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Abstract. Until relatively recently, the emphasis of spatial analysis was on the investigation of global 
models and global processes. Recent research, however, has tended to explore exceptions to general 
processes, and techniques have been developed which have as their focus the investigation of spatial 
variations in local relationships. One of these techniques, known as geographically weighted regression 
(GWR), developed by the authors is used here to investigate spatial variations in spatial association. 
The particular framework in which spatial association is examined here is the spatial autoregressive 
model of Ord, although the technique can easily be applied to any form of spatial autocorrelation 
measurement. The conceptual and theoretical foundations of GWR applied to the Ord model are 
followed by an empirical example which uses data on owner-occupation in the housing market of Tyne 
and Wear in northeast England where the problems of relying on global models of spatial association 
are demonstrated. This empirical investigation of spatial variations in spatial autocorrelation prompts 
a further discussion of several issues concerning the statistical technique. 

Introduction 
Over the last two or three decades, quantitative geographers and statisticians have tried 
to model the effects of spatial association in regression analysis. A well-known example 
of this effort is that by Ord (1975) who has proposed the use of autoregressive and 
moving average terms in regression models to account for spatial correspondences in 
the response variable and the residuals, respectively. Although we appreciate the 
contribution that this technique has made to the consideration of spatial process in 
regression modelling, it, along with similar efforts to account for spatial autocorrela­
tion, can be criticised on the grounds of producing global results which assume that 
spatial processes operate uniformly throughout the study area. There has been a recent 
shift in emphasis in spatial statistics away from such 'global' types of analysis to 'local' 
ones where the aim is to identify spatial variations in relationships (Fotheringham, 
1997). One of the earliest attempts to model local relationships is that of the expansion 
method (Casetti, 1972; Fotheringham and Pitts, 1995; Jones and Casetti, 1992) 
although, as demonstrated by Fotheringham et al (1997a), the expansion method 
essentially fits trends to surfaces of local relationships and can therefore miss important 
local variations which run counter to these general trends. Other examples of local 
statistical analyses include those of Anselin (1995), Brunsdon et al (1996), Fotheringham 
et al (1997b; 1997c), Getis and Ord (1992), and Ord and Getis (1995). 

It is our aim in this paper to present a methodology that addresses the need for 
localised versions of spatially autoregressive models by producing, as an example of 
this type of modelling a localised version of Ord's model in which the output appears 
as a spatial distribution of localised values indicating local autocorrelation rather than 
a single global estimate. It should be noted that the method can be easily extended to 
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any framework in which local dependencies are measured and that the Ord model 
considered here is just one example of this type of analysis. 

In Ord's original autoregressive model, the regression equation can be expressed as 

j 

where yt is an observation at point /, wtj is the z/th element of W, a contiguity matrix 
representing the spatial arrangement of a set of zones for which the y s are attributes, 
p is a coefficient of spatial cohesion, and et is a normally distributed error. It is clear 
that in this model the p term is fixed for all geographical locations. This implies that 
the level of spatial association between all adjacent zones is fixed. To take an example 
of the spatial distribution of house prices, the assumed form of equation (1) implies 
that the degree of influence of house prices in surrounding areas is the same every­
where. An alternative conjecture might be that in some areas this spatial influence is 
more marked than in others. To address this possibility we propose a modified model of 
the form 

y,- = PiY^Wijyj + ei> (2) 
j 

where / indexes a location in geographical space where data are observed. 
Below, an overview of Ord's method is given, together with a slight modification of 

the model followed by a discussion of how this may be extended to a method for 
calibrating models such as equation (2). This is then extended to models in which 
predictor variables are added to the modelling framework. Finally, an example involving 
the spatial distribution of owner-occupied housing in the metropolitan county of Tyne 
and Wear in the United Kingdom from the 1991 population census is given. 

Specifying the autoregressive model 
A global autoregressive model, such as equation (1), encapsulates to some extent a 
spatial diffusion process affecting the ^-variable. In the case of equation (1), it is 
assumed that each jy-variable can be modelled in terms of a spatial smoothing of its 
neighbours, J2 wijyji an<^ a n error term et. If W is such that each of its rows sum to 

j 
unity, and if the distribution of each element of y, the vector of the yi9 has a mean /i, 
then each element of the smoothed vector Wy will also have the same mean value. This 
suggests that in a model such as equation (1) we have the following relationship 
between expectation values, E, 

E(y) = PE(y)+E(e), (3) 

and by rearrangement this gives 

E(y) = ^ . (4) 

This contrasts with the more usual situation where the mean of the error term is zero, 
unless the ^-variate itself has a mean of zero. A more satisfactory model might be 

y.-/i = p ^ Wyiy,- - /j) + et. (5) 
j 

In this case it is the deviation about a mean level that is assumed to be autocorrelated. 
This also gives a more reasonable meaning to the hypothesis \i = 0 because this 
implies that the ^-variate is independently distributed about a fixed mean value ji. 
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The model in equation (5) can be adapted to a model of varying spatial cohesion in the 
same manner as equation (1) and can be transformed into a form equivalent to 
equation (2): 

J 

In this paper, models (2) and (6) will both be considered in order to investigate the degree 
of advantage gained by adopting equation (6) instead of equation (2). 

Calibrating the autoregressive model 
Clearly, in order to explore the geographical structure of spatial cohesion for a given 
data set, it is necessary to consider methods of calibrating equations (6) and (2). As 
will be seen below, approaching this task is best done by first considering the calibration 
of equations (5) and (1) for a given set of data. First, consider the simpler model (1). 
In vector notation this may be rearranged to give 

y = ( I - p W ) - 1 * , 
or 

Xy = e. (7) 

If we can assume that E(y) = 0, then it may be seen that y will be multivariate normal 
with a zero vector mean and a variance - covariance matrix of (ATA)_1. From Ord (1975) 
and Mead (1967), the likelihood function for an observed set of jy-values, y, would be 
given by 

1(<T2, p) = constant - ^ ln(£2 |A|~2/"), (8) 

where a2 is the maximum likelihood estimate of a2, a2 = yTArAy/n. 
Because the scale parameter expression may be substituted into the likelihood 

function, the only remaining problem is the estimation of p. This is a problem of 
univariate optimisation for which there exist a number of numerical solutions. Ord, 
for example, suggests the use of Newton's method. Another possibility might be a 
golden section search (see, inter alia, Greig, 1980). In either case, the problem is 
equivalent to finding p which minimises 

- - ln|A| + \n(eTe). (9) 
n 

Both terms in equation (9) depend on p—the first is a function of the determinant 
of A in equation (7) and the second is the logarithm of the residual sum of squares of 
model (1) for a given p. For further discussion of this expression of the likelihood 
function, see Anselin (1988). 

Minimising equation (9) is computationally intense because of the first term, in 
which a determinant is computed. Ignoring this term is equivalent to selecting p on the 
basis of a least squares criterion. Again, Ord considers this option but finds that unless 
p is close to zero this leads to a notable degree of bias in the estimation. However, 
noting that 

|A| = | I - p W | = f[(l-X,p), (10) 
1=1 

where A,- is the / th eigenvalue of W, we may express equation (9) as 

-^l^lnCl-p^+ln^), (11) 
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thus avoiding the computation of a determinant. The eigenvalues of W need only be 
computed once. Thus, the value of p minimising equation (11) is a maximum likelihood 
estimate from which the scale parameter may be derived by using equation (8). 

It then remains to be seen how this technique may be adapted for a model in which 
p is not fixed over space but is allowed to vary with /. One approach would be to use a 
geographical weighting technique to estimate p,. as described in Brunsdon et al (1996) 
and Fotheringham et al (1997a; 1997b; 1997c). In such a technique, a weighted estimate 
of p,- is obtained for each point / by using data weighted according to location around 
point / and the weights being a monotone decreasing function of distance from i. For 
each point at which p,. is estimated, different sets of weights will therefore apply 
according to the location of /. 

One way of applying a weighting scheme to model (1) is to allow the errors—the 
elements of the e vector—to have different variances. In maximum likelihood estimation 
the influence of zones for which a large error variance exists will be downweighted. 
Thus, in vector notation, model (1) now becomes 

y = ptWy + Die, (12) 

where D, is a diagonal matrix of standard deviations of error terms which is used mainly 
as a device to introduce a weighting scheme emphasising observations around L For 
zones near to the sample point i the standard deviations are low (and corresponding 
weights are large) whereas for zones further from / the standard deviations are high 
(and corresponding weights are small). This may then be rearranged so that 

Kf-Af.j; = e, (13) 

where K,D, = I. The maximum likelihood expression for equation (13) is simply 
equation (8) with K,A substituted for A. Noting that the determinant of K,A is the 
product of the determinants of K, and A, and that the determinant of K, is constant for 
any given p,- to be estimated, we find that a maximum likelihood estimator will minimise 
the expression 

--£ln(l-p^.)+ln(^), (14) 
11 7 = 1 

where /, is the yth eigenvalue of K,A. Thus if we make K, a function of distances 
between pairs of points, on the basis of a distance-decay function, n different weighting 
schemes will be generated with each K, being used to estimate a corresponding pt. Note 
that K, is essentially a matrix representing a spatial kernel function. Theyth diagonal 
element of K, is a kernel function of the distance between the centroid of they th zone 
and the point i at which a local value of p,- is to be estimated. This process will be 
relatively costly in computational terms because each p,. must be estimated iteratively 
but the eigenvector 'trick' for evaluation of determinants reduces the number of 
operations required considerably. Note also that the eigenvalues used are those of W 
and do not vary with location (unlike the values of K,) and need only be computed 
once at the outset of the analysis. 

Next, the method may be extended from models of the form (2) to those of the 
form (6). Again if we look to Ord (1975), explanatory variables may be incorporated 
into an autoregressive model to give a new model of the form 

y = pWy + XP + e. (15) 

Model (5) is a special case of this in which X is simply a column of ones. Maximum 
likelihood estimates of p may be obtained in a similar manner to those in model (1) 
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by finding p which minimises the expression 

- - ] T l n ( l - p ^ + l n ( e T e ) . (16) 
n /=i 

It is then possible to estimate /? by using 

(XTX)-lXT(I-pV/)y, (17) 

where estimates of /? and p are both maximum likelihood estimates. 
As before, the next stage is to extend these models so that p is allowed to vary 

spatially. As with equation (12), this can be done by assuming a distance-based multi­
plier on the error variance, giving 

y = p/Wy + Xft + D,*, (18) 

which can be expressed as 

KjAj-KfXft = *, (19) 

where K,D, = I . 
As before, it is then possible to find the maximum likelihood estimates of /?, and pi 

by substituting K, A for A and K,X for X. Again, this is equivalent to applying a spatial 
kernel multiplier to the rows of A and X, centred around the point at which the 
parameters are to be estimated. 

To apply a model of the type (6), X will simply be a column of ones, as suggested 
earlier. In this case, /?, is a scalar which varies over space so that the model is 
equivalent to a trend surface plus a spatially smoothed variation about this surface 
in which the degree of smoothing may vary locally. 

An example based on owner-occupation housing data 
To demonstrate the operation of the localised autoregressive models shown above, the 
spatial distribution of the percentage of home owner-occupiers in Tyne and Wear, a 
metropolitan county in the United Kingdom, is examined. Over the past two decades, 
there have been notable increases in the United Kingdom in the number of people 
buying homes, as opposed to renting. There are several explanations for this phe­
nomenon, particularly the UK government's 'right-to-buy' initiative in which occupiers 
of council-owned housing were encouraged to buy their homes at subsidised rates. 

Although some may argue that it has been advantageous to purchase housing in 
relatively affluent council estates, it has also been observed that the process has led to a 
'ghettoisation' effect where many of the better council estates are now almost entirely 
owner-occupied leaving councils with only the less desirable housing stock in more 
problematic estates. From a modelling viewpoint, the notion of 'clustering' in housing 
sales is of interest here. The observations made above would suggest that there should 
be at least some autocorrelation in rates of homeownership—it is often the case that 
council estates are perceived as a whole, so that exercising the right to buy council 
housing will be manifested in spatial clusters. 

However, these observations apply only to council housing and there is also a 
sizeable private rented sector. In some areas the ghettoisation model may still apply, 
but there are other areas, particularly those with a high proportion of wealthier short-
term residents, where affluent privately rented homes exist alongside owner-occupied 
homes, and where there is less of a tendency to cluster. It may also be the case that in 
some geographical regions there is not as strong an 'owner-occupier' culture as in 
others so that even in the more desirable estates there is still a mix of rented and 
owned housing, again exhibiting less of a tendency to cluster. 
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The above serves to suggest that levels of homeownership may exhibit different 
levels of clustering (or autocorrelation) in different areas. Using a technique such as 
that described above provides a means of exploring this phenomenon by fitting locally 
varying estimates of p over a range of geographical space. Linking maps of this 
variation to other socioeconomic indicators in the region should provide some insight 
into the process of spatial variations in autocorrelation. 

The data are the 1991 proportions of owner-occupied households as a percentage of 
all households for census wards in Tyne and Wear (OPCS, 1992). These values are 
mapped in figure 1. A value of 0.5 has been subtracted from each proportion so that 
the data have a mean close to zero which facilitates the fitting of equation (1). Hence, the 
index is positive if the majority of housing in a ward is owner-occupied and negative if 
it is not. The pattern is one where rented accommodation dominates the wards towards 
the city centre and along the river Tyne and owner-occupied housing dominates in the 
peripheral wards. The autocorrelation in model (1) can be interpreted as assuming that 
areas surrounded by higher rates of owner-occupation are likely to have higher rates 
themselves, and vice versa for high rates of rented accommodation. Applying the above 

Owner-occupation index 
1=1 < -0.3 
EZZ3 -0.3 to -0.1 

-0.1 to 0.1 
0.1 to 0.3 
>0.3 

20 km 

Figure 1. Levels of home owner-occupation in Tyne and Wear. 
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Figure 2. Histogram of the owner-occupation index displayed in figure 1. 
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transform gives the histogram shown in figure 2. From this it may be seen that zero is 
a plausible central point here and that the index follows a roughly normal distribution. 
From this standpoint it is reasonable to fit either of models (1) or (2). 

Fitting model (1), a global Ord model, produces an estimate of p = 0.55 and a 
variance of 0.031. A graph of predicted versus actual owner-occupation rates is given in 
figure 3 and a map of the residuals in figure 4. From this latter map it may be seen 
that prediction errors seem to have greater magnitude in some regions than in others— 
suggesting perhaps that a smoothed index of owner-occupation is a better predictor of 
actual owner-occupation in some areas than in others. 
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Figure 3. Predicted versus actual owner-occupation levels. 
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Figure 4. Ord model residuals. 
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The next stage is to consider a geographically weighted model for p and for this a 
kernel function must be chosen. Initially, a Gaussian kernel is chosen: 

K(d) = exp ( - - J (20) 

where d is the distance between the centroid of each ward and the point at which p is 
to be estimated. Initially k was chosen to be 5 km so that the weighting of zones 5 km 
from the point of estimation will be about one third (compared with unity in an 
unweighted estimation) and zones more than about 10 km away from i will have 
negligible influence on the estimation of p.. Estimating p;. at the centroids of each 
census ward (and shading in the ward according to this value) gives the map in 
figure 5. Clearly, some degree of variation in the estimated values of pt is evident 
with some zones having considerably higher values than others. Plotting pz- against 
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Figure 5. Geographically weighted p (Ord model). 
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Figure 6. Graph of owner-occupation against local estimate of p. 
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levels of owner-occupation (figure 6) shows two groups of wards: those, primarily the 
inner-city wards, where low owner-occupation rates are combined with a high spatial 
autocorrelation; and those, primarily in the northeastern coast area and southwestern 
areas where high owner-occupation rates are associated with equally high spatial 
autocorrelation. Other areas of the region show less evidence of geographical cohesion. 

Figure 7. Estimates of p for model with intercept term. 

Figure 8. Intercept map for model with intercept term. 
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A final analysis of these data is carried out with model (6), the model in which the 
mean is calibrated rather than being input exogenously. Using the same kernel as 
before, we can estimate localised estimates of both p. and Pt as in equation (19) and 
these are shown in figures 7 and 8. The map for pt shows similar patterns to that for the 
simpler geographically weighted model. The range of values for /?,. and their magnitudes 
suggests that, once the proportions of homeownership have been centred around 50%, 
the zero mean assumption is not unreasonable. 

Further issues 1: choosing a kernel bandwidth 
Although the above example demonstrates how techniques proposed in this paper may 
be used to explore the spatial variation in spatial association and investigate the extent 
to which spatial diffusion processes vary between areas, there are still several issues 
which need to be addressed. Two of the most pressing problems are the choice of 
kernel bandwidth and the provision of a formal test as to whether global models 
hold. In this section attempts to address both of these questions will be made. 

First consider the problem of kernel bandwidth. Clearly, the choice of k in equation 
(20) will affect the overall pattern of local calibration. For example, if model (2) is 
recalibrated with a fc-value of 10 km (see figure 9), it can be seen that the spatial 
distribution of pt appears smoother than the original in figure 7. Although both 
maps display similar patterns, it would be helpful if some optimal value of k could 
be found. Often in exploratory model fitting a simple paradigm such as a least-squares 
fit may be applied. In the case of model (2) this is equivalent to minimising the squared 
differences of the observed j-values and the smoothed j-values multiplied by a locally 
varying estimate of p with respect to k. In each case the model is calibrated on the 
centroid of the ward for its respective .y-value. An alternative but similar approach is to 
find k maximising the likelihood of each observed y. There is, however a problem, 
similar to that found by Brunsdon et al (1996), with these approaches. Suppose k is 
allowed to become extremely small so that the influence of all j-values except the one 
in question is neglible. In this case a perfect fit can be obtained by setting p. to be the 

Figure 9. Estimates of p made by using a larger bandwidth. 
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ratio between the actual and smoothed jy-values for that zone. Thus, in terms of least 
squares (and maximum likelihood), the 'best' fit corresponds to a zero bandwidth 
which is clearly unsatisfactory. Applying similar techniques to those of Brunsdon 
et al (1996), one way to address this problem is to use a cross-validation scoring 
technique. In this method, each ^-value is omitted from the data set, which is then 
calibrated, and then a fitted j^-value based on this calibration is used for a least-squares 
goodness-of-fit statistic. This is not unreasonable because it is perfectly possible to 
estimate a p, value at any point in the study area. Thus, if a given zone is omitted 
from the calibration process, it is still possible to estimate pt at its centroid and then to 
compute a fitted value of yt. 

One major alteration that will need to be made, however, is to the W matrix. This 
contains information about the connectivity (or some other facet of spatial arrange­
ment) for all of the zones, including the one omitted. For the 'leave-one-out' model, W 
must be modified by striking out the zth row and column if zone / is to be omitted. 
After this, the rows must be restandardised to sum to one if W is to remain a mean-
smoothing matrix. Although all of this is possible, it does require a new set of 
eigenvectors to be computed for each calibration of the model with a concomitant 
increase in computing overheads. As the sum of squared errors will require computation 
several times in order to find an optimal k, it is worth computing all n lists of eigenvalues 
(one for each zone omitted) in advance and choosing the appropriate one in each 
computational case. An alternative is not to consider the cross-validation error for 
all zones but to use a subset of zones. This could either be strategically chosen (with some 
from urban areas and some from rural areas) or taken as a random subsample of zones. 

With the random subsample method applied to the owner-occupation data, 
figure 10 shows the relationship between the sum of squared errors and k for the 10 
wards shown in figure 11. This would suggest that, with the cross-validation approach 
to choice of k, an optimal value is about 5.5 km. Again, it should be noted that this 
does not mean that zones 5.5 km away from a point of estimation are ignored but that 
they are downweighted to about one third of full weighting. Zones up to about 11km 
away from point i contribute to the local calibration of pt in some nonnegligible way. 

Another approach to choosing suitable ^-values by means of cross-validation, 
avoiding the computation of several sets of eigenvalues, would be to calibrate the model 
(2) or model (6) with least squares techniques instead of maximum likelihood. This is 
equivalent to calibration with an ordinary regression model using a smooth j-variate as 
though it were a predictor variable and ignoring the effects of spatial autocorrelation. 
This can be calibrated with the geographically weighted regression (GWR) techniques 
of Fotheringham et al (1997b; 1997c) and Brunsdon et al (1996)—in this case, pf is the 
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Figure 11. Sample points for significance test. 

equivalent of the coefficient of the smoothed j^-value. Finally, with the cross-validation 
techniques introduced for GWR, it is possible to select an optimal bandwidth. 

The advantage of the above method is that it is effectively optimising the second 
term in (14)—the one without the eigenvalues. However, this is not without a price. The 
inconsistency of the least squares estimator of p has been noted by Whittle (1954) and 
it may also be shown that its asymptotic efficiency (the ratio between the variance of 
the maximum likelihood estimator and the least-squares estimator) is also poor for 
larger values of pf. The main hope here is that, although the actual values of pt 

provided by this method may be poor, the estimate for an optimal k may still be 
reasonable. This area will require further investigation. 

Further issues 2: testing stationarity of the autoregressive coefficient 
Another issue which needs to be addressed is that relating to formal tests of non-
stationarity. Clearly, a nonstationary autoregressive model is more complex than a 
stationary one and if there is only poor evidence of nonstationarity then effort would 
be expended attempting to interpret essentially random fluctuations in pt. Any analysis 
of nonstationarity should be preceded by some formal significance test. This test could 
be based on the null hypothesis that 

pt = constant for all /, (21) 

that is, the only fluctuations observed in pt are those attributable to chance. This is a 
relatively difficult test to implement because the sampling distribution for the estimates 
of pt is not known analytically. As the estimates used are maximum likelihood, the 
asymptotic distribution of pt is well known so tests comparing pt values in two differ­
ent subregions of study may be a valid approach. However, it is not determined for a 
given arrangement of zones whether asymptotic conditions have been approximately 
achieved. To paraphrase Besag (1974), it is difficult to imagine the number of census 
wards in Tyne and Wear tending to infinity, but a further problem is that it is equally 
difficult to tell whether the actual number of wards in Tyne and Wear is sufficiently 
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close to infinity to apply tests based on asymptotic assumptions. Further objections to \ 
this technique could be raised on the grounds that, if geographically weighted estimates 
of pi had already been mapped, this would be a post-hoc rationalisation of the null 
hypothesis. A final objection is that finding that the chosen subregions do not differ 
significantly in p, does not imply that p is fixed everywhere. It is possible that a 
different choice of subregions may have successfully identified differences. This suggests 
that such a test is not very powerful in testing the full implications of the logical 
negation of hypothesis (21). 

Monte-Carlo or Hope testing (Hope, 1968) might be a more fruitful approach 
because it does not rely on the parametric assumptions for the sampling distribution 
of p,- required by the method suggested above. To counter the other two objections, p, 
should be measured at a series of sample points spread homogeneously across the 
study area and the variability of these estimates used as a test statistic for hypothesis 
(21). This approach, by covering most of the study area, should be better able to detect 
deviation at an unknown point in the study area. Also, because a reasonably uniform 
distribution of sampling points is used, one cannot be accused of comparing a post-hoc 
choice of subregions. 

There are some issues that must be dealt with here. First, as with the approach 
suggested for choosing the fc-value, it is important to choose the sampling points wisely. 
In particular, a set of sampling points representing both urban and rural areas should 
be used. Two approaches are suggested: one is that sampling could be based on centroids 
of wards (or whatever areal units are used in a given example); the second is that it could 
be based on a regular lattice covering the study area. In either case, care should be taken 
to ensure that the sample of points is in some way representative of the geography of 
the area under investigation. One possibility when using wards may be to select sample 
centroids randomly by means of a sampling process in which the probability of selec­
tion for a given zone is proportional to the population of that zone. 

A further matter arising relates to the Monte-Carlo methodology itself. In previous 
works the authors have used a randomisation-based methodology for tests of spatial 
association (Brunsdon et al, 1996; Fotheringham et al, 1997c). In this approach, attributes 
of zones are permuted randomly amongst the zones in each randomisation. If a statistic, 
such as a Pearson correlation coefficient, is space invariant, then such randomisation 
brings no change. If a statistic is dependent on the spatial arrangement of the data—such 
as Moran's /-statistic (Moran, 1950)—then clearly some variation will be observed. 
However, under a null hypothesis of no spatial association in the data, any of the 
permutations obtained would be equally likely so that the variation in the statistic will 
be a result of its null distribution. Comparing the actual value of the statistic with a 
sample of permutation-based values forms the basis of the Hope test. 

There are, however, difficulties with this technique in the current case. The main 
problem is that the null hypothesis here—equation (21)—is not one of no spatial 
association, but of a uniform degree of spatial association. What this suggests is that 
the 'random permutation' approach is no longer valid. The null hypothesis in this case 
demands that one form of spatial association (the uniform model) is tested against 
another (the nonuniform model). It is an irrelevance to compare the degree of variation 
of p, in the observed sample against the degree of variation expected were there no 
spatial pattern at all. How, then, might a more desirable test be devised? One possibility is 
to identify a phenomenon which would have no spatial association under hypothesis (21), 
and permute this, rather than the observed zonal attributes. This is indeed a possibility 
because equation (7) shows that e is a matrix transformation of y—but of course e is a set 
of independent variables. That is, under a null hypothesis that equation (1) holds, 
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it may be stated that 

y = A~]e, 
or 

y = ( I - p W ) " 1 * . (22) 

Thus, by permuting e it is then possible to derive a vector of variables y which may 
then be used for the Monte-Carlo simulation. The variance of the estimated pt values in 
these simulations will then provide a reference distribution with which to compare the 
observed variance of p. 

Thus, the Monte-Carlo algorithm for testing hypothesis (21) may be set out as 
below: 
1. Estimate p,. at the sample points. 
2. Compute the variance of the estimated values obtained above and call it v. 
3. Compute e = Ay. 
4. Compute e\ a random permutat ion of e. 
5. Compute y* = A~]e. 
6. Estimate p,- at the sample points, based o n j * . 
7. Compute the variance of the estimated values obtained above. 
8. Repeat steps 4 - 7 n— 1 times. 
9. Compare v against the n — 1 randomised values to yield a significance level. 

A further refinement could be achieved by employing Besag and Clifford's (1991) 
method for sequential Monte-Carlo testing. In this approach the test is applied until 
either / tests give a test statistic more strongly opposed to the null hypothesis than the 
actual statistic, or a given number of simulations have been achieved. Typically / would 
be 10 or 20. In cases where the null hypothesis is true this tends to reduce the number 
of simulations needed to perform the test, and so improves computational efficiency. 

A final observation must be made about the use of pt in this algorithm. Strictly, the 
null hypothesis in this test is that equation (1) holds for a known value of p. That is, it 
tests, say p = 0.5 everywhere against a hypothesis that p =£ 0.5. In practice, the value 
of p will not be known in advance but an estimate will be computed with methods 
given in this paper. This suggests that there will be some extra level of variability in the 
sampling distribution of the variance of the local estimates of p , because of the 
standard error of the global p estimate. Thus, a test which is just significant should 
be treated with some caution. It is hoped that in future studies, a more satisfactory 
approach to this testing procedure may be developed. 

The results of applying this test to the owner-occupation data are shown in table 1. 
From this table it may be seen that the observed variance, at 0.229, is in the lower tail 
of the randomisation distribution, ranking 98th in 100 trials. This suggests that there is 
some justification in the adoption of a spatially nonstationary Ord model. 

Table 1. Monte-Carlo simulation results to test for nonstationarity: variance of p,. 

Distribution Variance 

Observed 0.229 
Experimental 

minimum 0.060 
lower quartile 0.123 
median 0.155 
upper quartile 0.191 
maximum 0.234 
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Rirther issues 3: adding explanatory variables 
The Ord model, as used above, is a useful tool for modelling the degree to which a 
given variable exhibits spatial association. However, although spatial self-association 
plays an important role in many geographical processes, it is seldom this alone which 
explains variations in many phenomena. For example, although rates of owner-occupa­
tion in surrounding areas may well have some bearing on the rate of owner-occupation 
in a given area, there may well be other factors such as unemployment levels or 
household composition which would also affect levels of owner-occupation. For this 
reason, a logical extension of the methodology is to incorporate explanatory variables 
in the model, as in equation (15). A simple example of this is considered above when an 
offset is added to the model. 

Applying a geographically weighted approach to this model gives a regression 
model in which coefficients vary over space and the degree of autocorrelation alters. 
This would suggest, in the owner-occupation versus unemployment model discussed 
above, that not only could the effect of the surrounding level of owner-occupation vary 
over space but also that the linkage between the rate of owner-occupation and unem­
ployment may exhibit spatial nonstationarity. The latter may be caused by the actual 
price of housing—if owning housing is relatively cheap in one region then there may 
be a greater take-up rate than in other more expensive areas having similar levels of 
prosperity. 

An analysis of the model suggested above is carried out in figures 12 and 13— 
showing the pt estimates and the coefficient for male unemployment in the model, 
respectively. It can be seen that the levels of autocorrelation vary in a slightly different 
way once levels of male unemployment have been accounted for and that the coeffi­
cient for male unemployment is steepest in the central areas. As with the simple Ord 
model, it is possible to use a cross-validation method to choose an optimal lvalue and 
to test hypotheses of spatial nonstationarity. 

Figure 12. Estimate of p mode from model 3. 
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Figure 13. Unemployment coefficient from model 3. 

Conclusions 
In this paper we explore the possibility of examining spatial nonstationarity in a 
particular form of spatial regression, the Ord model, although the technique can easily 
be applied to any other framework in which estimates of spatial autocorrelation are 
obtained. Our findings include a method for calibrating such a model and some tenta­
tive approaches to testing the model against a stationary null hypothesis. It should be 
noted that at present the development of such tests is in its early stages and it is hoped 
that more robust methods may suggest themselves after a more rigorous analytical 
treatment of the problem. For example, one notable characteristic of the calibration of 
the Ord model with spatially reweighted maximum likelihood is the high computa­
tional overhead. This could be reduced if a least squares approach were adopted. In 
this study the maximum likelihood approach was chosen on the grounds that this 
would provide a consistent estimate in the case where a global Ord model did hold 
(assuming the kernel bandwidth remained fixed as the sample size increased); a least 
squares estimator would not ensure this consistency However, it is hoped that more 
detailed study of the behaviour of the two kinds of estimator should eventually lead to 
a less ad hoc choice of estimator. 

To gain a greater understanding of the spatially varying autoregressive model 
described here, a comparison with the work of Anselin (1995) might be helpful. 
Whereas Anselin disaggregates the weighting matrix into spatial components (a local 
area decomposition) and examines the influence of these local weighting matrices on 
the global model, in our method each zone may be thought of as responding to a 
different model so that the autocorrelation measure varies over space. The essence of 
our model, therefore, is not to search for any global statement of relationships but to 
examine local variations in such relationships. 

We feel that this approach represents an important breakthrough. The advent of 
GIS has brought about a much greater awareness that spatial location is often a very 
important explanatory factor in geographical processes (a fact quite amazingly ignored 



Spatial nonstationarity and autoregressive models 973 

in many analyses of geographical data), and this had led more people to turn to spatial 
methods of data analysis and given rise to publications such as that by Fotheringham 
and Rogerson (1993). There is currently a great interest in 'local' as opposed to 'global' 
statistics and spatial variations are increasingly being recognised as important facets of 
analysis with spatial data, rather than as irrelevances to be ignored in the search for 
general laws. This paper adds to the growing literature in the field of truly spatial 
statistics. 
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