
Operations Research Letters 30 (2002) 343–350

Operations
Research
Letters

www.elsevier.com/locate/dsw

A multiprocessor task scheduling model for berth allocation:
heuristic and worst-case analysis

Yongpei Guana ;1, Wen-Qiang Xiaob, Raymond K. Cheungb; ∗, Chung-Lun Lib

aSchool of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
bDepartment of Industrial Engineering and Engineering Management, The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong

Received 2 March 2001; received in revised form 2 August 2001; accepted 10 January 2002

Abstract

We consider a scheduling problem in which the processors are arranged along a straight line, and each job requires
simultaneous processing by multiple consecutive processors. We assume that the job sizes and processing times are agreeable.
Our objective is to minimize the total weighted completion time of the jobs. This problem is motivated by the operation of
berth allocation, which is to allocate vessels (jobs) to a berth with multiple quay cranes (processors), where a vessel may
be processed by multiple consecutive cranes simultaneously. We develop a heuristic for the problem and perform worst-case
analysis. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Scheduling; Sequencing; Heuristic

1. Introduction

In this paper we consider a machine scheduling
problem in which a job may require processing by
several processors simultaneously. This type of prob-
lems has been called multiprocessor task scheduling
in the literature (see [5,10] for recent surveys). These
problems can be classi?ed into two categories. The
?rst one considers situations in which each job needs
to be processed by a given ?xed number of proces-
sors simultaneously, but the choices of processors are
decision variables. The second category considers

∗ Corresponding author.
E-mail addresses: guanyp@isye.gatech.edu (Y. Guan),

iexiao@ust.hk (W.-Q. Xiao), rcheung@ust.hk (R.K. Cheung),
lichung@ust.hk (C.-L. Li).

1 The author was a student at the Hong Kong University of
Science and Technology while this work was being done.

situations in which every job requires processing by
certain dedicated processors. Our problem belongs to
the ?rst category. In addition, we assume that the pro-
cessors are arranged along a straight line and each job
has to be processed by “consecutive” processors. This
problem is motivated by the operation of berth alloca-
tion in a container terminal, where vessels (jobs) are
allocated to a berth with multiple quay cranes (proces-
sors). A berth may handle several vessels at the same
time. A large vessel may be processed by multiple
consecutive quay cranes simultaneously for container
loading=unloading operation.
Research on berth allocation has appeared in the

literature. This includes the scheduling of cranes
along the berth [4], the evaluation of berthing poli-
cies via simulation [8], as well as the minimization
of berthing costs [1,2], berth length required [12],
and the makespan of vessel berthing time [11]. Our

0167-6377/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6377(02)00147 -5

344 Y. Guan et al. / Operations Research Letters 30 (2002) 343–350

model is similar to the model in [11], but with the
diJerent objective of minimizing the total weighted
completion time of jobs. Our problem is also a special
form of the “general multiprocessor task scheduling”
problem [3] in which several given alternatives can be
used to process a job. Finally, our problem is similar
to the two-dimensional packing problems that have
been considered by many authors (see, for example,
[6,7]), but we have a diJerent objective function.
To de?ne our problem mathematically, we consider

a set of n jobs {J1; : : : ; Jn} to be processed by m par-
allel processors {1; : : : ; m}. Each job Jj (j = 1; : : : ; n)
has a given processing time pj, a given weight wj,
and a given size sj, where pj; wj; sj ∈Z+ and sj6m.
Each job Jj has to be processed by sj consecutive pro-
cessors simultaneously, that is, at any time moment,
if processors i and j (i¡ j) are both processing the
same job then processors i + 1; i + 2; : : : ; j − 1 must
be processing that job as well. All jobs are available
for processing at time 0, and preemption of jobs is not
allowed. Our objective is to assign processors to jobs
and to schedule the jobs such that the total weighted
completion time

∑n
j=1 wjCj is minimized, where Cj

denotes the completion time of job Jj.
In the berth allocation problem, a job represents a

vessel. The m parallel processors represent m cranes
located along the berth, where the size of a job repre-
sents the number of cranes that will serve the vessel
simultaneously. The objective of minimizing the to-
tal weighted completion time corresponds to the mini-
mization of total weighted waiting time of the vessels.
The weight of a job represents the importance of the
job and is normally dependent on the vessel size. We
consider two cases of job weights: (1) wj=�sj where
� is a constant; and (2) wj = �s

�
j where 06 �6 1.

The ?rst case applies to the situation where the wait-
ing cost of a vessel is linearly proportional to its size.
The second case is a more general form for situations
where the weight is dependent on vessel size but not
necessarily linearly proportional to the size. Note that
when �=1, we have the ?rst special case. When �=0,
wj becomes a constant and the objective is to mini-
mize the total waiting time of the vessels. We assume
that the job processing times and job sizes are “agree-
able,” that is, for any i; j = 1; : : : ; n, if pi ¡pj then
si6 sj. This assumption is realistic since a longer ves-
sel (i.e., larger sj) normally has a larger width, and
the cranes will take a longer time to ?nish the work.

Lee and Cai [9] have shown that the multiprocessor
scheduling problem P2|sizej|

∑
Cj is NP-hard. Their

model is the same as ours, except that they consider
only 2 processors and with no restrictions on job pro-
cessing times and job sizes, while we consider m pro-
cessors with agreeable job processing times and job
sizes. In their construction of the NP-hardness proof,
the job processing times and job sizes are agreeable.
This implies that when �= 0 in our general case, the
problem is NP-hard even when there are only two
processors. In fact, a straightforward modi?cation of
their NP-hardness proof can show that our ?rst case is
NP-hard as well. In other words, the existence of eP-
cient algorithms for solving either of the two cases is
highly unlikely. In the following sections, we develop
an ePcient heuristic solution procedure and perform
worst-case analysis.

2. Heuristic and lower bound

In this section we consider the special case of wj =
�sj for j=1; : : : ; n. We present a heuristic procedure for
solving this problem. In this heuristic, we ?rst arrange
the jobs in increasing order of pj and sj and divide the
jobs into groups. Then we assign the groups of jobs
to the processors in a “zig-zagging” greedy fashion.
Let t be a group index and Gt be the set of jobs in tth
group. The heuristic is described as follows.

Heuristic H.
Step 0: Sort and renumber the jobs such that
p16p26 · · ·6pn and s16 s26 · · ·6 sn (note:
pj’s and sj’s are agreeable). Set t ← 1.
Step 1: Let {J‘; J‘+1; : : : ; Jn} be the set of unsched-

uled jobs. Let

u=max


q

∣∣∣∣∣∣
q∑
j=‘

sj6m and q6 n


 :

Set Gt ← {J‘; J‘+1; : : : ; Ju}.
Step 2: For r = ‘; ‘ + 1; : : : ; u:

(a) if t is odd, then assign Jr to processors m −∑u
j=r sj+1, m−∑u

j=r sj+2, . . . , m−∑u
j=r+1 sj;

(b) if t is even, then assign Jr to processors∑u
j=r+1 sj + 1,

∑u
j=r+1 sj + 2, . . . ,

∑u
j=r sj.

Y. Guan et al. / Operations Research Letters 30 (2002) 343–350 345

Fig. 1. An example for Heuristic H: (a) given job data, (b) heuristic solution.

Schedule Jr behind the existing scheduled jobs on
these processors, and make it start as early as possible.
Step 3: Set t ← t +1. If there is no more unsched-

uled job, then stop, else go to Step 1.

We now demonstrate Heuristic H by using an ex-
ample with 12 processors, 6 jobs, and parameters as
shown in Fig. 1(a). Note that these jobs are already
numbered in such a way that p16p26 · · ·6p6
and s16 s26 · · ·6 s6. In this example, �=wj=sj=2
for j= 1; : : : ; 6. At the beginning of the ?rst iteration,
the set of unscheduled jobs is {J1; J2; J3; J4; J5; J6}.
Step 1 of Heuristic H determines that u = 3 and
G1 = {J1; J2; J3}. According to Step 2(a), J1 is as-
signed to processors 4 and 5; J2 is assigned to pro-
cessors 6–8; and J3 is assigned to processors 9–12.
These three jobs will start at time 0. Now, the set
of unscheduled jobs is {J4; J5; J6}. Step 1 determines
that u= 5 and G2 = {J4; J5}. According to Step 2(b),
J4 is assigned to processors 6–9 starting at time 5;
while J5 is assigned to processors 1–5 starting at time

3. Next, the set of unscheduled jobs becomes {J6}.
We get G3 = {J6} and J6 is assigned to processors
8–12. The ?nal schedule is depicted in Fig. 1(b). The
total weighted completion time of this schedule is∑6
j=1 wjCj = (4)(3) + (6)(4) + (8)(5) + (8)(10) +

(10)(11) + (10)(19) = 456.
If the number of processors, m, is ?xed, then the

running time of this heuristic is dominated by Step
0 and the complexity is O(n log n). If m is not ?xed,
then we need to keep track of the information of each
processor and the complexity of the heuristic is O(m+
n log n).
Next, we consider a lower bound of the optimal so-

lution value of the problem. Given any instance of our
problem, we may construct a corresponding relaxed
problem as follows. For every job Jj, we replace it by
sj identical jobs {Jj1; Jj2; : : : ; Jjsj} each of unit size,
weight wj=sj=�, and processing time pj (see Fig. 2).
This relaxed problem has a total of N =

∑n
j=1 sj jobs.

Denote these new jobs by {JR1 ; JR2 ; : : : ; JRN }, where the
?rst s1 jobs in this set come from J1, the next s2 jobs

346 Y. Guan et al. / Operations Research Letters 30 (2002) 343–350

Fig. 2. Construction of the relaxed problem.

come from J2, and so on. Each of these jobs will be
processed by only one processor. Since all jobs in this
relaxed problem have the same weight �, the relaxed
problem becomes a traditional parallel machine mini-
mum total completion time problem (i.e., Pm‖∑Cj),
which can be solved optimally by the shortest process-
ing time ?rst (SPT) rule [13]. The SPT rule schedules
jobs in nondecreasing order of processing times and
assigns each job to the earliest available processor.
When the SPT rule is applied to the relaxed problem,
the resulting solution is to assign jobs JR1 ; J

R
2 ; : : : ; J

R
m

to the 1st position of the processors 1; 2; : : : ; m, respec-
tively, assign jobs JRm+1; J

R
m+2; : : : ; J

R
2m to the 2nd posi-

tion of processors 1; 2; : : : ; m, respectively, and so on.
Hence, the total weighted completion time of the SPT
schedule of the relaxed problem (i.e., the total com-
pletion time times �) is a lower bound on the optimal
solution value of the original problem.

3. Worst-case analysis for the case with
proportional job weights

In this section we show that the relative error of the
solution obtained by Heuristic H must be no more than
100% for the case where wj = �sj for j=1; : : : ; n. Let
ZH denote the total weighted completion time of the
schedule obtained by Heuristic H. Let Z∗ denote the
total weighted completion time of the optimal sched-
ule. Let L denote the total weighted completion time of
the optimal solution of the relaxed problem. It is clear
that L is a lower bound of Z∗, i.e., L6Z∗. Let SHj
and CH

j be the start time and completion time, respec-
tively, of Jj in the heuristic solution, for j = 1; : : : ; n.
Let SRjh and C

R
jh be the start time and completion time,

respectively, of Jjh in the SPT schedule of the relaxed
problem, for j=1; : : : ; n and h=1; : : : ; sj. Clearly, for
any 16 j¡k6 n,

SRj16 S
R
j26 · · ·6 SRjsj6 SRk16 SRk26 · · ·6 SRksk (1)

and

CR
j16C

R
j26 · · ·6CR

jsj6C
R
k16C

R
k26 · · ·6CR

ksk :(2)

For any j=1; : : : ; n, if SHj ¿ 0, then there must exist
some job Ji such that CH

i = SHj and that Ji is assigned
to at least one of the processors that process Jj. This
is because in Step 2 of Heuristic H, we always make
the job start as early as possible. We call this job Ji a
“predecessor” of Jj. Note that Ji must be assigned to
the group prior to that of Jj. Note also that a job may
have multiple predecessors.

Lemma 1. Suppose Ji is a predecessor of Jj in
the solution obtained from Heuristic H. Let Gt =
{J‘; : : : ; Ji; : : : ; Ju} and Gt+1 = {Ju+1; : : : ; Jj; : : : ; Jv}.
Then

∑v
k=i sk ¿m.

Proof. Case 1: t is odd.InStep 2(a); jobs Ji; Ji+1; : : : ; Ju
are assigned to processors y; y+1; : : : ; m for some y.
In the next iteration; we will arrive at Step 2(b) where
jobs Ju+1; Ju+2; : : : ; Jv will get assigned. In particular;
jobs Jj; Jj+1; : : : ; Jv will get assigned to processors
Ty; Ty − 1; : : : ; 1; for some Ty. Since Ji is a predecessor
of Jj; jobs Ji and Jj must get assigned to at least one
processor in common. This implies that Ty¿y (see
Fig. 3(a)). Therefore, we have
v∑
k=i

sk¿
u∑
k=i

sk+
v∑
k=j

sk=(m−y+1)+ Ty¿m+1¿m:

Y. Guan et al. / Operations Research Letters 30 (2002) 343–350 347

Fig. 3. Proof of Lemma 1.

Case 2: t is even. As shown in Fig. 3(b), sup-
pose jobs Ji; Ji+1; : : : ; Ju are assigned to processors
y; y − 1; : : : ; 1 and jobs Jj; Jj+1; : : : ; Jv are assigned
to processors Ty; Ty + 1; : : : ; m. Then Ty6y. Fol-
lowing the same argument as in Case 1, we have∑v
k=i sk ¿m.

Lemma 2. In the solution obtained from Heuristic
H; if Ji is a predecessor of Jj and Jj is a predecessor
of Jk ; then CR

i16 S
R
k1.

Proof. Suppose Jj ∈Gt+1 = {Ju+1; Ju+2; : : : ; Jv}. We
know that i¡u + 16 j6 v. By Lemma 1; the total

348 Y. Guan et al. / Operations Research Letters 30 (2002) 343–350

size of the jobs Ji; Ji+1; : : : ; Jv is greater than m. Thus;
these v−i+1 jobs will result in more thanm unit-sized
jobs in the relaxed problem; namely; JRa ; J

R
a+1; : : : ; J

R
b ;

where b−a+1¿m. Hence; in the SPT solution of the
relaxed problem; there exist two jobs JRa′ and J

R
b′ with

a6 a′¡b′6 b where JRa′ is processed immediately
before JRb′ by the same processor. Thus; the completion
time of JRa′ is equal to the start time of JRb′ ; implying
that the completion time of JRa is no greater than the
start time of JRb ; that is

CR
i16 S

R
vsv : (3)

Since Jj is a predecessor of Jk ; we have v¡k. From
(1); we have

SRvsv6 S
R
k1: (4)

Combining (3) and (4) gives us the desired result.

Lemma 3. CH
j 6 2CR

j1 for j = 1; : : : ; n.

Proof. We consider a particular job Jj and denote
Jj ≡ J%0 . Let job J%1 be a predecessor of J%0 ; job
J%2 be a predecessor of J%1 ; and so on. Suppose
J%& has a zero start time. Then the job sequence
(J%& ; J%&−1 ; : : : ; J%1 ; J%0) forms a “critical path” for Jj;
and

CH
j =

&∑
i=0

p%i :

Let ' =
&=2�. Since p%i6p%i−1 (i = 1; 2; : : : ; &); we
have

CH
j 6 2

'∑
i=0

p%2i : (5)

By Lemma 2;

CR
%2i ;16 S

R
%2i−2 ;1

for i = 1; 2; : : : ; '. This implies

'∑
i=1

CR
%2i ;16

'∑
i=1

SR%2i−2 ;1

or equivalently;

'−1∑
i=1

[CR
%2i ;1 − SR%2i ;1] + CR

%2';16 S
R
%0 ;1:

Note that CR
%2i ;1 − SR%2i ;1 = p%2i (i = 1; : : : ; ' − 1) and

CR
%2';1¿p%2' . Thus;

'−1∑
i=1

p%2i + p%2'6C
R
%0 ;1 − p%0

or equivalently;

'∑
i=0

p%2i6C
R
%0 ;1:

Hence; from (5); we have CH
j 6 2CR

%0 ;1 = 2CR
j1:

Theorem 4. If wj = �sj for j = 1; : : : ; n; then
ZH=Z∗6 2; and this bound is asymptotically tight as
m tends to in6nity.

Proof. By Lemma 3 and inequality (2); we have

ZH =
n∑
j=1

wjCH
j = �

n∑
j=1

sjCH
j

6 2�
n∑
j=1

sjCR
j16 2�

n∑
j=1

sj∑
k=1

CR
jk = 2L6 2Z∗:

To prove that this bound is asymptotically tight; we
consider the example with 2 jobs; m processors; w1 =
s1 = 1; w2 = s2 = m; and p1 = p2 = 1. Clearly; in
this example the job processing times and job sizes
are agreeable. Heuristic H will ?rst schedule J1 and
then J2. The resulting schedule is shown in Fig. 4(a).
The total weighted completion time of this schedule is
ZH=(1)(1)+(m)(2)=2m+1. The optimal solution is
depicted in Fig. 4(b), with a total weighted completion
time of Z∗ = (m)(1) + (1)(2) = m + 2. Therefore,
ZH=Z∗ = (2m+ 1)=(m+ 2)→ 2 as m→∞.

4. The general case

The case with proportional weights (i.e., wj =
�sj; ∀j) represents the extreme situation where the
importance of a job=vessel is linearly related to the
vessel length. The case with equal weights (i.e.,
wj = �; ∀j) represents another extreme situation
where all jobs=vessels are equally important. A more

Y. Guan et al. / Operations Research Letters 30 (2002) 343–350 349

Fig. 4. Worst-case example for the proportional weight case: (a)
heuristic solution, (b) optimal solution.

practical situation may lie between these two ex-
treme situations, namely wi = �s

�
i , where 0¡�¡ 1.

In the following we show that for the general case
of 06 �6 1, Heuristic H still provides a solution
with no more than 100% error for any number of
processors. In order to prove this result, we ?rst dis-
cuss an important property of the parallel machine
minimum total weighted completion problem (i.e.,
Pm‖∑wjCj). We consider the Extended Shortest
Processing Time ?rst (ESPT) rule de?ned as follows.
The rule schedules jobs in order of nondecreasing
processing times, breaks ties by selecting the jobs
with the larger weights ?rst, and assigns each job to
the earliest available processor.

Lemma 5. If p16p26 · · ·6pN and w1¿w2
¿ · · ·¿wN ; then the ESPT rule is optimal for
Pm‖∑wjCj.

Proof. Note that if p16p26 · · ·6pN and
w1¿w2¿ · · ·¿wN ; then the ESPT rule will sched-
ule jobs in increasing order of job indices; except for
those identical jobs (i.e.; jobs with the same process-
ing time and weight). Suppose; to the contrary; that the
schedule obtained from the ESPT rule is not optimal.
Then in the optimal schedule; there exist jobs Jj; Jj′
such that j¡ j′ and Jj is not identical to Jj′ but the

start time of Jj is greater than that of Jj′ . Let i and i′

be the processors that process Jj and Jj′ ; respectively.
(Note that i and i′ may be the same processor.) Let (i
be the set of all jobs scheduled behind Jj on processor
i; and (i′ be the set of all jobs scheduled behind Jj′
on processor i′. Let Wi and Wi′ be the total weight of
the jobs in (i and (i′ ; respectively. Note that either
pj6pj′ and wj ¿wj′ ; or pj ¡pj′ and wj¿wj′ .
Case 1: IfWi ¡Wi′ , then interchanging jobs Jj and

Jj′ will improve the total weighted completion time
of the schedule. (Note that in this case, i may or may
not be the same as i′.)
Case 2: IfWi¿Wi′ , then interchanging job subsets
(i∪{Jj} and(i′∪{Jj′}will improve the total weighted
completion time of the schedule. (Note that in this
case, i �= i′.) Thus, both cases contradict the optimality
of the schedule. Therefore, the schedule obtained from
the ESPT rule must be optimal.

Theorem 6. If wj = �s�j for j = 1; : : : ; n where
06 �6 1; then ZH=Z∗6 2.

Proof. We consider a relaxation of the problem as
follows. For every job Jj; we replace it by sj iden-
tical jobs each of unit size with weight w′

j = �s
�−1
j ;

and processing time pj as shown in Fig. 2. This
relaxed problem is a parallel machine minimum
total weighted completion time problem. Let L′

denote the total weighted completion time of the
optimal solution of this relaxed problem. Clearly;
L′6Z∗. Note that since s16 s26 · · ·6 sn; we
have the property that w′

1¿w
′
2¿ · · ·¿w′

n. By
Lemma 5; an optimal solution to this relaxed prob-
lem can be obtained by the ESPT rule. Note that
the schedule of the relaxed problem obtained by the
ESPT rule is actually an SPT schedule; and hence;
Lemma 3 and inequality (2) remain valid for this
case. Therefore; similar to the proof of Theorem
4; we have ZH =

∑n
j=1 �s

�
j C

H
j 6 2

∑n
j=1 �s

�
j C

R
j1 =

2
∑n
j=1 w

′
jsjC

R
j16 2

∑n
j=1 w

′
j
∑sj
k=1 C

R
jk=2L′6 2Z∗.

Theorem 6 states that the relative error of the solu-
tion obtained by Heuristic H is at most 100% for the
general case. However, it remains an open question of
whether this constant error bound is improvable when
� �=1.

350 Y. Guan et al. / Operations Research Letters 30 (2002) 343–350

Acknowledgements

This research was supported in part by Grant
HKUST6205=99E from the Research Grants Council
of Hong Kong. The authors would like to thank an
anonymous referee for his=her valuable comments.

References

[1] G.G. Brown, K.J. Cormican, S. Lawphongpanich, D.B.
Widdis, Optimizing submarine berthing with a persistence
incentive, Naval Res. Logist. 44 (1997) 301–318.

[2] C.-Y. Chen, T.-W. Hsieh, A time-space network model for
the berth allocation problem, First International Conference
of Maritime Engineering and Ports, Genoa, Italy, September
28–30, 1998.

[3] J. Chen, C.-Y. Lee, General multiprocessor task scheduling,
Naval Res. Logist. 46 (1999) 57–74.

[4] C. Daganzo, The crane scheduling problem, Transportation
Res. B 23B (1989) 159–175.

[5] M. Drozdowski, Scheduling multiprocessor tasks—an
overview, European J. Oper. Res. 94 (1996) 215–230.

[6] S.P. Fekete, E. KVohler, J. Teich, Higher-dimensional packing
with order constraints, Proceedings of the 7th International
Workshop on Algorithms and Data Structures, Lecture Notes
in Computer Science, Vol. 2125, Springer, Berlin, 2001, pp.
300–312.

[7] E. Hadjiconstantinou, N. Christo?des, An exact algorithm
for general, orthogonal, two-dimensional knapsack problems,
European J. Oper. Res. 83 (1995) 39–56.

[8] K.K. Lai, K. Shih, A study of container berth allocation, J.
Adv. Transportation 26 (1992) 45–60.

[9] C.-Y. Lee, X. Cai, Scheduling one and two-processor tasks
on two parallel processors, IIE Trans. 31 (1999) 445–455.

[10] C.-Y. Lee, L. Lei, M. Pinedo, Current trends in deterministic
scheduling, Ann. Oper. Res. 70 (1997) 1–41.

[11] C.-L. Li, X. Cai, C.-Y. Lee, Scheduling with multiple-
job-on-one-processor pattern, IIE Trans. 30 (1998) 433–445.

[12] A. Lim, The berth planning problem, Oper. Res. Lett. 22
(1998) 105–110.

[13] M. Pinedo, Scheduling: Theory, Algorithms, and Systems,
2nd Edition, Prentice-Hall, Upper Saddle River, NJ, 2002.

	A multiprocessor task scheduling model for berth allocation: heuristic and worst-case analysis
	Introduction
	Heuristic and lower bound
	Worst-case analysis for the case with proportional job weights
	The general case
	Acknowledgements
	References

