
Math. Struct. in Comp. Science (), vol. , pp. . Printed in the United Kingdomc Cambridge University PressOn the Foundations of Final CoalgebraSemantics: non-well-founded sets,partial orders, metric spacesDANIELE TURI1yand JAN RUTTEN21 LFCS, University of Edinburgh, JCMB, The King's Buildings,Edinburgh EH9 3JZ, Scotland.E-mail: dt@dcs.ed.ac.uk2 CWI, P.O. Box 94079,1090 GB Amsterdam, The Netherlands.E-mail: Jan.Rutten@cwi.nlReceived 4 February 1998This work, a revised version of (Rutten and Turi, 1993), is part of a programme aimingat formulating a mathematical theory of structural operational semantics,complementing the established theory of domains and denotational semantics to form acoherent whole (Turi, 1996; Turi and Plotkin, 1997). The programme is based on asuitable interplay between the induction principle which pervades modern mathematics,and a dual, non-standard `coinduction principle' which underlies many of the recursivephenomena occurring in computer science.The aim of the present survey is to show that the elementary categorical notion of a�nal coalgebra is a suitable foundation for such a coinduction principle. The properties ofcoalgebraic coinduction are studied both at an abstract categorical level and in somespeci�c categories used in semantics, namely categories of non-well-founded sets, partialorders, and metric spaces.1. Introduction\The original stimulus for my own interest in the notion of a non-well-founded set came froma reading of the work of Robin Milner in connection with his development of a mathematicaltheory of concurrent processes. This topic in theoretical computer science is one of a numberof such topics that are generating exciting new ideas and intuitions that are in need of suitablemathematical expression." Peter Aczel, Non-Well-Founded Setsy Research supported by the \Stichting Informatica Onderzoek in Nederland" of the Dutch Organiz-ation for Scienti�c Research (\NWO") under grant 612-316-402, project `Non-well-founded sets andsemantics of programming languages'.



D. Turi and J. Rutten 2In set theory, mathematical induction is based on the notion of a well-founded relation,that is, a relation R such that, for every set x, there is no in�nitely descending chain: : : R x2Rx1Rx0 = xThe fact that standard mathematical constructions are inductive is mirrored by thecommon assumption that the axioms of set theory include the foundation axiom whichpostulates that the set-membership relation `2' is well-founded: for every set x, thereexists no in�nitely descending chain: : : 2 x2 2 x1 2 x0 = xIn Milner's Calculus of Communicating Systems (CCS), the behaviour of a non-deter-ministic program P is given by the set[[P ]] = fP ai�! Pigof atomic transitions P ai�! Pi which the program can perform, producing an observableaction ai and becoming Pi. The meaning of a program P should abstract from thename of the programs involved in the transitions and focus on the actions which can beperformed, together with the choices which can be made. It should then be the following`coinductively' de�ned set. [[P ]]@ = f<a; [[P 0]]@> j P a�! P 0gNow, in general, the transition relation is not well-founded, since, for instance, cyclicprograms P a�! P are allowed. Therefore, the above meaning [[P ]]@ can be a non-well-founded set.Traditionally, this `problem' has been overcome by imposing either an order or a metricon the transition relation and then de�ning [[P ]]@ as a suitable limit . Instead, in (Aczel,1988) a more radical approach is taken and the standard foundation axiom is replacedby the `anti-foundation axiom' which allows for non-well-founded sets. (See also theequivalent `X1-axiom' in (Forti and Honsell, 1983).)One of the contributions of the present work is to show that the anti-foundation axiomis the dual, in a formal sense, of the foundation axiom. Indeed, we prove that foundationis equivalent to postulating that the universe of sets is an initial algebra for a suitablepower-set endofunctor' and, dually, that anti-foundation is equivalent to postulating thatthe universe of sets is a �nal coalgebra (for the same power-set endofunctor).From a categorical point of view one does not need to resort to non-standard found-ations: as already clear in (Aczel, 1988), coinductive de�nitions can be founded on �nalcoalgebras and these exist also in the standard category of ordinary sets (and in manyother categories). What the anti-foundation axiom gives is the non-standard fact thatthe greatest (strict) �xed point gfp(F ) = F (gfp(F ))of an endofunctor F on the category SET of classes (ie large sets) is a �nal F -coalgebra,provided F satis�es some mild conditions. This theorem (Aczel, 1988, \Special Final



Foundations of Final Coalgebra Semantics 3Coalgebra Theorem") is the `dual' of the standard fact (holding also without anti-foundation) that the least �xed points of most endofunctors on SET are initial algebras.The special �nal coalgebra theorem is stated in terms of the \Solution Lemma" (Aczel,1988). The �nal coalgebra presentation of anti-foundation introduced here makes thesolution lemma (and its equivalence with anti-foundation) trivial. Correspondingly, the`uniformity on maps' condition { which an endofunctor has to satisfy in order for thespecial �nal coalgebra theorem to hold { can be formulated here somewhat more trans-parently than in (Aczel, 1988).Aczel's semantics of CCS exploits the special �nal coalgebra theorem by noticing thatthe intended operational model of CCS can be seen as a coalgebra of the endofunctormapping a class X to the class PS(Act � X) having as elements (small) sets of pairs<a; x>, with a 2 Act and x 2 X , where Act is the set of actions which can be performedby the programs. The carrier of this operational model is the set Prog of programs, andthe coalgebra structure is the function [[-]] : Prog ! PS(Act � Prog) de�ned for everyprogram P 2 Prog as the set of pairs <a; P 0> such that P can perform an action a andbecome P 0: [[P ]] = f<a; P 0> j P a�! P 0gThe function [[-]]@ mapping a program to its abstract meaning can then be de�ned asthe coinductive extension of this coalgebra structure, that is, as the unique coalgebrahomomorphism from the intended operational model to the greatest �xed point of the`behaviour endofunctor ' BX = PS(Act �X)which, by the special �nal coalgebra theorem, is a �nal coalgebra:
B(Prog)[[-]]Prog B([[-]]@)

[[-]]@ B(gfp(B))gfp(B)
That is, for every program P , [[P ]]@ = f<a; [[P 0]]@> j P a�! P 0g.1.1. Final Coalgebra SemanticsThe above semantics for CCS and its properties can be generalised to arbitrary beha-viours, leading to what is called here the �nal coalgebra approach to semantics: given acoalgebraic operational model for a programming language, its coinductive extension {the �nal coalgebra semantics of the language { is a semantics which is fully abstract withrespect to the behaviour, in the sense that two programs are identi�ed if and only if theyare behaviourally equivalent.The basic idea is that a good, mathematical notion of behaviour should correspondto an endofunctor B, whose coalgebras should give the operational models for B. Inparticular, �nal coalgebras are canonical domains of interpretation. Indeed, as shown



D. Turi and J. Rutten 4here, �nal coalgebras are `strongly extensional' that is, two elements of the �nal B-coalgebra are equal if and only if they are `B-bisimilar'. The latter is a coalgebraicgeneralization given in (Aczel and Mendler, 1989) of the notion of strong bisimilarityused in concurrency theory (Park, 1981); it subsumes other behavioural equivalences as,eg, applicative bisimulation and trace equivalence. (Cf (Fiore, 1996b; Rutten and Turi,1994).) Thus, semantically, the �nal coalgebra of a behaviour endofunctor, if it exists,is an operational model where behaviourally equivalent elements are indistinguishable.In other words, the operational model given by �nality is internally fully abstract withrespect to B.Since the coalgebra homomorphisms are morphisms between the carriers of the opera-tional models which `respect' the behaviour, the coinductive extension of an operationalmodel identi�es two elements if they are behaviourally equivalent in the above sense.Under the additional hypothesis that the behaviour B preserves `weak pullbacks', coin-duction can be `pulled back' to coalgebraic bisimulation. and also the converse holds,that is, two elements are identi�ed if and only if they are behaviourally equivalent.This �nal coalgebra approach to semantics complements the standard initial algebraapproach (Goguen et al., 1978), where, given a functorial notion of signature � for alanguage, the programs are described as the initial �-algebra, the most concrete denota-tional model; the other �-algebras are denotational models whose structure can alwaysbe inductively extended, by initiality, to a compositional interpretation of the programs.A suitable interplay between initial algebra and �nal coalgebra semantics is the basisof the categorical approach to structural operational semantics presented in (Turi andPlotkin, 1997). (See also (Turi, 1997; Turi, 1996).)1.2. Partial OrdersAnother way of looking at initial algebras and �nal coalgebras of endofunctors F is asdata types : the initial F -algebra is the inductive data type corresponding to the `typeconstructor' F , while the �nal F -coalgebra is the coinductive one. For instance, the typeconstructor FX = 1 + X yields, in the category Set of sets and functions, the naturalnumbers N as inductive data type and the `extended natural numbers' N [ f1g ascoinductive one.Studies on coinductive types in Set date back at least to (Arbib and Manes, 1980). Amore recent view, put forward by Peter Freyd in (Freyd, 1991), is that data types shouldbe de�ned in algebraically compact categories , that is, in categories where endofunctorshave both initial algebras and �nal coalgebras which, moreover, do coincide in the sensethat they are `canonically isomorphic'. (See also (Freyd, 1990; Freyd, 1992).) This givesa useful mixed induction-coinduction principle. (Cf (Pitts, 1994a; Pitts, 1994b).)One of the main examples of algebraically compact categories is the category Cppo?of complete pointed partial orders and strict continuous functions: regarded as an `order-enriched' category, it has as endofunctors the `locally continuous' ones, which, as shownin (Smyth and Plotkin, 1982), make it algebraically compact indeed.In the present study, an order-enriched version of the �nal coalgebra semantics ap-proach is also introduced. A preliminary version of this work contained a de�nition of



Foundations of Final Coalgebra Semantics 5coalgebraic bisimulation in the order-enriched setting. Such a de�nition has been re-�ned in (Fiore, 1996b), together with the theorem stating that �nal coalgebras of locallycontinuous endofunctor on Cppo? are strongly extensional with respect to this orderedcoalgebraic bisimulation. This is generalized here to a full abstraction result which, inparticular, can be applied to the �nal coalgebra semantics of non-terminating programs.Notice that algebraic compactness is one of the axioms of Fiore and Plotkin's axio-matic domain theory (Fiore and Plotkin, 1992; Fiore and Plotkin, 1994; Fiore, 1996a)which aims at isolating the abstract properties which a category should satisfy for host-ing interpretations of programming languages. In particular, the semantic domain of alanguage { in the present setting the �nal coalgebra of the behaviour { should `live' insuch a category, typically Cppo?.The category of sets, no matter whether ordinary or non-well-founded, is not algeb-raically compact (because algebraic compactness is inconsistent with cartesian closure).Still, a naive semantics in Set is often a good starting point for more re�ned analyses,especially in settings where, as in concurrency, partiality does not play a central rôle.1.3. Metric SpacesWith partial orders, one can assess not only the semantic equality or inequality of pro-grams, but also whether a program is semantically `better' than another. Instead of such`qualitative' judgements, one might be interested in a `quantitative' relation betweenprograms, with the semantics giving the distance between each pair of programs. Thisleads to the use of metric spaces in semantics. (See (de Bakker and Rutten, 1992; deBakker and de Vink, 1996) for overviews.)The main mathematical tool available in (complete) metric spaces is \Banach's theor-em" ensuring the existence of unique �xed points of `contractive' endofunctions. Banach'stheorem, especially in its higher-order form, can be used for dealing with coinduction.Here it is proved that the unique �xed point of a `locally contractive' endofunctor asgiven by Banach's theorem is both a �nal coalgebra and an initial algebra of that endo-functor. This shows that the category Cms of complete metric spaces and non-expansivefunctions, with as endofunctors the locally contractive ones, is, like Cppo?, algebraicallycompact.Structures where both the quantitative and qualitative information are present are thequasimetric spaces studied in (Smyth, 1988; Bonsangue et al., 1998). These are metricspaces where distances might be non-symmetric. Such an asymmetry requires a moresubtle notion of limit than for metric spaces, for which contractive functions need not becontinuous. But once these di�erences are taken into account, Banach's theorem holdsalso in this setting and the algebraic compactness theorem for Cms carries over to the cat-egory Cqms of complete quasimetric spaces and functions which are both non-expansiveand continuous.A further generalization is achieved in (Wagner, 1994) (see also (Flagg and Kopper-man, 1997)), where structures parametric in a `quantale' 
 are studied. In particular,generalized notions of Cauchy sequence and limit are given which, at a higher level, areused to show that the standard constructions of �nal coalgebras (alias initial algebras)



D. Turi and J. Rutten 6in Cms and in Cppo? are both instances of one construction parametric in 
. The use of
 stems from a foundational article by Lawvere (1973) presenting metric spaces, partialorders, and categories as instances of one and the same notion.ContentsSection 2 contains the de�nitions of algebraic induction and coalgebraic coinduction.Also, examples of operational models as coalgebras of behaviour endofunctors are given.In Section 3, it is shown that initial algebras and �nal coalgebras can both be seen asadjoints to suitable forgetful functors. Following (Barr, 1993), this fact is used to showthat the �nite power-set functor has a �nal coalgebra.In Section 4, the coalgebraic notion of bisimulation introduced in (Aczel and Mendler,1989) is studied. Several properties are proved which generalize standard results on (or-dinary) bisimulations. In particular, a general full abstraction theorem is proved statingthat in �nal coalgebra semantics two programs are identi�ed if and only if they are be-haviourally equivalent. Next, it is shown how to obtain �nal coalgebras from weakly �nalones using coalgebraic bisimulations. Finally, a new notion of bisimulation is introducedwhich is parametric in the possible transformations of states.Section 5 is devoted to a coalgebraic presentation of Peter Aczel's theory of non-well-founded sets. The main novelty is that a categorical duality is proved between theanti-foundation axiom (giving non-well-founded sets) and the standard foundation axiom.Also, simpli�ed presentations of the \solution lemma", of the \substitution lemma", andof the notion of a functor uniform on maps are given. This allows for a more transparentproof of the \special �nal coalgebra theorem", one of the most relevant results, from asemantical point of view, in (Aczel, 1988).Section 6 is a survey on �nal coalgebras and their bisimulations in order-enrichedcategories; it is based on material in (Smyth and Plotkin, 1982) and (Fiore, 1996b). Italso contains a full abstraction theorem with respect to the order-enriched version ofcoalgebraic bisimulation.The last section is dedicated to �nal coalgebras in categories of metric spaces. It isshown that the categorical version of Banach's �xed point theorem introduced in (Amer-ica and Rutten, 1989) yields a �nal coalgebra (canonically isomorphic to an initial al-gebra). Also, the above mentioned recent results on generalized notions of metric spaces,which reconcile the order-theoretic with the metric theoretic approach, are discussed.2. From Algebraic Induction to Coalgebraic CoinductionThe most elementary form of induction, the one on the natural numbersN = f0; 1 = s(0); 2 = s2(0); : : :gis based on the following theorem.Theorem 2.1. (Recursion Theorem) Given a set X , an element e 2 X and a functiong : X ! X , there exists a unique function f : N ! X from the set of natural numbers



Foundations of Final Coalgebra Semantics 7to the given set such thatf(0) = e and f(s(n)) = g(f(n))for all numbers n 2 N .The value e of the function f at (the least element) 0 (with respect to the order relation)is the `base' of the induction and g de�nes the `inductive step'.The recursion theorem can be taken as the de�nition of natural numbers. That is,every set N with a distinguished element 0 2 N and a unary operation s : N ! Nsuch that the recursion theorem holds, is isomorphic to the natural numbers. (See, eg,(Mac Lane, 1986, Chapter 2).) As pointed out by Lawvere, the existence/uniquenessstatement of the recursion theorem asserts the universal property characterizing thenatural numbers: initiality . This property underlies induction, not only on the naturalnumbers, but in general.Initiality is the most elementary universal property which an object of a category canenjoy: an object X is initial in a category if, for every object Y of the category, thereexists a morphism f : X ! Y from X to Y and, moreover, this morphism is unique.The basic way of understanding the natural numbers as an initial object is by regardingthem as an object hN; 0; si in the category having as objects triples hX; e; ti, where X isa set with a distinguished element e 2 X and a function t : X ! X on it. The morphismsf : hX; e; ti ! hX 0; e0; t0i of the category are functions f : X ! X 0 such thatf(e) = e0 and f(t(x)) = t0(f(x))(It is easy to verify that the above objects and morphisms form a category with compos-ition and identities as in Set.) Then the recursion theorem says exactly that the triplehN; 0; si is initial in this category. (Notice that in the category Set the initial object isthe trivial empty set.) Conversely, since initial objects, as all universals, are unique upto isomorphism, the initial object of this category de�nes the natural numbers up toisomorphism.This speci�c form of induction can be generalized through the following series of ab-stractions.Firstly, notice that the element e 2 X of a set X can be written as a function fromthe one-element set 1 = f�g to the set X ; that is, one can identify a function e : 1! Xfrom the one-element set 1 to a set X with its value e(�) 2 X at the unique element �of 1. Then the recursion theorem amounts to having an object 1 0�! N s�! N such thatfor every object 1 e�! X g�! X , there exists a unique function f : N ! X withf � 0 = e and f � s = g � f



D. Turi and J. Rutten 8Diagrammatically, using dashed morphisms to denote morphisms given by universal prop-erties, one has that the following diagram commutes.
XX

s N
1 g ffe
1 0 N

Secondly, every pair of functions with the same codomain (thus, eg, e : 1 ! X andg : X ! X) can be made into a single morphism with as domain the disjoint unionof the domains. This holds in general in every category with coproducts: given twoobjects X and Y in a category, their coproduct, if it exists, is an object X + Y with twomorphisms inlX : X ! X+Y and inlY : Y ! X+Y which is universal in the sense thatfor every pair of morphisms f : X ! Z and f : Y ! Z there exists a unique morphism[f; g] : X + Y ! Z, making the following diagram commute.
g[f; g]X inlX inrY YX + Yf Z(The dual of the coproductX+Y is the product X�Y : its projections fstX : X�Y ! Xand sndY : X � Y ! Y are universal among all pairs of morphisms f : Z ! X andg : Z ! Y .)In Set, the disjoint union, together with the corresponding injection functions, is acoproduct. Hence, one can write [e; g] : 1 + X ! X instead of 1 e�! X g�! X . Cor-respondingly, the initiality of the natural numbers can be expressed by saying that forevery function h : 1 +X ! X there exists a unique morphism f : N ! X such that thefollowing diagram commutes. [0; s]N Xf h1 + f1 +N 1 +X

The morphism 1+ f : 1 +N ! 1+X is de�ned by universality: using idX to denote theidentity morphism on an object X ,1 + f = [inl1 � id1; inrX � f ] = [inl1; inrX � f ] : 1 +N ! 1 +X



Foundations of Final Coalgebra Semantics 9Thus the operation X 7! 1 + X on objects extends to an operation f 7! 1 + f onmorphisms: this de�nes a functor from Set to Set, ie an endofunctor on SetThe third step of abstraction is now to move from the above (endo) functor FX = 1+Xon Set to arbitrary endofunctors F on arbitrary categories C and, correspondingly, toconsider initial objects in categories of structures h : FX ! X rather than h : 1+X ! X .Given an endofunctor F : C ! C on a category C one can form the category CFof F -algebras having as objects pairs hX;hi with X an object and h : FX ! X amorphism of C. A morphism f : hX;hi ! hX 0; h0i between F -algebras is a morphismf : X ! X 0 between their `carriers' such thatFXh h0FX 0X 0FfX fcommutes, that is, f �h = h0�Ff . Therefore, the natural numbers can also be understoodas the initial algebra of the endofunctor FX = 1 +X on Set.The initial object in the category of algebras of an arbitrary endofunctor �, ie theinitial �-algebra, does not always exists, but if it does, then its structure is an iso-morphism:Lemma 2.1. (Lambek's Lemma: initial algebras are isomorphisms) Let hF ;  i bethe initial algebra of an arbitrary endofunctor �. Then the algebra structure  : FF ! Fis always an isomorphism : FF �= F (initial F -algebra)(To prove this notice that the initial algebra structure  is also an F -algebra morphismfrom hFF ; F i to hF ;  i.)As mentioned in the introduction, initial algebras give a very useful induction principle.Indeed, every algebra structure h : FX ! X of an arbitrary endofunctor F with initialalgebra FF �= F can be inductively extended to a morphism h# : F ! X by taking theunique algebra morphism from the initial algebra to the algebra hX;hi:Inductive ExtensionFh# XFF�=F h# hFX
Notice that initiality gives both the existence of inductive extensions and their unique-ness. The former accounts for the de�nitional power of induction, while the latter gives



D. Turi and J. Rutten 10a proof principle, since one can prove two morphisms equal by showing that both �t asinductive extensions of an algebra structure.2.1. CoalgebrasThe dual of the notion of initiality is the notion of �nality : an object X is �nal (or ter-minal) in a category when from every object of the category there is a unique morphismto X . And the dual of the notion of an algebra of an endofunctor F on a category C isthe notion of an F -coalgebra, that is, a pair hX; ki with X an object and k : X ! FXa morphism of C. The coalgebras of an endofunctor F : C ! C are the objects ofthe category CF of F -coalgebras, having as morphisms f : hX; ki ! hX 0; k0i thosemorphisms f : X ! X 0 between the carriers such thatX 0fFX FX 0Ff
Xk k0

commutes, ie Ff � k = k0 � f .The �nal object of a category, as initial objects, coproducts, pullbacks, and all otheruniversals, is unique up to isomorphisms. Therefore, one often speaks of the �nal coal-gebra instead of a �nal coalgebra.2.2. Operational models as coalgebras of behavioursAs mentioned in the Introduction, the semantic relevance of coalgebras is that they canbe used to represent operational models. Let us write B (behaviour) for endofunctorswhose coalgebras have a computational interest.The main example of such a functorial notion of behaviour is the endofunctorBX = P(Act �X)mapping a set X to the set of pairs <a; x>, with a in Act and x in X . Its coalgebrashX; ki can be seen as labelled transition systems (Plotkin, 1981), that is, tripleshX;Act;!i, where X is a set of `states', Act is a set of `labels', and !� X � Act �Xis a `transition' relation. The bijection between coalgebras hX; ki of the above behaviourand labelled transition systems hX;Act;!i is given by the following correspondence.x a�! x0 () <a; x0>2 k(x) (1)Labelled transition systems are operational models for non-deterministic (and concur-rent) languages with atomic actions. The transition x a�! x0 in the model tells thatthe state x can perform an action a and reach the state x0. The natural morphisms oftransition systems are functions f : X ! X 0 between their sets of states which preservethe transition relation. That is, if x a�! x0, then f(x) a�! f(x0). Coalgebraically, this



Foundations of Final Coalgebra Semantics 11accounts for only one half of the equality Bf �k = k0�f which has to hold for a coalgebrahomomorphism, namely the inclusionBf � k � k0 � fThe reverse inclusion amounts to the condition that if f(x) a�! y for some y in X 0,then there exists a state x0 in X such that x a�! x0 and f(x0) = y. Morphisms oftransition systems which verify this extra condition are exactly those whose graph is astrong bisimulation. They are also known in the literature as the `zig-zag morphisms' (vanBenthem, 1984) (or as the `saturating morphisms' (Arnold and Dicky, 1989)), which, asshown in (Joyal et al., 1993), are the `P-open morphisms', for a suitable subcategory Pof the category of transition systems. (Cf next section.)There are several interesting variations of the above behaviour obtaining by varyingthe choice of power-set endofunctor. For instance, by taking the restriction of P to the�nite power-set P�, one has the behaviourBX = P�(Act �X)whose coalgebras are the �nitely branching transition systems, with states each able tochose among a �nite set of transitions. Similarly, the endofunctor PS on the categorySET of classes (ie large sets) which maps a class to the class of its subsets (thus smallsets) gives the behaviour BX = PS(Act �X)whose coalgebras are the `locally small transition systems', that is, transition systemspossibly having a large set (ie a class) of states, each able to choose among a (small) setof transitions.The above notions of behaviour all account for non-deterministic transition systems.For the simpler case of deterministic systems, where each state can perform at most onetransition one can consider the behaviour endofunctorBX = 1 +Act �XA coalgebra structure k : X ! 1+Act�X maps a state x either to the only element `�'of the singleton set 1 = f�g (ie x cannot perform any transition) or to a pair <a; x0> (iex a�! x0). One can check that the set Act1 = Act� [ Act! of �nite and in�nite wordsover the alphabet Act is the carrier of a �nal coalgebra for this behaviour.The above behaviours, whose coalgebras correspond to various forms of labelled trans-ition systems, are suitable for modelling imperative and concurrent languages. Instead,for modelling applicative languages, one usually needs behaviours involving some formof function space functor. An example is the endofunctorBX = 1 +XYThe `exponent' XY is the set of functions from Y to X . In order to avoid the usual `mixedvariance' problems, Y is here treated as a parameter. By putting Y = X one obtainsthat the corresponding coalgebras are the quasi-applicative transition systems de�nedin (Abramsky, 1990). The `exception' 1 in the above behaviour can be used to encode



D. Turi and J. Rutten 12non-termination. For example, for X and Y both equal to the set � of closed �-terms ,one can de�ne a coalgebra structureev : �! 1 + ��by putting, for every �-term M 2 �,ev(M) = P 7! N [P=x]if M converges to `principal weak head normal form' �x.N , andev(M) = �otherwise.Examples of operational models as coalgebras in categories of partial orders and ofmetric spaces are given in Sections 6 and 7. Many more functorial notions of behaviourare currently under investigation.2.3. CoinductionLet F be an endofunctor which has a �nal coalgebra (ie the �nal object in the cor-responding category of coalgebras) and let bF denote the carrier of this �nal coalgebra.The structure ' of a �nal coalgebra is, l like that of an initial algebra, an isomorphism(Lemma 2.1), because the notion of isomorphism is `self-dual'. Thus:Observation 2.1. (Final coalgebras are isomorphisms) Let h bF ; 'i be the �nalcoalgebra of an arbitrary endofunctor F . Then the coalgebra structure ' : F bF ! bF isalways an isomorphism' : bF �= F bF (�nal F -coalgebra)Notice, that by cardinality reasons, this implies that the (unrestricted) power-set endo-functor P cannot have a �nal coalgebra, and the same holds for the behaviour BX =P(Act � X). However, �nal coalgebras for the variations considered above of theseendofunctors do exists. As illustrated by Corollary 3.1, the �nite power-set endofunc-tor P� : Set ! Set has a �nal coalgebra and similar arguments show that also thepower-set endofunctor PS : SET ! SET on the category of classes, and the behaviourendofunctors BX = P�(Act �X) and BX = PS(Act �X) have �nal coalgebras.Any coalgebra structure k : X ! FX can be `coinductively' extended to a morphismk@ : X ! bF by taking the unique coalgebra morphism from the coalgebra hX; ki to the�nal coalgebra: Coinductive ExtensionXFX k@k Fk@ �=F bFbF



Foundations of Final Coalgebra Semantics 13For example, by taking for F the behaviour BX = PS(Act �X) and for k : X ! FXthe coalgebra structure [[-]] : Prog ! B(Prog) corresponding to the intended operationalmodel for CCS as mentioned in the introduction, then the coinductive extension [[-]]@ :Prog ! bB is a �nal coalgebra semantics: for every program P of CCS,[[P ]]@ = '�1f<a; [[P 0]]@> j P a�! P 0g (2)where '�1 is the inverse of the �nal coalgebra isomorphism ' : bB �= B bB given by(the dual of) Lambek's lemma (Observation 2.1). If one postulates the anti-foundationaxiom, then the (strict) greatest �xed point gfp[B] = B(gfp[B]) of the above B is a �nalcoalgebra, and the equation (2) is strict, ie the isomorphism ' cuts down to an identity:[[P ]]@ = f<a; [[P 0]]@> j P a�! P 0g3. Adjunctions subsume Induction and CoinductionInduction and coinduction can be made parametric in a suitable sense by considering themore general notions of `free algebras' and `cofree coalgebras' instead of initial algebrasand �nal coalgebras only. This gives a natural way of understanding initial algebra and�nal coalgebra constructions as `canonical' categorical constructions, namely as adjointto suitable elementary functors, which allows one to solve the problem of establishingthe existence of initial algebras and �nal coalgebras by means of general categoricaltheorems as the \Special Adjoint Functor Theorem". Following (Barr, 1993), this is donehere, in particular, for the coalgebras of the (�nite) power-set functor. Moreover, themore general induction and coinduction principles available from free algebras and �nalcoalgebras respectively are shown to be founded on the ubiquitous categorical notion ofan adjunction.3.1. Free algebras of termsIn categories with binary coproducts, the free algebra of an endofunctor F over an objectX is the initial algebra of the endofunctor X+F , mapping an object Y to the coproductX + FY . Let us illustrate this by considering the free algebras over sets generated by asignature �, that is a set of function symbols � and a corresponding `arity' function.The carrier of a free algebra over a set X generated by a signature � is the set TX ofterms with variables x in X generated by �. Categorically, a signature can be seen as anoperator X 7! a�2�Xar(�)mapping a set X to the coproduct, indexed by the symbols in �, of powers Xar(�) of X .For instance, for the signature f0; sg corresponding to the natural numbers, which consistsof a constant (ie 0-ary symbol) and a unary symbol, one has X 7! X0 +X1 = 1 +X .For every signature � this operator extends to an endofunctor � : Set ! Set in theobvious way. The initial �-algebra exists and its carrier � is the set T0 of closed termsgenerated by �.



D. Turi and J. Rutten 14More generally, for every set X , the endofunctor(X +�) : Set! Setwith action Y 7! X+�Y , has an initial algebra with as carrier the set TX of terms withvariables x 2 X . Since, by Lambek's lemma, initial algebras are isomorphismsX +�TX �= TXthe set TX is a coproduct and its algebra structure is the copair of the injectionsinlX : X ! TX inrX : �TX ! TXThe left injection is the usual insertion of variables x 2 X into the terms t 2 TX , whichis usually left implicit. Formally, x is simply an element of the set X and it is only afterapplying inlX to it that one obtains a variable. This variable-making function is usuallywritten as �X = inlX : X ! TXThe other injection inrX : �TX ! TX is the operation which permits to construct a newterm given any n-ary operator � and terms t1; : : : ; tn; also the right injection is usuallyleft implicitly and one writes simply �(t1; : : : ; tn) for the resulting term.As T0, also TX , being an initial algebra, comes with an induction principle which,since TX is a coproduct, can be rephrased as follows. For every �-algebra structureh : �Z ! Z and every `valuation' function f : X ! Z of the variables in X as elementsof the algebra hZ; hi, there exists a unique function f ] : TX ! Z making
Zf f ] �f ]�X = inlX TX �TXX

�Zh
inrX

commute. Omitting the injections,f ](x) = f(x) and f ](�(t1; : : : ; tn)) = h(�(f ](t1); : : : ; f ](tn)))This inductive extension of h along the valuation function f is, formally, theinductive extension [f; h]# of the (X+�)-algebra structure on Z given by the copair
Z

�ZhfX [f; h]X+�Z



Foundations of Final Coalgebra Semantics 15For instance, this induction principle can be used to show that the operator T induct-ively extends to a functor T : Set ! Set. Indeed, to de�ne its action Tf on a functionf : X ! Y , take the inductive extension of inrY : �TY ! TY along the compositeinlY � f : fY �TY�Tf
X

�Y = inlY
�X = inlX (�Y � f)]inrY

inrX �TXTf =TY
TX

(3)To prove that this de�nition is functorial, ie T (idX) = idTX and T (g � f) = Tg � Tf , forg : Y ! Z, one exploits the uniqueness of inductive extensions: the function idTX �ts as(�X � idX)] = (�X )] and Tg � Tf �ts as (�Z � g � f)].Notice that a function f : X ! Y can be seen as a `renaming ' of variables and thenthe function Tf : TX ! TY is the inductive extension of such a renaming from simplevariables to complex terms with variables.3.2. AdjunctionsThe existence of an inductive extension f ] : TX ! Z of every algebra structure h :�Z ! Z along any function f : X ! Z shows that there is a bijection between �-algebra morphisms of type hTX; inrXi ! hZ; hi and functions of type X ! Z:f ]f hZ; hihTX; inrXi in SetFin SetZXMoreover, this bijection is natural in X and hZ; hi. This tells that the two (operationsextending to) functors X 7! hTX; inrXi and hZ; hi 7! Z are adjoint. (See, eg, (Mac Lane,1971, page 78) for the de�nition of adjoint functors.) The former is the functor from Setto Set� mapping a set to the free �-algebra over it; the latter is the forgetful functorU� : Set� ! Setmapping algebras to their carriers. The existence of free algebras is then equivalent tothe existence of a left adjoint for U�. Correspondingly, the above inductive extensionf ] is called the left adjunct of f .For every category of F -algebras such a forgetful functorUF : CF ! Cexists. If it has a left adjoint F ? : C! CFthen, for every object X in C, F ?X is the free F -algebra over X . (If F = �, then



D. Turi and J. Rutten 16F ?X = hTX; inrXi.) For every morphism f : X ! Z = UF hZ; hi in C, the left adjunctf ] : F ?X ! hZ; hi is the inductive extension of h along f .Dually, for every endofunctor F : C! C, if the forgetful functorUF : CF ! Cmapping a coalgebra to its carrier has a right adjointF? : C! CFin the sense that there is a natural bijectionff [ XUF hZ; ki = Z in Cin CFF?XhZ; kithen F?X is the cofree coalgebra of F over X . The right adjunct f [ of a morphismf in C as given by the above bijection is the coinductive extension of the coalgebrastructure k : Z ! FZ along the morphism f : Z ! X .One can check that, in categories with binary products, a cofree coalgebra of an endo-functor F over an object X is a �nal (X �F )-coalgebra. Therefore, letting jF?X j denotethe carrier UF (F?(X)) of the cofree coalgebra F?X ,jF?X j �= X � F jF?X j (4)This allows one to write the coinductive extension f [ : hZ; ki ! jF?X j of a coalgebrastructure k : Z ! FZ along a morphism f : Z ! X as follows:Z FZf [ Ff [F jF?XjjF?XjX sndXfstX
kf

where for fstX : jF?X j �= X�F jF?X j ! X and sndX : jF?X j �= X�F jF?X j ! F jF?X jare, respectively the �rst and second projection of the product (4). An example of sucha coinductive extension is given in x4.4.One important property of right (left) adjoints is that they preserve limits (colimits).(See, eg, (Mac Lane, 1971, Theorem V.5.1).) Therefore, if C has a �nal (initial) object1 (0), then F?1 (F ?0) is a �nal coalgebra (initial algebra). In particular, Set has a �nalobject, namely the singleton set, therefore the following proposition implies that the �nitepower-set endofunctor P� : Set! Set on Set has a �nal coalgebra.Theorem 3.1. The forgetful functor from the category of P�-coalgebras to Set has aright adjoint.Proof. It is an instance of the proof of (Barr, 1993, Theorem 1.2), which is stated in



Foundations of Final Coalgebra Semantics 17terms of `accessible' endofunctors. The core of the proof is the fact that the P�-coalgebraswith carrier of cardinality not greater than ! form a small `generating set' G, that is,every P�-coalgebra can be obtained by quotienting the disjoint union of a suitable set ofP�-coalgebras in G. The existence of such a small generating set allows one to apply the\Special Adjoint Functor Theorem". (For more details see (Turi, 1996, x13).)Corollary 3.1. The �nite power-set endofunctor has a �nal coalgebra.4. Coalgebraic BisimulationsThere are several notions of behavioural equivalence for a transition system; the mostgeneral one corresponds to a relation on its states called (strong) bisimulation. The�nal coalgebra of the behaviour corresponding to transition systems `classi�es' bisimilarstates in the sense that two states are bisimilar if and only if they have the same �nalcoalgebra semantics, ie the same abstract global behaviour. In other words, coinductioncan be `pulled back' to bisimulation. As a corollary, the �nal coalgebra is `internally fullyabstract'.In this section, all this is generalized to arbitrary endofunctors preserving `weak pull-backs'.Given a labelled transition system hX;Act;!i, two states x; y 2 X are (strongly)bisimilar if there exists a relation R on the sets of states X such that xRy (ie <x; y>2 R) and1 if x a�! x0 then y a�! y0 for some y0 such that x0Ry02 and, conversely, if y a�! y0 then x a�! x0 for some x0 such that x0Ry0More generally, one can consider two transition systems with the same set Act of labelsand relations R between their carriers X and Y . Then, a relation R is a (strong)bisimulation between the two transition systems if, for every x 2 X and y 2 Y suchthat xRy, the above clauses 1 and 2 hold.In terms of the coalgebraic representation (1) of transition systems, a relation Rbetween the carriersX and Y of two coalgebras hX; ki and hY; `i is a (strong) bisimulationbetween the two coalgebras when, for all x in X and y in Y such that xRy,| if <a; x0>2 k(x) then <a; y0>2 `(y) for some y0 such that x0Ry0| and, conversely, if <a; y0>2 `(y) then <a; x0>2 k(x) for some x0 such that x0Ry0Notice that bisimulations are themselves coalgebras. Indeed, from the above conditions,one can de�ne a coalgebra structureeR : R! P(Act �R)on the relation R by putting, using the in�x notation,<a;<x0; y0>>2 x eRy () <a; x0>2 k(x); <a; y0>2 `(y); and x0Ry0In the sequel, the above notion of bisimulation is called ordinary bisimulation, in orderto distinguish it from the following more general notion of `coalgebraic bisimulation'.Consider the two `legs' r1 : R ! X and r2 : R ! Y obtained by composing the



D. Turi and J. Rutten 18insertion R ,! X � Y of the relation R into the cartesian product X � Y with the �rstand second projection, respectively. If the relation R is an (ordinary) bisimulation, thenits legs r1 and r2 lift to coalgebra morphisms; that is, the two squares in
Br1 BYBX BRReRk `r2r1 Br2X Y (5)commute. The converse is also true; namely, if a relation lifts to a coalgebra of theabove behaviour endofunctor BX = P(Act � X) in a way that its legs also lift tocorresponding coalgebra morphisms as in the above diagram, then this relation is abisimulation. Indeed, the �rst condition is obvious, while the second and the third followfrom the commutativity of the left and the right diagram, respectively. Notice that theremight be more structures eR making the above diagram commute, corresponding to theseveral ways in which, in general, a relation can be a bisimulation.In general, for an arbitrary endofunctor B on a category C, a (coalgebraic) bisim-ulation (or a B-bisimulation) between two B-coalgebras hX; ki and hY; `i is a spanr2r1X YRof morphisms in C such that there exists a B-coalgebra structure eR : R ! BR whichmakes the diagram (5) commute. Notice that the stress is put on the fact that the legs ofthe span R lift to coalgebra morphisms, rather than on the actual (possibly not unique)coalgebraic structure of R. Therefore, let us forget about the coalgebraic structure of Rand write hY; `ihX; ki � r2Rr1to express that hR; r1; r2i is a span between the carriers X and Y which lifts to a bisim-ulation between the coalgebras hX; ki and hY; `i.In the sequel, with a slight abuse of notation, we often leave the legs r1 and r2 implicitand simply write R for the whole span hR; r1; r2i Also, whenever possible, we use thein�x notation xRy to express that there exists an element z of R such that r1(z) = xand r2(z) = y.Proposition 4.1. (Coinductive extensions identify bisimilar elements) For everybisimulation hR; r1; r2i between two coalgebras hX; ki and hY; `i the following diagram



Foundations of Final Coalgebra Semantics 19commutes.
h bB;'i
�hX; ki hY; `ik@ `@r2Rr1

This is a trivial consequence of the fact that both composites in the diagram are coalgebramorphisms to the �nal coalgebra, hence they must be the same.Semantically, this implies that if two programs are bisimilar, then they have the same�nal coalgebra semantics.Corollary 4.1. (Strong Extensionality) Every bisimulation on the �nal coalgebrahas equal legs, that is, the following diagram commutes.r1 r2� h bB;'ih bB;'i h bB;'i
R

In other words, in a �nal coalgebra one cannot distinguish between bisimilar elementswhich, semantically, amounts to the fact that �nal coalgebras of behaviours are intern-ally fully abstract.
4.1. Pullback bisimulationsA canonical way of de�ning spans is by `pullbacks'. Given two morphisms f : X ! Zand g : Y ! Z with a common codomain Z, their pullback is the universal amongthe spans between X and Y that form commuting squares with f and g; that is, a spanhP; p : P ! X; q : P ! Y i such that f � p = g � q and for every span hP 0; p0 : P 0 ! X; q0 :P 0 ! Y i such that f � p0 = g � q0 there exists a unique morphism u : P 0 ! P such that



D. Turi and J. Rutten 20p0 = p � u and q0 = q � u. Diagrammatically:
Yp q gf ZX Yq0uPp0 P 0

X (6)(Notice the notation for the pullback square.) In Set, the pullback of two functions f andg is the relation R = f<x; y> j fx = gyg with the evident projections as legs.In a category C with pullbacks, one can de�ne the internal equality EQ(X) of anobject X as the `kernel pair' of the identity on X , that is, as the following pullback.
X X XEQ(X)e1 e2

Proposition 4.2. For every coalgebra, the internal equality lifts to a coalgebraic bisim-ulation.Proof. Firstly, notice that the two legs e1 and e2 of the equality are the same. Next,consider the `diagonal' dX : X ! EQ(X)
e1EQ(X) XX e2dXXidX idXX

given by the universal property of EQ(X). (In Set, the value of the diagonal dX at anelement x of X is the pair <x; x>.) For any endofunctor B and any B-coalgebra hX; ki



Foundations of Final Coalgebra Semantics 21since the composite ei � dX is the identity on X , the diagramBeieiEQ(X) BX BXBdX
k

k B(EQ(X))XeiXcommutes; hence, the composite BdX � k � ei lifts the equality EQ(X) to a bisimulationon the coalgebra hX; ki: hX; kihX; ki �EQ(X)e2e1Consider the category Bisim(B) having as objects spans lifting to bisimulations of anendofunctor B and as morphisms triples of morphisms <r; f; g > making everything insight in R0rfR � hY 0; `0ihX 0; k0ihX; ki hY; `i g r02r01� r2r1 (7)commute { where f and g are morphisms in CB , while r is a morphism in C. Then theequality EQ( bB) on (the carrier of) a �nal coalgebra is a �nal object in this category. Thisis an immediate consequence of the fact that EQ( bB) is a pullback (in C):EQ( bB)h bB;'i h bB;'ir2 �`@k@hX; ki hY; `i�r1 e2e1R
(8)That is, from any span R lifting to a bisimulation there is a mediating morphism tothe equality EQ( bB) on a �nal coalgebra because the two legs of R can be coinductivelyprolonged to form a suitable cone on (the carrier of) a �nal coalgebra. Therefore:Proposition 4.3. The internal equality of the �nal coalgebra lifts to the �nal bisimula-tion.This gives an alternative way of understanding the fact that coinductive extensionsidentify bisimilar elements.



D. Turi and J. Rutten 224.2. Coinduction pulled back to bisimulationIf the pullback of the coinductive extensions of two coalgebras lifts to a bisimulation,as, eg, when the functor B under consideration `preserves weak pullbacks', then thispullback is the �nal bisimulation between the two coalgebras. In other words, coinductioncan be `pulled back' to bisimulation. Together with the above property that coinductiveextensions identify bisimilar elements, this gives that two programs have the same �nalcoalgebra semantics if and only if they are bisimilar.Let B be an endofunctor on a category C with pullbacks. Recall that pullbacks, likeall universals, are determined by two conditions: uniqueness and existence. When onlythe existence part is known to hold one speaks of a weak pullback (and of a weakuniversal in general). Now, not all pullbacks lift to B-bisimulations, but a su�cientcondition is that the endofunctor B preserves weak pullbacks, that is, the imageunder B of a weak pullback is still a weak pullback.Proposition 4.4. If an endofunctor B preserves weak pullbacks then pullbacks lift toB-bisimulations. (Cf (Aczel and Mendler, 1989, Proposition 6.2).)Proof. If the image under B of a weak pullback is still a weak pullback, then everypullback in C of morphisms which are coalgebra homomorphisms lifts to aB-bisimulation.Indeed, since pullbacks are also weak pullbacks, for all f : hX; ki ! hZ; ji and g :hY; `i ! hZ; ji in CB , the existence of a (possibly not unique) suitable coalgebra structureeR : R ! BR for the pullback R of f and g in C is ensured by the weakly universalproperty of the weak pullback BR:r2gfr1X R BgBr1`k j BYeR
Z Y BZBfBX Br2BR

(The coalgebra structures k and ` turn the legs of R into a cone over the diagram forwhich BR is a weak pullback.)Let us check that the behaviour endofunctor BX = P(Act �X) preserves weak pull-backs and hence, by the above argument, pullbacks lift to (ordinary) bisimulations.The problem of showing that the functor B preserves weak pullbacks can be reducedto the problem of showing that B maps (ordinary) pullbacks to weak pullbacks. Indeed,the following holds.Observation 4.1. In Set, weak pullbacks embed pullbacks. That is, the diagramWw1 w2f gX YZ



Foundations of Final Coalgebra Semantics 23is a weak pullback diagram if and only if there exists an injection m : R >! W of thepullback R = f<x; y>j fx = gyg of f and g into W such thatmR WX f
r2r1 gw1 w2 ZYcommutes.Proposition 4.5. Pullbacks lift to ordinary bisimulations. From the above obser-vation, if BR = f<a; x; y>j a 2 Act; fx = gygis a weak pullback for Bf : BX ! BZ and Bg : BY ! BZ, the set BW inherits theweak universality of BR by means of the mediating morphism Bm : BR! BW .In turn, in order to prove that BR is a weak pullback for Bf and Bg it su�ces to provethat the (ordinary) pullback R0 of Bf and Bg factorizes through it in the sense thatthere exists a function h : R0 ! BR such that r0i = Bri � h:BgBf

R0 h Br1r01 r02Br2BRBX BZBYIndeed, then every other cone (f 0; g0) over the co-span hBf;Bgi factorizes through thepullback as follows. R0f 0 g0� hBR r02r01 BfBr1 BgBr2BX BZBYLet us now try and de�ne such a function h : R0 ! BR from the pullback R0 of Bf andBg to the image under B of the pullback R of f and g. By de�nition of pullbacks in Set,the set R0 is consist of those pairs<f<ai; xi>gi2I ; f<aj ; yj>gj2J>such that the index sets I and J are �nite andBff<ai; xi>gi2I = Bgf<aj ; yj>gj2J



D. Turi and J. Rutten 24The latter holds if and only if for every i 2 I there exists a j 2 J such that<ai; fxi>=<aj ; gyj> (ie ai = aj ; fxi = gyj)and, conversely, for every j 2 J there exists an i 2 I such that <ai; fxi>=<aj ; gyj >.But then one can de�ne h : R0 ! BR as mapping every pairf<ai; xi>gi2I R0 f<aj ; yj>gj2Jto the set f<ai; xi; yj> j ai = aj ; fxi = gyjg 2 BRThis gives the desired factorization. Notice that the mediating function h is not unique.We have seen the category Bisim(B) of all B-bisimulations. For every two B-coalgebrashX; ki and hY; `i, one can consider the evident subcategory Bisim(hX; ki; hY; `i) of B-bisimulations between hX; ki and hY; `i.Proposition 4.6. Let B be an endofunctor on a category C with pullbacks and let the�nal B-coalgebra exist. If pullbacks lift to B-bisimulations, then the pullback (in C) ofthe coinductive extensions of two B-coalgebras hX; ki and hY; `i lifts to the �nal objectin Bisim(hX; ki; hY; `i). � hY; `ihX; kik@ `@�
h bB;'iWrite k;�̀ for the span obtained above by `pulling back' the coinductive extensions ofthe coalgebra structures k and `. Then, in Set, if the span k;�̀ lifts to a bisimulation,x k;�̀ y () k@(x) = `@(y)for any two elements x 2 X and y 2 Y . (The implication from left to right follows theproperty that coinductive extensions always identify bisimilar elements.) Semantically:Theorem 4.1. (Full Abstraction) Given a coalgebraic operational model [[-]] : Prog !B(Prog) of a language with programs P 2 Prog and behaviour B such that pullbacks liftto B-bisimulations (as, eg, in Proposition 4.4), two programs P; P 0 2 Prog areB-bisimilarif and only if they have the same �nal coalgebra semantics. That is, for behaviours on`concrete' categories like Set, P [[-]]� P 0 () [[P ]]@ = [[P 0]]@



Foundations of Final Coalgebra Semantics 254.3. From weakly �nal to �nal coalgebrasLet us look at a concrete description in terms of trees and bisimulation of the �nalcoalgebra for the �nite power-set endofunctor P� on Set. Similar characterization holdalso for the power-set endofunctor PS on SET and for the behaviours BX = P�(Act�X)and BX = PS(Act �X).Recall that the coalgebras of the �nite power-set endofunctor P� are in a one-to-onecorrespondence with the �nitely branching, directed graphs:x �! x0 () x0 2 k(x)Next, notice that the value of the coinductive extension of a coalgebra structure k :X ! P�(X) at an element x of X is, omitting the �nal coalgebra isomorphism ' : cP� �=P�cP�, is given by the equationk@(x) = fk@(xi) j xi 2 k(x)gwhich can be seen as the recursive de�nition of a tree:k@(x1) k@(xn)k@(x) = (for k(x) = fx1; : : : ; xng)� � ��This is a rooted tree, �nitely branching, and possibly of in�nite depth. Neither nodes norarcs are labelled. The set T of these rooted �nitely branching trees can be seen as (thecarrier of) a coalgebra of the �nite power-set functor: every tree � 2 T is mapped to the(�nite) set f�1; : : : ; �ng of children of its root:� � ��� 7�!�1 �n� ���1 � � � �nThis coalgebra is not a �nal but a weakly �nal coalgebra, that is, it is a coalgebra whichensures the existence but not the uniqueness of coinductive extensions. For example, thecoalgebra structure k : X = fx; x1; x2; x01; x02g ! P�(X)k(x) = fx1; x2g k(x1) = fx01g k(x2) = fx02g k(x01) = 0 = k(x02)can be extended to both the following trees.� ������ �
Proposition 4.7. The �nal coalgebra of the �nite power-set functor is the set of rooted�nitely branching trees quotiented by the corresponding (�nal) coalgebraic bisimulation.



D. Turi and J. Rutten 26In order to prove the above proposition, consider the quotient of a P�-coalgebra hX; kimodulo its �nal bisimulation Rk (which, by the above considerations, exists). Categoric-ally, this amounts to taking the coequalizer q : X ! X=Rk of the two legs r1; r2 : Rk ! Xof the bisimulation Rk: r2 P�(X=Rk)P�(Rk)Rk r1
P�(q)P�(r2)P�(r1) q X=RkXP�Xk

Notice this lifts to a coequalizer in the category of coalgebras. The coalgebra structurefor X=Rk is given by the universal property of the coequalizer. Indeed, since the legs ofthe bisimulation Rk are coalgebra morphisms, the composite function P�(q) � k : X !P�(X=Rk) equates the two legs of Rk. The corresponding unique mediating function fromX=Rk to P�(X=Rk) is the desired structure. Write hX; ki=Rk for this quotient coalgebra.Lemma 4.1. From every coalgebra there is at most one morphism to the quotientcoalgebra hX; ki=Rk.Proof. Consider two coalgebra morphisms f; g : hY; `i ! hX; ki=Rk. Since, as shownin the previous section, the internal equality always lifts to a coalgebraic bisimulationEQ(Y ) hY; `ihY; `i � e2e1one has that the equality on Y with as legs the composites f �e1; g �e2 : EQ(Y )! X=Rklifts to a bisimulation on the quotient coalgebra hX; ki=Rk:�EQ(Y )
hX; ki=Rkf ghX; ki=Rke1hY; `i e2hY; `iTherefore, for every y 2 Y , f(y) is bisimilar to g(y). Since, by construction, the quotienthX; ki=Rk is strongly extensional , that is, bisimulation is the equality, one has that f(y)is equal to g(y) for every y 2 Y , hence f = g and the lemma is proved. (Cf (Aczel, 1988,Theorem 2.19).)Therefore, the quotient modulo bisimulation of a weakly �nal P�-coalgebra is necessarily�nal: the existence of a morphism from every coalgebra is guaranteed by being the quo-tient of a weakly �nal coalgebra, the uniqueness is guaranteed by the above property ofquotients modulo bisimulation. In particular, the weakly �nal coalgebra of rooted �nitely



Foundations of Final Coalgebra Semantics 27branching trees can be thus quotiented by bisimulation to yield the �nal coalgebra of the�nite power-set functor. This concludes the proof of the above proposition.Notice that the �nite power-set functor is not !op-continuous, that is, the limit of the followingchain is not a �xed point for the �nite power-set functor P�.P�211 P�1 P�21P�11 � � �Indeed: Each object P�n1 of the chain is the set of �nitely branching trees with depth at mostn, quotiented by bisimulation. Correspondingly, the following sequence of trees belong to theabove chain. �� � � �� ��� �� ��� �� �
The problem is then that the limit has to contain the following tree with in�nitely manybranches, � 1� � �� �� ��� 1...��

�
while the �nal coalgebra, as shown above, contains only �nitely branching trees.The above lemma can be used to prove the following generalization of Proposition 4.7.Proposition 4.8. The quotient modulo B-bisimulation of a weakly �nal B-coalgebra, ifit exists, is a �nal B-coalgebra.4.4. Bisimulations along morphismsThe fact that coinductive extensions can be pulled back to bisimulations can be gen-eralized to coinductive extensions along morphisms . This leads to a new, more generalnotion of ordinary bisimulation in which not only the actions but also some (propertiesof the) states can be observed.Let B : C ! C be an endofunctor such that the forgetful functor UB : CB ! C has aright adjoint. Recall that �nal coalgebras bB �= B bB are a special case of cofree coalgebrasB?X , namely B?1, and that, correspondingly, the coinduction principle of �nal coalgebrasgeneralizes to the arbitrary cofree coalgebras: for every coalgebra structure k : Z ! BZ



D. Turi and J. Rutten 28and morphism f : Z ! X one has a unique coalgebra morphism f [ : hZ; ki ! B?X ,namely the coinductive extension of k along f . (Cf x3.2.)Next, consider a B-bisimulation hY; `ihX; ki � r2Rr1and two morphisms f : X ! Z and g : Y ! Z in C such that the diagram
Zr1f gr2X R Y (9)commutes. Then also the diagram �hX; ki hY; `if [ g[B?Z r2Rr1

commutes, because both composites f [ � r1 and g[ � r2 �t as the unique coinductiveextension of the (no matter which!) coalgebra structure on R along the composite f �r1 =g � r2 : R! Z.If pullbacks lift to B-bisimulation, then the pullback (in the base category) of thecoinductive extensions f [ and g[ of k and ` along f and g is the �nal object in theevident category of bisimulations making (9) commute.Example 4.1. Consider the simple behaviour BX = 1+Act�X (see x2.2) and, corres-pondingly, ordinary bisimulation for deterministic transition systems. Let the set Act ofactions be trivial, that is, let Act be made of only one action a. Let hX; ki and hY; `i bethe same coalgebra having as carrier the set Z of integers and as structure ` : Z ! B(Z)the one corresponding to the following (deterministic) transition system: 0 is inert, apositive integer n performs a transition to its predecessor n � 1, and a negative integer�n performs a transition to its successor �n+ 1:0 # � n a�! n� 1 � n a�! �n+ 1Finally, let Z be the three-elements set f0;|;}g. Thus:X = Z = Y Z = f0;|;}g Act = fagNow, di�erent bisimulations are possible according to the choice of the functions f; g :



Foundations of Final Coalgebra Semantics 29Z ! f0;|;}g. Let us �x the function g : Z ! f0;|;}g to be the one mapping oddnumbers to | and even numbers to }. If f is equal to g, then every number is bisimilarto itself and to its opposite. For instance,f [(�3) = | a�! } a�! | a�! 0 = g[(3)and thus �3 is bisimilar to 3 (wrt g).The above amounts to assume that one can observe in both transition systems whethera number is odd or even. If, instead, in the �rst transition system one can observe thisonly for positive numbers, thus, eg, f(�n) = 0 and f(n) = g(n), then one has that apositive number n is bisimilar to both �n and n (wrt f and g) but its opposite �n isnot bisimilar to any number in the second transition system.Finally, if one cannot observe at all in the �rst transition system whether a number isodd or even (ie f(z) = 0 for all z 2 Z) then only the two 0's are bisimilar.(Notice that the morphisms f and g can be regarded as abstract interpretations of thestates.)Example 4.2. Another example is when one has a distinguished subset Obs(X) � X ofstates which are `observable'. This can be expressed by taking Z = Obs(X) [ f?g andf : X ! Obs(X) [ f?g to bef(x) = ( x if x 2 Obs(X)? otherwiseNotes. The notion of an ordinary bisimulation stems from the work of Park (1981) and Milner(1980) on concurrency. Coalgebraic bisimulations for relations between sets were introducedin (Aczel and Mendler, 1989). (See also the dual algebraic congruences in (Manes, 1976, page167).) The more general use of spans stems from (Joyal et al., 1993), where, however, `openmorphisms' are used instead of coalgebraic homomorphisms. The idea is that, given a categoryM of operational models, and a subcategory P ,! M of computations (or `path objects'), twomodels X and Y (ie two objects of M) are P-bisimilar if there is a span of P-open morphisms inM. When M is the category of transition systems and P is a suitable category of `abstract' �nitetransition sequences, then a morphism f : X ! Y of transition systems is P-open if and only if itis a coalgebra morphism f : hX; ki ! hY; `i, for k and ` the coalgebra structures corresponding,via (1), to the transition systems on X and Y , respectively. It would be interesting to investigatewhether this correspondence between open morphisms and coalgebra homomorphisms holds alsofor di�erent notions of path objects and endofunctors.For a large class of functors over cpos, a generalized notion of bisimulation is consideredin (Pitts, 1994a) which, more subtly, amounts to �rst lifting the behaviour endofunctors to acategory of relations and then studying the coalgebras therein. A systematic way of de�ningthese liftings for `simple' functors is described in (Hermida and Jacobs, 1995).5. Non-Well-Founded SetsThis section is devoted to a coalgebraic presentation of Peter Aczel's theory of \non-well-founded sets" (Aczel, 1988). A categorical duality is proved between the `anti-foundationaxiom' giving non-well-founded sets and the `foundation axiom': it is shown that the



D. Turi and J. Rutten 30former is equivalent to postulating that `the universe V = PSV is a �nal coalgebra',while the latter is equivalent to `V = PSV is an initial algebra'. (The endofunctor PSmaps a class to the class of its (small) subsets.)The semantic motivation for the use of anti-foundation is that it permits to provethe \Special Final Coalgebra Theorem" (Aczel, 1988) which states that, under mildassumptions, the greatest �xed point of an endofunctor on (possibly non-well-founded)sets is a �nal coalgebra.The special �nal coalgebra theorem is stated in terms of the \Solution Lemma". The�nal coalgebra presentation of anti-foundation adopted here renders this lemma (andits equivalence with anti-foundation) trivial. Correspondingly, the `uniformity on maps'condition which an endofunctor has to satisfy in order for the special �nal coalgebratheorem to hold can be formulated in a more transparent way than in (Aczel, 1988).5.1. Basic Set TheoryOne way of understanding the abstract notion of a set is as a collection x such that itselements have \no internal structure whatsoever" and x itself has \no internal structureexcept for equality and inequality of pairs of elements". (Cf (Lawvere, 1976, page 119).)Axiomatically, this corresponds to taking the membership relation `2' as the only prim-itive notion of set theory and to postulating the following `extensionality axiom', the �rstaxiom of set theory.Extensionality: Two sets are equal i� they have the same elements.Next, for every property P in a (�rst-order) language with membership and equality only,one would like the collection fx j P(x)g of sets which have the property P to be a set.However, Russell's paradoxical set fx j x 62 xg shows that this `strong comprehensionaxiom' cannot be stated in its full generality. One needs to consider properties relativeto the elements of an already de�ned set. This leads to the `comprehension axiom', thesecond axiom of set theory.Comprehension: For every property P and every set v, the collectionfx j P(x) ^ x 2 vgis a set.As comprehension can be applied only to members of already de�ned sets, it is necessaryto postulate the existence of some sets, either primitive or derived by applying some basicoperators:Empty Set: There exists a set 0 with no elements.Pairing, Union, Power-Set: fx; yg, Sx, P(x) are all sets, for x; y sets.As usual, Sx and P(x) stand for the collection of all members of members of x and the



Foundations of Final Coalgebra Semantics 31collection of all subsets of x, respectively. In turn, the subset relation `�' can be derivedfrom the membership relation:x � y () 8v (v 2 x) v 2 y)By means of the union operator one can de�ne an operator s acting as successor asfollows: s(x) = x [ fxg. The existence of an in�nite set can be stated by postulating theexistence of a set containing the natural numbers. That is:In�nity: There exists a set containing 0 and closed under the successor operator s.(The axioms above, as well as those given in the sequel, are written for convenience innatural language but note that they can also be expressed in the language of set theory{ see, eg, (Levy, 1979).)Further useful notions can be derived from the above axioms, like, for instance, thenotion of ordered pair : <x; y> = fx; fx; yggA formal de�nition of function can then be given as a collection f of ordered pairs suchthat for every x there exists a unique y with < x; y >2 f . Two more axioms aboutfunctions are then usually added:Replacement: The image of a set under a function is a set.Choice: Every surjective function has a `right inverse'.A right inverse for a function f : a ! b is a function g : b ! a such that f � g is theidentity on b. The above axiom of choice is equivalent to postulate that for every set athere exists a choice function, that is, a function f such that, for every x 2 a, f(x) 2 x.The above axioms (extensionality, comprehension, empty set, pairing, union, powerset, in�nity, replacement, choice) are the basic axioms of set theory; let us call the theoryassociated with (ie, the collection of all sentences derivable from) them basic set theoryand the corresponding category of sets and functions Set. (Basic set theory is usuallycalled ZFC� in the literature { see, eg, (Levy, 1979).)Classes. Even though the collection fx j P(x)g of all sets x having a given property Pmight not be a set, it can still be of interest for set theory. Such `speci�able' collectionsare called classes. Clearly, a set is a class, but the converse is not true, in which caseone speaks of a proper class. (Also the terminology `large set ', vs `small set ', is used.)In the sequel, lower case letters are used for (small) sets and capital letters for classes.The equality between classes is determined by their small elements. That is, two classesX = fx j P(x)g and Y = fx j P0(x)g are equal if and only if P and P0 hold for the same(small) sets.An example of a proper class is the universe of sets, namely the collection of all sets:V = fx j x = xg:



D. Turi and J. Rutten 32(Since the property x = x trivially holds for all sets, the class V is the collection of all setsindeed.) Notice that di�erent properties may specify the same class. For instance, anyproperty other than `x = x' which holds for all sets can be used to specify the universe.Next, let SET be the category of classes and (class) functions corresponding to basicset theory. The claim is that the universe V can be seen as the carrier of both an algebraand a coalgebra structure of the endofunctorPS : SET! SET X 7! fx j x is a set ^ x � Xgwhich maps a class to the class of its (small) subsets. By taking subsets rather thansubclasses one overcomes the cardinality problem which prevents the unrestricted power-set from having a �xed-point.Proposition 5.1. The universe V is a strict �xed point V = PSV of the endofunctorPS : SET! SET.Proof. The universe V is, by de�nition, the largest class, hence, since PSV is itself aclass, PSV � V . For the converse it is su�cient to prove that every set x is a subset ofV . That is, for every y 2 x, y is also in V . This is immediate from the fact that y is aset.Therefore, the identity on V can be seen both as a PS-algebra and as a PS-coalgebrastructure for V .5.2. Well-Founded Sets and FoundationFrom the axioms of basic set theory alone it is not possible to draw a canonical pictureof what the universe looks like, a picture independent of the speci�c interpretation onemight give to the theory. This was felt as a problem already in the early developmentsof set theory. The solution was found in the `foundation axiom', which was then addedto basic set theory. This axiom restricts the universe to the `smallest' of all possibleones. Then the picture arises of a universe in which sets are constructed by iterativeapplications of the power-set operator starting from the empty set. Every set has a rank ,namely the stage at which it appears in such a `cumulative hierarchy '.In this section it is proved that the foundation axiom is equivalent to postulating thatthe universe V = PSV is the initial algebra of the power-set endofunctor PS on SET.A set x is well-founded with respect to the membership relation `2' if either it isempty or has a least element with respect to 2. In other words, there is no in�nitelydescending chain of elements starting from x. Correspondingly, let the classW = fx j x is well-founded with respect to the relation 2gbe the universe of well-founded sets.The `foundations axiom' amounts to postulating that all sets in the universe V arewell-founded, that is,Foundation Axiom: V =W



Foundations of Final Coalgebra Semantics 33Now, notice that the class PSW of (small) subsets of well-founded sets is the same asW , because the elements of a well-founded set are themselves well-founded. ThusPSW =Wand the identity on W can be seen as a PS-algebra structure.Proposition 5.2. The universe of well-founded sets is an initial PS-algebra.Proof. For every PS-algebra structure h : PSX ! X there exists a unique functionh# :W ! X such that the following diagram commutes.PSWW PSXhPS(h#)
Xh#That is, h#(0) = h(0)h#fxigI = hfh#(xi)gIThe proof is by straightforward induction on the (well-founded!) membership relation 2.An immediate consequence of the initiality of W is the existence of a `rank' function,mapping every well-founded set to a suitable `ordinal'. An ordinal is a well-founded setwhich is totally ordered by the membership relation and which is `transitive'. (A transit-ive set is a set x such that every element y 2 x is also a subset y � x.) Correspondingly,one can form the class O of all ordinals, which is a subclass of W .If � and � are two ordinals such that � 2 �, one usually writes � < �. The �rstordinals are: 0, s(0), s2(0), etc. The �rst limit ordinal is ! = Sn2N sn(0), which, by thein�nity axiom, is indeed a set. In general, because every ordinal is totally ordered by 2,the union S f�igI of a set f�igI of ordinals is the least upper bound of the �i's. As aconsequence, the union operator is a PS-algebra structure on the class O of ordinals:S : PS(O)! O f�igI 7! Sf�igIThe inductive extension rank = S# : W ! O of this algebra structure on O is thefunction assigning a `rank' to every well-founded set. This can be thought of as the stageat which a well-founded set is constructed in an idealized construction starting from theempty set and then iteratively applying the power-set functor PS :rank(0) = 0rankfxigI = Sfrank(xi)gIAnother consequence of the initiality of W is that W = PSW is the least (pre-) �xedpoint for PS : W = lfp[PS]



D. Turi and J. Rutten 34That is, for every class X such that PSX � X , one has that W � X . Indeed, regardingthe inclusion of PSX into X as a function � : PSX ,! X , one has that its inductiveextension �# :W ! X is of the following form.�#(0) = 0�#fxigI = �f�#(xi)gIThen, to see that �# is the inclusion of W into X , it su�ces to notice that the power-setfunctor PS `preserves inclusion functions'that is, if � : X ,! Y is the inclusion of a subclass X of Y into Y , then the functionPS(�) : PSX ! PSY is the inclusion of PSX into PSY .Usually, initial algebras are unique up to isomorphism, but in this setting one has astronger result: PSX = X is an initial PS-algebra () X =W (10)That is, any other initial algebra which is a (strict) �xed point of PS is not only isomorphicbut equal to W . In order to prove this, ie the non-trivial implication from left to right,one can use very much the same argument as the one used above to prove that W is theleast �xed point of PS .Therefore, by taking the X in (10) to be the universe V , one has that the foundationaxiom `V = W ' is equivalent to postulating that the universe V is an initial algebra ofthe power-set functor:Theorem 5.1. (Foundation is Initiality)V =W () PSV = V is an initial PS-algebra.5.3. Anti-Foundation and FinalityAs shown in the introduction, not all sets occurring in the mathematical practice are well-founded. In order to ensure the existence of non-well-founded sets , one can postulatethe `anti-foundation axiom', which here is shown to be the dual of the initial algebraformulation of `foundation':Foundation: PSV = V is an initial PS-algebra.Anti-Foundation: V = PSV is a �nal PS-coalgebra.That is, anti-foundation postulates that the universe is the `largest' possible one, whilefoundation postulates that it is the `smallest'.Theorem 5.2. (Final PS-Coalgebra Theorem.) The endofunctorPS : SET! SET X 7! fx j x is a set ^ x � Xgon the category SET of classes (ie large sets) which are de�nable within basic set theory,has a �nal coalgebra.



Foundations of Final Coalgebra Semantics 35The above theorem stating the existence of a �nal PS-coalgebra is an instance of the \�nalcoalgebra theorem" in (Aczel and Mendler, 1989). It can also be seen as an instance ofTheorem 3.1, replacing the �nite power-set P� by PS ; correspondingly, the core of theproof is the fact that the coalgebras of the restriction P : Set ! Set of the endofunctorPS to the category Set of small sets form a `generating class' for the PS-coalgebras; thatis, every PS-coalgebra can be obtained by quotienting the disjoint union of a suitableclass of P-coalgebras.By considering the unlabelled version of the correspondence (1) given in Section 2 onehas that there is a one-to-one correspondence between directed (small) graphs hX;!iand coalgebras k : X ! PX : for every x; x0 2 X ,x �! x0 () x0 2 k(x)Similarly, the coalgebras of the power-set functor PS are the same as the directed `locallysmall' graphs, that is, the (possibly large) directed graphs such that the collection ofchildren of every node is a (small) set.Peter Aczel's original formulation of the anti-foundation axiom is in terms of smallgraphs and `decorations'. A decoration for (the graph corresponding to) a PS-coalgebrahX; ki is a coalgebra morphism from hX; ki to V = PSVVPSVPSX
f

PSfkXThat is, a function f from X to the universe V such that, for every x 2 X ,f(x) = ff(x0) j x0 2 k(x)gIn terms of graphs, this corresponds to a function mapping every node to a set in thefollowing way. f(x) = ff(x0) j x �! x0gTherefore, by de�nition of �nal coalgebra, the coalgebra V = PSV is �nal if and onlyif every (directed) locally small graph has a unique decoration. Now, the claim is that`locally small' can be replaced by `small' in the above equivalence. That is:Lemma 5.1. Every locally small graph has a unique decoration if (and only if) everysmall graph has a unique decoration.Proof. (By contradiction.) Assume that every small graph has a unique decorationand that there are two distinct decorations f and g of (a coalgebra hX; ki correspondingto) a locally small graph. Then there is a node x 2 X such thatf(x) 6= g(x)Now, the subgraph of hX; ki accessible from x is not only locally small but also (totally)small, that is, there are only set-many nodes accessible from x, because every node has



D. Turi and J. Rutten 36only set-many children. But then f and g are both decorations for this small subgraph,which, by hypothesis, implies that f(x) = g(x)(The same argument can be used to prove that the class of small PS-coalgebras forms agenerating class for the PS-coalgebras.)As a consequence, the postulate `V = PSV is a �nal PS-coalgebra' is equivalent to PeterAczel's original formulation of anti-foundation (which is equivalent to Forti and Honsell's\X1-axiom" (Forti and Honsell, 1983)):Anti-Foundation Axiom: Every directed small graph has a unique decoration.That is:Theorem 5.3. (Anti-Foundation is Finality.) Every directed small graph has aunique decoration if and only if V = PSV is a �nal PS-coalgebra.Notice that no axiom is needed in order to obtain a unique decoration for a well-founded graph: One can check that the class WG of well-founded directed small graphs isa (strict) �xed point for the power-set functor PS , and, moreover, that PS(WG) = WG isan initial PS-algebra. Therefore WG is isomorphic to the universe of well-founded sets Wand the image under this isomorphism of a well-founded graph is its unique decoration.(Cf \Mostowski's collapsing lemma" in (Aczel, 1988).)When anti-foundation is postulated also non-well-founded graph have a unique decor-ation, but the converse is not true anymore. That is, there exist (non-well-founded) setswhich `decorate' di�erent graphs. An example is the archetypal non-well-founded set,namely the self-singleton set 
 = f
gwhich is a member (and the only member) of itself. If anti-foundation is assumed, thenboth the root of the graph with one node and one arc�and the root of the graph consisting in one in�nite path� �! � �! � �! � � �are necessarily mapped to 
 by the corresponding unique decorations.Notice that, besides applications in the semantics of programming languages (eg,(Aczel, 1988; Mukai, 1991; Rutten and Turi, 1993; Aczel, 1994; Baldamus, 1994; Honselland Lenisa, 1995; Hartonas, 1997)), non-well-founded sets have been extensively used inSituation Theory (eg, (Barwise and Etchemendy, 1987)), where they are better known ashypersets. (Correspondingly, models of the universe of non-well-founded sets are alsocalled hyperuniverses.)



Foundations of Final Coalgebra Semantics 37Reasoning about non-well-founded sets: bisimulation. By the extensionality axiom, theequality between two sets is determined by the membership relation. One of the con-sequences of foundation is that, since then the membership relation is well-founded, onecan use induction to reason about (the equality between) sets. Categorically, this in-duction principle follows from the fact that foundation postulates that the universe isan initial algebra. Dually, anti-foundation, by postulating that the universe is a �nalcoalgebra, gives a coinduction principle for reasoning about (possibly non-well-founded)sets.Now, as shown in Section 4, if an endofunctor preserves weak pullbacks then coin-duction (with respect to its �nal coalgebra) can be `pulled back' to the correspondingcoalgebraic notion of bisimulation. In particular, the power-set functor PS does preserveweak pullbacks; the proof is essentially the same as the one given in Section 4 for thebehaviour BX = P(Act �X).By instantiating the general de�nition of coalgebraic bisimulation (Section 4) to thePS-coalgebras one has that a PS-bisimulation for a coalgebra hX; ki is a span R suchthat, for all x1; x2 in X , if x1Rx2 then| if x1 �! x01 then x2 �! x02 for some x02 such that x01Rx02| and, conversely, if x2 �! x02 then x1 �! x01 for some x01 such that x01Rx02.(Here the notation x �! x0 stands for `there is an arc from x to x0 in the graph corres-ponding to the coalgebra hX; ki'.)In particular, a PS-bisimulation R for the universe V is such that, for every set xand y, if xRy then for every set x0 in x there exists a set y0 in y such that x0R y0 and,conversely, for every set y0 in y there exists a set x0 in x such that x0R y0. Therefore, bystrong extensionality,x = y () 9R (xR y ^ (8x0 2 x; 9y0 2 y; x0R y0) ^ (8y0 2 y; 9x0 2 x; x0R y0))5.4. Systems of Set-Equations as CoalgebrasThe self-singleton non-well-founded set 
 = f
g can be seen as the unique solution ofthe `set-equation' x = fxgIn general, all non-well-founded sets arise from systems of set-equations with, on theleft hand side, variables x 2 X , and, on the right hand side, well-founded sets, possiblycontaining variables from X . This is the content of the \Solution Lemma", which isproved below in an elementary way thanks to the coalgebraic account of anti-foundation(and the initial algebra presentation of well-founded sets).The de�nition of the universe of well founded setsW can be made parametric: for every(possibly large) set X , the expanded universe of well-founded sets WX is the classof all well-founded sets with variable x 2 X . That is, every set in WX is either empty,or an element of X , or it has a least element with respect to the membership relation2. For X = 0 this yields the standard universe W0 of well-founded sets. Thus, in the



D. Turi and J. Rutten 38sequel, W stands for an operator mapping a (large) set to the corresponding expandeduniverse of well-founded sets, rather than for the simple universe of well-founded sets.The fact that W0 is the least (strict) �xed point of the power-set functor PS and thatPSW0 = W0 is an initial PS-algebra generalizes as follows: the class WX is the least(strict) �xed point of the endofunctor X+PS(-) on SET andX + PSWX =WX (11)is an initial algebra for this endofunctor. The universal property given by initiality canbe used to extend the operator W to a functor, like in diagram (3) of x3.1. That is, forevery function f : X ! Y , the function Wf : WX ! WY is the inductive extensionof the algebra structure inrY : PSWY ! WY along the composite �Y � f : X ! WY ,where the left injection �Y = inlY : Y !WY is the usual insertion-of-variables function.Observation 5.1. By the above de�nition and the one of free algebras in x3.2, theforgetful functor from the category of PS-algebras to SET has a left adjoint, namely thefunctor mapping a class X to the free algebra (11).(In general, every free PS-algebra over a possibly large set X can be used to model theuniverse of Zermelo-Fraenkel set theory expanded with elements of X as atoms . Thisfact can be seen as an instance of a more general result in (Joyal and Moerdijk, 1995),namely Theorem II.5.5, which is stated in terms of free \Zermelo-Fraenkel algebras andintuitionistic set theory.)Now, the idea is that a system of `set-equations' like, eg,x = fx; fyggy = fy; 0g (12)can be seen as a function k mapping the variables x; y; : : : 2 X of the system to elementsof PSWX , ie sets of well-founded sets possibly with variables in X . For instance, theabove system corresponds to a function k : fx; yg = X ! PSWX mapping x to fx; fyggand y to fy; 0g. Therefore, in general, a system of set-equations in X is a coalgebrahX; ki of the composite endofunctor PSW on SET.In order to solve a system of set-equations hX; ki one can (postulate anti-foundationand) use the �nality of the universe V = PSV . For this, one �rst needs to extend thePSW -coalgebra structure k : X ! PSWX to a PS-coalgebra structure as follows. SinceWX = X + PSWX is a coproduct, one can form the copair [k; id] : WX ! PSWX of kand the identity id on PSWX . This is a PS-coalgebra structure behaving as k on x 2 Xand as the identity on v 2 PSWX . Its coinductive extension k = [k; id]@ : WX ! Vwith respect to the �nal PS-coalgebra V = PSV is then the (unique) solution of the



Foundations of Final Coalgebra Semantics 39system k : X ! PSWX of set-equations:
[k; id] Vk �X

PSk PSVPSWX
k = [k; id]@X WX

Omitting, as usual, the injections, and letting v and v0 range over objects of type PSW ,one has that k(x) = fk(v) j v 2 hxg and k(v) = fk(v0) j v0 2 vgFor example, the unique solution of equation k(x) = fxg is the self-singleton (non-well-founded) set k(x) = fk(x)g, that is, k(x) = 
. Similarly, the solution of the abovesystem (12) is k(x) = fk(x); fk(y)ggk(y) = fk(y); 0gIn terms of graphs, the sets k(x) and k(y) correspond to
��� and ��respectively.The Solution Lemma. The above property that every system of set-equations has aunique solution, is called the solution lemma in (Aczel, 1988). (See also (Barwiseand Etchemendy, 1987, Chapter 3).) It is obtained assuming the anti-foundation axiom.Conversely, postulating the solution lemma, one can prove that V = PSV is the �nalPS-coalgebra. Indeed, for every PS-coalgebra hX; ki, one obtains

PSX PSVPSWXk [PS(�X) � k; id]PS(�X) � k�X
PS(�X) PS(PS(�X) � k)

VX WX



D. Turi and J. Rutten 40The desired coinductive extension of the coalgebra structure k : X ! PSX is given bythe composite coalgebra morphismk@ = PS(�X ) � k � �X : X ! VTherefore:Proposition 5.3. The solution lemma is equivalent to anti-foundation.Notice that, assuming anti-foundation, the upper rectangle in the following diagramcommutes, because all other sub-diagrams commute.
PSWX

�Xk VX WX
PSV[k; id]inrX

PSWX k PSk PSV
PSkTherefore, the solution k : WX ! V of a system of set equations hX; ki is not only aPS-coalgebra morphism but also a PS-algebra morphism from hWX; inrX i to PSV = V .The algebra hWX; inrXi is a free PS-algebra over X .The Substitution Lemma from Freeness. In the present approach, the proof of the solutionlemma is trivial. The original proof, instead, makes use of a substitution lemma (Aczel,1988). This lemma asserts that, for every function f : X ! V , there exists a uniqueextension f ] :WX ! V of f to WX = X + PSWX such that, omitting the injections,f ](x) = f(x) and f ](v) = ff ](v0) j v0 2 vgNow, also this becomes trivial here, because of the initial algebra presentation of theexpanded universe of well-founded sets WX . Indeed, the desired function f ] :WX ! Vis the inductive extension of the PS-algebra structure PSV = V along f : X ! V . Thatis: f ]f �X

V PSV
inrX PSWXPSf ]WXX

Notice that, in contrast with (Aczel, 1988), anti-foundation is not used here.



Foundations of Final Coalgebra Semantics 415.5. From Greatest Fixed Points to Final CoalgebrasThe greatest (strict) �xed point V = PSV of the power-set functor PS can be seen as the�nal coalgebra of the restriction of the functor PS to the subcategory SET� of inclusionfunctions. Anti-foundation postulates that this �nal coalgebra lifts to a �nal coalgebrain SET. If an endofunctor is `uniform on maps', then, assuming anti-foundation, its �nalcoalgebra in the subcategory SET� also lifts to a �nal coalgebra in SET. This is thecontent of the \Special Final Coalgebra Theorem".In this section, a new formalization of the notion of uniformity on maps in terms ofnatural transformations is given. The proof of the theorem is then rephrased in terms ofthis de�nition.Let F be an endofunctor on SET. A post-�xed point X � FX for F can be seen as aninclusion function X,!FX , hence as an F -coalgebra structure on X . If the endofunctorF preserves inclusion functions, ie F applied to X,!Y is an inclusion FX,!FY , thenone can restrict F to the subcategory SET� of classes and inclusion functions. Thepost-�xed points of F are then its coalgebras in this subcategory. In particular, the �nalF -coalgebra in SET�, if it exists, is the greatest (post-)�xed pointgfp[F ] = F (gfp[F ])of F . The claim is that if F is `uniform on maps' then, assuming anti-foundation, gfp[F ] =F (gfp[F ]) is also a �nal coalgebra.Intuitively, an endofunctor on SET is uniform on maps if it is completely determinedby its action on objects (ie classes). Most of endofunctors are thus uniform on maps. Forinstance, consider the endofunctor X 7! A�X mapping a class X to its product with a�xed class A. Given a function f : X ! Y , the value of A� f at an element <a; x> ofA �X is the pair <a; f(x)>2 A� Y which is obtained by applying f to the x 2 X inA�X . This suggests that the class X should be regarded as a class of variables and that,in general, the action of a functor F uniform on maps on a function f should simply bethe substitution of the variables x occurring in FX by f(x).Formally, this can be expressed by means of the expanded universe of well-foundedsets WX = X + PSWX . What one needs is a natural transformation� : F ) PSWwhich, for every X , `embeds' FX into PSWX { the class of sets of (well-founded) setshaving x 2 X as variables.Naturality amounts to having, for every function f : X ! Y , the following diagramcommute. �YFYPSWYPSWfFf�XFXPSWXIt should be an `embedding' in the sense that, for every X and for every v 2 FX , by



D. Turi and J. Rutten 42`forgetting' the distinction between variables and sets in �X(v) 2 PSWX one should getback the original set v. This operation of forgetting the distinction between variables andsets in objects of type PSW can be made formal as follows.Consider the inductive extension "V :WV ! V of the PS-algebra structure PSV = Valong the identity on V : �V WV inrV PSWV"VV PSVPS("V )
V

Omitting, as usual, the injections, one has that, for every v 2 WV , "V (v) = v if v is avariable and "V (v) = f"V (vi)gI if v = fvigI .De�nition 5.1. (Uniformity on Maps) An endofunctor F : SET ! SET is uniformon maps if there exists a natural transformation� : F ) PSWsuch that �VFV VPS("V ) PSVPSWVcommutes.Before setting out to prove the special �nal coalgebra theorem, notice that, by Obser-vation 5.1 and the de�nition of adjunction, there is a bijection (natural in X and hY; hi)between functions f : X ! Y and PS-algebra morphisms g : hWX; inrXi ! hY; hi. Thisbijection maps f to its left adjunct f ] = "hY;hi �Wfand g to its right adjunct g[ = Ug � �X = g � �X (13)where "hY;hi :WY ! Y (the `counit' of the adjunction) is the inductive extension of theright injection inrY : PSWY !WY along the identity on Y .
Y PSY

Y �Y PS("hY;hi)h"hY;hiinrY PSWYWY



Foundations of Final Coalgebra Semantics 43(Thus, in particular, the above function "V : WV ! V is the value of the counit atthe algebra PSV = V . Formally, "V = U"(PSV=V ) = "(PSV=V ), where U is the forgetfulfunctor mapping algebras to their carriers.)Theorem 5.4. (The Special Final Coalgebra Theorem.) Let F be an endofunc-tor on SET which cuts down to an endofunctor on the subcategory SET� of inclusionfunctions.If F is uniform on maps, then, assuming anti-foundation, its �nal coalgebragfp[F ] = F (gfp[F ])in SET� lifts to a �nal F -coalgebra in SET.Proof. Consider an F -coalgebra structurek : X ! FXBy uniformity on maps, there exists a function �X : FX ! PSWX , hence k can bemade into a system of set-equations in X by composing it with �X . Take its solution�X � k :WX ! V and de�ne a function f from X to V as the right adjunct (13) of thissolution with respect to the above adjunction; that is,f = (�X � k)[ = �X � k � �X : X ! VDiagrammatically: V[�X � k; id]k PSV
f = (�X � k)[�X �X � k

�X PSWX PS(�X � k)FX
X WX

The claim is that, under the above hypotheses, f is an F -coalgebra morphism from hX; kito gfp[F ] = F (gfp[F ]), that is, the diagram gfp[F ]F (gfp[F ])f
FfkFXXcommutes. More precisely: Let Y be the image under f of X . The function f : X ! Vcan be factorized, like every function in SET, asX f!! Y ,! VThe claim is then that the class Y is a post-�xed point for F , ie Y � FY , and f is a



D. Turi and J. Rutten 44coalgebra morphism from hX; ki to Y ,!FY , ieX f YFf FYkFXcommutes.If the above holds, since F cuts down to an endofunctor on the subcategory SET�of inclusions, the composition of f the inclusion Y ,!gfp[F ] of Y into the greatest �xedpoint of F is an F -coalgebra morphism:fXFX Yk F (gfp[F ])gfp[F ]FYFfIn order to prove the above claim, notice that everything in sight in the followingdiagram commutes.
"Vfk Ff PSVFX PSWXFV

WVPSWf
f ]

PS(f ])PSWV�V
�X Wf[�X � k; id] PS"V

V�X WXX
In particular, the outer diagram does commute, hence:X f YFf FY VkFXTherefore, for all x 2 X , f(x) = (Ff � k)(x)



Foundations of Final Coalgebra Semantics 45which implies that the image Y of X under f is included in the image of FX under Ff ,hence Y � FYand f is a coalgebra morphism from hX; ki to Y ,!FY .Therefore, for every F -coalgebra hX; ki, there exists a coalgebra morphism to gfp[F ] =F (gfp[F ]). Moreover, this morphism is unique. Indeed, the above arguments also showthat every coalgebra morphism from hX; ki to gfp[F ] = F (gfp[F ]) �ts as the right adjunct(�X � k)[ of the unique solution of a system of set-equations, hence it is unique.Notes. An alternative (but more restrictive) form of the special �nal coalgebra theorem in thestandard category of ordinary sets is presented in (Paulson, 1995).The special �nal coalgebra theorem is the `dual' of the standard fact that least (strict) �xedpoints of most endofunctors on SET are initial algebras. (Cf (Aczel, 1988, Theorem 7.6).) Itgives an elementary way of �nding �nal coalgebras, at the price of assuming anti-foundation.For instance, under foundation, the endofunctor BX = Act � X has the empty set 0 as theunique strict �xed point, while, under anti-foundation, the empty set is the least �xed point andthe set Act! of in�nite words over the alphabet Act is the greatest �xed point of B: the special�nal coalgebra theorem tells then that Act! = Act �Act! is a �nal B-coalgebra.Notice that one can prove the (non-strict!) �xed point Act! �= Act � Act! is a �nal B-coalgebra in Set, independently of the use of anti-foundation. In general, as shown in (Aczeland Mendler, 1989), endofunctors to which the special �nal coalgebra theorem applies alwayshave a �nal coalgebra in the category of ordinary (possibly large) sets. Thus, unless one is reallyinterested in strict �xed points bB = B bB rather than �xed points up to isomorphism bB �= B bB,the interest can be shifted from non-well-founded sets and greatest �xed points to ordinary setsand �nal coalgebras.6. Partial OrdersWhen interpreting the programs of a language, one would like, in general, not only toestablish whether two programs P; P 0 are behaviourally equivalent, but also when oneprogram P 0 is (behaviourally) `better' than another program P . Write P <� P 0 for thisrelation, with the intended meaning that P 0 can simulate everything P does, but notnecessarily vice versa. This `simulation' relation ` <� ' should be reexive (ie P <� P ) andtransitive (ie, if P <� P 0 and P 0 <� P 00, then P <� P 00), that is, it should be a preorder forthe programs.The main contribution of this section is a full abstraction theorem with respect to thisbehavioural preorder. This is obtained by working in an `order-enriched' setting wherethe morphism sets are partially ordered and composition yields order-preserving maps.6.1. Order-Enriched Categories and Final CoalgebrasA preorder � for a set X is a partial order if it is anti-symmetric in the sense that ifx � y and y � x then x = y, for all x; y 2 X . The category Poset is the category ofpartially ordered sets (posets) hX;�i and monotone functions f : hX;�i ! hX 0;�0i, ieorder-preserving functions f : X ! X 0. To ease the notation, let us write X for a poset



D. Turi and J. Rutten 46hX;�i and �X for its order; also, whenever possible, let us drop the subscript and writesimply � for �X .For every two posets X;Y , the set Poset(X;Y ) of monotone functions f : X ! Y fromX to Y is partially ordered pointwise:f � g () f(x) �Y g(x) for all x 2 XThat is, the `hom-sets' of Poset are objects of Poset itself. Moreover, for every two hom-sets Poset(X;Y ), and Poset(Y; Z), the composition function� : Poset(Y; Z)� Poset(X;Y )! Poset(X;Y )is monotone g � g0; f � f 0 ) g � f � g0 � f 0That is, composition is a morphism of Poset.Loosely speaking, a category C whose hom-sets are objects of a category V and whosecomposition, for every X;Y; Z in C, is a morphism� : C(Y; Z)�C(X;Y )! C(X;Z)of V is called a V-enriched category or, shortly, a V-category; when C = V then Cis also called self-enriched. Notice the assumption that V has binary products �. Ingeneral, this assumption can be relaxed: it is su�cient to assume that V has a `monoidal'structure. (For more on enriched categories see (Lawvere, 1973; Kelly, 1982; Casley et al.,1991).)Thus Poset is a self-enriched category. Another example is the category Cpo of com-plete partial orders (cpos), ie partial orders closed under least upper bounds of !-chains,and continuous functions, ie (monotone) functions which preserve these least upperbounds.A functor between two V-enriched categories is aV-functor if it is `locally' a morphismof V, that is, the action of F on each hom-set is a morphism of V. Thus, a Poset-functorF is a locally monotone functor, that is,f � g ) Ff � Fgand a Cpo-functor is a locally continuous functor F , that is, a functor such thatF (FIfi) = FIF (fi)for every !-chain ffigI of continuous functions. Every Cpo-functor is also a Poset-functor.Initial algebras (and �nal coalgebras) of Cpo-endofunctors can be obtained by meansof the (dual of the) following colimit construction.Lemma 6.1. (Basic Lemma (Smyth and Plotkin, 1982)) Let F be an endofunctoron a category C with an initial object 0. Let � be the diagram0F0 F0 F0F0 F 200 � � �F 20F0 (14)obtained by the iterative application of the functor F to the unique morphism 0F0 : 0!



Foundations of Final Coalgebra Semantics 47F0 given by initiality. If � has a colimit and F preserves itF (Colim(�)) �= Colim(F�)then Colim(�) is the carrier of an initial algebra for F . Its initial algebra structure isobtained by �rst noticing that the colimiting cocone for � (without the �rst morphism)is a cocone for F� and then taking the unique mediating morphism from F (Colim(�))to Colim(�).The dual of this lemma is obtained by reversing the morphisms and replacing initial by�nal, colimit by limit, and algebra by coalgebra.In (Smyth and Plotkin, 1982) it is shown that every Cpo-functor on a Cpo-categorysatis�es the hypotheses of the basic lemma, hence it has an initial algebra. The proof in-volves the use of the category CpoE of `embedding-projection pairs', ie pairs of morphismsin opposite directions satisfying suitable conditions. The use of this auxiliary categorygives also a tool for treating mixed variant-contravariant functors F over Cpo, like thefunction space which is of type Cpoop�Cpo! Cpo, as covariant functors FE over Cpo.If F is a Cpo-endofunctor, then the corresponding endofunctor FE on CpoE satis�esthe hypotheses of the basic lemma and of its dual, hence it has both an initial algebra anda �nal coalgebra; moreover, the former is the initial algebra for the original endofunctorF on Cpo as well. However, the �nal coalgebra of FE is not the �nal F -coalgebra; forthis, one need to move to the category pCpo of cpos and partial continuous functions:every Cpo-endofunctor F on pCpo has both an initial algebra and a �nal coalgebra,namely the initial algebra and the �nal coalgebra for the corresponding endofunctor FEon CpoE = pCpoE .The `coalgebraic completeness' of pCpo makes of it a good candidate for the order-enriched version of the full abstraction theorem, but we �nd easier to work with a categoryof total morphisms which is isomorphic to pCpo, namely the category Cppo? of pointedcpos (ie cpos with a least element `?') and strict continuous functions (ie functions whichalso preserve the least element). (The above considerations on the construction of initialalgebras and �nal coalgebras in pCpo remain valid in the isomorphic category Cppo?.)When an endofunctor F has both an initial algebra  : FF �= F and a �nal coalgebra' : F �= F bF there is a canonical morphism from the carrier F of the initial algebrato the carrier bF of the �nal coalgebra, namely the coinductive extension of the inverse �1 : F �= FF of the initial algebra isomorphism. If this canonical morphism is it-self an isomorphism, then the initial algebra and the �nal coalgebra are canonicallyisomorphic.Categories in which all endofunctors have both an initial algebra and a �nal coal-gebra and, moreover, they are canonically isomorphic are called algebraically compactin (Freyd, 1992). An example of such a category is Cppo?, when regarded as a Cpo-category. This can be proved by means of the \limit-colimit coincidence" of categoriesof embedding-projection pairs (Smyth and Plotkin, 1982, Theorem 2). In particular, theone-element set f?g (with trivial order) is a null object in Cppo? (and in the corres-ponding category of embedding-projections pairs), that is, it is both an initial and a�nal object; correspondingly, the diagram (14) whose colimit is an initial algebra can be



D. Turi and J. Rutten 48turned into a diagram with the same objects whose limit is a �nal coalgebra by simplyreversing the morphisms.To summarize:Theorem 6.1. (Algebraic Compactness) Every Cpo-endofunctor on Cppo? has bothan initial algebra and a �nal coalgebra and, moreover, they are canonically isomorphic.Final coalgebras of Cpo-endofunctor can be characterized as the `maximally �nal' ones.The de�nition of maximal �nality requires the notion of a `lax coalgebra morphism' fromenriched category theory (Kelly, 1982) which, for the order-enrichment cuts down tothe following notion. Let F : Poset ! Poset be an endofunctor on Poset and hX; kiand hX 0; k0i two F -coalgebras; a lax coalgebra morphism f : hX; ki ! hX 0; k0i is amonotone function f : X ! X 0 such thatFf � k � k0 � fDiagrammatically:
FX FX 0Ff� k0k fX X 0

Thus lax coalgebra morphisms generalize (strict) coalgebra morphisms.A coalgebra of an endofunctor F on a Poset-category is maximally �nal if it is �naland, for every F -coalgebra hX; ki, the unique coinductive extension k@ of k is maximalamong all lax morphisms from hX; ki to the �nal F -coalgebra. That is, if ' : bF �= F bF ,Ff � k � ' � f ) k@ � fProposition 6.1. Final coalgebras of locally continuous endofunctors are maximally�nal.Proof. See (Fiore, 1996b, Proposition 6.7).6.2. Ordered BisimulationsThe order-enriched generalization of the notion of coalgebraic bisimulation should en-sure that (a) the inequality relation on a �nal coalgebra lifts to a coalgebraic orderedbisimulation and that (b) the inequality relation on a maximal �nal coalgebra should bemaximally-�nal in the category of coalgebraic ordered bisimulations. This motivates thefollowing de�nition from (Fiore, 1996b), improving a previous de�nition in (Rutten andTuri, 1993).De�nition 6.1. (Coalgebraic Ordered Bisimulation) Let hX; ki and hY; `i be coal-gebras of an endofunctor B on a Poset-category. A span hR; r1 : R ! X; r2 : R ! Y i



Foundations of Final Coalgebra Semantics 49between the carriers X and Y of hX; ki and hY; `i lifts to a coalgebraic ordered bisim-ulation if there exists a coalgebra structure eR : R ! BR making the �rst leg r1 a laxcoalgebra morphism and the second leg r2 a (strict) coalgebra morphism:
BX BRRX YBY

r1k r2Br2eRBr1 `
In an order-enriched category, the internal inequality IQ(X) of an object X can bede�ned by means of the following order-enriched version of the notion of pullbacks.De�nition 6.2. The ordered pullback of a pair f : X ! Z and g : Y ! Z ofmorphisms in a Poset-category having the same codomain is a span hP; p : P ! X; q :P ! Y i such that f � p � g � q and for every span hP 0; p0 : P 0 ! X; q0 : P 0 ! Y i suchthat f � p0 � g � q0 there exists a unique morphism u : P 0 ! P such that p0 = p � u andq0 = q � u. Diagrammatically: Pp0 P 0

X g
u� Yp q q0

f ZX Y
(Cf Diagram (6) in Section 4.)(Ordered pullbacks are instances of the `comma-objects' of (Kelly, 1989, x4).)In Poset (and Cppo?), the ordered pullback of two morphisms f : X ! Z and g :Y ! Z is given by the set f<x; y>2 X � Y j f(x) � g(y)gordered componentwise (<x; y >�<x0; y0 > () x � x0; y � y0). Thus, in particular,the internal inequality of a poset (or cppo) XIQ(X) = f<x; x0>2 X �X j x � x0g



D. Turi and J. Rutten 50is the ordered kernel pair of the identity on X :
X XIQ(X)i1 i2�XProposition 6.2. (Fiore, 1996b) For every coalgebra, the internal inequality lifts toa coalgebraic ordered bisimulation.Proof. The proof is very much the same as that of Proposition 4.2; the coalgebrastructure for IQ(X) is the one obtained by replacing e1 = e2 : EQ(X) ! X withi2 : IQ(X) ! X . Notice that the fact that i1 needs only to be lax with respect to theresulting coalgebra allows for the proposition to hold.Proposition 6.3. The internal inequality of the maximally-�nal coalgebra lifts to themaximally-�nal ordered bisimulation.Proof. Let us adapt the proof of Proposition 4.3. Firstly, replace bisimulations byordered bisimulations and take f and g in (7) to be lax coalgebra morphisms. Secondly,notice that replacing EQ( bB) by IQ( bB) in (8) one still has, by the universal property ofordered pullbacks, a unique mediating morphism u : R ! IQ( bB) from R to the internalinequality of the �nal coalgebra IQ( bB); this shows that IQ( bB) is �nal in the category ofcoalgebraic ordered bisimulations. It remains to prove maximality. For any other pair oflax morphisms f and g from hX; ki and hY; `i to the �nal coalgebra one has a mediatingmorphism v : R! IQ( bB) and, by Proposition 6.1, that f � k@ and g � `@. Then:i1 � v = f � r1 � k@ � r1 = i1 � ui2 � v = g � r2 � `@ � r2 = i2 � u ) ) v � ubecause, as one can check, the two legs of the inequality are jointly order monic.6.3. Order-Enriched Final Coalgebra SemanticsFollowing x4.2, if ordered pullbacks lift to ordered bisimulations of an endofunctor B onCppo? then the �nal ordered bisimulation between two B-coalgebras hX; ki and hY; `iexists and it is the ordered pullback of the coinductive extensions k@ and `@. Let uswrite ` <� ' for this ordered bisimulation (omitting the superscript k; `). Then, for everyx 2 X and y 2 Y , x <� y () k@(x) � `@(y)(The implication from left to right follows from Proposition 6.3, while the converse followsfrom the assumption that ordered pullbacks lift to ordered B-bisimulations.) Semantic-ally:Theorem 6.2. (Ordered Full Abstraction) Let [[-]] : Prog ! B(Prog) be a coal-gebraic operational model of a language with programs P 2 Prog and behaviour B :



Foundations of Final Coalgebra Semantics 51Cppo? ! Cppo? such that ordered pullbacks lift to ordered B-bisimulations. Then forall P; P 0 2 Prog, P <� P 0 () [[P ]]@ � [[P 0]]@6.4. An Example: Deterministic Transition Systems with DivergenceLet us give an example of fully abstract �nal coalgebra semantics in this order-enrichedsetting.Consider the endofunctor BX = 1? + (Act? 
X?) (15)on Cppo?, where: the endofunctor X 7! X? is the lifting functor adding a new leastelement to a cppo; the functor `
' is the smash product of cppos (obtained from thecartesian product by identifying all pairs containing a bottom); the functor`+' is thecategorical coproduct of Cppo?.The �nal coalgebra of the above endofunctor B is the set of �nite, in�nite, and partialwords, the latter being �nite words ending by ?, like, eg, aba?. There is no relationbetween complete words, but any word w is greater than a partial word w0? if w extendsw0 (ie w = w0w00 for some non-empty word w00); for example, ab? < aba? < abaa. Inparticular, if Act is a singleton, then the �nal coalgebra of the above behaviour is givenby the `lazy' or `oblique natural numbers'. (Cf (Freyd, 1990).)Next, consider deterministic transition systems in which a state, beside performing anaction or being inert, can diverge. These can be modelled as coalgebras of the aboveendofunctor as follows. Regard the set X of states of the transition system as a at cppo(thus possibly adjoining a least element ?X). Notice that, for every cppo X , in Cpo (orSet) one can prove the isomorphismB(X) = 1? +Act? 
X? �= (1 +Act �X)?where the product and coproduct inside the parentheses are in Cpo rather than in Cppo?.Let us denote the least element of BX as ?new. One can then model deterministictransition systems with divergence as strict functions k : X ! (1+Act�X)? by puttingk(?X) = ?new and, for every other x in X ,k(x) = 8<: ?new if x diverges� if x is inert< a; x0 > if x a�! x0An ordered bisimulation R between the carriersX and Y of two such transition systemssatis�es, for all xRy,1 if x is inert (ie k(x) = �) then also y is inert and2 if x a�! x0 (ie k(x) =<a; x0>) then y a�! y0 and x0Ry03 if x does not diverge (ie k(x) 6= ?new) then(a) if y is inert then also x is inert and



D. Turi and J. Rutten 52(b) if y a�! y0 then x a�! x0 and x0Ry04 if x diverges (ie k(x) = ?) and y a�! y0 then x0Ry0 for some x0 in X .Conversely, every span R between the carriers X and Y of two (coalgebras modelling)deterministic transition systems with divergence which satis�es the properties 1-4 aboveis an ordered bisimulation for the behaviour endofunctor. These are known, in the non-deterministic setting, as partial bisimulations (Abramsky, 1991).An example of an ordered B-bisimulation is the ordered pullback (in Cppo?) of twocoalgebra homomorphisms f : hX; ki ! hZ; hi and g : hY; `i ! hZ; hi. Indeed, a B-coalgebra structure lifting the ordered pullback R to an ordered B-bisimulation can bede�ned by putting, for every pair <x; y> in R,<x; y> 7! 8>>>><>>>>: � if k(x) = ?new, `(y) = �<a;?X ; y0> if k(x) = ?new, `(y) =<a; y0>?new if k(x) = ?new = `(y)� if k(x) = � = `(y)<a; x0; y0> if k(x) =<a; x0>, `(y) =<a; y0>Notice that these are all the case distinctions which can occur. For instance, k(x) 6=?new = `(y) is not possible because(1 +Act � f)?(k(x)) = h(f(x)) � h(g(y)) = (1 +Act � g)?(`(y))In particular, one can take f and g to be the coinductive extensions of k and `,respectively. Therefore, by Theorem 6.2, the �nal coalgebra semantics of deterministicprograms with divergence is fully abstract with respect to partial bisimulation.7. Metric SpacesOne of the advantages of working in an order-enriched setting is that one can verify notonly the equality between computations, but also when a computation is better thananother in the sense that it contains more information. For instance, under the standardpre�x ordering on words, a computation represented by the a1 � � � anb is better than onerepresented by the word a1 � � � an. Still, in the order-enriched setting one is not able tocompare computations which share a common pre�x but then di�er, like, eg, a1 � � � anband a1 � � � anc. In order to do this, one can introduce a natural notion of distance betweencomputations.The intuition is that the further two computations (programs) are (behave) the same,the smaller their distance should be. In the deterministic setting, with behaviours of typeBX = 1 + Act �X (cf x2.2), one can say that the distance between two words is 2�n,for n the length of the longest common pre�x between the two words. This leads to theuse of (ultra) metric spaces in semantics.A metric space is a set X together with a distance function dX : X � X ! [0;1]mapping each two elements of X to a non-negative real number. (It is convenient toinclude 1 in the range of this distance function, even though one can always down-scaledistances to the interval [0; 1].) Further, a distance has to satisfy the following threeaxioms:



Foundations of Final Coalgebra Semantics 531 dX(x; y) = 0 () x = y2 dX(x; z) � dX(x; y) + dX (y; z)3 dX(x; y) = dX (y; x)The second axiom is called the triangular inequality. When a stronger form of triangularinequality holds, namely dX(x; z) � max fdX(x; y); dX (y; z)g, then hX; dX i is an ultra-metric space. In semantics one usually works with this more speci�c structures, but it isconvenient to state the general theorems in the full generality of metric spaces.In metric spaces, the mathematical tool most relevant for semantics available is Banach'sTheorem. This theorem ensures the existence of a unique �xed point for a large class ofendofunctions on complete metric spaces, that is, on metric spaces closed under limitsof `Cauchy sequences'. The endofunctions at stake are the contractive ones, that is,functions f : X ! X such that, for some 0 � � < 1,d (f(x); f(x0)) � � � d (x; x0)for all x; x0 2 X . (Here the subscript X is omitted from dX ; the same is done in thesequel whenever possible.)Theorem 7.1. (Banach) Every contractive endofunction f on a complete metric spacehas a unique �xed point �x(f) = f(�x(f)).Banach's Theorem carries over to the higher level of categories and functors as follows.Consider the categoryMetric with objects metric spaces and with morphisms the non-expansive functions between them, that is, the functions f : X ! Y such thatdY (f(x); f(x0)) � dX(x; x0)for all x; x0 2 X .Observation 7.1. The set Metric(X;Y ) of non-expansive functions between two metricspaces is itself a metric space, with distanced (f; g) = supx2XfdY (f(x); g(x))g (16)for all non-expansive functions f; g : X ! Y ; in other words, the hom-sets of Metricare objects of Metric itself. Similarly, one has that in the subcategory Cms of completemetric spaces and non-expansive functions the hom-sets are themselves complete metricspaces, with (16) as distance.Therefore, one can de�ne an endofunctor F on Metric (or on the subcategory Cms) tobe locally contractive if, for some 0 � � < 1,d (F (f); F (g)) � � � d (f; g)for all metric spaces X;Y , and for all pairs of parallel non-expansive functions f; g : X !Y between them.Theorem 7.2. Every locally contractive endofunctor F on the category of completemetric spaces and non-expansive functions has a unique �xed point Fix(F ) �= F (Fix(F )).Proof. The proof is based on (America and Rutten, 1989), where a category CmsE ofcomplete metric spaces is considered with as morphisms (a metric version of Smyth and



D. Turi and J. Rutten 54Plotkin's) `embedding-projection' pairs. (Cf x6.1.) Then a notion of `contractivity' forendofunctors on that category is de�ned, and it is shown that contractive functors havea unique �xed point. The present theorem follows from the observation (due to GordonPlotkin) that every locally contractive functor on Cms induces a contractive functor onCmsE . (For details see (Rutten and Turi, 1993).)As shown by the following proposition, the above theorem gives a foundation for bothinduction and coinduction.Proposition 7.1. Every �xed point Fix(F ) �= F (Fix(F )) of a locally contractive functorF : Cms! Cms is both an initial algebra and a �nal coalgebra for F .Proof. Let ' : Fix(F ) �= F (Fix(F )) be the F -coalgebra structure given by the �xedpoint isomorphism and let hX; ki be an F -coalgebra. De�ne � : Cms(X;Fix(F )) !Cms(X;Fix(F )) by, for all f , �(f) = '�1 � F (f) � kSuppose F is locally contractive with factor �. Then � is a contraction with factor �: forall f1; f2 2 Cms(X;Fix(F )),d (�(f1);�(f2)) = supx2XfdFix(F )(�(f1)(x);�(f2)(x))g= supx2XfdFix(F )(('�1 � F (f1) � k)(x); ('�1 � F (f2) � k)(x))g� supy2F (X)fdFix(F )(('�1 � F (f1))(y); ('�1 � F (f2))(y))g� supy2F (X)fdFix(F )(F (f1)(y); F (f2)(y))g ('�1 is non-expansive)= d(F (f1); F (f2))� � � d(f1; f2) (F is locally contractive):By Banach's theorem � has a unique �xed point �x(�) : X ! Fix(F ). Moreover:' � �x(�) = ' ��(�x(�)) = ' � '�1 � F (�x(�)) � k = F (�x(�)) � k;which shows that �x(�) is a coalgebra morphism from hX; ki to hFix(F ); 'i. Since anysuch coalgebra morphism is also a �xed point of �, �x(�) is also the unique coalgebramorphism, which shows that hFix(F ); 'i is a �nal F -coalgebra. A dual argument showsthat hFix(F ); '�1i is an initial F -algebra.The proof of the above proposition does not require that the metric space X be com-plete, because for the hom-set Metric(X;Y ) to be complete it is su�cient that Y becomplete. Therefore:Corollary 7.1. A �nal coalgebra (initial algebra) of a locally contractive endofunctor Fon Cms which extends to an endofunctor F 0 on Metric is also a �nal F 0-coalgebra (initialF 0-algebra) in Metric.As a consequence, one can consider metric operational models which are not completeand still have a �nal coalgebra semantics. Similarly, bisimulations in the metric settingneed not be complete objects.



Foundations of Final Coalgebra Semantics 557.1. Metric-Enriched CategoriesThe categories Metric and Cms are both self-enriched categories in the sense of x6.1.The corresponding notion of a Metric-functor however is not local contractivity but themilder one of `locally non-expansiveness', which comprehends all functors used in metricsemantics. However, every locally non-expansive endofunctor can be turned into a locallycontractive one by composing it with a trivial `shrinking' endofunctor.The categorical product of two metric spaces hX; dXi and hY; dY i is the cartesianproduct of their carriers equipped with the distanced (<x; x0>; <y; y0>) = max fdX(x; x0); dY (y; y0)gHowever, the composition of non-expansive functions is not non-expansive with respectto the categorical product of hom-sets. Therefore, a di�erent notion of distance is needed,namely d (<x; x0>; <y; y0>) = dX(x; x0) + dY (y; y0)Equipped with this distance, the cartesian product X � Y of the carriers is called thetensor product hX; dXi
hY; dY i of two metric spaces. (This tensor product is associativeand commutative, and it has the singleton metric space 1 as a unit, making of Cms a`(symmetric) monoidal category' in the sense of (Mac Lane, 1971, xVII.1).) One can checkthat the composition of non-expansive functions, viewed, for all metric spaces X;Y; Z,as a function � : Metric(Y; Z)
Metric(X;Y )! Metric(X;Z)is non-expansive. The same holds for its restriction to Cms. Therefore, because of Ob-servation 7.1, the categories Metric and Cms are Metric-enriched categories and Cms isCms-enriched. A Metric-endofunctor F on a Metric-category is then an endofunctorsuch that d (F (f); F (g)) � d (f; g) (17)for all metric spaces X;Y , and for all pairs of parallel non-expansive functions f; g :X ! Y between them. In other words, the Metric-endofunctors are the `locally non-expansive' ones.De�nition 7.1. (Down-Scalers and Shrunk Functors) The down-scaler endofunctorId� : Metric ! Metric, with scaling factor 0 � " < 1, is the functor which `shrinks' thedistance d of a metric space by mapping it to � � d, while on carriers and on morphismsit behaves as the identity: Id�hX; di = hX; � � diA shrunk endofunctor F : Metric! Metric is an endofunctor which can be decomposedeither as F 0 � Id� or as Id� � F 0, for some endofunctor F 0 and some 0 � � < 1.Clearly, every shrunk locally non-expansive endofunctor on Metric (and on Cms) islocally contractive, therefore, by Theorem 7.2 and Proposition 7.1, the following holds.Theorem 7.3. Every shrunk Metric-endofunctor on Cms has both an initial algebra anda �nal coalgebra and, moreover, they are canonically isomorphic.



D. Turi and J. Rutten 56(Cf Theorem 6.1.)For example, consider the behaviour endofunctor BX = 1+Act�X on Set. It extendsto a Metric-endofunctor on Cms by imposing the discrete bounded ultrametric on Act (ied (a; a0) = 0 if a = a0 and d (a; a0) = 1 if a 6= a0). Notice that products and coproductsof spaces with discrete metric are like in Set. By precomposing this behaviour with the(typical) down-scaler Id 12 one obtains the shrunk Cms-endofunctor BhX; d i = 1+Act�hX; 12d i. One can check that the carrier of its �nal coalgebra and initial algebra given bythe above theorem is the set Act1 = Act� [ Act! of �nite and in�nite words over thealphabet Act. Its distance is the one described at the beginning of this section on metricspaces, namely two words have distance 2�n if n is the length of the longest commonpre�x between them.7.2. Reconciling Partial Orders with Metric SpacesStructures which combine the qualitative (asymmetric) information given by partial or-ders with the quantitative information given by (symmetric) metric spaces are the quasi-metric spaces, that is, metric spaces in which the (third) axiom stating the symmetryof the distance functions is omitted. Thus a quasimetric space is a set X equipped witha function d : X �X ! [0;1] such that, for all x, y, and z in X ,1 d (x; y) = 0 and d (y; x) = 0 () x = y2 d (x; z) � d (x; y) + d (y; z)Clearly, the category QMetric of quasimetric spaces and non-expansive functions con-tains Metric as a full subcategory. Moreover, thanks to the asymmetry of the distance,the category Poset of partial orders and monotone functions fully and faithfully embedsin QMetric. This embedding maps a partial order � on a set X to the following distanced� on X . d�(x; y) = � 0 if x � y1 otherwiseMonotone functions between partial orders are non-expansive functions with respect totheir corresponding quasi-metrics.A crucial contribution to the theory of quasimetric spaces has been the introductionin (Smyth, 1988) of notions of limit and completeness for quasimetric spaces generalizingboth the notions of least upper bound of an !-chain and of (ordinary) metric limit of aCauchy sequence. The corresponding category Cqms of complete quasimetric spaces hasas morphisms the non-expansive functions which are continuous in the sense that theypreserve Cauchy sequences and the corresponding limits. Notice that for metric spaces,non-expansive functions are always continuous, while for quasimetric spaces the twonotions are incomparable. (See (Rutten, 1996, Remark 3.6).) Also contractive functionsare not necessarily continuous and Banach's Theorem holds for complete quasimetricspaces only under the additional assumption that the endofunction at stake is continuous.Like for Cms, Banach's Theorem carries over to the level of Cqms (Rutten, 1996, The-orem 7.3). This allows for the following generalization of Theorem 7.3. First notice thatthe category Cqms is, like Cms, self-enriched (with respect to the same tensor product



Foundations of Final Coalgebra Semantics 57as for ordinary metric spaces), thus a Cqms-endofunctor on Cqms is an endofunctorwhich is both locally non-expansive and locally continuous. Then:Theorem 7.4. Every shrunk Cqms-endofunctor on Cqms has both an initial algebraand a �nal coalgebra and, moreover, they are canonically isomorphic.Proof. See (Rutten, 1996, Theorem 7.3).It is an open question whether by, on the one hand, removing the shrunkness conditionand by, on the other hand, working in the category of pointed complete quasi metricspaces and strict continuous and non-expansive functions, one would still have the sameresult, thus generalizing Theorem 6.1.Generalized Metric Spaces. Smyth's notion of Cauchy sequence for quasimetric spaceshas been generalized both in (Flagg and Kopperman, 1997) and in K.R. Wagner's thesis(Wagner, 1994). Wagner's notion of limit is made parametric in a quantale 
: for 
 equalto the two-elements lattice ? � >, it specializes to the standard notion of an !-chain ina partial order; for 
 equal to [0;1] it specializes to Smyth's Cauchy sequence. Wagneruse the parameter 
 to generalize the standard constructions of initial algebras (alias�nal coalgebras) for Cppo? and Cms.Wagner's work is based on a seminal article by Lawvere (1973), where metric spaces,partial orders, and categories are all shown to be instances of the notion, described inx6.1, of a V-category, for di�erent (monoidal) categories V.Metric spaces are obtained by putting V = [0;1]. The morphisms of [0;1] are givenby its reverse order, that is, r ! r0 if and only if r � r0; the tensor product is the sum ofreals. Then, a [0;1]-category is a generalized metric space, that is, a set X equippedwith a function d : X �X ! [0;1] such that, for all x, y, and z in X ,1' d (x; x) = 02 d (x; z) � d (x; y) + d (y; z)Notice that two elements with distance 0 need not to be equal. Clearly, every metricspace is also a generalized metric space. Interestingly, if the `max' operator rather thanthe sum between reals is taken as tensor of [0;1], one has that a [0;1]-category is ageneralized ultrametric space, with the max operator replacing the sum in the triangularinequality axiom.Partial orders are obtained by putting V = 2, the category with two elements ? and> and only one non-identity morphism, namely ? � >. With the logical `and' as thetensor product of 2, a 2-category is then nothing but a pre-order.Next, the notion of a V-functor specializes to that of a monotone function for V = 2and to that of a non-expansive function for V = [0;1]. Thus, at a higher level, a Poset-functor can be seen as a locally 2-functor and, similarly, a Metric-functor can be seen asa locally [0;1]-functor.The conceptual advantage of regarding (generalized) metric spaces as [0;1]-categoriesgoes well beyond providing a unifying framework. For instance, in V-category one hasthe notion of a bimodule and, as argued in (Lawvere, 1973), one can regard bimodulesas being `V-valued relations'. In particular, a bimodule R between two metric spaces X
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