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Statistical process control (SPC) methods are widely used to monitor and improve manufacturing pro-

cesses and service operations. Disputes over the theory and application of these methods are frequent and

often very intense. Some of the controversies and issues discussed are the relationship between hypothesis

testing and control charting, the role of theory and the modeling of control chart performance, the relative

merits of competing methods, the relevance of research on SPC and even the relevance of SPC itself.

One purpose of the paper is to offer a resolution of some of these disagreements in order to improve the

communication between practitioners and researchers.

Introduction

S
TATISTICAL methods play a vital role in the quality
improvement process in manufacturing and ser-

vice industries. As evidence of the interest in statis-
tics among quality professionals, the membership of
the Statistics Division of the American Society for
Quality (ASQ) (11,000) is roughly 60% of that of the
entire American Statistical Association (18,000).

As pointed out by Woodall and Montgomery
(1999), there are a number of disputes in the area
of statistical quality control (SQC). There are differ-
ences of opinion in all areas of statistical science, but
disagreements tend to be more common and more in-
tense in the quality area. This could be due in part
to the diversity of those working in the quality field,
including quality gurus and their followers, consul-
tants, quality engineers, industrial engineers, profes-
sional practitioners, statisticians, managers, and oth-
ers. Another contributing factor to disagreements
is competition for the large investments companies
make in quality improvement and quality certifica-
tion programs.

Dr. Woodall is a Professor in the Department of Statistics.

He is a Fellow of ASQ. His e-mail address is bwoodall@vt.edu.

Statistical process control (SPC), a sub-area of
SQC, consists of methods for understanding, mon-
itoring, and improving process performance over
time. The purposes of this paper are to give an
overview of some of the controversial issues in SPC,
to outline some of the contradictory positions held by
past and present leaders in this area, and, in some
cases, to offer a middle ground for the resolution of
conflicts. It is hoped that practitioners will better
understand how SPC research can improve the use
of methods in practice. Also, it is hoped that SPC
researchers will better understand how their models
fit into the context of an overall SPC strategy.

Some basic concepts of SPC are discussed in the
next section. The debate over the relationship be-
tween hypothesis testing and control charting is re-
viewed in the third section. In the fourth section, the
role of theory is covered and the usefulness of deter-
mining the statistical performance of control charts is
supported. Various alternatives to Shewhart control
charts are then discussed. The sixth section contains
conflicting views on the role of SPC and research in
SPC. Conclusions are given in the final section.

Some Concepts of SPC

Understanding of the variation in values of a
quality characteristic is of primary importance in
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SPC. ‘Common cause’ variation is considered to be
due to the inherent nature of the process and can-
not be altered without changing the process itself.
‘Assignable (or special) causes’ of variation are un-
usual shocks or other disruptions to the process, the
causes of which can and should be removed. One pur-
pose of control charting, the featured tool of SPC, is
to distinguish between these two types of variation
in order to prevent overreaction and underreaction
to the process. The distinction between common
causes and assignable causes is context dependent.
A common cause today can be an assignable cause
tomorrow. The designation could also change with a
change in the sampling scheme. One wants to react,
however, only when a cause has sufficient impact that
it is practical and economic to remove it in order to
improve quality.

Control charts are used to check for process sta-
bility. In this context, a process is said to be “in
statistical control” if the probability distribution rep-
resenting the quality characteristic is constant over
time. If there is some change over time in this dis-
tribution, the process is said to be “out of control.”
This traditional definition of “statistical control” has
been generalized over the years to include cases for
which an underlying statistical model of the quality
characteristic is stable over time. These useful gener-
alizations include, for example, regression, variance
component, and time series models.

For continuous quality characteristics, specifica-
tion limits are often given in practice. An item is
considered to be “O.K.” if the value of its quality
characteristic is within the specification limits and
“not O.K.” otherwise. Deming (1986) and many
others have argued that meeting specification lim-
its is not sufficient to ensure good quality and that
the variability of the quality characteristics should
be reduced such that, as Deming (1986, p. 49) de-
scribes it, “specifications are lost beyond the hori-
zon.” Thus, for many quality characteristics, quality
improvement corresponds to centering the probabil-
ity distribution of the quality characteristic at a tar-
get value and reducing variability. Taguchi (1981,
p. 14) advocated reduction of variability until it be-
comes economically disadvantageous to reduce it fur-
ther.

To use a control chart such as the X-chart to mon-
itor the process mean or the R-chart to monitor vari-
ability, samples are taken over time and values of a
statistic are plotted. For the type chart introduced
by Shewhart (1931, 1939), an out-of-control signal

is given by the chart as soon as the statistic cal-
culated from a sample falls outside control limits.
These limits are usually set at ± 3 standard errors of
the plotted statistic from a centerline at its historical
average value. The formula for the calculation of the
standard error is usually based on a distributional as-
sumption, e.g., the binomial model for a p-chart used
to monitor proportions. The resulting control limits
are referred to as “three-sigma” limits. Other rules
are also used for signaling an out-of-control situation
based on “non-random” patterns on the chart. Many
of these patterns are given in the Western Electric
Handbook (1956).

It is very important to distinguish between use of
a control chart on a set of historical data to deter-
mine whether or not a process has been in statistical
control (Phase 1) and its use prospectively with sam-
ples taken sequentially over time to detect changes
from an in-control process (Phase 2). The use of
control charts in Phase 1 is usually iterative. Much
work, process understanding, and process improve-
ment is often required in the transition from Phase
1 to Phase 2.

It is assumed here that the reader is somewhat
familiar with the construction and use of control
charts. For detailed introductions to these ideas, the
reader is referred to Wheeler and Chambers (1992),
Montgomery (1996), Ryan (2000), or Woodall and
Adams (1998).

Control Charting and
Hypothesis Testing

For the basic Shewhart-type control chart with
no supplementary signal rules, the process is con-
sidered to be in-control if the plotted statistic falls
within the control limits and out-of-control other-
wise. Thus, there is a yes/no decision based on the
value of a statistic and decision regions. This is a
structure similar, at least on the surface, to that used
in testing hypotheses. Thus, the reader may be sur-
prised over the strong disagreements regarding the
relationship between control charting and repeated
hypothesis testing.

Some authors write that control charting and hy-
pothesis testing are equivalent or very closely related.
Juran (1997, p. 79), for example, referred to the con-
trol chart as “a perpetual test of significance.” Box
and Kramer (1992) stated that “process monitoring
resembles a system of continuous statistical hypoth-
esis testing.” Vining (1998, p. 217) wrote
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The current peer review literature, which represents the
standard for evaluating the effectiveness and efficiency
of these methodologies, tends to view the control chart
as a sequence of hypothesis tests.

Vining then justifies his hypothesis testing view stat-
ing that it better reflects statistical thinking in show-
ing ties between two important areas of statistics,
provides a formal basis for evaluating properties of
control charts, and justifies use of the cumulative
sum (CUSUM) control chart.

On the other side of the issue, Deming (1986,
p. 369) stated (without elaboration)

Some books teach that use of a control chart is test of
hypothesis: the process is in control, or it is not. Such
errors may derail self-study.

Also, Deming (1986, p. 335) wrote

Rules for detection of special causes and for action on
them are not tests of a hypothesis that a system is in a
stable state.

Nelson (1999) takes a similar view. Wheeler (1995,
p. 17 and Chapter 19) and Hoerl and Palm (1992)
also emphasize the differences between control chart-
ing and hypothesis testing.

Deming (1986, p. 272) strongly advocated the use
of control charts, but argued emphatically against
the use of hypothesis testing.

Incidentally, the chi-square and tests of significance,
taught in some statistical courses, have no application
here or anywhere.

Deming argued that practical applications in indus-
try required “analytical” studies because of the dy-
namic nature of the processes for which there is no
well-defined finite population or sampling frame. He
held that hypothesis testing was inappropriate in
these cases. Hahn (1995) provides a clear summary
of the distinction between what Deming referred to
as analytical and enumerative studies.

As pointed out by Woodall and Faltin (1996),
Shewhart (1939, p. 40) seemed to take more of a
middle ground in this debate since he wrote

As a background for the development of the operation
of statistical control, the formal mathematical theory
of testing a statistical hypothesis is of outstanding im-
portance, but it would seem that we must continually
keep in mind the fundamental difference between the
formal theory of testing a statistical hypothesis and the
empirical theory of testing of hypotheses employed in
the operation of statistical control. In the latter, one
must also test the hypothesis that the sample of data
was obtained under conditions that may be considered
random.

Woodall and Faltin (1996) also point out that con-
trol charting and hypothesis testing are similar, for
example, in the respect that unnecessarily large sam-
ple sizes may result in reactions to small effects of no
practical significance.

Some of the disagreement over the relationship
between control charting and hypothesis testing ap-
pears to result from a failure to distinguish between
Phase 1 and Phase 2 applications. The theoretical
approach to control charting in Phase 2, in which
the form of the distribution is assumed to be known
along with values of the in-control parameters, does
closely resemble repeated hypothesis testing, espe-
cially if one considers an assignable cause to result in
a sustained shift in the parameter of interest. In some
cases there is mathematical equivalence. In practi-
cal applications of control charts in Phase 1, however,
no such assumptions are or can be made initially and
the control chart more closely resembles a tool of ex-
ploratory data analysis. As Hoerl and Palm (1992)
explain, the underlying model then is only that one
has a series of independent random observations from
a single statistical distribution. The control chart
rules are used to detect deviations from the model,
including the model assumptions themselves.

At best the view that control charting is equiva-
lent to hypothesis testing is an oversimplification. At
worst the view can prevent the application of control
charts in the initial part of Phase 1 because of the
failure of independence and distributional assump-
tions to hold.

Role of Theory

To measure the statistical performance of a con-
trol chart in Phase 1 applications, one considers
the probability of any out-of-control signal with the
chart. The false-alarm rate, for example, is the prob-
ability of at least one signal from the chart given
that the process is in statistical control with some
assumed probability distribution. This approach
is related to the “analysis of means” discussed by
Wheeler (1995, Chapter 18) and Ryan (2000). In
Phase 2, the probability of a signal on any one sam-
ple is sometimes used if the successive statistics plot-
ted are independent, as may be the case with a basic
Shewhart-type chart. More commonly, some param-
eter of the run length distribution is used. The run
length is the number of samples required for a signal
to occur. The average run length (ARL) is the most
frequently used parameter, although the run length
distribution is often skewed to the right.
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The calculation of any statistical measure of per-
formance requires an assumption about the form of
the probability distribution of the quality character-
istic. Certainly most of the theoretical and simula-
tion studies of the performance of control charts for
variables data have been based on the assumptions of
an underlying normal distribution and independence
of samples over time. Also, the control chart con-
stants used in practice to calculate the control limits
of the X and R charts are based on an assumption
of normality, although Burr (1967) showed that non-
normality appears to have little effect on their values.
To first use a control chart in practice, however, no
assumptions of normality or independence over time
need to be made. In fact, distributional assump-
tions cannot even be checked before a control chart
is initially applied in a Phase 1 situation because one
may not have process stability. As one works within
Phase 1 to remove assignable causes and to achieve
process stability, the form of the hypothesized under-
lying probability distribution becomes more impor-
tant in determining appropriate control limits and
in assessing process capability. To interpret a chart
in Phase 1, practitioners need to be aware that the
probability of signals can vary considerably depend-
ing on the shape of the underlying distribution for a
stable process, the degree of autocorrelation in the
data, and the number of samples.

Wheeler (1995) states, “the assumptions used
for the mathematical treatment become prohibitions
which are mistakenly imposed upon practice.” Ho-
erl and Palm (1992) take a similar position that may
also be somewhat overstated. Many authors, how-
ever, do imply that the normality and independence
assumptions are required in practice without neces-
sarily stating this explicitly. Often this is because
they want to give the probability of a false alarm
with a Phase 2 X-chart to be .0027 for each sam-
ple, but this value itself is not accurate unless the
in-control parameters are estimated with large sam-
ples, as shown by Quesenberry (1993).

Distributional and independence assumptions in
theoretical studies of Phase 2 should not be con-
strued as requirements in practical applications of
the initial stages of Phase 1. The mathematical ap-
proach is very useful, however, in showing how con-
trol charting methods will tend to behave under vari-
ous scenarios. Many papers have been written on the
statistical performance of control charts, primarily
for Phase 2. According to Pearson (1967), the more
mathematical treatment began in England after a

visit there by Shewhart in 1932. It is doubtlessly dis-
turbing to many practitioners that researchers tend
to neglect Phase 1 applications and the vitally impor-
tant practical considerations of quality characteris-
tic selection, measurement and sampling issues, and
rational subgrouping. With the exception of mea-
surement error analysis, however, most of the latter
issues cannot be easily placed into a general math-
ematical framework. Because of this fact, these im-
portant practical issues are rarely mentioned in the
SPC research literature.

It is important to understand the robustness of
control chart performance to the standard theoreti-
cal assumptions. There is considerable disagreement
regarding robustness. Wheeler (1995, p. 288) states,
for example, that the effect of autocorrelation on the
control limits of the control chart for individuals data
will not be significant until the lag-one autocorrela-
tion coefficient is .7 or higher. Maragah and Woodall
(1992), however, show that much lower levels of au-
tocorrelation can have a substantial effect on the
chart’s statistical performance. Padgett, Thombs,
and Padgett (1992), among others, show the effect of
non-normality and autocorrelation on control charts
such as the Shewhart X-chart. There appears to be a
wide difference of opinion on how much robustness is
needed in practical applications, so there may always
be some disagreement on this issue.

The effect and implications of autocorrelation
have been topics of frequent discussion and debate in
the SPC literature. See, for example, Montgomery
and Mastrangelo (1991), Box and Kramer (1992),
Hoerl and Palm (1992), and Woodall and Faltin
(1993). Autocorrelation often reflects increased vari-
ability. Thus, the first two options to consider should
be to remove the source of the autocorrelation or to
use some type of process adjustment scheme such
as those discussed by Box and Luceño (1997) and
Hunter (1998). Control charting can be used in con-
junction with process adjustment schemes, and Box
and Luceño (1997) emphasized that the two types
of tools should be used together. Only if these first
two options prove infeasible should one consider us-
ing stand-alone control charts for process monitoring
such as those discussed by Lu and Reynolds (1999),
Lin and Adams (1996), and Adams and Lin (1999).
One should be aware that in Phase 2, the statisti-
cal performance of standard control charts with the
usual limits can be greatly affected by autocorrela-
tion. This is rightly so since the charts are designed
to detect departures from an independent, identically
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distributed process with in-control parameter values.
Upon reaching the latter stages of Phase 1 and in
Phase 2, it pays to study distributional character-
istics and the degree of autocorrelation to prevent
using a chart that produces many non-informative
out-of-control signals.

To some, however, the statistical performance of
control charts is of little or no importance. Deming
(1986, pp. 334–335), for example, stated

The calculations that show where to place the control
limits have their basis in the theory of probability. It
would nevertheless be wrong to attach any particular
figure to the probability that a statistical signal for de-
tection of a special cause could be wrong, or that the
chart could fail to send a signal when a special cause
exists. The reason is that no process, except in ar-
tificial demonstrations by use of random numbers, is
steady, unwavering. It is true that some books on the
statistical control of quality and many training manuals
for teaching control charts show a graph of the normal
curve and proportions of area thereunder. Such tables
and charts are misleading and derail effective study and
use of control charts.

Wheeler (1995, p. 15) and Neave (1990, p. 78) go even
further to argue that consideration of the theoretical
properties of control charts, the “probabilistic” ap-
proach, actually reduces the usefulness of the tech-
niques. As discussed by Woodall and Montgomery
(1999), Deming’s view seemed to be that models are
not useful in control charting since none have un-
challengable assumptions. Given his stature in the
quality area, Deming’s views have had considerable
impact.

Deming’s position that no process is steady and
unwavering contradicts the premise of his principle,
however, that stable processes should not be ad-
justed.

If anyone adjusts a stable process to try to compensate
for a result that is undesirable, or for a result that is
extra good, the output that follows will be worse than
if he had left the process alone.

Deming, 1986, p. 327.

Deming illustrates this principle with one of his
well-known funnel experiments where marbles are
dropped toward a target marked on a table. Vari-
ation about the target is increased if the funnel is
moved in an attempt to correct for random errors.
Although it is a mistake to adjust an on-target, in-
control process, it can be of benefit to adjust au-
tocorrelated processes, as illustrated by MacGregor
(1990). In these cases Deming’s funnel experiment
has often been misinterpreted and become a barrier

in practice to consideration of adjustment methods
such as those discussed by Box and Luceño (1997).

Deming’s objection to measures of statistical per-
formance of control charts because no process is sta-
ble can be overcome at least in part by modeling
the instability of the process distribution. For exam-
ple, one might consider a normal distribution with
constant variance, but with a mean that itself is nor-
mally distributed. This approach is useful in situa-
tions for which there is more than one component of
common cause variability. See, for example, Woodall
and Thomas (1995) and Laubscher (1996).

It is odd that Deming, as quoted by Neave (1990,
p. 249), rejected the mathematical theory of control
charting since he stated bluntly,

Experience teaches nothing unless studied with the aid
of theory.

It is often argued that Shewhart charts with 3-
sigma limits should be used because experience shows
this to be the most effective scheme and because
Shewhart (1931, p. 277) stated that this multiple of
sigma “seems to be an acceptable economic value.”
Given this reliance on Shewhart’s opinion, however,
it is somewhat disconcerting to read Juran’s (1997)
surprising account that “Shewhart has little under-
standing of factory operations” and could not com-
municate effectively with operators and managers.
Juran’s view of Shewhart, however, differs consid-
erably from Shewhart’s other contemporaries as ev-
idenced in “Tributes to Walter A. Shewhart” pub-
lished in Industrial Quality Control in August, 1967.

Other Control Charts and Methods

CUSUM and EWMA Charts

Deming’s view was that the three-sigma Shewhart
chart was unsurpassed as a method for detection of
assignable causes.

The Shewhart control charts do a good job under a wide
range of conditions. No one has yet wrought improve-
ment.

Deming (1993, p. 180).
Shewhart contrived and published the rule in 1924—65
years ago. Nobody has done a better job since.

Deming, as quoted by Neave (1990, p. 118).

Why should control charting be exempt from Dem-
ing’s exhortation to constantly and forever improve?
In order to even consider the possibility that the
Shewhart type chart could be enhanced or another
control charting method could be better than the
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Shewhart chart under any situations, operational
definitions of “good” and “better” are required. As
Deming (1986, p. 276) wrote

Adjectives like good, reliable, uniform, round, tired,
safe, unsafe, unemployed have no communicable mean-
ing unless they are expressed in operational terms of
sampling, test, and criterion.

With operational definitions it seems that in com-
parisons of control chart performance one is led in-
exorably to comparisons of statistical performance
under assumed models. As Deming argued, experi-
ence is not sufficient as a guide within itself. It has
been shown using statistical performance, for exam-
ple, that cumulative sum (CUSUM) and exponen-
tially weighted moving average (EWMA) charts are
much more effective than Shewhart charts in detect-
ing small and moderate-sized sustained shifts in the
parameters of the probability distribution of a qual-
ity characteristic. See, for example, Montgomery
(1996, Chapter 7). The use of runs rules with the
Shewhart chart, however, narrows the gap in perfor-
mance somewhat, as shown by Champ and Woodall
(1987). In some cases EWMA and CUSUM charts
are very useful, but they are not meant to completely
replace the Shewhart chart which can be used to de-
tect a wider assortment of effects due to assignable
causes. It is frequently recommended that Shew-
hart limits be used in conjunction with a CUSUM
or EWMA chart.

Pre-control

One highly controversial method offered as an al-
ternative to control charting is “pre-control.” With
pre-control there are no control limits based on pro-
cess performance and no attention paid to whether or
not the process is in statistical control. The method
is based on the specification limits, the range of which
is divided into four parts of equal length. The mid-
dle two parts comprise the “green zone.” The outer
two parts within the specification limits comprise the
“yellow zones” and the region outside the specifica-
tion limits corresponds to the “red zone.” Various
sampling and decision rules are set up such that the
process is allowed to operate as long as measurements
don’t fall into the red zone or into the yellow zone too
often. See Bhote (1988, 1991), Ledolter and Swersey
(1997a), and Steiner (1997–98) for more details on
pre-control.

As Ledolter and Swersey (1997a) point out, advo-
cates of pre-control typically promote the idea with
a great deal of hyperbole. Bhote (1988), for exam-
ple, uses the chapter title “Control Charts vs. Pre-

control: Horse and Buggy vs. the Jet Age.” It is
difficult to make meaningful comparisons between
pre-control and control charts since there are typ-
ically no clear statistical objectives or assumptions
made for pre-control. Upon careful study, Ledolter
and Swersey (1997a) identify specific situations for
which pre-control has value, but conclude in general
that the method is not an adequate substitute for
statistical control charts. If one follows the view of
Deming and others that models should not be used
to determine statistical properties, then it becomes
impossible to argue effectively against pre-control or
any other such method. Even though Wheeler (1995)
argues strongly against the probabilistic approach,
for example, he uses alarm probabilities and ARLs
to argue against the use of two-sigma limits with
Shewhart control charts and against pre-control. As
Wheeler (1995, pp. 205–206) explains, he reluctantly
and cautiously uses the probabilistic approach be-
cause of the benefit of its generality. He holds, how-
ever, that only gross differences in theoretical perfor-
mance are likely to transfer over into practical appli-
cations.

Advocates of pre-control present a misleading im-
pression of control charting practice. For example
Bhote (1988, p. 35) states that control charts which
show that a process is in statistical control also indi-
cate that process performance is good. This ignores
the fact that capability analyses are performed af-
ter it is determined that a process is in statistical
control. Since pre-control cannot be used to deter-
mine statistical control, the common use of process
capability indices in the application and discussion
of pre-control is meaningless. Unfortunately, a lot of
energy in the SPC area goes toward debating with
those, such as many of the advocates of pre- control,
who do not understand control charting concepts and
offer inferior methods.

Impact of New Methods

Another unfortunate fact is that some useful ad-
vances in control charting methods have not had
a sufficient impact in practice. As Crowder et al.
(1997) state

There are few areas of statistical application with a
wider gap between methodological development and ap-
plication than is seen in SPC.

The body of SPC knowledge required, for example,
for the certified quality engineer (CQE) exam of ASQ
consists almost entirely of material covered in the
Western Electric Handbook (1956). Disturbingly,
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ASQ lists Bhote (1991) as one of eight books sug-
gested in the reference materials for the statistical
principles and applications portion of the CQE exam.
This is very odd, to say the least, since Bhote (1991)
refers to control charting as “a total waste of time”
and states that classical design of experiments as de-
scribed by Box, Hunter, and Hunter (1978) is of “low
statistical validity” and dominated in all practical as-
pects by the methods of Dorian Shainan. Both con-
trol charting and classical design of experiments form
substantial parts of the required CQE material. In
the design area, Bhote (1991) advocates the variable
search method of experimentation shown by Nelson
(1989), Amster and Tsui (1993) and Ledolter and
Swersey (1997b) to be inefficient. Moore (1993) pro-
vides a more detailed review of Bhote’s 1991 book.

It is clear that the infusion of new ideas into the
accepted body of SPC knowledge has been very slow.
Udler and Zaks (1997) cite the “weight of quality
assurance bureaucracies” and “the comfort of exist-
ing systems in professional quality circles” for this
situation. Another frequently mentioned factor is
that many practitioners do not have strong enough
backgrounds in statistics to move beyond the sim-
pler basic methods. Also, so many ideas, methods,
and variants of methods have been proposed over
the years, many of little practical value, that it be-
comes difficult to separate useful methods from the
rest. Regardless of the reasons for their lack of wide
acceptance, there have been many techniques devel-
oped that could greatly increase the usefulness of
SPC in some common situations. These include pro-
cess adjustment strategies, regression-based meth-
ods, multivariate methods, use of variance compo-
nents, variable sampling methods, and change-point
techniques, to name a few. See the panel discus-
sion edited by Montgomery and Woodall (1997) for
an overview of many of these methods and relevant
references. The relative merits of competing meth-
ods are sometimes hotly debated. See, for example,
Woodall (1986) for a critique of the economic design
of control charts and Quesenberry (1998, 1999) for a
debate on short-run SPC.

Two Ineffective Methods

On the other hand, there are some very commonly
used methods which are ineffective and whose use
should be discontinued. For example, a very widely
used supplementary rule for a Shewhart chart is for a
signal to be given if there are a number of consecutive
points plotted which are either all steadily increasing
or all steadily decreasing. Deming (1986, pp. 320–

321, p. 363) advocates this rule with seven or more
consecutive points and it is recommended by AIAG
(1991). It has been shown by Davis and Woodall
(1988); Walker, Philpot, and Clement (1991); and
others, however, that this rule is ineffective in detect-
ing a trend in the underlying mean of the process, the
situation for which it was intended. Even though the
rule seems intuitively reasonable, its primary effect
is to inflate the false-alarm rate.

Also, with individual observations collected over
time, it is standard practice to use a moving
range chart to detect changes in variability. Rig-
don, Cruthis, and Champ (1994) and Sullivan and
Woodall (1996), among others, have shown that the
moving range chart is ineffective for this purpose. If
one wishes to detect sustained changes in variabil-
ity in Phase 1, the change-point method described
by Sullivan and Woodall (1996) is much more effec-
tive. The moving range chart, however, remains part
of the ASQ CQE exam material and the ineffective
trend rule is included in the references recommended
by ASQ for this exam.

Relevance of SPC
and SPC Research

The manufacturing environment in which SPC is
used is changing rapidly. There are, for example,
trends toward shorter production runs, much more
data, higher quality requirements and greater com-
puting capability. Gunter (1998) argues that control
charts have lost their relevance in this environment,
stating

The reality of modern production and service processes
has simply transcended the relevance and utility of this
honored but ancient tool.

Banks (1993) and Hoyer and Ellis (1996 a–c), among
others, have been very critical of research on SPC.
Banks writes, for example,

It is probably past time for university researchers to
drop stale pseudo-applied activities (such as control
charts and oddly balanced designs) that only win us
a reputation for the recondite.

In my view the role of SPC in understanding,
modeling, and reducing variability over time remains
very important. There needs to be a quicker transi-
tion, however, from the classical methods to some of
the newer approaches when appropriate. There are
useful areas of research as discussed by Woodall and
Montgomery (1999) and Stoumbos et al. (2000). The
scope of SPC needs to be broadened to include an un-
derstanding of the transmission of variation through-
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out the manufacturing process. This will require
more sophisticated modeling and the incorporation
of more engineering knowledge of the processes un-
der study.

Conclusions

Various differences in opinion have been given in
this paper on issues regarding control charts. In
the author’s view many of the disagreements are
essentially communication problems which can be
resolved. One communication problem is that re-
searchers rarely, if ever, put their sometimes nar-
row contributions into the context of an overall SPC
strategy. There is a role for theory in the applica-
tion of control charts, but theory is not the primary
ingredient for most successful applications. Control
charting is related closely to hypothesis testing only
under the mathematical framework used to deter-
mine the statistical performance of the charts. The
associated assumptions are not required for control
charts to be used initially in practice. The form of
any underlying distribution and the degree of auto-
correlation, however, become increasingly important
components in the interpretation of control charts as
one progresses in Phase 1 and in the assessment of
their expected performance in Phase 2. Study of the
statistical performance of charts is very important
because it provides insight into how charts work in
practice and it provides the only way to effectively
compare competing methods in a fair and objective
manner.

The methods developed in the first half of this
century by Shewhart and others are still very use-
ful in many current applications. Their familiar-
ity and simplicity relative to other methods can of-
ten compensate for loss in efficiency. In our chang-
ing manufacturing environment, however, it is im-
portant to consider some of the methods developed
more recently such as those for several related quality
characteristics, multiple processes, and more sophis-
ticated sampling plans. Infusion of new ideas into
the body of commonly accepted SPC knowledge has
been much too slow and has led to much of the crit-
icism regarding the relevance of SPC in the current
manufacturing environment.
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