©

Carnegie-Melion University
Software Engineering Institute

Support Materials for

The Software Technical Review

Process
DTIC

Support Materials SEI-SM-3-1.0
ELECTE
, JUNO3 1991D

|i|i|||’|‘|'|

00920
B "“s“ “*:‘nm,t:“'? Lt \\\‘\\\\\\\\\\\\\\\\\\\\l\\\\\\\\\.

* 01 5 31 008

DISCLAIMER NOTICE

=3

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

Support Materials
for

The Software Technical Review Process

SEIl Support Materials SEI-SM-3-1.0
April 1988

Edit2d by L el

John A. Cross
Indiana University of Pennsylvariia

Carnegie Mallon University
Software Engineering Institute

This work was sponsorad by the U.S. Department of Defense.

Draft For Public Review

This technical report was prepared for the
SE! Joint Program Office

ESD/AVS

Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. 1t is published in the interest of scientific and technical
information exchange.

Review and Approvai

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN S. HERMAN, Capt, USAF
SEl Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1988 by Carnegie Malion University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To oblain a copy, please contact DTIC directly: Defense Technical Information
Centar, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies ol this document are aiso available through the National Technical Information Service. For information on ordering,
please contact NTIS directly. National Technical Information Service, U S. Depariment of Commerce, Springfield, VA 22161.

Use of any trademarks in this report 1s not intended in any way to infringe on the rights of the trademark holder.

SEI-SM-3-1.0

Contents

Introduction 1

PART I: TEACHING SOFTWARE REVIEWING CONCEPTS 3

Notes on Software Technical Reviewing 4
Sample Software Defects 12
Questions for Knowledge Assessment 15
Guidelines for Teaching Concepts 19

PART II: IMPLEMENTING A SOFTWARE TECHNICAL RE-

VIEW AS A LEARNING ACTIVITY 21
Instructor’s Checklist for Planning
a Software Technical Review 22
Biographical Data Collection Form 24
An Algorithm for Dividing Students into Grouns 28
Agreement and Release Form 30
Grading Guidelines 33
Student Opinion Form 36

Sample Inspection Material with Key Remarks:
System Requirements Definition 39

PART III: IMPLEMENTING A SOFTWARE TECHNICAL RE-

VIEW OF AN IN-PROCESS SOFTWARE ARTIFACT 47
Directions for Software Technical Reviews by Students 48
Software Inspection Summary and Evaluatior Report Form 61
Related Issues Report Form 64
Categories for Defects in Software Technical Reviews 66
Checklists for Reviewers 69

Draft For Public Review

ili

Bibliography
James A. Collofello

Appendix: Addresses of Contributors

The Software Technical Review Process
Support Materials Revision History

Version 1.0 (April 1988) Draft for public review

iv Draft For Public Review

73

76

SEI-SM-3-1.0

The Software Technical Review Process Support Materiais

Introduction

The purpose of these support materials is to facilitate the teaching and use of software technical reviews in
university courses on software engineering subjects. They are intended to supplement the SEI curriculum mod-
ule, The Software Technical Review Process (CM-3)1. Although it has been developed for use in a university
setting, much of the material is appropriate for the training of professionals as well.

The user of this material should consider the variety of ways in which technical review processes may be
incorporated into software-related curricula. For example:

s Instructicn in review concepts and procedures gives students the necessary foundation for partici-
pating in or implementing a technical review process.

e Software technical reviews may also be used in the teaching of general concepts of software engi-
neering by requiring students to inspect and discuss concrete examples of software development
artifacts.

» Practice in conducting reviews provides students with an essential means of gaining competence as
reviewers. Students may be required to conduct reviews within the context of software devel-
opment projects.

» Group reviews give students an opportunity to gain experience and knowledge that will help them

improve their effectiveness as team members. Group reviews may be used o provide experience
with group interaction, or they may be used as a means of studying group dynamics.

The materials included bere are particularly designed to support an inspection methodology, or work product
review, as it is described in Section 6 of CM-3. These materials are expected to meet the critical needs for
support materials in this area. Practical knowledge of the inspection methodologies of [Fagan76] and
[Freedman82], together with general knowledge of software development artifacts, can provide the basis for
using methodologies such as walk-through [Yourdon85), audit [IEEE8S5), in-process software analysis
[Howden82), and “work reading” [Ledgard86).

Although lecture notes are included, the emphasis is on actual practice by groups of students. The explanatory
text defines basic issues that an instructor should address when structuring a learning activity that includes a
software technical review process. Rationale for alternative actions is also given.

The instructor should consider the concems listed in the Instructor’s Checklist (p. 22) in preparing for a software
technical review. Some support materials may be used as is, but others will have to be modified to suit the needs
of a particular context. The introductory text provided with each item attempts to put the item in an appropriate
educational context and points to specific modifications that might be required.

Part I is designed to support direct teaching of fundamental concepts. The part includes notes for lectures or
student handouts, sample software defects, and questions that can be used for knowledge assessment. Also
included are guidelines for teaching concepts using practice reviews.

!Collofello, James S. The Software Technical Review Process. Curriculum Module SEI-CM-3-1.3, Software Engineering Instilute,
Camegie Meilon University, Pitsburgh, Pa., April 1988.

SEI-SM-3-1.0 Draft For Public Review 1

Support Materials The Sottware Technical Review Process

Part I, Implementing a Technical Software Review as a Learning Activity, includes a variety of materials to be
used in preparing for practice reviews primarily designed to teach about software development. These materials
are accompanied by sample software artifacts to be used for practice exercises.

Part III contains materials that may be used to facilitate technical reviews of in-process software artifacts,
particularly in the context of a group project. Note that the materials in Part III may also be useful in practice
activities such as those in Part II.

2 Dratt For Public Review SEI-SM-3-1.0

Part |: Teaching Software Reviewing Concepts

SEI-SM-3-1.0 Draft For Public Review

® mmy A

Notes on Technical Reviewing The Software Technical Review Process

Notes on Software Te:hnical Reviewing

John A.Cross
Indiana University of Pennsylvania

Description: General notes on the software technical review process and the software development life cycle.
These notes were used as handouts in an undergraduate course, Software Engineering Concepts, Computer
Science 319, during three different semesters at Indiana University of Pennsylvania.

Purpose: To provide students with general background material not readily available in textbooks.

Procedure: These notes can be used as a starting point for classroom lectures or they can be given to students as
handouts. (Instructors should be aware that the notes include several specific references to Software Engineering
Concepts.) Additional sources of material appear in the bibliography of CM-3, which is reproduced beginning
on p. 73.

Commentary: Although there are many other sources of information on software development life cycle con-
cepts, the following notes are included because they contain concepts that are fundamental to software technical
reviews in a concise form. Deutsch and Willis [Deutsch88] provide additional discussion of concepts of soft-
ware technical reviews and software quality.

4 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Notes on Technical Reviewing

Notes on the Software Technical Review Process

Software reviewing is a general term applied to techniques for the use of human intellectual power to detect
flaws in software during the process of software development. Because software reviewing does not necessarily
involve any automatic system execution, it is frequently categorized as a “static testing” approach to software
quality assurance. The most notable feature of popular techniques for software reviewing is the use of
“egoless” group interaction. The term egoless generally connotes that group members focus on the task of
understanding a piece of software and noting ways to improve it, rather than on interpersonal factors or the
failure of an individual to deal with possible defects.

An IEEE draft standard for software reviews and audits defines the basic concepts and terminology of software
reviewing [IEEEBS). For example, a walk-through (see [Yourdon85]) is a dynamic presentation of the behavior
o the scftware element in various scenarios. An inspection (see [Fagan76]) is a detailed technical review by
peers of the authors of the software. A management review carries with it a strong concem for development
schedule and allocation of organizational resources. Finally, an audit emphasizes independent evaluation of
software quality. The difference between formal and informal reviews is that formal reviews involve product
evaluation that is meant for more than the immediate use of the software author.

The distinction of the IEEE standard between between formal and informal technical review processes is a
fundamental first step. Ledgard ([Ledgard87], pp. 65-70) discusses informal *work-reading” reviews. This
approach and the review of a piece of software by its author are both important “technical review processes.”
However, the following paragraphs discuss formal group review processes.

Formal review reports serve these major functions:
1. They are used by software authors to remove defects.
2. They are used by management to assess project status.
. They provide a historical record of software development.

The emphasis in the use of software reviewing in this course will be on peer group technical reviews. The
diagram below relates the characteristics of technical reviews to walk-through techniques, which may be more
familiar to you.

The goals of a technical review include:
» Cost-effective product enhancement by timely detection of defects.
* Personal growth and communication among software development protessionals.
» Fostering teamwork, professionalism, participatory decision-makiug, and high morale.

* Improvement in the ability of reviewers to prevent defects in *heir own work. (Defect prevention is
a major goal of any quality assuraice technique.)

» Enhancing the effectiveness of testing by detecting errors prior to testing.

Varied complementary viewpoints should be a major goal in selecting the members of a software review group.
The persons in a review group must represent the interests of everyone who may ever have a need to use the
particular piece of software which is being reviewed. For example, a system specification must address all of
the concems of people who understand the system requirements, it must serve as a basis for subsequent phases
of system development, and it must be testable and modifiable. This means that the review group should contain
some expertise in the application area, technical expertise relaiive to subsequent development needs, and pos-
sibly specialized skill in testing or technical writing. Since students are unlikely to have all of this specialized
expertise, student reviewers must make a conscious effort to try to analyze software as they think these different
¢xperts would see things.

In - ~ctice, the formal goals of a software review are to assess the quality of a piece of software and raise issues
w. might enhance or assure its quality. Software reviewing exercises are also used to provide leaming
situations in which participants develop their understanding of software development by detailed analysis and

SEI-SM-3-1.0 Draft For Public Review ' 5

Notes on Technicai Reviewing The Software Technical Review Process

COMPARISON OF A “ORMAL MEETING AND A LECTURE

Formal Meeting Lecture h
¢ Technical Inspection Review e Structured Walk-through
e 3-7 participants e 1 person to large audience
e leader control high e presenter leads, using scenarios

¢ producer participation passive [Fagan76] | e producer participation high

or none [Freedman82]

» high participant preparation e Jow participant preparation

e low demand on presentation skill ¢ high demand on presentation skill
¢ product must stand on its own e presenter expliains product

e covers limited amount of material » much r-aterial can be covered

® uncovers many issues » superficial detection of flaws

¢ high demand for group interaction e low demand for group interaction

discussion of examples of software development documents. The immediate goal of a software review in either
context is to raise issues about the software which is being reviewed. An issue is generally something which is
inadequate about the software relative to its agreed upon goals, but it may also be something so remarkably
important that it requires special mention. Reviewers should resist the urge to suggest how to resolve
issues—that is the job of the software author. Reviews should raise issues, not resolve them.

Questions of style and minor errors should not be discussed in review meetings. Style issues are generally not
specific to the software which is being reviewed, and they can cause a meeting to become bogged down in
discussions which should take place in a broader context. Minor errors should simply be noted in the reviewed
document.

Concemns about “correct” language use and document form are important, and poorly written communication
cannot be accepted. Student reviewers tend to be especially sensitive to any instances of poor writing. Writing
style may be a significant overall issue with regard to a particular piece of software, but minor writing errors
should not be allowed to occupy the energy of a formal group review. The use of automated spelling and style
checkers by the author can be very helpful.

The attached handour, “Software Specifications: Categories for Remarks™ (see p. 66) lists examples of helpful
types of issues.

The actual use of software reviewing in the practice of software development is quite varied. IBM makes
extensive use of “Software Inspections,” and Bell Labs is noted for rigorous walk-throughs. In general, our
graduates are likely to see lots of informal walk-throughs, frequently involving only one or two persons, or
members of the project team, which is not quite what the idea of group review by peers from ouiside the project
is all about. Technical reviews may consist of a formal acceptance procedure as part of a “configuration
management” process, with an individual or a formal committee which is charged with assuring the quality of

6 Draft For Public Review SEI-SM-3-1.0

Tha Softwara Technical Raviow Process Notas on Technical Reviewing

preces of soltware before they are accepted by technical services people. The following list contains a number
of specitie henefits which have been attributed to software reviewing.

o Reduction in errors i the first production run of a one-line maintenance change (35% --> 2%,
(Froedman82)).

e Reduction in erroms in finst production tons ¢ (iraintenance changes (85% --> 20%, [Freedmangz]).
s Reduction in seriousness of ermrs (e, T ieedmang2)).

e Reduction in production crasnes o Yiei six months of operation of a system (77%,
(Freedman82)).

¢ Reduction of 83% in ficld trouble repers | ra xdmang2).

o Reduction of errors in COBOL cnde (frory 5.5 errors/thousand lines to 1.0 errors/thousand lines,
[Freadman8?2)).

o Increased productivity through early detection and removal of errors, and defect prevention
([Freedman82], and statistics in [Boehma1])).

e Finding and removal of 30% o 70% of logic and design errors in typical programs, as high as 80%
ol program errors (1BM, {Myers79)).

o Higher test scores from students who use peer group review techniques on each cther’s code in
programming classes [Lemos78, Shelly82).

SEI-SM-3-1.0 Draft For Public Review 7

Notes on Technical Reviewing The Software Technical Review Frocess

Notes on the Software Development Life Cycle

The development, instal!ation, and modification of many software-supported systems involves significant human
effort, and defects in software can have serious consequences. In all but the most trivial software (software
researchers use the term “toy programs”), identifiable types of recurring activities occur. The most common of
these software development activities are frequently named and studied together in the context of software life
cycle models.

A list of software development tasks which are often included in software life cycle models is attached to these
notes (p. 10). The degree to which this list captures what software developers actually do or should do depends
on three major factors: the size of the project, the application area, and the development context. Some activities
may be omitted or involve minor effort, others may be done in parallel or in different sequence than what is
listed; and still others may have to be redone as subsequent system development effort provides additional input.

The descriptions of the items in the list reflect the fundamental importance of the concept of abstraction to
successful software development. Abstraction is simply the suppression of unnecessary detail. Software ;-
tems consist of layer upon layer of abstraction, including machine code, source code, operating systems, ,ub
control statements, and events in the application domain. Abstraction allows a complex task to be worked with
in simpler chunks: it is the essence of the meaning of the word structured in the term structured programming,

In ihe context of Computer Science 319, Software Engineering Principles, the items in this list of software
development activities provide a framework of things which must be intensively studied. Concepts of softwars
quality assurance will be integrated throughout the course, with the exception of program testing, which is
viewed as an implementation concemn. The process of modifying existing software (i.e., software maintenance)
is viewed as a special case of software development, since all of the listed software development activities can
be considered separately for software maintenance tasks. The essential maintenance concept is that it is of
overwhelming importance, and all software development activities must be designed to facilitate later modifica-
tions to software development products.

The concept of software prototyping will be treated separately because it incorporates much of the requirements-
specification-design-implementation sequence of activities into a single activity. One use of prototyping is to
provide an executable model which illustrates what might be done to serve user needs, and to a certain extent
how these system behaviors might be implemented. The goal of a prototype is to illustrate a subset of system
behaviors and functions at the user interface level, while avoiding implementation details as much as is practi-
cally possible. Prototyping is especially helpful in demonstrating system behaviors which are new to the user.
A flexible prototype also allows system engineers and users to develop their understanding of what is needed
and why. Prototypes are weakest at demonstrating performance characteristics of proposed systems (2.g., re-
sponse time and interaction with existing systems).

The principal difficulty with software development and quality assurance is the dramatic increase of the diffi-
culty of software development projects as they become more complex. In other words, when a task involves too
many considerations, it requires an exorbitant effort and it involves a high risk of error. The hierarchical
abstractions represented by the requirements-specification-design-implementation approach can be helpful be-
cause they structure the various types of relevant details into separate, distinguishable activities. This approach
also facilitates two techniques for managing complexity: projection and partitioning. Projection in software
development is the principle of simplifying a task by viewing it from different perspectives. For example, a
library system can be viewed from the perspective of patrons, circulation, acquisitions, and cataloging. Par-
titioning is the principle of divide and conquer. For example, software which performs data entry and validation
functions can often be developed separately from software which performs specific data processing functions.

If a software development activity appears to overlap two different life cycle phases, then the principle of
abstraction is being violated by including unnecessary detail. This increases the complexity of that particular
activity, and any future efforts to reconsider it, especially during system maintenance. Whenever system com-
plexity is a dominant concem, which it often is in practice, software life cycle models provide essential guide-
lines for an organized approach to software development.

Life cycle models also help to keep priorities in order. Consider the popular remark that *“When you're up 10

8 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Notes on Technical Reviewing

your bleep in alligators, it’s hard to remember that your original objective was to drain the swamp.” In terms of
a system life cycle model, draining the swamp is a system requirement, the system specification includes ditches

specific drainage rates, the design states where the ditches will go, and the alligators are an implementation
y Jlem,

In the “real world” practice of software development, a life cycle model provides a useful way of planning,
organizing, controlling, directing, and evaluating software development activities. In short, it supports the man-
agement of software development projects. Written records document the results of software development
activities. The adoption of a particular life cycle model implicitly defines appropriate types of software docu-
mentation, together with an appropriate level of abstraction for each, and the audiences thai this document must
communicate with. For example, a software system specification must be understood by the authors of the
software requirements, so that they can verify the product’s completeness and consistency with their intent. The
specification also must be understood by user clientele who are part of a particular approval process; it must
state the external behaviors of the intended system; and it must provide adequate direction to the system desig-
ners who will work from it.

The amount and form of documentation is often subject to local standards exirinsic to a specific softv ure devel-
opment project, but the guiding principle for documentation should be that it must be useful. The difficulty in
applying this guideline is that the authors may never realize who will use the document and for what reasons.
This is why extrinsic standards and apparently arbitrary guidclines are needed. A helpful general guideline
should be to document each life cycle activity as it happens and have that documentation reviewed before that
particular life cycle activity is considered to be complete. The reviewing procedure needs to be formalized,
complete with sign-offs and management reports, because of its importance. It also needs to be organized and
carcfully managed because of the difficulty of checking the correctness of something which cannot be “tried
out” and fiddled with.

Because the process of software development is dynamic and context-dependent, additional experience with
large projects is required in order to appreciate the complexity which is not apparent in the any software life
cvele model. Computer science internships and Computer Science 320, Software Engineering Practice, provide
! of this experience. The following list should be helpful. Please feel free to discuss this handout with your
... UCtOrs.

SEI-SM-3-1.0 Draft For Public Review 9

Notes on Technical Reviewing The Software Technical Review Process

Software Development Life Cycle Activities

1. Requirements Definition

» Goals - Understanding of what is needed and why it is needed. A statement of a requirement
is likely to have the form “The system must <statement of user need>.” Words like must,
should and desirable indicate prioritized requirements. General system goals and ideal sys-
tem behavior may be included with statements of verifiable system requiremenis.

e Input - Data collected about the problem domain, particularly from any existing systems, and
the analysis of that data by “system analysts.”

e Output - A system requirements document, which states the system goals and specific needs
to the best ability of sysitm analysts and users (or their representatives). The rationale for
specific requirements : ~d a model of pertinent features of the application context should be
included with the requirements document when they are appropriate for the needs of a par-
ticular project.

e Control - Approval of users or their representatives, formal reviews of the requirements and
derived software elements, especially a software system specification document and system
validation testing.

2. System Requirements Specification

e Goals - a statement of what a system that will meet the stated requirements will look like to
the user (i.e., system behaviors at user interfaces). A system specification is stated as a
verifiable system behavior that the “target system” will have. (Note : the writing of detailed
“design specifications” which describe the operating constraints and behaviors of individual
system modules is part of “system design.”)

e Input - System requirements, knowledge of the capabilities of the specified computing envi-
ronment for the target system, and expertise in building computer-based systems.

e Output - A document which states all reievant system behaviors and constraints, and verifi-
cation procedures.

e Control - Approval procedures and system testing.
3. System Design (High-level design)
» Goals - A statement of how the specifications will be met.
e [nput - System specifications and system building expertise.

e Qutput - System architecture and module specifications that are below the level of user
interfaces.

e Control - Approval procedures, module testing, system testing.
4, Implementation (Low-level design)

¢ Goals - Program design, coding, testing, and debugging, together with system construction
and certification.

e Input - System architecture, functional specifications for programs, system data specifica-
tiens, module inte-face specifications, system and program constraints.

e Output - A finished product.
e Control - Acceptance procedures and criteria.

10 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Notes on Technical Reviewing

S. Installation
¢ Goals - Training of users and operators and initiation of system operation.
° Input - System and user documentation, executable code, and an application context.
o Cutput - A smoothly functioning system which meeis user requirements.

¢ Control - Acceptance testing, and post-installation evaluation.

SEI-SM-3-1.0 Draft For Pubiic Review 11

Sample Software Defects The Software Technical Review Process

Sample Software Defects

John A. Cross
Indiana University of Pennsylvania

Description: Examples of defects that might be encountered in a software technical review and how a review
team might document them.

Objectives: To be helpful, sample defects should enable students to accomplish the following objectives:
e Leam what characteristics experts with experience and foresight consider to be defects.
o [dentify similar defects in software artifacts.
e Document the defects which they detect in technical reviews.
o Make an effort to avoid injecting similar defects into software which they write.

Prerequisites: Students must understand relevant technical concems for the type of software in which each
sample might be found, the application domain of the sample, and the specific goals of the sample software.

Procedure: The samples may be used as lecture aids or as illustrative examples in textual materials given to
students.

Evaluation: Students may be graded on their ability to detect similar defects and produce similar documen-
tation. A software technical reviewing project may be used to evaluate student accomplishment of the above
objectives in a specific context.

Commentary: One of the difficulties associated with detecting defects in technical reviews is the need to
consider the details of a piece of software that is only a part of an integrated set of software artifacts. This
software in tum constitutes the implementation detail of a software development project. It is difficult to
provide short examples which are still meaningful after being extracted from a document that is suitabie for
technical review. The following examples are published in rough draft form because examples are esscritial to
learning the underlying concepts, not because these particular examples are exccptionally good. Moreover,
technical reviewers cannot limit their concem to types of defects which they already know. Rather, technical
reviewers must strive to detect defects which extend their knowledge of what constitutes a defect. (Note:
[Winograd86] discusses how language can iimit our perceptions. An analogy can be drawn with the blindness
that can result from overreliance on samples of defects or a reviewer's checklist.)

12 Draft For Fublic Review SEI-SM-3-1.0

The Software Technical Review Process Sample Software Defects

Sample Defects

ORIGINAL TEXT "OLLOWS.

Computer-Assisted IUP Degree Audit: System Requirements by Joe Smith and Jane Doe, 8/25/86

A. OVERVIEW

This paper outlines the development of a computer-based component of a system to provide computer support
for IUP student advising. The computer-based component will be integrated within a single student records
system serving multiple needs throughout the academic affairs division. At the same time, this component is not
an end in itself; it must be integrated into the larger package offered in support of excellence in all dimensions of
the IUP quest for quality.

THE ORIGINAL DOCUMENT CONTAINED EIGHT MORE PAGES OF PROSE.

ORIGINAL TEXT FOLLOWS WITH REVIEWER COMMENTS IN ITALICS.

Computer-Assisted TUP Degree Audit: System Requirements by Joe Smith and Jane Doe, 8/25/86

A. OVERVIEW

‘ paper outlines the development of a computer-based component of a system to provide computer support
for 1UP student advising.

[5-02]* This is declared to be a requirements document. An “cutline for the development of a
system” should not be written until the requirements for the system are clearly documented
and agreed upon.

The computer-based component will be integrated within a single student records system serving multiple needs

throughout the academic affairs division.

[1-04] Cite a reference which describes this student records system in detail. A system which is
integrated with the student records system cannot be specified until the student records
system is clearly specified.

Al the same time, this component is not an end in itself; it must be integrated into the larger package offered in

support of excellence in all dimensions of the IUP quest for quality.

{1-04] This sysiem is proposed as a subsystem of student records, which is declared here to be a
subsystem of some unspecified larger svstem. This system cannot be required to be inte-
grated into a system which does not even have a name, let alone specific form.

ORIGINAL TEXT WITH COMMENTS CONTINUES.

*The numbers in these examples are taken from the attached list. See also the section, Categories for Defects in
Software Technical Reviews.

SEI-SM-3-1.0 Draft For Public Review 13

3ample Software Defects The Software Technical Review Process

Software Specifications: Categories for Remarks

ERROR
CATEGORY PROBLEM DESCRIPTION

r *1-00 Missing/Incomplete/Inadequate
1-01 Criteria for a system decision missing or inadequate
1-02 Interface characteristics missing
1-03 Accuracy or precision criteria missing
1-04 Description of context inadequate
1-05 Processing specification missing
1-06 Error recovery specification missing
1-07 Mlissing emphasis
1-08 Data or process validation criteria missing
1-09 Acceptance criteria missing
1-10 Data specification missing

2-00 Inconsistent/Incompatible
2-01 Two or more specifications disagree
2-02 Incompatible with existing standards
2-03 Incompatible with existing systems

3-00 Unclear
3-01 Temms or acronyms need to be defined
3-02 Ambiguous wording
3-C3 Muddled writing
3-04 Specificaton doesn’t make sense

400 Exira
4-01 Outside of the scope of this project
4-02 Unnecessary detail
4-03 Redundant or wordy
4-04 Overly restrictive (includes speciiications which
are stated at too low a level)

5-00 Incorrect form
5-01 Typographical or spelling error
5-02 Writing error
5-03 Word processing error
5-04 Violation of standards

6-00 Incorrect echnical detail
6-01 Specified processing inaccurate or imprecise
6-02 Specified processing inefficient
6-03 Specification not testable
6-04 Specification not modifiable
6-05 Description of problem or context incorrect
6-06 Technical error

7-00 General remarks

* Derived from a list in Bell, T. E., and Thayer, T. A., “Software Specifications: Are They a Problem?” Proc.
IEEE/ACM Second Intl. Conf. on Software Engineering, October 1976.

14 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Questions for Knowledge Assessment

Questions for Knowledge Assessment

John A. Cross
Indiana University of Pennsylvania

Description: Pretest of student understanding of software development phases and skill in writing software
development prose.

Objectives: To assess student knowledge and skill. The results can be used to adjust course content to meet the
needs of the students.

Procedure: These questions should be used before students begin studying the material in CM-3.
Evaluation: Answers and comments are printed in italics.

Commentary: Students must understand the concept of software development phases before they can be com-
petent technical reviewers of software. The questions provide practice for students and knowledge assessment
for their instructor. Although the questions have not yet been used for homework exercises or examinations,
such use appears to be viable. The author welcomes comments from users of these materials.

SEI-SM-3-1.0 Draft For Public Review 15

Questions for Knowledge Assessment The Software Technical Review Process

Software Life Cycle Knowledge Assessment Form
and Scoring Guidelines

General directions: Complete each item to the best of your ability. Your instructor is trying to determine how
much you know in order improve the teaching of this course.

Part I. Identification
Directions: Label each item as an example of one of the following:

e a system requirement (REQ)
e a system specification (SPEC)
e a design detail (DES)

« none of the above (NA)

Include any comments that might help the instructor develop an understanding of what you know.

1. For an electronic mail system: The electronic mail system will be able to distribute a single message to up to
32 destinations with a single command. <SPEC. The phrase “will be able to” is characteristic of SPECs. This
statement expresses a specific system capability, not a user need.>

2. For your dream house: All the living areas of the house must have connections for telephones and cable TV.
<REQ. The phrase “must have” is characteristic of REQs. A specification would say what kind of wiring,
where the modular connections will be, what specific kind of connections, etc.>

3. For a text editor: The virgule (/) will be used as a standard string delimiter. <DES. A specification might
state that a specific symbol will be used as a string delimiter, while the choice of that character is generally a
design decision.>

4. For an online grade book: Students must be able to check their grades by interacting directly with a host
computer system. <REQ. This statement describes a capability thar the system must have.>

Part I1. Reviewing Software Requirements
Directions: Classify each of the following statements of software requirements as follows:

» acceptable as is (OK)
» needs minor revision (OKR)
e needs a complete rewrite (NOK)

Briefly explain why you decide on any OKR or NOK response.

5. For an appointment scheduling system: The system must be able to automatically schedule a meeting which
does not conflict with the time schedules of its participants. <OKR. The reasons for the OKR are constraint,
prefercnce, and exception handling (which might be addressed isewhere in a specific software requirements
document). This statement must be followed by a statement about constraints and preferences and what will be
done when no solutions are possible.>

6. For a text editor: The system must be able to find and display all instances of a user-specified character string
in a text file. The display must indicate where the string occurs within the text file. <OK.>

7. For an online university student database: The system will store student identification numbers as packed-
decimal integers. <NOK. This is a design detail; it is entirely out of place in a software requirements
document.>

Part ITI. Reviewing a Software Specification

Directions: Classify the usefulness of each of the following software specification statements using the same
categories with which you responded to the items in Part 1. These statements are not necessarily connected with
questions 5-7.

8. For an appointment scheduling system: The system will allow an authorized user to list all possible times for
a meeting and then select one. <NOK. A slight case of ambiguity: does the system pick one, or does the system

16 Dratt For Public Review SEI-SM-3-1.0

The Software Technical Review Process Questions for Knowledge Assessment

user pick one?>

9. T~r a text editor: The system will have “global edit” capability; that i, a user may replace or remove all
oc .nces of a given string within a single document with a single command. <OK.>

10. For an cnline gradebook: Each course may have up to 32 sections, and up to 128 students per section.
<0K.>

Part IV. Open-Ended Responses

11. Directions: For any two of the following computer-supported systems, write a one-sentence statement of a
software REQ and a second sentence which states a related software SPEC.

¢ An online library catalog system for books (that is, a system to replace the card catalog)
* An electronic personal planning and appointment calendar

» An online university course registration system

¢ A medical diagnostic system

e A word processor

Sample answers:
REQ: The online catalog system must provide all the functional capabilities of the current card catalog.

SPEC: A patron will be able to search for a book by title or author.

REQ: The electronic calendar must be able to determine all possible times to schedule a meeting that does not
conflict with the personal time schedules of any of the meeting participants. SPEC: The electronic calendar
system will manage the personal appointments of up to 512 users.

12. Directions: For any two of the following software system needs, write a software REQ), a reiated SPEC, and
a DES response.

o An operating system JCL
¢ An electronic mail system
n online university registration system

Sample answers;

For an operating system JCL:

REQ: The user interface to the operating system must be user-friendly. <NOK: Goals are OK in requirements
statements, but BE SPECIFIC >

SPEC: The name for a system command may be abbreviated by any of a set of letters which agrees with the
initial letters in exactly one valid command.

DES: The high-level command language parser will consist of a command identifier with appropriate error-
handling, together with links to corresponding command processors.

For an electronic mail system:
REQ: The system should allow mail to be addressed by name.

SPEC: The system will be available 24 hours a day, 7 days a week. <OKR: This specification must be
qualified—naively—by saying “whenever the host computer is up.” A more detailed response might state a
performance level, with alternatives to the mail system when the system is not available.>

DES: System users will communicate to the mail system by keying a one-digit command number which cor-
responds to a context-dependent menu of valid mail commands.

For an online university registration system:

REQ" The system must automatically satisfy all reasonable registration requests from students. <NOK: vague,
not. ble.>

SPEC: The system will reject a registration request for which a student does not meet all the prerequisites. This

SEI-SM-3-1.0 Draft For Public Review 17

. e o m e -

Questions for Knowledge Assessment

The Software Technical Review Process

restriction may be overridden by the course instructor keying in a special permission Jor the student.

DES: In order to guard against fraudulent registration, students may oaly register when they are logged on with
an account that maiches their current studeni id.

18 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Guidelines for Teaching Concepts

Guidelines for Teaching Concepts

John A, Cross
' Indiana University of Pennsylvania

The following guidelines were developed at Indiana University of Pennsylvania during the teaching of the
course, Software Engineering Concepts.

e Practice: Appropriate practice activity is essential to leaming software technical reviewing proce-
dures and the underlying theory.

s Background Knowledge: The successful implementation of any software reviewing activity re-
quires that the reviewers have adequate knowledge of goals and guidelines for the software artifact
they are reviewing. Reviewers need background knowledge of both the application domain and the
particular software element under review; and these needs must be addressed by the instructor in a
manner that is suitable to the goals of each particular software reviewing activity.

* Documents: The need for background knowledge about the application domain requires that
reviewers have access to the documents that are used to prepare the particular software ar-
tifact. In many situations, these documents are the principal means of communicating
application-specific domain knowledge to reviewers. Thus, reviewers should have, for ex-
ample, a specification and/or a design dccument for a program before they attempt to review
the code. A viable supplemental or alternative procadure to providing documents to students
is to have an applicaiion-domain expert available for consultation by the reviewers.

* Guidelines: The reviewers also need guidelines for software documents. Fagan [Fagan86)
calls these guidelines exit criteria. The instructor can communicate these guidelines through a
combination of class presentations, printed guidelines for specific types of software artifacts,
and checklists.

* Goals & Procedures: Students must understand goals and procedures for software revicwing be-
fore they can participate in a software reviewing activity. Classroom discussion should include:
what reviewers should search for, how they should search, how they should report their findings,
and how they should work as a group. The support materials in othcr sections of this document

1 provide some examples of the things reviewers should report. Instructors may need to develop

additional examples that are similar to the specific tasks they have planned for their students. In-

structors should also thoroughly explain all procedures for recording remarks, interacting as a

groun, and reporting results. If computer-based procedures are used, instructors will need to verify

that all students are literate in these procedures.

SE!-SM-3-1.0 Draft For Public Review 19

Guidelines for Teaching Concepts

The Software Technical Review Process

20

Draft For Public Review

SEI-SM-3-1.0

lart ll: Implementing a Software Technical Review
as a Learning Activity

1310 Draft For Public Review 21

instructor's Checklist Tha Sofg «are Technical Review Process

Instructor’s Checklist for Planning
a Software Technical Review

John A. Cross
Indiana University of Pennsylvania

Description: Checklist to assist an instructor in preparing for a software technical reviewing activity by stu-
dents.

Prerequisites: The user of this checklist should have a good understanding of the concepts documented in
(CM-3 and should hdve these support materials (SM-3) available for reference.

Procedures: The instructor should complete each item in the list before distributing materials to students to be
reviewed, providing comments and document names were appropriate. The one exception may be iteni (8).
This checklist has been found to be a useful planning guide. Software developers and educators believe that
software technical reviewing procedures must be monitored censtantly. This checklist should be viewed as an
important part of that process.

Commentary: The author would appreciate hearing about any additions instructors have made to this list, as
well as receiving comments on its use.

22 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Instructor’s Checklist

Instructor’s Checklist for Planning a Software Technical Review

Directions: Each of the following concemns must be addressed by the organizer of a classroom software review-
ing activity. The instructor may find it helpful to write specific statements or references to the documents that
satisfy each item. References in square brackets refer to pages in these support materials that address each
checklist item in a generic way.

1. Activity ID (Name of task or type of material to be reviewed, and date).

2. Goals [4, 19]

3. Inspectable materials [29]

4. Stud=nt knowledge of guidelines for type of software artifact to be reviewed [15]
5. Student knowledge of application domain

6. Student knowledge of how 1o detect defects [12, 64]

7. Individual reporting procedures [48]

8. Group interaction and reporting procedures [48]

9. Assignment of individuals to groups, and roles and responsibilities to group members [28, 48]
10. Forms {24, 30, 36, 61, 64]
1. Grading Guidelines [33]

12. Schedule

SEI-SM-3-1.0 Draft For Public Review 23

Biographical Data Collection Form The Software Technical Review Process

Biographical Data Collection Form

John A. Cross
Indiana University of Pennsylvania

Description: Form and instructions for the collection of *“biographical” background data about students in a
software engineering course.

Objectives: Possible purposes for gathering data about students include the following:
1. Getting to know students: their abilities, needs, and expectations.

2. Correlating student behaviors or performance with biographical data.

3. Providing a basis for dividing a group of students into subgroups or assigning roles in group
projects. The sample form that follows was designed with this objective in mind.

Procedures for Instructor: Rationale and directions for each item in the form are presented beiow. Item (2) is
the only item which is not generic, but the significance of each item must be considered in the context of the
instructor’s purpose: the selection of data items and categories for each item are context-dependent concems.
(Refer to “An Algorithm for Dividing Students Into Groups,” p. 28 for a detailed procedure for dividing a class
of students into groups for a software reviewing activity based on information obtained with this form.) It is
likely that the data on this form will have greater value to an instructor if they are put into machine-readable
form. Individual instructors may devise keying specifications for their form, or implement an online data entry
program.

The following directions and rationale are keyed to the numbered lines in the sample form.

1. Some sort of identification is required, so thut the instructor can communicate with students. It is
recommended that students identify themselves by name on this form because it allows for subjec-
tive judgments about which students work together well in groups. The computer-id may be useful
in communicating electronically with students, or allowing the names of students to be hidden
during a pass at dividing the students into groups, thus preventing subjective judgments from
influencing decisions at any particular point. Groups seem to work better if they include both men
and women, so a “Sex” item is included on the form. With relatively small classes, “Student
Name™ is usually adequate to determine sex. The “Systern-ID” can be used in a number of
helpful ways:

¢ To cross-reference the background data to additional data.
¢ To provide a unique ID when names are inadequate.

* To provide an impersonal identifier for each individual’s data when objectivity or confiden-
tiality is desired. In some institutions, it may be necessary to generate such an identifier.

2. The specific responses to this question indicate the knowledge and points of view which an indi-
vidual might bring (o a software reviewing task.

3. The instructor can adjust the ranges and the way the question is asked to suit the nature of the
students in the class.

4. Students may need to be told that an incorrect statement to this question may result in poor deci-
sions about who is in which group. Note that the number of credits, specific courses, and grade-

24 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Biographical Data Collection Form

point averages work together as predictors of the performance of students in a software reviewing
activity.

5. The notes for 3 and 4 apply to this item and the next. This questicn addresses the need to deter-
mine the technical ability of the student to review a piece of software.

6. See the comments for item 5.

7. A mix of different ages is likely to provide a better group review than a homogeneous group. The
age groups can be adjusted to suit the students.

8. Outside responsibilities can be a major factor in limiting the effectiveness of an individual student
in a group project. Adjust this question, or ask an additional question about distractions, depending
on the students.

9. The previous note also applies to this item.

10. Geographical distribution of students, commuting factors, and experience can all be important
factors. Questions about these and other factors may be added to the form at the discretion of the
instructor. Note that application domain knowledge is especially heipfui in this context.

Procedures for Students: Students may complete the data collection form in about ten minut.:s of class time. If

these data are to be used for grouping decisions, reflect that need in your planning. Students should talk with

h other or bring questions to the instructor, so that any difficulties can be resolved. Note that this type of data

1 also be gathered by an online system. However, allowing students to take a form home and submit it later
invites hassles and incomplete data.

Evaluation: The performance level of individual students on software technical reviews ca. be predicted with a
calculation such as the following. A nearly identical formula was 90% accurate at distinguishing high, average,
and low performers for three iterations of the activity described in these support materials (with 65 students).
However, the formula may be dependent on context, so use it cautiously (see p. 28). Note also that this formula
predicts individual performance at detecting defects, not group performance.

Each blank in items 3 through 6 is assigned a value of 1 through 5.

prediction = 1 for each blank checked initem 2 (2 for intemns)/2
+ item 3 * (itcm 4/5)
+ item S * (item 6/5)
- (item 8 + item 9)/10

For example, consider the following coded data for a 24-year-old female student with File Processing and
Intemnship, 94 credits with 2.9 GPA, 24 CS credits with 3.4 GPA, working 12 hours per week, and taking 14
credits.

Mary Smith CKRLWP F 100100 4344212014

prediction = (1 [for file processing] + 2 [for intemship])/2
+ 4*(3/5) (for overall course work)
+ 4*(4/5) (for computer science course work)
- (12 + 14)/10 (for distractions)

prediction = 4.1

SEI-SM-3-1.0 Draft For Public Review 25

Bicgraphical Data Collection Form The Software Technical Review Process

Note: Sex and age codes are not used to predict individt rerformance, but they are used to measure how well
group members complement one another.

If a statistical package such as SPSSX is available, the >graphical data can be used for analyses such as the
following:

1. Compare predicted with actual performance.

2. Examine altemative predictors of individual performance.

3. Analyze the data for correlations between background data and individual ability to detect specific
types of defects in a software technical review.

Instructors should check prediction against actual performance and modify future procedures in light of this
feedback.

Commentary: Every item in this background data collection form may need to be adjusted to suit the context in
which it is used. If such data will be used to predict student performance, the user must keep in mind that the
following factors are all fundamental to predicting the performance of an individual on a software technical
review.

1. Technical ability relative to the particular type of software artifact under review.
2. Knowledge of the particular application domain.

3. Intensity with which the reviewer is involved in the technical reviewing activity.
4. Personality and leadership.

The data in the attached form can be supplemented with *“psychological data” on cognitive style or personality
type. A student of the author did this. The grouping decisions prompted by the psychological data supported the
validity of the decisions based on the biographical data, but they did not provide any clear improvements.

26 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Biographical Data Collection Form

SURVEY OF STUDENT BACKGROUND

1) Name System-ID ________Sex(MorF)

2) Please use a check mark to indicate the courses which you have taken (or transferred), and use an asterisk (*)
for those which you are taking this semester.

File Processing Database _____ Operating Systems
Internship System Analysis System Design

3) Check the appropriate category for approximate credits beyond high school.
030 31-60 61-90 91-120 ____ > 120 credits

4) Check the appropriate category for approximate overall grade-point average.
<20 2.0-2.49 2.50-2.99 3.00-3.49 >3.49

5) Check the appropriate category for total computing credits completed.
___0-10 11-15 16-20 21-25 > 25 credits

6) Check the appropriate category for approximate Computer Science grade-point average.
<20 2.0-2.49 2.50-299 ____3.00349____>349

7) Check the appropriate category for your age.

. 0-23years ____ 24-28 ycars ____29-33 years > 33 years

8) Average number of hours you will be working (for pay) per week during the time in which the software
technical reviewing activities will be conducted: .

9) Number of credits you are taking this semester:

SEI-SM-3-1.0 Draft For Public Review 27

ﬁ'

Algorithm for Student Groups The Software Technical Review Process

An Algorithm for Dividing Students into Groups

John A. Cross
Indiana University of Pennsylvania

Description: Algorithm to assign students to review groups.

Purpose: Obtain balanced groups that work effectively, without penalizing individuals by assigning them to
“bad” groups.

Procedure: See algorithm.

Commentary: The task of dividing students into groups for class projects can be approached in three basic
ways:

1. Use a random selection process.
2. Allow students to choose their own group members.
3. Assign students to groups on some other rational basis.

The above approaches can be mixed. For example, an instructor could pick the best students as leaders, then
either randomly assign the rest of the class to groups or allow project leaders to select their group members from
the remaining students. The advantage of this approach is basic to any algorithm an instructor might use—some
systematic consideration should be given to ensuring that each group has sufficieat personnel resources to com-
plcte the project. A strictly random procedure incorporates a significant risk of producing unfair groupings
relative to each group’s ability to be successful on the project. Poor results might also occur if students are
allowed to group themselves. For example, the best students might try to band together or students might group
themselves on the basis of personal relationships rather than complementary abilities. However, the instructor
may not be able to do much better, since individual abilities and group interactions are so hard to predict.

The procedure described below is more systematic than random. It utilizes data supplied by students, rather than
relying solely on the subjective opinions of the instructor. The algorithm is based on two criteria for forming
groups:
1. Groupings should be fair: there should be an even balance of total human resources for each
project group.

2. Groupings should be heterogeneous: there should be a mix of different abilitics, and complemen-
tary skill levels, sex, and ages.

The problem of determining groups is thus one of determining abilities and complementary personalitics, then
combining people into baianced groups which promise to be productive. Productivity 1s a key concem in this
context because productivity may vary for a given group depending on the task or the working environment. The
algorithm given below has been used to group students for a software reviewing task; it may or may not work for
other tasks. However, the approach represents a starting point for a systematic approach to this problem in many
situations.

The following procedure. which has been automated using a computer program, is a straightforward, flexible,
and objective approach to the problem of grouping. The procedure is basec on a biographical data form (see p.
24) and a personality profile form which attempts to obtain a rough indication of the cognitive style of each
individual. Note that the algorithm described below is but one solution; other algorithms—or fine tuning of this
algorithm—are also possible.

28 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Algorithm for Student Groups

The Algorithm

Basic parameters: number-of-students, group-size
Input data: Biographical data and personality profile

1. Compute the number of groups so that, if there cannot be equal numbers of individuals in each
group, the numbers will be as equal as possible.

number-of-teams = CEIL(number-of-students | group-size)
2. Determine predicted abilities for the given project. (See p. 24.)

3. Sort the available individual data records on the basis of predicted abilities. (Use the point score
for composite predicted abilities.) Assign the individuals from the top and bottom of the list to the
same team, deleting them from the list, and repeat this procedure for each team until each team has
two persons. Examine the resulting assignment for any imbalance in the number of males on any
team. If necessary, adjust the assignments to balance the number of males in each group. Do the
same sort of adjustment to provide heterogeneous mixtures of age levels in each group.

4. Repeat step (3) with the remaining individuals, adding one member to each group with each use of
the list of unassigned individuals. With each new set of assignments to groups, adjust the assign-
ments to balance the number of males and the heterogeneity of age brackets of the people in each
group.

5. Print a summary report of team demographics; adjust manualiy if appropriate. Note the reason for
the adjustment for possible inclusion in the algorithm.

6. Identify the group assignments with names, and make any needed subjective adjustments.

7. Reprint the summary report of team demographics and repeat steps (6) and (7) if the groups are
poorly balanced or poorly mixed.

8. Look for leadership potential in each group. If a group does not appear to have anyone with
leadership potential, further adjustments may b called for.

9. Decide whether to appoint group leaders or to allow another form of leader selection within each
group.

SEI-SM-3-1.0 Draft For Public Review 29

Agreement and Release Form The Software Technical Raview Process

Agreement and Reilease Form

John A, Cross
Indiana University of Pennsylvania

Description: Agreement for students to give consent for participation in research.

Procedure: If you plan to use the data gathered from classroom assignments for publication or as parn of some
other research, the students should sign consent forms. The following form can be used to obtain student permis-
sion to collect empirical data.

The instructor should acquire appropriate administrative approvals of this form before using it. (This form has
been approved by two universities.) Have students complete the form and sign a paper copy prior to the
collection of empirical data.

Commentary: Consent forms are a standard part of studies involving human subjects. Their use grew out of an
ethical need for constraints on experiments using human subjects. Many institutions (both in academia and in
industry) and publications require them. In some states they are required by law. In general, consent forms
inform the subjects of the following:

e What they can expect.

e What harm (if any) they may incur. (In this case, will their participation have an adverse effect on
their grades or what they leam from the course? It should not.)

» That they may choose not to participate or may withdraw at any time.

Undergraduate students of the author responded with respect and interest to the formality of this procedure. Use
of this form may have caused a healthy ‘“Hawthorne Effect,” in which students performed better because they
perceived that their performance was being more closely observed than normal.

30 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Agreament and Release Form

Research Agreement and Release Form

In this course, your instructor will be collecting empirical data about your performance on your assignments.
The special procedures that this eniails are described on the following page. Please read the description of those
procedures. When you feel that you understand what is planned, sign the agreement and release statement.

AGREEMENT AND RELEASE STATEMENT. By my signature on this document, I signify that I have read
and understood the statement of planned research. Furthermore, I agree to participate to the best of my ability.
The data which are gathered from this experiment may be published, but only in a manner which does not
individually identify me.

SIGNATURE DATE

Mailing address for a summary report of the results (optional);

Questions may be addressed to :
<Instr'ctor name>
<Address>
<Telephone number>
<E-mail address>

SEI-SM-3-1.0 " Draft For Public Review 31

Agreement and Release Form The Software Technical Review Process

Research Procedures

You will be divided into groups ot three cr four students. Grouping will be based on your background, as you
declared it on the “Biographical Data Collection Form,” which you completed at the beginning of this course.
Volunteers may be asked to serve as “coordinators” and *“recorders” for each group. Each group will first
review a software requirements document and then a software specification of verifiable system behaviors.

The reviewing procedure will consist of individual preparation of constructive comments about the software
element which is being reviewed, followed by a review group meeting in which the group prepares a written
report on the quality of the software. Two different procedures for coordinating the individual preparation of the
review group members will be used. You will be graded on your individual mastery of the concepts of software
development that are specific to the software which you review and on the quality of your group review reports.
If the different grading procedures result in significant differences in your grades, an adjustment will be made to
assure faimess.

In the course of these activities, your consistent, diligent participation is essential for our observations to have
any value beyond this course. Therefore, NO LATE ASSIGNMENTS WILL BE ACCEPTED. If you are
inadequately prepared for a review meeting, you will be dropped from your group. If you miss a class during the
period in which you are learning about the software reviewing tasks or performing those tasks, you will not only
compromise your ability to score well in this course, but you will also cause problems for your group and your
instructor. PERFECT ATTENDANCE AND SINCERE EFFORT ON INDEPENDENT ASSIGNMENTS
WILL BE DEMANDED OF YOU.

Alternative to Signing the Research Agreement and Release

You may elect to not sign this form. If you do not sign this form, or if you fail to meet group reviewing
responsibilities, you will be placed in a review group with other students who are not part of the experiment.
However, you must still do the same tasks and be graded on the same performance criteria as the students who
participate in the experiment.

Iritials of student:

32 : Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Grading Guidelines

Grading Guidelines

John A. Cross
Indiana University of Pennsylvania

Topic: Grading student performance of software technical reviews.

Objectives: These grading guidelines may serve several functions:
1. Provide specific direction for evaluating student performance.

2. Provide cues to students concerning outcomes that will be measured and the relative importance of
each.

3. Provide feedback to students on the effectiveness and efficiency of both their individual analysis
and group interaction.

The specific behavioral objectives that the grading guidelines address include:

1. Working individually and as a group, students will produce helpful output from a detailed inspec-
tion of a piece of software.

2. Students will be able to estimate costs and benefits in terms of both individual and group effort for
a software technical review.

3. Students will be able to detect and document defects in a particular type of software.
4. Students will introduce fewer defects into software they create.

5. Students will value and know how to obtain the broader understanding that can be achieved by
obtaining the views of different people and viewing the software from different perspectives.

6. Students will show enthusiasm for the use of software technical reviews as an effective means to
evaluate the technical quality of a piece of software and document specific defects.

7. Students will show constructive and efficient group behaviors.

Prerequisites: The users of these grading guidelines need to know what constitutes a defect in the software
being reviewed and bow defects are to be documented. The software may include statements of known defects
(see “Sample Inspcection Material,” p. 39). Instructors can depend on prior knowledge of any defects that are
given, of defects detected by individual technical review of the document, or those deliberately inserted into the
software before giving it to the students. In any technical review, it is possible that previously undocumented
defects will be reported. If the scitware does not come with a statement of known defects, students are likely to
report legitimate defects the instructor failed to notice.

Procedure: The defects documented by each individual must be evaluated by the instructor relative to how well
they provide input to group inieraction. Thus, a copy of each individual's annotations must be submitted for
grading. For each concern an individual identifies as a defect, the instructor must determine whether the indi-
vidual correctly identified a defect, documented a spurious concern, or made an error in his or her understanding
of technical details.

Each issue must also be weighted for the significance of the underlying concems and for how well it is reported.
One approach is to assign an integer score of from -2 to +3 points for each issue raised. These scores are then
summed for each individual. Since expert behavior is considered to be the correct identification of roughly 30%
of the actual defects, perfortnance considerably less than perfect should be awarded the highest possible score.
The author recommends that (roughly)

highest-possible-individual-score = 0.30 * weighted-sum-of-known-defects
To grade group performance, the instructor must compare group output against the combined individual data

SEI-SM-3-1.0 Draft For Public Review 33

Grading Guidelines The Software Technical Review Process

prior to group interaction. The following formula can be used for grading the defects reported by the group.
o -1 t0 +2 points for combining similar issues raised by more than one individual in a group.
e -1 to +2 points for editing the way an issue is reported.

* -3 to +2 points for removing an issue from the group report. The point value for this group action
should be the negative of the point value for the underlying defect.
e -1 to +3 points for (synergistically) including an issue in the group report that was not in the report
of any individual in the group.
The instructor must judge the relative merits of a particular group point total in the context of a particuiar task.

Note that the amount of measurable “synergism” in the group report is likely to be low, even when there
appears to be much group interaction. A score of +20 to +25 points may be a good performance.

The Summary Report and/or Related Issues Report must also be graded. The instructor can simply assign a
possible point total and grade the summary reporting on that basis.

A possible set of class scores might look like this:

Individual | Group No. Individual Group Group Composite
Raw Nomm. | Raw Nomm. Reports Score
— . "ﬂ
1 1 +12 +20 +11 +16 +6 +42
2 1 +18 +23 +11 +16 +6 +45
3 1 +10 +19 +11 +16 +6 +41
4 1 +6 +10 +11 +16 +6 +32
Possible +62 +25 - +25 +10 +60

Evaluation: The success of the grading process might be evaluated in terms of either the functional or be-
havioral objectives stated above. Both sets of objectives are important, and the simplest methods of evaluation
are the most appropriate:

e Are these guideiines practical? (They worked for the author of this document. The experience of
other users is now essential.)

e Are the resulting grades accurate? (Thus far, they appear to correlate with student grades on other
tasks and in other courses.)

Do these grading procedures foster the desired student behavior? (Experience with these procedures
is too limited to assert that they offer significantly better leaming advantages. However, they deal
directly with the details of student performance or nonperformance, which is the essence of what
should produce good learning outcomes.)

» Are there better procedures? (Certainly variations are possible, especially with the suggested point
values and normalizing procedure. However, the details of determining the value added by both
individual and group effort must be considered in any valid procedure.)

Commentary: The ability to automatically number, identify with initials, and merge student annotations is very
helpful in this procedure. Computer programs to do this prucessing are relatively easy to construct. Instructors
should consider a variety of software tools and statistical analyses. However, the following type of chart should
be considered an essential method of data presentation for learning exercises in software technical reviewing
([Myers78] contains similar charts).

34 Draft For Public Review SEI-SM-3-1.0

e Doltwate Tochnical Raviow Process Grading Guidelines

l\‘h';‘l) R‘cvicwvr Number Points %
Nunilwt] A A 8} § 6 7 8
n) > | : 2 7 48
LR S 3 o 25
w oo | 2 25
TEI N R I 2 4 25
s || | | | 4 50
e | ! | 3 ay
Do (1) 4 4 4 2 3 4 3 2 26 33
Cw Jao [w0 [w0 2004w | 0| 2 33

SEI-SM-3-1.0 Draft For Public Review 35

Student Opinion Form The Software Technical Review Process

Student Opinion Form

John A. Cross
Indiana University of Pennsylvania

Description: Form to solicit student opinion about scftware technical review experience in the classroom
(*debriefing” form).
Purpose: Obtain both open-ended and coded comments from participants in a software technical review. The

form can be used to obtain data from the perspective of participants in order to diagnose problems or substantiate
facts about the software technical review that are not otherwise documented.

Procedure: The form should be used after students have performed a software technical review and have sub-
mitted the group report. Students should be aware that their answers will not affect their grade.

The instructor may want to write a simple report to provide feedback to the students on the gist of their re-
sponses on this form. Public reporting should never identify an individual student, in accordance with the con-
tract made in the Agreement and Release Form.

Data gathered from this form must never affect student grades. Summary statistics should be computed for
coded items, which are organized in a way that makes them amenable to analysis by a statistics package such as
SPSSX. Note that interrelationships might provide interesting insight, particularly with regard to group inter-
actions. Other data that can be linked to the data from this form by means of the “System-ID” that also appears
on other forms in these support materials.

Commentary: The coded responses have provided the most useful data.

36 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Student Opinion Form

OPINION SURVEY

System-iD Group Review Role(s)

DIRECTIONS: For each of the following items, give your best opinion based on what you know at this point.
Respond as if, in future reviews, you were selecting and using the most productive group interaction technique.

“Productivity” refers to a favorable relationship between costs (including time) and benefits.

¢ An “Average” rating indicates approximately equal costs and benefits.
¢ “Below Average” indicates that the costs appear to be greater than the benefits.
e “Above Average” indicates the. the benefits appear to be greater than the costs.

Survey Rating Scale:
A) Superior B) Above Average C) Average D) Below Average E) Poor X) No Rating

(1) Rate software technical reviewing as a2 way for you to leam about software development.

(2) Rate software technical reviewing as a way for you to develop a breadth of knowledge of application
systems.

) 73) Rate software technical reviewing as a productive way for an organization to provide software quality
asst e.

OPEN-ENDED RESPONSES (use the end of this form if necessary) :
(4) Say something positive about any or all of the software technical reviewing techniques used in this class.

(5) Say something negative about any or all of the software technical reviewing techniques used in this class.

(6) Say something, positive or negative, about using some form of software technical reviewing in other com-
puter science classes.

SEI-SM-3-1.0 Draft For Public Review 37

Student Qpinion Form The Software Technical Review Process

(7) Which of the following group activities do you feel would be most helpful to you as a student as a follow-up
to your first two reviewing activities in this course? Pick one (even if you have a preference which isn’t listed)
and comment on it. If your preference doesn’t appear on the list, include a comment about it below.

(A) Review a “low-level” sofiware element, such as a module design, or test plan, or code.

(B) Develop a “high-level” software element, like what you have reviewed so far.

(C) Develop a “low-level” software element,

(D) Develop a piece of software from a general problem statement through tested code (that is, a
complete team project).

(8) General Comments

38 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Sample Inspection Material

Sample Inspection Material with Key Remarks:
System Requirements Definition

John A. Cross
Indiana University of Pennsylvania

Description: Artifact for a software technical review—a sample requirements definition and suggestions for the
results of the review.

Objectives: To provide a document that has known defects and is appropriate for inspection.

Prerequisites: Students need to have an overview of the application and the goals of the artifact prior to their
inspection activities,

Procedure: The instructor should determine the appropriateness of this document for the particular classroom
context. The instructor may want to correct certain defects and/or insert additional defects.

Students must be provided with a copy of the requirements definition, which they can review for defects.
Printed copy facilitates the review process; electronic copy facilitates the reporting process and group inter-
action. The recommended procedure is to provide students with both forms of the document.

See the other sections of these support matials for additional procedures for administering a software technical
review,

After all technical review output has been reported, the instructor should provide detailed feedback, including:
(1) what defects were missed and (2) what remarks were spurious or wrong, and (3) how productive the group
interaction was.

Evaluation: The suggested results of the review follow the requirements document. The instructor should
compare the students’ reviews to these suggested results.

Each paragraph in the requirements document is followed by a paragraph number in brackets. The suggested
results are keyed to those paragraph numbers. Some of the suggested remarks are identified with an asterisk,
denoting a very important defect, or with two asterisks, denoting a critically important defect.

Commentary: Practice materials are generally hard to find, so it is necessary to take precautions in order to
rcuse the material in this text for subsequent classes. Two procedures are recommended. First, explain to
students that they should not aid future users of this document. Second, edit the document with each use so that
it contains a different set of defects.

SEI-SM-3-1.0 Draft For Public Review 39

Sample Inspection Material The Software Technical Review Process

IUP Learning Center Tutorial Program Scheduling

Project-1D: TUTOl

Document-Type: Requirements Definition
Document-Status: Software Inspection Copy
Author: John Doe

Date: August 1986

L Introduction

The TUP Leamning Center Tutorial Program, located in 209 Pratt Hall, provides tutoring and study skills coun-
seling services to any IUP student. Currently, tutorial services are offered in 18 disciplines (see SUBJECT
listings in attached pamphlet) through approximately 25 tutors. Both of these numbers are expected to increase
in the future. [1]

Each tutor is assigned to one or more disciplines. That is, a tutor may tutor in more than one subject area. In such
cases, one of the assigned disciplines is identified as the “primary” assignment (others as the “‘secondary”
assignments) for that tutor. Study skills counseling is considered to be a distinct discipline to which a few tutors
are assigned. All the tutoring/study skills counseling takes place in Pratt Hall. 12}

The *“Scheduling Desk" carries out all scheduling and day-to-day administrative activities for the Tutorial Pro-
gram. The main job of the Scheduling Desk is to match up the requests of students asking for tutoring (referred
to as “tutees”) with appropriate tutors. Each tutor works according to his/her schedule, which is set at the
beginning of the semester. Usually, tutoring is done on an individual basis, but some tutors allow more than one
tutee to be present. /37

The IUP Leamning Center would like to computerize the scheduling of tutorial appointments to increase the
cfficiency of the Scheduling Desk and provide better service. This document describes the current system
employed at the Scheduling Desk, the problems with the current system, and the desired systern to be developed
in the future. (4]

II. Current System

The scheduling system currently in use is a manual one. A tutee calls or stops by the Scheduling Desk and
requests a tutorial session. The tutee will be asked to provide the name of the discipline, the desired day and time
of the tutorial session (appointments may be taken up to two weeks in advance), and the tutor’s name, if a
particular tutor is requested. The worker at the Scheduling Desk searches for an appointment in a “Scheduling
Book,” a large binder that contains the schedules of ail the tutors. These schedules consist of sheets of paper,
one for each tutor for each day he/she is scheduled to work (see attached sample). On the sheet, the tutor’s work
hours for that day are indicated, and space for recording appointments is provided. These schedules are grouped
by the discipline to which they are assigned. In case the tutor is assigned to more than one discipline, his/her
schedule is placed under the discipline identified as his/her primary assignment. If the tutee’s request cannot be
satisfied, the tutee is asked if he/she has an alternative request in terms of tutor, day, or ime. When the tutee’s
request is matched up with available tutor’s hours, the tutee’s name, phone number, and name of the course (e.g.,
EC 121) are taken and written down on the scheduling sheet. This indicates that the tutor has an appointment. (5]

The appointment may be cancelled, but it must be done so at least 24 hours before the appointment time.
Otherwise, the cancellation will be classified as a “no-show.” No-show is also detected when a tutee fails to
keep an appointment. Two no-shows will disqualify the tutee from receiving any more tutorial services for the
rest of the semester. The Scheduling Desk is responsible for keeping track of the name of the tutees who are

40 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Sample Inspection Material

no-shows, and the number of times each of them does so. (6]

the day of the appointment, the tutee comes to the Scheduling Desk, where the appointment is confirmed.
~uter the confirmation, the tutee is asked to fill in the “sign-in” sheet (a sample is attached). The information
recorded on the sign-in sheet consists of the tutee’s social security number, his/her name, and the course to be
tutored. This sheet is for record keeping and later use in the analysis of the effectiveness of the Tutorial Program
by both the Learning Center administrators and University administrators. Then the tutor for that appointment is
called in to meet the tutee, and the tutorial session begins. Walk-in requests for tutoring are accommodated if
tutors are available at that time. However, no record of walk-ins appears on the Scheduling Book since no
appointments were made for walk-ins. Therefore, the walk-ins are recorded only on the sign-in sheet. When the
tutorial session is over, the tutee comes to the Scheduling Desk to “sign-out.” This is done by the tutee by
filling in the column in the sign-in sheet that contains the duration of the actual tutorial session, counted in

minutes. [7]

A tutor may change his/her schedule. These changes are accepted unless they affect appointments that have
already been made. (8]

I11. Problems with Current System

1. Some information is taken repeatedly. The information that is collected at the time of making an appointment
overlaps with the information taken at the sign-in time. This is not only inefficient, but it also causes congestion
around the Scheduling Desk by tutees waiting in line to fill in the sign-in sheet. /9]

2. Procedures for making an appointment for tutors who are assigned to more than one discinline are not
efficient when the appointment is not for the primary assignment. The worker at the Scheduling Desk must flip

vages of the Scheduling Book to get to the section where the tutor’s schedule is placed. This situation occurs
».. prisingly often, especially when all tutors who are assigned to the discipline are filled up to capacity, and
tutors who have a secondary assignment to that discipline must be checked. (70}

3. Procedures for confirming the appointment when tie tutee comes in are inefficient. This is especially due to
the fact that all the appointments start on the hour or haif hour, resulting in most of the tutees coming in at the
same time. Class schedules also influence these peak periods of activity at the Scheduling Desk. /11]

4. Checking for no shows is neither efficient nor reliable. This is because the worker at the Scheduling Desk
must cross check the times and names in the Scheduling Book against the times and names on the sign-up shect
in order to determine who failed to show up for an appointment. /12)

5. The record on the sign-in sheet is organized in order of arrival time, but an alphabetical ordering would be
casier to refer to. Also, use of the sign-in sheet results in the loss of confidentiality concerning the information
on the tutees, since all the tutees use the same sign-in sheet where they can easily see the information on the
tutees who came in before they did. /23]

6. Currently appointment restrictions set by tutors are not observed by personnel at the Scheduling Desk. For
example, a math tutor, for one reason or another, may not feel comfortable helping someone taking Calculus II,
and thus instruct the Scheduling Desk not to take appointments for that course. Another example is that some
tutors who do accept group appointments may require that ail the tutees who would be present in one session to
be from the sections taught by the same professor. These appointment restrictions are not observed well. [14]

7 "here are no procedures for recording which worker at the Scheduling Desk took which appointment. This
¢ .<d some inconvenience in the past when disputes arose about the time/day of an appointment, or the exis-
tence of the appointment itself. /15]

SEI-SM-3-1.0 Draft For Public Review 41

Sample Inspection Material The Software Technical Review Process

8. The Scheduling Book is not updated on a daily basis. The schedules that contain the appointments for the
day should be removed at the end of the day and new schedules that contain appointments for two weeks from
the current day should be inserted. This is done only once a week simply because the procedure takes some
time, and the Scheduling Book cannot be kept away from the Scheduling Desk for that time everyday. Workers
at the Scheduling Desk also dislike the “flip-flopping” of the pages of the bulky Scheduling Book. This
problem may be reduced somewhat by devising a new more efficient manual system instead of computerizing
the Scheduling Desk operations. [16]

IV. System Goals and Requirements

As mentioned in the last section, it may be possible to improve the efficiency and effectiveness of the Schedul-
ing Desk by modifying the current manual system. However, the whole operation of the Learning Center, of
which the Tutorial Program is a part, is expected to go through the transformation from a collection of manual
systems to an integrated computerized system. It is desired that operation of the Tutorial Program be comput-
crized, not only for its sake, but also as a part of a larger, integrated system. [17]

Though the Scheduling Desk is only a part of the Tutorial Program, it is where most of the data conceming the
Tutorial Program are collected, and thus the computerization of the Scheduling Dcsk will be a major part of the
computerization of the operations of thc Leamning Center. The operations of the Scheduling Desk will be the
first major manual system to be computerized, and therefore, the system to be developed for the Scheduling
Deck must be modifiable so that it can accommodate future changes in the requirements. Future changes to the
system are expected to concem the addition of new functions to the system, and the form and content of the
output file created by the system for use by other Leamirg Center operations. Current goals and requirements
for the system to be developed, together with a rationale for their inclusion, are presented below. [18]

. The system must be highly user-friendly. — The people using the system cannot be expected to have any
computer experience and the turnover rate of the personnel will be relatively high. [19)

2. The system must be highly robust. — For the same reason as specified in requirement 1, the system should
respond 1o user errors by detecting them, diagnosing the cause, and offering helpful suggestions about how to
correct them. [20)

3. The response time of the system must be rcasonably fast, less than five (5) seconds is desired. — Quick
response is crucial since the demands placed on the Scheduling Desk tend to be concentrated on certain times,
namely a few minutes before and afier the hour or the half hour. [21]

4. The system must be interactive and flexible enough to accommodate all the possible requests from tutees. —
The most often heard requests from tutees are for: an appointment anytime during certain hours, an appointment
with any tutor available, and/or a list of all the time slots during which a particular tutor will be available. 22/

5. Appointments should be scheduled for either 1/4, 1/2, or one hour, as requested by the tutee. The system
must be able to accommodate any combination of such appointments. 23/

6. The system should be developed in such a way that all the necessary information on tutees and the courses in
which they wish to be tutored are taken when the appointments are taken. — This would ease the confirmation
of the appointment at the sign-in time since no new information must be taken at that time. [24/

7. The system must provide for easy confirmation of an appointment at the sign-in time. No duplicate entry of
the data is desired. However, corrections to the inforrnation on the tutees and/or the course to be tutored may be
made at this ime. —- The Scheduling Desk worker who takes the appointment might make mistakes in record-
ing data. Also, a number of tutees do not know the exact name of the course in which they wish to receive

42 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Sample Inspection Material

tutoring, thus giving the Scheduling Desk workers incorrect information. /25]

8. The systcm must be able to detect no-shows automatically, and keep track of all the no-shows throughout the
semester. — When a tutee accumulates two no-shows, the system must cither be set to automatically reject
requests from that tutee in the future or print out the name of the tutee so that the Scheduling Desk workers will
be informed of the disqualification of the tutee. 26/

9. The system must be able to handle cancellations. —Regardless of whether the caicellation is made within 24
hours of the appointment or not, the cancellation should make the tutor s.vailable for new appointments for the
time of the canceled appointment. If the cancellation is made within less than 24 hours of the appointment, it
should be classified as a no-show. [27)

10. The system must provide for usable back-up in case of a system failure. — Regardless of the hardware
used, it is essential to have ways to schedule and meet appointments in case the system fails. [28)

11. Special restrictions placzd by individual tutors must be displayed on the screen when the appointments are
taken for those tutors. — The Scheduling Desk worker must see the restrictions before he/she takes an appoint-
ment for that tutor. However, the restrictions are to be displayed for the Scheduling Desk workers’ information
only, and the system should accept appointments that are not in accordance with the restrictions placed by the
tutor. In other words, the Scheduling Desk workers must be aware of tutor restrictions, but they must also be
able to override themn. [29]

12. The system must be able to accommodate group appointments. — The system must allow more than one
tutee to be scheduled for one appointment. Note that the two (or more) tutees may contact the Scheduling Desk
at different times. Thus, the system must allow for scheduling another tutee at the same time slot as an already

taken appointment. [30]

13. The system must be able to handle tutors who have multiple assignments. —— The system is expected to free
the Scheduling Desk workers from the job of memorizing which tutors have multiple assignments and which
disciplines are their primary disciplines. For example, if a tutor who is assigned to French and Mathematics has
an hour available for tutoring on Tuesday, that hour should appear as vacant regardless of whether the appoint-
ment is sought in French or Mathematics. (31]

14. The system rmust be able to make an appointment up to two weeks in advance at any time. — The
computcrized Scheduling Book must maintain and use complete, current scheduling data. (32/

15. The system must be able to accommodate both temporary and permanent changes in the schedules of tutors.
— If the notification of changes is received more than two weeks in advance, the changes must be accepted and
schedules must be modified to reflect those changes. If changes within the next two weeks are requested, the
system must check for appointments already made that would be affected by the changes. If there are any such
appointments, the request for schedule changes will be denied. Otherwise. the requcst will be accepted. [33]

16. The system must be able to display all the appointments a tutor has for the day. — The tutors very often ask
the Scheduling Desk to show them all their appointments for the day when they come in for work. 34/

17. The system must be able to “block™ appointments for all the tutors for certain hours and/or days. — There
are umes when no tutorial services are offered, such as holidays, the eveni. 7 before the break, or the time when
all the tutors are required to attend a Learning Center meeting. /35]

18. The system must produce a summary of the activities of the day at the end of the day or at the beginning of
the next working day. — A file that contains information on tutorial sessions that took place during the day,

SEI-SM-3-1.0 Draft For Public Review 43

Sample Inspection Material The Software Technical Review Process

sorted alphabetically on the tutees’ last names, must be created. Also, the system must be able to provide a daily
report of the number of tutorial sessions that take place, grouped by the disciplines. [36]

19. The system is expected to offer security for the hardware as well as the software, including the data files. —
The record of tutorial sessions as well as the record of appointments are confidential and should not be acces-
sible to anyone who does not work at the Scheduling Desk, except the Learning Center administrators. Also,
certain functions of the system, especially the ones that summarize the activities of the day, may not be acces-
sible to anyone except Learning Center administrators. {37/

20. The system must record the duration of the tutorial session (measured in minutes) after the session is over.
— Currently, the information concerning the number of minutes of the actual tutorial session must be input to
the system retrospectively and somehow associated with the record of that tutorial session. [38/

21. The system must request the initials (or some other forms of identification) of the Scheduling Desk workers
at each step of the operation. — It is desired that the system will not let the user proceed unless the user
identifies him/herself. This is desired in order to keep Scheduling Desk workers highly disciplined as well as to
offer some measure of security. [39]

22. When the appointment is made in person (i.e., the tutee comes to the Scheduling Desk to make an
appointment), the system should be able to print locally a memo that shows the day and the time of the appoint-
ment, and the names of the tutor and tutee. — This is desirable, but it is not necessary. (40]

V. System Constraints

The system may be implemented on either the locally available mainframe or the microcomputers (IBM PCs)
owned by the .eaming Center. If microcomputers are to be used, the system will communicate to other comput-
erized Leamning Center operations by transferring its files to the mainframe through the use of a modem and a
phone line. f41]

44 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process

Sample Inspection Material

De

Suggested Review Results

Remarks

. {1] ** How much increase, and in what time frame?

. (41 This document must “define requirements for a new system,” rather than “define a new

system."”

3. /s) What if there is no match?

. (6] * What data are recorded? How are files maintained? What reports or lists are needed? What

volume of data is involved? What use is made of these data?

. {9] ** Specifically which data are redundant? How do inconsistencies affect the overall system?

. (14] ** Where are these restrictions recorded? What are these restrictions? Is some improvement in

handling these restrictions a desired feature of the new system? How can a restriction be specified
for a particular instructor’s students, when there is no specification for how that restriction is
recorded in the system?

.{16] * The current operational detail is not clear. This document gives impression that appoint-

ments are entered as they are received. Also, what is done with oid schedules when they are
removed?

8. [16] The goal of this document is to state requirements for the new system, not patches for the old.

19.

20.

. [17] * Who desires the computerized system? (The use of passive voice is a sign that something is

not stated.)

10. /18] ** The total context is not yet defined, sv integration criteria cannot be stated. Without an
yverall plan into which the proposed system it, the TUTOR system is premature.

. /19] The term “user-friendly " requires precise definition.

{20] The term “robust” also requires precise definition.

. [20] Requirements 1 and 2 overlap significantly. Combine them?
. 121] * Response to what?

. {22] * Only those requests that arc documented at this point can be ¢xpected to be dealt with in the

new system. Any additional types of requests may have to be built into the systcm as an
(expensive) CHANGE.

. {24] * What is “all the necessary info™?
. {25] Requirements 6 and 7 are redundant.

. (26] * What specific system response is desired: beep and print a message, produce periodic re-

ports, flag a student against future appointments, cancel all existing appointments, ... ?

(30] * How many tutees max? Are there any room restrictions? Are tutees allowed to have special
restrictions on group tutoring, or are there special restrictions by the topic area or tutee needs?

131) * How does a ume “appear as vacant”? How many areas of expertise may tutor have? What
are the current areas of expertise, and how are they coded? What growth in this area is an-
ticipated? What are the total effects of primary and secondary assignments, and is there any an-
ticipated growth in this area?

2/ The meaning of “complete” and “current” should be stated. Also, note that “any time" could
be construed to mean any time of day ar night.

SEI-SM-3-1.0 ' Draft For Public Review

45

F e my -

Sample Inspection Material The Software Technical Review FProcess

25.

26.

. [36] * This paragraph is “design constraining.

. {35] The term “block” should be precisely defined.

"

Note: Are the reported data to be limited to tutce
name, discipline, and time?

. (37} * Exactly what are the sccurity concemns: theft, vandalism, prying, hacking, unauthorized per-

sonal use of equipment, ... ?

(39] * The requirement to force system users to initial things is design constraining, and it may not
be a good solution to the need for security and discipline. Also, items 19 and 21 overlap.

{41] Altematives to file trausicrs are possible. Is there a particular reason for insisting on file
transfers?

27. (41] ** Constraints on budget, development time, and development staff are not stated.

28. (41] * What are the estimated data volumes, processing requirements, and growth predictions?

Summary and Evaluation Report
(1) This document fails to define the context in which SOLAR will be requirzd to function. System devel-
opment should not proceed until this issue is resclved.

(2) User expectations for this system are unrealistic and incompatible. This problem must be considered when a
high-level design is developed for an actual SOLAR system.

Status of software: NOK.

46

Draft For Public Review SEJ-SM-3-1.0

Part lll: Implementing a Software Technical Review

SEI-SM-3-1.¢

of an In-process Software Artifact

Draft For Public Review

47

Directions for Students The Software Technical Review Process

Directions for Software Technical Reviews by Students

John A. Cross
Indiana University of Pennsyivania

Description: Instructor procedures for administration of software technical reviews; handouts for students.

Prerequisites: In order to be effective at a group process for detecting defects, reviewers must have the follow-
ing types of knowledge and/or skill. Student leamning or skill development in the following areas may be more
of a goal than a prerequisite, but the instructor should consider all of the following concerns in his or her
planning. The concems are:

e Knowledge of software application domain

e Technical knowledge of the type of software and its role in a software development life cycle
e Active strategies for detecting defects

o Writing skill to document defects

e Oral communication skill to participate in group meetings

» Knowiedge of procedures and policy for a technical roicw project

» Knowledge of different points of view of participants in software technical reviews.

Procedure: Procedures are described on the next page. This, along with the various student handouts following
should be read. Instructors can then create their handouts as required.

Evaluation: The procedures used for technical software reviews must be evaluated by management—in this
case, the instructor. The following data can be used:

e Detailed grading data for both individual and group performance

« Historical data from previous reviews (and reviews in other contexts)

e A Student Opinion Survey (p. 36)
Commentary: The strengths and weaknesses of aliemative procedures are listed and discussed in Deutsch and
Willis [Deutsch88] and the “Notes on Software Technical Reviewing” (p. 4). Note that the software to be

reviewed is an important clement in making a software technical review effective. The fundamental concems
can be summarized as follows:

e Inspectable software

e Compatible knowledge of reviewer

¢ Complementary knowledge of group
e Active strategies for detecting defects

48 Dratt For Public Review SEI-SM-3-1.0

e Softweva Tachnicat BRoaview Procoess Diractions for Students

Procedures for Technical Software Reviews

Yentrch and Wilhis [Doutseh8d] hat five overall tactons in achieving effective quality enhancement through
amal oiware echmeal ieview, The fisst thiee of these tactors apply directly o all student technical reviews,
Beae Lacton e

e Anoverview of the techmeal reviewing tisk

o Lnddividual preparation for group interaction (allow 4-7 days)

o Linup anteraction illow up 1o 3 days to document group comments)

s Rework

o Follow-up

e mstructor must disinbute handouts o explain and document basic procedures and guidelines. These hand-
At g specitty procedures for students, expectations for individual reviewing output, and expectations for
roup activiies. Hasie materials are provided in this section, but there are significant alternatives that must be
wistdered relative o the leaming goals and work context for a particular software technical reviewing activity.
ne matenials included in this section require the instructor to select one handout for individual reviewing
rections and an additional handout for group activities. These materials do not exhaust the viable options, but
ev do provide adequate direction to implement a valuatle learning activity in most university learning situa-
MmN

wosuppested procedure tor reporting comments by individuals and groups is to have students key in their
st he environment allows it The implementation of machine-rcadable remarks facititates the pre-
«anon procedure, the group meeting, and the analysis of everything that happens in the review. This
iproved capability enhances the potential leaming benefits that can be gained from the activity by facilitating
Damalvsis of ats outcomes, and it decreases the paperwork. However, a manual procedure for recording
hividual remguks can be a viable, organized approach to software technical reviews; the absence of a suitable
stocompuning. context should not affect the decision of whether or not to implement a software technical
AW Bctivity in o particular leaming contexdt,

lecta tace to face method of group interaction when students are uncertain of how to conduct themsclves in a
aew . The computer-mediated group interaction procedure is most appropriate when an analysis of the group
namies ol the reviewing activity are a key concem for student leaming or instructor rescarch. Computer-
“dnated group interaction also allows a geographically dispersed group of students to work together. Indi-
wad response o the merged remarks of & group of revicwers is a convenient procedure because it takes less
i and it does not require students to cooperate with each other. This individualized procedure provides
mticant leaming benefits with minimal cost, but procedures that involve group interaction are preferable
zause of the importance of group cffort to professional software development.

¢ choices for a specific technique for group interaction must be carefully considered—-no single technique
isfies all the echnical review needs of current best practice. The Fagan [Fagan76] “Inspection” technique is
most powerful procedure for evoking group synergism. However, it can fail if students do not understand
roies of client, author, consumer, and tester. The Freedman and Weinberg [Freedman82] technical review
cedure is less demanding (and less powerful). Both techniques require leadership from the review leader and
rongh records of the group's findings.

vamended group sizes are: 3 or 4+ for computer-mediated group interaction, 4 or 5 for a review meeting

-SM-3-1.0 Draft For Public Review 49

Directions for Students The Software Technical Review Procass

[Freedman82), and 4 to 6 for an inspection [Fagan76]. In every case, the entire project should take no less than
5 days and no more than 14 days.

All technical review activities in an academic setting include the following elements. (See also the “Instructor’s
Checklist,” p. 22.)

» Selection and dissemination of procedures for students

¢ Overview of software

e Individual software technical review

» Group interaction

e Instructor and/or student evaluation of student performance

e Feedback to students

e Instructor evaluation of each project

e Instructor recording of data on outcome of the activity

¢ [nstructor monitoring of historical data

50 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Directions for Students

Student Handouts

On the next several pages are handouts or sections of handouts suitable for distribution to students. The instruc-
tor should choose from these as needed, depending upon the type of reviews being conducted and the adminis-
trative procedures appropriate to the educational environment.

General Reviewing Guidelines

The attached list of categories summarizes a lot of accumulated experience, so you may find it helpful to use it
as an initial set of clues about what to look for. Your understanding of what must be stated in software devel-
opment documents and the intended audience for various documents must be your basic guideiine for what
might constitute helpful things to say in a review. Your eventual goal should be to detect things worthy of a
comment, write your comment, and then consult the category list to determine a classification for your comment.

You will be tempted to comment on the style of prose or code in the software. Comment on style only when the
underlying meaning is wrong, ambiguous, extraneous, or incomplete. If a style standard for your particular
software environment is clearly violated, document the situation as a defect. Other concems about the style of
the software reviewed may simply be listed as separate “Related Issues™ (p. 64), but they are not to be reported
as defects in the software. With regard to reviewing prose errors in spelling or grammar, they may be notes, but
doing so will not contribute o the performance score for individuals or groups in this software technical review.

Classification of reviewer comments facilitates the analysis of review output, and it also seems to produce more
thoughtful reviews. The “General Remark™ category can be very important, since any list might blind the
reviewers to issues not anticipated by the writer of the list. The primary concem in noting points about the
software, being reviewed should be whether or not your comment helps the software document achieve its goals
as well as possible for as long as it is needed.

You are expected to work independently and discuss this project only at the formally arranged times. Please
report all activities that may be relevant to your performance on the reviewing tasks, so that your instructor can
make correct inferences about the source of your fantastic performance. A time reporting form is attached [not
included in these support materials] for reporting all time that you spend on this project. Please fill it out
faithfully every time you do something relevant to this project.

Individual Preparation for a Software Technical Review
(0) Participate actively in an overview meeting.

(1) Study your handouts and notes until you have a clear idea of the goals of the document that you are review-
ing. Review the types of defects that have been detected in past experience with similar pieces of software.

(2) Read a printed copy of the document that you are to review. Get a general feel for what it does and how it is
organized. You will probably work more efficiently if you wait until your second reading before you make any
extensive notes about defects, since some of your concemns will be resolved when you have read the whole thing.

(3) Reread the document and mark the points that you feel are worthy of a reviewer comment. You may want to

SEI-SM-3-1.0 Draftt For Public Review 51

Directions ior Students The Software Technical Review Process

mark these points with a circled number for ease of reference. Write your comments on a separate sheet of
paper. Make an electronic copy of the software that you are reviewing. Edit your comments into the document
under the line that best points to each specific concem. Each comment must include a catcgory from the
attached list of categories for remarks about requirements [p. 66]. (Note that you may elect to record your
comments directly into electronic form, thus skipping the transcription process. Do whatever seems most com-
fortable to you, but produce a document that has the same form as the sample.)

(4) Reread V'« document and your remarks. Check the software that you are reviewing one more time for such
general things as verifiatility, specificity, feasibility, and completeness. Compare the overall structur: to your
class notes und the particuiar guidelines that you will be given for each type of document that you review.
Revise your comments as necded.

(5) Submit your edited copy of the reviewed document according to the guidelines in the *“Document Submis-
sionl Procedure” at the end of these notes. At the time when individual review comments are due, any student
wio is not eady will be excluged from the group review. This will hurt both the individual and the group, so do
not miss deadlines!

Group Reviewing Proceduie

Synergism is a key concept: the group review technique should yield results that are noticeably better than the
sum of indiviGual reviewer comments. This means that the group review should combine, filter, extend, clarify,
and summarize the individual comments. In addition, new insight may be triggered by the remarks of other
group members.

Your specific procedure is given on a separate handout, in order to allow you instructor the flexibility to choose
the most appropriate procedure in your context. The required group documens is a final form of the review
comments (cf. “Sampie Software Defect” [p. 12]), and a summary evaluation report of the software that was
reviewed (cf. “Inspection Summary and Evaluation Report Form™ [p. 61]).

Grading Policy Grading Poiicy far <. ftware Technical Reviewing

n practice, software reviews should never be used for performance evaluation, since this could ham their
effeciiveness as a technique for achieving software quality goals. Managers should try to monitor the cffec-
tiveness of reviews, but they should never use them for performance evaluation. However, in software engi-
neering, students will be evaluated on their performance on software reviewing tasks, since learning is the goal
of the course. A composite grade will be assigned for each task as follows:

Individual comments 15 points

Group output 15 points

(each member of the group will receive the same score)
Time reporting 2 points

Total 32 points

(Coordinator/recorder 2 bonus points)

Note two important things about grades. First, submission of your documents must be on time, as determined by
their deadlines and the following *“Document Submission Procedure.” If the average group output scores for a
particular reviewing technique appear to be significantly different from the other groups because of a particular

52 Draft For Public Review SEI-SM-3-1.0

The Software Technicai Review Process Directions for Students

reviewing technique, your instructor. Your instructor may adjust the lower group scores upward in order to
compensate for any unfairess in grading that might otherwise occur.

Document Submission Procedure

Mail your annotations to your instructor (alternatively, “your group review leader”). A single copy of the
software with all of your group’s annotations merged into it will be made available to you at your group meeting
(alternatively, *‘at some specified time prior to the group meeting™).

References

Copies of all references are available under your instructor’s name at the library reserve desk.

SEI-SM-3-1.0 Draft For Public Review £3

Directions for Students The Software Technical Review Process

Face-to-Face Technical Review Meeting

At the time when individual comments are handed in, your group must choose a coordinator and two recorders.
Responsibiiities for each of these roles are detailed below. Under the leadership of this newly selected coor-
dinator, the group then chooses a time for a two-hour group meeting. Schedule this meeting within four days,
since your preparation for the meeting must be fresh in your minds. Allow time after the group meeting for your
recorder to prepare your final document before the due date.

Everyone in the group must participate in the entire group meeting in order to receive group reviewing points.
Your instructor, or an official representative, will observe the meeting and make an audio recording of what is
said. The meeting should take no longer than two hours.

Coordinator Responsibilities: The coordinator’s first responsibility is seeing that the arrangements for the
meeting are all taken care of. This includes seeing that everyone gets there on time. In a professional setting,
the coordinator would also schedule a room, prepare copies of necessary materials, and see that all the review
participants are prepared for the meeting. In this case, your instructor will take care of the room and the review
materials. Any group member who fails to prepare for the meeting will already have been eliminated at the
individual review submission tiine.

The coordinator’s second responsibility is to act as a meeting leader. At the group review meeting, the coor-
dinator should obtain the group’s agreement on what must be accomplished in the meeting, and then see that the
meeting goals are achieved as well as possible. This means that the coordinator should keep the discussion on
track and keep an eye on the time. The coordinator must ensure that the individual comments are understood,
merged, edited, or deleted, in whatever manner the group feels might be helpful. The old comments should be
extended, and new comments generated whenever possible. Your group’s final reports on the software that is
being reviewed must state overall strengths and weaknesses and emphasize major issues, so be especially alert
for main themes throughout the two hour period. If agreement cannot be reached on any point, consider the
most negative opinion to be the review outcome, but report that there was disagreement on that point. The
coordinator is also responsible for deciding whether or not to take a break.

The coordinator should not have to use heavy-handed or autocratic tactics, since the reviewers are competent,
well-prepared (almost) professionals. The tools of the coordinator include a variety of group interaction tactics.
The document can he reviewed in some structured fashion (top-down is generally better than beginning to end),
cveryone can be asked to say something good and bad about the product, one reviewer can be asked to blast it
and another to praise it, or walk-throughs or other pseudo-simulations can be used. In this situation, we recom-
mend that you consider the document as a whole at the beginning and end of the meeting, and take turns leading
the discussion of individual paragraphs while you are going through the document from beginning to end.

The coordinator’s final responsibility is to finish the summary report and obtain signatures before the meeting
ends. At the conclusion of the meeting, the summary report should be submitted to the meeting observer.

Recorder Responsibilities: The recorder may be too busy at first to participate a whole lot. The recorder job
will switch at break in order to allow him or her to participate more fully, and to spread the burden of preparing
the final annotated document. Try to record in such a way that your notes are open to everyone at the meeting,
and usable for forming the final reports. The technique of marking, numbering, and writing detailed remarks on
a separate sheet of paper works reasonably well, especially with a single-spaced document.

After the meeting, a final version of your group’s annotations must be prepared as a group document. The
recorders are responsible for submitting this final document in the same manner in which they submitted their

54 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Dirsctions for Students

individual docuinents.
regular class mecting.

SEI-SM-3-1.0

We recommend that you do this right after the meeting, but you have until the next

Draft For Public Review 55

Directions for Students The Software Technical Review Process

Face-to-Face Software Inspection Meeting
In the style of [Fagan76]

At the time when individual comments are handed in, your group must choose a coordinator, a reader/recorder,
and individuals who will assume the points of view of author, client, ard consumer. Responsibilities for each of
these roles are detailed below. Under the leadership of this newly selected coordinator, the group then chooses a
time for a two-hour group meeting. Schedule this meeting within four days, since your preparation for the
meeting must be fresh in your minds. Allow time after the group meeting for your recorder to prepare your final
document before the due date.

Everyone in the group must participate in the entire group meeting in order to receive group reviewing points.
Your instructor, or an official representative, will observe the meeting and make an audio recording of what is
said. The meeting should take no longer than two hours.

Coordinator Responsibliities: The coordinator’s first responsibility is seeing that the arrangements for the
meeting are all taken care of. This includes seeing that everyone gets there on time. In a professional setting,
the coordinator would also schedule a room, prepare copies of necessary materials, and see that all the review
participants are prepared for the meeting. In this case, your instructor will take care of the room and the review
materials. Any group member who fails to prepare for the meeting will already have been eliminated at the
individual review submission time.

The coordinator’s second responsibility is to act as a meeting leader. At the group review meeting, the coor-
dinator should obtain the group's agreement on what must be accomplished in the meeting and who will assume
what roles, and then see that the neeting goals are achieved as well as possible. This means that the coordinator
should keep the proceedings on track and keep an eye on the time. The coordinator must ensure that the
comments documented before the mecting are understood, merged, edited, or deleted, in whatever manner the
group feels might be helpful. Whenever it is appropriate, the old comments should be extended, and new
comments generated. Your group’s final reports on the software that is being reviewed must state overall
strengths and weaknesses and emphasize major issues, so be especially alert for main themes throughout the
two-hour period. If agrecment cannot be reached on any point, consider the most negative opinion to be the
review outcome, but report that there was disagreement on that point. The coordinator is also responsible for
deciding whether or not to take a break.

The coordinator should not have to use heavy-handed or autocratic tactics, since the reviewers are competent,
well-prepared (almost) professionals. The agenda is driven by the reader. Consider the document as a whole at
the beginning and end of the mecting. Since the author is typically not very active in this context, have the
author and read switch roles at some point.

The coordinator should submit the group’s summary report at the conclusion of the group meeting. The coor-
dinator must also see that the recorder submits a final set a detaiied remarks.

Reader/Recorder Responsibilities: The “reader” in an inspection is responsibie for reading the software, or
paraphrasing it, one block (cr paragraph) at a time. The reader notes any individually prepared remarks about
each block after it is read. The coordinator then leads the discussion of that block while the reader/recorder
makes a written record of all the concems of the group.

The reader/recorder may be too busy at first to participate a whole lot. This job may switch at break in order to
allow each reader/recorder to participate more fully, and to spread the burden of preparing the final annotated

56 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Directions for Students

document. Try to record in such a way that your notes ar¢c open to everyone at the meeting, and usable for
forming the final reports. The technique of marking, numbering, and writing detailed remarks on a separate
sl »f paper works reasonably well, especially with a single-spaced document.

After the meeting, a final version of your group’s annotations must be prepared as a group document. The
reader/recorder(s) are responsible for submitting this final document in the same manner in which they sub-
mitted their individual documents. We recommend that you do this right after the meeting, but you have until
the next regular class meeting,

Author: The author is responsible for knowing the application domain and all technical detail that has to do
with the sofiware under review. Reviewers may ask the author for detailed explanations of the software or the
application context. The author may also ask the reviewers to clarify an issue that thcy want to raise. With a
small group where the author is only *“playing a role,” th¢ author may double as reader, and possibly even
recorder.

Client: The client is the person responsible for the software elements upon which the software under review is
based, or generally a software user. The person who assumes this role should be concerned with the validity and
completeness of the software that is being reviewed.

Consumer: The consumer is the person who will implement the next step in the software development life
cycle. This person should be concemed with the completeness, clarity, and verifiability of the software under
review. In student inspections, this person can also play the role of tester.

SEI-SM-3-1.0 Draft For Public Review 57

Directions for Students The Software Technical Review Process

Individual Reaction to Combined Group Comments

This technique may be used when other forms of group interactions are difficult to arrange, or for a controlled

study.

At the time wheu individual review comments are due, schedule a two-hour period when you will work on your
group review under the supervision of your instructor. During this time, you will produce a review that reflects
the combined insight of your group, and its effect on you. Your instructor will provide you with a master copy
of the review document into which he has merged the remarks of your group members. You will have two hours
to react to your group’s combined comments and prepare a summary group evaluation report (a form is attached
to these directions). You will not have access to a terminal during this group review time.

Your role during this type of a group software review is really that of a review coordinator, but you have the
option to add to the final review output in any way that you feel might be helpful. Since you are producing the
only final output from the effort of the entire group, do your best to see that the software review goals are
achieved as well as possible. Keep your thoughts on track and keep an eye on the time. Make sure that you
understand the individuali comments, then merge, edit, or delete remarks in whatever manner appears to be
helpful. The old comments should be extended, and new comments generated whenever possible. Your final
reports on the software that you are reviewing must also state overall strengths and weaknesses, and emphasize
major issues, so be especially alert for main themes throughout the two hour period. If the individual comments
disagree in an important way that you do not feel you can resolve by yourself, base your summary report on the
most negative remark, but report that there was disagreement on that point.

After your two hours are over (or when you are ready), submit your summary report and a copy of your
handwritten comments to your instructor, who will make a photocopy and give you back your originals before
you leave. You have until the next regular class meeting to make vour annotated changes in the master docu-
ment for your version of your group's remarks. Submit these final “group remarks” in the same way in which
you submitted your individual remarks.

58 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Directions for Students

Computer-Mediated Group Meeting
Using Honeywell CB Software?2

At the class meeting when individual comments are due, choose a coordinator and two recorders.
(Responsibilities for each of these roles are detailed below.) Under the leadership of your coordinator, arrange
two times for a 90-minute CB meeting, one in an optimistic time frame for completing your meeting prepara-
tions, and one in a pessimistic time frame. The point is that you want to have the meeting as soon as you are
ready, but getting ready may take longer than you plan. You need to get your scheduling done in a face-to-face
mode, because arranging a meeting time through MAIL can be very difficult. The total CB time should not go
over 90 minutes, plus whatever time you spend practicing.

You will be using electronic mail, CB, and additional software tools to help you interact through the CP6. The
idca of computer-mediated group interaction is to allow you to work in a geographically dispersed mode. You
should decide on non face-to-face work sites to get a feeling for this mode of group interaction. If there is a
problem with this ask your instructor for help (through electronic mail?). It you ever do find yourselves talking
face -to-face, or working where you can see each other, please make a note of what happened in your time report.

In preparation for the group CB session, each group member must obtain a printed copy of the group’s combined
remarks. This document will contain the merged and numbered comments of your entire group. Your instructor
will prepare this documernt as soon as possible, and adjust its attributes so that only the members of your group
can access it: updates may only be made after your meeting, and then only by your group.

Each individual should mark his or her printed copy of the group’s remarks with an evaluation of the helpfulness
of each remark, according to the following rating codes.

5 Excellent, absolutely essential remark
4 Good remark, the group should keep it
3 Marginally helpful remark

2 Consider delcting this remark

1 Delete this remark

*

Discuss this remark in the group mecting.
Cnnn Combine with remark number nnn.

Then, run VOTE (executable code) and enter your response to each remark. Your coordinator will prepare a
meeting agenda from the results of your group’s VOTEs, together with any mail comments that you send him or
her. This agenda will be distributed to you through mail.

If any group member is unacceptably slow in working on this task, the group coordinator has the responsibility
to declare that individual to be off the team (resulting in a score of zero for that individual’s group review part of
the assignment), or work something out so that the group is not hurt by that individual. Any group member who
does not participate in the CB session will receive a score of zero for the group review. If the coordinator is not
doing his or her job well enough, call in your instructor as soon as possible.

Your instructor will produce a computer-readable copy of your CB session, which your recorders will need.

2The CB program simulates a citizen's band radio communication group. Multiple online users may monitor and broadcast messages
to each other.

SEI-SM-3-1.0 Draft For Public Revisw 59

L S

Directions for Students The Software Technical Review Process

Make sure that your instructor knows when the meeting will happen, and that he is maintaining a machine-
readable copy cof your dialogue before you begin. Pleasc submit copies of all your project mail (through elec-
tronic mail, of course) to complete your group project records.

CB Protocol: The CB software could be a lot more helpful, but it can be functional. A few ground rules for
group interaction should help a lot. The ceordinator is in charge. When you want to say something, send “@".
The coordinator will give you control of the communication medium until you have your say. End your message
with “#" (or a 10-4?). Practice this procedure before you begin your 90-minute meeting in eamest. The
coordinator may modify this protocol, but let your instructor know what you do and why.

Coordinator Responsiblilities: The coordinator’s first responsibility is seeing that the arrangements for the
meeting are all taken care of. This includes all scheduling arrangements, and deciding what to do if something
does not go as plananed.

The coordinator’s second responsibility is to act as a leader for the entire task. This includes writing an agenda,
seeing that everyone prints and reads a copy of the agenda, and controlling the CB session. The coordinator
must kecp an eve oil the time and keep the discussion on track. You will probably run out of time, so break in at
an appropriate time and ask for everyone's overall impressions before you run out of CB time. You must
prepare a copy of the Summary Report from the CB session, so make sure that you have everyone’s remarks in
the CB dialogue. Your group’s final report on the software that is being reviewed must state overall strengths
and weaknesses and emphasize major issues, so be especially alert for main themes throughout the 90-minutes
of CB interaction. If agreement cannot be reached on any point, consider the most negative opinion to be the
review outcome, but report that there was disagreement on that point.

Recorder Responsibilities: After the meeting, a final version of the review annotations must be prepared as a
group document. The recorders are responsible for submitting this final document. The deadline for this is the
time of the next regular class meeting. Prepare this document by editing a copy of your group’s remarks
according to the results of VOTE and the machine-readabie record of the CB session.

Ask for whatever clarification you need during the CB session(s). When you write the final group comments, if
something is still unclear, or the group is not in agreement, say so, and record the most negative group opinion.
The recorders should not change the substance of what is decided in the group review meecting.

After the group interaction, all comments are from the group, not individuals, so do a global edit that removes
the initials of the original author of the comment.

60 Draft For Public Review SEI-SM-3-1.¢

The Software Technical Review Process Inspection Repornt Form

“oftware Inspection Surgmary and Evaluation Report
orm

John A, Cross
Indiana University of Pennsylvania

Description: Forms for reporting of outcomes of a sofiware technical review.
Objectives:
e In actual practice: to provide project management with a means of control over the project devel-

opment process and to provide the software developer with a list of specific issues raised in the
technical review.

e In a situation where the primary goal is to learn about software technical reviews:
* to ensure that students perform all the specified technical review procedures.

* to implement summary and evaluation reporting, an essential part of the software technical
review process.

* to force students to move beyond specific details to evaluate and summarize on a more gen-
eral level.

Prerequisites: Students must be familiar with the technical review process and the procedure for work within
each group.

Pr ure: Each group receives a copy of the Summary Report form, along with a compilation of the com-
me1.. of each member of the group. The instructor must emphasize that the form contains an essential agenda.
It is the review leader’s responsibility to follow that agenda and submit the group’s final report, The instructor
should stress that each item on the agenda must be conscientiously completed. The review leader should com-
plete the form, but may delegaie the task of writing the Summary of Findings section to a group member.

Two items on the form are particularly difficult: a summary of findings and an evaluation decision. Both items
require group consensus on broad issues. The instructor should emphasize that participants in a review should
be concerned not only with individual issues relative to specific points in the text of the software, but also with
an overall evaluation of the quality of the software. The evaluation must be supported by a cogently worded
summary. Review leaders should be instructed to assume the responsibility for allocating adequate time to
agenda items (3) through (6). A minimum of twenty minutes at the end of a two-hour meeting is recommended.

The review leader is responsible for focusing the group's effort on the software under review. If an important
issue raised in the review is not specifically or solely a defect in the softwar:, the instructor may permit the
group to attach a Related Issues Report as a separate item. Examples of related issues include notes about the
mecting facilities or group procedures for the review. Some experts (e.g., Collofello in CM-3) recommend that
related issues not be reported because the possibility of reporting related issues may distract the group from its
primary concem—the software itself. The review leacer should not allow extended discussion of any issue; the
point of a group review meeting is to raise issues, not resolve them. This is a particularly true of related issues!

Evaluation: Technical review groups need specific feedback on their performance, both in terms of what they
did or did not report and how well they reported it. However, the instructor may find it difficult to quantify how
well each group completed its summary report. Realistically, the instructor can only grade (1) the completeness
of the form and (2) the quality of the summary of findings and the related issues list (if one exists). The
summary report should constitute one-fifth to one-third of the group’s grade. Additional points may he awarded
to th~ students who sign as review leader or recorder. If the group feels that one of its members did especially
we poorly in the group meeting, this feeling can be noted as a “related issue” and used as a basis for
awaraing a higher or lower score to that individual.

SEI-SM-3-1.0 Draft For Public Review 51

———

Inspection Repont Form The Software Technical Review Process

The person who evaluates the quality of a software technical review, based on the data reported on the attached
form, should be sensitive to how the group allots its time to each agenda item and what non-agenda items
receive significant group attention. The groups are likely to spend most of their energy on item (2) of the agenda,
examining the line-by-line concems of the group. However, it is important to leaming-—and, in practice, it is
important to the project—for the technical review group to spend a reasonable amount of its energy on a broad
view of the itemized findings. For this reason, the instructor may want to ask the group to enter the time of
completion of each agenda item, rather than simply checking each one off.

Commentary: Students tend to focus on the details of the group’s annotations of the software that has been
reviewed. The group must have strong leadership to ensure that each item on the agenda receives adequate
attention. Students are likely to be surprised at the differences between the group's repoit and their individual
input, and between the instructor’s *“grading key” and the group report. These differences offer significant
opportunities for leaming, so the feedback process is important. The best groups achieve synergistic output, in
which the outcome of the group meeting includes concems not reported in the individual preparation of any
group member for the group meeting.

The following form is one of several widely used forms. [Fagan76) has published forms which have been used
at IBM sites; these forms include counts of defects in three categories. The author of this document selected a
form that emphasizes agenda and minimizes counting and categorization. Error counts were omitted because of
the automated processes used.

Note: Similar forms appear in [Freedman82] and [Yourdon85).

62 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Inspection Report Form

Software Inspection Summary and Evaluation Report

Project Date
Stop Time

Review leader Start Time

Agenda (Enter the time when completed)

1. Agree to functional roles (review leader, recorder, and (optional) reader); method of considering
different points of view (user, producer, client, tester, quality assurance); review goals; and procedures.

2. Review merged comments: filter, combine, refine, and generate new comments.

3. Summarize major issues which have been raised by the group. List these major issues in the
Summary of Findings.

4. Decide on the overall state of the software and report that decision on this form. Verify that the
evaluation decision is supported in the Summary of Findings.

5. Attach to this report all documented review outcomes, including the group’s edited annotations for
the original software. If there is a Related Issues List, note that fact under the Summary of Findings.

6. Sign this report.

Suramary of Findings

Evaluation Decision
__ Accept as is (OK).
— Accept after minor revisions (OKR).
—_ Unacceptable; revise and plan another review

(NOK).

Signatures
(Note any
special role)

Thr oy Draft For Public Review 63

Related Issues Report Forvtt_ - The Software Technical Review Process

e lated Issues Report Form

John A. Cross
'nciana University of Pennsylvania

Description: Related Issucs Report Form.

Purpose: To provide a means for reporting significant issues that require the involvement of others, that cannot
be resolved solely by the producer of the software artifact.

Prerequisites: To use this form, students must know what is considered a related issue.
Procedure: A brief explanation is included with the form. Students should be aware that this form is optional.

Evoluation: If this form is used, the data reported should be considered in the evaluation of the group’s
summary report.

Commentary: Related issues should be reported, but they shouid net be discussed. The review meeting must
concentrate on the software under review-—the coordinator (moderator) must not allow the attention of the group
to be diverted to related issues. Sample related issues are given on the form.

64 Dratt For Public Review SEI-SM-3-1.0

The Software Technical Review Process Related Issues Report Form

RELATED ISSUES REPORT FORM

Project

Coordinator
Date

GENERAL GUIDELINES

This form may be used to report any concerns which are raised in a software technical review, but are niot the
appropriate or sole responsibility of the software author. Related issues generally fall into one of the following
general categories:

e There is a defect in an artifact upon which the software under review was based. For example, a
review of code may tum up an error in the low-level design of that code.

¢ Standards are in some way inadejuate.

e Facilities, procedures, or participants are worthy of some special formal report. For example, it
should be reported if too many participants were scheduled for the review.

NUMBERED LIST OF RELATED ISSUES

SEI-SM-3-1.0 Draft For Public Review 65

Categories for Defects The Software Technical Review Process

Categories for Defects in Software Technical Reviews

John A. Cross
Indiana University of Pennsylvania

Topic: Selecting a category for each software defect which is reported by a software technical review.

Objectives: Requiring reviewers to categorize each defect may significantly increase the difficulty of reporting
defects. The objectives of the process must be clearly defined and the data must be monitored to assure that the
objectives are being met. The benefits of reporting categories must justify the costs. The reasons for requiring
software reviewers to categorize each defect include the following:

¢ To provide data which can be analyzed to determine facts about the software technical review
process.

¢ To structure the documentation of defects and the corresponding thought processes which underlie
that activity.

¢ To increase the amount of detail in the documentation of each defect.

Prerequisite Knowledge: If the software technical review process includes categories for each issue raised,
reviewers must have a simple, clear sct of standard guidelines. Reviewers must understand that the data they
provide has significant value to their organization even though categorizing the issues is difficult and inexact at
best. Reviewers must also accept that ““management’ (in leaming situations, the instructor) understands that the
categories may not be an exhaustive list of every type of issue that is appropriate to raise in a review.

Procedure: When providing a set of categories, the instructor should consider providing examples of issucs for
each category—-issues which may bLe categorized in different ways depending on the point of view of the
reviewer—and examples of the uses to which these data might be put by the organization requiring adherence to
a specific set of standardized categories.

Reviewers should record categories within the text describing the defect. For example, the IBM procedure of
categorizing defects as missing, extra, or wrong [Fagan76] can be implemented in an online reporting context by
prefixing the text of each defect by an M, E, or W. Similarly, the {Bell76] categories, which are listed here, might
be encoded with the error category enclosed in square brackets.

The person acting as recorder for the group has the final responsibility of assigning categorics. Whenever a
group of reviewers are involved, it is likely that different reviewers will assign different categories to the same
defect (these data are considered unreliable). In order to avoid requiring the reviewers to resolve this disagree-
ment, the instructor may want to allow recorders to assign more than one category to a single dcfect. For
example, the following defect might be reported by a group using the [Bell76] categories:

[1-08, 6-01] The computation of interest earnings is based upon averaga
daily balance, but the precision of this average daily balance has not
been specified.

The review group should not spend time choosing the best category; that is why the task is assigned to the
recorder. Categories which repeatedly overlap may indicate that the list needs to be refined or explained better.

Evaluation: It is difficult to assign scores to this activity in a classroom setting. Summary statistics should oe
computed, with an automatic process if possible. When the [Bell76] categories were used by the author of this
document, statistical analysis of the results showed that different groups of students focused on different groups
of categories. Points may be subtracted or added to the group score for group oversight, error, or helpful actions
relative to categories. Individual students should not be penalized unless their categories are incomplete or
grossly incorrect.

Commentary: The categorization process appears to be helpful for students, but the data have low reliability.

66 Draft For Public Review ‘ SEI-SM-3-1.0

The Software Technical Review Process Categories for Defects

The author’s students found the [Bell76] categcries complex and difficult to apply. The [Fagan76] catcgories are
even more complex because three separate categorizations are required. The following subset of the [Fagan76]
categories is attractive because it is simpler and may be more reliable:
Alternative categories:

M, E, W for Missing, Extra, or Wrong

MAJ for Major or MIN for Minor

Each defect must be categorized both as M, E, or W, and as MA]J or MIN,

SEI-SM-3-1.0 Draft For Public Review 67

Categories for Defects The Software Technical Review Process

Software Specifications: Categories for Remarks

ERROR
CATEGORY PROBLEM DESCRIPTION

*1-00 Missing/Incomplete/Inadequate
1-01 Criteria for a system decision missing or inadequate
1-02 Interface characteristics missing
Accuracy or precision criteria missing
Description of context inadequate
Processing specification missing
Error recovery specification missing
Missing emphasis
Data or process validation criteria missing
Acceptance criteria missing
Data specification missing

p—
]

4
SBBIXIES

2-00 Inconsistent/Incompatible
2-01 Two or more specifications disagree
2-02 Incompatible with existing standards
2-03 Incompatible with existing systems

3-00 Unclear
3-01 Terms or acronyms need to be defined
3-02 Ambiguous wording
3-03 Muddled writing
3-04 Specification doesn’t make sense

4-00 Extra
4-01 Outside of the scope of this project
4-02 Unnecessary detail
4-03 Redundant or wordy
4-04 Overly restrictive (includes specifications which
are stated at too low a level)

5-00 Incorrect form
5-01 Typographical or spelling error
5-02 Writing error
5-03 Word processing error
5-04 Violation of standards

6-00 Incorrect technical detail
6-01 Specified processing inaccurate or imprecise
6-02 Specified processing inefficient
6-03 Specification not testable
6-04 Specification not modifiable
6-05 Description of problem or context incorrect
6-06 Technical error

7-00 fieneral remarks

* Derived from a list in Bell, T. E., and Thayer, T. A., “Software Specifications: Are They a Problem?” Proc.
{EEE/IACM Second Intl. Conf. on Software Engineering, October 1976.

68 Draft For Public Review SEI-SM-3-1.0

The Software Technical Review Process Checklists for Reviewers

Checklists for Reviewers

John A. Cross
Indiana University of Pennsylvania

Description: Checklists for use in software technical reviews. The following checklists were derived from
[Freedman82], [Beli76], and [Fagan76).

Purpose: To be used by reviewers to ensure that a specific set of possible defects is considered.
Procedure: These checklists may be used by student reviewers.

Commentary: The appropriateness of any checklist should be carefully considered by the instructor. Major
considerations include:

= [s the particular checklist suitable for the software under review, the reviewers’ abilities, and the
procedures being followed?

e What defects are not covered by the list? Teaching note: students should know that any a priori list
of possible defects can have the counterproducti e result of blinding reviewers to defects that do not
fit any of the categories on the list.

* Do the students understand the listed items anc how to inspect for themm? Teaching note: examples
of the defects and practice in defect detection arc recommended. The sample examination materials
(p. 15) provide an indication of the type of materials that can be used.

e [s it appropriate to have reviewers categorize the defects they note in their reviews? Teaching note:
the IBM procedure of categorizing each defect as something which is missing, extra, or wrong is
easy to explain to students, but the effect of any categorizing procedure should be carefully consid-
ered. Individual reviewers must spend time an.: thought when they decide on a category ard dis-
crepancies between individual reviewers must be resolved during group interaction. (If the IBM
procedure is used, it may be helpiul to add a category for style annotations, which results in an
acronym of MEWS for the complete set of cate, ories.)

The following checklists are included in response to p« pular demand, not because they are highly recommended.
Contributions of helpful checklists are needed. A he.pful checklist must have proven validity in a significant
breadth of technical reviewing contexts,

SEI-SM-3-1.0 Dratt For Public Review 69

Checklists for Reviawers The Software Technical Review Process

General Software Reviewing Checklist

Lists of attributes of quality software have been published in software engineering literature (e.g., [Boehm76]
and [Freedman82}). The following checklist is an organized collection of criteria for quality software. By itself,
this list may be too general for a thorough software review, but it can provide a helpful foundation.

Directions: Mark each point as “Not Applicable” (NA), “Acceptable As Is” (OK), *Correct with Minor Revi-
sions Needed” (OKR), or “Unacceptable” (NOK). Cite specific problems by referring to numbered remarks
and/or a specific point in the document being reviewed.

_____ (1) CLARITY: The software must be clear, unambiguous, and precise.

(2) CORRECTNIESS: The software must satisfy its specifications, and the final product must satisfy its
requirements.

—_ (3) COMPLETENESS: All required functions are fully implemented. All software is necessary and
sufficient.

(4) CONSISTENCY: Design and implementation techniques, as well as notations, are uniform and in
agreement with standards.

(5) TESTABILITY: All system functions can be empirically verified without inordinate cost. The soft-
ware is safe.

(6) LEARNABILITY: The effort required to learn how to use the software is not unreasonable. Serious
misconceptions are unlikely.

(7) USABILITY: The system is reasonably easy for its expected users t) use.

-—— (8) ROBUSTNESS: Computer programs, and the systems which they support, must continue to function
according to specifications, even when small errors occur during their use. The system must appropriately
respond to and recover from catastrophic abnormalities in its operating context.

——_ (9 ERROR-TRAPPING: Computer-based systems must detect errors and deal with them appropriately.

—_(10) MODIFIABILITY: It should be possible to change the behavior or operating context of the software
component of computer-based systems within reasonable limits and without unacceptable cost.

(11) OTHER DEFECTS: This category includes any additional deficiencies in :he ways in which the
software meets its requirements.

70 Draft For Pubilc Review SEI-SM-3-1.0

T TN ——

The Software Technical Review Process Checklists for Reviewers

Software Requirements Reviewing Checklist

A software requirements document must state why a system is needed. It should focus on defining the problem
and the context in which a solution must function. Software requirements include everything which is » quired
for a system to be useful. Optional system features and ideal system functionality may be included, to the extent
that it might influence subsequent system-related decisions. The goal of a software requirements document is to
make a complete statement of a problem, together with known constraints on a solution. When they are relevant
to the requirements of a software system, the requirements document must discuss the points listed below
([Abbot!86) and [Sommerville85)).

Directions: Mark each point as “Not Applicable” (INA), “Acceptable As Is” (OK), *“Correct with Minor Revi-
sions Needed™ (OKR), or “Unacceptable™ (NOK). Cite specific problems by referring to numbered remarks
and/or a specific point in the document being reviewed.

____ (1) The general raticnale for a systen development project—-why a system should be developed.

... (2) The conceptual model on which ihe the requirements are based—how the system will be used, together
with other systems and procedures that wil! interface with the planned system.

_____(3) Data items that the system must hand\z, e.g., entities, attributes, and relations.

___ (4) Volume estimates for the data that the system must handle.

——__ (5 Integrity constraints that the system must enforce, e.g., access limitations and error-handling require-
ments.

__ (6) Relability and availability constraints, ¢.g., corsequences of system failure and times whern the system
will be used.

—_ (7 Legal constraints, e.g., privacy requireinents.

__ (8) The knowledge and skill of system users, c.g., how frequently the typical user will interact with the
systern.

________ _(9) Data processing functions that the systemi should perform, together with information needs of the user,
¢.g., which categorics of system entities must be sumried for reports.

——_ (10) Hardware and software constraints, ¢.g., constraints on the peripheral devices or programming lan-
guage.

. (11) Response time requirements and expected system loading.

(12) Modifications that might be required latzr, e.g., likely changes in the hardware or software environ-
ment.

— _ (13) Details of standard form, e.g., title, author, date, index, glossary of terms, local standards.

SEI-SM-3-1.0 Draft For Public Review 71

Checklists for Reviewers The Software Technical Review Process

Software System Specification Checklist

A system specification should focus on whar a system does to meet the system requirements. Only external
behaviors are of direct concem. A software system specification must describe these behaviors in such a way
that a system can be designed, built, and verified according to them. Thus, there are really two verifications
involved:

» Does the specified system meet the requirements?
¢ Does the actual system meet the specifications?

A third demand is often placed on systein specifications: a user or client may want to use the system specifi-
cations to decide whether or not to build a system or to determine which of several competing specifications to
implement. The user or client may also want to modify the specifications. These uses for system specifications
require a system specification statement that provides a basis for system understanding, verification, and detailed
design. The General Software Reviewing Checklist is especially pertinent to system specifications. Additional
criteria are listed below.

Directions: Mark each point as “Not Applicable™ (NA), **Acceptable As Is” (OK). “Correct with Minor Revi-
sions Needed” (OKR), or **Unacceptable” (NOK). Cite specific problems by referring to numbered remarks
and/or a specific point in the document being reviewed.

____ (1) Is the specification clear, precise, and unambiguous for all appropriate audiences?
____(2) Does the specification state what the system does to meet ail of the system requirements?
—__(3) Does the specification provide an adequate basis for design or direct implemnentation?
. (4) Are user procedures specified?
. (5) Are installation, administrative, and operations procedures specified?
___(6) Are behaviors specified for all systern interfaces?
____ {7 Is there a specification of the total system supported by the software?

__(8) Are system object types and instances specified? (“Type” includes constraints on value.)
. (9) Are system data storage and processing limits specified?
___(10) Are the system hardware and sofiware envirorunents specified?
. (11) Are response time and system loading constraints specified?
__(12) Are exceptions and anomalous inputs defined?

-—(13) Are reliability, error-handling, and system backup procedures specified?

72 Draft For Public Raview SEI-SM-3-1.0

he Software Technical Review Process

Bibliography

Bibliography

James A. Collofello
Arizona State University

\ckerman83

wckerman, A. F., P. Fowler, and R. Ebenau.
Software Inspections and the Industiial Producticn
f Software.” Software Validation, inspection-
esting-Verification-Alternatives: Proceedings of
1€ Symposium on Software Validation. Amsterdam.
{orth-Holland, Sept. 1983, 13-40.

Abstract: Software inspections were first defined by
M.E. Fagan in 1976. Since that time they have be¢n
used within IBM and other organizations. This
paper provides a description of software inspecticns
as they are being utilized within Bell Laboraiories
and the technology transfer program that is being
used for their effective implementation. It also de-
scribes the placement of software inspections within
the overall development process, and discusses
their use in conjunction with other verification and
validation techniques.

The spection process at Bell Laboratories is
pre d. Sample reports are included along with
cstimates for reviewing lines of code.

oehm76
ochm, B.“Software Engineering.” [EEE Trans.
omputers C-25, 12 (Dec. 1976), 1226-1241.

Provides data on increasing error costs the later er-
rors are detected and repaired in the software life
cycle.

uck83

uck, R., and J. Dobbins. *“Application of Software
spection Methodology in Design and Code.”
ftware Validation, Inspection-Testing-
erification-Alternatives: Proceedings of the Sym-
)sium on Software Validation. Amsterdam: North-
olland, Sept. 1983, 41-63.

Arother [BM variation of the inspection process for
design and code is detailed. Sample reports are
inciuded. A discussion of how to interpret data as
the result of review processes is also included.

autsch88
qutse’ M. and R. Willis. Software Quality Engi-
erin, A Total Technical and Management

proach. Englewood Cliffs, NJ: Pientice-Hall,

:I-SM-3-1.0

1988.

Table of Contents
Part1
Quality Concepts
Part Il
Engineering-In Quality
Part 11
Using Verification and Validation to Review-Out
Defects and Test-Out Errors
Part IV
Management Aspects of Software Quality

A helpful presentation of concepts of software qual-
ity engineering. The chapters on formal technical
review processes present strengths and weaknesses
of alternative techniques for technical reviews by
groups.

“Sample Software Quality Requirements
Specification” (20 pages) in an Appendix provides
an extended definition of software quality.

Fagan76

Fagan, M."Design and Cede Inspections to Reduce
Erors in Program Devclopment.” [BM Systems
J. 15, 3 (1976).

A must read classic paper that introduces the whole
concept of software inspections. Sample forms,
checklists and cxperimental data from IBM are also
presented.

Freedmang2

Freedman, D., and G. Weinberg. Handbook of Walk-
throughs, Inspections, and Technical Reviews:
Evaluating Programs, Projects, and Froducts. Bos-
ton: Little, Brown, 1982,

This text is written as a series of questions and an-
swers. It describes the Fagan methodology and
many aspects of review processes. It provides a
discussion of how to review many typical docu-
ments. It is weak in its discussion of sociological
factors, review reports, planning issues and assess-
ment of reviews.

Hart82
Hart, J. “The Effectiveness of Design and Code
Walkthroughs.” Proceedings of COMFSAC '§2.

Draft For Public Review 73

Bibliography

The Software Technical Review Process

IEEE Computer Society's Sixth Iniernational Com-
puter Sofiware and Applications Conference. Silver
Spring, MD: IEEE Computer Society Press, Nov.
1982, 515-522.

Many benefits of performing design and code walk-
throughs are cited. Variations of reviews, including
“round robin reviews,” and their relative effective-
ness are also notexl. Actual sociological problems
encountered at Spetrry are also briefly mentioned.

IEEES80

IEEE Standard for Software Quality Assurance
Plans. IEEE Computer Society Press, Silver Spring,
MD, 1980.

The IEEE standard for Software Quality Assurance
puts review processes into perspective with the en-
tirc software quality assurance process. Specific re-
+ 3 are mandated by this standard.

McConnell84

McConnell, P., and W. Strigel. “Results of Modemn
Software Engineering Principles Applied to Small
and Large Projects.” AFIPS Conference Proceed-
ings of the 1984 Natioral Computer Conference.
Montvale, NJ: AFIPS Press, July 1984, 273-281.

Abstract: This paper discusses the software devel-
cpmeni environment tools, techniques, and method-
ology as applied in two mediums to large real-time
software projects. Both quantitative and qualitative
measures of success obtained in these projects are
discussed. The quantitative measures are statistics
representing the size of produced code, the man-
power over the project life cycle, and other data
relevant to software engineering management. The
qualitative evaluation is more concerned with
results obtained from walkthroughs and various as-
pects of the applied methodology. Results are com-
pared with those reported in the literawure. Recom-
mendations and suggestions for further improve-
ments are presented.

The impact of review processes and their cost to
implement on two medium to large real-time soft-
ware projects are documented. The utilization of
review proce:ses to track a project is also described.

McKissick84

McKissick, J.. M. Somers, and W. Marsh.
“Software Design Inspection for Preliminary
Design.” Proceedings COMPSAC '84. The IEEE
Computer Society's Eighth International Computer
Software and Applications Conference. Silver
Spring, MD: IEEE Computer Society Press, Nov.
1984, 518-519.

Abstract: The continuing need for improved com-

74 Draft For Public Review

puter software demands improved sofiware devel-
opment techniques. A technique for the inspection of
preliminary software designs is described. Experi-
ence and resuits from the application of this tech-
nique are presented.

An inspection process at General Electric Company
for preliminary designs is outlined including the
roles of the review participants. The benefits of this
process, including improved education, are also
cited.

MILS85

Military Standard jor Technical Reviews and Audits
for Systems, Equipmen:s, and Compute- Software.
United States Department of Defense, 1985. MIL-
STD-1521B.

This standard defines the required reviews for mili-
tary contracts. The appendices contain details about
exactly what is to be covered for each of the man-
dated reviews as well as the role of the contractor

and the contracting agency.
Peele82
Peele, R. “Code Inspections at Finit Union

Corporation.” Proceedings of COMPSAC ’82.
IEEE Computer Societ)' s Sixth International Com-
puter Software and Applications Conference. Silver
Spring, MD: IEEE Computer Society Press, Nov.
1982, 445-446.

Abstract: At First Computer, a code inspection is
conducted after the coding of a program or module
is complete as indicated by a clean compilaion of
the program and prior (o unit testing of th: pro-
gram. The completed program specifications and a
clean compilation ar the entry criteria for the in-
spection process. An inspection team at First Com-
puter consists of four members; one moderator and
three inspectors. The moderator is the key parscn
in theprocess with the responsibility to ensur: the
best possible review of the program. Thz mcder-
ator approves the team members for the inspection
and makes the necessary decisions relatea to
scheduling and conducting the sessions. The mod-
erator is the facilitator of 'he inspection meetings
but is also an active participant charged with find-
ing defects. The moderator must log all defects
found during the sessions, ensure that all defects
found are corrected by the author, and decide
whether or not to reinspect the code.

This paper presents a variation of the Fagan inspec-
tion methodology defining the process in depth
along with the roleg of the review participants. The
benefits of utilizing their process are also docu-
mented.

SEI-SM-3-1.0

The Softwars Technical Review Process

Bibliography

Quirk85
Quirk, W. J, ed. Verification and Validartion of Real-
Time Software. Berlin: Springer-Verlag, 198S.

This text concentrates on testing techniques for real-
time software. The utilization of review processes
is also described. The emphasis of these review
processes is, however, not unique to real-time soft-
ware and very little insight into reviewing real-time
systems as opposed to other types of systems can be
obtained from this text.

Remus79

Remus, H., and S. Zilles. *‘Prediction and Manage-
ment of Program Quality.” /EEE Proceedings of the
Fourth International Conference on Sofitware
Engineering. Silver Spring, MD: IEEE Computer
Socicty Press, Sept. 1979, 341-350.

Abstract: Techniques such as design reviews, code
inspections, and system testing are commonly being
used to remove defects from programs as early ax
possible in the development process. The objective
of the authors is to demonstrate that predictors can
be devised which tell us how well defects are being
removed during the defect removal process.

The paper presents statistical techniques for estimat-
ing the number of errors remaining in a product
based on data collected from reviews. Approaches
for evaluating reviews and the relationship of
various reviews to each other and to testing are also
described.

Remus83

Remus, H. “Integrated Software Validation in the
View of Inspections/Reviews.” Software Valida-
tion, Inspection-Testing-Verification-Alternatives:
Proceedings of the Symposium on Software
Validation. Amsterdam: North-Holland, Sept. 1983,
57-63.

Abstract: The software development process is
looked at as 1o the specific contribution of
inspectionsireviews to the discovery of wrong de-
sign directions or implementations. The benefits are
evaluated under the aspects of quality/productivity
improvement andl/or cost savings.

The relationship of review processes to testing in an
IBM environment are explored. A variaticn of the
roles of the review participants is presented as well.
The utilization of defect data to the discovery of
wrong design directions and implementations is also
described.

Waiker79

Walker, M. “Auditing Software Dzvelopment Proj-
ects: A Control Mechanism for the Digital Systems

SEI-SM-3-1.0

Draft For Public Review

Development Mcethodology.” Proczedings, COM-
PCON Spring. Silver Spring, MD: 'EEE Computer
Society Press, 1979, 310-314.

Software audits and their function in a development
organization are defined. Auditing techniques arc
presented as well as experiences from the Computer
Science Corporation,

Weinberg84

Weinberg, G., and D. Freedman."Reviews, Walk-
throughs, and Inspections.” [EEE Trans. Sofiware
Eng. SE-10, 1 (Jan. 1984), 68-72.

Abstract: Formal technical reviews supply the
quality measurement to the "vost effectiveness”
équation in a project managenient system. There
are several unique formal technical review proce-
dures, each applicable to particular types of tech-
nical material and to the partizular mix of the Re-
view Committee. All formal technical reviews pro-
duce reporis on the overall quality for project man-
agement, and specific technical information for the
producers. These reports also serve as an historic
account of the systems development process. His-
toric origins and future wrenc's of formal and infor-
mal technical reviews are discussed.

An overview paper describing the distinction be-
tween walkthroughs and ‘nspections. The dif-
ference between formal and inforinal reviews is also
clarified. The paper also contains sample review
reports and how these reports can be used.

Yourdon78
Yourdon, E. Structured Walkthroughs. New York:
Yourdon, Inc., 1978.

A detailed discussion of’ the walkthrough process.
The benefits of walkthroughs as well as the me-
chanics of the process are presented. Psychological
issues for walkthroughs are also noted.

75

Contributors

The Software Technical Review Process

Appendix: Addresses of Contributors

James S. Collofello

Computer Science Depariment
Arizona State University
Tempe, AZ 85287

CSnet: collofel@asu
ARPAnei: collofelfasu@relay.cs.net

John A. Cross

Department of Computer Science

Indiana University of Pennsylvania

Indiana, PA 15705

PITnet: jacross@iuy)

ARPAnet: jacross%iup.bitnet@ vma.cc.cmu.edu

76 Draft For Public Review

SEI-SM-3-1.0

=

© A TYPL OF ALPOATY e TiME COVERLED
FLuAL taou ro Apcil 1988
v

e

-

'1- NAME OF RESPONSIOLE INDIVIDUAL

L

NLIMITED, UNCLASSIEURR. .

T A L Y L AL LY

REPORT DOCUMENTATION PAGE

W(POAT JECURITY CLAABIMIGATION

16, ALITRICTIVE MAARINGS

UNCLASSIFIRD

RECUMTY CLABIICATION AUTHOAITY _ X Y D'STRAIGUTION/AVAILABILITY OF ALPORT
N/A APPROVED FOR PUBLIC RELEASE
OICLASNIPICAHON . DOWNQRADING SCHEOULE DISTRIBUTION UNLIMITED
N/A o .

TURIOAAING ORGANIZATION REPORT NUMBEAIS) ¥, MOF I\ TUNING ORGANIZATION ACPORT NUMBEAIS)
§Rl=§N=1=1,0 -

CNAME ©F FLAPORMING ORGANIZATIO

o OFRICR SYMQOL
(1 epphcodie)
SOFTWARK ENGINEERING INST. r SEf

6 NAML OF MONITOAING OAGANIZATION

SEI JOINT PROGRAM OFFICE

. ABOALEE 1City, Biats end 210 Code)

CARNKGIE MELLON UNIVERSITY
PITTSBURGH, PA 1521)

o, ADOARSS (City, State and 2IP Code)
ESD/AVS
HANSCOM AIR FORCE BASE, MA 01731

NAME OF PUNOINGAPONSOAING
OAQANIZATION

881 JOINT PROGRAM OFFICE

Joa. orrica srmaoe
(11 epplicedia)

ESD/ AVS

9. PAOCUAEMENT INSTAUMENT 1DENTIFICATION NUMEBER

F1962890C0003

AQGALNE (City, Siale ond &IP Codt)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOUACE QF FUNODING NOS,

WIVLT (Ineiuse Seeunty Clasainestiont

Ihg §ogtwl£o Technical Revisw Procegs

PROGRAM PROJECT Task WORK UNIT
CLEMENT NO. NO. NO. NO.
63752F N/A N/A N/A

CRLONAL AUTHOAS)

14. OATR OF REPOAT (Ve Me.. Dey)

18, PAGE COUNT
16

PPLEMENTAAY NOTATION

COtAY: CODES
QAQye

Ve GA

ingpection

technical review

18 SUBJECY YEARAMS (Connnue on reveree if necessary ond dentify by d.ock Aumber)

walkthrough

© ABBYTRACT (Continye vn mverse 1f Aecessary end 1dan ity by block Anumber)

These materials support the SEI curr:culum module SEI-CM-3

Review Process."

"The Software Technical

NETRIGUTION/AVAILABILITY OF ASSTRACT

LASSIFLEO/UN. . Mte0) samt as nev, (D oTicLsens OB

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION

JOHN 8. HERMAN, Capi, USAF

228 TELEPHONE NUMBENR

22¢. OFEICE SYMAOL
(Inelude Area Code) ESD?AVS

412 268-7630 E]

2ORM 1473, 83 APR

EDITION OF Y JAN 7315 OBSOLETE.

UNLIMITED, UNCLASSIFIED

The Soltware Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mallon University under contract with the United States Depantment of Defense.

The SEI Software Engineering Curriculum Project is developing a wide range of matarials to support software engineering
education. A curriculum module (CM) identifies and outlines.tho content of a specific lopic area, and is intended to be
used by an instructor in designing a course. A support matenals package (SM) contains matarials related to a module
that may be helplul in teaching a course. An educational matenals package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software enginaering curriculum recommendations and coursa

designs. '

SE| educational materials are being made available to educators throughout the academic, industrial, and governmaent
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEl, by Carnegie Melon University, or by the United Siates government.

Permission to make copies or derivative works of SEl curriculum modules, support materials, and educational materials is
granted, without fee, provided that the copies and derivalivo works are not made or distributed for direct commaercial
advantage, and that all copies and derivative works cite the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Commants on SEI educational materials and requasts for additional information should be addressed to the Software
Engineering Curriculum Project, Sofiware Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsyt/ania
15213. £isclione mail can be sent to education@sei.cmu.edu on the Internet.

Curricuturr, Modules (* Support Materials available) Educational Materisls

CM-1 [superseded by CM-19] EM-1 Soltwars Maintenance Exercises for a Software

CM-2 Introduction 1o Software Design Engineering Project Course

CM-3 The Software Technical Fleview Process* EM-2 APSEWW An Artilact for Software

CM4 Sohware Configuration Mansgement’ Enginsering bon

CMS Inf son Protect EM-3 g:adhg Computer Programs: Instructor's Guide and
ercises

CM-§ Software Salety

CM-7 Assurance of Soltware Quality

CM-8 Formal Specification of Sotware*

CM-0 Unit Testing and Analysis

CM-10 Modeis ol Software Evolution: Life Cycle and Process

CM-11 Sofware Specifications: A Framework

CM-12 Software Metrics

CM-13 Introduction 1o Software Verification and Validation

CM-14 intellectual Property Proisction for Software

CM-15 Sohware Dewelopment and Licensing Contracts

CM-16 Software Development Using VOM

CM-17 Usaer !nierface Development

CM-18 [suparseded by CM-23]

CM-19 Sofvare Requirements

CM-20 Formai Verification of Programs

CM-21 Sohware Project Management

CM-22 Sotwara Dasign Methods for Real-Time Systems®

CM-23 Technical Writing for Software Engineers

CH-24 Concepls of Concurrent Programming

CM-25 Language and System Support for Concurrent
Programming*

CM-25 Undarstancing Program Depeadancies

