) = log ZZ((:;)) — log cc((Z)) = log Zi((i)) —log E, ZZ(();)) (1)

since

Bt = [ Fe @ ) = o [ = S5 @

Although the notation suggests that i is a point in the parameter space of

interest, this is not necessary. hy can be any nonnegative integrable function such
that for any 6 € O, if hy(2) = 0 then hg(x) = 0 except perhaps for  in a null set that
may depend on . This domination condition is necessary so that the set of points
where hy(2) = 0 can be ignored in the integrals in (2). Similar domination condition
conditions will be assumed without explicit statement throughout the paper.

Given a sample Xy, ..., X, from P, generated by the Metropolis-Hastings algo-
rithm, the natural Monte Carlo approximation of the log likelihood is

ho(X)
h(X) ()

hol(x
1.(6) = log hi((x)) —log B,y
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where F, , denotes the ‘empirical’ expectation with respect to P, defined by

n

Enyg(X) = % > g(Xi).

=1

If the Markov chain X7, X5, ... generated by the Metropolis-Hastings algorithm
is irreducible, then F, ,g(X) converges almost surely to Fyg(X) for any integrable
function ¢g. In particular, [,,(f) converges almost surely to [(), for any fixed .
The ‘almost surely’ here means for almost all sample paths of the Monte Carlo
simulation; the observation x is considered fixed. Note that the nullset of sample
paths for which convergence fails may depend on 6.

Let § be the maximizer of [ and let §,, be a maximizer of I, Geyer and Thompson
(1992) show that if the normalized family is an exponential family, then 0, converges
to § almost surely. They remark that an analogous result should hold outside of
exponential families. Section 2 gives such a theorem.

1.2 Missing Data

A similar but subtly different application of Monte Carlo maximum likelihood occurs
with missing data (Thompson and Guo, 1991), which includes ordinary (non-Bayes)
empirical Bayes as a special case. If fy(x,y) is the joint density with # missing and
y observed, then the normalizing constant for the conditional distribution of = given
y is the likelihood fj(y). Again for convenience we use the likelihood ratio against
the fixed parameter point ¢, then the log likelihood is

fé’(va) _
fw(Xv Y) ‘ ' y}

Jo(y)

0 =log % 1)

~log E¢{ (4)

The natural Monte Carlo approximation of the log likelihood is now

where Xy, Xy, ... are realizations from the conditional distribution of X given Y =y,
typically simulated using the Metropolis-Hastings algorithm when the normalizing
constant f(y) is unknown.

The subtle difference between (3) and (5) relates not to the conditioning—
in either case we need to simulate from a density known up to a constant of
proportionality—but to the minus sign in (3). To get convergence results, we need
to bound /,, uniformly from above on neighborhoods, so in (5) the Monte Carlo aver-
age must be bounded above, whereas in (3) the average must (because of the minus
sign) be bounded below. The former requires an integrability assumption like that
imposed by Wald (1949) to obtain consistency of maximum likelihood; the latter
does not.



1.3 Missing Data in Normalized Families

A generalization that includes both of the preceding cases has been proposed by
Gelfand and Carlin (1991) for estimation in normalizing constant families with
missing data. Now the unnormalized densities are hg(x,y) with @ missing and y
observed. Then the log likelihood, obtained by integrating over the missing data, is

he(X, Y) hé’(X7 Y)
(0)=logky| ———= |Y =y | —log by ———— 6
0 =tos (g | ¥ =) e By 8
and its natural Monte Carlo approximation is
hé’(Xv Y) hé’(Xv Y)
L0)=logb,y| ——=|Y =y | —logk,y ——%
0=t s (TR | ¥ =) e
1 he(X*ay)) 1 S ho(X5,Y))
= log (— | —log | =) ———= (7)
w2 X)) S )
where X7, X7, ... are samples from the conditional distribution of X given Y =y

and (X1,Y7), (X2,Y2), ... are samples from the unconditional distribution (both
for the parameter value ). Gelfand and Carlin suggest maximizing (7) to obtain
an approximation to the MLE. As in the simple missing data problems of the pre-
ceding section, a Wald-type integrability condition seems to be required to assure
convergence.

This double sampling is necessary only when the first term in (6) cannot be
calculated exactly. When it can be, it is better to do so (Geyer et al., 1993). Then
the situation is the same as in Section 1.1. No Wald-type condition is needed for
convergence.

2 Likelihood Convergence

2.1 Hypoconvergence of the Monte Carlo Likelihood

Our treatment of the convergence of Monte Carlo likelihood for normalized families
begins with a proof that the Monte Carlo log likelihood (3) hypoconverges to the
exact log likelihood (1). Hypoconvergence is a type of convergence of functions that
is useful in optimization theory (essentially a one-sided locally uniform convergence).
The basics of the theory are given in the appendix (or the reader may just take
equations 8a and 8b as a definition).

Theorem 1 For a normalized family of densities (Section 1.1), if the parameter set
O is a separable metric space (e. g., R?), if the evaluation maps 0 — hg(z) are

(a) lower semicontinuous at each 6 except for x in a Py nullset that may depend on

0

Y

(b) upper semicontinuous for the observed x and for x not in a Py nullset (that does
not depend on 8),



and if the Metropolis-Hastings algorithm is irreducible, then the Monte Carlo log
likelihood (3) hypoconverges to the exact log likelihood (1) with probability one. Also
the exact log likelihood is upper semicontinuous and the normalizer of the family is
lower semicontinuous.

ProoF. What is to be shown is that [ < h-liminf, [,, < h-limsup,, [,, <[ which
from (22) in the appendix is equivalent to

< .
1(9) < Bé%f(e) hggfztelg () (8a)
1) > inf limsupsupl,(e) (8b)

BeN(0) n—co wEB

where V() denotes the set of neighborhoods of the point 6.

By assumption there is a countable base B = { By, Ba, ...} for the topology of O.
For any point 8, let N.(0) = BN N(6). Note that the infima over the uncountable
set A(6) in (8) can be replaced by infima over the countable set A.(6). Choose a
countable dense subset ©. = {6;,0,,...} as follows. For each n let 0, be a point of
B,, satisfying

118,) 2 sup I(p) — +

@eBn

We will need
he(X) _p, he(X) _ c(0) (9)

B (X))~ clo)

n,Y

" he(X) he(X)
lim E, , inf —2—= = B, inf 2
oo Y G By (X) Y eeB hy(X)
to hold simultaneously for all § € O, and all B € B. This follows from the ir-
reducibility assumption, since the union of a countable number of nullsets (one
exception set for each limit) is still a nullset. The infima in (10) are measurable
because of assumption (b) in the theorem.

First we tackle (8a). If B € Band § € BN O,

(10)

1(0) = lim [,(8) <liminfsup/,(¢)

sup I(¢) < liminfsup l,(¢)
¢€BNO. T weB

inf sup [ < inf liminfsupl,
50 o 20Be, (7)< p i) im0t o 1(2)
The left hand side is equal to () if [ is upper semicontinuous by the construction of
O.. Hence upper semicontinuity of [ implies (8a). Since 6 — hgy(x) is upper semicon-
tinuous and since a sum of upper semicontinuous functions is upper semicontinuous,
it remains only to be shown that —logle(8)/c(v))] is upper semicontinuous, which
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is true if the normalizer ¢() is lower semicontinuous, which follows from Fatou’s
lemma and the lower semicontinuity of  — hg(X): if 6, — 0

) < / (h}gninfhgk (:1;)) du(z) < ligninf he, (@) dp(x) = liminf ¢(0y)

k—o0

This establishes (8a) and the assertions about upper and lower semicontinuity of
the log likelihood and the normalizer.

Now
L . he(2) he(X)
<
Bel/r\l/f(@) llggp Zlelg I(p) < Bel/r\l/f(@) (Zlelg log e — loglim inf £, mf o ()
he(2) h (X)
log —log sup lim F,, mf
hop() BeN.(6) " €8 hy(X)
h ho(X
= log o(2) —log sup FEy inf o(X)
hop() penie) | B hy(X)

where the inequality follows from the continuity and monotonicity of the logarithm
function and because of superadditivity of the supremum operation (and subaddi-
tivity of the infimum operation), and the equalities follow from the upper semicon-
tinuity of § +— hg(x) and from (10). The limit will be equal to [(#) and establish
(8b) if
sup Fy inf ho(X) _ ()
penu(o) | #eB hy(X) ~ o(¢)

Now the integrand here satisfies

hole) _ hole)
P S

vV x (11)

(since §# € B). Since the right hand side is integrable by (2) and the evaluation
maps are assumed lower semicontinuous, dominated convergence implies

— Fy sup inf heo(X) _ pp ho(X) = () (12)

ho(X)
sup By inf =F
b Bento) #€B hy(X)  Uhy(X) T e(¥)

Bent(e)y | #€B hy(X)

This completes the proof. O

It we attempt to apply the program of the preceding section to either of the
missing data models (Sections 1.2 and 1.3), we find it doesn’t work without addi-
tional assumptions. To get a theorem we impose a Wald-type integrability condition

following Wald (1949).

Theorem 2 For the simple missing data problem (Section 1.2), if © is a separable
metric space and evaluation maps 0 — fo(x,y) are

(a) upper semicontinuous at each 0 except for x in a Py(X|Y =y) nullset that may
depend on 0,



b) lower semicontinuous except for x in a Py(X|Y = y) nullset (that does not
P
depend on 8),

if the Metropolis-Hastings algorithm s irreducible, and if for every in 0 € O there
is a neighborhood B of 0 such that

f(XY) |
E(pm \ ' y) <o (13)

then the Monte Carlo log likelihood (5) hypoconverges to the exact log likelihood ()
with probability one. Also the exact log likelihood is continuous.

If the evaluation maps are actually continuous except for x in a Py(X|Y = y)
nullset (that does not depend on 0), then then (5) also epiconverges to (4) with
probability one.

PROOF. The argument establishing (8a) remains the same except for the invoca-
tion of Fatou’s lemma. Now dominated convergence is used to prove [(0;) — 1(6),
the dominating function being provided by (13), and this gives continuity of [ rather
than just lower semicontinuity. The argument establishing (8b) remains the same,
except that infima become suprema and vice versa (because of the change of sign
of the random term) and (11) must be replaced by (13) in justifying dominated
convergence.

If the evaluation maps are almost surely continuous, then the argument in (11)
and (12) is still valid and proves

1(6) < sup liminfinf /,(¢)
BeN(8) " ¢EB

which together with (8b) implies epiconvergence. O

REMARK. Simultaneous hypo- and epiconvergence is equivalent to continuous
convergence, i. e., 8, — 0 implies 1,(0,) — [(0). In a locally compact space (e. g.
R%) it is also equivalent to continuity of [ plus convergence of /, to [ uniformly on
compact sets (Rockafellar and Wets, forthcoming, Theorem 3D.7).

Theorem 3 For a missing data problem in a normalized family (Section 1.3) if the
evaluation maps 0 — hg(x,y) are

(a) lower semicontinuous at each § except for (x,y) in a Py nullset that may depend
on 0,

(b) upper semicontinuous except for (x,y) in a Py nullset (that does not depend on

0),

c) continuous for the observed y and for x not in a Py(X|Y = vy) nullset (that does
[
not depend on (9),

if the Metropolis-Hastings algorithm is irreducible, and if (13) holds with fy replaced
by hg, then the Monte Carlo log likelihood (7) hypoconverges to the exact log likelihood
(6) with probability one. Also the exact log likelihood is upper semicontinuous.
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PrROOF. This is just a combination of the two preceding proofs. The proof of
Theorem 1 shows that the second term in the log likelihood (7) hypoconverges, and
the proof of Theorem 2 shows that the first term simultaneously epiconverges and
hypoconverges. The sum thus hypoconverges (see the proof of Theorem 2.15 in

Attouch, 1984). O

2.2 Convergence of the MLE Calculation
Theorem 4 If [, s 1 with probability one, if a sequence {én} satisfies

L(0,) > sup1,(0) — e,

6co

with ¢, — 0, and if {(9 } is contained in a compact set almost surely (resp n
probabzhty) and if there is a unique mazimum likelihood estimate (9 then 0, — 0
and [, (Gn) — [(0) almost surely (resp. in probability).

PRrROOF. The assertion about almost sure convergence follows directly from the
theorem and Proposition 1 in the appendix. If {é } is contained in a compact set,
then every subsequence has a convergent subsubsequence, and each such subsubse—
quence must converge to d. Hence the whole sequence converges to g, Moreover,
the optimal values must converge as well.

The assertion about convergence in probability follows by almost the same ar-
gument. A sequence bounded in probability is tight, hence every subsequence has a
subsubsequence which converges in distribution by Prohorov’s theorem. By Skoro-
hod representation, the convergence can be considered almost sure, in which case the
only possible limit is 0. Hence the whole sequence and the optimal values converge
in distribution to point masses at 0 and l(é) (which is the same as convergence in
probability). O

The theorem applies trivially when the whole parameter space © is a compact
set. This is the usual way in which proofs of this sort proceed, following Wald
(1949), who used the one-point compactification, Kiefer and Wolfowitz, (1956), who
used more general compactifications, and Bahadur (1971), who gives a very general
formulation, showing that most models are compactifiable in the appropriate topol-
ogy (the one induced by vague convergence of the associated probability measures).
Lacking a suitable compactification, it would be necessary to establish a uniform
bound on the estimator by ad hoc methods.

2.3 Convergence of Profile Likelihoods

Suppose ¢ is a continuous mapping from the original parameter space © to a new
parameter space ® (both metric spaces). The profile likelihood is the function on @
defined by

Li6) = sup 1(0).
g9 ()



Theorem 5 [f the Monte Carlo log likelihood hypoconverges to the exact log like-
lthood, and the parameter space © is compact, then the Monte Carlo profile log
likelihood hypoconverges to the exact profile log likelihood.

PROOF. What is to be established is the analogue of (8) with [ and [, replaced
by I, and [, ,. For (8a) we may assume [,(¢) > —oo. Then for any R < [,(¢) there
isa b€ g (¢) such that

R <[(6) < inf liminfsup/, < inf lminf sup I,
< )_Bew) minfsup (n) piid, iminf sup (n)

where the second inequality is just (8a) and the third inequality is true because the
infimum is over a smaller set, each ¢7'(B) being a neighborhood of 6. Since right
hand side is h-liminf, [, ,, this establishes the analogue of (8a).

For (8b) we may assume [,(¢) < +oo. Hence for every ¢ > 0 and 6 € ¢ '(¢),
there is by (8b) a neighborhood B.(#) of 8 such that

1(0) + € > limsup sup [,(n).
n—oo UEBe(e)

By the compactness assumption there are 6y, ..., 6, such that W = U, B.(9;)
covers ¢~'(¢). Also by compactness there is a neighborhood B of ¢, such that
g '(B) C W. Then

limsup sup [,(n) <limsupsup L,(n) < sup 1(6;) +e <1[,(¢)+e

n—oo neg—1(B) n—oo  peW i=1,...,m

This establishes the analog of (8b). O

2.4 Convergence of Level Sets

Hypoconvergence also implies Painlevé-Kuratowski set convergence (Appendix A.1)
for level sets of the of the log likelihood lev, [ = {6 : () > a} which are used
in forming likelihood-based interval estimates (called support regions in Edwards,
1972).

We may look either at a fixed level o or at a fixed distance v down from the

A

maximum. The latter case makes no sense unless [,,(6,) — sup!, which need not
happen, though it must under the assumptions for Theorem 4.

Theorem 6 If the [, LN [, then

limsup,, lev, [, Clev,

liminf, lev, [, D levgl, B> «,
and if

cl ( L levg l) = lev, I, (14)

B>a



also holds, then
lim, lev, [, = lev, [. (15)

If, in addition, ln(én) — supl, then

lim sup,, levln(gn)_w I, Cleveypi—y [

lim inf, levln(én)_w I, D leveupi—s I, 0 <7,
and if (14) also holds for o = supl —~, then

lim,, levln(én)_

J = levayp iy 1 (16)

PROOF. The assertions about limits inferior and superior are direct consequences
of Theorem 3.1 in Beer, et al. (1992), which says that lim sup,, lev,, [, C lev, [ holds
for every sequence «,, — « and liminf, lev, [, D lev, [ holds for some sequence
a, — «. The assertions about limits follow from the nesting of level sets and the
fact that set limits are closed (lev, [ is closed because a hypo-limit is always upper
semicontinuous). O

Before leaving the subject of likelihood convergence it is perhaps worth pausing
for a moment and comparing the results obtained here with the results that are
obtainable for the exponential family case (Geyer, 1990, Geyer and Thompson,
1992). There the log likelihood and its Monte Carlo approximation are concave, and
this has several consequences that improve the preceding results. First, if the exact
log likelihood has a unique maximizer, the boundedness assumptions of Theorem 4
can be dropped, because then a hypoconvergent sequence of concave functions is
equi-level-bounded (eventually dominated by a function with compact level sets)
(Rockafellar and Wets, forthcoming, Propositions 3C.21 and 3C.22). For the same
reason the compactness assumption in Theorem 5 can be dropped. Finally, (14) is
automatically true for any level below the maximum (Rockafellar, 1970, Theorem

7.6). So (15) and (16) hold for a < sup .

3 Asymptotic Normality

Asymptotic normality of \/ﬁ(én — é) is very similar to the asymptotics of maximum

likelihood.
Theorem 7 Suppose the following assumptions hold

(a) The MLE? is unique and the parameter space © contains an open neighborhood
of 0 in R?.

(b) The Monte Carlo MLE 0, converges in probability to 6.

(¢) ¢(0) = [ hodp can be differentiated twice under the integral sign.

(d) \/ﬁVln(é) LN N(0,A) for some covariance matriz A.

9



(e) B= —VZZ(é) is positive definite.
(f) V?1,(0) is bounded in probability uniformly in a neighborhood of 0.

then
— VZZn(én) — B, in probability (17)

and

Vb, —0) = N0, BTAB™Y) (18)

A proof would be entirely classical and is omitted.

All of the conditions except (d) are fairly straightforward, and one can imagine
verifying them (if they hold) by standard methods. Condition (e) can be verified
using dominated convergence and ergodicity if an integrable function can be found
that dominates third partial derivatives with respect to theta of hg/hy.

The conclusion (17) is particularly interesting, since it gives an estimate of the
observed Fisher information, which may be of interest aside from its use in (18).
This point has also been made by Gelfand and Carlin (1991), Guo and Thompson
(1992), and several discussants of Geyer and Thompson (1992).

Condition (d) is hard, if Markov chain Monte Carlo is being used for the simu-
lations, because it involves a Markov chain central limit theorem. General Markov
chain central limit theorems do exist (Nummelin, 1984; Kipnis and Varadhan, 1986),
but can be difficult to apply in practice, except when the state space is finite and
the CLT is automatic (Chung, 1967, p. 99 ff.) The Kipnis-Varadahn theorem is the
simplest for general state spaces, requiring only reversibility and summability of the
autocovariances. A Metropolis-Hastings algorithm can always be arranged so that
the Markov chain is reversible, a point attributed to P. Green in Besag (1986), but
the summability condition is difficult. For related work in the specific context of
Markov chain Monte Carlo see Shervish and Carlin (1992), Chan (1993), Liu et al.
(1991), Tierney (1991), and Geyer (1993).

Assuming that (d) holds, the variance A typically cannot be calculated theoret-
ically and must be estimated by Monte Carlo.

Vhe(X ho(X
Vho(a)  Ens TG B [(te(e) — 1a(X)) 7455

Vi,(0) = - = (19)
hole)  Buuiitn Bnvigtx)

where t4(X) = Vhg(X)/hg(X). Using assumption (c) to differentiate under the

integral sign

_ Vhg(x)  Ve(d)

Vi) = he(x) c(0)
. th(l') th(l') h@(l‘)
= o) ) T o)

= te(l‘) — Egtg(X),

10



and this is zero when # = 6. The denominator in (19) converges to ¢(8)/c(v); the
expectation of the numerator with respect to Py is

ho(X) c(9)

Ey {(t@(l’) — te(X)) hw(X)} (1)
0)

)

/(te(:lf) — te(y))fe(y) dp(y)

= %(tg(x) — gty X)),

which is also zero when 6 = 0. Thus the numerator is the sample mean for a
functional of the Markov chain

he(X)
hy(X)

20(X) = (to(x) — to( X))

which has expectation zero under the stationary distribution. Hence by the contin-
uous mapping theorem

1S~y £, )

Let y(¢) = v(—t) be the lag ¢ autocovariance of z5(X;) at stationarity, i. e.
(1) = Cov (24(Xo), 26(X:))

when the starting position Xy of the Markov chain is a realization from P, then
for reversible chains (Kipnis and Varadhan, 1986)

fjf) ZOO A (1) (20)

Both factors in (20) can be estimated, ¢(6)/c(¢)) by the denominator in (19), and
the sum by standard time series methods (for a review see Geyer, 1993; see also

Hastings, 1970; Geweke, 1992; Han, 1991; and Green and Han, 1992).

A=

4 Discussion

‘Normalized families of densities’” are an important class of statistical models. We
now have two interesting properties that hold for the whole class. The Metropolis-
Hastings algorithm can be used to simulate realizations from any distribution in the
model, and Monte Carlo likelihood approximation can be used to do likelihood-based
statistical inference. When there are no missing data, mere continuity is enough to
guarantee convergence. With missing data, Wald-type integrability conditions are
required. This class is extremely flexible, allowing a very wide scope for modeling
and supporting the notion of a ‘model liberation movement’ called for by Professor

A. F. M. Smith in his discussion of Geyer and Thompson (1992).

11



Monte Carlo likelihood may be useful even in missing data problems where where
the EM algorithm can be used to calculate the MLE, since the Monte Carlo approx-
imates the whole likelihood surface. The use of (17) to approximate the observed
Fisher information may be useful in problems where analytical methods (Sundberg,
1974; Louis, 1982) are intractable. It is especially useful in conjunction with Monte
Carlo EM (Tanner and Wei, 1990; Guo and Thompson, 1992), but may also be a
competitor for the SEM algorithm (Meng and Rubin, 1991).
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A Appendix

A.1 Set Convergence

At several points the concept of Painlevé-Kuratowski set convergence (Sec 1.4.1 in
Attouch, 1984) was needed. Given a sequence of sets (', the set limit superior is
the set

limsup C,, = ﬂ cl ( U Cn)

n—00
m=1

and the limit inferior is the set

ligglfcn =cl ( U ﬂ ClCn)

m=1n=m

Note that these are topological convergence notions, different from the set theoretic
notions commonly used in probability theory (defined by the same formulas without
the closure operations). In a metric space the following definitions are equivalent
to the preceding ones (Proposition 1.34 in Attouch, 1984). The set limit superior is
the set of points z such that there is a subsequence z,, — « with z,, € C,,, and
the set limit inferior is the set of points x such that there is a sequence x,, — x with
x, € C, for all n after some ng. In short, the limit superior is the set of cluster
points and the limit inferior is the set of limit points. If the set limits superior and
inferior agree, then their common value is said to be the limit of the sequence.

12



A.2 Epiconvergence and Hypoconvergence

Epiconvergence and hypoconvergence are types of convergence of sequences of func-
tions that are useful in optimization problems. If a sequence of functions ¢, epi-
converges to a limit g (written g, — ¢) and x, minimizes g, then any cluster point
of the sequence {x,} is a minimizer of g. Hypoconvergence is the analogous no-
tion for maximization problems. Since x maximizes ¢ if and only if it minimizes —g,
hypoconvergence (written g, N ¢g) is defined by g, LN g ifand only if (—g,) = (—g).

Epiconvergence is related to set convergence in the following way. The epigraph
of a function an extended-real-valued (+oo allowed) function ¢ with domain S is
the set

epig={(x,\) € S xR:g(z) <)}

of points lying on or above the graph. A sequence of functions g, epiconverges to a

function ¢ if and only if the sequence of sets epig, converges to the set epig.
There are several equivalent characterizations that are sometimes more useful.

Given a sequence of functions g,,, the epi-limitsinferior and superior are the functions

(Attouch, 1984, p. 26)

(e-liminf, g,)(x) = sup liminfinf ¢.(y) (21a)
BEN(l’) n—00 yeB
(e-limsup, ¢g,)(x) = sup limsupinf g,(y) (21b)

BEN(z) n—oo VYEB

where N (z) denotes the set of neighborhoods of the point z. The sequence ¢,
epiconverges to a function e-lim,, g, = ¢ if and only if the the epi-limits inferior and
superior agree and are equal to ¢g. Similar notation with the prefix e- replaced by
h- is used for hypoconvergence.

(h-liminf, g,)(x) = Bér/%/f(x)hggfztelggn(y) (22a)

h-lim su 2)(z) = inf limsupsup g, 22b
( Py 9n) () sk, limsupsup g (%) (22b)

Another pair of conditions that are equivalent for functions on metric spaces are
the following (Attouch, 1984, p. 30). A sequence of functions g, epiconverges to a
function ¢ if the following two conditions hold at every point x

(a) liminf, g,(x,) > g(x) for every sequence x, — x.
(b) lim sup,, gn(x,) < g(x) for some sequence x,, — .

This says that epiconvergence is a combination of one-sided locally uniform conver-
gence (Condition (a)), with something weaker than pointwise convergence from the
other side (Condition (b)).

The main reason for the importance of epiconvergence is the following proposi-
tion, which is Theorem 1.10 in Attouch (1984).

Proposition 1 Suppose ¢, — ¢, x, — = and g,(z,) —inf g, — 0 then

g(x) =infg = lim gu(z,).
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That is, if x,, is an €,-minimizer of g, with €, — 0, then any convergent subsequence
of {x,,} must converge to a point & which minimizes ¢ and the optimal values g, ()
must also converge to the asymptotic optimal value g(x). Two points are worth
comment here. First, there is no requirement that the minimizers be unique. If ¢
has a unique minimizer x, then x is the only cluster point of the sequence {z,}.
Otherwise, there may be many cluster points, but all of them must minimize g.
Second, the proposition does not rule out escape to infinity; it only describes what
happens if @, — x. It does say that if the sequence {z,} is confined to a compact
set and if ¢ has a unique minimizer, then x, converges to that minimizer.
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