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I ntroduction

The embedded software, developed in the automotdestry, has become increasingly more complex
whilst the time to develop the systems has beencieg. This has required the process used tdaeve
electronic control systems to make more use of coengimulation. The simulation allows earlier
validation of the system being developed beforeasgmtative vehicles are available. But theréllsas
significant effort required to develop and validdte code. With the advent of production code
generation technology it is now possible to 'depelbe code easily. But how much can the automatic
code generation technology be trusted? This papars issues raised in validating the code pratiuce
by the use of an automatic code generator.

Previously, when using manual generation of codgfization and validation is required to assure th
'quality’ of the code. Techniques that have besenl wo verify and validate manual code include:
reviewing, module testing, integration testing,tegstesting, and static analysis. These techniqekgs

to find errors that engineers make when developodge. When using an automatic code generatose ther
should be no random errors that are typical of mhoode generation, but any errors should be more
systematic because the tool should always to tme shing. Production code generation for embedded
automotive controllers is a relatively new techmgglo The first production code generators were
available around the turn of the century, so ie@sonable to be cautious with the code produced by
tool.

The V-model is a useful representation to illugtnahat is being covered by the verification and
validation (V&V) of automatically generated cod€he left side of the V describes the design protass
creating the code, starting from the high-levetasysrequirements and becoming more detailed ayever
step until the code is created. The right sidiefV describes the verification and validatiorpste
applied to each of the development steps.
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Figure 1: A V-model for manual code generationhwaitt model development

With manual code generation, and no model developeech of the verification and validation actissti
requires the previous step to be completed. Hsslts in a significant delay in validating theteys.
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Figure 2: A V-model for manual code generationhwekecutable model development



When an executable model development step is intedlit is possible to perform some verificationd an
validation of the system requirements using rapigtoller prototyping (RCP) technology, but theafin
system still requires a code design and developstage, together with the required and time consgmi
verification and validation of the controller.
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Figure 3: A V-model for automatic code generation

When an automatic code generator is used, the aatdesign is replaced with a much simpler step of
providing the code generator with information ablooiv to generate the code (implementation design)
and the automatic code generation step is 'sirppégsing a button. But good design practices tebé
applied to the development of the model; this isck&led for during model V&V and may require iteratio
in the design of the model. The software unit V&\Wequired to determine that the code generater ha
generated correct code and the implementation V&Kkéquired to determine that the defined
implementation is an accurate representation ofrthéel. The controller and system V&V is still
required to determine that the controller hardvear@ software will control the system as required, b
this should be more straightforward than with mdlgugenerated code because the automatically
generated code should behave more like the RCBrnsysan manually generated code.

It is generally accepted within the safety criticammunity that if the results of code generatetooys

is treated in exactly the same way as code prodozedlially, with regard to V &V techniques, then
likelihood of errors being present in the finaltgys is not increased but may actually decreaséaltie
absence of the coding errors typically made asultref human error. While this is an advantagasihg
code generation tools a greater advantage wouddtiieved if some of the V&V effort could be reduced
in particular regarding the review of the sourcdecdl'he purpose of this paper is to investigatéhout

of performing software unit V&V and implementati®&.V for automatically generated code and argues
that it is reasonable for a complete review ofgberce not to be performed. It is assumed that the
controller and system V&V are preformed separately.

Techniques for verifying and validating automatically generated code

There are 2 different approaches to verifying aaitating automatically generated code. The first
involves validating that the code generator willdoerect for any model being coded, and the second
involves verifying that the code produced by thdecgenerator is correct for a particular modelthwi
manually generated code emphasis is placed oratialifithe code, because it is not possible to ensur
that a programmer does not make mistakes; althmigfakes can be mitigated against by only
employing staff with the appropriate education,exignce and training and also by the use of tdwals t
have been developed to help a programmer makeniesskes, e.g.: the use of a high level language, a
coding sub-set and style guidelines.

Validating a code gener ator

Validation of the code generator is primarily theltvendor's responsibility, but it is unlikely thasers
of a production code generator will trust the cgdaerator until they have had significant expereinc
the tool.



When a user has validated a code generator, thiated version of the tool and any configuration
options applied to the validated tool will neecb®used throughout the code generation process. Th
implies that if the configuration options are chatgor the code generator version changes, orca fsat
applied to the code generator, the validation peedll need to be repeated!

There are a number of techniques that can be oseditiate the correctness of a code generatoe. Th
techniques concerned all increase the users cowgda the correctness of the code generatorf Bt i
unlikely that any of the techniques will producpeafect tool, due to the complexity of a code gatwt

Tool Development Process
The process used to develop the code generatamgitove the quality of a code generator. The tool
developer should have a credible process for dpirgjdhe tool. There are various means of assaring
user that a credible process has been followed:
* Presentation of the process. This is of somelugeyithout proof of the process being followed
the confidence in the tool may be minimal.
« Performing audits on the process. These auditsldtbe independent of the tool development
process
e Certified process, e.g. SPICE, TicklT, CMM
If the tool supplier provides proof of a credibl®pess being followed then the user of the codergeor
will be more confident in the tool concerned.

Testing the code generator

The user of a code generation tool can gain conidén the tool by running their own tests on tha.t
These tests supplement the tool suppler tests anttlvee more tailored to the user's use of the code
generation tool, rather than more comprehensitages/hich is what the tool supplier would need to
achieve. Rigorous testing of a code generatootisifvays possible, because consider for example a
simple addition (a=b+c) there are more than 200@sved implementing this depending simply on the
data types and whether data limiting is enabledy #sting a user applies to a code generatomtitiol
be limited by the resource available to the user.

The automatic code generation tool could be cedito a recognised standard. This would probably
increase the cost of the code generator by a fawadmwould price it out of the automotive indusibiyt
may be required for other industries [1].

The only rigorous method of validating a code geatarwould be to use formal proofs. This involves
mathematically proving that the code generationdi@mation process is correct. Unfortunately the
modelling notation itself would need to be defiriednally first and, furthermore, the amount of effo
required to perform a formal proof on a complexegénerator would be prohibitive for the user but
may be considered by the code generator supplier.

Experience
Users of a code generator gain confidence (oritacknfidence) through the experience that theyehav
with the code generator. If the code generatargsality product, the user will be more likely to
continue using the tool for production code genenatBut if the user finds problems with a code
generator, they are unlikely to continue usingitgroduction code generation. A log should be kép
problems found with the code generator, a smallbemof entries will help justify the use of the koo
There are a number of annoyances that will causes us be dissatisfied with a code generator, these
include:

» Failure to detect incorrect configuration (eithexshing or ignoring)

» Deterministic code generation. There should beandom behaviour in a code generator.

« Patches to the code generator should generatécalerdde where possible, so that it is easy for

a user to verify that a patch has not produceduamyanted affects.

Verifying theresults of AGC
Verifying the results of the automatic code ger@ratvolves ensuring the code is a correct
implementation of the model. The techniques useddrification of manual code are mainly peer



review and testing, both of which are important dodind mistakes that need to be corrected, lmit ar
these techniques applicable to automatically géaéreode?

Peer Reviewing

Peer reviewing of manual code requires the codetdocumented, structured and designed for
maintenance, so that the reviewer can understanciotie and thereby find errors. When code has been
automatically generated, the author has little mdmin the structure and design of the code, byt to
have control of the structure and design of theeho@herefore there is more to be gained from
reviewing the model, ensuring that the model fuordiity is correct and the design is well enginddoe
maintenance, since this is the source for the aatioally generated code. There is little point in
reviewing automatically generated code for docummgor, structure and design because an automatic
code generator should always produce the same,rakkhibugh the design of the code can be influgnce
by the design of the model. So a review of theedednainly to find coding errors produced by the
automatic code generator. An automatic code gesrendll not make the random types of faults that
programmers make. But faults in automatically geteel code will be systematic. The density oftkaul
in code produced by an automatic code generataridihe low, if the code generator works propeily.
the fault density is anything less than low, tha tweill not have any customer acceptance. Sogesihere
should not be many faults in the code, the taskexdiEwing code will be very monotonous and if altfau
was present in the code, the reviewer is unlikelgidtect it, unless it was a gross error. Theectioere is
little to be gained from peer review of automaticglenerated code.

One aspect of automatically generated code thabweiilefit from peer review is the interface of the
automatically generated code to any manually writtede or microcontroller registers. This is bagau
the manually generated code is outside the coatrdIstructure of the automatic code generatoheso t
compatibility of the code will benefit from the jpection of a peer review to ensure correctness and
compatibility.

Suppliers of automatic code generator tools darcthie code produced is readable, including comments
allowing traceability to the block in the model timoduced the code. This is still required towll
debugging and understanding of the code if an érfmund in the code while testing, and to allow
developers of the models to understand the cotlesimterest of improving the model configuration.

When writing code manually, one of the quality meas that is required of the code is that it camfto

a sub-set of the high level language. There amengber of tools available that will check a highdie
language for conformance to a coding sub-set,Hauetis a question as to the validity of automéica
generated code needing to conform to a sub-set.aléwer is that most of the rules probably giilg
Some coding rules could be influenced by the wayntibdel is configured to inform the code generator
how the code should be produced, e.g. functionksraad variable scope, in which case the develafper
the model has the ability to influence the confano®to the subset. Generally conformance to aesubs
should result in higher quality code and more aeeeptance of the code generator.

Any complexity metrics that are collected for mallyugenerated code are also applicable to
automatically generated code. The complexity rogtare probably a function of the complexity of the
model used to generate the code and therefore beulded as an indication to the maintainabilitthef
model.

Testing

The testing of manually generated code has alwaga b fundamental method in ensuring that the code
is correct, although frequently the testing perfednon manually written code is to validate the
functionality rather than to verify the code agaitis design. In the case of automatic code gditar
against an executable model (e.g. Simulink) thehdtuld be possible to validate that the model
implements the requirements, and then verify theegted code against the executable model by
dynamic testing. The testing of code against &t@able model requires the execution of the made|
code, compiled into an executable, with the sampatistimuli followed by a comparison of the outputs
and, possibly, any significant intermediate ddthe comparison of intermediate data within Simulink
would require the model to be instrumented, toaettthe data, and the code may need to be changed t
allow the data to be visible.



The comparison of the outputs has to be within gtedde error limits, unless the embedded code has
been generated with 'double’ floating point precisivhich is unlikely, because most embedded
controllers probably cannot afford the overhea@4bit floating point accuracy. There are 2 types
tolerance on the comparison of outputs, dependinip@ implementation of the code. If the code was
produced using a fixed point implementation thenelrors will be quantization errors which will he
multiple of the least significant bit of the outpaging compared, whereas if the code was produsied u
a floating point implementation, usually simplydt' (32 bit floating point) then the error will belative
to the magnitude of the data.

The code can be compiled and executed on a PChughibe simplest implementation for testing code,
because the code can be compiled using a PC corapileexecuted on the PC, this is known as Software
In the Loop (SIL). The code can be compiled anetated on the target microcontroller, which recgiire
the cross compiler and the embedded micro contrimgether with the infrastructure to update thauin
stimuli and extract the output data for comparighis, is known as Processor In the Loop (PIL). The
advantage of PIL over SIL is that the embedded demand processor are also being tested, together
with any effects on the size of 'int' for the emtbedi target.
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Figure 4: Process for testing automatically gerelabde

To allow the software to be tested the model néti® modularised, so that testing can be done on a
module-by-module basis. Although it is possibled@aecessary) to test the whole system it is dilffio
completely test the functionality of a sub-systetrew testing the whole system. Separating a systém
into a number of modules also helps in understantlia system, and is a good software engineering
practice to perform on a control system.

The report generated by the code generator nedmsreviewed; this may include errors, which should
be fixed, and warnings, which may need to be fix€de report from the code generator should beutisef
and allow the user to configure the model to altbescode generator to produce high quality code.

There are tools available that can perform 'dynaamalysis on code, searching for programming srror
in the code, these tools can also be applied mnzatically generated code, although the tool cannot
prove that the code functions like the model, bdbes ensure that there are no arithmetic emaitsei
code.

Selected strategy for verifying and validating AGC

Of the methods presented earlier the scope for Ranr to perform any validation of the code
generator is very limited, due limited resources #ie size of the task concerned. The validatiche
code generator has to be considered as a codeagmnaupplier's task, and evidence of an applicable
process being followed would be all that Land Raveuld request when selecting a code generation
tool.

The primary strategy employed in verifying the amdgically generated code is to perform testing of
modules, endeavouring to prove that what behakesfie Simulink model 'is' the model. To be able t



prove that the code behaves like the model it (gs®ary to test all the model against all the code,
therefore a test coverage criteria of 100% MCDCdifired condition decision coverage) is required,
furthermore MCDC is a recommended coverage foinggstutomotive software [2]. It is necessary to
apply this to the code, so that variable saturatammbe tested (which will cause errors in the cneg
outputs). The code is instrumented to allow coyenmaetrics to be obtained using a standard code
coverage tool. To facilitate the configurationtioé input stimuli and comparison of the outputsistam
tool was written based around Microsoft Excel, viihédlows users to specify the values for the inputs
and log the outputs while executing the model, dygply the input stimuli to the code and compaee th
outputs of the code to the previously logged valaey differences are high-lighted to the user. A
custom tool was created that:
» Allows the user to specify un-related values toitipait stimuli in order to achieve the required
code coverage criteria more easily
e Save the test conditions consistently, allowingmeaiance of the test cases by other users
« Facilitate regression testing on the model, if alehds modified then the old set of test cases can
be run on the model to ensure there are no undesioglifications to the model

Code that interfaces to manually generated, bdbgase is reviewed to ensure compatibility of the
interface to the base software. Furthermore thenaatically generated code is reviewed for
conformance to MISRA-C, using a static analysig, tdgnamic analysis is performed to ensure thatethe
are no 'bugs' and complexity metrics are also roogit for each module.

Technical problemsimplementing the strategy

The outputs of the Simulink model and generateag@ré usually not identical, because both floating
point numbers and fixed point numbers are an apmation. At first impression a double precision
floating point number is more accurate than a figeiht representation of a number, but this is not
always the case. Consider a variable monitorimg thccurate to 1 milli-second, as a double pretisio
number this would be time, in seconds, and 0.0GLdmuble precision number is about 4.13E-19 too
small, therefore when adding milli-seconds therewitl also be accumulated and after 10 iteratibis
less than 0.01. But a fixed point number repregent could be scaled in milli-seconds and would be
exactly 1, and after 10 iterations it would be tHpresenting 0.01 exactly. If the model compahed t
variable to >= 0.01 and the variable was increnabie0.001 every milli-second the double precision
representation would be >= 0.01 after 11 iteratisvisereas the fixed point representation would be >
0.01 after 10 iterations [3]. Usually the floatipgint representation is more accurate than theglfpoint
representation, e.g. length in metres will be aateuto about I8 using double precision floating point,
but will only be accurate to the chosen scalingsgaly milli-metres, or micro-metres using fixedmto

In order to compare the results of the Simulink el@hd generated code it is necessary to introdoce
amount of acceptable tolerance for each outputheligenerated code uses fixed point scaling tihen t
tolerance should be a multiple of the least sigaiit bit's scaling. Whereas if the generated csds
single precision floating point then the acceptablerance should be a multiple of the data vafué®
output. Both of these tolerance schemes need imfemented since the testing is being applied to
different systems, one of which is fixed point ahe other is floating point.

In order to achieve the code coverage it is hecgssareate test cases for variables that 'saui@a
maximum or minimum value, when the saturation oschis will cause a difference between the 'perfect
model and the implementation. These differencdish@iout of tolerance and are highlighted as stror
but these are acceptable 'errors'. A special @fasauration is division by 0, where it is possibd
require the code generator to check the divisoffoefore attempting the division operation andnret
different result. This is a reasonable check lierdode, but in order to achieve the code covdiagtest
case needs to specify a divisor of 0, which, ngprésingly, causes Simulink to issue an error. érky
around for the division by 0 is to use values tratextremely close to 0, the quantisation errbteen
fixed-point implementation allow the test for eqtyato 0 to succeed and Simulink will execute, aligh
the differences between the model outputs and mgeation outputs will again exceed the tolerance
and are categorised as acceptable 'errors'.



Coding errorsdiscovered using the validation strategy

The most common types of coding errors discovesgguhe validation strategy are type definitiod an
scaling errors. These errors result in the codéeimg able to contain the data concerned, resyiti
either an overflow, underflow or loss of precisiofhey are fixed by simply modifying the configuost
of the variable storage for the data item concerriedhe early stages of code generation (i.efitbe
time code is generated for a model) the numbecalfrey and type definition errors can be quitedarg
but these errors are quickly removed and the gawimde is then tested more thoroughly.

Other errors that have been picked up by the gestirategy include:

« Incorrect re-use of data variables, where the mbaglbeen configured to use the same variable
to store data from different blocks. This typeeafor is often quite difficult to find during syste
testing, but the technique of comparing the exeoutf the model to the execution of the code
high-lights the problem when it is executed.

« Confusion between bit-wise and logical operationStateFlow. The code generator interpreted
C-like bit-wise operations as a bit operation, vélaarby default StateFlow is configured to
interpret C-like bit operations as logical operasio

» The testing strategy has found a few errors dileg@utomatic code generator creating incorrect
code, it was simple to work around the problemstbycturing the model slightly differently and
the tool vendor was informed to enable the errotsetfixed in the next release.

» Afew modelling errors have also been discoverddl Wie Simulink models, due to visual
inspection of the test cases.

The criteria for 100% MCDC coverage occasionallgrazt be achieved due to unreachable code. The
unreachable code can be created by the code gaemevaich represents inefficiency in the code
generator's implementation of the model. This ccewery time a particular structure in the model i
encountered and has to be accepted as a dispensatibe coverage criteria. The unreachable cade ¢
also be created due to constructs in the modethioh case it would also not be possible to exethae
part of the model within Simulink. This represeatserror in the model and the author would be &ble
correct the mistake.

L essons lear nt

It is often necessary to understand the structogd@nctionality of the generated code in order to
determine where in the model it relates and hoimdrease the test coverage. Therefore the engineer
involved in creating test cases need to have softengineering experience as well as modellingsskil
The models that are being tested need to be designéest. That is the control system needs to be
partitioned into a structured architecture creatingtional units that are small enough to be teste
thoroughly. The exercise of partitioning a systata functional blocks is again a software engimegr
skill. Each of the functional blocks are partigohinto Simulink library models to allow maintenarand
testing of the model by a team of engineers.

Process improvements

The testing that we have implemented is softwathéroop. An improvement in this strategy wouéd b
to include the compiler and microprocessor, andthertest cases on code compiled for the target
microprocessor. The infrastructure that we havkallow for this extension to the testing strategince
the input stimuli and expected outputs are all $igelcusing Excel, therefore it would be possilde t
extend this to compile the code for the targetrandt on the processor.

Recommendations for the future

Thorough testing of the automatically generateceowil need to be continued for the foreseeablertut
because of the configuration of the implementatibe,variable types and scalings in particularerci¥
the confidence in automatic code generation reguli® code generation errors, there is alwayseéap
a error to cause the system to mal-function dukg¢domplementation configuration. So thoroughitest
will always be required, to prove that what behdikesa Simulink model 'is' the model.

Complete review of the source code is not justifiedause:
* The aspect of the review which checked againstefjgirements can be achieved by review of
the model.



e The aspect of the review which checked for codimgre is not required as the random human
errors will not be present.
e  Static checking tools, e.g. adherence to langsagesets and data analysis, can find model
configuration errors.
» Systematic errors made when writing the code gémevéll be detected by thorough testing of
the generated code.
However, a review of the interface between codeegaad by a tool and code produced manually is
required.

It would be useful to determine the level of 'datalerage that each data flow has achieved whileing
the tests. We currently monitor the code coverbgejn order to prove an algorithm that may noteha
many paths is implemented correctly it will need&oexecuted with more than one set of data.

We do currently do dynamic data analysis on thegeed code, but this only checks for 'obviousrerr
and does not compare the outputs to the expectpdtsu
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