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ABSTRACT 
CHI researchers typically use a significance testing 
approach to statistical analysis when testing hypotheses 
during usability evaluations. However, the appropriateness 
of this approach is under increasing criticism, with 
statisticians, economists, and psychologists arguing against 
the use of routine interpretation of results using “canned” p 
values. Three problems with current practice - the fallacy of 
the transposed conditional, a neglect of power, and the 
reluctance to interpret the size of effects - can lead us to 
build weak theories based on vaguely specified hypothesis, 
resulting in empirical studies which produce results that are 
of limited practical or scientific use. Using publicly 
available data presented at CHI 2010 [19] as an example we 
address each of the three concerns and promote 
consideration of the magnitude and actual importance of 
effects, as opposed to statistical significance, as the new 
criteria for evaluating CHI research. 
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INTRODUCTION 
A core strength of the CHI community is that members 
bring together expertise from a range of disciplines “as 
diverse as user interface design, human factors, computer 
science, psychology, engineering, graphics and industrial 
design, entertainment, and telecommunications” [27]. 
Correspondingly, the community has a rich set of design 
and evaluation practices at its disposal. An important aspect 
of training new interaction designers is to teach them how 
to use different data gathering and analysis techniques 
“flexibly and in combination to avoid biases which are 
inherent in any one approach” [28, p.290]. While many 
approaches to evaluation are valid, it is important that 
researchers are aware of best practice for any given 

methodology. 

Every so often, it is useful to re-evaluate the standard set of 
techniques used within an approach and consider whether 
they provide researchers with the tools they need to answer 
the questions they are interested in, and whether other 
techniques would in fact serve the community better. Such 
a debate is currently taking place in the field of psychology, 
as demonstrated by a recent special collection of papers 
within Perspectives on Psychological Science [21]. Critics 
of the traditional statistical inference method of significance 
testing argue that “it is time for researchers to consider 
foundational issues in inference” [10, p.274]. Similarly, 
Wagenmakers, et al. conclude that “experimental 
psychologists need to change the way they conduct their 
experiments and analyze their data” [31, p.426] and, in the 
light of recent positive empirical findings in the 
theoretically implausible area of extra-sensory perception, 
argue that the statistical strategies used by psychologists are 
“too weak, too malleable and offer far too many 
opportunities for researchers to befuddle themselves and 
their peers” [30, p.425]. In fact this is a long-standing 
problem; Cohen noted already in 1994 that such criticisms 
have been made within psychology for forty years [8]. 

As a field of study that builds upon statistical methods used 
by psychologists, usability evaluation is subject to the same 
criticisms. Indeed, a small number of HCI researchers have 
identified flaws in experimental design and statistical 
testing in usability studies. In 1998 Gray and Salzman 
published an in-depth critique of five well known studies of 
usability evaluation methods, observing that weaknesses in 
experimental design (threats to statistical conclusion 
validity, construct validity, and internal and external 
validity) call into question the reliability of these findings 
[14]. More recently, Cairn’s survey of inferential statistics 
in BCS HCI conferences and two leading HCI journals 
noted common problems in reporting of statistical results; 
failure to check assumptions about the data required by 
particular tests, over-testing and using inappropriate tests 
[4]. Dunlop and Baillie [11] aimed to raise awareness 
within the sub-field of mobile HCI of problems with 
statistical analysis techniques such as the use of null 
hypothesis testing in a binary way to approve results, 
abusing statistical tests, making illogical arguments as a 
result of tests, deriving inappropriate conclusions from non-
significant results, and confusing the size of p-values with 
effect sizes.  
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In our own examination of the CHI 2011 proceedings we 
found that 35 (out of 306 total, many of which are not 
quantitative) papers report results from a t-test. Of these 35 
papers, six do not report any descriptive statistics, none 
report a standardized effect size, and only nine make an 
attempt to describe or interpret the effect size (the 
difference in means). None of the papers related the 
magnitude of the effect to previous findings in the 
literature. We believe this shows that the issues we address 
in this paper are relevant to the CHI community. In this 
paper we delve deeper into the criticisms raised by earlier 
scholars by considering an underlying issue: should 
statistical significance testing be the “gold standard” for 
quantitative empirical work within our field?  

In line with the discussion of Ziliak and McCloskey [32] we 
argue that there are fundamental flaws associated with 
sciences that are built primarily on the interpretation of p-
values. In this paper we focus on three common problems: 

1. The fallacy of the transposed conditional – Researchers 
often wrongly interpret p-values as the probability of the 
null-hypothesis being true. 

2. A lack of power – Researchers often pay little attention 
to null-results without being aware of the potential of 
their experimental set-up to reject the null when it is 
false. 

3. Confusion between p-values and estimates of effects– 
Researchers often judge a small p-value as indicating a 
(theoretically or practically) important relationship. This 
however is not generally correct. 

In the remainder of this paper we will first conceptually 
explain the “traditional” statistics that most of HCI’s 
quantitative results rely on. Next, we will address each of 
the three errors and, using a running example show (a) how 
they arise, and (b) how they could be mitigated. Our 
example is based on publically available simulated data 
previously published at the CHI 2010 conference [19]. We 
have chosen this data set to avoid singling out studies by 
other researchers for criticism, and to make it possible for 
the interested reader to download the data to study the 
examples for themselves. The reader is referred to [32] and 
[9] for a discussion of these and related issues in the fields 
of economics and psychology.  

TRADITIONAL STATISTICS 
The traditional approach to statistics within many scientific 
fields is to use significance testing. In this familiar decision 
making procedure, the null hypothesis is compared to an 
alternative hypothesis and one or the other is rejected. The 
great advantage of this decision-making procedure is that 
long-term error rates are known, and therefore can be 
controlled. Researchers can control for both Type I and 
Type II errors. Type I errors occur when the null hypothesis 
is rejected when it is actually true and can be controlled by 
specifying an alpha value (before beginning data collection) 
which specifies the level of significance under which the 
null hypothesis will be rejected. Type II errors occur when 

the null hypothesis is accepted when it is actually false: that 
is, there is an effect that has not been detected. The 
proportion of times the null is false but was accepted is 
called beta. The power of an experiment (1- beta) is the 
probability of detecting an effect given that the effect really 
exists in the population. If it is sufficiently unlikely that the 
observed data was generated by a process that is adequately 
described by the null hypothesis, then the null is rejected 
and another, alternative, hypothesis is taken as truth. 
Sufficiently unlikely is in most null hypothesis tests defined 
in terms of a ratio of signal and sampling error.  

To understand the basic idea of most hypothesis testing 
procedures it is useful to consider the one-sample t-test: 
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! −   !!
!

!
 

The t value is given by the difference of the sample mean ! 
and the population mean u0 (often zero in this particular 
case) – the signal – divided by the sample standard 
deviation over the square root of the number of subjects – 
the sampling (or standard) error. Higher t-values indicate 
that it’s less likely that the sample mean (given the standard 
deviation and the number of observations) would be 
observed if indeed in the population mean was equal to u0. 
Thus high t-values lead to low p -values: the probability of 
observing the current data given the null hypothesis.  

Low p-values – those lower than .05 - would in turn drive 
most researchers to conclude that the null-hypothesis is not 
true, and thus some alternative hypothesis should be 
accepted. It is easy to see that high t-values (and thus low p-
values) can be obtained through a combination of a large 
signal (difference between ! and u0), and little sampling 
error (small s and / or high n). 

Misinterpretations of the p-value 
This approach, fiercely promoted by Fisher in the 1930’s 
[9], has become the gold standard in many disciplines 
including quantitative evaluations in HCI. However, the 
approach is rather counter-intuitive; many researchers 
misinterpret the meaning of the p-value. To illustrate this 
point Oakes posed a series of true/false questions regarding 
the interpretation of p-vales to seventy experienced 
researchers and discovered that only two had a sound 
understanding of the underlying concept of significance 
[25].   

So what does a p-value actually mean? “…the p-value is the 
probability of obtaining the observed value of a sample 
statistic (such as t, F, χ!) or a more extreme value if the 
data were generated from a null-hypothesis population and 
sampled according to the intention of the experimenter” 
[22, p.293]. Because p-values are based on the idea that 
probabilities are long run frequencies, they are properties of 
a collective of events rather than single event. They do not 
give the probability of a hypothesis being true or false for 
this particular experiment, they only provide a description 



of the long term Type I error rate for a class of hypothetical 
experiments – most of which the researcher has not 
conducted.  

PROBLEM I: THE FALLACY OF THE TRANSPOSED 
CONDITIONAL  
The false interpretation of the p-value by most researchers 
brings up the first problem with null-hypothesis testing. 
Researchers often interpret the p-value to quantify the 
probability that the null hypothesis is true. Thus, a p-value 
smaller than .05 to large groups of researchers indicates – 
be it conscious or unconscious – that the probability that the 
null hypothesis is true (e.g. !  = u0) is very small.  

Under this misinterpretation the p-value would quantify 
P(H0|D) - the probability that the null hypothesis (H0) is 
true, given the data (D) collected in the experiment. 
However, the correct interpretation of the p-value is rather 
different: it quantifies P(D|H0) – the probability of the data 
given that H0 is true. Researchers who state that it is very 
unlikely that the null hypothesis is true based on a low p-
value are attributing an incorrect meaning to the p-value.  

It is easy to understand why this misconception is incorrect 
by the following example: consider the probability of being 
dead after being lynched, P(D|L). Most would estimate this 
to be very high, say 0.99. However, the mere observation of 
a dead person does not lead most people to believe that the 
corpse was lynched – after all, there are many possible 
ways to die which don’t involve lynching. P(L|D) is 
(correctly, and we think luckily) estimated to be rather 
small. 

The way forward 
There is a well established way to link a conditional 
probability to its inverse, shown by the Reverend Thomas 
Bayes in 1763 [3] which enables us to compute P(H0|D) 
from P(D|H0): 

!(!!|!) =   
! ! !! !(!!)
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Thus, the probability of the null-hypothesis being true given 
the data depends on the probability of the data given the 
null-hypothesis, P(D|H0), the prior probability of the null-
hypothesis, P(H0), and the probability of the data P(D).  
The prior probability refers to the probability of the 
hypothesis before the current set of data is collected. It can 
be seen that for the lynching example the prior probability 
is so low that the transposed conditional is also low. 

The probability of the data, P(D), is often difficult to 
compute directly. In the discrete case it is given by the sum 
of the probability of the data given all competing 
hypotheses. However, in practice its computation is hardly 
necessary: If a researcher wants to decide between two 
competing hypotheses P(D) will be the same in the 
computation of both P(H0|D) and P(Halt|D) and thus merely 
acts as a normalizing constant. P(D|H0) is already provided 
by our p-value, so all we need to compute P(H0|D) or 

compare P(H0|D) to P(Halt|D), is a specification of the prior 
P(H0): our prior expectancy of our hypothesis being true. 
For guidance on setting the value for a prior expectation, 
consult [26] and [9].  

Over the last decades this Bayesian approach to computing 
what we actually want to know, the probability that our 
hypothesis are true, has gained increasing attention among 
statisticians and researchers. These methods are now 
gaining ground in fields around us, as evidenced by 
recommendations to use the so-called Bayesian t-test in 
cognitive science [22] and medicine [12] .  

The Bayesian t-test allows researchers to compute the ratio 
of the likelihood of two competing hypothesis, for example 
the null hypothesis and an alternative hypothesis [22]. The 
resulting “Bayes Factor” values of greater than 1 indicate 
evidence for the null hypothesis, and values less than 1 give 
support for the alternative hypothesis. Heuristics to judge 
the strength of support for the null and alternative 
hypotheses given by a range of Bayes Factor values are 
listed in [31]. 

The use of Bayesian statistics rather than traditional 
statistics has considerable practical ramifications. Wetzels 
et al. computed Bayes Factors for 855 t-tests published in 
psychology journals and found that while p-values and 
Bayes Factors did co-vary (small p-values with large Bayes 
Factors), the strength of evidence was not calibrated [31]. 
That is, for studies which reported significant effects (alpha 
= .05 or .01) 70% of them had Bayes Factors indicating 
only anecdotal evidence in support of the alternative 
hypothesis.  

Changing conventions about the statistical tests accepted 
within a community is a slow business. However, it is no 
longer the case that the calculations themselves are 
difficult. Using packages like {BayesFactorPCL} (for the 
open source analysis software [R]) researchers can now 
easily compute Bayes factors[24].  

Full Bayesian analysis reaches beyond the Bayesian t-test 
and provides methods for model comparisons as well as test 
for different hypothesis. In each case the quantity of 
interest, P(H|D), informs researchers about the decisions to 
make based on their collected data. We do not advocate a 
shift from “canned” p-values to “canned” Bayes Factors – 
researchers’ careful interpretations are still vital- but used 
appropriately, the Bayesian approach is a solution to the 
Fallacy of the Transposed conditional.  

Example: Comparing operating systems 
In their paper “Powerful and Consistent Analysis of Likert-
Type rating Scales” Kaptein et al. [19] present an example 
dataset that they use to demonstrate a novel type of 
analysis. The data is publicly available from 
http://www.nth-iteration.com/study/statistics/. We will use 



this dataset in the remainder of this paper to illustrate the 
three common problems1. 

This (simulated) dataset describes the potential outcomes of 
a usability evaluation of two different operating systems. 
While the original dataset contains usability ratings – 
answers to the statement “The system was easy to use” on a 
seven-point scale – at two points in time, we focus only on 
the measurements obtained in the first time point. The data 
describes the scores of participants on this question after 
using (a) Windows Vista, or (b) Apple Mac OS-X. The 
dataset provides the obtained scores for three evaluations 
with different samples sizes: N=10, N=40, and N=200. We 
believe this dataset – a straightforward rating presenting a 
comparison between two conditions (between subjects) for 
differing sample sizes – provides a good numerical example 
to illustrate the problems raised in this paper. 

Table 1 presents the mean score on the statement for the 
two different groups for each of the 3 sample sizes reported 
upon in [19]. The results for the N=200 case are statistically 
significant with a difference in means of 0.91 points on the 
seven-point scale.  
 Vista OS-X Test results 
 Mean S.D. Mean S.D t-value p 

N=10 4.00 2.16 5.17 1.32 .965 .383 

N=40 3.86 1.25 4.67 1.85 1.574 .126 

N=200 3.69 1.57 4.60 1.43 4.281 <0.001 

Table 1.Overview of the data presented in [16] for time point 1. 

The result obtained for N=40, a more typical case in many 
HCI studies, is however not straightforward. The p-value of 
.126 would lead many to conclude that there is no 
significant difference between the usability of Windows 
Vista and that of Apple Mac OS-X based on the obtained 
ratings. Often, the observed difference of 0.81 points would 
be neglected and the results not further discussed. 

Researchers however can compute the actual probability of 
H0 given the data to further interpret their results. Results 
from a Bayesian t-test give a value of 1.53 for the N=40 
case. This Bayes Factor describes the likelihood of the null-
hypothesis compared to an alternative, non-informative, 
hypothesis. In this case, the result would be interpreted as 
providing weak evidence in favor of the null hypothesis 
(values between 1 and 3); this evidence would be classified 
as only “anecdotal” by [31]. For the N=10 case the Bayes 
Factor is 1.69, leading to a similar conclusion. For N=200 
the Bayes Factor leads to a similar conclusion as the 
standard t-test: a Bayes Factor smaller than 0.01 provides 
strong evidence against the null hypothesis. 

The advantage of using the Bayesian approach here is that it 
enables researchers to quantify evidence in favor of the null 
                                                             
1 The [R] code for all the analysis presented in this paper can be retrieved 
from the same page. 

hypothesis. This is not possible with traditional statistics 
but is of high importance because it enables us to 
distinguish between cases where the data is inconclusive 
(such as the N=10 and N=40 cases in our example) and 
cases where there is strong evidence regarding the null 
hypothesis (as in our N=200 example). 

PROBLEM II: A LACK OF POWER 
The use of p-values enables researchers to control Type I 
errors – or the rejection of H0 while in fact it is true. 
However, controlling Type II errors (the failure to reject H0 
when it is false) through calculating the power of an 
experiment appears to be attended to less frequently [7]. 
The power of a statistical test is the long-term probability 
that a given test will find an effect assuming that one exists 
in the population. Thus, power indicates whether your 
experimental setup is capable of detecting the effect that 
you wish to find. The power is a function of sample size, 
population effect size and the significance criteria (known 
as the alpha value, which is set by convention at .05). 

The standard accepted power within psychology is .80 [6] 
which means that there would be 20% (1-.80) chance that 
the researcher fails to reject the null hypothesis when it is 
false. Reviews of the psychology literature reveal that the 
majority of published studies lack power, resulting in a 
confusing literature with apparently contradictory results 
[23]. In studies with low power, getting a null result is not 
particularly informative: it does not distinguish between the 
cases where the null is true and where the experimental set-
up did not detect the null.  

The way forward 
What can researchers do to address lack of power in their 
studies? Maxwell [23] recommends that power calculations 
should be performed before the experiment is carried out, 
and that they should be reported as standard in empirical 
papers. Cohen [7] gives some heuristics for required sample 
sizes for eight commonly used statistical tests, given the 
effect size that is deemed important or sought by the 
researcher. Consider an example which might occur within 
usability studies: a researcher is comparing two versions of 
the same interface with a between subjects design using 
number of errors as a dependent variable. For analysis using 
a two tailed independent samples t-test with alpha set at .05, 
with a power of .80 and attempting to detect a medium 
sized effect (Cohen’s d = .30), the researcher should recruit 
176 participants in each group. Netx to Cohen’s heuristics, 
software packages such as the {pwr} package in [R] [5] can 
be used for more accurate results, or more complex designs. 
Power calculations would at least make researchers aware 
of the problem, but what can be done to increase power if it 
is found to be low? 

The most obvious way to increase power is to increase 
sample size. Of course, this can be impractical in many 
fields, including HCI, but there are ways around this. For 
example, Maxwell [23] suggests that in the field of 
psychology researchers could gain power by running 



collaborative multi-site trials in which many research 
groups conduct the same experiment with manageable 
numbers of participants and pool their results. Hansen and 
Collins discuss approaches to increasing power, which do 
not require an increase in sample size [16]. Although their 
recommendations are intended for epidemiologists, some 
are pertinent to HCI such as preventing attrition from 
studies, increasing the difference between groups by 
appropriately timing follow-up studies, and reducing 
variance within groups by using a more homogenous set of 
participants. They also discuss the virtue of using more 
reliable and appropriate measurement instruments. For 
example, in the context of HCI, this suggests the more 
widespread use of thoroughly validated standard attitudinal 
scales rather than researchers creating bespoke 
questionnaires specifically for a new study as is often 
current practice [2]. Such scales should be sensitive enough 
to capture differences between groups as advised in [12]. 

Example continued: Power to reject the null if it is 
indeed false. 
We will illustrate the often surprising lack of power in HCI 
experiments by following up on the results presented for the 
N=40 case comparing the usability ratings of Windows 
Vista and Apple Mac OS-X that we also used to 
demonstrate Bayes Factors. Here we compute the power of 
the difference presented in Table 1. The difference in means 
is 0.81, and the pooled variance is 2.2. This gives an effect-
size (Cohen’s D) of 0.37 [7]. Given the between subjects 
design with 20 users each, this gives a power of 0.14. The 
inverse of the power, 1-0.14 = 0.86 is the probability of 
making a type II error: a failure to reject the null when it is 
false. Thus, given this experimental setup, and the 
estimated effect size, a researcher would not detect an effect 
this size even if it were actually present in the population in 
86 out of a 100 similar experiments. 

This low power for the given effect size and sample size 
again illustrates the point made in the Bayesian analysis: 
the evidence in favor of the null is only minor because the 
chances are good that the experimental set-up will fail to 
detect an effect. 

 
Figure 1.: Overview of power as a function of N, the number of 

subjects, for different effects sizes in the population.  

To provide a better understanding the relationship between 
effect size, power, and the number of subjects, Figure 1 
shows power as a function of N for three different effect 
sizes: 0.37 – the effect size estimated from the data reported 
in [19] –  0.6, and 0.8. It is clear that both the effect size as 
well as the number of participants in a study have a large 
impact on the power of the study. However, it can also be 
concluded that for small or moderate effect sizes, sample 
sizes larger than those typical in HCI are necessary. 

PROBLEM III: CONFUSION BETWEEN P-VALUES AND 
ESTIMATES OF EFFECTS 
Besides the often-erroneous interpretation of p-values and 
low power, the focus on null hypothesis significance testing 
in HCI has another severe consequence: qualitative 
questions about whether an effect exists are favored over 
quantitative questions relating to how much of an effect 
there is, and to whom it matters. The latter can only be 
assessed by considering effect sizes and appropriate loss 
functions, and by interpreting these in a real world context. 

A p-value smaller than .05 does not necessarily imply that 
the effect is important – it only informs us that the sampling 
error was small compared to the signal. Especially for large 
data sets (which often lead to powerful tests) low p-values 
are common but do not inform our search for scientific 
answers. Only a numerical interpretation of the estimated 
effect can tell us whether a “significant” effect is indeed 
important to us and warrants further research or a 
theoretical explanation. For example, if there was a 
significant difference in the time taken to learn two 
competing versions of a software package, but the size of 
the effect was only fifteen seconds, this would likely not 
have a very large practical impact.   



Perhaps surprisingly, the flip side of the argument also 
holds: a high p-value does not imply that the effect under 
study was unimportant. It only means that it was measured 
with a relatively high sampling error. Compelling examples 
of this can be found in neighboring disciplines, and in the 
courtroom: the painkiller Vioxx was tested in a clinical trial 
against Naproxen, a general already-on-the-market 
painkiller. During the trial one person died that was taking 
naproxen. For Vioxx however, five people died. The 
difference was not statistically significant, p >.05, and thus 
written off as unimportant. The lawsuits against Vioxx in 
2005 proved the researchers wrong: The real-life, and 
regrettably more powerful, test showed that Vioxx severely 
– although initially not significantly – raised risks of 
cardiovascular side effects. If statistical significance is 
neither a sufficient nor a necessary criterion for importance, 
what good does it do?  

Currently the “size-less stare” at p-values actually does a lot 
of harm [32]. In some fields, where historically researchers 
were trained in graphing their data and exploring the actual 
numerical values, means, and confidence intervals, this 
practice seems to be decreasing due to the fixation on p-
values [32]. In computing fields it is not clear that effect 
size reporting was ever common; Dunlop and Baillie have 
identified lack of effect size reporting in HCI as 
“dangerous” [11, p.3] and in the related field of software 
engineering experiments,  a review of 92 experiments 
published between 1993 and 2002 shows that only 29% of 
the papers reported estimates of effects[18].  

The way forward 
To overcome the fixation on p-values instead of estimates 
of effects researchers should report their actual findings, 
and interpret the numerical estimates of their models or 
tests. An effect size is “any statistic that quantifies the 
degree to which sample results diverge from the 
expectations specified in the null hypothesis” [29, p.991]. 
Effect sizes have three main uses [29]: Firstly, a prediction 
of effect size is necessary when planning studies in 
conjunction with power, sample size and significance 
criteria (as discussed above). Secondly, it enables 
researchers to interpret the practical significance of their 
results because it estimates the magnitude of an effect. 
Thirdly, reports of standard measures of effect size enable 
researchers to compare the results from different studies 
and put their findings in the context of previous work in the 
literature.  

The APA recommend that standard measures of effect sizes 
should be reported along with p-values [1]; they give 
complementary information. In a study examining the 
reporting of 855 t-tests published in the psychology 
literature it was found that effect sizes and p-values were 
generally consistent, with large effect sizes corresponding 
to low p-values. The consistency can in large part be 
explained by the relatively standardized sample sizes 
adapted by the field. However, in a small number of cases 

there were gross inconsistencies between the p-values and 
standardized effect sizes. These mainly occurred in studies 
with small sample sizes where the p-value was close to .05. 

We make a distinction here between standardized measures 
of effect size – like Cohens’s D, eta squared, or the easily 
interpretable Common Language Effect Size [15] – and 
non-standardized measures of effect size. The latter are 
dependent upon the scales by which variables are measured. 
This latter property makes non-standardized measures of 
effect size less suitable for comparisons across experiments. 
However, only non-standardized measures of effect size – 
estimates of actual differences in means or parameter 
estimates in regression models – can be used to assess the 
theoretical and practical importance of the quantitative 
findings of a study. 

We believe that standardized effect size measurements can 
be useful in comparing results across studies. Cohen for 
example has published useful heuristics for interpreting 
effect sizes as small, medium or large [6]. However, it 
would be of limited value if researchers replaced canned 
reporting of p-values with canned reporting of Cohen’s d or 
other such statistics. While standardized effect size 
measures overcome the confusion of importance and 
sample size as common for p-values, standardized effect 
sizes cannot, by themselves, be the only outcome of a 
quantitative experiment. The important point is to consider 
what the estimations of effect(s) mean in the context of 
previous work and what the practical and theoretical 
implications of an effect of that magnitude would be for 
users or designers. 

Example continued: What is really important for 
usability ratings? 
To highlight the importance of an inspection of parameter 
estimates (e.g., the mean difference or the β’s of a model) 
versus the (often erroneous) interpretation of p-values we 
present a set of hypothetical results obtained from a study 
similar to that used in the previous examples.  

Suppose again the ratings of the usability of two different 
systems are compared. However, this time we do not only 
compare Windows Vista en Apple Mac OS-X but we obtain 
ratings both by novices and by expert evaluators. Table 2 
presents the results for this new experiment. The table 
presents the usability ratings (N=200) comparing Vista and 
OS-X (see also Table 2) when these ratings are provided by 
novices and by expert evaluators. 

 Critiques 
 M. Diff SD D T P 

Vista vs. OS-X 0.91 1.5 0.6 4.29 <.001** 
Expert vs. Novice 1.30 4.1 0.3 2.24  <.05* 

Table 2. Hypothetical results obtained for an experiment. Presented 
are the mean difference, the pooled SD, Cohen’s D, the t-value, and 

the p-value. 

Table 2 presents the (hypothetical) mean-difference 
between the usability ratings of Vista and OS-X users, and 



the mean difference in ratings provided by expert users and 
novice users. Given the mean differences presented here, 
the pooled standard deviations, and the equal sample size, 
both of the effects – that of type operating system and type 
of evaluator – are statistically significant. Thus, according 
to most researchers they are both important findings2. 

However, for both theoretical as well as practical purposes 
it is feasible to evaluate the sizes of the effects of both the 
operating system as well as the user expertise on the 
usability ratings that are provided. We have – hopefully – 
already convinced readers of the inadequacy of p-values to 
make these kinds of judgments. Thus, researchers should 
not decide, based on the lower p-value of the operating 
system factor that this is the most important variable in 
eliciting critiques. 

The third column of Table 2 presents Cohen’s d for the two 
comparisons presented here. Cohen’s d is given by the ratio 
of the mean difference and the pooled standard deviation. 
This makes the computation similar to that of the t-value 
with the only difference being the exclusion of N, the 
number of subjects, in the equation. Given equal sample 
sizes in these two evaluations there is a direct relation 
between the t-value (column 4) and the value of Cohen’s d. 

Now, should we decide that the operating system is the most 
important factor influencing people’s usability ratings of 
their systems? The value of Cohen’s d is higher indicating a 
higher effect size than for the expertise. However, we think 
that researchers, knowledgeable of the origin of Cohen’s d, 
should look a bit further. The actual mean difference 
‘caused’ by the expertise of the user as opposed to the type 
of operating system is far larger. The difference between an 
expert user and a novice user is around 1.3 points on the 7 
point scale, while that for the different operating systems is 
only 0.91 points. However, the standard deviations indicate 
that the measures obtained for the different operating 
systems are more ‘consistent’ – less spread out – than those 
obtained for the different user expertise levels.  

It is up to the researcher to determine and motivate the 
conclusions drawn from a dataset like this. However, in this 
scenario a large standard deviation for expertise is very 
plausible: actual expertise levels are not binary and thus 
there is heterogeneity within the expert and novice groups. 
This argument does not hold for the type of operating 
system, hence its smaller standard deviation. The actual 
mean difference however shows that – if assessed 
accurately – user expertise could potentially be a more 
important determinant of the usability ratings of a system. 
We believe that discussions like these inform and progress 

                                                             
2 Normally one would analyze this factorial experiment using a method by 
which dependencies between prototype fidelity and user expertise are also 
included (e.g. ANOVA). However, we choose to present seperate t-test for 
ease of understanding of the argument. 

science, rather than the limited interpretation of a single 
statistic. 

We do not mean to imply that all HCI researchers neglect to 
discuss the size of their effects. For instance in the domain 
relating to our worked example, a highly cited paper which 
considers the evaluator effect is very much concerned with 
the interpretation of effect magnitudes [17]. Within HCI 
more generally, a good example of a focus on quantitative 
estimates (rather than just sizeless p-values) can be found in 
the Fitt’s law literature. Fitt’s law describes the quantitative 
speed accuracy trade-off associated with pointing. The 
importance of quantitative evaluations when building a 
science is clear from the status of Fitt’s law within HCI 
research: It presents the only paradigm which consistently 
fills up at least one session at CHI, and the results are 
replicated and extended upon frequently. 

CONCLUSIONS 
Presenting only p-values can lead to misleading results with 
unfortunate real life consequences [9]. The p-value often 
does not inform us about what we want to know, which is 
generally the probability of the hypothesis given the data. 
Also, high p-values do not imply that the null is indeed true 
if the power is inadequate, and finally, sizes of effects 
should be more important than their associated sampling 
error.  

We conclude with a more general criticism of the way 
theories are developed within HCI. A hallmark of a good 
theory is that it is highly falsifiable. It should make definite 
claims about the world, because the more claims it makes, 
the more opportunities there are to falsify it. A major 
criticism of the traditional approach to statistics is that it 
encourages weak theorizing by proposing hypotheses which 
make vaguely specified claims about the world [9]. In 
specifying a null hypothesis, the researcher generally 
predicts no difference between conditions. If this is 
rejected, the alternative hypothesis is accepted. But the 
alternative hypothesis that matches this null hypothesis 
(that there is some difference) is vague and underspecified. 
It rules out only one point where the means are exactly the 
same across conditions. Any other relationship between the 
variables could be true. Seen in this light, the null 
hypothesis is intuitively almost always false, and so 
rejecting it isn’t very informative. A theory which predicts 
in advance the magnitude of an effect is more useful, and 
the consideration of estimated effects from the current study 
in the light of previous findings enables the researcher to 
contribute coherently to the existing body of work in a 
field.  

Dunlop and Baillie [11] have argued that HCI does not 
generally attempt replication of previous work, a point 
which is confirmed in Bargas-Avila and Hornbæk’s recent 
analysis of UX studies [2]. Yet, single studies cannot be 
taken as the basis for believing a scientific result to be true. 
It is the pooling of evidence from many studies, often in the 
form of meta-analysis, that should give researchers 



confidence in a theory [13] .We should therefore consider: 
do we as a community want to develop theory through 
empirical studies (at least as one of the methods in our 
toolkit)? If we do not, then what purpose is served by 
conducting traditional statistical tests? If we do, we are 
more likely to achieve our aims by adopting best practices 
for the planning, analysis and reporting of empirical studies. 
Based on the convergence of advice from related 
disciplines, we offer the following initial recommendations 
for best practice. We hope that future authors will add to 
these recommendations. 

1. A more specific hypothesis yields more information 
when it is falsified than a vaguely specified hypothesis. 
For this reason, bolder predictions predicting the 
direction and magnitude of effects would be beneficial 
rather than choosing the “safe” null that there is no 
difference between conditions. For example, a 
researcher might hypothesize that a shopping website 
optimized for screen reading software would decrease 
the average time taken to buy an item by a visually 
impaired user by one minute over the original version of 
the website. Such an hypothesis can be evaluated 
quantitatively, after which qualitative judgments about 
the importance of an effect this size can be discussed. 

2. When planning an experiment, it is helpful to predict 
the size of the effect likely to be found, based on 
previous findings from related studies if possible. In the 
above example about the interface for visually impaired 
users, the researcher could have calculated effect sizes 
from the descriptive statistics published in previous 
similar studies, or predicted them from theory or even 
estimated them from pilot tests in the lab.  

3. Deciding on power, significance criterion (alpha value), 
and effect size in advance enable the researcher to 
calculate the number of participants they require to 
detect an effect of practical or theoretical importance. 

4. If there are practical difficulties in recruiting enough 
participants, research teams could consider 
collaborating for multi-site experiments. Power can also 
be increased by careful choice of valid and appropriate 
measurement instruments. 

5. It can be beneficial to use Bayesian analysis to calculate 
the probability of the hypothesis given the data instead 
of traditional significance testing. This analysis method 
enables researchers to build on the body of knowledge 
in the field by incorporating previous results as prior 
probabilities. 

6. We encourage researchers, reviewers, programme 
chairs and journal editors to work towards raising the 
standard of reporting statistical results in order that 
future researchers can use this information to inform 
their own hypothesis generation, effect size estimates 
and prior probabilities in Bayesian analysis. The 
guidelines in the 6th edition of the APA publication 
manual [1] are helpful in this regard. At the very least, 
the mean and standard error should be reported to 

enable future researchers to calculate standardized effect 
sizes. It would be useful for researchers without a strong 
statistical background if submission instructions for 
authors included clear guidance to help them enhance 
their analyses and conclusions. 

7. And, last but not least, it is good practice to interpret the 
non-standardized sizes of the estimated effects. If the 
predicted effect size was found in the example of the 
shopping web site for visually impaired users, what 
would this mean? What practical difference would it 
make to the user experience for members of this target 
user group? Would a time saving of one minute per 
transaction be worth the effort it would take to learn 
how to use the new layout? Some questions of this sort 
are arguably best answered in consultation with users, 
emphasizing the need for triangulation between 
qualitative and quantitative data. 

These changes to the best practice within a field will require 
effort, and may take many years to come to fruition. But if 
we, as a community, value the tools offered to us by 
statistical methods, we should do our best to avoid known 
methodological flaws, and embrace the best practices which 
are emerging from our sister disciplines. The benefits to 
HCI will be great in terms of generating a more coherent 
body of work thus enabling the field to advance more 
rapidly.   
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