
A Compositional Approach to Performance ModellingJane Hillston

iPrefaceThis book is, in essence, the dissertation I submitted to the University of Edinburgh in earlyJanuary 1994. My examiners, Peter Harrison of the Imperial College, and Stuart Andersonof the University of Edinburgh, suggested some corrections and revisions. Apart from thosechanges, most chapters remain unaltered except for minor corrections and reformatting. Theexceptions are the �rst and �nal chapter.Since the �nal chapter discusses several possible directions for future work, it is nowsupplemented with a section which reviews the progress which has been made in each of thesedirections since January 1994. There are now many more people interested in stochasticprocess algebras and their application to performance modelling. Moreover, since theseresearchers have backgrounds and motivations di�erent from my own some of the mostinteresting new developments are outside the areas identi�ed in the original conclusions ofthe thesis. Therefore the book concludes with a brief overview of the current status of the�eld which includes many recent references. This change to the structure of the book isreected in the summary given in Chapter 1. No other chapters of the thesis have beenupdated to reect more recent developments. A modi�ed version of Chapter 8 appeared inthe proceedings of the 2nd International Workshop on Numerical Solution of Markov Chains,January 1995.I would like to thank my supervisor, Rob Pooley, for introducing me to performancemodelling and giving me the job which brought me to Edinburgh initially. Many colleagueson the IMSE project provided stimulating discussions which inuenced this work. My secondsupervisor, Julian Brad�eld, provided support and advice in large quantities for which Iam very grateful. Many other people also inuenced this work through helpful comments,discussions and encouragement; they include Graham Birtwistle, Stephen Gilmore, PeterKing, James McKinna, Faron Moller, Michael Rettelbach, Ben Strulo and Nico van Dijk.Stephen also provided the tools which made constructing and solving the large models inChapter 4 possible.I would never have �nished this thesis without the support, encouragement and distrac-tions provided in appropriate proportions by my parents and many friends, during the fourand a half years it took to complete.I am grateful to David Miles and Juliet Sheppard at Kingston Business School who ar-ranged for my �rst year tuition fees to be paid. The �nal two years of my work weresupported by a SERC studentship. Jane HillstonDecember 1995

iiAbstractPerformance modelling is concerned with the capture and analysis of the dynamic beha-viour of computer and communication systems. The size and complexity of many modernsystems result in large, complex models. A compositional approach decomposes the systeminto subsystems that are smaller and more easily modelled. In this thesis a novel com-positional approach to performance modelling is presented. This approach is based on asuitably enhanced process algebra, PEPA (Performance Evaluation Process Algebra). Thecompositional nature of the language provides bene�ts for model solution as well as modelconstruction. An operational semantics is provided for PEPA and its use to generate anunderlying Markov process for any PEPA model is explained and demonstrated. Modelsimpli�cation and state space aggregation have been proposed as means to tackle the prob-lems of large performance models. These techniques are presented in terms of notions ofequivalence between modelling entities.A framework is developed for analysing such notions of equivalence and it is explainedhow the bisimulation relations developed for process algebras �t within the framework. Fourdi�erent equivalence relations for PEPA, two structural and two based on bisimulation, aredeveloped and considered within this framework. For each equivalence the implications forthe underlying Markov process are studied and its potential use as the basis of a modelsimpli�cation technique is assessed. Three of these equivalences are shown to be congru-ences and all are complementary to the compositional nature of the models considered. Aswell as their intrinsic interest from a process algebra perspective, each of these notions ofequivalence is also demonstrated to be useful in a performance modelling context. Thestrong structural equivalence, isomorphism, generates equational laws which form the basisof model transformation techniques. This is weakened to de�ne weak isomorphism. Thisequivalence, together with judicious use of the PEPA abstraction mechanisms, forms thebasis of a model simpli�cation technique, provided certain insensitivity conditions are satis-�ed. Strong bisimilarity is shown to exhibit no clear relationship to the underlying Markovprocess although it may be used to replace one component of a model by another whichwill have the same apparent behaviour. Finally, strong equivalence, provides an alternativemethod of formulating the Markov process capturing the stochastic behaviour of the model.This equivalence is the basis of an aggregation technique based on lumpability.Throughout the thesis the concepts introduced are illustrated by examples modellingmulti-server multi-queue (MSMQ) systems. These systems, an extension of classical pollingsystems, have been shown to be useful representations of many local area network architec-tures, with ring topologies and scheduled access, in which more than one node may transmitsimultaneously.

Contents1 Introduction 12 Background 52.1 Introduction : 52.2 Performance Modelling : 52.2.1 Queueing Networks : 62.2.2 Stochastic Extensions of Petri Nets : : : : : : : : : : : : : : : : : : : 72.3 Process Algebras : 92.3.1 Timed Extensions of Process Algebras : : : : : : : : : : : : : : : : : 92.3.2 Probabilistic Process Algebras : 102.4 Process Algebra for Performance Modelling : : : : : : : : : : : : : : : : : : : 102.4.1 Process Algebras as a Design Methodology : : : : : : : : : : : : : : : 112.4.2 The \Cooperator" Paradigm and Hierarchical Models : : : : : : : : : 112.4.3 Structure within Models : 122.4.4 The Work Presented in This Thesis : : : : : : : : : : : : : : : : : : : 122.5 Related Work : 122.5.1 Early Work on Protocol Speci�cation : : : : : : : : : : : : : : : : : : 132.5.2 TIPP : 132.5.3 CCS+ : 142.5.4 Relating DEMOS to TCCS and WSCCS : : : : : : : : : : : : : : : : 152.5.5 Performance Equivalence as a Bisimulation : : : : : : : : : : : : : : : 153 Performance Evaluation Process Algebra 173.1 Introduction : 173.2 Design Objectives for PEPA : 173.3 The PEPA Language : 183.3.1 Informal Description : 183.3.2 Syntax : 203.3.3 Execution Strategies and the Exponential Distribution : : : : : : : : 233.3.4 Examples : 243.3.5 Passive Activities : 263.3.6 Some Further De�nitions : 263.3.7 Formal De�nition: Operational Semantics : : : : : : : : : : : : : : : 283.3.8 Examples : 303.4 Basic Properties : 31iii

iv 3.5 The Underlying Stochastic Model : 323.5.1 Generating the Markov Process : 323.5.2 Some De�nitions : 333.5.3 Stochastic Processes with an Equilibrium Distribution : : : : : : : : 353.5.4 PEPA Models with Equilibrium Behaviour : : : : : : : : : : : : : : : 363.5.5 Solving the Markov Process : 373.5.6 Derivation of Performance Measures: Reward Structures : : : : : : : 373.5.7 Example : 383.6 Comparison to other Modelling Paradigms : : : : : : : : : : : : : : : : : : : 403.6.1 Model Construction : 403.6.2 Model Manipulation : 413.6.3 Model Solution : 424 Modelling Study: Multi-Server Multi-Queue Systems 454.1 Introduction : 454.2 Polling Systems : 464.2.1 Solution of Polling System Models : 484.2.2 Example: A PEPA Model of a Polling System : : : : : : : : : : : : : 494.3 Multi-server Multi-queue Systems : 504.3.1 Solutions of Multi-Server Multi-Queue Systems : : : : : : : : : : : : 534.4 Examples: PEPA Models of MSMQ Systems : : : : : : : : : : : : : : : : : : 544.4.1 Introduction : 554.4.2 MSMQ System with Cyclic Polling, Without Overtaking : : : : : : : 554.4.3 Asymmetric MSMQ System with Cyclic Polling : : : : : : : : : : : : 564.4.4 Asymmetric MSMQ System with Random Polling : : : : : : : : : : : 594.4.5 MSMQ System with Detailed Nodes : : : : : : : : : : : : : : : : : : 625 Notions of Equivalence 655.1 Introduction : 655.2 Process Algebras and Bisimulation : 665.2.1 Bisimulation for Pure Process Algebras : : : : : : : : : : : : : : : : : 665.2.2 Bisimulation for Timed Process Algebras : : : : : : : : : : : : : : : : 675.2.3 Bisimulation for Probabilistic Process Algebras : : : : : : : : : : : : 675.2.4 Bisimulation and Entity-to-Entity Equivalence : : : : : : : : : : : : : 685.3 Performance Modelling and Equivalences : 695.3.1 Performance Model Veri�cation : 695.3.2 Model-to-Model Equivalence : 705.4 State-to-State Equivalence : 715.4.1 Aggregation of Markov Processes : 715.4.2 Lumpability : 725.4.3 Folding in GSPNs : 735.5 Notions of Equivalence for PEPA : 736 Isomorphism and Weak Isomorphism 756.1 Introduction : 75

v6.2 De�nition of Isomorphism : 756.3 Properties of Isomorphism : 766.3.1 Equational Laws for Isomorphic Components : : : : : : : : : : : : : : 766.3.2 The Expansion Law : 776.3.3 Isomorphism as a Congruence : 786.4 Isomorphism between System Components : : : : : : : : : : : : : : : : : : : 806.5 Isomorphism and the Markov Process : 806.6 De�nition of Weak Isomorphism : 816.7 Properties of Weak Isomorphism : 856.7.1 Preservation by Combinators : 866.7.2 Equational Laws for Weak Isomorphism : : : : : : : : : : : : : : : : 876.8 Weak Isomorphism and System Components : : : : : : : : : : : : : : : : : : 886.9 Weak Isomorphism and the Markov Process : : : : : : : : : : : : : : : : : : 896.9.1 Insensitivity of Reducible Sequences : : : : : : : : : : : : : : : : : : : 916.10 Weak Isomorphism for Model Simpli�cation : : : : : : : : : : : : : : : : : : 936.10.1 An Approach to Model Simpli�cation : : : : : : : : : : : : : : : : : : 936.10.2 Simplifying an MSMQ Model using Weak Isomorphism : : : : : : : : 947 Strong Bisimilarity 977.1 Introduction : 977.2 De�nition of Strong Bisimilarity : 977.3 Properties of the Strong Bisimilarity Relation : : : : : : : : : : : : : : : : : 1007.3.1 Strong Bisimilarity as a Congruence : : : : : : : : : : : : : : : : : : : 1007.3.2 Isomorphism and Strong Bisimilarity : : : : : : : : : : : : : : : : : : 1047.4 Strong Bisimilarity and System Components : : : : : : : : : : : : : : : : : : 1067.5 Strong Bisimilarity and the Markov Process : : : : : : : : : : : : : : : : : : 1077.6 Strong Bisimilarity for Model Simpli�cation : : : : : : : : : : : : : : : : : : 1107.6.1 An Approach to Model Simpli�cation : : : : : : : : : : : : : : : : : : 1107.6.2 Simplifying an MSMQ Model using Strong Bisimilarity : : : : : : : : 1108 Strong Equivalence 1138.1 Introduction : 1138.2 De�nition of Strong Equivalence : 1138.3 Properties of the Strong Equivalence Relation : : : : : : : : : : : : : : : : : 1168.3.1 Strong Equivalence as a Congruence : : : : : : : : : : : : : : : : : : 1168.3.2 Isomorphism and Strong Equivalence : : : : : : : : : : : : : : : : : : 1218.3.3 Strong Bisimilarity and Strong Equivalence : : : : : : : : : : : : : : : 1228.4 Strong Equivalence and System Components : : : : : : : : : : : : : : : : : : 1238.5 Strong Equivalence and the Markov Process : : : : : : : : : : : : : : : : : : 1248.6 Strong Equivalence for Aggregation : 1268.6.1 Basic Application of Strong Equivalence Aggregation : : : : : : : : : 1278.6.2 Compositional Strong Equivalence Aggregation : : : : : : : : : : : : 1288.6.3 Aggregating an MSMQ Model using Strong Equivalence : : : : : : : 1329 Conclusions 1379.1 Introduction : 137

vi 9.2 Summary : 1379.3 Evaluation : 1389.4 Further Work and Future Directions : 1399.5 Developments Since the Completion of the Thesis : : : : : : : : : : : : : : : 1409.5.1 Stochastic Process Algebras : 1409.5.2 Integrating Performance Analysis into System Design : : : : : : : : : 1419.5.3 Representing Systems as Models : 1429.5.4 Model Tractability : 143

Table of Notation viiTable of NotationC set of possible componentsA set of possible action typesAct set of possible activitiesA(C) set of current action types of component CAct(C) multiset of current activities of CAct(Ci j Cj) multiset of current activities of Ci with derivative Cj~A(C) complete action type set of C� unknown action type> unspeci�ed activity ratewi weight of a passive activityr�(C) apparent rate of action type � in component Cds(C) derivative setD(C) derivation graphSysP the system component represented by PC=�= set of equivalence classes induced by �= on CC=R set of equivalence classes induced by R on C(�; r):P activity pre�xP +Q component choiceP BCL Q cooperation between P and Q on the set of action types LP k Q parallel composition of P and Q, cooperation on ;P=L activities of P with types in L appear as unknown typeEfP=Xg every occurrence of X in E is replaced by P~X; ~P indexed sets of variables and components respectivelyA def= P de�ning equation for the constant AIdC identity function on componentsP � Q syntactic equivalenceP = Q P is isomorphic to QC � P C is a compact form of PP � Q P is weakly isomorphic to QP � Q P is strongly bisimilar to QP �= Q P is strongly equivalent to QP the compact form of component PbP the lumped component of PV(�;r)(C) visible (�; r)-derivative of CAct�=(T) lumped activity setds(S)=�= lumped derivative setD�=(S) lumped derivation graph~Act�=(S) complete lumped activity set

viii Table of NotationR+ set of activity rates, fx j x > 0;x 2 R g[f>gN natural numbers, f1; 2; 3; : : : gFa(t) probability distribution function associated with afa(t) probability density function associated with aXi state in a Markov processQ in�nitesimal generator matrixqij transition rate between state Xi and Xj�(�) steady state probability distribution�j(�) conditional steady state probability distributionX[j] aggregated state in a Markov processxn state in a generalised semi-Markov process (GSMP)s active element in a GSMPp(xi; s; xj) transition probability in a GSMPq(C) exit rate from component Cq(Ci; Cj) transition rate from Ci to Cjq(Ci; Cj; �) conditional transition rate via activities of type �q(C;�) conditional exit rate via activities of type �q[C;S] total transition rate from C to the set of derivatives Sq[C;S; �] total conditional transition rate via activities of type �p(C; a); p(C;�) conditional probabilities that C completes a, or an activity of type �p(Ci; Cj) transition probability from Ci to Cjp[C;S] total transition probability from C to the set of derivatives Sp[C;S; �] total conditional transition probability via activities of type ��i reward associated with derivative CiR total reward] multiset unionfj : : : jg multiset delimiters

Chapter 1IntroductionPerformance modelling is concerned with the capture and analysis of the dynamic behaviourof computer and communication systems. The size and complexity of many modern systemsresult in large, complex models. A compositional approach decomposes the system intosubsystems that are smaller and more easily modelled. In this thesis a novel compositionalapproach to performance modelling is presented. This chapter presents an overview of thethesis. The major results are identi�ed.A signi�cant contribution is the approach itself. It is based on a suitably enhanced processalgebra, PEPA (Performance Evaluation Process Algebra). As this represents a new depar-ture for performance modelling, some background material and de�nitions are provided inChapter 2 before PEPA is presented. The chapter includes the motivations for applying pro-cess algebras to performance modelling, based on three perceived problems of performanceevaluation. The recent developments of timed and probabilistic process algebras are unsuit-able for performance modelling. PEPA, and related work on TIPP [1], represent a new areaof work, stochastic process algebras [2]. The extent to which work on PEPA attempts to ad-dress the identi�ed problems of performance evaluation is explained. The chapter concludeswith a brief review of TIPP and other related work.Chapter 3 presents PEPA in detail. The modi�cations which have been made to the lan-guage to make it suitable for performance modelling are explained. An operational semanticsfor PEPA is given and its use to generate a continuous time Markov process for any PEPAmodel is explained. Thus it is demonstrated that PEPA may be used as a paradigm forspecifying Markov models. At the end of the chapter the relationship between PEPA andestablished performance modelling paradigms is discussed.A compositional approach o�ers potential for complex systems to be modelled systemat-ically. Separate aspects or components of a system may be considered in detail individually,but subsequently in a more abstract form as the interactions between them are developed.The bene�ts of the compositional approach to model construction provided by PEPA aredemonstrated in Chapter 4. The modelling study presented investigates the characterist-ics of various multi-server multi-queue (MSMQ) systems. These systems, an extension ofclassical polling systems, have been shown to be useful representations of many local areanetwork architectures, with ring topologies and scheduled access, in which more than onenode may transmit simultaneously. However, they are not readily amenable to queueingtheory solution. These systems are straightforward to model using PEPA and exact analysisbased on solution of the underlying Markov process is carried out in each case. These casestudies also demonstrate how the size of the state space of this underlying process growsrapidly as the dimensions and complexity of the modelled system increase. The remainderof the thesis addresses this problem. It is demonstrated that the compositional structure of1

2 CHAPTER 1. INTRODUCTIONPEPA models can also bene�t model simpli�cation techniques.Model simpli�cation and state space aggregation have been proposed as means to tacklethe problems of large performance models. These techniques, particularly aggregation, aretypically applied at the level of the Markov process rather than the modelling paradigm.This means that the whole state space of the process must be constructed before it can bereduced. In Chapter 5 these techniques of model simpli�cation and aggregation are presentedin terms of notions of equivalence between modelling entities. A framework is developed foranalysing such notions of equivalence. It is explained how this framework may also be appliedto the bisimulation relations de�ned for process algebras.A process algebra incorporates an apparatus for reasoning about the structure and beha-viour of the model. Such an apparatus is not usually available in Markovian based modellingparadigms. The next three chapters of the thesis present three model simpli�cation tech-niques for PEPA models which take advantage of this apparatus together with the compos-itional nature of the language. These techniques avoid the construction of the state spaceof the original model. In each case the integrity of the performance measures to be derivedfrom the model can be guaranteed. They represent the major contribution of the thesis.Each is illustrated using one of the MSMQ models presented in Chapter 4.Based on the operational semantics of the language four di�erent notions of equivalencefor PEPA are developed. These are considered within the framework presented in Chapter 5.For each equivalence its properties in the context of a process algebra, and its implicationsfor the underlying Markov process, are studied. Three of these equivalences are shown to becongruences and all are complementary to the compositional nature of the models considered.The strongest notion of equivalence for PEPA components, isomorphism, is presented inChapter 6. This is a structural equivalence, similar to the equivalence between Markov pro-cesses discussed in Chapter 5. Nevertheless it is the basis of equational laws which may beused to transform the presentation of a model, and so make it amenable to simpli�cation. Aweaker form of this equivalence, weak isomorphism, is the basis of one of the model simpli�ca-tion techniques|state space reduction via the amalgamation of states. This takes advantageof judicious use of PEPA abstraction mechanisms, provided certain insensitivity conditionsare satis�ed. Although weak isomorphism is not a congruence for PEPA it is shown to bepreserved by some combinators of the language. This means that the model simpli�cationtechnique it provides can be applied compositionally in some circumstances. These circum-stances are identi�ed. It is proved that the integrity of the performance measures to bederived from the model is guaranteed.The other two equivalence relations developed are based on the process algebra notion ofbisimulation. The �rst, strong bisimilarity, is presented in Chapter 7. A strong bisimulationaims to capture the notion of indistinguishability under observation used in many processalgebras. Two components are strongly bisimilar if they are able to perform the sameactivities, resulting in derivatives which are strongly bisimilar. Strong bisimilarity is thelargest relation satisfying the conditions of a strong bisimulation relation. It is shown thatthe relation does not ensure exact equivalence of behaviour. However, circumstances inwhich a strongly bisimilar component may be substituted within a model, resulting in asimpler model, are identi�ed.The other notion of equivalence in the bisimulation style, strong equivalence, is presented inChapter 8. This is developed analogously to a probabilistic bisimulation used in probabilisticextensions of process algebras. However, transition rates, already embedded in the PEPAlabelled transition system as activity rates, are used instead of probabilities. The relationagain aims to capture a notion of equivalent observed behaviour, but the observation is now

3assumed to be less detailed than in strong bisimilarity. The resulting relation is closely alliedto the notion of lumpability in the underlying Markov process. The use of strong equivalenceto partition the state space as a basis of exact aggregation is outlined. The conditions underwhich the integrity of the performance measures is guaranteed are discussed.Finally, in Chapter 9, the results of the thesis are summarised. The direction for furtherwork and the future development of PEPA are discussed as they appeared at the end of thethesis. The book concludes with a review of the extent to which these outlined objectiveshave been addressed by more recent work, and a summary of current work on stochasticprocess algebras and their application to performance modelling.

4 CHAPTER 1. INTRODUCTION

Chapter 2Background2.1 IntroductionThis chapter presents the background material for the thesis. The �eld of performancemodelling is introduced and the standard paradigms for specifying stochastic performancemodels, queueing networks and stochastic Petri nets, are reviewed. In Section 2.3 processalgebras are introduced, and some of the extensions into timed and probabilistic processesare considered in the following subsections. In particular we describe the Calculus of Com-municating Systems (CCS), and various extended calculi based upon it.We present the motivation for applying process algebras to performance modelling inSection 2.4. This outlines the objectives of the work presented in the remainder of thethesis. Finally, in Section 2.5, some related work, involving process algebras and performanceevaluation, is discussed.2.2 Performance ModellingPerformance evaluation is concerned with the description, analysis and optimisation of thedynamic behaviour of computer and communication systems. This involves the investigationof the ow of data, and control information, within and between components of a system.The aim is to understand the behaviour of the system and identify the aspects of the systemwhich are sensitive from a performance point of view.In performance modelling an abstract representation, or model, of the system is used tocapture the essential characteristics of the system so that its performance can be reproduced.A performance study will address some objective, usually investigating several alternatives|these are represented by values given to the parameters of the model. The model will beevaluated to determine its behaviour and performance measures under the current set ofparameter values. Evaluation may take place via the solution of a set of equations by someanalytical, possibly numerical, technique or via the simulation of the model. Analyticalmodels are usually based on stochastic models and throughout the rest of the thesis the termperformance modelling will apply to stochastic models solved analytically unless otherwisestated. There are two established notations for constructing such models|queueing networksand stochastic Petri nets. These are described in Sections 2.2.1 and 2.2.2 respectively. Inmany cases these underlying stochastic models are assumed to be Markov processes.The size and complexity of many modern systems result in large complex models. This isproblematical for both model construction and model solution, and has led to an interest in5

6 CHAPTER 2. BACKGROUNDcompositional approaches to performance modelling. These approaches decompose a systeminto subsystems that are smaller and more easily modelled. Several authors have advocatedthe adoption of software engineering style structuring techniques for performance modelconstruction [3, 4, 5, 6].Finding techniques for the solution of large Markov chains, whose state spaces are �nite butexceedingly large, has been a major preoccupation of performance analysis research for manyyears [7]. Standard numerical techniques cannot cope with such models|a problem oftenreferred to as state space explosion. Compositional approaches which would be applicable tomodel solution as well as model construction, allowing separate solution of submodels, havebeen sought.In this thesis we o�er a technique which allows subsystems to be modelled separately al-though the model must be considered as a single entity for the purposes of solution. However,we also present some approaches to model simpli�cation which may be applied to the sub-system models in isolation but which are guaranteed not to a�ect the integrity of the wholemodel. Thus, although compositional solution is not, in general, feasible, a large model maybe tackled in a systematic way and formally manipulated to reduce it to a manageable size.2.2.1 Queueing NetworksThe use of queueing networks for performance modelling is well-established. In this sectionwe briey introduce the main ideas and some terminology which will be useful later in thethesis. More details can be found in any one of the many books written on the subject, forexample [8, 9, 10, 11, 12].
p(1�p)Y routing probabilityjto systemarrivals � from systemdepartures?to queuearrivals ?from queuedepartures

*server Y bu�er -- �6
Figure 2.1: A Simple Open Queueing NetworkA queue consists of an arrival process, a bu�er where customers await service and one ormore servers representing a resource which must be retained by each customer for some periodbefore leaving the queue. The queue may be characterised by �ve factors: the arrival rate,the service rate, the number of servers, the capacity of the bu�er and the queueing discipline.The �rst four of these characteristics may be concisely represented using Kendall's notationfor classifying queues. In this notation a queue is represented as A=S=c=m=N :A denotes the arrival process; usually M , to denote Markov (exponential), G, general, or

2.2. PERFORMANCE MODELLING 7D, deterministic distributions. Identi�ers for other distributions, such as Hk (hyper-exponential with parameter k), may also be used.S denotes the service rate and uses the distribution identi�ers as above.c denotes the number of servers available to provide service to the queue.m denotes the capacity of the bu�er, in�nite by default. Customers who arrive when thebu�er is full may be lost or blocked.N denotes the customer population, also in�nite by default.The last two classi�ers may be omitted in the default case. The queueing discipline de-termines how a server selects a customer from the queue for next service. For example,the discipline might be �rst-come-�rst-served (FCFS) in which the customer who has beenwaiting longest is served next, or processor sharing (PS) in which the service capacity isshared by all the customers present at the queue.A queueing network is a directed graph in which the nodes are queues, often called servicecentres in this context, each representing a resource in the system being modelled. Cus-tomers, representing the jobs in the system, ow through the system and compete for theseresources. The arcs of the network represent the topology of the system, and together withrouting probabilities, determine the paths that customers take through the network. De-pending on the demand for the resources and the service rate that the customers experience,contention over a resource may arise leading to the formation of a queue of waiting customers.The state of the system is typically represented as the number of customers currentlyoccupying each of the service centres. There may be a number of di�erent classes of customerseach exhibiting di�erent characteristics within the network. In this case the state is thenumber of customers of each class at each service centre. A network may be closed, openor mixed depending on whether a �xed population of customers remain within the system;customers may arrive from, or depart to, some external environment; or there are classes ofcustomers within the system exhibiting open and closed patterns of behaviour respectively.A large class of queueing networks have been shown to have a straightforward and compu-tationally e�cient solution [13]. Although this class excludes some interesting and importantsystem features, when applicable they allow performance measures to be derived without re-sorting to the underlying Markov process. The solution of these models, often termed aproduct form solution, allows individual queues within a network to be considered separ-ately. Based on this, relatively simple algorithms exist for computing most performancemeasures based directly on the parameters of the queueing network.2.2.2 Stochastic Extensions of Petri NetsPetri nets are directed graphs with two types of node, places and transitions, and unidirec-tional arcs between them. Tokens move between places according to the �ring rules imposedby the transitions. A transition can �re when each of the places connected to it has atleast one token; when it �res, the transition removes a token from each of these places anddeposits a token in each of the places it is connected to.The state of the system is denoted by the number of tokens at each place in the network.This is termed the marking of the net. A Petri net is de�ned by its structure and an initialmarking which is the initial placement of tokens. The reachability set is the set of all possiblemarkings that a net may exhibit, starting from the initial marking and following the �ringrules. This is used to form the reachability graph in the natural way.

8 CHAPTER 2. BACKGROUNDKtokenKtransitionK place� - *j =)�res - ��*jFigure 2.2: A Simple Petri Net FiringVarious timed and stochastic extensions of Petri nets have been proposed for performancemodelling [14, 15, 16, 17, 18, 19, 20, 21]. Amongst the most inuential have been thestochastic Petri nets (SPNs) proposed by Molloy [22] and their subsequent re�nement byAjmone Marsan et al., generalised stochastic Petri nets (GSPNs) [17].In SPNs an exponentially distributed �ring rate (possibly dependent on the marking) isassociated with each transition. Once a transition is enabled (each input place is marked)a drawing is made on the distribution to de�ne a delay before the transition will �re; ifthe transition is still enabled at the end of that time it then �res. Molloy showed that thereachability graph underlying such nets is isomorphic to a Markov process when this delayis exponentially distributed [16]. Thus SPNs provide an alternative means of specifying thestochastic models used for performance modelling. Moreover they are able to easily expresssome of the features not readily modelled in queueing networks such as multiple resourceusage. Performance measures are usually extracted from the models via numerical solutionof the underlying Markov process. There has been some work on product form solutions forSPNs, for example [23], but these rely on restrictive conditions on the structure of the net.In GSPNs the transitions of the net are partitioned into two subsets|timed transitionswhich behave like the transitions in SPNs, each with an exponentially distributed �ringtime, and immediate transitions which �re immediately upon being enabled. It is assumedthat all enabled immediate transitions �re before any timed transitions. Consequently thereachability graph of a GSPN can be partitioned into tangible and vanishing markings.Ajmone Marsan et al. showed that since no time elapses in vanishing markings they can beeliminated prior to the solution of the embedded Markov chain. Thus immediate transitionsare disregarded during model solution. GSPN models have been used widely for performanceanalysis, for example [24, 25, 26]. As well as immediate transitions GSPNs also sometimesinclude inhibitor arcs. Such extensions to the notation often make it possible to expressa model more concisely but they have been shown not to increase the modelling power ofGSPNs [27].Stochastic activity networks (SAN), introduced by Movaghar and Meyer [19], are also ofinterest because, like PEPA, they place emphasis on the activities of the system. Althoughsimilar to GSPNs these nets, intended for performability modelling (joint consideration ofthe performance and the availability of a system), have more structure. As well as immediatetransitions and inhibitor arcs they include gates and cases which introduce more sophisticated�ring rules into the net. In [28] the authors introduce an abstract underlying model, thestochastic activity system, which may be used to reason about the SAN. In [5] the use ofcompositional techniques for SAN is investigated. Work on SAN is discussed in more detailin Section 5.3.

2.3. PROCESS ALGEBRAS 92.3 Process AlgebrasProcess algebras are mathematical theories which model concurrent systems by their al-gebra and provide apparatus for reasoning about the structure and behaviour of the model.Examples include the Calculus of Communicating Systems (CCS) [29], Communicating Se-quential Processes (CSP) [30], and the Algebra of Communicating Processes (ACP) [31]. Asystem is characterised by its active components and the interactions, or communications,between them. Unlike queueing networks or Petri nets there is no notion of entity or owwithin a model. However, in recompense, compositional reasoning is an integral part of thelanguage.In CCS the active components of a system are called agents or processes and these under-take actions, representing the discrete actions of the system. Any action may be internal toan agent or may constitute the interaction or communication between neighbouring agents.Agents may proceed with their internal actions simultaneously, but it is important to notethat this behaviour is given an interleaving semantics. Combinators of the language makeit possible to construct an agent which has a designated �rst action (pre�x); has a choiceover alternatives (choice); or has concurrent possibilities (composition). In PEPA pre�x andchoice are retained but composition is replaced by cooperation.Like many other process algebras, CCS is given an operational semantics, in the style ofPlotkin [32], using a labelled transition system. From this a derivative tree, or graph, inwhich language terms form the nodes and transitions are the arcs, may be constructed. Thisstructure is a useful tool for reasoning about agents and the systems they represent. It isthe basis of the bisimulation style of equivalence. The actions of an agent characterise it,so two agents are considered to be equivalent if they are observed to perform exactly thesame actions. Strong and weak forms of equivalence are de�ned depending on whether theinternal actions of an agent are also considered to be observable. Bisimulation and relatednotions of equivalence are presented in more detail in Section 5.2.CCS models have been used extensively to establish the correct behaviour of systems, bothwith respect to a given speci�cation and in the more abstract sense. This is sometimes termedfunctional or qualitative modelling. Behavioural properties such as fairness and freedom fromdeadlock are investigated, in contrast to the quantitative values extracted from performancemodels.In the following sections we discuss some of the extensions which have been made toprocess algebras to incorporate time and probability. Most of these can be exempli�ed byan extension of CCS. When we want to refer to a process algebra without such extensionswe will sometimes �nd it convenient to refer to it as a pure process algebra.2.3.1 Timed Extensions of Process AlgebrasIn pure process algebras time is abstracted away within a process so that all actions areassumed to be instantaneous and only relative timing is represented via the traces of theprocess. The simplest way in which time may be incorporated into such an algebra is bymaking it synchronous. In synchronous calculi, such as SCCS [33], it is assumed that thereis an implicit global clock, and one action must occur at each clock tick. However in orderto model the real time behaviour of systems a more sophisticated representation of time isneeded.Time may be represented explicitly in a process algebra by allowing an agent to witnessperiods of delay, of speci�ed lengths, in addition to witnessing actions, as in Temporal

10 CHAPTER 2. BACKGROUNDCCS (TCCS) [34]. In TCCS actions are still assumed to be instantaneous, and the timedomain is taken to be the natural numbers. The language is given an operational semanticswith two di�erent types of transition: action transitions and time transitions. Observationequivalence may be de�ned as before but with the additional condition that any period ofdelay experienced by one agent must also be possible for the other agent.An alternative approach is taken in Real Time ACP [35]. Here an absolute time is associ-ated with each event, where an event is the completion of an action by a process. It is alsopossible to specify a relative time for each action, or an interval during which an event mustoccur. Such intervals lead to the introduction of an integration operator since it representsa choice over a continuum of alternatives.2.3.2 Probabilistic Process AlgebrasProcess algebras will often be used to model systems in which there is uncertainty about thebehaviour of a component but, like time, this uncertainty will be abstracted away so thatall choices become nondeterministic. Probabilistic extensions of process algebras allow thisuncertainty to be quanti�ed because nondeterministic choice is replaced by a probabilisticchoice. In this case a probability is associated with each possible outcome of a choice.The operational semantics for probabilistic process algebras are given in terms of prob-abilistic labelled transition systems, labelled transition systems in which probabilities areassociated with the transitions. These systems may be classi�ed as being reactive or gener-ative . In a reactive system the probabilities of the transitions of an agent may depend on theenvironment in which the agent is placed. In a generative system the transition probabilitiesare independent of the environment. In e�ect, in the reactive case a probability distributionis de�ned over the possible derivatives of an agent given that a particular action is performedand in the generative case a probability distribution is de�ned over the possible actions ofthe agent.In [36] Jou and Smolka describe a language PCCS which is similar to SCCS but withprobabilistic choice replacing nondeterministic choice. Another extension of SCCS is Tofts'WSCCS [37] which uses weights to assign probabilities. Here nondeterministic choice isreplaced by probabilistic and prioritised choice.Probabilistic process algebras have been proposed as a more suitable way of testing equi-valence between a system's speci�cation and its implementation [38]. Two processes areprobabilistically bisimilar, or equivalent, if their visible behaviour will be the same withprobability 1 � ", where " is an arbitrary small number. Another alternative is the useof preorders which express the idea that one process may be probabilistically better thananother [39]. In this case it is necessary to show that a system's implementation improveson its speci�cation. Thus if the speci�cation allows 0:05 probability of breakdowns, animplementation which ensures that the probability of breakdown is less than 0:04 will besatisfactory.2.4 Process Algebra for Performance ModellingIn this section we present some of the motivations for investigating the use of process algebrasfor performance modelling. These can be regarded as arising from three distinct problemsof performance analysis which have been identi�ed in recent years.

2.4. PROCESS ALGEBRA FOR PERFORMANCE MODELLING 11Integrating Performance Analysis into System Design: Several authors have poin-ted out the importance of the timely consideration of performance aspects of a plannedsystem [40, 41, 42, 3, 43, 6, 2]. However, most have also highlighted the limited extentto which this occurs in practice.Representing Systems as Models: The restricted expressiveness of queueing networkshas been highlighted by recent developments in computer and telecommunicationsystems.Model Tractability: Solving models of the size and complexity necessary to model manymodern systems is often beyond the capabilities of contemporary techniques and equip-ment. This has led to considerable interest in model simpli�cation and aggregationtechniques, for example [25, 7, 44, 45].The adoption of a process algebra as a performance modelling paradigm has implicationsfor each of these problems, as explained below. We consider the use of process algebras as adesign methodology; the style in which process algebras express systems; and the apparatusprovided by process algebras for manipulating models.2.4.1 Process Algebras as a Design MethodologyThe process algebra style of system description is close to the way that designers think aboutsystems, and is gaining acceptance as a design methodology [46, 47], particularly in the areaof communication system and protocol design. Using a process algebra based languagefor performance modelling introduces the possibility of a closer integration of performanceanalysis into design methodologies. Performance models can be formed by the annotation ofexisting system descriptions for design, as recent work with LOTOS has shown [42, 48]. Thishas clear implications for both the practice of performance evaluation and the veri�cationof models against designs.The use of system description formalisms for performance modelling has been investigatedby several researchers. Examples include SDL (Speci�cation and Description Language) in[49, 42], ACP in [50] and Estelle in [51, 42, 52].Not only does the use of such a formal description language allow the integration ofperformance modelling into the design process but, as most of the authors point out, itpresents the possibility of qualitative (or functional) and quantitative modelling using thesame system description. An alternative approach to this integration of modelling aspectsis presented by Pooley [53] (Section 2.5.4). This is similar to earlier work within the CUPIDproject [54, 55] (Section 2.5.1), in which CCS is used as a canonical representation language.2.4.2 The \Cooperator" Paradigm and Hierarchical ModelsA process algebra description represents a system as a collection of active agents who co-operate to achieve the behaviour of the system. This cooperator paradigm (as opposed tooperator and operand) is appropriate for modelling many modern computer systems. Thesesystems do not readily �t the traditional models of sequential ow of control and resourceallocation, as captured by the established performance modelling paradigms. For example,in distributed systems and communications networks components have autonomy and theframework is one of cooperation. In a process algebra model all system elements have equalstatus; the model de�nes their individual behaviours and how they interact.

12 CHAPTER 2. BACKGROUNDSimilar expressiveness is o�ered by the stochastic extensions of Petri nets [17, 18, 28].However, in addition process algebras include mechanisms for composition and abstraction,as well as apparatus for compositional reasoning, which are missing from performance mod-elling techniques [56, 4]. These mechanisms, which are an integral part of the language,facilitate the systematic development of large models with hierarchical structure.The process algebra style of system description will be fully illustrated by a case studyintroduced in Chapter 4. The system studied, a polling system with multiple servers, cannotbe solved exactly using conventional queueing network models. Moreover we will see insubsequent chapters that the structure introduced in the system description, reecting thestructure of the system itself, has useful implications for solution of the underlying Markovprocess.2.4.3 Structure within ModelsModel simpli�cation and aggregation techniques are often based on conditions phrased interms of the underlying Markov process or its generator matrix. For very large systemsthe size of the state space may prohibit the generation and storage of the complete Markovprocess [44].The structure inherent in process algebra models o�ers the possibility of introducing modelsimpli�cation and aggregation techniques based on the system description rather than theunderlying stochastic model. Moreover the compositionality of the process algebra allowsthese techniques to be applied to part of the model whilst maintaining the integrity of themodel as a whole.The formal de�nition of the process algebra provides the basis for comparing and ma-nipulating models within a formal framework. In particular we will develop notions ofequivalence based on this formal de�nition which will allow one model, or part of a model,to be substituted for another whilst retaining the same observable behaviour. These notionsof equivalence will be presented in Chapters 6, 7 and 8 and form the main results of thethesis.2.4.4 The Work Presented in This ThesisThe work presented in this thesis concentrates on the compositionality o�ered by a partic-ular process algebra, PEPA, and its bene�ts for performance modelling. It is shown thatthis language supports a compositional approach to model construction, resulting in modelswhich are easy to understand and readily modi�ed. Moreover, it is also demonstrated thatthe structure provided within a model can be exploited for model manipulation and sim-pli�cation. In particular model simpli�cation techniques which avoid the generation of thecomplete state space of the underlying stochastic process are presented. As these techniquesare formally de�ned, in terms of the operational semantics of PEPA, they o�er potential forautomation or machine-assistance of model simpli�cation.The thesis does not address the problem of using the compositional structure of a modelduring its solution although this appears to be a promising area for future research.2.5 Related WorkSome related work is now reviewed, showing how process algebras have been applied to per-formance modelling. The approaches adopted vary considerably. Most of the work presented

2.5. RELATED WORK 13has originated in the area of performance modelling, and has been motivated by the attract-ive features of process algebras.2.5.1 Early Work on Protocol Speci�cationEarly work arose from the consideration of correctness of communication protocols and therecognition that timing behaviour was often disregarded during protocol design only to causeproblems subsequently [54].Columbia's Uni�ed Protocol Implementation and Design (CUPID) environment was anambitious project, started in the early 1980's, aiming at the integration and automation ofprotocol design and implementation tools [54]. Central to the approach was a single repres-entation of the system, developed in an algebraic form, based on value passing CCS. Fromthis canonical representation alternative views of the system could be developed to addressdi�erent objectives during the development process. Moreover the translation into a di�er-ent representation was formally de�ned and consistency between di�erent representationsguaranteed.For example, in order to carry out performance analysis, in [54] the authors de�ne aformal procedure to map each port of an agent to a distribution function specifying thedelay corresponding to the associated action. Sequential composition (pre�x) is mappedonto convolution and choice is mapped onto the convex combination of the respective dis-tributions. In order to calculate performance measures an execution tree (derivative tree)is formed and the appropriate distribution is associated with each branch together with theprobability that the branch is executed. An alternative approach to performance evaluationis via the use of a simulation model developed by associating suitable terms from an algebraof routines with each agent in the canonical representation. In subsequent work, [55], thecanonical representation was revised to be a variant of CCS, in which a strict one-to-onecorrespondence between conjugate ports is enforced and synchronising � actions are labelledby the action they replace.Later work by Zic, [57], advocates the use of a variant of Timed CSP for performanceanalysis of protocol speci�cations. In this approach stochastic determinism is introduced asan operator over the traces generated by Timed CSP processes. This generative probabilisticchoice ensures fairness and allows reasoning about the probability of event sequences suchas breakdowns and failures. In this way it is proposed that designers may specify acceptableerror probabilities and use the speci�cation to ensure that these are not exceeded.2.5.2 TIPPThe work on the language TIPP (TImed Process for Performance Evaluation), developedin Herzog's group at Erlangen, is the closest to the work presented in this thesis. Thiswork has been motivated by a desire to encourage the timely consideration of performancecharacteristics of developing systems, particularly distributed systems [4]. Herzog recog-nised that process algebras are well-suited to modelling such systems due to their inherentcompositionality.The initial work was carried out with a process algebra EXL which was a variant of CSPin which a random variable is associated with each event and a probabilistic choice operatorreplaces non-deterministic choice [4]. This language evolved into TIPP.The language captures three basic patterns of interaction of behaviours|sequential execu-tion, rivalry and concurrent execution|and these are represented by the combinators of the

14 CHAPTER 2. BACKGROUNDlanguage|pre�x, choice and parallel composition respectively. A distribution function Fa isassociated with each action a, and is regarded as a �xed property of the action, i.e. all in-stances of a have the same distribution function. In general no assumptions are made aboutthe nature of the distribution function but in later papers a subset of the language, in whichall times are assumed to be exponentially distributed, is discussed [1]. The core languagealso includes a hiding operator and a recursion operation. Extended versions of the languagehave also been studied and these included probabilistic choice, sequential combination (;)and asymmetric synchronisation.The operational semantics of the language is given in terms of transitions labelled bythe action, the distribution of its delay and a natural number called the start referencecounter. This is used to indicate the number of completed lifetimes an interrupted processhas witnessed. These additional labels are unnecessary when the restriction to exponentialdistributions is made. Unlike work with PEPA, it is assumed that the semantic rules generatea graph as in CCS, rather than a multigraph. Thus in order to maintain the correct behaviourwith respect to the probability distributions simultaneous instances of the same action aredistinguished by supplementary labels [2]. When necessary these left and right labels maybe concatenated in the natural way.For the general language, the approach to performance analysis is similar to CUPID.Timing information is extracted from an execution graph of the model. Time distributionsare attached to the arcs of this execution graph which is derived from the operational se-mantics. The execution time for any subtree can be calculated from the probability of thecorresponding trace and the execution time for each branch, using the convolution and theconvex combination of the distribution functions. A steady state analysis of an underlyingstochastic process may be used when the distributions are all assumed to be exponential.Work on TIPP has demonstrated the practicality of the process algebra approach toperformance modelling. It has been shown that models developed in TIPP can be successfullyused to derive functional and timing properties of systems such as a communication protocoland a multiprocessor system [1, 2].2.5.3 CCS+In [58] an extension of CCS is developed with the objective of reasoning about simulationmodels representing the performance of a system. This language, CCS+, is intended to givethe semantics of simulation models thus providing more support for the rigorous developmentof simulation models than has been previously available.The language is given an operational semantics in terms of three transition systems repres-enting probabilistic, action and time evolution. Probabilistic evolution resolves probabilisticchoices and assigns values to random variables representing delays within the system bydrawing from appropriate distributions. Action evolution, resulting in labelled transitions,represents the computation of the system. The real time variables in the language representsimulation time, not computation time, and this is updated by time evolution.It is intended that the language may be used to establish properties of a simulation onceit has been written or to transform it into some more desirable form using formal rules atthe syntactic level. Strong and weak bisimulation are de�ned for the language and are usedfor these purposes. A relationship between CCS+ expressions and generalised semi-Markovprocesses (GSMP) , a low-level representation sometimes used to reason about simulations,has been established.

2.5. RELATED WORK 152.5.4 Relating DEMOS to TCCS and WSCCSAnother use of process algebras in relation to discrete event simulation models is exempli�edin the work of Pooley [59] and Birtwistle et al. [60]. This work aims at incorporating theanalysis of functional properties of systems into the development of discrete event simulationmodels. In Pooley's approach a concise graphical notation is used as a high level represent-ation of the system. This graph may then be automatically transformed into a program inthe process interaction simulation language DEMOS [61], suitable for simulating the systemand deriving performance characteristics. Alternatively it may be transformed into a TCCSexpression which can be analysed to investigate the functional properties of the system,such as liveness. In Birtwistle et al.'s work, a more direct approach is taken deriving CCSexpressions from simulation programs.2.5.5 Performance Equivalence as a BisimulationA recent paper by Gorrieri and Rocetti [62] reports some preliminary work using a timedprocess algebra for performance modelling. A �xed time, speci�ed as a natural number, isassociated with each action. It is assumed that each agent has a local clock which it updateseach time an action is completed. Whenever a synchronisation action occurs between twoagents their clocks are brought into agreement. This corresponds to an assumption thatthe �rst agent arriving at the synchronisation will wait for the second. A bisimulation isde�ned if they are capable of the same actions in the same period of time|this is termedperformance equivalence. Unfortunately this relation is not a congruence.

16 CHAPTER 2. BACKGROUND

Chapter 3Performance Evaluation ProcessAlgebra3.1 IntroductionThis chapter presents the Performance Evaluation Process Algebra (PEPA). This languagehas been developed to investigate how the compositional features of process algebra mightimpact upon the practice of performance modelling. Section 3.2 outlines the major designobjectives for the language. Most of the rest of the chapter is taken up with the subsequentinformal and formal descriptions of the language, and a description of its use as a paradigmfor specifying Markov models. Some simple examples are presented to introduce the readerto the language and its use in describing systems. This establishes PEPA as a formal systemdescription technique. Presentation of more complex examples is postponed until Chapter 4.The use of PEPA for performance modelling is based on an underlying stochastic process.It is shown that, under the given assumptions, this stochastic process will be a continuoustime Markov process. Generating this Markov process, solving it and using it to deriveperformance results are presented and illustrated by a simple example. The relationshipbetween PEPA and established performance modelling paradigms is discussed in Section 3.6.3.2 Design Objectives for PEPAAn objective when designing a process algebra suitable for performance evaluation has beento retain as many as possible of the characteristics of a process algebra whilst also incorpor-ating features to make it suitable for specifying a stochastic process. The aim is to developa language in which the performance evaluation features can be regarded as an extension,o�ering the potential for the \basic" process algebra to be used as a design formalism withthe performance model being developed by annotation of the design.Several features of process algebras are regarded as being essential:Parsimony: Process algebras are simple languages with only a few elements. This parsi-mony means that it is easy to reason about the language and provides a great deal ofexibility to the modeller. In PEPA the basic elements of the language are componentsand activities|these correspond to states and transitions in the underlying stochasticmodel.Formal De�nition: The language is given a structured operational semantics, provid-ing a formal interpretation of all expressions. The notions of equivalence which are17

18 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRAsubsequently developed are based on these semantic rules. This gives a formal basisfor the comparison and manipulation of models and components, and introduces thepossibility of developing tools to automate, or semi-automate, these tasks.Compositionality: The model structure provided by the compositional nature of processalgebras, and the ability to reason about that structure, have already been highlightedin Section 2.4.3 as a major motivation for investigating the use of such a languagefor performance modelling. In PEPA the cooperation combinator forms the basis ofcomposition. In the later chapters of the thesis we show that model simpli�cation andaggregation techniques can be developed which are complementary to this combinator.This means that part of a model can be simpli�ed in isolation, if its interaction withthe rest of the system is modelled by such a combinator, and replaced by the simpli�edcomponent without jeopardising the integrity of the whole model.The main attribute which is missing from a process algebra such as CCS, and which isnecessary for performance evaluation, is the quanti�cation of time and uncertainty. The timeassociated with actions in CCS, for example, is implicit and the models are nondetermin-istic. In performance models, in order that performance measures can be extracted fromthe model, it is important that timing behaviour and uncertainty be quanti�able. This isachieved in PEPA by associating a random variable with each activity, representing its dur-ation. This is presented in more detail in Section 3.3 when the language is described. Adelay is thus inherent in each activity in the model and the timing behaviour of the systemis captured. Moreover since the duration is a random variable, temporal uncertainty [28],the uncertainty of how long an action will take, is represented. As in probabilistic processalgebras, nondeterministic branching is replaced by probabilistic branching|here the prob-abilities are determined by a race condition between the enabled activities. This representsso-called spatial uncertainty, the uncertainty about what will happen next within a system.Thus adapting the process algebra to make it suitable for performance modelling isachieved by introducing a random variable for each activity within the system. Clearly,this may be regarded as an annotation of the pure process algebra model. The constructionis analogous to the association of a duration with the �ring of a timed transition in GSPNsand the other stochastic extensions of Petri nets.3.3 The PEPA LanguageIn this section we describe the language PEPA in some detail, starting with an informaloutline of the language and the syntax. Some examples of PEPA terms and their intendedinterpretation are presented.3.3.1 Informal DescriptionIn PEPA a system is described as an interaction of components and these components engage,either singly or multiply, in activities. The components will correspond to identi�able partsin the system, or roles in the behaviour of the system. They represent the active units withina system; the activities capture the actions of those units. For example, a queue may beconsidered to consist of an arrival component and a service component which interact toform the behaviour of the queue.A component may be atomic or may itself be composed of components. Thus the queuein the above example may be considered to be a component, composed of the atomic arrival

3.3. THE PEPA LANGUAGE 19and service components. We assume that there is a countable set of possible components, C.Each component has a behaviour which is de�ned by the activities in which it can engage.Actions of the queue might be accept, when a customer enters the queue, service, or loss,when a customer is turned away from a full bu�er.When talking about PEPA we use the term activity to distinguish it from the usual processalgebra notion of an instantaneous action. Every activity in PEPA has an associated durationwhich is a random variable with an exponential distribution. In this thesis the term actionwill relate to the behaviour of the system.Each activity has an action type (or simply type). We assume that each discrete actionwithin a system is uniquely typed and that there is a countable set, A, of all possible suchtypes. Thus the action types of a PEPA term correspond to the actions of the system beingmodelled. If there are several activities within a PEPA model which have the same actiontype then they represent di�erent instances of the same action by the system.There are situations when a system is carrying out some action (or sequence of actions)the identity of which is unknown or unimportant. To capture these situations there isa distinguished action type, � , which can be regarded as the unknown type. Activitiesof this type will be private to the component in which they occur. These activities arenot instantaneous|each instance of an activity with action type � will have an associatedduration, as with any other type. However, unlike all other types, multiple instances of �type activities within a PEPA model do not necessarily represent the same action by thesystem.Since an exponential distribution is uniquely determined by its parameter, the durationof an activity, an exponentially distributed random variable, may be represented by a singlereal number parameter. This parameter is called the activity rate (or simply rate) of theactivity; it may be any positive real number, or the distinguished symbol >, which shouldbe read as unspeci�ed.Throughout the thesis we adopt the following conventions:� Components will be denoted by names which start with a large roman letter; forexample, P , System or Cj.� Activities will be denoted by single roman letters taken from the beginning of thealphabet; for example, a, b, or c.� Action types will be denoted by small greek letters, such as �, �, etc., or by nameswhich start with a small roman letter, such as task, serve or use2.� Activity rates will be denoted by single roman letters taken from towards the end ofthe alphabet, typically r, but also ri, s, t etc. Occasionally the greek letters � and �will designate rates when a queue is being considered (the service rate and arrival raterespectively).� The characters L, K, and M will typically be used to denote subsets of A.Thus each activity, a, is de�ned as a pair (�; r) where � 2 A is the action type and r isthe activity rate. It follows that there is a set of activities, Act � A�R+, where R+ is theset of positive real numbers together with the symbol >.Some TerminologyWhen the behaviour of the system is determined by a component P the system is said tobehave as P . The action types which the component P may next engage in are the current

20 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRAaction types of P , a set denoted A(P). The activities which the component P may nextengage in are the current activities of P , a multiset denoted Act(P).Note the distinction we make between action types and activities: the dynamic behaviourof a component depends on the number of instances of each enabled activity and thereforewe consider multisets of activities as opposed to sets of action types. Throughout the rest ofthe thesis we will assume that collections of action types are sets, and collections of activitiesare multisets, unless otherwise stated.When enabled an activity, a = (�; r), will delay for a period determined by its associateddistribution function, i.e. the probability that the activity a happens within a period of timeof length t is Fa(t) = 1�e�rt. We can think of this as the activity setting a timer whenever itbecomes enabled. The time allocated to the timer is determined by the rate of the activity.If several activities are enabled at the same time each will have its own associated timer.When the �rst timer �nishes that activity takes place|the activity is said to complete orsucceed. This means that the activity is considered to \happen": an external observer willwitness the event of an activity of type �. An activity may be preempted, or aborted, ifanother one completes �rst.For each a 2 Act(P) there is some component P 0 which describes the behaviour of thesystem when P has completed a. This component P 0 is not necessarily distinct from P . Wewrite P a�! P 0, or P (�;r)���! P 0 to denote the completion of activity a and the subsequentbehaviour of the system as P 0. A more precise de�nition of a�! will be given in Section 3.3.7.3.3.2 SyntaxComponents and activities are the primitives of the language PEPA; the language alsoprovides a small set of combinators. As explained in the previous section the behaviourof a component is characterised by its activities. However, this behaviour may be inuencedby the environment in which the component is placed. The combinators of the languageallow expressions, or terms, to be constructed de�ning the behaviour of components, via theactivities they undertake and the interactions between them.The syntax for terms in PEPA is de�ned as follows:P ::= (�; r):P j P +Q j P BCL Q j P=L j AThe names of these language constructions and their intended interpretations are presentedin some detail below.Pre�x: (�; r):PPre�x is the basic mechanism by which the behaviours of components are constructed. Thecomponent (�; r):P carries out activity (�; r), which has action type � and a duration whichis exponentially distributed with parameter r (mean 1=r). The time taken for the activityto complete will be some �t, drawn from the distribution. The component subsequentlybehaves as component P . If the component is (�; r):P at some time t, the time at which itcompletes (�; r) and becomes P , enabling all the activities in Act(P), will be t+�t. Whena = (�; r) the component (�; r):P may be written as a:P .It is assumed that there is always an implicit resource, some underlying resource facilitatingthe activities of the component which is not modelled explicitly. Thus the time elapsed beforeactivity completion represents use of this resource by the component. For example, this

3.3. THE PEPA LANGUAGE 21resource might be bandwidth on a communication channel, processor time or CPU cycleswithin a processor, depending on the system and the level at which the modelling takesplace.Choice: P +QThe component P + Q represents a system which may behave either as component P oras Q. P + Q enables all the current activities of P and all the current activities of Q,i.e. Act(P +Q) = Act(P)] Act(Q) (where] denotes multiset union). Whichever enabledactivity completes it must belong to either Act(P) or Act(Q). Note that this is true evenif P and Q are capable of the same activity since we distinguish between instances of anactivity. In this way the �rst activity to complete distinguishes one of the components, P orQ. The other component of the choice is discarded. The continuous nature of the probabilitydistributions ensures that the probability of P and Q both completing an activity at thesame time is zero. The system will subsequently behave as P 0 or Q0 respectively, where P 0is the component which results from P completing the activity, and similarly Q0.It is important to note that there is an underlying assumption that P and Q are competingfor the same implicit resource. Thus the choice combinator represents competition betweencomponents.Cooperation: P BCL QThe cooperation combinator is in fact an indexed family of combinators, one for each possibleset of action types, L � A. The set L, the cooperation set, determines the interaction betweenthe components P and Q. Thus it is possible that the component P BCL Q will have quitedi�erent behaviour from the component P BCK Q, if L 6= K.The cooperation set de�nes the action types on which the components must synchroniseor cooperate. In contrast to choice, it is assumed that each component in a cooperationhas its own implicit resource and that they proceed independently with any activities whosetypes do not occur in the cooperation set L. However activities with action types in the setL require the simultaneous involvement of both components (both resources) in an activityof that type. The unknown action type, � , may not appear in any cooperation set.All activities of P and Q which have types which do not occur in L will proceed una�ected.These are termed individual activities of the components. In contrast shared activities,activities whose type does occur in L, will only be enabled in P BCL Q when they are enabledin both P and Q. Thus one component may become blocked, waiting for the other componentto be ready to participate. These activities represent situations in the system when thecomponents need to work together to achieve an action. In general both components will needto complete some work, corresponding to their own representation of the action. This meansthat a new shared activity is formed by the cooperation P BCL Q, replacing the individualactivities of the individual components P and Q. This activity will have the same actiontype as the two contributing activities and a rate reecting the rate of the slower participant,i.e. the expected duration of a shared activity will be greater than or equal to the expecteddurations of the corresponding activities in the cooperating components.If an activity has an unspeci�ed rate in a component, the component is passive withrespect to that action type. This means that although the cooperation of the componentmay be required to achieve an activity of that type the component does not contribute to thework involved. An example might be the role of a channel in a message passing system: thecooperation of the channel is essential if a transfer is to take place but the transfer involves

22 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRAno work (consumption of implicit resource) on the part of the channel. This may be regardedas one component coopting another.When the set L is empty, BCL has the e�ect of parallel composition, allowing componentsto proceed concurrently without any interaction between them. This situation will arisequite frequently, especially in systems with repeated components. Therefore we introducethe more concise notation P k Q to represent P BC; Q. We will refer to k as the parallelcombinator. Note, however, that this is only a syntactic convenience|no expressiveness isadded to the language by its inclusion.Hiding: P=LThe component P=L behaves as P except that any activities of types within the set L arehidden, meaning that their type is not witnessed upon completion. Instead they appear asthe unknown type � and can be regarded as an internal delay by the component.Hiding does not have any e�ect upon the activities a component may engage in individu-ally, but it does a�ect whether these activities can be fully witnessed externally. Normally,when an activity is completed an external observer can see the type of the completed activ-ity. The observer will also have been aware of the delay while the activity took place, thelength of time since the previous activity completed. A hidden activity is witnessed onlyby its delay and the unknown type, � . Moreover such an activity cannot be carried out incooperation with any other component. In e�ect the action type of a hidden activity is nolonger externally accessible, to an observer or to another component. However the durationof an activity is una�ected if it is hidden.Constant: A def= PWe assume that there is a countable set of constants. Constants are components whosemeaning is given by a de�ning equation such as A def= P which gives the constant A thebehaviour of the component P . This is how we assign names to components (behaviours).Suppose E is a component expression which contains a variable X. Then EfP=Xg denotesthe component formed when every occurrence of X in E is replaced by the componentP . More generally an indexed set of variables, ~X, may be replaced by an indexed set ofcomponents ~P , as in Ef ~P= ~Xg.The precedence of the combinators provides a default interpretation of any expression.Hiding has highest precedence with pre�x next, followed by cooperation. Choice has thelowest precedence. Brackets may be used to force an alternative parsing or simply to clarifymeaning.Brackets may also be used to clarify the meaning of a combination of components such asP BCL Q BCK R. Here the intended scope of the cooperation sets, L and K, is unclear. If thecomponent is (P BCL Q)BCK R, R may then proceed independently for any action types inL nK and P and R must cooperate for any action types in K. However if the component isP BCL (Q BCK R), R must cooperate with P to achieve action types in L and P may proceedindependently for action types in K n L. Thus brackets delimit the intended scope of thecooperation set. When brackets are missing we assume that the cooperation combinatorassociates to the left.Consequently the cooperation between several di�erent components using di�ering cooper-ation sets may be regarded as being built up in layers or levels, each cooperation combiningjust two components, those components possibly being formed from cooperations between

3.3. THE PEPA LANGUAGE 23components at a lower level. For example, the component�(P1 BCL P2) BCM P3� BCK �P4 BCN P5�can be regarded at the top level as Q1 BCK Q2 where, at the lower level, if � denotes syntacticequivalence, Q1 � Q3 BCM P3 and Q2 � P4 BCN P5, and at the lowest level Q3 � P1 BCL P2.Components at the lowest level, which do not contain a cooperation will sometimes bereferred to as atomic components. Those at the top level will be referred to as top-levelcomponents.3.3.3 Execution Strategies and the Exponential DistributionA race condition governs the dynamic behaviour of a model whenever more than one activityis enabled. This means that we may think of all the activities attempting to proceed butonly the \fastest" succeeding. Of course which activity is fastest on successive occasions willvary due to the nature of the random variables determining the durations of activities.The race condition has the e�ect of replacing non-deterministic branching (as in CCS)with probabilistic branching. The probability that a particular activity completes will begiven by the ratio of the activity rate of that activity to the sum of the activity rates ofall the enabled activities. We may take advantage of this to represent a single action in asystem by more than one activity in the corresponding PEPA model, if the action has morethan one possible outcome.For example, a component engaging in an action of type � with mean duration 1=r,may have two di�erent possible outcomes resulting from the action. In the PEPA modelof the component this single action would be represented by two separate activities. Theactivity rates of these activities would be adjusted to capture the probabilities of the di�erentoutcomes. Thus a system which will perform an action of type � at rate r and then, withprobability 1=3, behave as component P , and with probability 2=3, behave as component Q,will be represented by a PEPA component enabling two type � activities:(�; r3):P + (�; 2r3):QWhenever an activity completes, the behaviour of the model may change, as it takes onthe behaviour of the resulting component. Any other activities which were simultaneouslyenabled will be preempted. This may have the e�ect of aborting the activity, or merelyinterrupting it, if it is also enabled in the new component.Where the simultaneously enabled activities were sharing the same implicit resource thee�ect of the completion of one activity can be regarded as preemptive restart with resampling.In a preemptive restart strategy an activity which is preempted by the completion of anotheractivity abandons its spent lifetime and starts another lifetime whenever it is next enabled(possibly at once). Without resampling the restarted activity will retain information aboutthe abandoned lifetime and when next enabled restart another lifetime with exactly thesame duration. If there is resampling whenever the activity is restarted it will make a freshdrawing from the distribution governing the lifetime, starting a lifetimewith a new, randomlyselected duration1. This means that any subsequent enabling of a preempted activity must1Throughout the rest of the thesis preemptive restart will mean preemptive restart with resampling unlessotherwise stated.

24 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRAbe regarded as a fresh attempt by that activity to acquire the resource and complete itswork. An example of this would be activities which compete within a choice.On the other hand the e�ect of preemption on simultaneously enabled activities workingon di�erent implicit resources will be preemptive resume. In a preemptive resume strategy apreempted activity will remember its spent lifetime and whenever it is next enabled it willresume from that point, only completing the remaining portion of its lifetime. The progressof the activity may be regarded as being interrupted by the completion of an activity inanother component. However, whenever the activity is re-enabled it will continue from thepoint at which it was interrupted. This implies that information about the remaining lifetimeof each such preempted activity must be retained. This strategy is applicable to the case ofactivities which are simultaneously enabled by di�erent components within a cooperation.Fortunately we can take advantage of the memoryless property of the exponential dis-tribution: the time to the next event is independent of when the last event occurred. Inother words how much longer the activity will wait before completing is independent of howlong it has waited already. This allows a blurring of the distinction between the preemptiverestart and the preemptive resume execution strategies and means that it is not necessaryto retain information about the remaining lifetime of an activity in either case, as long asexponentially distributed delays are assumed for all activities.3.3.4 ExamplesIn this section we present three simple examples, illustrating how the language may be usedto describe systems.Multiple Server Queue as a Single ComponentConsider an M=M=c=N queue, a queue with c servers and a bu�er with capacity N , whereN > c. We assume that customers arrive at a rate �. As the queue is modelled as a singlecomponent we do not represent the customers directly but we assume that, when it is notfull, the queue will engage in an accept activity at rate �, representing the acceptance ofa customer into the queue. When the queue is full, since the arrival process will not besuspended, the queue will be involved in a loss activity, losing a customer at rate �. Theservice rate of each server is assumed to be � so that when there are i customers in the queue,it will engage in a serve activity at rate i �, if i � c, and rate c�, when c � i < N . Let Qidenote the component representing the behaviour of the queue when there are i customerspresent (including those in service).Q0 def= (accept; �):Q1... ...Qi def= (accept; �):Qi+1 + (serve; i�):Qi�1 1 � i < c... ...Qj def= (accept; �):Qj+1 + (serve; c�):Qj�1 c � j < N � 1... ...QN def= (loss; �):QN + (serve; c�):QN�1

3.3. THE PEPA LANGUAGE 25Single Server Queue as Two Cooperating ComponentsConsider anM=M=1=N=N queue, a single server queue with bu�er capacity N , and customerpopulation N . As in the previous example we assume that customers arrive at a rate �.However the arrival process will be suspended when the queue is full as all the customerswill already be present in the queue. We represent the queue as two interacting components:a Server and a Line. The behaviour of the Server is very simple. Whenever it is able itwill engage in a serve activity at rate �.Server def= (serve; �):ServerThe Line models the bu�er. When the bu�er is not full customers will arrive at rate � so theLine will engage in an accept activity at rate �. When the bu�er is non-empty a customerwill be available for service at a rate determined by the server, so the Line will engage ina serve activity at an unspeci�ed rate. Linei will denote the behaviour of the Line whenthere are i customers in the bu�er.Line0 def= (accept; �):Line1... ...Linei def= (accept; �):Linei+1 + (serve;>):Linei�1 1 � i � N � 1... ...LineN def= (serve;>):LineN�1The Queue is formed by the cooperation of the Line and the Server for the serve activity:Queue0 def= Line0 BCfservegServerSimple Resource Usage System as Cooperating ComponentsConsider a simple system in which a process repeatedly carries out some task. In order tocomplete its task the process needs access to a resource for part, but not all, of the time. Thusthe task can be regarded as being in two stages: the �rst requiring access to the resource, thesecond involving only the process. The resource meanwhile is continuously available exceptfor a short period after it has been used during which it is reset and therefore unavailable.We model the process and the resource as two components: Process and Resource re-spectively. The process will undertake two activities consecutively: use with some rate r1,in cooperation with the resource, and task at rate r2, representing the remainder of its pro-cessing task. Similarly the resource will engage in two activities consecutively: use, at a rater3 and update, at rate r4.Process def= (use; r1):(task; r2):P rocessResource def= (use; r3):(update; r4):ResourceSystem def= Process BCfusegResourceIn this case it would be straightforward to model this as a single component:System0 def= (use; r13): �(task; r2):(update; r4):System0 + (update; r4):(task; r2):System0�where r13 = min(r1; r3)

26 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRAHowever, note that this does not reect what is happening in the system as clearly asthe �rst representation. Moreover, representing the components of the system as separatecomponents in the model means that we can easily extend the model to represent a systemin which there are two processes, independent of each other but competing for the use of theresource. System2 def= (Process k Process) BCfusegResource3.3.5 Passive ActivitiesWhen the cooperation between components is unequal, possibly representing cooption orcoercion, one component may be passive with respect to an action type. This will mean thatall activities of that type enabled by the component will have an unspeci�ed activity rate.These activities must be shared with another component, the other component determiningthe rate of this shared activity. A model will be termed incomplete if it has a componentwhich is passive with respect to an individual action type, i.e. a passive action type is notshared or restricted by a cooperation set.If more than one activity of a given passive type can be simultaneously enabled by acomponent, each unspeci�ed activity rate must also be assigned a weight. These weights arenatural numbers used to determine the relative probabilities of the possible outcomes of theactivities of that action type. For example, if a component is passive with respect to actiontype � and if, when � is completed, the component may, with probability w1=(w1 + w2),subsequently behave as P , or with probability w2=(w1+w2), subsequently behave as Q, thecomponent will be represented as(�;w1>):P + (�;w2>):QWe assume that (�;>) is an abbreviation for (�; 1>). Also, if no weights are assigned weassume that multiple instances have equal probabilities of occurring.The following inequalities and equations de�ne the comparison and manipulation of un-speci�ed activity rates:r < w> for all r 2 R+ and for all w 2 Nw1> < w2> if w1 < w2 for all w1; w2 2 Nw1>+ w2> = (w1 + w2)> for all w1; w2 2 Nw1>w2> = w1w2 for all w1; w2 2 N (3.2)3.3.6 Some Further De�nitionsApparent RateAs explained in Section 3.3.3, it may be convenient within a model to represent a single actionof the system by more than one activity in the model. However to an external observer ofthe system or the model the apparent rate of activities of that type will be the same, sincein the model the race condition ensures that the rate at which an � activity is done is thesum of the rates of all the enabled type � activities.

3.3. THE PEPA LANGUAGE 27Alternatively a system may have multiple capacity to perform an action, as in the case ofa queue with multiple servers and n customers waiting (n > 1). This would have the sameapparent rate for the serve action type as a PEPA component enabling a single type serveactivity which has a rate n times the actual service rate, as in the �rst example presentedabove. Thus we can see that the apparent rate at which an action type occurs will be ofimportance when comparing models with systems, and models with models.De�nition 3.3.1 The apparent rate of action of type � in a component P , denoted r�(P),is the sum of the rates of all activities of type � in Act(P).1. r�((�; r):P) = (r if � = �0 if � 6= �2. r�(P +Q) = r�(P) + r�(Q)3. r�(P=L) = (r�(P) if � =2 L0 if � 2 L4. r�(P BCL Q) = (min(r�(P); r�(Q)) if � 2 Lr�(P) + r�(Q) if � =2 LNote that an apparent rate may be unspeci�ed: if P is de�ned as,P def= (�;w1>):P1 + (�;w2>):P2then, by De�nition 3.3.1 and Equation 3.2 the apparent rate of � in P is r�(P) = (w1+w2)>.In contrast the apparent rate will be unde�ned for component expressions containingunguarded variables, i.e. variables which are not pre�xed by an activity. Consequently wedo not allow a component to be de�ned by such an expression.Current Action TypesIt will be convenient to refer to the set of action types enabled by a component P , denotedA(P). When the system is behaving as component P these are the action types which maybe observed when an activity next completes. The following de�nition shows how the setmay be constructed for any PEPA component.De�nition 3.3.2 (Set of Current Action Types)1. A((�; r):P) = f�g2. A(P +Q) = A(P) [A(Q)3. A(P=L) = (A(P) if A(P) \ L = ;(A(P) n L) [f�g if A(P) \ L 6= ;4. A(P BCL Q) = �A(P) n L� [�A(Q) n L� [�A(P) \ A(Q) \ L�

28 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRACurrent ActivitiesThe multiset of current activities of P , denoted Act(P), will also play an important partin the analysis of a component P . When the system is behaving as component P these arethe activities which are enabled. The following de�nition de�nes how this multiset may beconstructed. We adopt the following abbreviations:ActnL(P) = fj (�; r) 2 Act(P) j � =2 L jgAct\L(P) = fj (�; r) 2 Act(P) j � 2 L jg:De�nition 3.3.3 (Activity Multiset)1. Act((�; r):P) = fj (�; r) jg2. Act(P +Q) = Act(P)] Act(Q)3. Act(P=L) = ActnL(P)] fj (�; r) j (�; r) 2 Act\L(P) jg4. Act(P BCL Q) = ActnL(P)] ActnL(Q)]fj (�; r) j � 2 L; 9 (�; r1) 2 Act\L(P); 9 (�; r2) 2 Act\L(Q);r = r1r�(P) r2r�(Q) min(r�(P); r�(Q)) jg3.3.7 Formal De�nition: Operational SemanticsThe semantics of PEPA, presented in the structured operational semantics style of [32], areshown in Figure 3.1. The operational rules are to be read as follows: if the transition(s)above the inference line can be inferred, then we can infer the transition below the line.The rules outline the activities which a component can witness|each activity completionbrings about a transition in the system. Time is not represented explicitly in the rules butit is assumed for each one that an activity takes some time to complete and consequentlyeach transition represents some advance of time. All activities are assumed to be (time)homogeneous meaning that the rate and type of an activity are independent of the time atwhich it occurs. Also the activity set of a component is assumed to be independent of time,i.e. Act(P) does not depend upon the time at which it is considered.The rules are straightforward and are presented without comment except for the thirdrule for cooperation, the rule de�ning shared activities. The apparent rate of a shared actiontype (i.e. � 2 L) in the component E BCL F is taken to be the slower of the apparent rates ofthat action type in E and F . It is assumed that in general both components of a cooperationwill need to complete some work, as reected by their own version of the activity, for theshared activity to be completed. In the case where the apparent rate is unspeci�ed in onecomponent the apparent rate will be completely determined by the other component.Recall that multiple instances of the same action type within a component may be usedto represent di�erent possible outcomes. We assume independence between the choice ofoutcome made by each of the cooperating components and choose the rate of each sharedactivity to maintain the same probability of outcome in each of the components. For example,for an instance of action type � in Act(E), say (�; r1), the probability, given that an � typeactivity occurs, that this is the activity that completes, is r1=r�(E). Similarly for an instanceof action type � in Act(F), say (�; r2), the probability, given that an � type activity occurs,that this is the activity that completes, is r2=r�(F). Given that a shared � type activityhas occurred in E BCL F then, assuming independence of choice in E and F , the probabilitythese two instances combined to form the shared activity is: r1=r�(E)� r2=r�(F).

3.3. THE PEPA LANGUAGE 29Pre�x (�; r):E (�;r)���! EChoice E (�;r)���! E 0E + F (�;r)���! E 0 F (�;r)���! F 0E + F (�;r)���! F 0CooperationE (�;r)���! E 0E BCL F (�;r)���! E 0 BCL F (� =2 L) F (�;r)���! F 0E BCL F (�;r)���! E BCL F 0 (� =2 L)E (�;r1)���! E 0 F (�;r2)���! F 0E BCL F (�;R)���! E 0 BCL F 0 (� 2 L) where R = r1r�(E) r2r�(F) min(r�(E); r�(F))HidingE (�;r)���! E 0E=L (�;r)���! E 0=L (� =2 L) E (�;r)���! E 0E=L (�;r)���! E 0=L (� 2 L)Constant E (�;r)�! E 0A (�;r)�! E 0 (A def= E)Figure 3.1: Operational Semantics of PEPAFor any activity instance its activity rate is the product of the apparent rate of the actiontype in this component and the probability, given that an activity of this type occurs, thatit is this instance that completes. This leads to the following rule:E (�;r1)���! E 0 F (�;r2)���! F 0E BCL F (�;R)���! E 0 BCL F 0 (� 2 L) where R = r1r�(E) r2r�(F) min(r�(E); r�(F))On the basis of the semantic rules PEPA can be de�ned as a labelled multi-transitionsystem. In general a labelled transition system (S; T; f t! j t 2 Tg) is a system de�ned bya set of states S, a set of transition labels T and a transition relation t! � S � S for eacht 2 T . In a multi-transition system the relation is replaced by a multi-relation in whichthe number of instances of a transition between states is recognised. Thus PEPA may be

30 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRAregarded as a labelled multi-transition system (C;Act; f (�;r)���! j (�; r) 2 Actg) where C is theset of components, Act is the set of activities and the multi-relation (�;r)���! is given by therules in Figure 3.1.3.3.8 ExamplesFollowing these rules we can construct transition diagrams representing the possible beha-viours of a component. The transitions are labelled by the activities which they represent.This is often a useful representation of a component, initially more illuminating than thede�ning equations. We consider each of the examples presented in Section 3.3.4 to illustrate.Example 1 - M=M=c=N queueQ0 Q16(accept; �)?(serve; �) -(accept; �)6(serve; 2�) � � � (accept; �)(serve;(c� 1)�)� ?Qc�1 -(accept; �)6(serve; c�) � � � (accept; �)(serve; c�)� ?QN�1 ?(accept; �)6(serve; c�)QN6(loss; �)Example 2 - M=M=1=N=N queueServer6(serve; �) Line0 Line16(accept; �) ?(serve;>) -(accept; �)6(serve;>) � � � (accept; �)(serve;>)� ?LineN�1 ?(accept; �)6(serve;>)LineNQueue0 Queue16(accept; �) ?(serve; �) -(accept; �)6(serve; �) � � � (accept; �)(serve; �)� ?QueueN�1 ?(accept; �)6(serve; �)QueueNExample 3 - Processor/Resource SystemProcessBCfusegResourceProcess0 BCfusegResource0Process BCfusegResource0 Process0 BCfusegResource?(use; r13)	(task; r2) R(update; r4)�(update; r4) K (task; r2)r13 = min(r1; r3)where Process0 and Resource0 are de�ned as follows:Process0 def= (task; r2):P rocess Resource0 def= (update; r4):Resource

3.4. BASIC PROPERTIES 313.4 Basic PropertiesIf we envisage a graph in which language terms form the nodes and where arcs representthe possible transitions between them, then the operational rules de�ne the form of thisgraph. We have already remarked that we distinguish between di�erent instances of thesame activity. As a result, the graph we consider is a multigraph|if there is more thanone instance of an arc between terms we distinguish between them. This underlying graph,the derivation graph, describing the possible behaviour of any PEPA component, provides auseful way to reason about the behaviour of a model. First we make precise the notion of aderivative informally introduced in Section 3.3.1.De�nition 3.4.1 If P (�;r)���! P 0, then P 0 is a (one-step) derivative of P . More generally, ifP (�1;r1)���! � � � (�n;rn)���! P 0, then P 0 is a derivative of P .These derivatives are the states of the labelled multi-transition system. We will often�nd it convenient to expand the de�nition of a component and name all the derivativesindividually. For any PEPA component the set of derivatives (behaviours) which can evolvefrom the component can be de�ned recursively.De�nition 3.4.2 The derivative set of a PEPA component C is denoted ds(C) and de�nedas the smallest set of components such that� if C def= C0 then C0 2 ds(C);� if Ci 2 ds(C) and there exists a 2 Act(Ci) such that Ci a�! Cj then Cj 2 ds(C).Thus the derivative set is the set of components which capture all the reachable states of thesystem. We have already seen that the transition graph of a system can be a useful tool forvisualising the possible states of the system and the relationships among them. This can bede�ned in terms of the derivative set of a system as the derivation graph.De�nition 3.4.3 Given a PEPA component C and its derivative set ds(C), the derivationgraph D(C) is the labelled directed multigraph whose set of nodes is ds(C) and whose multisetof arcs A is de�ned as follows:� The elements of A are taken from the set ds(C)� ds(C)�Act;� hCi; Cj; ai occurs in A with the same multiplicity as the number of distinct inferencetrees which infer Ci a�! Cj.The initial component C0, where C def= C0, is taken to be the initial node of the graph.The derivative set and derivation graph of a component expression, E, ds(E) and D(E)respectively, can be de�ned in the intuitive way. Note that variables in the expression willform leaves of the derivation graph, and when the variable is instantiated the appropriatederivation graph is attached at that point.It is occasionally necessary to refer to the complete set of action types which are usedwithin the derivation graph of a system, i.e. all the possible action types which may bewitnessed as a component evolves. This set will be denoted ~A(C).De�nition 3.4.4 The complete action type set of a component C is~A(C) = [Ci2ds(C)A(Ci):

32 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRA3.5 The Underlying Stochastic ModelIn this section we explain how the derivation graph of a PEPA model may be used togenerate a representation of the system as a stochastic process. Moreover we show thatwhen the activity durations are assumed to be exponentially distributed random variablesthe resulting stochastic model is a continuous time Markov process.The relationship between the structure of the PEPA model and the ergodicity of theMarkov process is discussed, and assuming that a steady state solution exists, a methodfor solving the process is presented. In Section 3.5.6 we show how performance measurescan be derived from a PEPA model. This is illustrated by an example in Section 3.5.7.In the following section, Section 3.6, we discuss the relationship between PEPA and otherparadigms for specifying Markov models used for performance modelling.3.5.1 Generating the Markov ProcessFor any �nite PEPA model we take a na��ve approach to generating the underlying stochasticprocess based on the derivation graph of the model. Recall that the derivation graph is amultigraph which has the component de�ning the model as its initial node. Each subsequentcomponent, or derivative, is a node in the graph and there is an arc between nodes, labelled bythe action type and the activity rate, for each possible transition between the correspondingcomponents. To form the stochastic process a state is associated with each node of thegraph, and the transitions between states are de�ned by the arcs of the graph. We assumethat the model is �nite so that the number of nodes in the derivation graph is �nite.Since all activity durations are exponentially distributed, the total transition rate betweentwo states will be the sum of the activity rates labelling arcs connecting the correspondingnodes in the derivation graph, as shown in the following theorem. This use of the derivationgraph is analogous to the use of the reachability graph in stochastic extensions of Petri netssuch as GSPNs [17].Theorem 3.5.1 For any �nite PEPA model C def= C0, if we de�ne the stochastic processX(t), such that X(t) = Ci indicates that the system behaves as component Ci at time t, thenX(t) is a Markov process.Proof By de�nition, X(t) is a Markov process, if and only if, for t0 < t1 < � � � < tn < tn+1,the joint distribution of (X(t1);X(t2); : : : ;X(tn);X(tn+1)) is such thatPr(X(tn+1) = Cjn+1 j X(t0) = Cj0; : : : ;X(tn) = Cjn) =Pr(X(tn+1) = Cjn+1 j X(tn) = Cjn)In other words, the past behaviour, and the future behaviour, conditional on the presentbehaviour, are independent. This can also be stated as follows:The distribution of time until the next state change is independent of the timethat has elapsed since the last state change. (�)For an arbitrary, �nite PEPA model C, with underlying stochastic process X(t), considerthe sojourn time in an arbitrary state X(ti) = Cji, that is the duration of a period spentbehaving as component Cji. Let Si(t) denote the sojourn time distribution. Then Si(t) isthe probability that a sojourn in the state corresponding to Cji has duration less than orequal to t. Recall that for each component Cji , Act(Cji) is the multiset of activities which

3.5. THE UNDERLYING STOCHASTIC MODEL 33are enabled when the system is behaving as component Cji . For each a 2 Act(Cji), wede�ne Sia(t) to be the conditional sojourn time distribution. Sia(t) is the probability that asojourn in the state corresponding to Cji has duration less than or equal to t and ends bythe completion of activity a. Note that the unconditional sojourn distribution is the sum ofconditional sojourn time distributions:Si(t) = Xa2Act(Cji)Sia(t)We assume that the duration of each activity a is exponentially distributed with someparameter ra, i.e. the distribution function for the duration of a is Fa(t) = 1� e�rat, whichhas density function fa(t) = rae�rat.The enabled activities of component Cji are Act(Cji) = fj a1; a2; : : : an jg. Without loss ofgenerality we assume that each activity in Act(Cji) is uniquely named, i.e. the multiplicityof each ak in Act(Cji) is one. Then,Siak(t) = Z t0 0BB@ Y1�`�n6̀=k (1 � Fa`(x))1CCA dFak = Z t0 0BB@ Y1�`�n6̀=k (1� Fa`(x))1CCA fak(x) dx= Z t0 0BB@ Y1�`�n6̀=k (e�ra` x)1CCA rak e�rak x dx = rak Z t0 e��xdx = rak� (1� e��t)where � = nX̀=1 ra`. Hence,Si(t) = Xaj2Act(Ci)Siaj(t) = 1 � e��t� nX̀=1 ra` = 1� e��t:Therefore, the sojourn time in any state corresponding to a component Cji is exponentiallydistributed with mean 1=�, where � is the sum of the rates of the current activities.The memoryless property of the exponential distribution implies that the time until thesystem, behaving as component Cji, completes some activity, and starts to behave as somederivative Cjk , is independent of the time that has elapsed since it started behaving as Cji.Thus the system satis�es condition (�)|the distribution of the time until the next statechange is independent of the time that has elapsed since the last state change. Hence thestochastic process based on the derivation graph of a �nite PEPA model is a Markov process.�3.5.2 Some De�nitionsIn this section we introduce the notation and terminology which will be used throughout therest of the thesis to describe the Markov process underlying a PEPA model.Exit Rates and Transition RatesThe sojourn time of a component C is an exponentially distributed random variable, whoseparameter is the sum of the activity rates of the activities enabled by C. The mean, or

34 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRAexpected, sojourn time will therefore be 0@ Xa2Act(C)ra1A�1.We will generally �nd it more convenient to consider the related notion of the exit ratefrom C. This is the rate at which the system leaves the state corresponding to the componentC. It is denoted, q(C), and is de�ned as,q(C) = Xa2Act(C)raThis can be regarded as the rate at which the component C does something, or equivalently,the rate at which it completes an arbitrary activity.The transition rate between two components Ci and Cj is denoted by q(Ci; Cj). This isthe rate at which the system changes from behaving as component Ci to behaving as Cj, orthe rate at which transitions between the states corresponding to Ci and Cj occur. It willbe the sum of the activity rates labelling arcs which connect the node corresponding to Cito the node corresponding to Cj in the derivation graph, i.e.q(Ci; Cj) = Xa2Act(CijCj)rawhere Act(CijCj) = fja 2 Act(Ci) j Ci a�! Cjjg. Typically this multiset will only containone element. Clearly if Cj is not a one-step derivative of Ci, q(Ci; Cj) = 0.The q(Ci; Cj), or qij, are the o�-diagonal elements of the in�nitesimal generator matrix ofthe Markov process, Q.Pr(X(t+ �t) = Cj j X(t) = Ci) = q(Ci; Cj) �t+ o(�t); i 6= jDiagonal elements are formed as the negative sum of the non-diagonal elements of each row,i.e. qii = �q(Ci). A steady state probability distribution for the system, �(�), if it exists,can be computed by solving the matrix equation,�Q = 0subject to the normalisation condition, P�(Ci) = 1.The conditional transition rate from Ci to Cj via an action type � is denoted q(Ci; Cj; �).This is the sum of the activity rates labelling arcs connecting the corresponding nodes inthe derivation graph which are also labelled by the action type �. It is the rate at whicha system behaving as component Ci evolves to behaving as component Cj as the result ofcompleting a type � activity.The conditional exit rate will also sometimes be considered. This is the rate of leaving acomponent C via an activity of a given action type �. It is denoted q(C;�). It will be thesum of all activity rates for type � activities enabled in C. It is clear that the conditionalexit rate of C via � is the same as the apparent rate of � in C, i.e. q(C;�) = r�(C):Probabilities and the Embedded Markov ChainThe conditional probabilities of a component C ending a sojourn by completing a givenactivity a, or any activity of a given action type �, are denoted by p(C; a) and p(C;�)respectively. These are de�ned in the natural way; for example, given that C completes anactivity, p(C; a) is the probability that the activity is an instance of activity a:p(C; a) = raXb2Act(C) rb

3.5. THE UNDERLYING STOCHASTIC MODEL 35Transition probabilities may also be de�ned: p(Ci; Cj) denotes the probability, given thatCi completes an activity, that the resulting derivative is Cj.p(Ci; Cj) = q(Ci; Cj)q(Ci) = Xa2Act(CijCj)raXb2Act(Ci)rbIf we disregard the period spent as component Ci and consider only those points in timewhen an activity completes we can de�ne a (discrete time) Markov chain associated withthe model. The p(Ci; Cj), or simply pij , are the transition probabilities of this embeddedMarkov chain. Note that in general the equilibrium distribution of this Markov chain, if itexists, will di�er from that of the Markov process from which it was derived, because theMarkov chain disregards the amount of time the process remains in each state.3.5.3 Stochastic Processes with an Equilibrium DistributionPerformance analysis is usually concerned with the behaviour of systems over an extendedperiod of time. The system should have settled into some \normal" pattern of behaviour.The analogous statistical notion is the idea of steady state or equilibrium. This is expressedby the global balance equations �Q = 0 : the rate of ow out of any state is balanced bythe rate of ow into the state.To clarify when a PEPA model represents a system which has such a regular pattern ofbehaviour in the next section we establish the necessary condition which must be satis�edby the model if the underlying Markov process is to have an equilibrium distribution. First,some terminology is introduced.A Markov process is �nite if the number of states in the state space is �nite. This doesnot restrict the behaviour of the process to be �nite in the sense of operating for only a �nitetime. On the contrary the processes in which we will be interested exhibit in�nite behaviourover a �nite number of states. Similarly a PEPA model is �nite if its derivative set containsa �nite number of components.A state in a Markov process, Xi, is called persistent or recurrent if the probability thatthe process will eventually return to Xi is one. Otherwise the state is called transient. Interms of a system, the recurrent states correspond to the behaviour which is repeatedlyexhibited by the system whereas transient states correspond to a behaviour which will beno longer exhibited after a certain time. For example, in a queue in which arrivals occurmore frequently than service, the empty state is transient as the queue length will growunboundedly, never returning to this state after a certain time. A recurrent state Xj istermed positive-recurrent, or sometimes ergodic, if the expected number of steps until theprocess returns to Xj is less than in�nity.A Markov process is time homogeneous if the transition rates are independent of the timeat which the transitions occur, i.e. Pr(X(t + �) = Ck j X(t) = Cj) does not depend on t.This implies that the behaviour of the system does not depend on when it is observed.A Markov process is called irreducible if all states can be reached from all other states.If the process is not irreducible the state space may be split into separate classes of states;states within each class communicating with each other only. An initial choice by the processdetermines which class is entered and which set of behaviours will be exhibited. These classesof states, or sets of behaviours, can be studied separately as distinct processes. Furtherexplanations of these terms, and the following theorem, can be found in Feller [63].

36 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRATheorem 3.5.2 (Feller) A stationary or equilibrium probability distribution, �(�), existsfor every time homogeneous irreducible Markov chain whose states are all positive-recurrent.Moreover this distribution is the same as the limiting distributionlimt!1Pr(X(t) = Ck j X(0) = C0) = �(Ck):3.5.4 PEPA Models with Equilibrium BehaviourWe assume that all PEPAmodels are time homogeneous since the rate and type of an activityare independent of time, as are the activities available within a component. Irreducibility iseasily expressed in terms of the derivation graph of the PEPA model.De�nition 3.5.1 A PEPA component is cyclic, or irreducible, if it is a derivative of all thecomponents in its derivative set.C 2 ds(Ci) for all i such that Ci 2 ds(C)A cyclic component is one in which behaviour may always be repeated|how ever themodel evolves from this component it will always eventually return to this component andthis set of behaviours. In particular this means that for every choice, whichever componentis chosen the model must eventually return to the point where the choice can be made again,possibly with a di�erent outcome. If we consider the layering imposed on a componentby cooperation combinators, this implies that choice combinators may only be introducedat the lowest level of a cyclic component. In other words, a component which involves achoice combinator may subsequently be used in a cooperation, but a component involving acooperation may not be subsequently used in a choice.For example, consider the component C def= C1 + C2 in which C1 is P0 BCL Q0 and C2 isR0 BCK S0. Whichever component Ci �rst completes an activity the component will thenbehave as Ci, C1 say. All derivatives of C1 must have the form C 01 � Pi BCL Qj for somePi 2 ds(P0) and Qj 2 ds(Q0).The component C is cyclic only if C1 + C2 2 ds(C). This implies that there is somederivative of C1 which is syntactically equivalent to (P0 BCL Q0) + (R0 BCK S0), i.e. some Piand Qj such that Pi BCL Qj � (P0 BCL Q0) + (R0 BCK S0). However this is not possible and itfollows that C cannot be cyclic. Thus we deduce the following proposition.Proposition 3.5.1 If a PEPA component is irreducible then all choices must occur withincooperating components.This is as we would expect if we consider the implicit resources implied by the combinators.A component P+Q in which the choice cannot be revisited, i.e. P+Q =2 (ds(P) \ ds(Q)),may be considered to generate two separate models corresponding to P and Q respectively.Clearly there is a strong relationship between irreducibility in PEPA components andirreducibility in the underlyingMarkov processes. This is formalised in the following theorem.Theorem 3.5.3 The Markov process underlying a PEPA model is irreducible if, and onlyif, the initial component of the model is cyclic.

3.5. THE UNDERLYING STOCHASTIC MODEL 37Proof By the de�nitions whether the underlyingMarkov process is irreducible, and whetherthe initial component of a PEPA model is cyclic, both rely on the connectivity of the deriv-ation graph of the model. Thus it follows that the Markov process will be irreducible if, andonly if, the derivation graph is strongly connected, and this will be the case if, and only if,the initial component of the model is cyclic. �If a Markov process that is irreducible has a �nite state space all its states are positive-recurrent. Thus it follows from Theorem 3.5.3 that a �nite irreducible PEPA model repres-ents a system with steady state behaviour.NB: Throughout the rest of the thesis we will only consider cyclic PEPA componentsunless otherwise stated.3.5.5 Solving the Markov ProcessAs explained in Section 3.5.2, the component-to-component transition rates q(Ci; Cj), or qij,are the o�-diagonal elements of the in�nitesimal generator matrix of the underlying Markovprocess, Q. Assuming that the PEPA model is �nite and irreducible, this process will havea steady state distribution �(�), which may be found by using the normalisation conditionand global balance equations: XCi2ds(C0)�(Ci) = 1 (5.5)�Q = 0 (5.6)This distribution �(�) is interpreted at the PEPA level as the equilibrium probability(or the long run relative frequency) of the model behaving as each of its derivatives. Theprobability that the model is behaving as derivative Ci is �(Ci).The models presented in this thesis have been numerically solved using the computeralgebra package Maple2 [64]. The Equations 5.6 and 5.5 are combined by replacing a columnof Q by a column of 1s and placing a 1 in the corresponding row of 0. Moreover, since Mapledeals with row vectors instead of column vectors, this modi�ed Q is transposed. The packagesolves this system of linear equations using algorithms based on Gaussian elimination. Thesealgorithms are intended to cope with sparse systems, such as these Markov processes.Since Maple allows symbols to be included in the matrix to be solved, it is easy to studythe e�ect that varying the value of an activity rate has on performance characteristics. Theuse of computer algebra packages such as Maple and Mathematica for solving performancemodels has been advocated by several authors [65, 66, 67].3.5.6 Derivation of Performance Measures: Reward StructuresWe have shown in the previous sections how an underlying Markov process may be derivedfor any PEPA model, and how this process may be solved to �nd a steady state, or equi-librium, distribution �(�). This distribution allows us to derive the probability, when thesystem has settled into a regular pattern of behaviour, that the system is behaving in theway characterised by some component of the PEPA model, Ci. We can regard this as the2Maple is a registered trademark of Waterloo Maple Software.

38 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRAprobability that the system, observed at random when it has been running for some time,will be exhibiting the behaviour, or set of behaviours, characterised by Ci. Alternatively,this can be interpreted as the proportion of time that the system will spend behaving ascomponent Ci.Most performance studies are concerned with characteristics of the system which are notdirectly expressed in terms of the behaviour of a single component. However, performancemeasures such as throughput, average delay time and queue lengths can be derived fromthe steady state distribution, possibly considering a set of components or behaviours. Inthis thesis we will use the notion of reward structures to de�ne the performance measures inwhich we are interested.In the framework for reward structures introduced by Howard [68], rewards are associatedwith states of a Markov (or semi-Markov) process or with transitions between states. Re-wards which accumulate continuously while a process is resident within a state are termedyield functions. The discrete rewards made when the process changes states are termedbonuses. We will adapt the reward structure based on yield functions to �t into the PEPAmodel world.Reward structures are commonly used in the context of performability modelling, wherereliability and performance aspects of a system are considered together [69]. However suchstructures may also be present, perhaps implicitly, in performance models. In queueing net-works the extraction of performance measures is well-understood and can often be achievedwithout resorting to the underlying Markov process. In stochastic Petri nets several authorsattribute a reward to certain markings in order to derive performance results from models,although this is not necessarily done explicitly. Examples of the explicit use of reward struc-tures with stochastic Petri nets are stochastic Reward nets [70, 21], GSPN reward models[71] and stochastic activity networks (SANs) [72, 5].As the emphasis of PEPA is on behaviour in terms of activities, rather than states, weassociate rewards with certain activities within the system. The reward associated with acomponent, and the corresponding state, is then the sum of the rewards attached to theactivities it enables. Performance measures are then derived from the total reward based onthe steady state probability distribution. If �i is the reward associated with component Ci(Act(Ci)), and �(�) is the steady state distribution, then the total reward R isR =Xi �i �(Ci): (5.7)In this way, the rewards can be de�ned at the level of the PEPA model, rather than at thelevel of the underlying Markov process.Many performance measures of interest may be phrased in terms of some identi�ableaspect of system behaviour. Therefore, since the behaviour of the system is associated withactivities, many performance measures can be expressed by associating a reward with anactivity or set of activities.3.5.7 ExampleTo demonstrate the solution of a PEPA model and the derivation of performance results weconsider one of the examples introduced earlier|the simple resource usage system.Process def= (use; r1):(task; r2):P rocessResource def= (use; r3):(update; r4):ResourceSystem def= Process BCfusegResource

3.5. THE UNDERLYING STOCHASTIC MODEL 39Process BCfusegResourceProcess0 BCfusegResource0Process BCfusegResource0 Process0 BCfusegResource?(use; r13)	(task; r2) R(update; r4)�(update; r4) K(task; r2)where r13 = min(r1; r3) and Process0 and Resource0 are the one-step derivatives ofProcess and Resource respectively.Let the states of the underlying process be labelled X0; : : : ;X3, identi�ed as follows:X0 $ Process BCfusegResourceX1 $ Process0 BCfusegResource0X2 $ Process BCfusegResource0X3 $ Process0 BCfusegResourceThe generator matrix,Q, has the following form:Q = 0BBB@ �r13 r13 0 00 �(r2 + r4) r2 r4r4 0 �r4 0r2 0 0 �r2 1CCCASolving the global balance equations, with the normalisation condition, using Gaussian elim-ination, we obtain: �(X0) = r2r4(r2 + r4)(r2 + r4)r2r4 + r13r2r4 + r13r22 + r13r24�(X1) = r2r4r13(r2 + r4)r2r4 + r13r2r4 + r13r22 + r13r24�(X2) = r13r22(r2 + r4)r2r4 + r13r2r4 + r13r22 + r13r24�(X2) = r13r24(r2 + r4)r2r4 + r13r2r4 + r13r22 + r13r24 (5.8)Suppose the activities have the following rates:(use; r1) : r1 = 2 (task; r2) : r2 = 2(use; r3) : r3 = 6 (update; r4) : r4 = 8(use; r13) : r13 = min(2; 6) = 2With these values substituted into the equations 5.8 we obtain:�(X0) = 2041 �(X1) = 441 �(X2) = 141 �(X3) = 1641Suppose we wish to �nd the utilisation of the resource and the expected throughput of theprocess. The resource will be utilised whenever it is engaged in a use activity or an update

40 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRAactivity. Therefore to derive the utilisation we associate a reward of 1 with each of theseactivities. Then, if �i denotes the reward associated with state Xi, we see that�0 = 1 �1 = 1 �2 = 1 �3 = 0The utilisation, U , of the resource will be equal to the total reward:U = �0 ��(X0) + �1 ��(X1) + �2 ��(X2) = 2541 = 60:98%The throughput of the process will be the expected number of completed (use, task) pairsof activities to be completed per unit time. Since each activity is visited only once, thisthroughput will be the same as the throughput of either of the activities. The throughputfor activity use is found by associating a reward equal to the activity rate with each instanceof the activity. Thus, in this case, the rewards associated with states will be�0 = 2 �1 = 0 �2 = 0 �3 = 0Therefore the throughput, T , of the process isT = �0 ��(X0) = 4041 = 0:9753.6 Comparison to other Modelling ParadigmsIn this section we present a comparison of PEPA with the standard paradigms for specifyingstochastic performance models. These paradigms, queueing networks and stochastic Petrinets, were reviewed in Section 2.2.1 and Section 2.2.2 respectively. More detail can be foundin the literature: queueing networks are described in detail in [8, 9, 11, 12], while descriptionsof stochastic extensions of Petri nets can be found in [22, 73] (SPNs), [17, 74] (GSPNs), and[19, 28] (SANs).In order to compare the paradigms we will consider three aspects of the modelling cap-abilities which each o�ers: expressiveness and modelling power; techniques of model manip-ulation, transformation and comparison; and facilities for model solution and performancemeasure derivation. We will generally consider the whole class of stochastic Petri nets butin some of the following discussion it will be useful to distinguish between SPNs, GSPNsand SANs.The most important di�erence between PEPA and both queueing networks and stochasticPetri nets is the notion of ow. In the standard paradigms the ow of entities within a systemis represented explicitly as the ow of customers or jobs in queueing networks, and tokensin Petri nets. There is no corresponding notion of ow within PEPA models. Instead thefocus is upon the activities of the system and the ow of jobs/information/control associatedwith these activities is implicit within the model. This di�erence pervades all aspects of themodelling process and is responsible for many of the di�erences outlined below.3.6.1 Model ConstructionQueueing networks are a compact notation in which many systems may be represented con-cisely. Models are described in terms of entities with embeddedmeaning. For example, singleserver queue with preemptive restart priority queueing discipline, service rate �. Thus each

3.6. COMPARISON TO OTHER MODELLING PARADIGMS 41modelling entity encodes a great deal of information. The variety of such entities is based onthe six characteristics which de�ne the behaviour of a queue: arrival rate, queueing discipline,service discipline, service rate, number of servers and bu�er capacity. The sophistication ofthe notation has resulted in queueing network analysis, and consequently performance mod-elling, being regarded as a specialised topic.The penalty for the compact notation is the limited expressiveness of the language. Mostnotably, queueing models cannot represent systems in which more than one resource mustbe simultaneously retained or in which there is internal concurrency. Work has been doneto extend queueing networks to such systems [75, 76, 77], but the results have not beengenerally applicable.In contrast Petri net notation and PEPA notation are much simpler, with only a fewprimitives in each case. These notations can be regarded as being at a lower level, closer tothe Markov process they specify. As a result they are capable of representing a much largerclass of systems.In SPNs the entities of the notation are places, transitions and tokens. Markings andtransitions correspond to the PEPA primitives, components and activities. In GSPNs thereare additional language features|immediate transitions, and sometimes inhibitor arcs|butrecent work has concluded that although these features o�er a modelling convenience theydo not increase the expressiveness of the language [27]. In SANs there are also gates andcases which modify the e�ect of transitions in state dependent ways. Such state dependentbehaviour is modelled explicitly in PEPA activities.The structure of a queueing network will often bear a close resemblance to the physicalstructure of the system being modelled. For example, the CPU and the disk subsystem willbe modelled by separate servers, and the ow of jobs between them will be captured bythe routing behaviour of jobs in the network. Thus the queueing network, although largelyschematic in terms of the detailed execution of the model, provides a good representation ofthe structure and the dynamic behaviour of the system.In contrast the graphical representation of Petri nets presents a clear image of the dynamicbehaviour of the model but it provides little insight into the structure of the system. In themore complex notation of SAN, some of the intuitive appeal of the graphical notation is lost.PEPA does not provide a graphical notation but the component structure within the modelwill reect the structure of the system being modelled.A consequence of the lower level of model expression employed in Petri nets and PEPAcompared to queueing networks, is that these notations are relatively verbose. This is par-ticularly a problem in PEPA models where repeated components within a system and statedependent behaviour will be modelled explicitly. However the ability to de�ne the compon-ents separately, compositional construction and abstraction mechanisms, help to alleviatethis problem.3.6.2 Model ManipulationThe facilities available for manipulating and reasoning about models vary widely. In queueingnetworks there is very little support for structuring models or developing them systematically.Some work has been carried out on hierarchical modelling based on queueing networks.However, this is largely intended to improve model tractability, rather than being a meansof introducing structure into models (see Section 3.6.3). There is no well-established notion ofwhen two models may be considered to be equivalent. Similarly, model validation, ensuringthat the model is an accurate representation of the system, is often a problem.

42 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRAAlthough the situation with stochastic Petri nets is slightly better, the support for reas-oning about models is generally poor. There has been a great deal of interest in modeldecomposition, and hierarchical modelling but, as with queueing networks, this is largelymotivated by tractability issues. Some work has been done on compositional model con-struction for SAN [5]. This approach is based on repeated structures within the system beingmodelled. Such subsystems are modelled as basic units which are subsequently combined toform complex models using the replicate and join operators. But in general, stochastic Petrinets do not support such a structured approach.Recent work on stochastic well-formed nets (SWN) with symbolic markings has investig-ated the relationship between coloured Petri nets which have the same structure but di�erentinitial markings [78]. Otherwise there has been little work on when nets may be consideredto be equivalent, except when the role of immediate transitions was under investigation [27].In contrast PEPA, being based on a process algebra, is equipped with many facilities formanipulating, and reasoning about models. These facilities have been shown to allow modelsto be developed in a compositional way, complex models being systematically developed fromsmaller ones. Abstraction, as provided by the hiding operator, allows the internal details ofcomponents to be hidden and their interactions to be limited.Comparing models is based on notions of equivalence de�ned in terms of the operationalsemantics. These formal rules also form the basis of model transformation techniques, basedon term rewriting. The circumstances under which one component within a more com-plex component may be replaced by another without a�ecting the overall behaviour areestablished in this thesis. Since these model transformations are based on the operationalsemantics this suggests the possibility of tool support for model simpli�cation.3.6.3 Model SolutionAs described in Section 2.2.1, a large class of queueing network models exhibit product formsolutions. Based on this solution simple algorithms exist for computing most performancemeasures directly from the model parameters. Although this class is by no means compre-hensive it provides the means for computationally e�cient solution and is largely responsiblefor the popularity of queueing networks for performance modelling.In contrast Petri net models are generally solved numerically at the level of the underlyingMarkov process. Some recent work has considered product form solution for SPNs [73, 23, 79,80] and the direct derivation of performance measures such as throughput [81]. These resultsrely on restricting the synchronisations which can occur within the system. Under similarrestrictions, PEPA models may exhibit a product form solution. However the modellingcapabilities of such a restricted language are anticipated to be few.The reliance on numerical solution means that stochastic Petri net models are prone tostate space explosion|the large number of states needed to represent the underlying Markovprocess makes the model intractable. PEPA models may be expected to su�er from similarproblems. However, we will show in Chapters 6, 7 and 8 that techniques exist to reducethe number of states required in the underlying Markov process to represent the model.Moreover these techniques do not require the generation of the original state space.An alternative approach to the problem of state space explosion is the use of tensor algebratechniques for state space representation, as originally proposed by Plateau [82], and morerecently by Buchholz [83].Structure may be introduced in queueing networks using the technique of hierarchicaldecomposition. Here a structure is imposed after the model has been constructed to simplify

3.6. COMPARISON TO OTHER MODELLING PARADIGMS 43model solution by solving subnetworks separately. This technique may be used to reduce anon-product form model to a product form one, by the use of a ow equivalent server, orother aggregation techniques. Similar techniques have been applied to GSPNs [24].Unlike the situation in queueing networks, in stochastic Petri net models and PEPA mod-els the performance measures are derived from the steady state solution of the underlyingMarkov chain. In GSPNs and SANs, as in PEPA, performance measures may be character-ised by a reward structure [5, 27]. This reward structure relates possible behaviour of theprocess to speci�ed performance measures. Typically this means associating a reward ratewith each state. In a GSPN model these states will be the markings of the Petri net. In aSAN model the states are de�ned to be (activity, marking) pairs, where the activity is thelast transition to have �red.Queueing network models are only used for analysis of the performance related behaviourof systems. Stochastic Petri nets and PEPA are based on formal system description tech-niques: Petri nets and process algebra respectively. Consequently these models may also beanalysed to investigate the functional, or qualitative, aspects of system behaviour.

44 CHAPTER 3. PERFORMANCE EVALUATION PROCESS ALGEBRA

Chapter 4Modelling Study: Multi-ServerMulti-Queue Systems4.1 IntroductionIn this chapter we present a modelling study demonstrating the use of PEPA for perform-ance evaluation. Examples drawn from the modelling study will be used to exhibit the modelsimpli�cation techniques developed later in the thesis. This study considers and comparesvarious multi-server multi-queue systems. Such systems, an extension of the traditionalpolling system, have been used to model applications in which multiple resources are sharedamong several users, possibly with di�ering requirements. Examples include local area net-works with multiple tokens, and multibus interconnection networks in distributed systems.Similar systems have been investigated in [26, 84, 85, 86, 87, 88].A polling system consists of several queues and a single server which moves round thequeues in cyclic order. These systems have been found to be good models of many sys-tems which arise in computer network and communication scenarios, and consequently theyhave been extensively studied. A recent survey by Takagi [89] references over four hundredcontributions.A variety of extensions and modi�cations to the traditional polling system have beeninvestigated [89], including non-cyclic polling, priority queues, and queues with feedback.One extension which is particularly suited to modelling innovative local area networks is theintroduction of additional servers, each of which moves around the queues providing servicewhere it is needed. These systems, sometimes known as multi-server multi-queue systems,are not readily amenable to queueing theory solution. Several suggested approximationtechniques, based on queueing theory, and exact solutions based on GSPNs are reviewed inSection 4.3.1.Multi-server multi-queue systems were chosen as the basis for the modelling study presen-ted in this thesis because they are simply stated and easy to understand, although theextraction of performance measures is not a trivial problem. The subtlety of these sys-tems lies in the dependencies that exist between queues|the congestion at each queue isdependent on the congestion at the other queues in the system|and between servers.In the rest of the chapter we present the background of polling and multi-server multi-queue systems, and several models developed in PEPA illustrating some of their character-istics. Section 4.2 describes the major characteristics of polling systems and briey reviewstheir solution. In Section 4.2.2, as an illustration, a PEPA model of a simple polling systemis given, together with some numerical results. The additional characteristics of multi-server45

46 CHAPTER 4. MODELLING STUDY: MULTI-SERVER MULTI-QUEUE SYSTEMS
Bserver � node� bu�er� customers� � � CFigure 4.1: Schematic Representation of a Polling Systemmulti-queue systems are outlined in Section 4.3, which goes on to present an overview of therelated literature. Finally in Section 4.4 various PEPA models of multi-server multi-queuesystems exhibiting di�erent characteristics are presented.4.2 Polling SystemsThe term polling system has evolved from the polling scheme used for data transfer betweenterminals and a central computer, using multi-drop lines. The central computer wouldapproach each terminal in turn to ascertain whether it had any data to transmit. If so, theterminal would transmit the data and the computer would then interrogate the next terminal;if not, the computer would move on to the next terminal immediately. Subsequently pollingsystems have been used to model a wide range of applications characterised by scheduled,or demand-based, multiple access to a shared resource. In the example above each terminalhas a scheduled opportunity to transmit data to the central computer.In general, a polling system consists of a collection of nodes or queues, and a single serverwhich circulates between them in cyclic order. Within each node customers requiring serviceare accumulated in a bu�er. The server will visit each node in turn, providing service if thebu�er is non-empty, but otherwise moving straight on to the next node. The time requiredby the server to move from one node to the next is known as the walk or switchover time.It is important to make the distinction between polling systems and synchronous timedivision multiplexing (STDM) systems. In the latter the server will spend a predeterminedamount of time at each node regardless of whether service is required, or completed, beforemoving on to the next node. As a result the congestion at each node in a STDM systemis independent of the congestion at the other nodes, and each can be analysed separatelyas a single queue with server vacations. This is not the case in polling systems because theduration of a server's visit to a node will be dependent on the characteristics of the node,and the time until the server returns to the node will depend on the characteristics of theother nodes in the system.The characteristics of a polling system fall into three categories: customer characteristics,polling characteristics and service characteristics.

4.2. POLLING SYSTEMS 47Customer CharacteristicsThe behaviour of the customers is determined by the rate at which they arrive in the node,the arrival rate, and the amount of service that they require from the server when they areserved, the service demand. These are standard characteristics of any queueing model. Theinterarrival time is usually taken to be exponentially distributed although other distributionshave also been considered. Service demand has been variously assumed to be deterministic,exponentially distributed and generally distributed.We also consider the number of customers who might be waiting for service at any time|this is determined by the bu�er capacity. The two cases which have been treated extensivelyin the literature are in�nite bu�er and single bu�er nodes, in which an unlimited numberof customers may be waiting or only a single customer, respectively. However K-capacitybu�ers, in which K customers may wait, where K is some �nite constant, have been studied.In the case of �nite bu�ers, including single bu�ers, it is assumed that the arrival process issuspended when the bu�er is full, or that any subsequent customers, who arrive before thereis space in the bu�er, are lost.In some models it is assumed that a customer occupies a place in the bu�er until serviceis complete, restricted bu�ering, while others consider a customer in service to have left thebu�er, relaxed bu�ering. If the bu�er is �nite the distinction is important since the arrivalprocess is suspended when the bu�er is full.Polling CharacteristicsThe characteristics of the polling are the amount of time that the server takes to movebetween nodes, the walk time, and the discipline that the server follows in deciding whichnode to visit next. Deterministic, exponentially distributed and generally distributed walktimes have all been considered by various authors.In general the polling discipline is assumed to be cyclic. However, several alternatives,motivated by applications, appear in the literature [89]. The polling discipline may bedeterministic, probabilistic or state-dependent.In deterministic polling disciplines each node has scheduled access to the server as in thecyclic discipline. However, how the schedule is formed may vary. For example the followinghave all been studied: systems in which the server alternates the direction in which itcirculates between nodes after each visit to a �xed node; systems in which a base node isvisited between each visit to the other nodes; and systems in which the server moves aroundthe nodes according to some �xed order looked up in a polling table.In probabilistic polling disciplines the route taken by the server is not pre-determined.Instead, when the server is leaving one node it will move according to some probabilitydistribution. In the random discipline at each polling step the next node will be node iwith probability pi, where PNi=1 pi = 1, if N is the number of nodes. In the Markovianpolling discipline routing probabilities between nodes are given in the form pij|this is theprobability that when the server leaves node i the next node it will visit will be node j. Thewalk time between nodes may also be dependent on i and j.In state-dependent polling the scheduling is in some sense demand-based|when the servermoves from a node its decision of which node to visit will be based on the current state ofthe system. For example in the greedy server discipline a server will move to the closest nodein which there is a customer waiting, and if the system is empty it will remain stationary.This is based on the shortest-seek-time-�rst discipline for moving arm disks. In the thresholdswitching discipline for two queue systems the server will stay at a queue until the number of

48 CHAPTER 4. MODELLING STUDY: MULTI-SERVER MULTI-QUEUE SYSTEMSmessages waiting at the other queue passes a given threshold, or the di�erence in the queuelengths reaches a speci�ed size.A system is considered to be symmetric if all the nodes have the same customer character-istics (the nodes are statistically identical) and all walk times between nodes in the systemare the same.Service CharacteristicsIn all cases a server arriving at a node and �nding an empty bu�er will immediately walkon to the next node. If it �nds a non-empty bu�er it will immediately start serving the�rst customer in the bu�er. The number of waiting customers which will be served duringthis visit to the node depends upon the service discipline. Possibilities which have beeninvestigated in the literature are exhaustive, gated, limited and decrementing service.In exhaustive service the server will remain at a node until there are no customers remain-ing to be served and the bu�er is empty. In gated service the server will remain at the nodeuntil all the customers which were present at the instant when it arrived at the node havebeen served. Any customers which subsequently arrived will remain in the bu�er until thenext visit of the server. These are the more straightforward cases from a queueing theorypoint of view.In k-limited service the server will remain at the node until k customers have been served,for some constant k, or until the bu�er is empty, whichever occurs �rst. For example, in thecase of 1-limited service, often termed simply limited service, the server will serve a singlecustomer only before leaving the node. For k-limited, where k > 1, the discipline must befurther quali�ed to be exhaustive or gated.In the decrementing service discipline the server will remain at a node until the number ofcustomers waiting in the bu�er is one less than the number present when the server arrived atthe node. A variation is the consideration of k-decrementing service, which must be furtherquali�ed, as above, to be either exhaustive or gated.4.2.1 Solution of Polling System ModelsThe performance measure usually required from a polling system is the mean, or the distri-bution, of the customer waiting time. This is the time a customer spends in the system priorto starting service. If the system is asymmetric this measure will di�er for di�erent nodesand must be calculated separately for each node. Other measures of interest are the meanpolling time (the average time it takes the server to complete a circuit of the system), themean customer sojourn time (the mean time the customer spends in the system includingtime in service), the system throughput and the mean queue length.Most of the work carried out on polling systems has involved queueing networks anddirect manipulation of stochastic processes. There are many variations in the characteristicsof polling systems and as a result many di�erent techniques have been applied to theirsolution with varying degrees of success. In the last decade many complex and sophisticatedtechniques have been applied to the exact and approximate solution of these models.Exact closed form solutions, solutions in which expressions for the performance measuresare given in terms of the system parameters, have been found for symmetric in�nite bu�ersystems with limited, exhaustive or gated service. Exact solutions based on the numericalsolution of systems of linear equations have been given for single bu�er systems (symmetricand asymmetric), and asymmetric in�nite bu�er systems with exhaustive or gated service.

4.2. POLLING SYSTEMS 49Several approximation techniques have been proposed for systems which have not yieldedto exact solution or for which exact solution is computationally expensive. These have gen-erally been based on the independent analysis of each node as a queue with server vacations,the length of the vacations being found by analysis of the interaction between the queues.This interaction is estimated using the expected cycle time and the probability that theserver �nds each queue empty. Several authors have proposed iterative solution schemesbased on these techniques.There has been some work recently applying the GSPN modelling technique to pollingsystems [90, 91, 26]. In this approach a GSPN model of the polling system is used to generatea continuous timeMarkov process. This process is solved numerically to �nd the steady statesolution, from which the performance measures are derived.Limitations of this approach have been identi�ed [91, 90, 89]|all bu�ers must be �nite;all random variables used within the model must be exponentially distributed; and the statespace of the underlying model grows very rapidly. The restriction to �nite bu�ers, althoughin contrast to the established queueing theory approach, is often a more accurate depictionof the application being studied. Previously only approximate analysis of such systems hadbeen carried out [91]. Using the method of stages it would be possible to use phase typedistributions for walk times, interarrival times, and service demands within GSPN models. Incontrast, the problem of state space explosion is a serious one and, without the application ofsimpli�cation techniques, only moderately sized systems can be solved. The GSPN approachhas the advantage that asymmetric systems are as readily handled as symmetric ones.4.2.2 Example: A PEPA Model of a Polling SystemIn this section we present a PEPA model of a simple symmetric single-bu�er polling sys-tem with relaxed bu�ering and limited service. The model is shown in Figure 4.2. Thecomponents of the model are the server and the nodes.Sj denotes the server when it is present at the jth node in the system. On arriving ata node the server will query the node to see if there is a customer to be served. If so, itwill remove the customer from the bu�er in the node and service it before walking on tothe next node; if not, it will walk on to the next node. Each node j has two distinct statesdepending on whether the bu�er in the node is empty or full. These are represented bythe two derivatives of the node component, Nodej0 and Nodej1. An arrival may occur onlywhen the node is empty; in either state the node will respond appropriately to the server.The activities represented in each node component are in, representing the arrival of aNodej0 def= (in; �):Nodej1 + (emptyj;>):Nodej0 1 � j � NNodej1 def= (removej; rN):Nodej0Sj def= (removej; rS):(serve; �):(walk;w):Sj�1 + (emptyj; e):(walk;w):Sj�1where j � 1 = 1 when j = NPolling def= (Node10 k Node20 k Node30) BCfemptyj;removejgS1 where 1 � j � NFigure 4.2: PEPA model of a symmetric polling system with relaxed bu�ering

50 CHAPTER 4. MODELLING STUDY: MULTI-SERVER MULTI-QUEUE SYSTEMSin remove (N) remove (S) remove (Polling) empty serve walk� rN rS r = min(rN ; rS) e � w0.1{0.9 50 100 50 100 1 10, 15, 20Table 4.1: Parameter values assigned to the PEPA polling model, Pollingcustomer to �ll the bu�er, empty, a response to a query from the server indicating that thebu�er is empty, and remove, again in response to a query from the server but now occurringwhen there is a customer in the bu�er and resulting in the removal of the customer bythe server. The activities of the server include walk which moves it to the next node, andquerying the node which is seen as an empty or a remove activity depending on whether therewas a customer present at the node when the query takes place. If a customer is removedthen the next activity is a serve activity|the server services the customer, before walkingon to the next node.The system we consider comprises three nodes, so that when the server leaves Node3 itwalks on to Node1. The nodes are independent of each other, but each must cooperate withthe server for any empty or remove activity. We assume that the rate of the emptyj activityat Nodej is determined by the server, (the rate is unspeci�ed in the node). In contrast theremovej activity is assumed to require some work by both the server and Nodej, and itsrate will be r = min(rN ; rS).The model has 72 states and 180 transitions. The values which were assigned to theparameters are shown in Table 4.1. The e�ect of varying the arrival rate of customers atthe node on the mean customer waiting time, with three di�erent rates for the walk activity,was investigated. The resulting graph is shown in Figure 4.3.Since the system is symmetric we can use any one of the nodes to calculate the meancustomer waiting time, W , as it will be the same in all the nodes. W is found by applyingLittle's Law to Node1 to �nd the mean time to complete the activity remove1. Little's Lawstates that the average number of entities in a system is equal to the product of the averagerate at which entities arrive to the system and the average time an entity is resident in thesystem. This law holds for all systems in which these averages exist. The mean number ofcustomers in the bu�er, N , is found by attaching a reward of 1 to the activity in to calculateRin. Then N = 1 � Rin : a customer is present whenever the in activity is not enabled.The throughput of the node is the throughput of the remove1 activity, Xremove1, and thisis found by attaching a reward r to the activity remove1. In e�ect this associates a rewardof r with all states in which the bu�er in Node1 is occupied and the server is present atthe node. As the service takes place outside the node, unlike restricted bu�ering systems,the sojourn time of customers within the node is equal to the mean customer waiting time.Thus it follows from Little's Law that W = N=Xremove1 = (1 �Rin)=Xremove1:4.3 Multi-server Multi-queue SystemsPolling systems in which there is more than one server concurrently active, multi-serverpolling systems, or multi-server multi-queue (MSMQ) systems, have been identi�ed as achallenging area of further work on polling systems [92]. As yet there has been only limitedwork in this area [26, 84, 85, 86, 87, 88, 93].A common application of these systems is to local area network architectures, based on ring

4.3. MULTI-SERVER MULTI-QUEUE SYSTEMS 51

lambda
0 10.80.60.40.20

W

2.5

2

1.5

1

0.5

w=20

w=15
w=10

Figure 4.3: Mean customer waiting time plotted against customer arrival rate

52 CHAPTER 4. MODELLING STUDY: MULTI-SERVER MULTI-QUEUE SYSTEMStopologies with scheduled access, in which more than one node may transmit simultaneously.These facilities are o�ered by slotted rings [86, 87], rings with multiple tokens [87] andinsertion rings [86]. These models have also been used to study dynamic load sharing indistributed systems [85] and a multibus interconnection network in [84].The additional features of the MSMQ system compared to a standard polling systemprovide additional service characteristics, relating to the interaction between servers withinthe system|the service interaction characteristics. We will assume that there are S serverspresent in the system.Service Interaction CharacteristicsThe service interaction characteristics of a system are determined by the number of serverspresent in the system, how many of these may simultaneously attend a node, and whetherovertaking is permitted.Di�erent policies have been considered in the literature for how many servers may besimultaneously occupied at a node, arising from the di�erent system characteristics. Insome cases only one server is allowed to be present at a queue at any given time, sometimescalled the Q� 1 policy. Alternatively there may be no restriction on the number of serverswhich may be occupied at a node, with any number, up to S, providing service to di�erentcustomers at the node at the same time|the Q � S policy (in this case K � S for bu�ercapacity K). Other policies, Q�m, may also be considered where 1 < m < S, 1 < m � K.When a server arrives at a node there is the possibility that it will �nd another serveralready present and will not be able to provide service to the node: either due to thesimultaneous service policy or because there are no customers in the bu�er needing service.If overtaking is allowed the second server will immediately poll the next node, starting afresh walk as soon as it realises that there is nothing for it to do at the current node. Ifovertaking is not allowed the second server will remain blocked at the node until the �rsthas �nished, at which time it will either provide service or walk on, depending on whetherthere is a customer present to be served.The �nal feature which may be considered is the positional relationship between servers.Most authors have considered the movement of each server to be independent of other serversin the system except when blocked, if overtaking is not allowed. An alternative is suggestedby Bunday and Khorran [94]. They consider a system of N machines served cyclically bytwo robot repairmen whose movement maintains constant, equal separation between them.An MSMQ system is symmetric with respect to nodes if all the nodes have the same cus-tomer characteristics; it is symmetric with respect to servers if all the servers are statisticallyidentical; and the system is symmetric if it is symmetric with respect to both nodes andservers.Modi�ed Kendall Notation for MSMQ SystemsAjmoneMarsan et al. [26] propose a compact notation for classifying MSMQ systems, derivedfrom Kendall's notation for queueing systems. We will adopt this notation, with some minorvariations, when describing the MSMQ systems considered in the rest of this chapter. Sixshort descriptors, A=S=W=K=Q � c=SD, arranged in a set order are used to classify thesystem. These descriptors are:1. The distribution of customer interarrival times. As in queueing systems the indicatorsM , D or G are used to signify exponential, deterministic or general distributionsrespectively. A subscript i is used to indicate that the rate is dependent on the node.

4.3. MULTI-SERVER MULTI-QUEUE SYSTEMS 532. The service time distribution (M , D, or G). As with interarrival time this may varybetween nodes and if so a subscript will be used.3. The walk time distribution (M , D, or G). This also may di�er between nodes, andthis will be indicated in the usual way.4. The capacity of the nodes, K. If the nodes have di�ering bu�er capacities this willbe a vector ~K, the ith element of which indicates the capacity of the bu�er in the ithnode.5. The simultaneous service policy, for example Q� 1, or Q� S.6. The service discipline determining how many customers are serviced by each visit ofeach server to each node. We use L, E, and G to signify limited, exhaustive, and gatedservice respectively.Thus, for example, Mi=G=D= ~K=Q � 1=L identi�es an MSMQ system with N nodes, withlimited capacity depending on the node, Poisson arrival with node-dependent rates, S serverswith general node-independent service times, constant walk times and a limited servicediscipline with the Q� 1 simultaneous service policy. Other characteristics, such as whetherovertaking is allowed, will be stated in words.4.3.1 Solutions of Multi-Server Multi-Queue SystemsModels of MSMQ systems have proved di�cult to analyse because, as well as the interactionnoted between nodes in polling systems, interaction between servers must also be taken intoaccount. The performance measures of interest for these systems are the same as in pollingsystems. The only exact results for the mean customer waiting time have been recentlyderived by Ajmone Marsan et al. [26] using a GSPN model. In that paper GSPN modelsof Mi=Mi=Mi= ~K=Q�S=L systems with overtaking are discussed, but the models solved areof the form Mi=M=M=f1; 2;Kg=Q � f1; Sg=L. The Markov process underlying the SPN issolved numerically to �nd the steady state probability distribution, from which the averagethroughput, and the average number of waiting customers, for each node are derived. Thus,applying Little's Law, the mean customer sojourn time, and the mean customer waiting timeare calculated. The authors show that the number of states in the underlying Markov processgrows very rapidly. For example, for a system with two servers and four nodes the numberof states is 312, whereas doubling the number of nodes, while keeping just two servers, thenumber of states is increased to 19200.Other authors have proposed various approximation techniques for �nding the mean wait-ing time for customers in MSMQ models. However these models have all di�ered in theirdetailed operation and so it is di�cult to compare the approaches. Most make some assump-tion of independence in the behaviour of the servers within the system. In each case theresults are compared to the results obtained from a simulation of the same model. In generalthe results obtained by analysis are within 10{15% of the simulation results for low to me-dium loads. The notable exception is the technique suggested by Kamal and Hamacher [86]for which the results fall within the con�dence interval of the simulation. The model theystudy is a M=G=G=1=Q � 1=L system which allows overtaking. It is intended to representslotted ring or partial insertion ring local area networks.The authors consider three distinct \cycles" within the system: the server cycle, the nodecycle and the server-node cycle. Approximate expressions are derived, relating the serverand node cycles to the server-node cycle and then an iterative procedure with these two

54 CHAPTER 4. MODELLING STUDY: MULTI-SERVER MULTI-QUEUE SYSTEMSexpressions is used to �nd the node cycle time. This is then used in the solution of a M=G=1system with vacations to �nd the mean waiting time at an arbitrary node.Morris and Wang [85], also base their analysis of a Mi=G=G=1=Q � S=fL;Gg systemon expressions for the cycle times within the system. Their system, intended to modeldynamic load sharing in a distributed system, has relaxed bu�ering. A server arriving at anode removes at once from the bu�er all the customers that it will serve at this visit. Thesecustomers are kept together until all the service is completed, at which point they depart thesystem together. Conservation of work arguments and an assumption of server independenceare used to derive an expression for the mean cycle time in terms of the mean walk timeand the o�ered load. By a similar argument the mean inter-visit time is also derived. Theaverage customer sojourn time in the system is then estimated, using an approximationbased on the distribution of the inter-visit times. Both symmetric and asymmetric systemsare considered.The papers by Yang et al. [87], and Yuk and Palais [88], present similar approaches to thesolution of MSMQ systems. In both cases assumptions about the independent movementof servers are made. The mean sojourn time of a customer is derived by consideration ofthe separate components of the time|latency until a server returns to the node; the servicetime of the customers ahead in the bu�er; and the service of the customer. A gated M=G=1queueing model is used. The system considered by Yang et al. is a M=G=D=1=Q � 1=LMSMQ system. It is used to represent multiple token ring and multiple slotted ring localarea networks. The authors investigate the single bu�er/single transmission protocol forthese rings. In the paper by Yuk and Palais an M=M=D=1=Q � S=E MSMQ system isconsidered. This represents a token ring local area network with multichannel topology.The model is used to assess di�erent strategies for token release within the ring. In the �rstcase the token is released by the receiving station. In the second the token is released by thetransmitting station when the transmitted message returns.The system considered by Raith [84], falls within the Mi=G=G= ~K=Q� 1=L classi�cationbut is unusual as each node contains an input and an output bu�er. The system modelsthe multibus interconnection network in a distributed system, the nodes representing thecommunicating units, the servers representing the buses and the customers representing themessages. A node may simultaneously transmit on one bus and receive on another but it islimited to only one interaction of each type at once. If the input bu�er of the receiving nodeis full the transmission will be blocked and the model is used to investigate two possiblestrategies in this case. In the �rst strategy the transmission is abandoned; in the secondthe server remains occupied at the transmitting node until it is possible to complete thetransmission. Assuming independent movement of servers around the system, the inter-visittime to an arbitrary node is approximated. This is then used to form an embedded Markovchain which is solved numerically.Several authors note that the assumption of independent movement of servers, or equival-ently uniform distribution of servers within the system, is a poor one [85, 87]. Observation ofsimulation models reveals that the servers tend to coalesce and progress around the systemtogether. Morris and Wang show that if cyclic polling is replaced by dispersive schedulingthe results of their model compares more favourably with simulation.4.4 Examples: PEPA Models of MSMQ SystemsIn the �nal section of this chapter we present PEPA models of several MSMQ systemsexhibiting di�erent characteristics. For ease of presentation the systems considered are

4.4. EXAMPLES: PEPA MODELS OF MSMQ SYSTEMS 55relatively small, comprising of only three or four nodes and two servers in each case. However,it is straightforward to generalise these models to larger systems. In each case we consider theaverage waiting time (excluding service time) experienced by a customer in the system. Themodels all have several characteristics in common which are discussed in Section 4.4.1. Thefollowing subsections contain the detailed information about the operation of each model,the parameter values which were applied and one or more graphs showing how the meanwaiting time varies as the conditions within the system are changed.4.4.1 IntroductionAlthough the detailed characteristics of the systems considered di�er, they all have the samecomponents|nodes and servers. In addition in the model in Section 4.4.5 we introduce acomponent external to the node to represent the generation of customers.In all the models the arrival process is represented by an in activity by the node, andit is assumed that the arrival process is suspended whenever the bu�er is full. Bu�ering isassumed to be restricted in all the models, so customers continue to occupy a place in thebu�er until service is completed. In most cases the nodes have only a single place bu�er,but in Section 4.4.4 a two place bu�er is considered.All the node components have separate derivatives depicting the di�erent states of thenode, as characterised by the activities it may undertake. For example, a single bu�er nodemay only perform an in activity when it is empty, and a serve activity when it is occupied,and a server is present. Three of the models are symmetric with respect to servers, and twoof them are symmetric with respect to nodes.For each of the models we calculate the mean waiting time of a customer at each node. Aswith the polling model presented in Section 4.2.2 this is found by applying Little's Law tothe node. As the bu�ering is restricted the throughput of the node will be the throughputof the serve activity, calculated by attaching a reward equal to the activity rate to the serveactivity. For a single bu�er node the mean number present in the node, N , can be found byassociating a reward of 1 with the in activity, as previously, to form Rin. Then N = 1�Rin.For the two place bu�er the mean number of customers is found by �nding the probabilitythat the node is empty, or only singly occupied in a similar way.4.4.2 MSMQ System with Cyclic Polling, Without OvertakingFirst we consider a symmetric MSMQ system in which polling is cyclic but where serverscannot overtake each other. Thus a server which arrives at a node to �nd the other serveralready serving a customer must wait until the service is complete before moving on to thenext node. This system can be classi�ed as an M=M=M=1=Q � 1=L system. The PEPAmodel is shown in Figure 4.4.Sj denotes a server when it is ready to approach Nodej, Sj1 denotes a server present atNodej. When it arrives at the node the server will either pass, if the bu�er is unoccupied,or engage, if there is a customer requiring service. Note that at most one of these activitieswill be enabled at any given time.The system we consider has three nodes. The nodes are independent of each other buteach must cooperate with a server for any passj, engagej or servej activity. The two serversare independent of each other, in the sense that there is no cooperation between them.The model has 444 states and 1446 transitions. The values which were assigned to theparameters are shown in Table 4.2. As for the polling model presented in Section 4.2.2, the

56 CHAPTER 4. MODELLING STUDY: MULTI-SERVER MULTI-QUEUE SYSTEMSNodej0 def= (in; �):Nodej1 + (passj; e):Nodej0 1 � j � NNodej1 def= (engagej; e):(servej; �):Nodej0Sj def= (walk; !):Sj1Sj1 def= (passj;>):Sj�1 + (engagej; e):(servej;>):Sj�1 where j � 1 = 1 when j = Nwhen N = 3:MSMQ1 def= (Node10 k Node20 k Node30) BCfengagej;passj;servejg(S1 k S1) where 1 � j � NFigure 4.4: PEPA model of a symmetric MSMQ system without overtakingin serve walk pass engage� � ! e e0.1, 0.2, 0.3, 0.4, 0.5 1.0 10 50 50Table 4.2: Parameter values assigned to the models, MSMQ1 and Polle�ect of varying the arrival rate on the mean waiting time experienced by customers wasinvestigated, and this was compared with the mean waiting time experienced in the relatedpolling model: Poll def= (Node10 k Node20 k Node30) BCfengagej ;passj;servejgS1Since the system is symmetric the performance characteristics of all the nodes will be thesame. A graph showing how the mean waiting time increases as the arrival rate at each of thenodes is increased, for both the MSMQ model and the polling model, is given in Figure 4.5.We see that even when overtaking is not allowed, for a system of this size, the second serverhas the e�ect of reducing the mean waiting time of customers within the system.4.4.3 Asymmetric MSMQ System with Cyclic PollingIn [26] the authors consider a system of N nodes in which one node has capacity K andarrival rate K� while all other nodes have capacity one and arrival rate �. This representsa network in which one node has high tra�c and the other nodes have light tra�c, such asa LAN connecting several diskless workstations and one �le server. It was shown that thepresence of the heavily loaded node did not greatly a�ect the mean waiting time of customersat lightly loaded nodes.

4.4. EXAMPLES: PEPA MODELS OF MSMQ SYSTEMS 57

lambda

Poll

MSMQ1

0.50.40.30.20.1

W

1.2

1

0.8

0.6

0.4Figure 4.5: Mean customer waiting time, W , plotted against customer arrival rate, �, forthe models MSMQ1 and PollNodej0 def= (in; �):Nodej1 + (walk Ej;>):Nodej0 1 � j � NNodej1 def= (walk Fj;>):Nodej2Nodej2 def= (servej ; �j):Nodej0 + (walk Ej ;>):Nodej2where �j = (� if j = 1m� if 1 < j � NSj def= (walk Fj; !):(servej ;>):Sj�1 + (walk Ej; !):Sj�1where j � 1 = 1 when j = Nwhen N = 4:Asym def= (Node10 k Node20 k Node30 k Node40) BCfwalk Fj ;walk Ej ;servejg (S1 k S1) where 1 � j � NFigure 4.6: PEPA model of an asymmetric MSMQ systemHere we consider a system of N nodes each with capacity 1 and arrival rate � but withcustomers at one node placing a larger service requirement on the server. Polling is cyclicand overtaking is allowed. The system may be classi�ed asM=Mi=M=1=Q�1=L. The PEPAmodel of this system is shown in Figure 4.6.We investigate the e�ect of the larger service requirement at Node1 on the average waitingtime of customers at each of the nodes. We assume that the arrival process at each node

58 CHAPTER 4. MODELLING STUDY: MULTI-SERVER MULTI-QUEUE SYSTEMSin servej (j = 2; 3; 4) servej (j = 1) walk E walk F� � m� ! !0.1 1 1 � 1=m � 5 10 10Table 4.3: Parameter values assigned to the model, Asymis Poisson with parameter �, and that normal service, heavy service and walk times in thesystem are exponentially distributed with rates �, m� and ! respectively.As previously, Sj denotes a server ready to approach the jth node in the system. In thismodel there is no separate activity representing the interaction between the server and thenode to determine whether there is a customer present in the bu�er. This action is subsumedinto the walk action, resulting in two activities, walk Ej and walk F j, representing a futileand a successful walk to Nodej respectively. These activities cannot be simultaneouslyenabled.Note that as overtaking is now permitted an occupied node which is currently being servedwill respond to the approach of a second server as if empty. The rate at which service occursis determined by the node, and is dependent on the node. The rate of each walk activity isdetermined by the server.The system we consider has four nodes, which do not interact with each other, and twoservers which similarly do not directly interact. The cooperation of a node and a server isrequired for all walk E, walk F and serve activities. The values which were assigned to theparameters are shown in Table 4.3. The e�ect of varying the service rate of customers atNode1 was investigated with respect to the mean customer waiting time at the other nodes.

1/m

Node 1

Node 2
Node 3
Node 4

54321

W

0.25

0.24

0.23

0.22

0.21

0.2

0.19 Figure 4.7: Expected customer waiting time plotted against service demand

4.4. EXAMPLES: PEPA MODELS OF MSMQ SYSTEMS 59The model has 560 states and 2064 transitions. The mean waiting time,Wj, is calculatedfor each node using Little's Law. These values, plotted against the service demand at Node1,are shown in the graph in Figure 4.7.The expected waiting time for customers at Node1 increases slightly as the service demandat the node increases. At the other nodes the expected customer waiting time grows signi�c-antly as the service demand at the Node1 increases. It is interesting to note that this rate ofgrowth is slightly slower at the node immediately downstream from the distinguished node(Node2) as it is able to take advantage of the second server overtaking the server occupiedat Node1.4.4.4 Asymmetric MSMQ System with Random PollingWe now consider an asymmetric system in which the capacities of the nodes within thesystem di�er. There are three nodes within the system, one with capacity two and twowith capacity one. Polling in the system is random, which means that on leaving a nodethe server may then approach any node, even the same node again. Service is limitedso that a server arriving at Node1 when it is full may only serve one of the customerspresent before departing. However if the second server later arrives while the �rst serviceis still in progress it may simultaneously occupy the node. The system may be classi�ed asMi=Mi=M=(2; 1; 1)=Q � S=L. \Overtaking" is allowed in the sense that a server arriving ata node and �nding no customer to serve will just move on.The PEPA model of this system is shown in Figure 4.8. We assume that Node1 is a highperformance node, distinguished not only by its larger capacity but also by a faster responseto queries from servers. These queries are now represented separately by the activities passor engage. We also assume that there is a process generating customers for each place inthe bu�er in the node so that the arrival rate when the bu�er is empty is twice the arrivalrate when one place in the bu�er is already occupied.Node100 def= (in; 2�):Node110 + (pass1; 2e):Node100Node110 def= (in; �):Node111 + (engage1; 2e):Node120Node111 def= (engage1; 2e):Node121Node120 def= (in; �):Node121 + (pass1; 2e):Node120 + (serve;>):Node100Node121 def= (engage1; 2e):Node122 + (serve;>):Node110Node122 def= (pass1; 2e):Node122 + (serve;>):Node120Nodej0 def= (in; �):Nodej1 + (passj; e):Nodej0 j = 2; 3Nodej1 def= (engagej; e):Nodej2Nodej2 def= (serve;>):Nodej0 + (passj ; e):Nodej2S def= (walk; !=3):S1 + (walk; !=3):S2 + (walk; !=3):S3Sj def= (passj ;>):S + (engagej;>):(serve; �):S 1 � k � 3MSMQff def= (Node100 k Node20 k Node30) BCfengagej;passj ;serveg(S k S)=fpassj; engagejgwhere 1 � j � 3Figure 4.8: Asymmetric MSMQ model with distinguished Node1

60 CHAPTER 4. MODELLING STUDY: MULTI-SERVER MULTI-QUEUE SYSTEMSNode0100 def= (in; 2�):Node0110 + (pass1; 2e):Node0100Node0110 def= (in; �):Node0111 + (engage1; e):Node0120 + (pass1; e):Node0110Node0111 def= (engage1; 2e):Node0121Node0120 def= (in; �):Node0121 + (pass1; 2e):Node0120 + (serve;>):Node0100Node0121 def= (engage1; e):Node0122 + (pass1; e):Node0121 + (serve;>):Node0110Node0122 def= (pass1; 2e):Node0122 + (serve;>):Node0120MSMQwf def= (Node0100 k Node20 k Node30) BCfengagej ;passj;serveg(S k S)=fpassj ; engagejgwhere 1 � j � 3Figure 4.9: A modi�ed version of Node1, with faulty interfacein passj or engagej serve walk� or 2� e or 2e � !� = 0:1 e = 50 1:0 3; 6; 9; 12; 15Table 4.4: Parameter values assigned to MSMQff and MSMQwfIn the server component S the walk action is represented by three distinct activities, eachwith activity rate !=3, since there is a 1=3 probability of each of the outcomes. Sj nowdenotes the server present at Nodej, when it might engage or pass depending on whetherthe node has a customer requiring service or not.In Figure 4.9 a modi�ed version of Node1 is shown. In this second version we assume thatthere is a fault in Node1 so that it is only guaranteed to respond correctly to a server whenthe bu�er is completely empty or completely full. In the case when only one place in thebu�er is occupied, with probability 1=2 it will respond as if the bu�er were empty. In the casewhen one customer is already in service but the other place in the bu�er is also occupied itwill similarly fail with probability 1=2, allowing the second server to leave without providingservice. We investigate the e�ect of this fault on the mean waiting time for customers atthis node, and at the other nodes. In all the nodes, when a server is engaged the rate atwhich service occurs is determined by the server.There is no cooperation between the three nodes in the system, nor between the twoservers. However the activities passj, engagej and serve are achieved by cooperation betweena node and a server. The values which were assigned to the parameters are shown in Table 4.4.The model of the fault free system has 368 states and 1570 transitions. The model of thefaulty system has the same number of states but 1618 transitions. The mean waiting timeat each node was calculated using Little's Law for each of the models as the average walktime was varied. These results, shown in Figures 4.10 and 4.11, were compared to assess thee�ect of the faulty connection. Node2 and Node3 exhibit the same characteristics, so onlyNode2 is shown in the graphs.In the fault free system MSMQff we can see that although the expected waiting timeis similar in all of the nodes, the customers in Node1 experience slightly longer delays. Forall the nodes the mean waiting time is reduced when the mean walking time of the serversis reduced, as we would expect. In the case of the faulty system MSMQwf the expected

4.4. EXAMPLES: PEPA MODELS OF MSMQ SYSTEMS 61

omega

Node 1
Node 2

161412108642

W

0

1.4

1.2

1

0.8

0.6

0.4

0.2

0Figure 4.10: Expected customer waiting time in fault-free system plotted against walkrate (!)waiting time for customers at Node2 or Node3 is not greatly a�ected by the fault. Howeverthe expected waiting time for customers at Node1 is drastically increased, especially whenthe rate of the walk activity is slow.
omega

Node 1

Node 2

161412108642

W

0

1.4

1.2

1

0.8

0.6

0.4

0.2

0Figure 4.11: Expected customer waiting time in faulty system plotted against walk rate (!)

62 CHAPTER 4. MODELLING STUDY: MULTI-SERVER MULTI-QUEUE SYSTEMS4.4.5 MSMQ System with Detailed NodesThe last model considered in this chapter recognises that a MSMQ system is usually em-bedded within a larger system, and gives an indication of how easily this is modelled withina PEPA model. In [89] Takagi highlights the embedding of a polling model within a globalmodel as an area for future research.We consider a symmetric MSMQ system, with capacity 1 nodes and limited service, inwhich overtaking is permitted. This could be classi�ed as aM=M=M=1=Q�1=L system, andis similar to the asymmetric model presented in Section 4.4.3 in the case m = 1. Howeverwe now also consider the components of the system responsible for generating the customerswhich arrive at the nodes. We assume that each customer is in fact a packet, and part ofa message. Several packets may be necessary to transmit each message. The model of thisenhanced system is shown in Figure 4.12.Nodej0 def= (in;>):Nodej1 + (walk Ej; e):Nodej0 1 � j � NNodej1 def= (walk Fj; e):Nodej2Nodej2 def= (servej;>):Nodej0 + (walk Ej ; e):Nodej2Genj0 def= (accept; �):(pack; p):Genj1Genj1 def= (in; d): ((servej ; w1>):Genj1 + (servej ; w2>):Genj0)where w1 =M � 1; w2 = 1 (M is mean no. of packets/message)Compj def= Nodej0 BCfin;servejgGenj0Sj def= (walk Ej; !):Sj�1 + (walk Fj; !):(servej; �):Sj�1 where j � 1 = 1 when j = Nwhen N = 3:System def= (Comp1 k Comp2 k Comp3) BCfwalk Ej ;walk Fj;servejg(S1 k S1)=L where 1 � j � NL = faccept; pack;walk Ej; walk FjgFigure 4.12: PEPA model of the enhanced MSMQ system, SystemThe MSMQ aspects of the system are similar to the models presented in the previoussections. However, note that the activity in now merely represents the delivery of a packetfrom the generator to the bu�er. The rate of this activity is determined by the generator.We assume that there is a Poisson arrival process supplying messages to the generator whenit is ready to accept them, with rate �, and this is represented by the accept activity.Each accepted message is broken up into packets, as represented by the pack activity. Weassume that the average message length is M packets. The packets are then delivered tothe bu�er, via the in activity, one at a time. When a packet has completed its service itwill be replaced by another until the entire message has been sent. The arrival process isthen resumed. Since the average number of packets in a message is M , when a packet hascompleted service, another packet is already available with probability M � 1=M , and sothe passive serve activity with this outcome is given weightM �1, whereas with probability1=M a new message must be processed before another packet is available, so the weight ofthe serve activity which resumes the arrival process is 1.

4.4. EXAMPLES: PEPA MODELS OF MSMQ SYSTEMS 63mean no. packets accept pack in walk E and walk F serveM � p d min(e; !) �5� 25 0:05 0:1 20 min(50; 10) = 10 1:0Table 4.5: Parameter values assigned to SystemThe nodes of the system are now represented by composite components Compj , the co-operation of a generator, Genj0 and a \node", Nodej0. These components must cooperateon the in and servej activities. The composites are independent of each other, as are theservers. The activities walk Ej, walk Fj, servej require the cooperation of a server and theappropriate composite. Note that this means that three components, Genj, Nodej and Sjmust cooperate in order to achieve a servej activity.The model has 888 states and 3858 transitions. The parameter values used to solve themodel are shown in Table 4.5. As the system is symmetric the performance characteristicsof all the nodes are the same. Instead of the mean waiting time for a customer, or packet,in the node, we calculate the mean transmission time for a message. As previously we useLittle's Law, this time applied to the composite node-generator pair. We �nd the meannumber of messages at a node, Nm, by noting that there is one message present wheneverthe accept activity is not enabled. Therefore we attach a reward of 1 to this activity, to �ndRaccept, and we deduce that Nm = 1 � Raccept. We �nd the message throughput, Xm, byattaching a reward of 1=M � �, to the activity (serve;w2>), which will occur whenever allthe packets within a message have been sent. The expected transmission time, Tm, for amessage in the system is then Tm = Nm=Xm.

message length

System

SysP

252015105

delay

70

60

50

40

30

20Figure 4.13: Mean message transmission time plotted against mean number of packets permessage.

64 CHAPTER 4. MODELLING STUDY: MULTI-SERVER MULTI-QUEUE SYSTEMSThe value of the expected transmission time, when the mean number of packets in amessage, M , varies between 5 and 25, is shown in Figure 4.13. This is compared with theexpected transmission times for messages of the same length in the related polling model,SysP ,SysP def= (Comp1 k Comp2 k Comp3) BCfwalk Ej;walk Fj;servejg(S1)=faccept; pack;walk Ej; walk Fjg

Chapter 5Notions of Equivalence5.1 IntroductionIn this chapter we develop a framework to analyse notions of equivalence between models.Within this framework we present several equivalences which have been applied to pro-cess algebra models and performance models. By notions of equivalence we mean criteriawhich may be applied to determine whether two entities can be considered to be, in somesense, the same. For example, a common concern for most modelling methodologies is modelveri�cation|the problem of ascertaining whether a model is the same as the system understudy, in the sense of providing an adequate representation to meet the objectives of thestudy. For a performance model \adequate representation" is usually interpreted as the cal-culation of certain quantitative performance characteristics within acceptable error bounds.For a process algebra model it is interpreted as a condition on the observable behaviour ofthe model, as represented by its actions, compared with the observable or intended behaviourof the system.The framework we consider identi�es three di�erent classes of entity-to-entity equivalencewhich may arise during a modelling study: system-to-model equivalence, model-to-modelequivalence and state-to-state equivalence. We will see that for process algebra modelsthese equivalences are all addressed by a single notion of equivalence, the bisimulation. Twoagents are considered to be equivalent in this way when their externally observed behaviourappears to be the same. This is a formally de�ned notion of equivalence, based on thelabelled transition system underlying the process algebra. Bisimulation can characterise allthree classes of entity-to-entity equivalence since, in a process algebra, all the modellingentities|system, model and states|are represented as agents.For performance modelling the three classes of equivalence are quite distinct, since theentities|system, model and state|are distinct. A representation of the system may not beavailable at all. If it is, it will generally be in a di�erent notation, for example as a design.For a Markov process the behaviour of a model is characterised by the states it may visitand the time it will spend in them. Thus models and states are regarded as di�erent typesof entity. The states are not regarded as active entities. In contrast, in a process algebrathe behaviour of a model is characterised by the actions it may engage in. At any particulartime these will be embodied in the current derivative (state). However the ideas of modeland state are interchangeable in a process algebra since, via the semantics of the language,each \state" also includes information about all possible future states which may be reachedvia the transitions of the language. Both model and state are represented as agents, orexpressions in the language. 65

66 CHAPTER 5. NOTIONS OF EQUIVALENCEThere has been little formal development of system-to-model, and model-to-model equi-valences for performance models, although these have been of pragmatic concern. In contrastthere has been much work on state-to-state equivalences. These equivalences form the basisof aggregation techniques for reducing the state space of the underlying Markov model, andthus provide a technique for making large models tractable.In Section 5.2 we present the idea of bisimulation, which is widely used as a notion ofequivalence for process algebras, and explain how it may be used to characterise system-to-model, model-to-model and state-to-state equivalences. We outline how the notion ofbisimulation has been extended to apply to timed and probabilistic process algebras. InSection 5.3 we discuss the system-to-model and model-to-model equivalences which havebeen considered for performance models. In Section 5.4 we review aggregation techniques inmodel simpli�cation and discuss the role of state-to-state equivalences. Finally in Section 5.5we will discuss how the behaviour of a PEPA component may be captured by structural orbisimulation style equivalences. In Chapter 7 a strong bisimulation for PEPA is presented.5.2 Process Algebras and BisimulationIn this section the notion of bisimulation is de�ned in the context of a pure process algebra,such as CCS. Bisimulation is based on the idea of observable behaviour. Strong and weakforms of the equivalence are de�ned depending on whether internal actions are considered tobe within the set of observable actions. How the notion of bisimulation has been extendedto timed and probabilistic process algebras is described in Sections 5.2.2 and 5.2.3. In Sec-tion 5.2.4, how bisimulation may address the di�erent classes of entity-to-entity equivalencefor process algebra models is discussed.5.2.1 Bisimulation for Pure Process AlgebrasBisimulation aims to capture the idea of equivalence as identical observed behaviour. If twoagents are bisimilar it is not possible to distinguish between them by observation. However,we must specify which actions of the agents are considered visible to the observer and thecontext in which they are observed. In its strongest form bisimilarity means that two agentsare capable of exactly the same transitions, and the derivatives which result from the sametransitions in the agents are themselves bisimilar.This notion of equivalence is based on the labelled transition system de�ned by the se-mantics of the language. Thus for a language whose labelled transition system is the triple(P;Act; f ��! j � 2 Actg) the strong form of bisimulation is expressed as follows.De�nition 5.2.1 Two agents, P;Q 2 P, are strongly bisimilar, denoted P � Q, if and onlyif, there is some relation R over P � P such that if (P;Q) 2 R then for all � 2 Act:1. Whenever P ��! P 0, then for some Q0, Q ��! Q0 and (P 0; Q0) 2 R;2. Whenever Q ��! Q0, then for some P 0, P ��! P 0 and (P 0; Q0) 2 R.Thus, if P and Q are strongly bisimilar agents, any action performed by one must bematched by the other. Moreover, any subsequent action must also be matched. It is import-ant to note that this includes the internal, � , actions. The de�nition of bisimulation mayalso be phrased in terms of sequences of actions rather than single actions i.e. two agents arestrongly bisimilar if any transition, formed by a sequence of actions, which can be performed

5.2. PROCESS ALGEBRAS AND BISIMULATION 67by one agent, can also be performed by the other agent and the resulting derivatives arethemselves strongly bisimilar.Weaker forms of bisimulation are de�ned by restricting the class of actions which may beobserved to Actnf�g. Thus the internal, � , action is assumed to occur unobserved, reectingits private nature within an agent. If � is a visible action, it will be indistinguishable toan external observer from the action sequence �� , or even ���� . Weakly bisimilar agentscan form the same sequences of visible actions, modulo the occurrence of a �nite number of� actions before or after any of the visible actions, and the resulting agents are themselvesweakly bisimilar. In CCS an intermediate notion of equivalence is introduced, observationcongruence. Two agents are observation congruent if any action by one of them (includinga � action) is matched by the other, up to the inclusion of additional � actions, and theresulting derivatives are weakly bisimilar.In order to show that two agents are equivalent in this sense it is necessary to �nd a relationR between the derivatives of each agent which satis�es the conditions of the De�nition 5.2.1.A bisimulation forms equivalence classes over the set of process terms, P. This partitionwill then induce a corresponding partition on the derivative set of any agent in a naturalway. To show strong bisimulation between CCS agents it is su�cient to show that a relationsatisfying the strong bisimulation conditions exists between the partitions in the derivativesets of the two agents [29]. This is the idea of strong bisimulation up to �.5.2.2 Bisimulation for Timed Process AlgebrasIn [34], the notion of bisimulation is extended to temporal CCS. As discussed in Section 2.3.1,in TCCS time and actions are considered separately, the semantics of the language beinggiven in terms of two distinct transition systems. Strong bisimulation for the language en-sures that both types of transitions are matched by equivalent agents, and that the resultingagents are also strongly bisimilar. A weakened form of the bisimulation is also de�ned. Twoagents are considered equivalent if they can witness the same sequence of delays or visibleactions, up to the introduction of � actions within either type of sequence, and the resultingagents are also equivalent.5.2.3 Bisimulation for Probabilistic Process AlgebrasFor probabilistic process algebras the labelled transition system underlying the languagemay be extended to form a probabilistic labelled transition system [38, 36] (Section 2.3.2). Inthese systems a probability measure, �, is de�ned over the transitions of a labelled transitionsystem, � : P�Act�P �! [0; 1]. If we consider all the transitions into a set of process terms,via a given action, this can be extended to the probability measure � : P�Act�2P �! [0; 1],such that �(P ��! S) = XP 02S �(P ��! P 0):The bisimulations already discussed, for CCS and TCCS, are equivalence relations. Thusthey generate equivalence classes over the set of all process terms, P. Exploiting this idea,a probabilistic bisimulation is de�ned to be an equivalence relation such that, for any twoagents within an equivalence class, for any action � 2 Act and any equivalence class S, theprobability measure � of each of the agents performing an � action and resulting in an agentwithin S, is the same.

68 CHAPTER 5. NOTIONS OF EQUIVALENCEDe�nition 5.2.2 A probabilistic bisimulation p� is an equivalence relation over P such thatwhenever P p� Q, then for all � 2 Act, and for all S 2 P= p��(P ��! S) = �(Q ��! S):The de�nition of the probability measure �, and consequently also �, depends on whetherthe process algebra is reactive or generative. Larsen and Skou, [38], de�ne �(P ��! P 0)for a reactive system, as the probability, given that P performs an action �, that P 0 is thederivative. XP 02P �(P ��! P 0) = 1In contrast, for a generative system, Jou and Smolka [36], de�ne �(P ��! P 0) to be theprobability that the transition ��! P 0 is the one that P performs.X�2ActP 02P �(P ��! P 0) = 15.2.4 Bisimulation and Entity-to-Entity EquivalenceDuring a modelling study we may be concerned with di�erent equivalences relating to amodel. In order to establish con�dence in the model as the representation of the systembeing investigated, system-to-model equivalence is considered. This is model veri�cation andit is used to ensure that the model is a suitable tool for studying the behaviour of the system.Subsequently, it may be necessary to manipulate or compare models, in order to developfurther knowledge about the system, or �nd alternative representations of the system. Themodeller must be certain that such manipulation does not change the behaviour of the model,and jeopardise its relationship with the system. This leads to the analysis of model-to-modelequivalences. When models are large and complex, model simpli�cation strategies may berequired to reduce the complexity of the model. One approach to model simpli�cation isa search for state-to-state equivalences, which allow one macro-state [7] to replace a set ofequivalent states.As explained in Section 5.1, for process algebra models the concepts of state and model areinterchangeable, both being represented as expressions in the language. The system, in theform of a design or speci�cation, is also often expressed as an agent. Thus it is clear that thebisimulation notion of equivalence provides the apparatus for studying each form of entity-to-entity equivalence outlined above. State-to-state equivalences, bisimulation between agentswithin a derivative set, are found by considering the partition of the derivative set inducedby the bisimulation relation. There has been little consideration in the literature of this as amodel simpli�cation technique but it is used extensively to reduce the complexity of �ndingthe bisimulation relation between agents, via the approach of bisimulation up to �.Due to its formal nature, based on the labelled transition system for the language, thebisimulation relation may be characterised by equational laws. These abstract laws maythen be applied to any model, resulting in modi�cations which are guaranteed to preservethe observable behaviour of the model. Moreover, the formal nature of these laws makes itpossible to provide machine-assistance for such model manipulation [95].A relation is a congruence with respect to an algebra if it is preserved by all algebraiccontexts. Bisimulation relations which are also congruence relations fully complement thecompositional nature of the process algebra. For example, if we replace an agent within anylanguage expression by any bisimilar agent then the resulting expression is bisimilar to the

5.3. PERFORMANCE MODELLING AND EQUIVALENCES 69original expression. This property has distinct advantages. For example, model veri�cationmay be approached by showing bisimilarity between the components of the system and themodel component by component.5.3 Performance Modelling and EquivalencesIn performance modelling studies, using queueing networks or stochastic Petri nets, themodelling entities|system, model and state|will generally all have distinct representations.This means that the three classes of entity-to-entity equivalence, outlined in the previoussection, give rise to distinct notions of equivalence for performance models. In this section wewill consider system-to-model and model-to-model equivalences. The notion of state-to-stateequivalence is much more developed. Together with the resulting aggregation techniques, itwill be considered separately in Section 5.4.5.3.1 Performance Model Veri�cationModel veri�cation, or establishing system-to-model equivalence, is important to ensure thatthe performance characteristics obtained from the model will be close to the performancecharacteristics of the system under study. When the system exists, model veri�cation maybe carried out by comparing data collected from the system and the model in identicalcircumstances. Such an approach is often costly in terms of intrusive system monitoring,extensive model executions and the amount of data which must be collected and analysed.In some circumstances a simulation model is used as an intermediate representation of thesystem, as seen in Section 4.3.1. In this case the results of the analytical model are testedagainst the results of the simulation when the context of operation is assumed to be thesame for both. Obviously this relies on the assumption that the simulation is an accuraterepresentation of the system.When the system does not exist, as in the case of a projected system, the model must beveri�ed against a design. Unfortunately, as explained in Section 2.4, the system design, evenif formally developed, will generally use a di�erent notation from the performance model.Thus comparison of the behaviour of the two is often necessarily informal, or experimental.The recent work on the use of system description formalisms as the basis for performancemodelling has clear implications for model veri�cation. Using a formal language, such asPEPA, it is intended that the design of the system will be annotated to form the performancemodel. Thus the system, i.e. the design, is by de�nition the same as the performance model,and so problems of model veri�cation disappear.There has been some formal work on the area of system-to-model equivalence, but this hasbeen principally aimed at simulation models. For example, in early work based on SystemsTheory [96], Zeigler develops the idea of equivalence within limited contexts of observation.These contexts are called experimental frames. It is assumed that behaviour is characterisedby input-output pairs capturing the system's response to its environment. Equivalence isde�ned as generating the same set of input-output pairs. The experimental frame limits theinputs which may be considered and the outputs which may be observed.Zeigler's work also considers experimental frames as a basis for model-to-model equival-ence and model simpli�cation. From a full representation of the input-output behaviour ofthe system, termed the base model, an equivalent lumped model is formed which will haveidentical behaviour in a given experimental frame. The lumped model is formed by combin-ing components within the base model, and simplifying the interactions between them.

70 CHAPTER 5. NOTIONS OF EQUIVALENCE5.3.2 Model-to-Model EquivalenceFor performance models based on queueing networks and Petri nets each model has tworepresentations|one within its model construction paradigm, and the other as the underly-ing Markov process. There has been little work on notions of model-to-model equivalence atthe level of the modelling paradigm. Most notions of equivalence arise solely from consider-ation of the underlying Markov process. A notable exception is Sanders and Meyer's workfor SAN, based on Zeigler's experimental frame approach [5].Sanders and Meyer use the reward structure incorporated into SAN models to de�ne anexperimental frame for a model. Using a constructive technique, a SAN model is developedrepresenting the system|this is the base model. The reward structure is then de�ned tocalculate the performance measures of interest for the current study. This reward structurede�nes an experimental frame in terms of which aspects of the model may not be modi�ed ifthe integrity of the performance measures is to be ensured. The authors propose simpli�ca-tion techniques to reduce the state space, forming a lumped model which is still Markovian,within the context of this experimental frame. These techniques are applied at the levelof the SAN, rather than directly manipulating the Markov process. As with Zeigler's ex-perimental frames it is envisaged that di�erent performance measures may lead to di�erentlumped models.A similar approach to model simpli�cation for PEPA, resulting in the amalgamation ofderivatives (states), is presented in Chapter 8.In [27], Chiola et al. de�ne a notion of equivalence between GSPN models, and betweenGSPN and SPN models. This equivalence implies equivalence of the underlying Markovprocesses but it is a stronger condition. Since performance indices are often de�ned at thenet level, the authors argue that additional conditions are necessary to ensure that the sameperformance measures can be derived from the models. These conditions compensate for anyinformation that is lost in going from the marking sequence of the GSPN to the transitionsequence in the Markov process|if there is more than one transition between a pair ofmarkings they appear as a single transition in the Markov process. This equivalence wasdeveloped with a clear objective. It is used to prove that for any GSPN, an equivalent SPNcan be constructed, thus showing that immediate transitions are not necessary.Equivalences Between Markov ProcessesThe usual notion of equivalence between Markov processes is the intuitive one|two Markovprocesses are equivalent if they have the same number of states and the same transition ratesbetween those states. This implies an isomorphism between the states of the two processesand that they have the same in�nitesimal generator matrix Q (up to a permutation of rowsand columns). It follows that they will have the same transient and steady state probabilitydistributions.This notion of equivalence is quite di�erent from the bisimulation style equivalence usedin process algebras. Both notions are concerned with processes which exhibit the samebehaviour: processes which when observed will display the same history. However, howthese histories are de�ned di�ers in the Markov process and the process algebra worlds. Inthe Markov process the history of the process is regarded as the sequence of states in whichthe process spends time. In the process algebra the history of the process is regarded as thesequence of activities the process engages in.The Markov process equivalence is very strict and of little practical use in terms of modelmanipulations or transformations. Several more relaxed forms of equivalence, perhaps more

5.4. STATE-TO-STATE EQUIVALENCE 71appropriately termed near-equivalences, have been considered. These equivalences have beenused to identify Markov processes which, although outside a particular class of processesamenable to e�cient solution, may be safely replaced by an appropriate process of thatclass.The classes of processes which have been considered in these equivalences are character-ised by a generator matrix which has a particular structure. For example, a completelydecomposable matrix consists of stochastic blocks down the principal diagonal and zeroeseverywhere else. A nearly completely decomposable matrix is one in which the blocks downthe leading diagonal have elements which are at least an order of magnitude larger thanany element outside these blocks [97]. Completely decomposable and nearly completely de-composable Markov processes are de�ned in the obvious way. Thus if a process is found tobe nearly completely decomposable it may be replaced by its equivalent completely decom-posable process, which may be solved by considering the submodels corresponding to thediagonal blocks separately. Decomposability has been used extensively in queueing networks.A similar notion, near-independence, has been recently developed for GSPNs [74].In the recent paper [98], Buchholz develops the notion of near-lumpability which can beapplied to any Markovian based model, and provides a technique for state space reduction.Lumpability is discussed in more detail in Section 5.4.2.5.4 State-to-State EquivalenceIn order to tackle the problem of state space explosion, model simpli�cation techniques havebeen considered for performance models, at both the paradigm and the Markov process level.One such technique, aggregation, can be formalised in terms of state-to-state equivalenceswithin the state space of the model. When an equivalence is found, sets of equivalent statesmay be formed into one macro-state thus reducing the overall state space of the model. Inthe following section we will briey outline the aggregation procedure.5.4.1 Aggregation of Markov ProcessesAn equivalence relation de�ned over the state space of a model will induce a partition onthe state space. Aggregation is achieved by constructing such a partition and forming thecorresponding aggregated process. In the aggregated process each partition of states in theoriginal process forms one state. In some cases, this partition will be based on a de�nedequivalence relation over the states of the original process. In other cases, the partition willbe abstract or arti�cial, but it will de�ne an equivalence relation over the state space in thenatural way. Thus we can always assume that there is an equivalence relation underlyingthe partition. If the original state space is fX1;X2; : : : ;Xng then the aggregated state spaceis some fX[1]; : : : ;X[N]g, where N < n, ideally N � n.The in�nitesimal generator matrix of the aggregated process is formed in the intuitiveway. If the transition rates of the original process are denoted q(Xi;Xk) then the transitionrate into any partition from a given state isq(Xi;X[j]) = Xk2[j] q(Xi;Xk):The transitions between aggregated states are then formed as a weighted sum of the trans-ition rates of the states in the �rst partition to the second partition, weighted by the condi-

72 CHAPTER 5. NOTIONS OF EQUIVALENCEtional steady state probabilities of being in each state in the partition, ��j(�) ,q(X[j];X[i]) = Xk2[j] ��j(Xk) q(Xk;X[i]):Exact calculation of the steady state probabilities, ��j(Xk) will normally entail �nding thesteady state distribution of the original process. However, aggregation procedures include aplethora of iterative procedures based on the approximation of these values. Alternatively, ifthe partitions are based on a structural property of the model it may be possible to calculatethese values by a separate analysis of the corresponding submodel. A comprehensive surveyof aggregation techniques is presented in [7].In general it will not be the case that the Markov property is preserved in the aggregatedprocess. However it is assumed that the aggregated process is Markovian and this allows thesteady state probability of being in each partition to be calculated correctly. The case whenthe aggregated process is a Markov process relies on a condition known as lumpability. Thecase of aggregation in which the aggregated model is treated as a Markov process althoughthe Markov property is not conserved is sometimes called pseudo-aggregation [99].5.4.2 LumpabilityThe characteristics of the aggregated process will depend on the equivalence relation used toform the partitions on which the aggregation is based. When the partition is such that theMarkov property is conserved in the aggregated process the process is said to be ordinarilyor strongly lumpable with respect to the partition [100]. Such partitions are formed on thebasis of a strong notion of equivalence between states. In the case of a lumpable partition thesteady state solution of the aggregated process can be found without the conditional steadystate probabilities of states within each partition. Moreover this steady state distributionmay be used to derive an exact solution of the original model.De�nition 5.4.1 A Markov process is (strongly or ordinarily) lumpable with respect to apartition � = fX[i]g if for every initial distribution the aggregated process is a Markovprocess.Theorem 5.4.1 (Kemeny and Snell 1960 [100, p. 124]) A Markov process is lumpablewith respect to a partition � = fX[i]g if, and only if, for any X[k];X[l] 2 �, Xi;Xj 2 X[k]q(Xi;X[l]) = q(Xj;X[l])A strongly lumpable partition exists if there is an equivalence relation such that for anytwo states within a partition induced by the equivalence relation their aggregated transitionrates to any other partition are the same. The related notions of exactly lumpable and strictlylumpable partitions [101], are de�ned as follows.De�nition 5.4.2 � is an exactly lumpable partition if, and only if, for all X[l];X[k] 2 �,and for all Xi;Xj 2 X[k] q(X[l];Xi) = q(X[l];Xj)Thus an exactly lumpable partition exists if there is an equivalence relation such that for anytwo states within a partition, induced by the equivalence relation, the aggregated transitionrates into the states from any other partition are the same. Here, the aggregated transitionrate into a state is de�ned in the obvious way. For a strictly lumpable partition there mustbe the same aggregated ow both into, and out of, the equivalent states.

5.5. NOTIONS OF EQUIVALENCE FOR PEPA 73De�nition 5.4.3 � is strictly lumpable if, and only if, it is ordinarily lumpable and exactlylumpable.Aggregation techniques in general, and lumpability in particular, are usually applied acrossthe state space of a model considered as a whole. Recent work by Buchholz has shown thatthe lumpability equivalence is a congruence over a class of Markov processes expressed interms of tensor algebra [44].5.4.3 Folding in GSPNsAnother approach to model simpli�cation based on state-to-state equivalences is the tech-nique of folding in GSPNs [25]. This technique can greatly reduce the state space of acomplex GSPN, but it may result in some loss of detail. Using an equivalence relation basedon the enabled transitions a partition is formed over the markings of the GSPN. This iden-ti�cation of equivalent markings is used to construct a simpler, more compact model, fromwhich a smaller Markov process is generated. Although very similar to aggregation usinglumpable partitions, this approach has the advantage that it is not necessary to constructthe Markovian generator matrix of the original model, which may be very large.5.5 Notions of Equivalence for PEPAIn the following chapters we will develop four di�erent notions of equivalence for PEPA, twoof which are based on bisimulation. Unlike other performance modelling paradigms PEPAallows models and states to be regarded as equivalent entities|both are represented ascomponents. Thus we may use the developed equivalence relations to analyse both model-to-model and state-to-state equivalences. For each equivalence we will consider its implicationsfor the underlying Markov process and assess its potential for use as the basis for a modelsimpli�cation technique.In Chapter 6 we develop isomorphism, a structural equivalence similar to the equivalencebetween Markov processes described in Section 5.3. This relation is too strong to be usedfor model simpli�cation but it does provide equational laws which may be used for modeltransformation. A weaker form of the relation, weak isomorphism is also presented. Thisintroduces the consideration of how components appear to observers. Two components areconsidered equivalent in this way if they only di�er in the detail of their internal activities.The relation is found to lead to a useful approach to model simpli�cation which can, likeSanders and Meyer's approach for SAN, be varied according to the performance measuresto be calculated.The third notion of equivalence, developed in Chapter 7, is strong bisimilarity which isbased on the labelled multi-transition system, presented in Chapter 3 as the semantics ofPEPA. Although this relation is shown to be a congruence it is found that it is not su�cientto ensure equivalent behaviour. It illustrates the problems which can ensue because of theloss of information in going from the process algebra to the underlying Markov process.Nevertheless circumstances in which strongly bisimilar components will exhibit the samebehaviour are identi�ed, and this leads to the de�nition of a model simpli�cation technique.In Chapter 8 an alternative notion of equivalence is developed, called strong equivalence,in the style of the strong probabilistic bisimulation of Larsen and Skou. This equivalenceuses the activity rates in a similar way to the probabilities used in probabilistic systems.

74 CHAPTER 5. NOTIONS OF EQUIVALENCEThe equivalence relation is formed by consideration of total transition rates between parti-tions induced by the equivalence relation. The relationship between strong equivalence andlumpability in the underlying Markov process is demonstrated. Strong equivalence is alsoshown to be a congruence and its use for model simpli�cation is illustrated by one of theMSMQ systems modelled in Chapter 4.

Chapter 6Isomorphism and Weak Isomorphism6.1 IntroductionIn this chapter we develop a very strong notion of equivalence between PEPA componentscalled isomorphism. This is a condition on the derivation graphs of components and it en-sures that components are only considered equivalent if there is a one-to-one correspondencebetween their derivatives and they are capable of carrying out exactly the same activities.It is not an observation based notion of equivalence in the style of bisimulation which isusual for process algebras. It is structural, in the style of the equivalence between Markovprocesses introduced in Section 5.3. Isomorphism is de�ned in Section 6.2.In Sections 6.3 to 6.5 we examine some properties of this notion of equivalence, fromthe perspectives of a process algebra, the modelled system components and the underlyingMarkov processes. As we might expect from such a strong notion of equivalence, we canderive strong properties for isomorphism. The relation is a congruence for PEPA. The rela-tionship between isomorphism and the Markov processes underlying the PEPA componentsis found to be a close one|isomorphic components generate equivalent Markov processes.In the remainder of the chapter we develop a weaker form of this equivalence called weakisomorphism. This equivalence reects the hidden nature of � type activities. We willconsider two components equivalent in this way if they only di�er in their capabilities tocarry out such activities. A de�nition of this notion of equivalence is presented in Section 6.6.The properties of weak isomorphism are examined from the process algebra perspective inSection 6.7 and from the system perspective in Section 6.8. Although it is not a congruence,it is found that weak isomorphism is preserved by some combinators of the language. InSection 6.9 we examine the relationship between weak isomorphism and the underlyingMarkov process. Weakly isomorphic components may generate Markov processes whichare not equivalent. However it is shown that these processes will attract the same reward.Finally, in Section 6.10, an application of the weak isomorphism relation as a model-to-modelequivalence for model simpli�cation is explained and illustrated by an example taken fromChapter 4.6.2 De�nition of IsomorphismIf we consider the PEPA components P BCL Q and Q BCL P it is intuitive to regard them asequivalent. The semantic rules determining the behaviour of components of this form aresymmetric, so the activities of the two components are exactly the same. It is this intuitive75

76 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISMnotion of equivalence, based on an exact match of behaviours, which we aim to capturewithin the de�nition of isomorphism. It is closely allied to the equivalence between Markovprocesses which ensures that the generator matrices of the two processes are the same upto a permutation of the rows and columns. PEPA components are isomorphic if there is aone-to-one correspondence between the derivatives of the components, equivalent derivativesenabling the same activities, which result in equivalent derivatives.De�nition 6.2.1 A function, F : ds(P) �! ds(Q), is a component isomorphism betweenP and Q, if F is an injective function, and for any component P 0, Act(P 0) = Act(F(P 0)),and for all a 2 Act, the set of a-derivatives of F(P 0) is the same as the set of F-images ofthe a-derivatives of P 0, i.e.fQ0 j F(P 0) a�! Q0g = fF(P 00) j P 0 a�! P 00g:De�nition 6.2.2 Two components, P and Q, are isomorphic, denoted P = Q, if thereexists a component isomorphism F between them such that D(F(P)) = D(Q).Although the same notation is used, it should be noted that the isomorphism relation, =,is much stronger than observation congruence in CCS. In PEPA P = Q signi�es that P andQ are the same up to the naming of derivatives.Isomorphism is an equivalence relation over the set of components: any component is trivi-ally isomorphic to itself; as a component isomorphism is injective the relation is symmetric;and, since the composition of component isomorphisms is a component isomorphism, therelation is transitive.In general, in order to show that two components are isomorphic we must exhibit a com-ponent isomorphism between their derivation graphs.6.3 Properties of IsomorphismIn this section we investigate the properties of the isomorphism relation from a processalgebra aspect. In particular we exhibit some straightforward equational laws which holdfor the relation, and establish that isomorphism is a congruence for PEPA.6.3.1 Equational Laws for Isomorphic ComponentsThe following equational laws may be used to manipulate and transform PEPA compon-ents. Note that these laws alter the presentation or naming of derivatives: the structure ofcomponents remains the same. These equational laws can be proved by direct appeal to thede�nition of = and the semantic rules in Figure 3.1.Proposition 6.3.1 (Choice)1. P +Q = Q+ P2. P + (Q+R) = (P +Q) +RProposition 6.3.2 (Hiding)1. (P +Q)=L = P=L +Q=L2. ((�; r):P)=L = ((�; r):P=L � 2 L(�; r):P=L � =2 L

6.3. PROPERTIES OF ISOMORPHISM 773. (P=L)=K = P=(L [K)4. P=L = P if L \ ~A(P) = ;Proposition 6.3.3 (Cooperation)1. P BCL Q = QBCL P2. P BCL (Q BCL R) = (P BCL Q)BCL R3. (P BCL Q)=(K [M) = �(P=K) BCL (Q=K)��M where K \M = K \ L = ;4. P BCK Q = P BCL Q if K \ � ~A(P) [~A(Q)� = L5. (P BCL Q) BCK R = 8<: P BCL (Q BCK R) if ~A(R) \ (L nK) = ; ^ ~A(P) \ (K nL) = ;QBCL (P BCK R) if ~A(R) \ (L nK) = ; ^ ~A(Q) \ (K nL) = ;Proposition 6.3.4 (Parallel)1. P k Q = Q k P2. P k (Q k R) = P k Q k R = (P k Q) k R3. (P k Q)=K = P=K k Q=KProposition 6.3.5 (Constant)If A def= P then A = P .The laws presented in Proposition 6.3.4 are a reiteration of rules 1{3 of Proposition 6.3.3 forthe special case L = ;. They are stated here for clarity.6.3.2 The Expansion LawThe Expansion Law, presented in Proposition 6.3.6, like the equational laws in the previoussection, can be proved by direct appeal to the de�nition of isomorphism and the semanticrules for PEPA. It allows us to unravel the behaviour of a cooperation of components.Inherently this relies on the memoryless property of the exponential distributions used todetermine the duration of activities. As explained in Section 3.3.3, this memoryless prop-erty allows us to treat the preemptive resume policy corresponding to the cooperation ofcomponents as equivalent to the preemptive restart policy corresponding to choice.The law is presented in terms of two cooperating components|recall that the coopera-tion combinator is not associative. Thus we need only consider the cooperation between apair of components, with the understanding that each of these components may itself be acooperation of components at a lower level.

78 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISMProposition 6.3.6 (Expansion Law) Let P � (P1 BCL P2)=K with L;K � A. ThenP = Xf(�; r):(P 01 BCL P2)=K j P1 (�;r)�! P 01 ; � =2 L [Kg+ Xf(�; r):(P1 BCL P 02)=K j P2 (�;r)�! P 02 ; � =2 L [Kg+ Xf(�; r):(P 01 BCL P2)=K j P1 (�;r)�! P 01 ; � 2 K n Lg+ Xf(�; r):(P1 BCL P 02)=K j P2 (�;r)�! P 02 ; � 2 K n Lg+ Xf(�; r):(P 01 BCL P 02)=K j P1 (�;r1)�! P 01 ; P2 (�;r2)�! P 02 ; � 2 L nK ;r = r1r�(P1) r2r�(P2) min(r�(P1); r�(P2))g+ Xf(�; r):(P 01 BCL P 02)=K j P1 (�;r1)�! P 01 ; P2 (�;r2)�! P 02 ; � 2 L \K ;r = r1r�(P1) r2r�(P2) min(r�(P1); r�(P2))gAssociativity does apply in the case of parallel composition, as we see in Proposition 6.3.4,since the components proceed independently. An alternative form of the Expansion Law canbe stated for parallel composition.Proposition 6.3.7 (Expansion Law for Parallel Composition)Let P � (P1 k P2 k � � � k Pn)=K with n � 1 and K � A. ThenP =Xf(�; r):(P1 k � � � k P 0i k � � � k Pn)=K j Pi (�;r)�! P 0i ; � =2 Kg+ Xf(�; r):(P1 k � � � k P 0i k � � � k Pn)=K j Pi (�;r)�! P 0i ; � 2 Kg6.3.3 Isomorphism as a CongruenceA relation over PEPA components is a congruence if it is preserved by each of the combinatorsof the PEPA language and by recursive de�nition. It is straightforward to show that this istrue for the isomorphism relation by constructing appropriate component isomorphisms.Proposition 6.3.8 (Preservation by Combinators)Let P1 = P2, with component isomorphism F : ds(P1) �! ds(P2). Then1. a:P1 = a:P2;2. P1 +Q = P2 +Q;3. P1 BCL Q = P2 BCL Q;4. P1=L = P2=L.Proof1. Consider a function G : ds(a:P1) �! ds(a:P2) de�ned as follows:for any P 0 2 ds(a:P1); G(P 0) = (a:P2 if P 0 � a:P1F(P 0) otherwiseThen, since Act(a:P1) = fj a jg = Act(a:P2), G is a component isomorphism. Hencea:P1 = a:P2.

6.3. PROPERTIES OF ISOMORPHISM 792. We remark that ds(P1 + Q) = ds(P1) [ds(Q). Consider a function G such that, forany P 0 2 ds(P1 +Q), G(P 0) = 8><>: P2 +Q if P 0 � P1 +QF(P 0) if P 0 2 ds(P1)P 0 otherwiseAct(P1 + Q) = Act(P2 + Q) since Act(P1) = Act(P2). For all P 0 2 ds(P1), by thede�nition of F , F(P 0) 2 ds(P2). Moreover P 0 2 ds(P1 +Q) n ds(P1) and P 0 �= P1 +Qimplies that P 0 2 ds(Q). Thus G is a component isomorphism and P1 +Q = P2 +Q.3. Any element of ds(P1 BCL Q) has the form P 0 BCL Q0, where P 0 2 ds(P1), Q0 2 ds(Q).De�ne G : ds(P1 BCL Q) �! ds(P2 BCL Q) such that for any P 0 BCL Q0 2 ds(P1 BCL Q),G(P 0 BCL Q0) = F(P 0) BCL Q0:Since F is a component isomorphism, it follows that G is a component isomorphism.Hence P1 BCL Q = P2 BCL Q.4. If F is a component isomorphism between P1 and P2 it follows immediately that acomponent isomorphism between P1=L and P2=L can be de�ned in terms of F in thenatural way, and so P1=L = P2=L. �As seen in Chapter 4, sets of recursive de�nitions are typically used to de�ne the behaviourof PEPA components. Recall that if E is a component expression which contains an indexedset of variables ~X , then Ef ~P= ~Xg denotes the component formed when every occurrence ofeach X in E is replaced by the component P from an indexed set of components ~P .De�nition 6.3.1 Let E and F be component expressions, both containing the same indexedset of variables ~X . Then F ~X : ds(E) �! ds(F) is a component isomorphism between E andF if F ~X is an injective function such that Xi = F ~X(Xi) for all Xi 2 ~X , for any derivativeexpression E 0, Act(E 0) = Act(F ~X(E 0)), and for all a 2 Act the set of a-derivatives of F ~X(E 0)is the same as the set of F ~X-images of a-derivatives of E 0.De�nition 6.3.2 Two component expressions, E and F , containing variables ~X , are iso-morphic, denoted E = F , if there exists a component isomorphism F ~X between them suchthat D(F ~X(E)) = D(F).Thus, by de�nition, E = F implies that D(F ~X(E)) = D(F), so if the variables ~X areinstantiated by an indexed set of components ~P there exists a component isomorphismF ~P : ds(Ef ~P= ~Xg) �! ds(Ff ~P= ~Xg), de�ned as F ~P (E 0f ~P= ~Xg) = F ~X(E 0)f ~P= ~Xg. It followsthat Ef ~P= ~Xg = Ff ~P= ~Xg for all indexed sets of components ~P .The following proposition shows that isomorphism is preserved by recursive de�nition.This means that if a subexpression is replaced by an isomorphic subexpression, then theresulting expression is isomorphic to the original expression.Proposition 6.3.9 (Preservation by Recursive De�nition) Let ~E and ~F contain vari-ables ~X at most. Let ~A def= ~Ef ~A= ~Xg, ~B def= ~Ff ~B= ~Xg and ~E = ~F . Then ~A = ~B.Proof It is su�cient to show the result for single recursion equations E and F such thatE = F , A def= EfA=Xg, B def= FfB=Xg: By Proposition 6.3.5, it follows that A = EfA=Xgand B = FfB=Xg. Moreover, E = F , implies that there is a component isomorphism FXsuch that D(FX(E)) = D(F). Therefore EfA=Xg = FfB=Xg since the structure of thetwo expressions is identical. Hence, A = B as required. �This result, with Proposition 6.3.8, shows that = is a congruence for PEPA.

80 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISM6.4 Isomorphism between System ComponentsIn this section we consider what we can deduce about the system components representedby the PEPA components P and Q in the case that P = Q. Let SysP and SysQ denote thesystem components modelled by P and Q respectively.If P = Q then there is a component isomorphism, F , between the derivative sets, suchthat D(F(P)) = D(Q). In terms of the system components, SysP and SysQ this implies thatthey are capable of performing the same actions, at the same rates, resulting in states whichalso enable exactly the same actions. The exit rates from P and Q are the same, implyingthat the expected delay experienced by each system component before an action occurswill be the same. Actions in the two components progress at the same rate which impliesthat the implicit resources of the two system components are equivalent, i.e. equivalentunderlying resources facilitating actions, which are not explicitly modelled, are available inSysP and SysQ. Moreover, since the activity multisets of the two components are identical,the probability that each system component undertakes a given action is the same. Also, ifa particular action occurs, the probability of any given outcome will be the same in the twocomponents.In e�ect SysP and SysQ are the same component. They are capable of exactly the samesequences of activities, in the same order, with the same probabilities and transition rates.Thus if P = Q then SysP and SysQ are indistinguishable in terms of behaviour and may beused interchangeably.6.5 Isomorphism and the Markov ProcessIn this section we examine the relationship between isomorphism of PEPA components andthe equivalence of Markov processes described in Section 5.3. Both these equivalences aimto capture the notion of models that exhibit exactly the same behaviour. In the PEPAcomponents the behaviour is represented by derivatives and activities between them. In theMarkov processes the behaviour is represented by states and transitions between them. It isclear that there is a strong correlation between these notions.Proposition 6.5.1 If P and Q are isomorphic PEPA components, i.e. P = Q, then P andQ generate Markov processes which are equivalent.Proof By de�nition P = Q implies that there is a component isomorphism F such thatD(F(P)) = D(Q). Since the Markov process underlying a component is de�ned by thederivation graph the result follows immediately. �Isomorphism between components ensures that the underlying Markov processes mustexhibit the same transient and steady state behaviours.We can also consider whether equivalence of the underlying Markov processes impliesisomorphism between the PEPA components. However, a PEPA component contains in-formation about the type of an activity which is not recorded in the underlying Markovprocess. For example, consider the components,T1 def= (task1; r):T1 T2 def= (task2; r):T2T1 and T2 will generate the same Markov process although they are not isomorphic. Even ifwe consider an augmented Markov process in which transitions are annotated by the action

6.6. DEFINITION OF WEAK ISOMORPHISM 81types of the corresponding activities, equivalence at the level of the Markov process will notensure that the components are isomorphic. Two or more activities in the PEPA componentmay be represented by a single transition in the Markov process. For example, considerthe components X and Y shown in Figure 6.1. These components give rise to the sameaugmented Markov process although they are not isomorphic.X0 def= (�; r):X1 + (�; s):X1X1 def= (; t):X0 Y0 def= (�; s):Y1 + (�; r):Y1Y1 def= (; t):Y0Figure 6.1: Components which generate the same Markov processA model-to-model equivalence between PEPA models should ensure that the same per-formance measures can be derived from the models. Since these measures are derived fromreward structures, de�ned in terms of activities, the example in Figure 6.1 shows that equi-valence of the underlying Markov processes, even if annotated, is not su�cient. Isomorphismdoes maintain performance measures but since it only relates models which generate Markovprocesses of the same size it is not useful for model simpli�cation. In the rest of the chapterwe develop a weaker notion of equivalence. We show that it guarantees the integrity of re-ward structures de�ned in terms of visible activities, whilst o�ering the possibility of modelsimpli�cation in some circumstances.6.6 De�nition of Weak IsomorphismWeak isomorphism aims to capture a notion of equivalence relating components which di�eronly in the details of their � type activities. These activities are regarded as internal to thecomponent enabling them, and as such their real type is hidden from external observation.No rewards may be attached to � type activities. In particular we are interested in de�ningsuch a relation to �nd model simpli�cations which result in a smaller Markov process, whilstensuring the integrity of the reward structure.Weak isomorphism is based on the idea that for a component which carries out severalconsecutive � type activities we may be able to �nd an equivalent compact form, whichhas the same visible behaviour but a single � activity of longer duration. The relationis termed weak isomorphism because all other behaviours of the components are matchedexactly. For components which do not enable such a sequence of � activities there is a one-to-one correspondence with the compact form as in component isomorphism. Derivativesthat are intermediate to, or start, such a sequence are mapped onto a single derivative inthe compact form. As with isomorphism the equivalence is de�ned in terms of a structuralrelation between derivation graphs, the weak component isomorphism.Thus, in e�ect, we eliminate nodes in the derivation graph whose only contribution is tointroduce a � type activity which is part of a sequence of � type activities. For example, ifa portion of the derivation graph is as shown on the left hand side below, we would like toreplace it by the reduced graph shown on the right, where R is chosen appropriately.

82 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISMPi -(�; r1) Pj -(�; r2) Pk) Pi -(�; R) PkHere, the node to be eliminated, Pj , can be identi�ed as having only a single input arc anda single output arc, both of which correspond to � type activities. However sequences of �activities may also arise in more complex situations. For example, consider the componentP def= Q1 BCf�g Q2, where b = (�; rb) andQ1 def= (�; r1):(�; r2):b:Q1 Q2 def= a:c:b:Q2The derivation graph of P is shown below:P0 -(�; r1)*a P3 -*a (�; r2) P6 *aP1 -(�; r1)*c P4 -*c (�; r2) P7 *cP2 -(�; r1) P5 -(�; r2) P8�bWe would like the derivation graph shown below to be considered weakly isomorphic to this:P00 -(�; R)*a P30 *aP10 -(�; R)*c P40 *cP20 -(�; R) P50�bwhen R has the appropriate value.In general, choosing this value, R, presents a problem. In each case we relate a sequence of� activities to a single � activity. We would like the duration of this single activity to be thesame as the end-to-end delay incurred by the � -sequence. However, the distribution of thisend-to-end delay is found as the convolution of the appropriate distributions|for a sequenceof exponential delays this will be a Coxian distribution. In the simpli�ed PEPA model thedistribution associated with the single � type activity is assumed to be exponential. InSection 6.9 we will show when this assumption is justi�ed by considering the PEPA modelas a generalised semi-Markov process (GSMP) and applying insensitivity results.Before we formalise the de�nition of weak isomorphism we introduce the notion of aresource component.Resource ComponentsIf we consider the enabled activities of any component we can �nd one or more collections ofcompeting activities|these correspond to the implicit resources in the system. As explainedin Section 3.3.3, in a choice of components, P +Q, it is assumed that P and Q are competingfor the same implicit resource. Thus only one of the activities enabled by P and Q can haveaccess to the resource at a time. It follows that the completion of an activity enabled byP will abort all the activities enabled by Q, as well as any other activities enabled by P .In contrast a cooperation, P BCL Q, represents an interaction between components, each of

6.6. DEFINITION OF WEAK ISOMORPHISM 83which has its own implicit resource. Thus, the completion of an individual activity of P willinterrupt, but not abort, concurrently enabled individual activities of Q. It follows that, ingeneral, each cooperation combinator in a component represents the introduction of anotherimplicit resource.We can identify a resource component within a component, C, with a multiset of activitieswithinAct(C) which are all dependent on the same implicit resource. Thus each cooperationcombinator potentially introduces another resource component|this is not necessarily thecase since the cooperation may inhibit some activities. Shared activities will belong to morethan one resource component.De�nition 6.6.1 A resource component within a multiset of enabled activities is a multisetof activities such that the completion of any one of them aborts all of them, and interruptsall other enabled activities.For example, if P and Q both enable a single resource component, then P +Q has a singleresource component corresponding to Act(P +Q); on the other hand, P BCL Q enables tworesource components corresponding to Act(P) and Act(Q) respectively. Recall that for irre-ducible components, all choices must occur within cooperations, not between cooperations.It follows that in all the PEPA models we consider choices in the model will constitute singleresource components.If we consider the derivation graph fragment shown in Figure 6.2 it is clear that the �activities, (�; r1), (�; r2) and (�; r3), correspond to the same implicit resource and the visibleactivities a and b correspond to a di�erent one.De�nition 6.6.2 A resource component is termed a silent resource component if it consistsof a single hidden activity, i.e. fj (�; r) jg.In the example shown in Figure 6.2 the activities (�; r1), (�; r2) and (�; r3) are silent resourcecomponents, occurring consecutively.It is consecutive silent resource components which may be replaced by a single activity ina compact form. Replacing other sequences of � activities would not leave the rest of thebehaviour of the component una�ected. For example, if the �rst � activity in the sequencewas enabled in competition with visible activities, replacing the sequence by a single �activity with a di�erent duration will alter the probability of the visible activities occurring.De�nition 6.6.3 A sequence of consecutive � type activities in a derivation graph is termeda reducible sequence if the activities are all silent resource components corresponding to thesame implicit resource.The activities (�; r1), (�; r2) and (�; r3) shown in Figure 6.2 form a reducible sequence.Pi -(�; r1)1aqb Pj -1aqb (�; r2) Pk 1aqb -1aqb (�; r3) P` 1aqbFigure 6.2: Derivation graph fragment for a PEPA model with a reducible sequence

84 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISMWeak Component IsomorphismWe use reducible sequences to identify components which do not need to be maintained bythe weak component isomorphism, the hidden components.De�nition 6.6.4 A derivative P is a hidden component if it has a silent resource compon-ent, it is the derivative of a component with a silent resource component, via the completionof that activity, and all other resource components of the two derivatives are the same.If we consider the derivatives shown in Figure 6.2, the hidden components are Pj and Pk.The weak component isomorphism will map a hidden component onto the same derivativeas its silent precedent, the previous derivative in the reducible sequence.De�nition 6.6.5 For a hidden component P its silent precedent is the preceding derivativeconnected to it by an arc corresponding to the previous silent resource component in thereducible sequence.In Figure 6.2, Pi is the silent precedent of Pj and Pj is the silent precedent of Pk. Thederivative that marks the end of a reducible sequence which starts with the activity (�; r)will be called the visible (�; r)-derivative. This derivative will not be a hidden component.Thus P` is the visible (�; r1)-derivative of Pi.De�nition 6.6.6 Suppose component P has a reducible sequence with silent resource com-ponent fj (�; r) jg, such that P (�;r)�! P 0, then the visible (�; r)-derivative of P , denoted V(�;r)(P)is de�ned as follows:V(�;r)(P) = 8>>><>>>: V(�;s)(P 0) if (�; s) is the next silent resource component in thereducible sequence.P 0 if P 0 is not a hidden componentWe can now de�ne a weak component isomorphism. The conditions imposed on it forcomponents which are not hidden components and activities which do not form silent resourcecomponents are the same as the conditions for a component isomorphism.De�nition 6.6.7 A function F : ds(P) �! ds(C) is a weak component isomorphism fromP to C if F is a surjective function such that if P 0 2 ds(P), P 0 not a hidden component, allnon-silent resource components of P 0 and F(P 0) are identical. For any a 2 Act(P 0), not partof a reducible sequence, the set of a-derivatives of F(P 0) is the same as the F-image of theset of a-derivatives of P 0. For any silent resource component of P 0, (�; r), there is some silentresource component of F(P 0), (�;R), such that F(V(�;r)(P 0)) = V(�;R)(F(P 0)). Moreover theexpected delay between P 0 and V(�;r)(P 0) is the same as the expected delay between F(P 0)and V(�;R)(F(P 0)). On the other hand, if P 00 2 ds(P), P 00 a hidden component, with silentprecedent P 0, then F(P 00) = F(P 0).De�nition 6.6.8 If there is a weak component isomorphism F from P to C, then C iscalled a compact form of P , denoted C � P .

6.7. PROPERTIES OF WEAK ISOMORPHISM 85If a component P has no hidden derivatives in its derivative set the identity function, orany component isomorphism, will be a weak component isomorphism on P . Moreover P , orany component isomorphic to it, will be a compact form of P , i.e. P � P , or if P 0 = P thenP 0 � P and P � P 0. The converse is also true, P 0 � P and P � P 0 only if P 0 = P .If C is a compact form of P , and Q = P then it follows that C is also a compact form ofQ, i.e. C � P and Q = P implies C � Q. Similarly if C 0 is isomorphic to C, then C 0 is alsoa compact form of P , i.e. C � P and C 0 = C implies C 0 � P .We can now de�ne when we consider components to be weakly isomorphic. Clearly wewould like to consider a component to be weakly isomorphic with its compact form. Howeverwe can make the relation more general than that|we consider a component to be weaklyisomorphic with any component with which it shares a compact form.De�nition 6.6.9 Two components P and Q are weakly isomorphic, denoted P � Q, ifthere is some component C which is a compact form of both P and Q,Thus a component may be weakly isomorphic to components which have more elaboraterepresentations of internal activities as well as more compact ones.If P = Q then by the argument above, they must have a common compact form, andP � Q. If P � Q and neither P nor Q has any hidden derivatives in its derivation graph,then P and Q are each their own, and each other's, compact form, so it follows that P = Q.In general, in order to show that P � Q we must �nd a compact form C and weakcomponent isomorphisms, FP and FQ, from P to C and Q to C respectively. However,in practice we will be interested in using weak isomorphism to guide model simpli�cation,by �nding a compact form of a component, which has a smaller derivative set, and so willgenerate a smaller Markov process.6.7 Properties of Weak IsomorphismIn this section we consider the weak isomorphism relation, �, from a process algebra per-spective. We see that weak isomorphism is not a congruence|it is not preserved by thechoice combinator. For example, consider the components X, Y and Z shown in Figure 6.3.We assume that R has the appropriate value and that Y is a compact form of X, i.e. Y � X,with weak component isomorphism F . It follows that X � Y but X + Z �= Y + Z.X0 def= (�; r1):X1X1 def= (�; r2):X2X2 def= (�; rb):X0 Y0 def= (�;R):Y1Y1 def= (�; rb):Y0 Z0 def= (�; sa):Z1Z1 def= (�; sb):Z0Figure 6.3: Components X, Y and Z such that Y � XIf we consider the derivation graphs of the components X +Z and Y +Z neither containsa hidden component. It follows that X + Z � Y + Z only if X + Z = Y + Z. However thiscannot be the case since the components do not even have the same number of derivatives.

86 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISMThe resource component of X + Z is fj (�; r1); (�; sa) jg whereas the resource component ofY + Z is fj (�;R); (�; sa) jg.For the components X BCf�g Z and Y BCf�g Z, we can form a weak component isomorphismF 0, from X BCf�g Z to Y BCf�g Z, based on F .F 0(Xi BCf�g Zj) = F(Xi) BCf�g Zj for i = 0; 1; 2 and j = 0; 1The resource components of X BCf�g Z are fj (�; r1) jg and fj (�; sa) jg, and the resource com-ponents of Y BCf�g Z are fj (�;R) jg and fj (�; sa) jg. Thus we conclude that X BCf�g Z � Y BCf�g Z.Note that X + Z and Y + Z, unlike the rest of the examples used in the thesis, arenot irreducible components. Indeed, we conjecture that if we considered only irreduciblecomponents weak isomorphism may be preserved by choice, and therefore be a congruence.6.7.1 Preservation by CombinatorsIn the following proposition we show that weak isomorphism is in fact preserved by all theother combinators of PEPA except choice.Proposition 6.7.1 (Preservation by Combinators)If P1 � P2 then1. a:P1 � a:P2;2. P1 BCL Q � P2 BCL Q;3. P1=L � P2=LProof If P1 � P2 then they must have some common compact form, C say, such that thereare weak component isomorphisms, F1 and F2, from P1 and P2 to C respectively.1. We can extend F1 and F2 to ds(a:P1) and ds(a:P2) in the natural way:for all P 0 2 ds(a:P1) F 01(P 0) = (a:C if P 0 � a:P1F1(P 0) otherwiseF 02 is de�ned analogously. F 01 and F 02 are weak component isomorphisms and a:C is acompact form for both a:P1 and a:P2. Hence a:P1 � a:P2.2. Let Q be a compact form of Q, with weak component isomorphism FQ, possibly theidentity. We de�ne a function G1 from P1 BCL Q to C BCL Q:for any P 0 BCL Q0 2 ds(P1 BCL Q); G1(P 0 BCL Q0) = F1(P 0) BCL FQ(Q0)G1 is surjective sinceF1 and FQ are surjective. Since � cannot belong to the cooperationset it follows that any reducible sequence in P1 BCL Q arises from a reducible sequencein P1 or Q. Any activity a of P 0 BCL Q0 which is not a silent resource component willbe an individual activity of P 0 or Q0, or a shared activity arising from activities of P 0and Q0. By the de�nition of weak component isomorphism these will be individualactivities of F1(P 0) or FQ(Q0), or a shared activity of F1(P 0) BCL FQ(Q0). It followsthat G1 is a weak component isomorphism and C BCL Q is a compact form of P1 BCL Q.We de�ne G2 from P2 BCL Q to C BCL Q analogously, and thus it follows that it is aweak component isomorphism. Hence C BCL Q is a compact form of both P1 BCL Q andP2 BCL Q. We conclude that P1 BCL Q � P2 BCL Q.

6.7. PROPERTIES OF WEAK ISOMORPHISM 873. Let C be a compact form of C=L and let FR be a weak component isomorphism fromC=L to C, possibly the identity. We can construct a weak component isomorphism G1from P1=L to C as follows:for all P 0=L 2 ds(P1=L) G1(P 0=L) = FR(F1(P 0)=L)We can de�ne a weak component isomorphism, G2 from P2=L to C analogously. Itfollows that C is a compact form of P1=L and P2=L, and we conclude that P1=L � P2=L.�6.7.2 Equational Laws for Weak IsomorphismSince isomorphism between components implies weak isomorphism, i.e. if P = Q then P � Q,it follows that the equational laws stated in Section 6.3.1 can be restated for the weakisomorphism relation.Proposition 6.7.2 (Choice)1. P +Q � Q+ P2. P + (Q+R) � (P +Q) +RProposition 6.7.3 (Hiding)1. (P +Q)=L � P=L +Q=L2. ((�; r):P)=L � ((�; r):P=L � 2 L(�; r):P=L � =2 L3. (P=L)=K � P=(L [K)4. P=L � P if L \ ~A(P) = ;Proposition 6.7.4 (Cooperation)1. P BCL Q � Q BCL P2. P BCL (Q BCL R) � (P BCL Q)BCL R3. (P BCL Q)=(K [M) � �(P=K) BCL (Q=K)��M where K \M = K \ L = ;4. P BCK Q � P BCL Q if K \ � ~A(P) [~A(Q)� = L5. (P BCL Q) BCK R � 8<: P BCL (Q BCK R) if ~A(R) \ (L nK) = ; ^ ~A(P) \ (K nL) = ;QBCL (P BCK R) if ~A(R) \ (L nK) = ; ^ ~A(Q) \ (K nL) = ;Proposition 6.7.5 (Constant)If A def= P then A � P .

88 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISMProposition 6.7.6 (Expansion Law) Let P � (P1 BCL P2)=K with L;K � A. ThenP � Xf(�; r):(P 01 BCL P2)=K j P1 (�;r)�! P 01 ; � =2 L [Kg+ Xf(�; r):(P1 BCL P 02)=K j P2 (�;r)�! P 02 ; � =2 L [Kg+ Xf(�; r):(P 01 BCL P2)=K j P1 (�;r)�! P 01 ; � 2 K n Lg+ Xf(�; r):(P1 BCL P 02)=K j P2 (�;r)�! P 02 ; � 2 K n Lg+ Xf(�; r):(P 01 BCL P 02)=K j P1 (�;r1)�! P 01 ; P2 (�;r2)�! P 02 ; � 2 L nK ;r = r1r�(P1) r2r�(P2) min(r�(P1); r�(P2))g+ Xf(�; r):(P 01 BCL P 02)=K j P1 (�;r1)�! P 01 ; P2 (�;r2)�! P 02 ; � 2 L \K ;r = r1r�(P1) r2r�(P2) min(r�(P1); r�(P2))g6.8 Weak Isomorphism and System ComponentsIn this section we consider the implications of the weak isomorphism relation, P � Q, forthe system components being modelled by P and Q. As in Section 6.4, let SysP and SysQdenote the system components modelled by P and Q respectively. First, we consider whatit means, from the aspect of system components, to hide some action types.Hiding may be regarded as a representation of encapsulation of function by system com-ponents. We assume that if a system component is represented by P=f�g in the PEPA model,then implementations of the action � are internal to this component. No other componentswithin the system may gain access to this instantiation of the action. In particular, even ifthe component is subsequently placed in a con�guration in which cooperation is required toachieve actions of type �, the � action of P will not be available to the other component.Thus � actions are not visible to the environment in this sense. Nevertheless, the componentwill still expend some e�ort to complete such actions and a delay will be incurred.In terms of complete systems, hiding at the top level denotes those actions of the systemwhich are not deemed visible to an external observer. This may place limitations on theperformance measures which can be derived from the system. More often such top levelhiding will be introduced in the model, without an interpretation in terms of the system, forthe purposes of model simpli�cation. Which action types are hidden may vary according tothe required reward structure. In e�ect we may transform the model to suit the experimentalframe in which it is placed.P � Q implies that there is some compact form C such that C � P and C � Q. Note thatwe do not assume that C corresponds to any existing system component. It is the simplestrepresentation of the components representing SysP and SysQ.A reducible sequence in a PEPA component corresponds to a sequence of hidden actionsin the system component which must be completed before it can engage in any other actionsaccessing the same implicit resource. P � Q implies that for activities which are not partof a reducible sequence, P and Q have the same capabilities. This means that the systemcomponents SysP and SysQ are capable of performing the same visible actions, at the samerates, resulting in states which also enable the same visible actions. Moreover there is a

6.9. WEAK ISOMORPHISM AND THE MARKOV PROCESS 89A def= (task1; r):(task2; s):a:AA=L � (�; r):(�; s):a:A=L B def= (task3; s):(task2; r):a:BB=L � (�; s):(�; r):a:B=LL = ftask1; task2; task3gFigure 6.4: Weakly isomorphic components with di�erent internal actionsone-to-one correspondence between the reducible sequences of the two components. ThusSysP and SysQ engage in internal activity, of the same mean duration, at correspondingpoints in their life cycles.However the weak isomorphism relation does not tell us anything more about these internaltasks which occupy SysP and SysQ. They may be engaged in exactly the same actions(P = Q), the same actions in a di�erent order, or completely di�erent actions. For example,consider the components A=L and B=L shown in Figure 6.4. A=L � B=L although A andB are di�erently occupied during the reducible sequence.We cannot conclude, as we did when P = Q, that SysP and SysQ are the same componentin e�ect. The tasks undertaken by the two components may di�er. However, they areindistinguishable in terms of visible behaviour|they are capable of the same sequences ofvisible activities, in the same order, with the same transition rates. Since the interactionsbetween components are de�ned only in terms of their visible behaviours it follows that SysPand SysQ may be used interchangeably within any con�guration.6.9 Weak Isomorphism and the Markov ProcessIn this section we examine the relationship between the Markov processes underlying a PEPAmodel with a reducible sequence and a compact form of its initial component respectively.It is clear that these Markov processes cannot be equivalent as they do not have the samenumber of states. However we will show that in some cases the steady state distributions ofthe two processes are such that the same reward may be derived from each of them. There-fore, it follows that the same rewards and performance measures may be derived from weaklyisomorphic components when certain syntactic conditions are satis�ed. As a preliminary wede�ne a generalised semi-Markov process and discuss how a PEPA model may be used togenerate such a process.Generalised Semi-Markov ProcessesA generalised semi-Markov process (GSMP) is a process in which each state is characterisedby a set of active elements, each with an associated lifetime. A state change occurs whenan active element completes a lifetime and all interrupted elements record their residuallifetimes. Whenever the element is again active it resumes its remaining lifetime. If thelifetimes are exponential we may disregard the residual lifetimes, restarting each elementwith a new lifetime whenever it is active.

90 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISMDe�nition 6.9.1 A generalised semi-Markov process (GSMP) is de�ned on a set of statesfx j x 2 Xg. For each x there are active elements s, from the set S, which decay at therate r(s; x), s 2 S. When the active element s dies, the process moves to state x0 2 X withprobability p(x; s; x0). The set of active elements S may be partitioned into two sets S 0 andS?, where s 2 S 0 if the element s has an exponentially distributed lifetime, and s 2 S? if itslifetime has an arbitrary general distribution.As when generating the Markov process underlying a PEPA model, we associate a state inthe GSMP with each node in the derivation graph of the model. The active elements of thestate are the resource components of the corresponding derivative. The rate of decay of theresource component is the sum of the rates of the activities enabled by the component. Thetransition probabilities are determined by the relative probability of each activity within theresource component. Thus in a PEPA model all the active elements will have exponentiallydistributed lifetimes, i.e. s 2 S 0 for all s 2 S. However we will consider an intermediatesystem between the GSMP underlying a model and the GSMP underlying its compact form,in which generally distributed lifetimes are introduced.ExampleLet P be a PEPA component with a single reducible sequence of length n. For conveniencewe assume that this is between derivatives PN�n and PN , where jds(P)j = N+1, renumberingderivatives if necessary. Then there are silent resource components fj (�; r1) jg; : : : ; fj (�; rn) jgsuch that PN�n(�;r1)�! PN�n+1(�;r2)�! � � � (�;rn)�! PN . Since there is only one reducible sequence,fj (�; r1) jg must be the only resource component of PN�n . In general, if PN�n has m otherresource components there will be m or more reducible sequences started by the activity(�; r1) (cf. P def= Q1 BCf�g Q2 illustrated in Section 6.6).Let C be a compact form of P , via weak component isomorphism F , with a single silentresource component fj (�;R) jg corresponding to the reducible sequence of P , CN�n(�;R)�! CN�n+1,jds(C)j = N �n+2. We assume that for 0 � i � N � n, F(Pi) = Ci and F(PN) = CN�n+1.Let XP and XC denote the (exponential) GSMPs generated by P and C respectively. Wecan construct a reduced form of XP , XP , if we amalgamate the states xN�n�1; : : : ; xN�1,corresponding to the hidden derivatives PN�n+1 ; : : : PN�1 , with xN�n. Each silent resourcecomponent fj (�; r1) jg; : : : ; fj (�; rn) jg, corresponds to an active element. We concatenatethe lifetimes of these active elements to form a single active element, denoted s. Thelifetime of s is a n-stage Coxian distribution and the conditional transition probability isp(xN�n+1 ; s; xN�1) = 1. Note that given XP , XP would be the process formed to solve themodel by the method of stages.Insensitivity in Generalised Semi-Markov ProcessesIt has been established that for some GSMPs, elements with lifetimes governed by a generaldistribution, such as s in XP , may be replaced by an element, such as fj (�;R) jg in XC , withan exponential lifetime of the same mean, without a�ecting the steady state behaviour. AGSMP is said to be insensitive if its steady state distribution depends only on the mean ofdistributions governing the behaviour of its elements, not their form. Therefore any processwhich is identical except that the lifetime of an insensitive element is governed by a di�erentdistribution function, but with the same mean, will exhibit the same steady state behaviour.Thus, for the example above, if we can show that XP is insensitive in the element s, itfollows that XP and XC exhibit the same steady state behaviour.

6.9. WEAK ISOMORPHISM AND THE MARKOV PROCESS 91Conditions for insensitivity were investigated by Matthes [102], and may be expressed inthe following theorem:Theorem 6.9.1 (Matthes) For a generalised semi-Markov process it can be shown thatthe following two statements are equivalent:1. The process is insensitive with respect to the active elements of S?. That is, the gen-eral distributions of the lifetimes of the elements of S? can be replaced by any otherdistributions with the same mean, and yet the process still retains the same steady statedistribution.2. (the insensitivity balance equations)When all active elements of S? are assumed to be exponentially distributed, the uxout of each state due to the death of an element of S? is equivalent to the ux into thatstate which causes the birth of that element.The death of an element is interpreted as the element completing its lifetime and causinga state change. In terms of the PEPA component this corresponds to one of the activitiesin the resource component completing. The birth of an element occurs when there is atransition into a state where the element is active from a state where it was inactive and hadno residual lifetime, or from a state where it completed a lifetime. In terms of the PEPAcomponent this corresponds to the completion of an activity by the resource componentbased on the same implicit resource in a previous derivative.In the case of XP in the example above, the insensitivity balance equation is exactly theglobal balance equation for xN�n in XC . It follows that XP and XC exhibit the same steadystate behaviour. However, the steady state behaviour of XP is the same as the steady statebehaviour ofXP except that residence in any of the states xN�n+1; : : : ; xN�1 inXP is regardedas prolonged residence time in xN�n in XP ,�P (xN�n) = �P (xN�n) + �P (xN�n+1) + � � �+�P (xN�1)We can deduce that, for all 0 � i � N � n,�P (xi) = �C(F(xi)) and �P (xN) = �C(F(xN))where the weak component isomorphism, F , is de�ned for the underlying state spaces inthe obvious way. Since rewards are attached to visible activities and no visible activities areactive when P is engaged in the reducible sequence, or C is engaged in the activity (�;R),it follows that the rewards derived from P and C will be the same.In the following section we establish when the insensitivity balance equations are satis�edby an arbitrary PEPA model with more than one reducible sequence in its derivation graph.As in the simple example above, we will introduce an intermediate GSMP with an activeelement with a Coxian lifetime for each reducible sequence. We will show that the rewardderived from the model and its compact form will be the same provided the insensitivitybalance equations are satis�ed by the GSMP corresponding to the compact form.6.9.1 Insensitivity of Reducible SequencesLet S be a PEPA model with N reducible sequences within its derivation graph. We assumethat T is a compact form of S, via the weak component isomorphism G. Let XS and XT

92 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISMdenote the (exponential) GSMPs generated by S and T respectively. As previously, we con-struct a reduced form of XS , XS, in which each state corresponding to a hidden derivative inthe derivation graph of S is amalgamated with its silent precedent. The lifetime of the silentresource component starting the sequence, denoted sj , 1 � j � N , becomes the concaten-ation of the lifetimes of each of the silent resource components within the sequence. Notethat all other active elements associated with a state corresponding to a hidden derivativeare also active in the state corresponding to its silent precedent, by de�nition.In [45], Henderson and Lucic state that in order to ensure insensitivity of a GSMP it issu�cient if a state change cannot activate or kill two generally distributed active elementssimultaneously, and interrupted generally distributed active elements carry over their residuallifetimes to the next state.Since we assume a preemptive resume execution strategy for cooperating components,and therefore resource components, it follows that interrupted generally distributed activeelements, sj, carry over their residual lifetimes to the next state (di�erent resource compon-ents must arise in di�erent cooperating components). Two such elements, sk and sj say,cannot die simultaneously. If they are simultaneously active they must belong to di�erentresource components and as such can only interrupt each other. Moreover, there will be arace condition between them and the continuous nature of the distributions ensures that theprobability of their simultaneous completion is zero.The requirement that two active elements with generally distributed lifetimes cannot besimultaneously activated is not necessarily satis�ed by a PEPA model. For example, considera component P BCL Q in which both P and Q enable reducible sequences immediately aftera shared activity. In the reduced GSMP representing P BCL Q, in which hidden derivativeshave been removed, the state change brought about by the completion of the shared activitywill activate both sP and sQ, active elements with generally distributed lifetimes. Howeverthis is the only way in which two such active elements may be simultaneously activated,since to be simultaneously active they must belong to di�erent resource components. Suchinstances can be easily identi�ed, and excluded.Theorem 6.9.2 If PEPA model S has compact form T , and S is such that reducible se-quences are enabled by the same resource component, by resource components in parallelcomponents, or by resource components in cooperating components but preceded by individualactivities, then the reward derived from S will be the same as the reward derived from T .Proof Let XS and XT be the GSMPs generated by S and T respectively, and constructthe reduced form of XS , XS , as previously. We assume that there are N reducible sequencesin the derivation graph of S and that for each 1 � j � N , the sequence has length nj andruns between derivatives Sj1 and Sjnj . We denote the set of derivatives of S0 which do notbelong to any reducible sequence by dsNR(S0), i.e. Si 2 dsNR(S0) implies that i 6= jk for allk; 1 � k � nj � 1 and for all j; 1 � j � N . Let xi denote the state of XS corresponding toSi 2 ds(S0), and xG(i) denote the state of XT corresponding to G(Si) = TG(i) 2 ds(T0).Since no reducible sequences of S are enabled by resource components in cooperatingcomponents immediately following a shared activity, it follows that no active elements withgenerally distributed lifetimes in XS can be simultaneously activated. Thus we see that XSis insensitive to all its active elements with generally distributed lifetimes, and that XS andXT exhibit the same steady state behaviour, i.e. for all Si 2 dsNR(S0),�S(xi) = �T (xG(i)) (9.2)

6.10. WEAK ISOMORPHISM FOR MODEL SIMPLIFICATION 93Moreover, if xj1 is the start of a reducible sequence between xj1 and xjnj , by de�nition,�S(xj1) = nj�1Xk=1 �S(xjk) (9.3)Recall that the reward associated with a derivative is the sum of the rewards attachedto activities which the derivative enables. If we consider all the hidden derivatives in thejth reducible sequence, Sj2 ; : : : ; Sjnj�1 , by de�nition they all enable the same activities asthe starting derivative Sj1 . Thus, the reward associated with each of them is the same, �jsay. Moreover, the same reward will be associated with the corresponding derivative of T ,G(Sj1) = TG(j1) 2 ds(T0). By de�nition the total reward associated with T , RT , isRT = XTG(i)2ds(T0)�G(i) �T (xG(i))Similarly, the total reward associated with S, RS, isRS = XSi2ds(S0)�i �S(xi) = XSi2dsNR(S0)�i �S(xi) + NXj=1 nj�1Xk=1 �jk �S(xjk)= XSi2dsNR(S0)�i �S(xi) + NXj=1 �j nj�1Xk �S(xjk)= XSi2dsNR(S0)�i �T (xG(i)) + NXj=1 �j �T (xG(j1)) (9.4)It follows, by equations 9.2 and 9.3, that RS = RT . That is, the total rewards derived fromthe model, S, and its compact form, T , are the same. �Corollary 6.9.1 If P � Q and the reducible sequences of P and Q satisfy the conditions ofTheorem 6.9.2, then any performance measures derived from P and Q via a reward structureare the same.Proof It follows immediately from the de�nition of � and Theorem 6.9.2 that the rewardsderived from P and Q will be identical and the result follows. �6.10 Weak Isomorphism for Model Simpli�cationIn the previous section it was shown that given a reward structure expressed in terms ofactivities, weakly isomorphic components will generate the same reward. In particular thesame performance measures may be derived from a model and its compact form. The sizeof the derivative set of a compact form is never larger than the size of the derivative set ofthe model it reduces, i.e. C � P implies that jds(C)j � jds(P)j. This suggests the use ofweak component isomorphisms for model simpli�cation, resulting in state space reduction.6.10.1 An Approach to Model Simpli�cationIn this section we outline how weak isomorphism and the identi�cation of a compact formfor model components may be used as a model simpli�cation technique. The approach

94 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISMwhich we propose involves the identi�cation of reducible sequences within components of acomplete model. A component will be replaced by a compact form as long as the conditionsof Theorem 6.9.2 are satis�ed. Since weak isomorphism is preserved by cooperation, themodi�ed model will be weakly isomorphic to the original model, although it is not necessarilya compact form of the original model as there may be other reducible sequences which havenot been reduced.As remarked in Section 6.8, hiding at the top level of a PEPA model may be introduced toreect the experimental frame in which the model is currently viewed. Thus any activitiesto which rewards are not attached may be hidden. Using the equational laws of Propos-itions 6.3.2 and 6.3.3, the PEPA component representing the model may be manipulatedinto a form in which the reducible sequences are apparent. In particular hiding operatorsare moved inside cooperation combinators whenever possible.As di�erent performance measures are derived from rewards attached to di�erent activitiesit may be possible to produce di�erent simpli�ed models according to the performancemeasure currently under consideration. For very large models, producing separate models tocalculate each performance measure may be more e�cient than solving a single large modelsuitable for calculating all the performance measures at once.6.10.2 Simplifying an MSMQ Model using Weak IsomorphismIn this section we illustrate the technique outlined in the previous section with one of thecase studies introduced in Chapter 4. Consider again the embedded MSMQ system shownin Figure 4.12:System def= 0@(Comp1 k Comp2 k Comp3) BCfwalk Ej;walk Fj ;servejg(S1 k S1)1A =L (1 � j � N)where L = faccept2; accept3; pack2; pack3; walk Ej; walk Fjg. By Proposition 6.3.3 we knowthat this is isomorphic to0@((Comp1 k Comp2 k Comp3)=L1) BCfwalk Ej ;walk Fj;servejg((S1 k S1)=L1)1A =L2where L1 = faccept2; accept3; pack2; pack3g and L2 = fwalk Ej ; walk Fjg. Continuing inthis way, applying Proposition 6.3.3 and 6.3.2, we can see that this is isomorphic to0@(Comp1 k (Comp2=L12) k (Comp3=L13)) BCfwalk Ej ;walk Fj;servejg(S1 k S1)1A =L2where L12 = faccept2; pack2g and L13 = faccept3; pack3g. ThenComp2=L12 = (Node20=L12) BCfin;serve2g (Gen20=L12)= Node20 BCfin;serve2g (Gen20=faccept2; pack2g)and by Proposition 6.3.2,Gen20=faccept2; pack2g = (�; �):(�; p):(Gen21=faccept2; pack2g):

6.10. WEAK ISOMORPHISM FOR MODEL SIMPLIFICATION 95Nodej0 def= (in;>):Nodej1 + (walk Ej; e):Nodej0 1 � j � NNodej1 def= (walk Fj; e):Nodej2Nodej2 def= (servej;>):Nodej0 + (walk Ej; e):Nodej2Gen10 def= (accept1; �):(pack1; p):Gen11Gen11 def= (in; d): ((serve1; w1>):Gen11 + (serve1; w2>):Gen10)Gen0j0 def= (�; �p):Gen0j1 �p = (� p)=(� + p) j = 2; 3Gen0j1 def= (in; d): �(servej; w1>):Gen0j1 + (servej; w2>):Gen0j0�where w1 =M � 1; w2 = 1 (M is mean no. of packets/message)Comp1 def= Node10 BCfin;serve1gGen10Comp02 def= Node20 BCfin;serve2gGen020Comp03 def= Node30 BCfin;serve3gGen030Sj def= (walk Ej; !):Sj�1 + (walk Fj; !):(servej ; �):Sj�1where j � 1 = 1 when j = Nwhen N = 3:System0 def= (Comp1 k Comp02 k Comp03) BCfwalk Ej;walk Fj ;servejg(S1 k S1)=fwalk Ej; walk Fjgfor 1 � j � NFigure 6.5: Modi�ed PEPA model of the enhanced MSMQ system, System0Thus there is a reducible sequence within the component Gen20=L12. Similarly there willbe a reducible sequence in the component Gen30=L13:Gen30=faccept3; pack3g = (�; �):(�; p):(Gen21=faccept3; pack3g):We can construct the compact form of Gen20=L12 as follows:Gen020 def= (�; �p):Gen021Gen021 def= (in; d): �(servej ; w1>):Gen021 + (servej; w2>):Gen020�where �p = (� p)=(� + p), and we construct Gen030, the compact form corresponding toGen30=L13 similarly.Since these components are in parallel composition with each other the conditions ofTheorem 6.9.2 are satis�ed if we replace Gen20 and Gen30 by their respective compact formsand consider the modi�ed model, System0, shown in Figure 6.5.Recall that in Section 4.4.5 we saw that the Markov process underlying the model Systemhad 888 states. In contrast the weakly isomorphic model System0 has only 542 states.The same performance measures were calculated for the model using the parameter valuesshown in Table 6.1. The di�erence in values derived from this model and the original model,

96 CHAPTER 6. ISOMORPHISM AND WEAK ISOMORPHISMmean no. packets accept pack � in walk E and walk F serveM � p �p d min(e; !) �5� 25 1=20 1=10 1=30 20 10; 25 1:0Table 6.1: Parameter values assigned to System0System, were found to be less than 0:001%. This error is attributed to the numericaltechnique used to solve the model in each case. The mean transmission time as messagelength varies as before is shown in Figure 6.6, for walk rates 10 and 25.
w=10

w=25

message length
252015105

delay

45

40

35

30

25

20

15Figure 6.6: Mean message transmission time plotted against mean number of packets permessage and walk rates

Chapter 7Strong Bisimilarity7.1 IntroductionIn this chapter we develop a strong bisimulation, based on the labelled multi-transitionsystem for PEPA developed in Chapter 3, and examine some of its properties. The strongbisimulation relation aims to capture the idea that strongly bisimilar components are able toperform the same activities, resulting in derivatives that are themselves strongly bisimilar.In Section 7.2 we show how this property may be expressed in the de�nition of a strongbisimulation relation. Strong bisimilarity is then de�ned as the largest relation satisfyingthe conditions of a strong bisimulation relation.The rest of the chapter is concerned with the properties exhibited by the strong bisimilarityrelation, �. In Section 7.3 the relation is investigated from a process algebra perspective.In particular it is shown that strong bisimilarity is a congruence relation for PEPA. Theimplications of strong bisimilarity for the system components being modelled are discussedin Section 7.4. The relationship between strong bisimilarity and the underlying Markovprocess is examined in Section 7.5, as we investigate whether the partition induced by therelation forms a suitable basis for exact aggregation. This is found not to be the case.Finally in Section 7.6 we suggest how strong bisimilarity may be used as a model simpli�c-ation technique. The relation is used to �nd components which exhibit the same activities.These may then be subjected to a simple further test to ensure that the behaviours of thecomponents are indeed the same. Then if one component has a smaller derivative set it mayreplace the other component in a PEPA model and reduce the state space of the underlyingMarkov process. We demonstrate this use of strong bisimilarity for state space reduction onone of the MSMQ models developed in Chapter 4.7.2 De�nition of Strong BisimilarityAs explained in Section 5.2, a bisimulation is intended to capture the idea of identicalobserved behaviour. Of course we must clarify which aspects of behaviour may be witnessedby the observer and the context in which the observation takes place. In terms of PEPA wehave several choices of how \observant" we allow the observer to be. For example, can theobserver record the rate of each activity or only the apparent rate of each action type? Canthe observer remember the relative frequency with which alternative activities, or possiblederivatives, occur in a race condition from a given component? Does the observer record thesojourn time in each component? 97

98 CHAPTER 7. STRONG BISIMILARITYAn alternative way to think about the strong bisimulation relation is in terms of thelabelled multi-transition system used to give an operational semantics to the language. Fromthis perspective, two components are strongly bisimilar if they are capable of exactly thesame activities, and the resulting derivatives are also strongly bisimilar. When, as in PEPA,the labelled transition system generates a multigraph, the multiplicity of each activity shouldalso be considered.The de�nition of strong bisimulation we present in this chapter aims to be a simple exten-sion of the strong bisimulation of CCS to PEPA. Recall that in CCS two agents are stronglybisimilar if any � action of one can be matched by an � action of the other; moreover every�-derivative of one is strongly bisimilar to some �-derivative of the other. Thus for PEPA wereplace actions by activities and place the same requirement on derivatives. However, notethat this does not impose any condition on the multiplicities of activities in components.For example this would lead to an equivalence in which P +P is considered equivalent to P ,although the �rst component, P + P , would appear to act twice as fast as P . The simplestway to avoid this problem is to place an additional condition on the strong bisimulationensuring that the apparent rate of all action types is the same in the two components. Thus,in keeping with both CCS and Markov processes, we imagine an observer who bases hiscomparison on the current behaviour and has no memory of the previous behaviour of thecomponents. In particular there is no consideration of the relative frequency, or probability,of transitions or derivatives.De�nition 7.2.1 A binary relation, R � C � C, over components is a strong bisimulationif (P;Q) 2 R implies, for all � 2 A,i) r�(P) = r�(Q);and for all a 2 Act,ii) Whenever P a�! P 0 then, for some Q0, Q a�! Q0, and (P 0; Q0) 2 R;iii) Whenever Q a�! Q0 then, for some P 0, P a�! P 0, and (P 0; Q0) 2 R.Any component is trivially a member of a strong bisimulation since the identity relationsatis�es all the conditions of the De�nition 7.2.1. Similarly, we can see that, since the condi-tions are all symmetric, if R is a strong bisimulation then R�1 is also a strong bisimulation.The conditions are also transitive and preserved by union. Thus we can state the followingproposition:Proposition 7.2.1 Assume that each Ri (i = 1; 2; : : :) is a strong bisimulation. Then thefollowing relations are all strong bisimulations:(1) IdC (3) R1R2(2) R�1i (4) Si2I RiProof The proof follows trivially from the De�nition 7.2.1. �We may now de�ne the strong bisimilarity relation �.De�nition 7.2.2 P and Q are strongly bisimilar, written P � Q, if (P;Q) 2 R for somestrong bisimulation R. � = [fR : R is a strong bisimulationg

7.2. DEFINITION OF STRONG BISIMILARITY 99It follows immediately from the de�nition and the Proposition 7.2.1 that � is itself a strongbisimulation, that it is the largest such relation and that it is an equivalence relation.In general, in order to show that P � Q we must �nd a strong bisimulation relationR suchthat (P;Q) 2 R. As this involves considering all the derivatives of P and Q and their possibleactivities this may be a non-trivial task. However we can de�ne a weaker relation, strongbisimulation up to �, which takes advantage of equivalence classes induced on the derivativeset of each component by the � relation. Then two components satisfy the relation R if theactivities and apparent rates of action types are matched, and each a-derivative belongs toan equivalence class which has an element which is in R with some element of an equivalenceclass, containing an a-derivative, in the other component's derivative set.De�nition 7.2.3 R is a strong bisimulation up to � if P R Q implies for all � 2 A,i) r�(P) = r�(Q);and for all a 2 Act,ii) Whenever P a�! P 0 then, for some Q0, Q a�! Q0, and P 0 � R � Q0;iii) Whenever Q a�! Q0 then, for some P 0, P a�! P 0, and P 0 � R � Q0.Proposition 7.2.2 shows that in order to exhibit strong bisimilarity between components itis su�cient to �nd a strong bisimulation up to � between them. First, the following Lemmais needed.Lemma 7.2.1 If R is a strong bisimulation up to �, then the relation � R � is a strongbisimulation.Proof Let P � R � Q. Then there are derivatives P1 2 ds(P) and Q1 2 ds(Q) suchthat P � P1 R Q1 � Q. Considering the activities of P and Q the diagrams below can beinferred: �P 0 P 01�P P1? ?a ar�(P) = r�(P1) P 01 Q01R� �RP1 Q1� ^a ar�(P1) = r�(Q1) �Q01 Q0�Q1 Q? ?a ar�(Q1) = r�(Q)Recall that �, as an equivalence relation, is transitive, and compose these diagrams to obtain:P 0 Q0R� �P QR� �? ?a ar�(P) = r�(Q)as required. �Proposition 7.2.2 If R is a strong bisimulation up to � then R � �.

100 CHAPTER 7. STRONG BISIMILARITYProof Since, by Lemma 7.2.1, � R � is a strong bisimulation, it follows that � R � � �.But recall that IdC � �, so R � � R �. Consequently, we conclude that R � �. �We will make use of this result when we prove that � is a congruence relation.7.3 Properties of the Strong Bisimilarity RelationIn this section we investigate the properties of the strong bisimilarity relation in a processalgebra context. We prove that strong bisimilarity is a congruence relation by showing thatit is preserved by the combinators of the language and by recursive de�nitions. We also showthat any isomorphic components are strongly bisimilar.7.3.1 Strong Bisimilarity as a CongruenceIn order to show that strong bisimilarity is a congruence for PEPA we must show that therelation is preserved by each of the combinators of the language. For example, this meansthat if P1 is strongly bisimilar to P2, we may replace P1 in a component P1 BCL Q by P2 andbe con�dent that the activities of the component remain the same.Proposition 7.3.1 (Preservation by Combinators)Let P1 � P2, then1. a:P1 � a:P2;2. P1 +Q � P2 +Q;3. P1 BCL Q � P2 BCL Q;4. P1=L � P2=L.Proof1. The only possible activity of a:P1 or a:P2 is a, where a = (�; r) for some action type �and rate r. Thus it is clear that for all � 2 A,r�(a:P1) = (r if � = �0 if � 6= �) = r�(a:P2)Moreover, these derivatives, P1 and P2, are themselves bisimilar, P1 � P2, by thehypothesis. Consequently a:P1 � a:P2.2. Consider P1 + Q and P2 + Q. Recall that for any P and Q, and for all � 2 A,r�(P + Q) = r�(P) + r�(Q). Thus, since by the hypothesis r�(P1) = r�(P2) for all� 2 A, we conclude that r�(P1 +Q) = r�(P2 +Q) as required.Now suppose P1 +Q a�! P 0. ThenCase 1 P1 a�! P 0; since P1 � P2 then, for some P 00, P2 a�! P 00, and P 0 � P 00. Itfollows that P2 +Q a�! P 00, and P 0 � P 00.Case 2 Q a�! P 0. Then P2 +Q a�! P 0 and P 0 � P 0.The result follows by symmetry.

7.3. PROPERTIES OF THE STRONG BISIMILARITY RELATION 1013. Consider P1 BCL Q and P2 BCL Q and de�ne a relation R as followsR = f(Q1 BCL Q;Q2 BCL Q) j Q1 � Q2g:Recall that for any P and Q, and for all � 2 A,r�(P BCL Q) = (min(r�(P); r�(Q)) if � 2 Lr�(P) + r�(Q) if � =2 LBy de�nition (P1 BCL Q;P2 BCL Q) 2 R. Moreover, since for all � 2 A, r�(P1) = r�(P2),it follows that r�(P1 BCL Q) = r�(P2 BCL Q), for all � 2 A.Consider P1 BCL Q a�! R, where a = (�; r).Case 1 P1 a�! P 01 and R � P 01 BCL Q, � =2 L.Since P1 � P2 there is a P 02 such that P2 a�! P 02, and P 01 � P 02. Thus, if R0 � P 02 BCL Q,P2 BCL Q a�! R0 and by the de�nition of R, (R;R0) 2 R.Case 2 Q a�! Q0 and R � P1 BCL Q0, � =2 L. Similar to Case 1.Case 3 � 2 L and P1 (�;r1)���! P 01, Q (�;r2)���! Q0, R � P 01 BCL Q0.Then r = r1r�(P1) r2r�(Q) min(r�(P1); r�(Q)).Since P1 � P2 there is a P 02 such that P2 (�;r1)���! P 02, and P 01 � P 02. Therefore there isR0 � P 02 BCL Q0 such that P2 BCL Q a�! R0.Then, by de�nition, (R;R0) = (P 01 BCL Q0; P 02 BCL Q0) 2 R.It follows by symmetry that R is a strong bisimulation.Hence, P1 BCL Q � P2 BCL Q as required.4. To show that P1=L � P2=L, we de�ne a relation R as follows:R = f(Q1=L; Q2=L) j Q1 � Q2gand show that it is a strong bisimulation, analogously to above. �In the following proposition we show that sets of recursive de�nitions also preserve thestrong bisimilarity relation. The de�nition of strong bisimilarity is extended to componentexpressions as follows:De�nition 7.3.1 Let E and F be component expressions, containing variables ~X at most.Then E � F if, for all indexed sets of components ~P , Ef ~P= ~Xg � Ff ~P= ~Xg.This proposition, together with Proposition 7.3.1, shows that � is a congruence.Proposition 7.3.2 (Preservation by Recursive De�nition)Let ~E and ~F contain variables ~X at most. Let ~A def= ~Ef ~A= ~Xg, ~B def= ~Ff ~B= ~Xg and ~E � ~F .Then ~A � ~B.

102 CHAPTER 7. STRONG BISIMILARITYProof It is su�cient to show the result for single recursion equations E and F such thatE � F , where A def= EfA=Xg and B def= FfB=Xg. We construct a relation R as follows,R = f(GfA=Xg; GfB=Xg) j G contains at most variable Xgand show thatR is a strong bisimulation up to �. First we show by induction on the maximaldepth of inference that, for an arbitrary activity type �, the apparent rate of activities oftype � in GfA=Xg and GfB=Xg are the same, i.e. r�(GfA=Xg) = r�(GfB=Xg). Thepossible forms of G are considered separately; the case G � X is omitted since the apparentrate is not de�ned for unguarded variables.Case 1 (Base Case): G � (�; r):G0Then GfA=Xg � (�; r):G0fA=Xg and r�(GfA=Xg) = (r if � = �0 otherwise.Similarly we can see that r�(GfB=Xg) = (r if � = �0 otherwise.Thus it follows immediately that r�(GfA=Xg) = r�(GfB=Xg).Case 2: G � G1 +G2Then, applying the induction hypothesis and the de�nition of r�(�), we see thatr�(GfA=Xg) = r�(G1fA=Xg) + r�(G2fA=Xg)= r�(G1fB=Xg) + r�(G2fB=Xg) = r�(GfB=Xg):Case 3: G � G1 BCL G2By de�nition,r�(GfA=Xg) = (r�(G1fA=Xg) + r�(G2fA=Xg) if � =2 Lmin(r�(G1fA=Xg); r�(G2fA=Xg)) if � 2 L:Thus, by the induction hypothesis, since G1 and G2 must have a shorter maximal depth ofinference r�(GfA=Xg) = r�(GfB=Xg) as required.Case 4: G � G0=LIf � 2 L then clearly, r�(GfA=Xg) = 0 = r�(GfB=Xg).Otherwise r�(GfA=Xg) = r�(G0fA=Xg) and the result follows by induction.Case 5: G � C where C is constant.Then C is associated with some component de�nition, C def= S. Therefore, it follows thatr�(GfA=Xg) = r�(S) = r�(GfB=Xg).Since � was arbitrary, we have shown that (GfA=Xg; GfB=Xg) 2 R implies that for all� 2 A, r�(GfA=Xg) = r�(GfB=Xg).Now we show that any activity of GfA=Xg can be matched by an activity of GfB=Xg.Consider an arbitrary activity, a 2 Act(GfA=Xg), such that GfA=Xg a�! P 0. We will usetransition induction on the depth of inference by which the activity a is inferred to showthat there exist Q00 and Q0 such that GfB=Xg a�! Q00 � Q0 and (P 0; Q0) 2 R.The possible forms of G are considered separately.Case 1: G � a:G0Then GfA=Xg � a:G0fA=Xg and P 0 � G0fA=Xg.Similarly GfB=Xg � a:G0fB=Xg a�! G0fB=Xg where, (G0fA=Xg; G0fB=Xg) 2 R, byde�nition.

7.3. PROPERTIES OF THE STRONG BISIMILARITY RELATION 103Case 2: G � XThen GfA=Xg � A, and A a�! P 0. It follows that EfA=Xg a�! P 0, by a shorter depthof inference. By the induction hypothesis, we can assume that there exist Q00 and Q0, suchthat EfB=Xg a�! Q00 � Q0 with (P 0; Q0) 2 R.Since E � F , there exists Q000 such that FfB=Xg a�! Q000 � Q0.However B def= FfB=Xg and GfB=Xg � B which means that the activities of GfB=Xg areexactly the activities of FfB=Xg, so GfB=Xg a�! Q000 � Q0 with (P 0; Q0) 2 R as required.Case 3: G � G1 +G2Then GfA=Xg � G1fA=Xg + G2fA=Xg, and the activity GfA=Xg a�! P 0 may be dueto either component. These cases, G1fA=Xg a�! P 0 and G2fA=Xg a�! P 0, are consideredseparately. Since each of these transitions has a shorter depth of inference the proof is astraightforward application of the induction hypothesis, which is omitted here.Case 4: G � G1 BCL G2Then GfA=Xg � G1fA=Xg BCL G2fA=Xg. Let us consider some activity a = (�; r), suchthat GfA=Xg a�! P 0. It may arise in three distinct ways: � =2 L, a an individual activityof G1fA=Xg; � =2 L, a an individual activity of G2fA=Xg; and � 2 L, a a shared activityof G1fA=Xg and G2fA=Xg. Here we present only the third case, the other two are similar.Case 4.3 � 2 L : G1fA=Xg (�;r1)���! P 01, G2fA=Xg (�;r2)���! P 02, P 0 � P 01 BCL P 02.r = r1r�(G1fA=Xg) r2r�(G2fA=Xg) min(r�(G1fA=Xg); r�(G2fA=Xg))As the transitions of G1 and G2 have a shorter depth of inference, by induction there existQ001 and Q01, and Q002 and Q02 such that,G1fB=Xg (�;r1)���! Q001 � Q01; G2fB=Xg (�;r2)���! Q002 � Q02such that (P 01; Q01) 2 R, and (P 02; Q02) 2 R. Thus, setting Q00 � Q001 BCL Q002 and Q0 � Q01 BCL Q02we obtain GfB=Xg a0�! Q00 � Q0 where a0 = (�; rB). But r�(G1fA=Xg) = r�(G1fB=Xg)and r�(G2fA=Xg) = r�(G2fB=Xg) so it follows thatrB = r1r�(G1fB=Xg) r2r�(G2fB=Xg) min(r�(G1fB=Xg); r�(G2fB=Xg)) = rSince (P 01; Q01) 2 R we can �ndH1 such that P 01 � H1fA=Xg, and Q01 � H1fB=Xg. Similarlywe can �nd H2 such that P 02 � H2fA=Xg and Q02 � H2fB=Xg.Consequently, setting H � H1 BCL H2, we see that(P 0; Q0) � (HfA=Xg;HfB=Xg) 2 RCase 5: G � G0=LWe consider the cases for transitions of G0 being hidden or not, separately. Since all trans-itions of G are derived from transitions of G0 which have a shorter depth of inference, theproof is a straightforward application of the induction hypothesis and is omitted here.Case 6: G � C where C is a constantSuppose that C is associated with some de�nition C def= S. Since X does not appear in G,GfA=Xg and GfB=Xg are both identical to C. Consequently, both will have the samea-derivative P 0, where (P 0; P 0) � (P 0fA=Xg; P 0fB=Xg) 2 R as required.

104 CHAPTER 7. STRONG BISIMILARITYThus we have shown that every activity of GfA=Xg is matched by GfB=Xg, and bya symmetric argument we can see that every activity of GfB=Xg is similarly matched byGfA=Xg. It follows that the relationR = f(GfA=Xg; GfB=Xg) j G contains at most variable Xgis a strong bisimulation up to �. Consequently, if we take G � X, it follows that A � B asrequired. �7.3.2 Isomorphism and Strong BisimilarityIn Section 6.2 the concept of isomorphic components was introduced. Two components areisomorphic if they generate derivation graphs which have the same structure. Such compon-ents di�er only in the naming of derivatives. In the following proposition we establish thatisomorphism between components is a stronger relation between components than strongbisimilarity, i.e., = � � : (3.1)Lemma 7.3.1 If F is a component isomorphism then for any P , P � F(P).Proof Since F is a component isomorphism we know that it is an injective function withAct(P) = Act(F(P)), and for all a 2 Act the a-derivatives of F(P) are the same as the F -images of a-derivatives of P . Thus it is clear that P and F(P) enable the same activities, inthe same multiplicities , so all activities of P and F(P) are matched and the apparent ratesof all action types are the same in the two components. It follows by structural induction onthe structure of P , and Proposition 7.3.1 that every a-derivative of P is strongly bisimilarto an a-derivative of F(P). �Proposition 7.3.3 If P and Q are isomorphic components then P � Q.Proof This follows immediately from the Lemma. �From this we can deduce that the equational laws stated for isomorphic components inSection 6.3 can be restated with \=" replaced by \�".Corollary 7.3.1 (Choice)1. P +Q � Q+ P2. P + (Q+R) � (P +Q) +RCorollary 7.3.2 (Hiding)1. (P +Q)=L � P=L +Q=L2. ((�; r):P)=L � ((�; r):P=L � 2 L(�; r):P=L � =2 L3. (P=L)=K � P=(L [K)4. P=L � P if L \ ~A(P) = ;

7.3. PROPERTIES OF THE STRONG BISIMILARITY RELATION 105Corollary 7.3.3 (Cooperation)1. P BCL Q � Q BCL P2. P BCL (Q BCL R) � (P BCL Q)BCL R3. (P BCL Q)=(K [M) � �(P=K) BCL (Q=K)��M where K \M = K \ L = ;4. P BCK Q � P BCL Q if K \ (~A(P) [~A(Q)) = L5. (P BCL Q) BCK R �8<:P BCL (Q BCK R) if ~A(R) \ L nK = ; ^ ~A(P) \K nL = ;QBCL (P BCK R) if ~A(R) \ L nK = ; ^ ~A(Q) \M nL = ;Corollary 7.3.4 (Constant)If A def= P then A � P .Corollary 7.3.5 (The Expansion Law)Let P � (P1 BCL P2)=K with L;K � A. ThenP � Xf(�; r):(P 01 BCL P2)=K j P1 (�;r)�! P 01 ; � =2 L [Kg+ Xf(�; r):(P1 BCL P 02)=K j P2 (�;r)�! P 02 ; � =2 L [Kg+ Xf(�; r):(P 01 BCL P2)=K j P1 (�;r)�! P 01 ; � 2 K n Lg+ Xf(�; r):(P1 BCL P 02)=K j P2 (�;r)�! P 02 ; � 2 K n Lg+ Xf(�; r):(P 01 BCL P 02)=K j P1 (�;r1)�! P 01 ; P2 (�;r2)�! P 02 ; � 2 L nK ;r = r1r�(P1) r2r�(P2) min(r�(P1); r�(P2))g+ Xf(�; r):(P 01 BCL P 02)=K j P1 (�;r1)�! P 01 ; P2 (�;r2)�! P 02 ; � 2 L \K ;r = r1r�(P1) r2r�(P2) min(r�(P1); r�(P2))g:Note that it is easy to construct components which are strongly bisimilar but not iso-morphic, showing that the relation in equation 3.1 is \�" and not \�". For example, it isstraightforward to verify that the relation,R = f(A0; B0); (A1; B1); (A0; B2); (A1; B3)g; (3.2)is a strong bisimulation for the components A and B shown in Figure 7.1. However, therecan be no isomorphism between the derivative sets of A and B since they do not have thesame number of elements. Thus A � B but A 6= B.A0 def= a:A1A1 def= b:A0 B0 def= a:B1B1 def= b:B2B2 def= a:B3B3 def= b:B0Figure 7.1: An example to show A � B does not imply A = B

106 CHAPTER 7. STRONG BISIMILARITY7.4 Strong Bisimilarity and System ComponentsIn this section we consider what the relation P � Q tells us about the system componentsmodelled by the PEPA components P and Q. Let SysP and SysQ denote the systemcomponents modelled by P and Q respectively and assume that P � Q. It is clear fromthe de�nition of strong bisimulation that the action sets, the activity multisets and the exitrates of the two components are equal.A(P) = A(Q) Act(P) = Act(Q) q(P) = q(Q) (4.3)In terms of the system components SysP and SysQ this means that under observation theyappear to carry out the same actions, at the same rates and that their average delay beforeperforming some action will be the same. Moreover we can deduce from equation 4.3 thatthe probability (or relative frequency) that the action performed will have a given type willbe the same in the two components, SysP and SysQ.The strong bisimulation relation between P and Q ensures that the same relation mustexist betweenmatching derivatives, i.e. if P a�! P 0 there must be someQ0 such thatQ a�! Q0and P 0 � Q0. This implies that any sequence of activities which can be performed by P canalso be performed by Q. Thus if we consider the system components SysP and SysQ thepossible sequences of actions that they can perform are the same. However we cannot drawconclusions about the relative frequencies of these sequences of actions. When the sameactivity in a PEPA component may result in di�erent derivatives the strong bisimilarityrelation does not necessarily tell us anything about the relative frequency of these di�erentoutcomes of the activity, or even the transition rates between derivatives. For exampleconsider the simple components in Figure 7.2. It is straightforward to verify that the relationR = f(P;Q); (P 0; Q0)g is a strong bisimulation since, assuming a = (�; ra) and b = (�; rb),r(P) = (3ra = �0 6= �) = r(Q) r(P 0) = (rb = �0 6= �) = r(Q0)and the activities can be matched in the pairs:(P a�! PQ a�! Q) (P a�! P 0Q a�! Q0) 8<: P 0 b�! PQ0 b�! Q 9=;However if we consider the transition rates between the derivatives of P and Q respectively,q(P;P) = 2ra q(P;P 0) = ra q(P 0; P) = rbq(Q;Q) = ra q(Q;Q0) = 2ra q(Q0; Q) = rb:P def= a:P + a:P + a:P 0P 0 def= b:P Q def= a:Q+ a:Q0+ a:Q0Q0 def= b:QFigure 7.2: Strongly bisimilar components with di�erent transition rates

7.5. STRONG BISIMILARITY AND THE MARKOV PROCESS 107In terms of the system components SysP and SysQ this implies that continued observationof the two systems would distinguish between them since � actions will occur less frequentlyin SysP .Multiple instances of activities with the same action type may arise in PEPA componentsin two ways. Firstly, the system component being modelled might have multiple capacityto carry out the corresponding action. For example, if the component is a cooperation oftwo identical components and the action type is not in the cooperation set then there aretwo di�erent ways in which the action may occur, represented as two separate activities.Secondly, an action in the system component may have more than one possible outcome. Inthis case the PEPA component represents the single action in the system by several activities,each with the appropriate action type and suitably adjusted activity rates to reect theprobability of the outcome they lead to. Note that in this second case it is only when theoutcomes have equal probability that the multiple representations of the same action willappear as multiple instances of the same activity in the PEPA component, and so potentiallycause problems. Of course, in any PEPA model combinations of these circumstances mayoccur.Since in strongly bisimilar components all activities occur with the same multiplicity, amismatch of transition rates can only occur when there is more than one derivative resultingfrom a given activity and at least one of those derivatives may be reached by more than oneinstance of the activity. In the two strongly bisimilar components this \extra" capacity tocarry out the activity leads to di�erent derivatives, resulting in the di�ering transition rates.Thus it is apparent that this na��ve de�nition of strong bisimilarity is not strong enoughto ensure that components are indistinguishable under experimentation. On the other handif we can ensure that the problem discussed above does not occur, the relation is enoughto guarantee the same behaviour between components. A model simpli�cation techniqueaiming to take advantage of such circumstances is outlined in Section 7.6.7.5 Strong Bisimilarity and the Markov ProcessIn this section we investigate the strong bisimilarity relation from the perspective of theunderlying Markov process, both as a model-to-model equivalence and as a state-to-stateequivalence. In particular we examine what the relation P � Q tells us about the Markovprocesses generated by P and Q. The partition induced by � on the state space of a modelis considered but found, in general, to be an unsuitable basis for exact aggregation.As explained in Chapter 5, two Markov processes are considered to be equivalent if theyhave the same number of states and the same transition rates between those states. Unlikeisomorphic components, strongly bisimilar components will not necessarily generate equival-ent Markov processes. For example, consider the components A and B shown in Figure 7.1and the strong bisimulation in equation 3.2. Here, just as A and B could not be isomorphicbecause the derivative sets did not have the same number of elements, the correspondingMarkov processes cannot be equivalent as they do not have the same number of states.We will sometimes �nd it useful to consider a weaker form of equivalence between Markovprocesses, lumpable equivalence.De�nition 7.5.1 Two Markov processes, fXig and fYjg, are lumpably equivalent if thereis a lumpable partition of fXig, fX[i]g, and a lumpable partition of fYjg, fY[j]g such thatthere is an injective function f which satis�esq(X[k];X[l]) = q(Yf([k]); Yf([l])):

108 CHAPTER 7. STRONG BISIMILARITYThus two Markov processes are lumpably equivalent if they have lumpable partitions withthe same number of elements and there is a one-to-one correspondence between the partitionssuch that the aggregated transition rates between partitions are also matched. Note that forany process there is a trivial lumpable partition in which every state forms a partition onits own. We do not allow the degenerate partition in which all the states are taken to forma single partition.If we consider again the strongly bisimilar components A and B, shown in Figure 7.1,we can see that the states corresponding to B0 and B2, and B1 and B2 may be combinedto form a lumpable partition of the underlying state space. Moreover using this partitionand the trivial partition on A, it is clear that the Markov processes underlying A and B arelumpably equivalent.However, strong bisimilarity does not imply even this weaker form of equivalence betweenthe corresponding Markov processes. For example, if we consider the state spaces underlyingthe components P and Q shown in Figure 7.2, the only possible partitions are the trivialor degenerate ones. Since the transition rates between strongly bisimilar derivatives are notthe same it follows that the Markov processes cannot be lumpably equivalent. Therefore weconclude that strong bisimilarity between components does not provide su�cient informationfor us to deduce any relation between the corresponding Markov processes.Strong bisimilarity is an equivalence relation over the set of all components and as suchwill induce an equivalence relation over the derivative set of any component. Thus we alsoconsider how strong bisimilarity between the derivatives of a single component relates to thestructure of the Markov process generated by the component. To examine strong bisimilarityas a state-to-state equivalence we consider the partition induced by � over the derivative setof a component. Only if the partition is lumpable will the aggregated process be a Markovprocess.Recall that a partition is lumpable if for any two states within a partition class their ag-gregated transition rates to any other partition class are the same. However we have alreadyseen that strong bisimilarity between components does not guarantee that the transitionrates to matching derivatives are matched. If we consider strongly bisimilar componentswithin a derivative set they will be elements within the same partition class induced by�. Thus it follows that it is possible to form such a partition so that elements within thesame class have di�erent transition rates to other partition classes. For example, considerthe component C shown in Figure 7.3. Partitioning the derivative set by � we obtain thefollowing partition:C[0] = fC0g C[1] = fC1; C2g C[2] = fC3; C4gC0 def= a:C1 + a:C2C1 def= b:C1 + b:C3 + b:C4C2 def= b:C2 + b:C2 + b:C4C3 def= c:C0C4 def= c:C0Figure 7.3: Example of � inducing a non-lumpable partition

7.5. STRONG BISIMILARITY AND THE MARKOV PROCESS 109This is not a lumpable partition sinceq(C1; C[2]) = q(C1; C3) + q(C1; C4) = 2rbq(C2; C[2]) = q(C2; C3) + q(C2; C4) = rbIt follows that, in general, � cannot be used to form lumpable partitions over the statespace of a component as a basis for exact aggregation. Of course the partitions formed by �on the state space of a model could be used for aggregation but some method for calculatingthe conditional probability of each of the states within each partition would have to be usedbefore the aggregated process could be formed.Finally we consider whether equivalence between the underlying Markov processes allowsus to conclude anything about the strong bisimilarity, or otherwise, of the correspondingPEPA components. As we saw in Section 6.5, a PEPA component contains informationabout the action types of activities as well as activity rates and so there will always be aloss of information in going from the PEPA component to the underlying Markov process.Therefore it is trivial to construct components which will generate the same Markov processbut which are not strongly bisimilar. For example, consider again T1 and T2,T1 def= (task1; r):T1 T2 def= (task2; r):T2T1 and T2 generate the same Markov process although they are not strongly bisimilar|theyare not even isomorphic. Similarly we can construct processes which generate lumpablyequivalent Markov processes but which are not strongly bisimilar.Augmenting the Markov process does not solve the problem since more than one activityin the PEPA component may be represented as a single transition in the annotated Markovprocess, annotated by the types of all the activities. De�ning equivalent augmented Markovprocesses and lumpably equivalent augmented Markov processes in the obvious way, we cansee that such processes may arise from components which are not strongly bisimilar. Forexample, consider the components X and Y shown in Figure 7.4 (and Figure 6.1). Here Xand Y generate equivalent augmented Markov processes but there is no strong bisimulationrelating them.Hence equivalences between the Markov processes, even if augmented by action types, donot allow us to infer a strong bisimulation between the corresponding components. Moresigni�cantly, strong bisimilarity does not, in general, provide us with su�cient informationabout the probabilistic behaviour of components to deduce any relation between, or within,their underlying Markov processes.X0 def= (�; r):X1 + (�; s):X1X1 def= (; t):X0 Y0 def= (�; s):Y1 + (�; r):Y1Y1 def= (; t):Y0Figure 7.4: Components which generate the same Markov process

110 CHAPTER 7. STRONG BISIMILARITY7.6 Strong Bisimilarity for Model Simpli�cationIn this section we outline the use of strong bisimilarity as a model simpli�cation technique.It was shown in Section 7.4 that strong bisimilarity alone is not su�cient to ensure thatcomponents will exhibit exactly the same behaviour if observed over time. However, wepresent a simple additional condition, which may be easily tested, which guarantees thatthis problem with transition rates does not occur. The approach to model simpli�cation,based on strong bisimilarity and this condition, is outlined in Section 7.6.1 and illustratedin Section 7.6.2.In Section 7.4 it was remarked that a mismatch of transition rates in strongly bisimilarcomponents can only occur when, in at least one of the components, for some activity a,there is more than one a-derivative and at least one of those derivatives results from morethan one a activity. The di�erent transition rates occur because these multiple instances ofa occur with di�erent derivatives in the two components. Thus we see that if two stronglybisimilar components also satisfy the following condition, Condition 1, then the relativefrequencies of activity sequences within the components will be the same.Condition 1 P satis�es the condition if, for all P 0 2 ds(P), for all a 2 Act(P 0), either� there is only one a-derivative of P 0; or� there is only one instance of the activity a resulting in each a-derivative of P 0.It is straightforward to verify that if two components are strongly bisimilar and bothsatisfy Condition 1 then the transition rates to derivatives which are strongly bisimilar willbe the same in the two components. Thus it follows that the probabilistic behaviour of thetwo components will be the same. In particular the relative frequency of activity sequencesin the two components will be matched.7.6.1 An Approach to Model Simpli�cationThe approach to model simpli�cation which we propose involves replacing a top-level com-ponent in a PEPA model by another component which has a smaller derivative set butequivalent behaviour. The replacement component must be strongly bisimilar to the ori-ginal component and both components must satisfy Condition 1. Since � is a congruencerelation the modi�ed model is strongly bisimilar to the original model. Also the modi�edmodel will satisfy Condition 1 if the original model did. Thus the behaviour of the modelis preserved, and an alternative representation of the system has been found. Moreoversince the activities of the two models are the same the reward structure will be una�ected.Modifying the model in this way cannot increase the size of the state space of the underlyingMarkov process and in most cases it will be reduced.Thus a model may be constructed in a na��ve way with each of the components of themodel represented explicitly, as in the examples shown in Chapter 4. This might result in amodel which has a large state space but using this approach it may subsequently be possibleto replace some components of the model and reduce the state space.7.6.2 Simplifying an MSMQ Model using Strong BisimilarityWe now illustrate the approach outlined in the previous section, using one of the case studiespresented in Chapter 4, the asymmetric MSMQ system. We reduce the state space of the

7.6. STRONG BISIMILARITY FOR MODEL SIMPLIFICATION 111Nodej0 def= (in; �):Nodej1 + (walk Ej ;>):Nodej0 1 � j � NNodej1 def= (walk Fj;>):Nodej2Nodej2 def= (servej; �j):Nodej0 + (walk Ej;>):Nodej2where �j = (� if j = 1m� if 1 < j � NSj def= (walk Fj; !):(servej;>):Sj+1 + (walk Ej; !):Sj+1where j + 1 = 1 when j = Nwhen N = 4:Asym def= (Node10 k Node20 k Node30 k Node40) BCfwalk Fj ;walk Ej;servejg (S1 k S1)SSfi;jg def= (walk Fi; !):SSfi+;jg + (walk Ei; !):SSfi+1;jg+ (walk Fj; !):SSfi;j+g + (walk Ej; !):SSfi;j+1gSSfi+;jg def= (servei;>):SSfi+1;jg+ (walk Ej; !):SSfi+;j+1g+ (walk Fj; !):SSfi+;j+gSSfi;j+g def= (walk Ei; !):SSfi+1;j+g+ (walk Fi; !):SSfi+;j+g+ (servej;>):SSfi;j+1gSSfi+;j+g def= (servei;>):SSfi+1;j+g + (servej;>):SSfi+;j+1gwhere j + 1 = 1 when j = N ;and i+ 1 = 1 when i = N:when N = 4:Asym0 def= (Node10 k Node20 k Node30 k Node40) BCfwalk Fj;walk Ej ;servejgSSf1;1g for 1 � j � 4Figure 7.5: Original and modi�ed PEPA models of the asymmetric MSMQ system with fournodesunderlying Markov process by �nding a simpler, strongly bisimilar, replacement for thecomponent representing the two servers in the system. The original and modi�ed PEPAmodels of the system are presented in Figure 7.5.In the original model each server is modelled explicitly as a component, Sj.Sj def= (walk Fj; !):(servej;>):Sj+1 + (walk Ej; !):Sj+1The two servers in the system are then represented as a top-level component which is theparallel combination of two such components: S1 k S1. It is this top-level component whichwe replace. We take advantage of the fact that the activities which the combination of thetwo servers can undertake is determined by the present location of the two servers, but notwhich of them is at which location. We replace Si k Sj by a single component SSfi;jg de�nedas follows:SSfi;jg def= (walk Fi; !):SSfi+;jg+ (walk Ei; !):SSfi+1;jg +(walk Fj; !):SSfi;j+g+ (walk Ej; !):SSfi;j+1gSSfi+;jg def= (servei;>):SSfi+1;jg+ (walk Ej; !):SSfi+;j+1g+ (walk Fj; !):SSfi+;j+gSSfi;j+g def= (walk Ei; !):SSfi+1;j+g+ (walk Fi; !):SSfi+;j+g+ (servej;>):SSfi;j+1gSSfi+;j+g def= (servei;>):SSfi+1;j+g+ (servej ;>):SSfi+;j+1g

112 CHAPTER 7. STRONG BISIMILARITYAlthough at �rst sight the component SSfi;jg appears to be more complex than Si k Sjit generates a smaller derivative set. For example, in the case N = 4, the derivative setof S1 k S1 has 64 elements, of which 56 are exhibited in the derivatives of Asym. Not allthe derivatives are exhibited, e.g. (serve1;>):S2 k (serve1;>):S2, because to arrive at sucha derivative in Asym there would need to be more than one customer present at Node 1,contrary to the de�nition of the node. In contrast SSf1;1g has just 36 elements, 32 of whichare exhibited in the derivatives of Asym.If we consider the relation R,R = n�(SikSj); SSfi;jg� ; �(SjkSi); SSfi;jg� ; �((servei;>):Si+1k(servej;>):Sj+1); SSfi+;j+g�;�((servei;>):Si+1kSj); SSfi+;jg� ; �(Sik(servej;>):Sj+1); SSfi;j+g� ���� 1 � i; j � N �it is easy to verify that it is a strong bisimulation. Moreover, we can see by inspection thatboth S1 k S1 and SSf1;1g satisfy Condition 1.Thus we replace (S1 k S1) in the model of the asymmetric MSMQ system by the new top-level component SSf1;1g, to form the modi�ed modelAsym0. It follows from Proposition 7.3.1that Asym � Asym0.Asym def= (N1 k � � � k NN) BCfwalk Fj ;walk Ej;servejg(S1 k S1) Asym0 def= (N1 k � � � k NN) BCfwalk Fj ;walk Ej;servejg(SSf1;1g)Recall that in Section 4.4 we saw that the Markov process for the model Asym with fournodes had 560 states in the state space. The modi�ed model, Asym0, when N = 4, has 312states. However the performance measures extracted from the models are exactly the sameas the reward structure is una�ected by the simpli�cation.
1/m

Node 1

Node 2
Node 3
Node 4

54321

W

0.25

0.24

0.23

0.22

0.21

0.2

0.19Figure 7.6: Mean customer waiting times as service demand at Node 1 increases, calculatedfrom the modi�ed asymmetric MSMQ model, Asym0

Chapter 8Strong Equivalence8.1 IntroductionIn this chapter an alternative notion of equivalence for PEPA components is developed. Thisequivalence, strong equivalence, is de�ned in Section 8.2. It is developed in the style of Larsenand Skou's probabilistic bisimulation which was discussed in Section 5.2.3. Here transitionrates, already embedded in the PEPA labelled transition system as activity rates, are usedinstead of probabilities. As with strong bisimulation the relation aims to capture a notionof equivalent behaviour between components. However, observation now occurs withoutdetailed knowledge of the individual transitions involved. Strong equivalence, unlike strongbisimulation, is unable to distinguish between a single (�; 2r) activity and two simultaneouslyenabled instances of the (�; r) activity.Some properties of the relation from a process algebra perspective are examined in Sec-tion 8.3. Like strong bisimulation, strong equivalence is found to be a congruence relationfor PEPA. In Section 8.4 we discuss some of the implications of strong equivalence for thesystem components being represented, and in Section 8.5 the implications for the underlyingMarkov processes are reviewed. Finally, in Section 8.6, we outline the use of strong equival-ence as a state-to-state equivalence forming the basis of exact aggregation. An alternativeapproach to the generation of the Markov process underlying a PEPA model is also discussed.These ideas are illustrated in Section 8.6.3 with an example taken from Section 4.4.4.8.2 De�nition of Strong EquivalenceIn PEPA two components are strongly bisimilar if any a activity of one can be matched by ana activity of the other, and every a-derivative of one is strongly bisimilar to some a-derivativeof the the other. Furthermore the apparent rates of all action types are the same in the twocomponents. We saw in Section 7.4 that although this relation ensures that the sequencesof activities which can result from strongly bisimilar components are matched, the relativefrequencies of such sequences occurring in the two components are not necessarily the same.The probabilistic bisimulation of Larsen and Skou [38] forms equivalence classes such that,for any two agents within a class, the probabilities of them performing a given action, �,and resulting in �-derivatives which lie within a given equivalence class, are the same. Toapply a similar notion of equivalence to PEPA we consider the conditional transition ratesrather than the conditional transition probabilities.The conditional transition rate between two components Ci and Cj, via a given actiontype �, denoted q(Ci; Cj; �) was de�ned in Section 3.5.2. It is the rate at which a system113

114 CHAPTER 8. STRONG EQUIVALENCEbehaving as component Ci evolves to behave as component Cj as a result of completing anactivity of action type �. It is the sum of activity rates, labelling arcs of type �, connectingthe nodes corresponding to Ci and Cj in the derivation graph. If we consider a set of possiblederivatives S, the total conditional transition rate from Ci to S, denoted q[Ci; S; �], is de�nedto be q[Ci; S; �] = XCj2S q(Ci; Cj; �)Two PEPA components are strongly equivalent if there is an equivalence relation betweenthem such that, for any action type �, the total conditional transition rates from thosecomponents to any equivalence class, via activities of this type, are the same.De�nition 8.2.1 An equivalence relation R � C � C, is a strong equivalence if whenever(P;Q) 2 R then for all � 2 A and for all S 2 C=R,q[P; S; �] = q[Q;S; �] (2.1)It is clear that the identity relation trivially satis�es De�nition 8.2.1, and so all componentsare members of some strong equivalence. As with strong bisimulation we will be interestedin the relation which is the largest strong equivalence, formed by the union of all strongequivalences. However it is not straightforward to see that this will indeed be a strongequivalence. First we prove the following proposition, showing that the transitive closure ofa union of such relations, is itself a strong equivalence.Proposition 8.2.1 Let each Ri, i 2 I for some index set I, be a strong equivalence. ThenR = (Si2I Ri)� , the transitive closure of their union, is also a strong equivalence.Proof Since each Ri is an equivalence relation, it follows from the de�nition of R that Ris also an equivalence relation.Any equivalence relation over C will partition the set into equivalence classes. Let C=R andC=Ri denote these sets of equivalence classes for R and each Ri respectively. By de�nition(P;Q) 2 Ri implies that (P;Q) 2 R, and so any equivalence class Sij 2 C=Ri is whollycontained within some equivalence class Tk 2 C=R. Moreover, it follows that there is someset J ik such that Tk = [j2Jik Sij .Consider (P;Q) 2 R, then (P;Q) 2 (Si2I Ri)n for some n > 0. We will show that Rsatis�es equation 2.1 by induction over n. Let Rn denote (Si2I Ri)n. For an arbitraryelement Tk 2 C=R and any � 2 A, we consider the total conditional transition rates from Pand Q into Tk given that (P;Q) 2 Rn.When n = 1, (P;Q) 2 R1 implies that (P;Q) 2 Ri for some i 2 I, and by the argumentabove, q[P; Tk; �] = Xj2Jik q[P; Sij; �] = Xj2Jik q[Q;Sij; �] = q[Q;Tk; �]:For n > 1 we assume that for all Rm, where m < n, if (P;Q) 2 Rm then,q[P; Tk; �] = q[Q;Tk; �]Now (P;Q) 2 Rn implies that (P;Q) 2 Ri;Rn�1, i.e. there is some C 2 C such that (P;C) 2Ri for some i 2 I and (C;Q) 2 Rn�1. But then it follows by the same argument as abovethat q[P; Tk; �] = q[C;Tk; �] , and by the induction hypothesis, q[C;Tk; �] = q[Q;Tk; �]:Thus we can see that q[P; Tk; �] = q[Q;Tk; �] as required.Therefore R is a strong equivalence relation. �

8.2. DEFINITION OF STRONG EQUIVALENCE 115De�nition 8.2.2 We say P and Q are strongly equivalent, written P �= Q, if (P;Q) 2 Rfor some strong equivalence R, i.e.�= = [fR j R is a strong equivalencegIt is clear from the de�nition that �= is at least as large as the largest strong equivalence,and it follows from Proposition 8.2.1 that �= is a strong equivalence itself. Thus we state thefollowing proposition:Proposition 8.2.2 �= is the largest strong equivalence.In order to show that P �= Q we must �nd a strong equivalence relation R such that(P;Q) 2 R. Alternatively we can regard this as �nding partitions of the derivative sets ofP and Q satisfying equation 2.1, and a one-to-one correspondence between them.We can also de�ne a weaker relation, strong equivalence up to �=. As with strong bisim-ilarity and strong bisimulation up to �, in order to exhibit strong equivalence between twocomponents it is su�cient to �nd a strong equivalence up to �= between them. This resultis stated in Proposition 8.2.3.De�nition 8.2.3 R is a strong equivalence up to �= if R is an equivalence relation over Cand (P;Q) 2 R implies that for all � 2 A, and for all T 2 C=(�=R�=),q[P; T; �] = q[Q;T; �]Let us consider, for any equivalence relation R, what equivalence classes of the formT 2 C=(�=R�=) represent. Recall that (P;Q) 2 �=R�= if there exist P1 and Q1 such thatP �= P1, P1RQ1 and Q1 �= Q. For all P 2 C, let SP denote the equivalence class in C=�=which contains P , RP the corresponding equivalence class in C=R and TP the correspondingequivalence class in C=(�=R�=). Then we can see thatTP = fQ j P �= R �= Qg = [fSQ1 j Q1 2 fRP1 j P1 2 SPggIt follows that any TP 2 C=(�=R�=) is a union of equivalence classes SQ1 2 C=�=.Lemma 8.2.1 If R is a strong equivalence up to �=, then the relation �=R�= is a strongequivalence.Proof Let P �= R �= Q. Then there are components P1 and Q1 such that P �= P1RQ1 �= Q.Moreover for all S 2 C=�=q[P; S; �] = q[P1; S; �] q[Q1; S; �] = q[Q;S; �]and for all T 2 C=(�=R�=), q[P1; T; �] = q[Q1; T; �].Since any T 2 C=(�=R�=) is a union of S 2 C=�= it follows that for all such T ,q[P; T; �] = q[Q;T; �]: �Proposition 8.2.3 If R is a strong equivalence up to �= then R � �=.Proof This follows immediately from Lemma 8.2.1, by similar reasoning to the proof ofProposition 7.2.2. �

116 CHAPTER 8. STRONG EQUIVALENCE8.3 Properties of the Strong Equivalence RelationIn this section we investigate the properties of the strong equivalence relation �= from aprocess algebra perspective. We show that strong equivalence is a congruence. We also showthat isomorphic components are strongly equivalent and examine the relationship betweenstrong bisimilarity and strong equivalence.8.3.1 Strong Equivalence as a CongruenceWe establish that �= is a congruence for PEPA by showing, in Proposition 8.3.1, that therelation is preserved by the combinators, and in Proposition 8.3.2, that it is preserved by re-cursive de�nitions. The proofs are similar to those for strong bisimilarity, although somewhatmore intricate.Proposition 8.3.1 (Preservation by Combinators)If P1 �= P2 then1. a:P1 �= a:P2;2. P1 +Q �= P2 +Q;3. P1 BCL Q �= P2 BCL Q;4. P1=L �= P2=L.Proof We show only the proofs of 2: and 3:|the proof of 1: is straightforward and theproof of 4: is similar to 3.2. Since P1 �= P2 it follows that for all � 2 A, and for all S 2 C=�=,q[P1; S; �] = q[P2; S; �]:Consider P1 + Q. By the de�nition of q[�] and the de�nition of choice, it follows thatfor all � 2 A and for all S 2 C=�=,q[P1 +Q;S; �] = q[P1; S; �] + q[Q;S; �] =q[P2; S; �] + q[Q;S; �] = q[P2 +Q;S; �]:Thus we conclude that P1 +Q �= P2 +Q.3. Consider R = f(Q1 BCL Q;Q2 BCL Q) j Q1 �= Q2g. We extend this to a relation R+ overall components, where R+ = R [Id. We will show that R+ is a strong equivalence.Since �= is an equivalence relation R is symmetric and transitive, and it follows thatR+ is an equivalence relation.Suppose (Q1; Q2) 2 R+. Then either (Q1; Q2) 2 Id, i.e. Q1 � Q2, or (Q1; Q2) 2 R,i.e. Q1 � P1 BCL Q and Q2 � P2 BCL Q where P1 �= P2. In the �rst case, it is triviallytrue that for all T 2 C=R+ and for all � 2 A,q[Q1; T; �] = q[Q2; T; �]:Therefore consider (P1 BCL Q;P2 BCL Q) 2 R. Recall that since P1 �= P2 the set of actiontypes enabled in P1 and P2 are the same: A(P1) = A(P2).

8.3. PROPERTIES OF THE STRONG EQUIVALENCE RELATION 117Any derivative of a cooperation of components will have the form of a cooperation ofcomponents. Thus we only consider the equivalence classes T 2 C=R+ such that thereis some element P BCL Q0 2 T . Then, for some S 2 C=�=,T = fP 0 BCL Q0 j P �= P 0g = fP 0 BCL Q0 j P 0 2 SgThus we may denote each such T as T(S;Q0). For any equivalence class T 2 C=R+ whichis not of this form, for all � 2 A,q[P1 BCL Q;T; �] = 0 = q[P2 BCL Q;T; �]Now consider q[P1 BCL Q;T(S;Q0); �] for arbitrary T(S;Q0) 2 C=R+, and � 2 A. Weconsider the di�erent cases of � with respect to A(P1 BCL Q) separately.Case 1: � =2 A(P1 BCL Q)It follows that � =2 A(P2 BCL Q) and so trivially, for all T(S;Q0) 2 C=R+,q[P1 BCL Q;T(S;Q0); �] = 0 = q[P2 BCL Q;T(S;Q0); �]Case 2: � =2 L, � 2 A(P1) n A(Q)Only P1 can complete activities of type � and so for all T(S;Q) 2 C=R+q[P1 BCL Q;T(S;Q); �] = XP 012S q(P1; P 01; �) = q[P1; S; �]� must be an individual action type of P2 in P2 BCL Q, and by similar reasoningq[P2 BCL Q;T(S;Q); �] = q[P2; S; �]. Therefore it follows that,q[P1 BCL Q;T(S;Q); �] = q[P1; S; �] = q[P2; S; �] = q[P2 BCL Q;T(S;Q); �]Case 3: � =2 L, � 2 A(Q) n A(P1)Only Q can complete activities of type � so P1 BCL Q (�;r)���! P1 BCL Q0 for some Q0 andsimilarly for P2 BCL Q (�;r)���! P2 BCL Q0. By the de�nition of R these will lie within thesame equivalence class, and so, for all T(S;Q0) 2 C=R+,q[P1 BCL Q;T(S;Q0); �] = q[P2 BCL Q;T(S;Q0); �]Case 4: � =2 L, � 2 A(P1) \ A(Q)Both P1 and Q have individual activities of type �. Either P1 or Q may perform anactivity of this type, but not both, and so only one component will change. Thusif we consider any appropriate equivalence class T(S;Q0) in C=R0 we see that the totalconditional transition rate q[P1 BCL Q;T(S;Q0); �] isXP 0 BCL Q02T(S;Q0)q(P1 BCL Q;P 0 BCL Q0; �) = 8<: XP 02S q(P1; P 0; �) if Q0 � Qq(Q;Q0; �) otherwiseSimilarly q[P2 BCL Q;T(S;Q0); �] = 8<: XP 02S q(P2; P 0; �) if Q0 � Qq(Q;Q0; �) otherwiseThus it follows that for any T(S;Q0) 2 C=R+,q[P1 BCL Q;T(S;Q0); �] = q[P2 BCL Q;T(S;Q0); �]:

118 CHAPTER 8. STRONG EQUIVALENCECase 5: � 2 L, � 2 A(P1 BCL Q)� is a shared activity of P 01 and Q. In general, for a shared action type �,q(P BCL Q;P 0 BCL Q0; �) = q(P;P 0; �)q(P;�) � q(Q;Q0; �)q(Q;�) min(r�(P); r�(Q))and min(r�(P); r�(Q)) = r�(P BCL Q).Since P1 �= P2, it follows that q(P1; �) = q(P2; �), r�(P1) = r�(P2), and for allS 2 C=�=, q[P1; S; �] = q[P2; S; �].Now we consider q[P1 BCL Q;T(S;Q0); �] for arbitrary T(S;Q0) 2 C=R+:q[P1 BCL Q;T(S;Q0); �] = XP 0 BCL Q02T(S;Q0)q(P1 BCL Q;P 0 BCL Q0; �)= q(Q;Q0; �)q(Q;�) �0@XP 02S q(P1; P 0; �)q(P1; �) 1A� r�(P1 BCL Q)= q(Q;Q0; �)q(Q;�) � q[P1; S; �]q(P1; �) � r�(P1 BCL Q)= q(Q;Q0; �)q(Q;�) � q[P2; S; �]q(P2; �) � r�(P2 BCL Q)= XP 0 BCL Q02T(S;Q0)q(P2 BCL Q;P 0 BCL Q0; �) = q[P2 BCL Q;T(S;Q0); �]Thus we have shown that for all � 2 A and for all T 2 C=R+q[P1 BCL Q;T; �] = q[P2 BCL Q;T; �]and we conclude that R+ is a strong equivalence as required.Therefore P1 BCL Q �= P2 BCL Q. �We extend the notion of strong equivalence to component expressions in the obvious way:De�nition 8.3.1 Let E and F be component expressions, containing variables ~X at most.Then E �= F if, for all indexed sets of components ~P , Ef ~P= ~Xg �= Ff ~P= ~Xg.Since most PEPA models are de�ned in terms of sets of recursive de�nitions we wouldlike to show that strong equivalence is preserved by such de�nitions. That is, replacing asubexpression by a strongly equivalent subexpression, will result in a component expressionwhich is strongly equivalent to the original. The following proposition proves that this isindeed the case.Proposition 8.3.2 (Preservation by Recursive De�nition)Let ~E and ~F contain variables ~X at most. Let ~A def= ~Ef ~A= ~Xg, ~B def= ~Ff ~B= ~Xg and ~E �= ~F .Then ~A �= ~B.

8.3. PROPERTIES OF THE STRONG EQUIVALENCE RELATION 119Proof As in Proposition 7.3.2, it is su�cient to show the result for single recursion equa-tions E and F such that E �= F , A def= EfA=Xg and B def= FfB=Xg. We construct a relationR as follows, R = f(GfA=Xg; GfB=Xg) j G contains at most variable Xgand let R� be the transitive, symmetric closure of R. Clearly R� is an equivalence relation.We will show that R� is a strong equivalence up to �=, using transition induction on themaximal depth of inference by which an activity by GfA=Xg can be inferred. Let � bean arbitrary activity type, � 2 A(GfA=Xg), GfA=Xg (�;r)���! P 0. We will use induction toshow that for all T 2 C=(�=R��=),q[GfA=Xg; T; �] = q[GfB=Xg; T; �]We assume that if � =2 A(GfA=Xg) then the maximal depth of inference of � in GfA=Xgis -1. In this case q[GfA=Xg; T; �] = 0 for any set T 2 C=(�=R��=).Base Case: maximal depth of inference is zero|G � (�; r):G0.GfA=Xg � (�; r):G0fA=Xg GfB=Xg � (�; r):G0fB=XgBy the de�nition of R, (G0fA=Xg; G0fB=Xg) 2 R� and there exists T 0 2 C=(�=R��=) suchthat G0fA=Xg; G0fB=Xg 2 T 0. Thus it follows that for all T 2 C=(�=R��=),q[GfA=Xg; T; �] = q[GfB=Xg; T; �] = (r if T = T 00 otherwiseWe now assume that the maximal depth of inference by which an � type activity can beinferred in GfA=Xg is N , and that R� is a strong equivalence up to �= over componentswith maximal depth of inference < N , i.e. if G0fA=Xg has maximal depth of inference foractivities of type � of < N , then for all T 2 C=(�=R��=),q[G0fA=Xg; T; �] = q[G0fB=Xg; T; �]:The possible forms of G are considered separately.Case 1: G � XGfA=Xg � A, and so A (�;r)���! P 0. Also EfA=Xg (�;r)���! by a shorter maximal depth ofinference, so by the induction hypothesis, for all T 2 C=(�=R��=),q[EfA=Xg; T; �] = q[EfB=Xg; T; �]Since E �= F , it follows that EfB=Xg �= FfB=Xg and for all S 2 C=�=,q[EfB=Xg; S; �] = q[FfB=Xg; S; �]:Since any T 2 C=(�=R��=) is a union of elements of C=�=, for all T 2 C=(�=R��=),q[EfB=Xg; T; �] = q[FfB=Xg; T; �]:As A def= EfA=Xg, B def= FfB=Xg and G � X, it follows that for any set U � C,q[GfA=Xg; U; �] = q[EfA=Xg; U; �]; q[GfB=Xg; U; �] = q[FfB=Xg; U; �]:Hence we may conclude that for all T 2 C=(�=R��=),q[GfA=Xg; T; �] = q[GfB=Xg; T; �]

120 CHAPTER 8. STRONG EQUIVALENCECase 2: G � G1 +G2Then GfA=Xg � G1fA=Xg+G2fA=Xg, so for any set U � C,q[GfA=Xg; U; �] = q[G1fA=Xg; U; �] + q[G2fA=Xg; U; �]and similarly, GfB=Xg � G1fB=Xg+G2fB=Xg andq[GfB=Xg; U; �] = q[G1fB=Xg; U; �] + q[G2fB=Xg; U; �]:Now both G1 and G2 have a shorter maximal depth of inference for inferring an activity oftype �, and therefore by induction, for all T 2 C=(�=R��=),q[G1fA=Xg; T; �] = q[G1fB=Xg; T; �] q[G2fA=Xg; T; �] = q[G2fB=Xg; T; �]Thus it follows that for all T 2 C=(�=R��=),q[GfA=Xg; T; �] = q[G1fA=Xg; T; �] + q[G2fA=Xg; T; �]= q[G1fB=Xg; T; �] + q[G2fB=Xg; T; �] = q[GfB=Xg; T; �]Case 3: G � G1 BCL G2Clearly G1fA=Xg and G2fA=Xg both have maximal depth of inference, to infer an activityof type �, < N , and by induction, for all T 2 C=(�=R��=),q[G1fA=Xg; T; �] = q[G1fB=Xg; T; �] q[G2fA=Xg; T; �] = q[G2fB=Xg; T; �]From this we can deduce thatq(G1fA=Xg; �) = q(G1fB=Xg; �) r�(G1fA=Xg) = r�(G1fB=Xg)q(G2fA=Xg; �) = q(G2fB=Xg; �) r�(G2fA=Xg) = r�(G2fB=Xg):When the activity GfA=Xg (�;r)���! P 0 is an individual activity the proof is similar to Case 2above. We present the case of a shared activity: � 2 L, � 2 A(G1fA=Xg)\A(G2fA=Xg),G1fA=Xg (�;r1)���! P 01; G2fA=Xg (�;r2)���! P 02, and P 0 � P 01 BCL P 02. Consider the conditionaltransition rate to P 0:q(GfA=Xg; P 0; �) = q(G1fA=Xg; P 01; �) q(G2fA=Xg; P 02; �)q(G1fA=Xg; �) q(G2fA=Xg; �) min(r�(G1fA=Xg); r�(G2fA=Xg))For any T 2 C=(�=R��=) the total conditional transition rate isq[GfA=Xg; T; �] = XP 02T q(GfA=Xg; P 0; �)where P 0 � P 01 BCL P 02, if q(GfA=Xg; P 0; �) 6= 0. Since �=R��= partitions C, there are equi-valence classes T1; T2 2 C=(�=R��=), such that P 01 2 T1 and P 02 2 T2. Moreover, since therelation �=R��= is preserved by the combinator BC , it follows that P 01 BCL P 02 2 T , P 01 2 T1,implies that Q1 BCL P 02 2 T for all Q1 2 T1. Similarly P 01 BCL Q2 2 T , for all Q2 2 T2. Thusthe total conditional transition rate is:XQ12T10@q(G1fA=Xg; Q1; �)XQ22T2q(G2fA=Xg; Q2; �)1Aq(G1fA=Xg; �) q(G2fA=Xg; �) min(r�(G1fA=Xg); r�(G2fA=Xg))= q[G1fA=Xg; T1; �]q(G1fA=Xg; �) q[G2fA=Xg; T2; �]q(G2fA=Xg; �) min(r�(G1fA=Xg); r�(G2fA=Xg))= q[G1fB=Xg; T1; �]q(G1fB=Xg; �) q[G2fB=Xg; T2; �]q(G2fB=Xg; �) min(r�(G1fB=Xg); r�(G2fB=Xg))= XQ02T q(GfB=Xg; Q0; �) = q[GfB=Xg; T; �]

8.3. PROPERTIES OF THE STRONG EQUIVALENCE RELATION 121Hence we can conclude that for all T 2 C=(�=R��=),q[GfA=Xg; T; �] = q[GfB=Xg; T; �]Case 4: G � G1=LAs GfA=Xg can infer an activity of type �, with maximal depth of inference N , it followsthat � =2 L. Moreover since the maximal depth of inference of � in G1fA=Xg < N by theinduction hypothesis we see that, for all T 2 C=(�=R��=),q[G1fA=Xg; T; �] = q[G1fB=Xg; T; �]q[GfA=Xg; T; �] = 8><>: q[G1fA=Xg; T; �] if � 6= �q[G1fA=Xg; T; �] +X�2L q[G1fA=Xg; T; �] if � = �It follows that, for all T 2 C=(�=R��=), q[GfA=Xg; T; �] = q[GfB=Xg; T; �].Case 5: G � C where C is a constantC is associated with some de�nition C def= P . Since X does not appear in G, GfA=Xg andGfB=Xg are both identical to C. They will have exactly the same transitions, so it followstrivially that, for all T 2 C=(�=R��=),q[GfA=Xg; T; �] = q[P; T; �] = q[GfB=Xg; T; �]:Since the choice of � 2 A was arbitrary, it follows that for all � 2 A, for all T 2 C=(�=R��=),q[GfA=Xg; T; �] = q[GfB=Xg; T; �]:Thus, for R � f(GfA=Xg; GfB=Xg) j G contains at most variable Xg, we have shown thatR� is a strong equivalence up to �=.Consequently if we take G � X, then A �= B as required. �8.3.2 Isomorphism and Strong EquivalenceRecall that in Section 7.3.2 we showed that isomorphism between components was a strongerrelation than strong bisimilarity. In this section we show that it is also a stronger relationthan strong equivalence, i.e. = � �= .Proposition 8.3.3 If P and Q are isomorphic components then P �= Q.Proof Recall that P = Q if there is a component isomorphism F : C �! C, an injectivefunction, such that Act(P) = Act(F(P)), where for all a 2 Act the a-derivatives of F(P)are the same as the F -images of the a-derivatives of P , and Q � F(P). We will show that= is a strong equivalence. It is trivial to see that = is an equivalence relation. Let T be anyequivalence class in C==, then for all � 2 A,q[P; T; �] = XP 02T q(P;P 0; �) = XP 02T q(F(P);F(P 0); �) = XP 02T q(Q;P 0; �) = q[Q;T; �]Thus we see that = is a strong equivalence, and we conclude that if P = Q then P �= Q. �As for strong bisimilarity, the equational laws stated earlier for isomorphic components,may now be restated with \=" replaced by \�=".

122 CHAPTER 8. STRONG EQUIVALENCEProposition 8.3.4 (Choice)1. P +Q �= Q+ P2. P + (Q+R) �= (P +Q) +RProposition 8.3.5 (Hiding)1. (P +Q)=L �= P=L +Q=L2. ((�; r):P)=L �= ((�; r):P=L � 2 L(�; r):P=L � =2 L3. (P=L)=K �= P=(L [K)4. P=L �= P if L \ ~A(P)Proposition 8.3.6 (Cooperation)1. P BCL Q �= Q BCL P2. P BCL (Q BCL R) �= (P BCL Q)BCL R3. (P BCL Q)=(K [M) �= �(P=K) BCL (Q=K)��M where K \M = K \ L = ;4. P BCK Q �= P BCL Q if K \ � ~A(P) [~A(Q)� = L5. (P BCL Q) BCK R �= 8<: P BCL (Q BCK R) if ~A(R) \ L nK = ; ^ ~A(P) \K n L = ;QBCL (P BCK R) if ~A(R) \ L nK = ; ^ ~A(Q) \K n L = ;Proposition 8.3.7 (Constant)If A def= P then A �= P .Proposition 8.3.8 (Expansion Law) Let P � (P1 BCL P2)=K with L;K � A. ThenP �= Xf(�; r):(P 01 BCL P2)=K j P1 (�;r)�! P 01 ; � =2 L [Kg+ Xf(�; r):(P1 BCL P 02)=K j P2 (�;r)�! P 02 ; � =2 L [Kg+ Xf(�; r):(P 01 BCL P2)=K j P1 (�;r)�! P 01 ; � 2 K n Lg+ Xf(�; r):(P1 BCL P 02)=K j P2 (�;r)�! P 02 ; � 2 K n Lg+ Xf(�; r):(P 01 BCL P 02)=K j P1 (�;r1)�! P 01 ; P2 (�;r2)�! P 02 ; � 2 L nK ;r = r1r�(P1) r2r�(P2) min(r�(P1); r�(P2))g+ Xf(�; r):(P 01 BCL P 02)=K j P1 (�;r1)�! P 01 ; P2 (�;r2)�! P 02 ; � 2 L \K ;r = r1r�(P1) r2r�(P2) min(r�(P1); r�(P2))g8.3.3 Strong Bisimilarity and Strong EquivalenceIn this section we investigate the relation between strong bisimilarity and strong equivalence.It is straightforward to construct components A and B such that A �= B but A �= B. Forexample, consider A and B shown in Figure 8.1. Incidentally, this simple example also showsthat A �= B does not imply A = B.

8.4. STRONG EQUIVALENCE AND SYSTEM COMPONENTS 123A def= (�; r):A+ (�; r):A B def= (�; 2r):BFigure 8.1: Strong equivalence does not imply strong bisimilarityBoth strong bisimilarity and strong equivalence are implied by component isomorphismand we might expect to be able to deduce that � � �=. However we can construct compon-ents, such as P and Q shown in Figure 8.2, which are strongly bisimilar but not stronglyequivalent.Thus we conclude that it is not the case that � � �= , or �= � �.8.4 Strong Equivalence and System ComponentsIn this section we consider the implications for the system components modelled by PEPAcomponents P and Q when P �= Q. As previously, let SysP and SysQ denote the systemcomponents modelled by P and Q respectively.From the de�nition of strong equivalence it is clear that the action sets of the two com-ponents are equal, i.e. A(P) = A(Q). Moreover, since the equivalence classes S 2 C=�=partition the set C, it follows that the conditional exit rates, and the exit rates from the twocomponents are the same:q(P;�) = q(Q;�) for all � 2 A; and q(P) = q(Q):As the conditional exit rates are equivalent to the apparent action rates it also follows thatr�(P) = r�(Q) for all � 2 A.We can deduce that the system components, SysP and SysQ, appear to perform the sameactions, at the same rates, and that their expected delay before performing some action willbe the same. Thus, as with strong bisimilarity, an external observer would be unable todistinguish between them on the basis of a memoryless observation. As when P � Q, italso follows that the probability (or relative frequency) that the action performed will havea given type will be the same in the two components, SysP and SysQ.Although P � Q implies that SysP and SysQ are capable of exactly the same sequencesof actions we saw in Section 7.4 that it does not ensure that they will occur with the samerelative frequency in the two components. Hence prolonged or repeated observation mightdistinguish between SysP and SysQ. If we think of these sequences of actions as patternsP def= a:P + a:P + a:P 0P 0 def= b:P Q def= a:Q+ a:Q0+ a:Q0Q0 def= b:QFigure 8.2: Strong bisimilarity does not imply strong equivalence

124 CHAPTER 8. STRONG EQUIVALENCEof behaviour, then for strongly bisimilar components the possible patterns of behaviour arethe same but the predominant ones may di�er.This is not the case when P �= Q. The strong equivalence relation ensures that theconditional probability of completing an activity of type � and resulting in a derivativewithin a given equivalence class, S, denoted p[P; S; �], is the same in the two components.p[P; S; �] = q[P; S; �]q(P) = q[Q;S; �]q(Q) = p[Q;S; �] (4.4)Similarly the unconditional probability of any activity by the component resulting in aderivative within the equivalence class S, p[P; S], will also be matched by P and Q:p[P; S] = P�2A q[P; S; �]q(P) = P�2A q[Q;S; �]q(Q) = p[Q;S] (4.5)The implication of this is that SysP and SysQ are indistinguishable even under extendedobservation.To see this consider the equivalence classes S 2 C=�=. P �= Q implies that SysP andSysQ are capable of the same patterns of behaviour. It follows that each equivalence classS is a set of components all exhibiting the same patterns of behaviour. The example inFigure 8.1 shows that this behaviour may be achieved di�erently by di�erent componentswithin the class, for example in terms of the number of activities instantiating any actiontype. However, viewed externally the behaviour of all the components is the same. Moreover,by equation 4.4, the probabilities of SysP and SysQ completing an � type activity and thenexhibiting the behaviour represented in S are the same. Thus, the probabilities, or relativefrequencies, of patterns of behaviour in SysP and SysQ are equal.This suggests that it might be more appropriate to generate an underlying stochasticprocess for the PEPA model in terms of these sets of equivalent behaviours. Instead ofhaving a state corresponding to each derivative within the derivative set of a component,we would have a state corresponding to each of the equivalence classes, S 2 C=�=, suitablyrestricted to the derivative set. This is discussed in more detail in Section 8.6.8.5 Strong Equivalence and the Markov ProcessIn this section we examine the strong equivalence relation from the perspective of the un-derlying Markov process. We consider what we can deduce about the corresponding Markovprocesses when P �= Q, and whether any relation between Markov processes allows us todeduce this relation between PEPA components. We also consider the use of strong equival-ence to induce a state-to-state equivalence on the state space of a model. The properties ofthe partition generated by this equivalence are presented.The relation �= partitions the set of components C, and it is easy to see that if restricted tothe derivative set of any component P , the relation partitions this set. Let ds(P)=�= denotethe set of equivalence classes generated in this way.As a preliminary we state the following proposition.Proposition 8.5.1 For any component P , ds(P)=�= induces a lumpable partition on thestate space of the Markov process corresponding to P .

8.5. STRONG EQUIVALENCE AND THE MARKOV PROCESS 125Proof Let Si and Sj denote arbitrary elements of ds(P)=�=, and consider any two elementsof Si, Pik and Pi` . Then since Pik �= Pi`, by equation 4.5,q[Pik; Sj] = q[Pi`; Sj]Thus, it follows immediately that the partition ds(P)=�= induces a lumpable partition onthe state space of the Markov process underlying P . �Now, if we consider the strict form of equivalence between Markov processes, introducedin Section 5.3, it is easy to see that strongly equivalent components do not necessarily giverise to equivalent Markov processes. Two Markov processes are considered to be equivalentin this way if they have the same number of states and the same transition rates betweenthose states. C0 def= (�; 2r):C1C1 def= (�; s):C0 D0 def= (�; 2r):D1D1 def= (�; s):D2D2 def= (�; r):D3 + (�; r):D1D3 def= (�; s):D0Figure 8.3: Strong equivalence does not imply equivalent Markov processesFor example, consider the components C and D shown in Figure 8.3. It is straightforwardto verify that R, R = f(C0;D0); (C0;D2); (C1;D1); (C1;D3)gis a strong equivalence, giving rise to the partitions:[C0] = fC0g; [C1] = fC1g; [D0] = fD0;D2g; [D1] = fD1;D3g (5.6)on the derivative sets of C and D respectively. However the Markov processes correspondingto C and D cannot be equivalent as they do not have the same number of states.Recall from Section 7.5 that two Markov processes are lumpably equivalent if they havelumpable partitions, generating the same number of equivalence classes and there is a one-to-one correspondence between the equivalence classes such that the aggregated transition ratesare also matched. If we consider the partitions of ds(C) and ds(D) shown in equation 5.6 itis clear that the Markov processes underlying C and D are lumpably equivalent.In general, for any two components X and Y such that X �= Y , any equivalence classS 2 C=�= will induce corresponding equivalence classes, SX and SY in ds(X)=�= and ds(Y)=�=respectively. By Proposition 8.5.1 these correspond to lumpable partitions in the underlyingstate spaces. Moreover, by the strong equivalence relation, these partitions are in one-to-onecorrespondence with matching total transition rates. Thus we state the following corollaryto Proposition 8.5.1.Corollary 8.5.1 For any X;Y 2 C if X �= Y then the Markov processes underlying X andY respectively are lumpably equivalent.It also follows immediately from Proposition 8.5.1 and the de�nition of lumpability (De�n-ition 5.4.1) that if strong equivalence over the derivative set of a component is used to induce

126 CHAPTER 8. STRONG EQUIVALENCEX0 def= (�; r):X1 + (�; s):X1X1 def= (; t):X0 Y0 def= (�; s):Y1 + (�; r):Y1Y1 def= (; t):Y0Figure 8.4: Components which generate the same Markov processa partition of the state space of the Markov process then the corresponding aggregation willresult in a Markov process. Thus the aggregated process may be solved exactly to �nd thesteady state distribution. This use of strong equivalence as a model simpli�cation techniquebased on aggregation is discussed in detail in Section 8.6 and illustrated by one of the modelspresented earlier in Section 4.4.Finally we consider whether equivalence between the underlying Markov processes allowsus to conclude anything about the strong equivalence, or otherwise, of the correspondingPEPA components. We consider only the augmented Markov processes introduced in Sec-tion 7.5, in which each transition is annotated by the action types of the correspondingactivities.Equivalences between the underlying Markov processes, even if augmented by the actiontypes, do not allow us to infer strong equivalence between the corresponding PEPA com-ponents. As previously, this is due to the loss of information in going from the derivationgraph of the component to the corresponding Markov process, even if it is augmented. Forexample, consider the components X and Y shown in Figure 8.4. X and Y generate equi-valent, and therefore lumpably equivalent, Markov processes. However there is no strongequivalence relation containing them.8.6 Strong Equivalence for AggregationIn this section we present an alternative approach to generating a Markov process corres-ponding to a PEPA model. In Section 3.5 we explained how the derivation graph of a PEPAmodel is used to directly generate a representation of the system as a Markov process. Thisapproach is straightforward but may result in a process with a large state space even formoderately simple models. It does not take advantage of any symmetries which might existwithin the model.The alternative approach now presented aims to take advantage of symmetries and otherpatterns of repeated behaviour within the derivative set of a model. We recall that eachequivalence class S 2 ds(P)=�= represents a set of derivatives which all exhibit the samebehaviour. Moreover this corresponds to a lumpable partition within the state space of theMarkov process generated in the na��ve way. Instead of having a state corresponding to eachderivative within the derivative set of a component, we generate a state corresponding to eachof the equivalence classes induced on the derivative set by strong equivalence, S 2 ds(P)=�=.This new process will be a Markov process by Proposition 8.5.1, and in many cases it willhave a smaller state space than the original model.For any PEPA component S, let the set of equivalence classes, ds(S)=�= , induced on thederivative set by the strong equivalence relation, be called the lumped derivative set. For

8.6. STRONG EQUIVALENCE FOR AGGREGATION 127any element, T , of this set we can construct the lumped activity set, Act�=(T).De�nition 8.6.1 Suppose that P is an arbitrary element of T 2 ds(S)=�=, then the lumpedactivity set of T , Act�=(T) isAct�=(T) = f(�; q0) j r�(P) 6= 0; q0 = q[P; S; �] for some S 2 ds(S)=�=gMoreover the complete lumped activity set of the component S is,~Act�=(S) = [T2ds(S)=�=Act�=(T)Based on this we can also de�ne the lumped derivation graph.De�nition 8.6.2 Given a PEPA component S, and its lumped derivative set ds(S)=�=, thelumped derivation graph, D�=(S), is the labelled directed graph whose set of nodes is ds(S)=�=and whose set of arcs, A�= is de�ned as follows:� The elements of A�= are taken from the set ds(S)=�= � ds(S)=�= � ~Act�=(S);� hTi; Tj; (�; q0)i 2 A�= if (�; q0) 2 Act�=(Ti) and q0 = q[Pi; Tj; �] for all Pi 2 Ti.The node T0, where S 2 T0, is taken to be the initial node of the graph.8.6.1 Basic Application of Strong Equivalence AggregationThe most straightforward way to apply strong equivalence aggregation is at the level of acomplete PEPA model of a system. Instead of the derivation graph, we now use the lumpedderivation graph to generate the Markov process representation of the model. A state ofthis process is associated with each node in the lumped derivation graph, and the transitionrate between any two nodes is the sum of the total conditional transition rates attachedto the arcs connecting them. In e�ect strong equivalence is used to induce a state-to-stateequivalence which gives an exact aggregation of the original Markov process, although thisprocess is not constructed.Performance measures are derived from a reward structure de�ned at the level of thePEPA model in terms of the derivative set and enabled activities. If the integrity of thesemeasures is to be maintained by the strong equivalence aggregation, it must be possible toderive the same reward from the lumped derivation graph. This is analogous to Nicola'sextension of strong lumpability to Markov reward processes, presented in [103]:De�nition 8.6.3 A Markov reward process is strongly lumpable with respect to a rewardR in the context of a partition �, if, for every starting distribution, the aggregated processis a Markov reward process which results in the same reward.We can de�ne the lumped reward for any element Tj 2 ds(S)=�= in the intuitive way, interms of the conditional steady state probabilities for each component within the equivalenceclass. If bR denotes the lumped reward function, corresponding to the reward function R,and �j is the conditional steady state probability,bR(Tj) = XCi2TjR(Ci) �j(Ci) for all Tj 2 ds(S)=�= (6.7)

128 CHAPTER 8. STRONG EQUIVALENCEHowever this implies that when the steady state distribution of the lumped process has beenfound disaggregation must be performed in order to �nd the rewards. Clearly we wouldlike to be able to derive the reward directly from the Markov process based on the lumpedderivation graph. This will be possible in some cases. The following proposition provides asu�cient condition which can be easily veri�ed.Proposition 8.6.1 The strong equivalence aggregation of S is strongly lumpable with respectto some reward de�ned by R, if for all Tj 2 ds(S)=�=, for all Ci 2 Tj, R(Ci) = �. ThenbR(Tj) = �.Proof The aggregation is strongly lumpable, and results in a Markov process, by Proposi-tion 8.5.1. It remains to show that the reward R is maintained, but this follows immediatelysince, R = XCi2ds(S) �i�(Ci) = XTj2ds(S)=�=0@ XCi2Tj �i�(Ci)1A = XTj2ds(S)=�=� b�(Tj)where b�(�) is the steady state distribution of the aggregated process. �Since rewards are de�ned in terms of the activities of a component many PEPA models willsatisfy the condition of Proposition 8.6.1. For example in order to calculate the throughputof an action within a system a reward equal to the activity rate is attached to all activitiesof the given action type. As the apparent rate of an action type is the same in all stronglyequivalent components, this reward will satisfy the condition of Proposition 8.6.1.When the condition is not satis�ed for all Tj 2 ds(C)=�= it may still be satis�ed bysome partitions, in particular those which contain no components to which a reward isattached. Thus even if the lumped reward must be kept in the form shown in equation 6.7selective disaggregation may be carried out to calculate the reward when the steady statedistribution has been found. An outline of the procedure implementing this approach isgiven in Figure 8.5.Note that the state-to-state equivalence induced on the state space of a Markov processby �= is stronger than the relation generally underlying lumpability. In the partitions basedon ds(S)=�= not only the rates of transitions between partitions are matched but also theaction types of the activities involved. Thus there may be a lumpable partition of theMarkov process underlying a PEPA component which has fewer elements than the partitioninduced by �=. However strong equivalence aggregation has the advantage that lumpingmay be carried out before the full state space is generated, leading to compositional strongequivalence aggregation.8.6.2 Compositional Strong Equivalence AggregationThe use of strong equivalence over the derivative set of a complete model, to induce a state-to-state equivalence resulting in aggregation, may result in a drastic reduction of the statespace of the underlying Markov process. However this approach still necessitates the con-struction of the full derivative set of the model. In some cases this will be prohibitively largemaking even aggregation of the model infeasible. In this section we outline an application ofstrong equivalence aggregation which takes advantage of the fact that strong equivalence isa congruence. We apply strong equivalence as a state-to-state equivalence compositionally,replacing cooperating components by strongly equivalent, lumped components.It is clear from the de�nition of a derivation graph (De�nition 3.4.3) that just as wecan form such a multigraph corresponding to any PEPA component, so we can also form a

8.6. STRONG EQUIVALENCE FOR AGGREGATION 129
1. Construct the model S, combining components until the full functionality of thesystem is represented.2. Generate the derivative set, ds(S), corresponding to the model.3. Find the strong equivalence classes within ds(S) and form the lumped derivative setds(S)=�=.4. Form the lumped activity set for each T 2 ds(S)=�= and construct the lumpedderivation graph D�=(S).5. Form the aggregated Markov process, associating one state of the process with eachnode of D�=(S), and with transition rates equal to the total transition rates betweennodes.6. Assign lumped rewards to the states of the process corresponding to equivalenceclasses they represent.7. Solve the aggregated Markov process and calculate the rewards, disaggregating to�nd conditional probabilities if necessary, i.e. if the conditions of Proposition 8.6.1were not satis�ed.Figure 8.5: Outline of a procedure implementing the basic application of strong equivalenceaggregation

130 CHAPTER 8. STRONG EQUIVALENCEPEPA component corresponding to any derivation multigraph. Furthermore if we considera lumped derivation graph, as de�ned in De�nition 8.6.2, we can see that it has labellednodes, and arcs connecting them which are labelled by an action type and a transition rate.Thus each lumped derivation graph may be regarded as a derivation graph. For any lumpedderivation graph we can form a lumped PEPA component.De�nition 8.6.4 The lumped component of P , bP , is formed from the lumped derivationgraph, D�=(P) in the natural way: we associate a component bPj with each Tj 2 ds(P)=�=such that Act(bPj) = Act�=(Tj)In particular we associate bP0 with T0, the initial node of D�=(P). Then bP def= bP0.Proposition 8.6.2 Any PEPA component P is strongly equivalent to its lumped component,bP , i.e. P �= bP .Proof By de�nition, ds(bP)=�= = ds(bP) = ds(P)=�=. The result follows immediately.�Since strong equivalence is a congruence this means that if we replace one componentwithin a model by the equivalent lumped component, the new model will be strongly equi-valent to the original one. In most cases the derivative set of a lumped component will besmaller than the derivative set of the component it replaces, and it will never be larger,i.e. jds(bP)j � jds(P)j. Also, since the lumped derivation graph is a graph and not a multi-graph, the number of transitions generated by the lumped component will also usually bereduced.To apply strong equivalence aggregation compositionally we replace components whichrepresent separately resourced components of the system, the components combined by thecooperation combinator, by their strongly equivalent lumped components. This cannot in-crease the size of the derivative set of the model, and in most cases will reduce it, sometimesdramatically.Proposition 8.6.3 When a lumped component, bP , replaces a top-level component P , withina model, S, to form a modi�ed model, S 0, then jds(S 0)j � jds(S)j.Proof P is a top-level component, so S has the form S � P BCL Q for some other componentQ and some cooperation set L. Similarly S 0 � bP BCL Q. By the de�nition of the cooperationcombinator, the derivative set of the cooperation of two components is no larger than theproduct of the derivative sets of those components, i.e.jds(S)j � jds(P)j � jds(Q)j and jds(S 0)j � jds(bP)j � jds(Q)jSince jds(bP)j � jds(P)j it follows immediately that jds(S 0)j � jds(S)j . �Thus we can systematically simplify a model, by considering each of its top-level compon-ents in turn. Each of these is itself treated as a separate model, and its top-level componentsare identi�ed and so on. At some level the identi�ed top-level components will be atomic, inthe sense that they cannot themselves be broken down into cooperating components. Thestrong equivalence aggregation is applied to the cooperation of these atomic components,resulting in a lumped component which replaces them. At each level of the model the aggreg-ation procedure is applied, until a lumped version of the complete original model is formed.

8.6. STRONG EQUIVALENCE FOR AGGREGATION 131
1. Construct the model S, combining components until the full functionality of thesystem is represented.2. Identify the atomic cooperating components of the model,X and Y , by unfolding.Apply strong equivalence aggregation to the cooperation of these components,P � X BCL Y , to form bP :2.1 Form the derivative set of the component P , ds(P).2.2 Find the strong equivalence classes within ds(P) and form the lumped de-rivative set ds(P)=�=.2.3 Form the lumped activity set for each T 2 ds(P)=�= and construct thelumped derivation graph D�=(P).2.4 Construct the lumped component bP , based on D�=(P), and replace P by bP .Repeat with all other pairs of atomic components.3. Consider the next level of the model, i.e.Q BCK bP , for someQ. Repeat steps 2:1�2:4applied to QBCK bP . Continue in this way until bS has been formed.4. Based on the derivation graph of bS (this will be the lumped derivation graph of Sformed in the previous step) form an aggregated Markov process representing themodel, in the usual way.5. Assign lumped rewards to the states of the process.6. Solve the aggregated Markov process and calculate the rewards.Figure 8.6: Outline of a procedure implementing the compositional application of strongequivalence aggregation

132 CHAPTER 8. STRONG EQUIVALENCEThe outline of a procedure to implement this approach to model simpli�cation is shownin Figure 8.6. Note that the full derivative set of the original model does not need to beconstructed. No Markov process is constructed until the aggregation procedure is complete.As with the basic application of strong equivalence aggregation, we must consider theimplication of compositional aggregation for the performance measures to be extracted fromthe model. One alternative is to postpone the de�nition of the reward structure until thelumped model has been formed. Rewards would then be attached to the elements of thecomplete lumped activity set, and associated with derivatives of the model in the usualway. This is a straightforward approach but it requires the modeller to keep track of theaggregation of the model. Thus it eliminates the possibility of the technique being automatedand applied without the intervention of the modeller.A preferable alternative is to de�ne the reward structure, R, over the full model as pre-viously, but to restrict the aggregation to components where the resulting partition will bestrongly lumpable with respect to R. For example, this will be the case if aggregation isonly applied to components which satisfy the condition of Proposition 8.6.1. This may meanthat some components for which a strong equivalence aggregation exists, are left unlumped,but it has the consequence that lumped rewards are easy to derive and no disaggregation isnecessary. Moreover the approach has potential to be automated and carried out withoutthe participation of the modeller. It also implies that the form of the lumped model may bedependent on the performance measure, and reward structure, under consideration.8.6.3 Aggregating an MSMQ Model using Strong EquivalenceTo illustrate the compositional application of strong equivalence aggregation we considerthe faulty Mi=Mi=M=(2; 1; 1; 1)=Q � S=L MSMQ system with random polling shown inFigure 8.7, similar to the system presented in Section 4.4.4. This model, with four nodes,has 1170 states and 5865 transitions. It would be extremely time consuming to solve usingthe techniques and equipment used to solve the models presented in Chapter 4. Usingcompositional strong equivalence aggregation we can reduce the state space of the underlyingMarkov process to 191 states and 745 transitions. This smaller model can be easily solvedin a matter of minutes.We consider two separate reward structures. The �rst is used to calculate the expectedwaiting time for customers at Node1 and concerns only activities associated with that node.Similarly the second reward structure only attaches rewards to activities of Node4 as it isused to calculate the expected waiting time for customers at any of the single place bu�ers.The top-level components of the model are the parallel composition of the servers, andthe parallel composition of the nodes. The atomic components are the individual serversand nodes. Let us consider the component representing the two servers in the system, SkS.Note that there are no rewards directly associated with the activities of this componentalthough rewards are attached to activities which will be carried out with the cooperationof this component.ds(S k S) = fS k S; S k Sj; Sj k S; Sj k Si; S k (serve; �):S; (serve; �):S k S;Sj k (serve; �):S; (serve; �):S k Sj; (serve; �):S k (serve; �):S j 1 � i; j � 3gRecall that since isomorphism implies strong equivalence, for any components X and Y ,

8.6. STRONG EQUIVALENCE FOR AGGREGATION 133Node0100 def= (in; 2�):Node0110 + (pass1; 2e):Node0100Node0110 def= (in; �):Node0111 + (engage1; e):Node0120 + (pass1; e):Node0110Node0111 def= (engage1; 2e):Node0121Node0120 def= (in; �):Node0121 + (pass1; 2e):Node0120 + (serve;>):Node0100Node0121 def= (engage1; e):Node0122 + (pass1; e):Node0121 + (serve;>):Node0110Node0122 def= (pass1; 2e):Node0120 + (serve;>):Node0120Nodej0 def= (in; �):Nodej1 + (passj; e):Nodej0 for j = 2; 3; 4Nodej1 def= (engagej; e):Nodej2Nodej2 def= (serve;>):Nodej0 + (passj ; e):Nodej2S def= (walk; !=4):S1 + (walk; !=4):S2 + (walk; !=4):S3 + (walk; !=4):S4Sj def= (passj ;>):S + (engagej;>):(serve; �):S 1 � j � 4MSMQwf def= (Node0100 k Node20 k Node30 k Node40)BCL (S k S)=Kwhere L = fengagej; passj; serve j 1 � j � 4g and K = fpassj ; engagej j 1 � j � 4gFigure 8.7: Asymmetric MSMQ model with faulty connector to Node1X k Y �= Y k X. Hence, partitioning this derivative set by strong equivalence we obtain:ds(S k S)=�= = nfS k Sg; fS k (serve; �):S; (serve; �):S k S; g; fS k Sj; Sj k Sg;fSj k Si; Si k Sjg; fSj k (serve; �):S; (serve; �):S k Sjg;fSj k Sjg; f(serve; �):S k (serve; �):Sg j 1 � j; i � 3; i < joSince no rewards are directly associated with activities of the servers we can form the lumpedcomponent, denoted SS, without consideration of the reward structure. We associate onederivative of SS with each node of the lumped derivation graph as follows:SS0 $ fS k Sg SSjj $ fSj k Sjg SSs0 $ fS k (serve; �):S; (serve; �):S k SgSSj $ fS k Sj; Sj k Sg SSss$ f(serve; �):S k (serve; �):SgSSij $ fSi k Sj; Sj k Si; i < jg SSsj $ f(serve; �):S k Sj ; Sj k (serve; �):SgUsing the lumped activity sets we can de�ne the behaviour of these lumped components:SS0 def= 4Xj=1(walk; 2!=4):SSjSSs0 def= (serve; �):SS0 + 4Xj=1(walk; !=s):SSsjSSjj def= (passj;>):SSj + (engagej;>):SSsjSSj def= (passj;>):SS0 + (engagej ;>):SSs0+ 4Xi=1(walk; !=4):SSij

134 CHAPTER 8. STRONG EQUIVALENCESSss def= (serve; 2�):SSs0SSij def= (passj;>):SSi + (engagej ;>):SSsi + (passi;>):SSj + (engagei;>):SSsjSSsj def= (serve; �):SSj + (passj;>):SSs0 + (engagej;>):SSssThis component, SS0, now replaces S0 kS0 in the complete model.If we consider the atomic node components Nodej for 1 � j � 4, in pairs, we can seethat there are no non-trivial strong equivalence partitions of the derivative sets because theactivity sets of the components are not the same. The hiding operator, which will makeall engagej and passj activities appear as � type activities does not apply at this level ofthe model, and cannot be passed through the cooperation since the action types engagejand passj appear in the cooperation set. Therefore the parallel composition of the nodecomponents cannot be independently simpli�ed using strong equivalence. Thus we form the�nal version of the model as:MSMQwf 0 def= (Node0100 k Node20 k Node30 k Node40) BCL (SS0)=Kwhere, as previously, L = fserve; engagej; passjg, and K = fpassj ; engagejg.If we compare the size of the derivative set ds(MSMQwf) with the size of the derivativeset ds(MSMQwf 0) we can see that it is already considerably reduced.jds(MSMQwf)j = 1170 whereas jds(MSMQwf 0)j = 670Furthermore, we can take advantage of the fact that the action types passj and engagej arehidden, and so all appear as � type activities. This, together with the fact that the rewardstructure is de�ned only over one node at a time, allows us to partition the derivative set ofthe model. For example when we consider the reward structure de�ned only over Node1, inorder to �nd the mean waiting time of customers at that node, we can generate a Markovprocess based on the lumped derivation graph which has only 191 states.Components which exhibit equivalent behaviour are found by considering the states of thenodes without rewards, Node2, Node3 and Node4, and the positions of the two servers (asrepresented in the lumped component SS). For example, the following componentsn(Node0100 k Node21 k Node30 k Node41) BCL (SS2)=K;(Node0100 k Node21 k Node31 k Node40) BCL (SS2)=K;(Node0100 k Node20 k Node31 k Node41) BCL (SS3)=K;(Node0100 k Node21 k Node31 k Node40) BCL (SS3)=K;(Node0100 k Node21 k Node30 k Node41) BCL (SS4)=K;(Node0100 k Node20 k Node31 k Node41)BCL (SS4)=K oare all strongly equivalent and so the corresponding nodes will be amalgamated into a singlenode in the lumped derivation graph. Similarlyn(Node0121 k Node20 k Node30 k Node41) BCL (SSs2)=K;(Node0121 k Node20 k Node31 k Node40) BCL (SSs2)=K;(Node0121 k Node20 k Node30 k Node41) BCL (SSs3)=K;(Node0121 k Node21 k Node30 k Node40) BCL (SSs3)=K;(Node0121 k Node20 k Node31 k Node40) BCL (SSs4)=K;(Node0121 k Node21 k Node30 k Node40)BCL (SSs4)=K o

8.6. STRONG EQUIVALENCE FOR AGGREGATION 135are strongly equivalent and may be represented by a single state in the underlying Markovprocess. Other examples of the reward preserving, strong equivalence classes are:n(Node0122 k Node20 k Node30 k Node40) BCL (SSss)=Kon(Node0111 k Node21 k Node31 k Node42) BCL (SSs4)=K;(Node0111 k Node21 k Node32 k Node41) BCL (SSs3)=K;(Node0111 k Node22 k Node31 k Node41) BCL (SSs2)=K on(Node0120 k Node20 k Node30 k Node40) BCL (SSs0)=KoEach of these will be represented by a single node, with appropriate arcs, in the lumpedderivation graph, and so a single state in the underlying Markov process.If we consider the reward structure used to derive the expected waiting time of customersat Node4 we can �nd similar equivalence classes by considering states of Node1, Node2 andNode3, and the positions of the servers. For example, in this case the pairsn(Node0111 k Node20 k Node31 k Node40) BCL (SS23)=K;(Node0111 k Node21 k Node30 k Node40)BCL (SS23)=K o;n(Node0121 k Node20 k Node32 k Node41) BCL (SSss)=K;(Node0121 k Node22 k Node30 k Node41) BCL (SSss)=K o;and n(Node0100 k Node21 k Node30 k Node42) BCL (SSs2)=K;(Node0100 k Node20 k Node31 k Node42) BCL (SSs3)=K oare strongly equivalent components which have the same reward, and so may be representedby a single node in the lumped derivation graph. In this case the state space of the underlyingMarkov process is reduced to 423 states.in passj or engagej serve walk� or 2� e or 2e � !� = 0:1 e = 50 1:0 4; 8; 12; 16; 20Table 8.1: Parameter values assigned to aggregated model of MSMQwf 0Figure 8.8 shows how the mean waiting time for customers at Node1 decreases as thewalk rate of the servers is varied between 4 and 20. The other values for parameters inthe model are shown in Table 8.1. These performance characteristics were calculated usingthe aggregated model described above, and were veri�ed against values obtained from thesimpli�ed model MSMQwf 0.

136 CHAPTER 8. STRONG EQUIVALENCE

w
201816141210864

T

1.4

1.2

1

0.8

0.6

0.4Figure 8.8: Mean waiting time for customers at Node1 in the MSMQwf 0 system with fournodes.

Chapter 9Conclusions9.1 IntroductionIn this chapter the main results of the thesis are summarised. The extent to which theseaddress the problems facing performance analysis, identi�ed in Section 2.4, is assessed. InSection 9.4, the direction for further work and future development of PEPA, as it appearedat the end of the thesis, are discussed. The chapter concludes with a review of work whichhas been developed since the thesis was completed, particularly examining the extent towhich the areas outlined in Section 9.4 have been addressed.9.2 SummaryA compositional approach to performance modelling has been presented. This novel modelconstruction technique, based on the stochastic process algebra PEPA, has been shown to besuitable for specifying a Markov process. This underlying process can subsequently be solvedusing any appropriate numerical technique. The ease with which models can be constructedand modi�ed using PEPA was demonstrated in the case studies presented in Chapter 4. Forexample, when the e�ect of a faulty component was to be investigated, only the relevantcomponent within the model had to be modi�ed.As outlined in Section 3.6, one of the major advantages of PEPA over the standardparadigms for specifying stochastic performance models is the inherent apparatus for reas-oning about the structure and behaviour of models. In the later chapters of the thesis thisapparatus has been exploited to de�ne four equivalence relations over PEPA components.Each of these notions of equivalence has intrinsic interest from a process algebra perspective.However, they have also been demonstrated to be useful in a performance modelling context.Isomorphism is a strong notion of equivalence, de�ned structurally. It generates equationallaws which form the basis of model transformation techniques, based on term rewriting.Weak isomorphism, in which the observation of internal activities is relaxed, leads to amodel simpli�cation technique which is sensitive to the intended use of the model. Viajudicious use of the PEPA abstraction mechanisms, weak isomorphism allows a model to bemodi�ed to a simpler form, reecting its current experimental frame. Moreover, althoughthe relation is not a congruence relation, it has been shown to be preserved by cooperation,and so this model simpli�cation technique can be applied compositionally in appropriatecircumstances.Strong bisimilarity, a bisimulation in the style of CCS, captures the notion of equivalence137

138 CHAPTER 9. CONCLUSIONSunder memoryless observation. It has been shown that this is insu�cient to ensure that thesystems represented exhibit exactly the same behaviour. However the additional conditionwhich must be satis�ed for this to be the case has been identi�ed. The model simpli�cationtechnique based on strong bisimilarity involves the modeller identifying components of themodel which can be replaced by a strongly bisimilar alternative which has a smaller derivativeset. This implies that some insight is required on the part of the modeller; such insight iseasily developed with experience.Strong equivalence is also a bisimulation, developed in the style of the probabilistic bisim-ulation of Larsen and Skou. It has been shown that this relation is su�cient to ensure thatthe systems represented exhibit exactly the same behaviour. Moreover, when used to inducea state-to-state equivalence in the underlying Markov process, it results in a lumpable parti-tion of the state space. Thus strong equivalence can be used as a basis for exact aggregationof the Markov process, and because it is a congruence this may be systematically appliedhierarchically through the component structure of the model. Since this technique can beformally de�ned it could potentially be applied automatically. A procedure for implement-ing the compositional application of strong equivalence aggregation has been outlined inFigure 8.6.Thus the performance modeller is armed with several methods for reducing the statespace of the Markov process underlying a PEPA model. Each of these methods can beapplied at the level of the PEPA model, without the construction of the state space of theoriginal model. Since the techniques are compositional they can be used simultaneously,with di�erent methods being applied to di�erent components within the same model.Some of the techniques for model construction and model solution described in the thesishave already been implemented by Gilmore [104], and further development of this tool, thePEPA Workbench, is planned.9.3 EvaluationThe problems facing performance analysis outlined in Section 2.4 were:1. Integrating performance analysis into system design;2. Representing systems as models; and3. Model tractability.The use of process algebras as system description formalisms is widely accepted. ThereforePEPA represents a step towards the timely consideration of quantitative characteristics ofsystems during design, as stochastic process algebras integrate performance analysis into adesign methodology. PEPA has been de�ned so that the additional information which mustbe included in the model for performance analysis to take place, the activity rates, may beregarded as an annotation of a pure process algebra model. Thus there is the possibilitythat existing designs may be used to generate performance models. The applicability of suchan approach may, however, turn out to be limited. As described in Section 3.5.4, the set ofPEPA components which can be considered to specify a performance model is restricted andwork needs to be done to investigate how often \satisfactory" designs fall within this set.PEPA, like all process algebras, exempli�es the cooperator paradigm described in Sec-tion 2.4. Thus it is an appropriate notation for representing modern computer and commu-nication systems in which components have autonomy. The compositional structure inherentin the process algebra corresponds to the structure of these systems. Furthermore this style

9.4. FURTHER WORK AND FUTURE DIRECTIONS 139of model construction suggests the possibility of a modelling tool based around a library ofparameterised components. Such a tool would help to make performance analysis accessibleto the non-expert.Like stochastic Petri net paradigms, PEPA is susceptible to the problem of state spaceexplosion. The size of the state space underlying a model grows extremely rapidly as the sizeand complexity of the system modelled increases. It has been shown however, that PEPAsupports three model simpli�cation techniques which can take advantage of the compositionalstructure of the model. These have the advantage over standard techniques for tackling statespace explosion that they can be applied without the construction of the state space of theoriginal model. In the future it may be possible that the compositional structure of thePEPA models may also be used to inform the solution of the underlying Markov process,enhancing the tractability of these models even further.9.4 Further Work and Future DirectionsThe further work and future developments of PEPA will also be motivated by the problemsoutlined in Section 2.4.In the examples presented in this thesis we have considered PEPA only as a performancemodelling paradigm. However it also has the potential to be used as a design notation,possibly with the activity rates omitted. Constructing performance models directly fromdesigns, using an annotation of the design notation, has a clear intuitive appeal. As well asintegrating performance analysis into a design methodology, it has important implications formodel veri�cation. However, as already noted, there is potentially a mismatch between themodels which can be constructed in this way and the set of models which can be consideredto be valid performance models.Further work is needed to establish the relationship between qualitative, or functional,properties of systems, and quantitative, or performance, characteristics. For example, adeadlock or livelock will correspond to an absorbing state, or an absorbing set of states,respectively, in the underlying Markov process. A combined qualitative/quantitative analysisof the system could provide measures such as the mean time until a deadlock occurs.We have established that PEPA may be used to succinctly describe MSMQ systems.However, in its present form PEPA may be regarded as a minimal notation. There isconsiderable scope for adding more features to the language. Indeed, some applications mayrequire them. The current version of the language was chosen for the work presented in thethesis because it allowed interesting models to be developed, without over-complicating theproofs.Some features which could be added to the language to enhance modelling convenienceinclude immediate activities and prioritised activities. It has been shown that the primaryimportance of these features is to allow models, particularly parameterised ones, to be con-structed easily, rather than increasing the expressiveness in SPNs. It is anticipated thatsimilar results could be developed for PEPA.There are many di�erent ways in which components within a system interact with eachother. The form of synchronisation represented by the cooperation combinator of PEPA waschosen because it is general enough to represent many situations, and because its behaviouris fully compositional. However, alternative combinators could be derived or de�ned torepresent other interactions such as the one-way condition testing and loose synchronisationidenti�ed by Ciardo and Trivedi [74]. Modi�ed versions of PEPA could be developed to suitparticular applications.

140 CHAPTER 9. CONCLUSIONSThe �nal, and most interesting, area for future work involves the investigation of the useof the compositional structure of PEPA models to inform model solution. The relation-ship between this structure and various decompositional approaches to the solution of theunderlying Markov process promises to be an interesting and fruitful area for future research.There has been considerable recent interest in establishing the circumstances under whichan SPN model will be amenable to a product form solution [23, 81]. A class of nets whichsatisfy the required conditions has been identi�ed but the structure of these nets is limited.These results have been considered in the more general framework of Markov processes byBoucherie [80]. His results suggest that a product form solution for PEPA models wouldonly be possible in models in which all cooperation sets are empty. Further work is necessaryto extend these results to PEPA.An alternative compositional approach to the solution of Markov processes is the use oftensor algebra to express the generator matrix of a process. This approach has been proposedby Plateau [82] and Buchholz [83]. Again, this is based on a restricted form of interactionbetween subsystems within the system. However there appears to be potential for expressingthese forms of interaction in PEPA, or a similar stochastic process algebra.9.5 Developments Since the Completion of the ThesisIn this section, added for the publication of the thesis as a book, we review the develop-ments which have taken place in the area of stochastic process algebra since the thesis wascompleted. There are now more researchers involved in the development of such formalismsand their application to performance modelling. Since these researchers have diverse back-grounds and motivations some of the recent developments are outside the areas identi�ed inthe original conclusions of the thesis. However, particular attention is paid to the directionsfor future work suggested in the previous section. As in that section, the discussion is struc-tured around the problems facing performance modelling introduced in Section 2.4. First, ageneral overview of recent work on stochastic process algebras is presented.9.5.1 Stochastic Process AlgebrasThere have been no signi�cant changes to PEPA since the thesis was completed, althoughrecently the set of combinators has been extended (see Section 9.5.3). Most of the researche�ort centred on the language has been directed towards identifying cases when the modelstructure can be exploited to provide e�cient model solution (see Section 9.5.4).The PEPA Workbench has been developed to address the creation and solution of moresophisticated models. This has led to improvements in the state space storage scheme usedand also to the solution methods o�ered. The symbolic solution methods which are avail-able by using the PEPA Workbench with the Maple computer algebra system can now besupplemented by using the workbench with the high-performance numeric methods from theMatlab computing environment [105]. In addition to e�cient numerical solution methods,Matlab also o�ers sophisticated facilities for visualising matrices. The information obtainedin this way may be used to guide a series of experiments which investigate the model, or toprovide insight into how the structure at the process algebra level inuences the structureof the generator matrix. In addition the workbench can be used with an implementationof the preconditioned biconjugate gradient method for sparse equation solution. This is aniterative solution method which gives very good performance and allows the workbench tobe used independently of both Maple and Matlab.

9.5. DEVELOPMENTS SINCE THE COMPLETION OF THE THESIS 141Recent work on TIPP has focussed on a Markovian version of the language, sometimescalled MTIPP, and an equivalence relation, Markovian bisimulation (strong equivalence).Recognising the usefulness of such relations for model transformation the Erlangen teamhave been developing a sound and complete set of axioms to capture Markovian bisimulation[106]. The aim is to develop a term-rewriting system based on these axioms that would carryout the aggregation automatically at the syntactic level of models. The equivalence relationhas recently been extended to encompass various extensions to the language [107, 108] (seeSection 9.5.3).A tool has also been developed for TIPP [109]. The TIPP-tool is similar to the PEPAWorkbench. It supports a LOTOS-oriented input language and provides facilities for func-tional analysis as well as a set of numerical solution modules for the transient and steadystate analysis of the underlying Markov process.In 1994 two new stochastic process algebras appeared in the literature. Markovian ProcessAlgebra (MPA) was developed by Buchholz of the University of Dortmund [110, 111]. Themajor di�erence between this language and PEPA or TIPP, is the assumption that all actionsof type � proceed at a �xed rate ��. Activities are still represented as (�; r) pairs but r nowrepresents the number of concurrently enabled instances of action �, all of which proceed atrate ��. These instances are assumed to be competing in the sense that as soon as one ofthem completes the rest are aborted. This di�erence has subtle impact on the semantics ofthe language.Extended Markovian Process Algebra (EMPA)1 has been developed by Gorrieri's groupat the University of Bologna [112, 113]. Although closer to PEPA than earlier work [62],this language includes a richer set of combinators than either PEPA or TIPP. It was alsothe �rst stochastic process algebra to include immediate or instantaneous actions. Passiveactions play a central role in the theory of EMPA and synchronisation is restricted to involveat most one timed or immediate action. Most of the work on EMPA has focussed on variousPetri net based semantics for the language.There have also recently been some interesting explorations of the next departure afterstochastic process algebra. In [114] Priami presents a stochastic extension of the �-calculus.The extension is analogous to the approach taken by the stochastic process algebras andallows Priami to consider the exibility which process mobility might bring to performancemodelling whilst staying within the Markovian framework. In two recent papers [115, 116],Brinksma et al. investigate the potential of using a true concurrency approach via stochasticextensions to a simple process algebra in a causality-based setting.There has been extensive work studying semantic models of stochastic process algebralanguages based on SPNs over the last two years [117, 118, 119, 120, 121]. Ribaudo's work[118, 122] makes use of a net-based semantics to compare the approaches to state spaceaggregation which are available in PEPA and Stochastic Well-formed Nets (SWN), a class ofcoloured SPN. In particular the semantics is used to establish that the aggregation achievedby strong equivalence in PEPA is more compact than that achieved by symbolic marking inSWN [123].9.5.2 Integrating Performance Analysis into System DesignThe work by Holton et al. [124, 125, 126] can be regarded as an initial investigation of how farPEPA provides integration between design and performance modelling. Previous work on the1Originally this stochastic process algebra was also called MPA but the authors subsequently changedthe name to avoid ambiguity.

142 CHAPTER 9. CONCLUSIONSperformance analysis of robots and production cells has been limited, and mostly focussedon detailed simulation studies. However use of formal methods, such as process algebras, asdesign tools is better established [127]. The preliminary conclusions of experience of usingPEPA in this way are that the reservations about using designs to generate performancemodels, expressed in Section 9.3, are not unfounded. In particular problems due to statespace explosion and transient states have been encountered. However, these problems arenot insurmountable and it has been found that designs can be readily modi�ed to producetractable performance models once the modeller has developed a little experience [125]. Inthe future it is planned to develop a re�nement calculus based on PEPA which allows amodel containing only essential detail for performance modelling, to be elaborated throughstages of detailed design and implementation.9.5.3 Representing Systems as ModelsIn addition to the work on robots and production cells case studies have been published oncommunication protocols [128, 129], a distributed mail system [130, 131] and a fault tolerantmulti-processor [132, 133]. Some of these case studies have particularly aimed to considerthe extent to which qualitative and quantitative analysis can be integrated [130, 134]. Inthe area of performability modelling this has been found to be especially relevant.As mentioned above EMPA o�ers the modeller the richest set of combinators. RecentlyHolton has developed new combinators for PEPA [135]. The impact of such combinatorson the transformation from design to performance model is still to be assessed in practice.Application area speci�c language features have not yet been investigated. This is possiblybecause except for the work on robots and production cells the case studies are being carriedout by language developers themselves.Recent work on TIPP has aimed to enhance the usefulness of the language by incorporat-ing immediate actions. Here the aim is to o�er the modeller a more compact representationof the system. Analysing the role of immediate actions within a modelling paradigm Rettel-bach identi�es two important ways in which they are used. The �rst role|representing\management" activities whose duration is negligible|is investigated in [108]. In this paperprevious theoretical results on TIPP are extended to a new version of the language which in-cludes such immediate actions. Moreover it is shown that transitions corresponding to theseactions can be safely eliminated before the underlying CTMC is generated. Similarly in [107]Rettelbach tackles the second role for immediate actions|representing decisions and choiceswhich do not consume system resources. Here too an equivalence relation is developed whichcould be used to automatically reduce the transition system, without a�ecting the integrityof the performance measures, whilst retaining this attractive modelling feature for modeldevelopment. Thus, as anticipated, the addition of immediate actions, whilst easing modelconstruction does not enhance the expressiveness of the stochastic process algebra.Preliminary work exploring the more informal relationship between the modelling stylesand facilities available in stochastic process algebras and GSPN has recently been published[136, 131]. Paradigms exhibit distinct strengths and weaknesses and a better understandingof the relationships between them can have mutual bene�t as characteristics and techniquesare imported from one to the other. Indeed the bene�ts of understanding the relationshipbetween formalisms has become apparent in recent work on e�cient solution: the recentresults on product form solutions were inspired by earlier work on SPNs and queueing net-works.Little work has yet been done comparing the di�erent stochastic process algebras. However

9.5. DEVELOPMENTS SINCE THE COMPLETION OF THE THESIS 143by analysing their GSPN semantics, Ribaudo was able to present a summary of their di�eringcharacteristics and facilities [137]. This paper highlights the fact that the most signi�cantdi�erence between the formalisms is their di�erent interpretations of synchronisation orcooperation. This is analysed in some detail in [138].9.5.4 Model TractabilityFinding ways of exploiting the structure within PEPA models to enhance model tractabilitywas identi�ed as the most compelling problem left unsolved at the end of the thesis. Althoughthe problem is still far from being completely resolved, signi�cant progress has been made.Three distinct strands of research have arisen in this area corresponding to product formsolution, near complete decomposability (or time scale decomposition), and tensor algebraand other special matrix representations.The work on product form solutions aims to take advantage of apparent independencebetween submodels of a model, so that the submodels can be solved in isolation. Based onHenderson and Taylor's work on product form SPN models, Sereno has developed criteria torecognise a class of PEPA models which exhibit product form solution [139]. In such modelsthe activities themselves are considered to be the states of a Markov chain which may besolved to �nd the steady state of the complete process. As in the SPN case only limitedforms of synchronisation between submodels is allowed.Similarly the work of Harrison and Hillston [140] derives conditions to recognise a restrictedform of interaction between submodels which corresponds to the limited form of interactionbetween nodes in a queueing network. E�cient product form solution is one of the majorattractions of such networks for performance modelling purposes. This work uses the notionof quasi-reversibility which had previously only been de�ned in a queueing network setting[141]. Extending this notion to a Markov process setting, the authors are able to de�ne a formof interaction between PEPA components which ensures apparently independent behaviour.There is a pleasing resonance between the compositionality of the stochastic process algebramodels and the modular, hierarchical approach de�ned by quasi-reversibility.Note that the classes of models identi�ed by the two approaches are distinct and it is aninteresting area for future work to be able to compare them within the common frameworkof stochastic process algebras.In contrast to the exact solutions obtained by product form methods, time scale decom-position results in an approximate solution. However the loss of accuracy is compensatedby a technique which is e�cient both in terms of time and storage. The essence of theapproach is to identify when the model has a nearly completely decomposable structure [97](see Section 5.3). In [142] Hillston and Mertsiotakis present a class of TIPP models whichsatisfy this property and give an algorithm to apply time scale decomposition to such models.Similarly to recent work on SPN models [143], each submodel in the decomposition corres-ponds to a set of derivatives which are reachable via fast activities. Transitions betweensubmodels correspond to slow activities. A prototype implementation of the algorithm hasbeen developed for the TIPP-tool and this is described in the paper.Although not decompositional in the sense of the techniques described above work ontensor algebra and spectral expansion allow the generator matrix representing a model tobe expressed in a form which facilitates e�cient solution. The compositional structure isnot used to identify submodels which can be solved in isolation. Instead this structureis used to structure the generator matrix so that specialised e�cient solution algorithmscan be employed. In [110, 111] and [144] the bene�ts of recognising the correspondence

144 CHAPTER 9. CONCLUSIONSbetween operators in the process algebra and tensor operators on the underlying matricesare explored for MPA and a subset of TIPP, respectively. More recently a convenient meansof modelling the behaviour of in�nite state systems based on TIPP has been developed[145]. The approach allows analysis of the system's underlying Markov chain using thespectral expansion solution method [146].

Bibliography[1] N. G�otz, U. Herzog, and M. Rettelbach. TIPP - A Stochastic Process Algebra. InJ. Hillston and F. Moller, editors, Proc. of the Workshop on Process Algebra andPerformance Modelling. Department of Computer Science, University of Edinburgh,May 1993. (pp 1, 14)[2] N. G�otz, U. Herzog, and M. Rettelbach. Multiprocessor and Distributed SystemDesign: The Integration of Functional Speci�cation and Performance Analysis usingStochastic Process Algebras. In Performance'93, 1993. (pp 1, 11, 14)[3] H. Beilner. Structured Modelling - Heterogeneous Modelling. In Proc. of the EuropeanSimulation Multiconference. Univeristy of Dortmund, Informak IV, SCS, June 1989.(pp 6, 11)[4] U. Herzog. Formal description, time and performance analysis: A framework. Tech-nical Report 15/90, IMMD VII, Friedrich-Alexander-Universit�at, Erlangen-N�urnberg,Germany, September 1990. (pp 6, 12, 13)[5] W.H. Sanders and J.F. Meyer. Reduced base model construction methods for stochasticactivity networks. IEEE Journal on Selected Areas in Communications, 9(1):25{36,January 1991. (pp 6, 8, 38, 42, 43, 70)[6] A.L. Opdahl. Performance Engineering During Information System Development.PhD thesis, Norwegian Technical High School, Trondheim, 1993. (pp 6, 11)[7] P. Schweitzer. A Survey of Aggregation-Disaggregation in Large Markov Chains. InW.J. Stewart, editor, Numerical Solution of Markov Processes, chapter 4, pages 63{88.Marcel Dekker, 1990. (pp 6, 11, 68, 72)[8] L. Kleinrock. Queueing Systems, Volume I: Theory. John Wiley, New York, 1975.(pp 6, 40)[9] L. Kleinrock. Queueing Systems, Volume II: Computer Applications. John Wiley, NewYork, 1976. (pp 6, 40)[10] A. Allen. Probability, Statistics and Queueing Theory with Computer Science Applic-ations. Academic Press, second edition, 1990. (p 6)[11] P.J.B. King. Computer and Communication Systems Performance Modelling. PrenticeHall, 1990. (pp 6, 40)[12] P.G. Harrison and N.M. Patel. Performance Modelling of Communication Networksand Computer Architectures. Addison-Wesley, 1992. (pp 6, 40)145

146 BIBLIOGRAPHY[13] F. Baskett, K.M. Chandy, R.R. Muntz, and F.G. Palacios. Open, Closed and MixedNetworks of Queues with Di�erent Classes of Customers. Journal of the ACM,22(2):248{260, April 1975. (p 7)[14] J. Stifakis. Use of Petri Nets for Performance Evaluation. In H. Beilner and E. Gelenbe,editors,Measuring, Modelling and Evaluating Computer Systems,, pages 75{93. North-Holland, 1977. (p 8)[15] W.M. Zuberek. Timed Petri Nets and Preliminary Performance Evaluation. In Proc.of 7th Annual Symposium on Computer Architecture, pages 89{96, 1980. (p 8)[16] M.K. Molloy. On the Integration of Delay and Throughput Measures in DistributedProcessing Models. PhD thesis, University of California, Los Angeles, 1981. (p 8)[17] M. Ajmone Marsan, G. Conte, and G. Balbo. A Class of Generalised Stochastic PetriNets for the Performance Evaluation of Multiprocessor Systems. ACM Transactionson Computer Systems, 2(2):93{122, May 1984. (pp 8, 12, 32, 40)[18] J. Bechta Dugan, K.S. Trivedi, R.M. Geist, and V.F. Nicola. Extended StochasticPetri Nets: Applications and Analysis. In E. Gelenbe, editor, Performance '84, pages507 { 517. Elsevier Science Publishers, 1984. (pp 8, 12)[19] A. Movaghar and J.F. Meyer. Performability Modelling with Stochastic Activity Net-works. In Proc. of 1984 Real-Time Symposium, Austin, Texas., December 1984. (pp 8,40)[20] M.A. Holliday and M.K. Vernon. A generalised timed petri net model for performanceanalysis. IEEE Transactions on Software Engineering, 13(12):1297{1320, December1987. (p 8)[21] J.K. Muppala and K.S. Trivedi. Composite Performance and Availability AnalysisUsing a Hierarchy of Stochastic Reward Nets. In G. Balbo and G. Serazzi, editors,Computer Performance Evaluation: Modelling Techniques and Tools, pages 335{ 349.Elsevier, February 1991. (pp 8, 38)[22] M.K. Molloy. Performance analysis using stochastic petri nets. IEEE Transactions onComputers, 31(9):913{917, September 1982. (pp 8, 40)[23] W. Henderson and P.G. Taylor. Embedded Processes in Stochastic Petri Nets. IEEETransactions on Software Engineering, 17(2):108 { 116, February 1991. (pp 8, 42,140)[24] G. Balbo, S.C. Bruell, and S. Ghanta. Combining Queueing Network and GeneralizedStochastic Petri Net Models for the Analysis of some Software Blocking Phenomena.IEEE Transactions on Software Engineering, 12(4):561{576, April 1986. (pp 8, 43)[25] G. Balbo, S. Bruell, and S. Ghanta. Combining Queueing Networks and GeneralizedStochastic Petri Nets for the Solution of Complex Models of System Behaviour. IEEETransactions on Computers, 37(10):1252{1268, October 1988. (pp 8, 11, 73)[26] M. AjmoneMarsan, S. Donatelli, and F. Neri. GSPN Models of Markovian MultiserverMultiqueue Systems. Performance Evaluation, 11:227{240, 1990. (pp 8, 45, 49, 50,52, 53, 56)

BIBLIOGRAPHY 147[27] G. Chiola, S. Donatelli, and G. Franceschinis. GSPNs versus SPNs: What is the actualrole of immediate transitions? In Petri Nets and Performance Models, PNPM, pages20{31, Melbourne, Australia, December 1991. IEEE Computer Society Press. (pp 8,41, 42, 43, 70)[28] J.F. Meyer, A. Movaghar, and W.H. Sanders. Stochastic activity networks: Structure,behavior and application. In Proc of Int. Workshop on Timed Petri Nets, pages 106{115, Torino, Italy., 1985. IEEE Computer Society Press. (pp 8, 12, 18, 40)[29] R. Milner. Communication and Concurrency. Prentice-Hall, 1989. (pp 9, 67)[30] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. (p 9)[31] J.A. Bergstra and J.W. Klop. Algebra for Communicating Processes with Abstraction.Journal of Theoretical Computer Science, 37:77{121, 1985. (p 9)[32] G.D. Plotkin. A Structured Approach to Operational Semantics. Technical ReportDAIMI FM-19, Computer Science Department, Aarhus University, 1981. (pp 9, 28)[33] R. Milner. Calculi for synchrony and asynchroni. Theoretical Computer Science,25(3):267{310, 1983. (p 9)[34] F. Moller and C. Tofts. A Temporal Calculus for Communicating Systems. In J.C.M.Baeten and J.W. Klop, editors, CONCUR'90, volume 458 of LNCS, pages 401{415.Springer-Verlag, August 1989. (pp 10, 67)[35] J. Baeten and J. Bergstra. Real Time Process Algebra. Formal Aspects of Computing,3(2):142{188, 1991. (p 10)[36] C-C. Jou and S.A. Smolka. Equivalences, Congruences and Complete Axiomatizationsof Probabilistic Processes. In J.C.M. Baeten and J.W. Klop, editors, CONCUR'90,volume 458 of LNCS, pages 367{383. Springer-Verlag, August 1990. (pp 10, 67, 68)[37] C. Tofts. Describing Social Insect Behaviour Using Process Algebra. Transactions ofthe Society for Computer Simulation, 9(4):227{283, December 1992. (p 10)[38] K. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information andComputation, 94(1):1{28, September 1991. (pp 10, 67, 68, 113)[39] L. Christo�. Speci�cation and Veri�cation Methods for Probabilistic Process. PhDthesis, Department of Computer Science, Uppsala University, March 1993. (p 10)[40] Y. Yemini and J. Kuros. Towards the Uni�cation of the Functional and PerformanceAnalysis of Protocols, or Is the Alternating-Bit Protocol Really Correct? In C. Sun-shine, editor, Protocol Speci�cation, Testing and Veri�cation, volume II. North Holland(IFIP), 1982. (p 11)[41] C. Harvey. Performance Engineering as an Integral Part of System Design. BT Tech-nology Journal, 4(3):143{147, July 1986. (p 11)[42] G.V. Bochmann and J. Vaucher. Adding Performance Aspects to Speci�cation Lan-guages. In S. Aggarwal and K. Sabnani, editors, Protocol Speci�cation, Testing andVeri�cation, volume VIII, pages 19{31. North Holland (IFIP), 1988. (p 11)

148 BIBLIOGRAPHY[43] C.U. Smith. Performance Engineering of Software Systems. Software EngineeringInstitute (SEI). Addison-Wesley, 1990. (p 11)[44] P. Buchholz. Hierarchical Markovian Models - Symmetries and Reduction. In R.J.Pooley and J. Hillston, editors, Computer Performance Evaluation: Modelling Tech-niques and Tools, volume 10 of EDITS, pages 234{246. Edinburgh University Press,August 1993. (pp 11, 12, 73)[45] W. Henderson and D. Lucic. Aggregation and Disaggregation Through Insensitivityin Stochastic Petri Nets. Performance Evaluation, 17(2):91{114, March 1993. (pp 11,92)[46] I.S.O. LOTOS : A Formal Description Technique Based on the Temporal Ordering ofObservational Behaviour. IS 8807, TC97/SC21, 1989. (p 11)[47] C.J. Koomen. The Design of Communicating Systems: A System Engineering Ap-proach. Kluwer, 1991. (p 11)[48] A. Valderruten, O. Hjiej, A. Benzekri, and D. Gazal. Deriving Queueing Networks Per-formance Models from Annotated LOTOS Speci�cations. In R.J. Pooley and J. Hill-ston, editors, Computer Performance Evaluation '92: Modelling Techniques and Tools,pages 167 { 178, 1992. (p 11)[49] F. Bause and P. Buchholz. Protocol Analysis using a timed version of SDL. In Proc.of 3rd. International Conference on Formal Description Techniques (FORTE '90),Madrid, Spain, November 1990. (p 11)[50] J.A. Hillebrand. The ABP and the CABP - a comparison of performances in real timeprocess algebra. Technical Report P9211, Programming Research Group, Universityof Amsterdam, 1992. (p 11)[51] P. Dembinski and S. Dubkowski. Simulating Estelle Speci�cations with Time Para-meters. In H. Rudin and C.H. West, editors, Protocol Speci�cation, Testing and Veri-�cation, volume VII, pages 265{279. North Holland (IFIP), 1987. (p 11)[52] C-Y. Wang and K.S. Trivedi. Integration of Speci�cation for Modelling and Speci�c-ation for System Design. In M. Ajmone Marsan, editor, Application and Theory ofPetri Nets, pages 473{492. Springer-Verlag, 1993. (p 11)[53] R.J. Pooley. Deriving Functional Properties of Process Based Simulation Models. InJ. Hillston and F. Moller, editors, Proceedings of the Workshop on Process Algebraand Performance Modelling, number CSR-26-93 in Technical Reports. Department ofComputer Science, University of Edinburgh, May 1993. (p 11)[54] Y. Yemini and N. Nounou. CUPID: A Protocol Development Environment. InH. Rudin and C.H. West, editors, Protocol Speci�cation, Testing and Veri�cation,volume III, pages 347{355. North Holland (IFIP), 1983. (pp 11, 13)[55] N. Nounou and Y. Yemini. Algebraic Speci�cation-Based Performance Analysis ofCommunication Protocols. In Y. Yemini, R. Strom, and S. Yemini, editors, Pro-tocol Speci�cation, Testing and Veri�cation, volume IV. North Holland (IFIP), 1985.(pp 11, 13)

BIBLIOGRAPHY 149[56] J. Hillston. SystemDescription Formalisms and Performance Evaluation. IMSE projectdeliverable D4.4-2, (Edinburgh University), BNR Europe Ltd, London Road, Harlow,Essex, UK, December 1991. (p 12)[57] J.J. Zic. Extensions to Communicating Sequential Processes to allow Protocol Per-formance Speci�cation. ACM Computer Communication Review, 17(5):217{227, 1987.Special Issue: SIGCOMM'87 Workshop on Frontiers in Computer CommunicationsTechnology. (p 13)[58] B. Strulo. Process Algebra for Discrete Event Simulation. PhD thesis, Imperial College,1993. (p 14)[59] R.J. Pooley. Deriving Functional Properties of Process Based Simulation Models. PhDthesis, Department of Computer Science, University of Edinburgh, 1995. (p 15)[60] G. Birtwistle, R.J. Pooley, and C.N.M. Tofts. Characterising the Structure of Simula-tion Models in CCS. Transactions of the SCS, 10(3):205{236, 1993. (p 15)[61] G. Birtwistle. DEMOS: Discrete Event Modelling On Simula. MacMillan, 1978.(p 15)[62] R. Gorrieri and M. Rocetti. Towards Performance Evaluation in Process Algebras. InProc. of the 3rd Int. Conference on Algebraic Methodology and Software Technology,1993. (pp 15, 141)[63] W. Feller. An Introduction to Probability Theory and Its Applications, volume I. Wiley,3rd edition, 1970. (p 35)[64] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. Watt.Maple V Library Reference Manual. Springer-Verlag, 1992. (p 37)[65] N. Patel. Structuring Analytical PerformanceModels UsingMathematica. In R. Pooleyand J. Hillston, editors, Computer Performance Evaluation: Modelling Techniques andTools, volume 10 of EDITS, pages 208{219, 1992. (p 37)[66] A. Allen and G. Hynes. Solving a Queueing Model with Mathematica. MathematicaJournal, 1(3):108{112, 1991. (p 37)[67] A. Allen. Introduction to Computer Performance Analysis with Mathematica. Aca-demic Press, 1992. (p 37)[68] R. Howard. Dynamic Probabilistic Systems: Semi-Markov and Decision Systems,volume II. Wiley, 1971. (p 38)[69] J.F. Meyer. On evaluating the performability of degradable computing systems. IEEETransactions on Computers, 29(8):720{731, August 1980. (p 38)[70] G. Ciardo, J. Muppala, and K.S. Trivedi. SPNP: Stochastic Petri Net Package. InPetri Nets and Performance Models, pages 142{150, Kyoto, Japan, December 1989.IEEE. (p 38)[71] G. Ciardo, J. Muppala, and K. Trivedi. On the solution of GSPN reward models.Performance Evaluation, 12:237{253, 1991. (p 38)

150 BIBLIOGRAPHY[72] W.H. Sanders and J.F. Meyer. Performance Variable Driven Construction Methods forStochastic Activity Networks. In G. Iazeolla, P.J. Courtois, and O.J. Boxma, editors,Computer Performance and Reliability, pages 383{398. Elsevier Science Publishers,1988. (p 38)[73] W. Henderson, D. Lucic, and P.G. Taylor. A Net Level Performance Analysis ofStochastic Petri Nets. Journal of Australian Mathematical Society Series B, 31:176{187, 1989. (pp 40, 42)[74] G. Ciardo and K. Trivedi. A Decomposition Approach for Stochastic Petri Nets. InPetri Nets and Performance Models, pages 74{83. IEEE Computer Society, December1991. (pp 40, 71, 139)[75] S. Jacobson and E. Lazowska. Analysing queueing networks with simultaneous resourcepossession. Communications of the ACM, 25(2):142{151, February 1982. (p 41)[76] P. Heidelberger and K. Trivedi. Analytic queueing models of programs with internalconcurrency. IEEE Transactions on Computers, 32:73{82, 1983. (p 41)[77] F. Baccelli and Z. Liu. A New Solver for QNET for Parallel Fork-Join Networks. IMSEproject deliverable R5.5-7, (INRIA, Sophia Antipolis), BNR Europe Ltd., LondonRoad, Harlow, Essex, UK, December 1989. (p 41)[78] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed ColouredNets and Their Symbolic Reachability Graph. In K. Jensen and G. Rozenberg, editors,High-Level Petri Nets. Theory and Application. Springer Verlag, 1991. (p 42)[79] A.A. Lazar and T.G. Robertazzi. Markovian Petri Net Protocols with Product FormSolution. Performance Evaluation, 12(1):67{77, January 1991. (p 42)[80] R.J. Boucherie. A Characterisation of Independence for Competing Markov Chainswith Applications to Stochastic Petri nets. Technical Report 1880, INRIA, Sophia-Antipolis, 1993. (pp 42, 140)[81] D. Frosch-Wilkes. An Exact Analysis of Closed Synchronised Systems of StochasticSequential Processes. Forschungsbericht, Mathematik/Informatik 93-02, University ofTrier, 1993. (pp 42, 140)[82] B. Plateau, J-M. Fourneau, and K-H. Lee. PEPS: A Package for Solving ComplexMarkov Models of Parallel Systems. In R. Puigjaner, editor, Proc. of 4th Int. Conf. onModelling Techniques and Tools for Computer Performance Evaluation, pages 341{360.Plenum Press, 1988. (pp 42, 140)[83] P. Buchholz. Numerical Solution Methods Based on Structured Descriptions ofMarkovian Models. In G. Balbo and G. Serazzi, editors, Proc. of 5th Int. confer-ence on Modelling Techniques and Tools for Computer Performance Evaluation, pages242{257, February 1991. (pp 42, 140)[84] T. Raith. Performance Analysis of Multibus Interconnection Networks in DistributedSystems. In M. Akiyama, editor, Teletra�c Issues in an Advanced Information SocietyITC-11, pages 662{668. Elsevier, 1985. (pp 45, 50, 52, 54)

BIBLIOGRAPHY 151[85] R.J.T. Morris and Y.T. Wang. Some Results for Multiqueue Systems with MultipleCyclic Servers. In H. Rudin and W. Bux, editors, Performance of Computer Commu-nication Systems, pages 245{258. Elsevier, 1984. (pp 45, 50, 52, 54)[86] A.E. Kamal and V.C. Hamacher. Approximate Analysis of Non-exhaustive MultiserverPolling Systems with Applications to Local Area Networks. Computer Networks andISDN Systems, 17(1):15{27, 1989. (pp 45, 50, 52, 53)[87] Q. Yang, D. Ghosal, and L. Bhuyan. Performance Analysis of Multiple Token Ringand Multiple Slotted Ring Networks. In Proceedings of Computer Network Symposium,pages 79{86, Washington DC, 1986. IEEE. (pp 45, 50, 52, 54)[88] T.I. Yuk and J.C. Palais. Analysis of Multichannel Token Ring Networks. In Pro-ceedings of the International Conference on Communication Systems, pages 907{911,1988. (pp 45, 50, 54)[89] H. Takagi. Queueing Analysis of Polling Models: An Update. In H. Takagi, editor,Stochastic Analysis of Computer and Communication Systems, pages 267 { 318. IFIP/North Holland, 1990. (pp 45, 47, 49, 62)[90] H. Choi and K.S. Trivedi. Approximate Performance Models of Polling Systems UsingStochastic Petri Nets. In Proceedings of INFOCOM' 92, 1992. (p 49)[91] O.C. Ibe and K.S. Trivedi. Stochastic Petri Net Models of Polling Systems. IEEEJournal on Selected Areas of Communication, 8(9), 1990. (p 49)[92] D. Grillo. Polling Mechanism Models in Communication Systems - Some ApplicationExamples. In H. Takagi, editor, Stochastic Analysis of Computer and CommunicationSystems, pages 659 { 698. IFIP/North Holland, 1990. (p 50)[93] M. Ajmone Marsan, S. Donatelli, F. Neri, and U. Rubino. On The Constructionof Abstract GSPNs: An Exercise in Modelling. In J. Billington and W. Henderson,editors, Petri Nets and Performance Modelling, pages 2{17. IEEE, December 1991.(p 50)[94] B.D. Bunday and E. Khorram. The E�ciency of Uni-directionally Patrolled Machineswith Two Robot Repairmen. European Journal of Operational Research, 39(1):32{39,1989. (p 52)[95] F. Moller. The Edinburgh Concurrency Workbench (Version 6.0). LFCS, Dept. ofComputer Science, University of Edinburgh., August 1991. (p 68)[96] B.P. Zeigler. Theory of Modelling and Simulation. Krieger, 1976. (p 69)[97] P.J. Courtois. Decomposability: Queueing and Computer System Applications. ACMSeries. Academic Press, New York, 1977. (pp 71, 143)[98] P. Buchholz. Exact and Ordinary Lumpability in Finite Markov Chains. Journal ofApplied Probability, 31(1):59{75, 1994. (p 71)[99] G. Rubino and B. Sericola. Sojourn Times in Finite Markov Processes. Journal ofApplied Probability, 27:744{756, 1989. (p 72)[100] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Van Nostrand, 1960. (p 72)

152 BIBLIOGRAPHY[101] P. Schweitzer. Aggregation Methods for Large Markov Chains. In G. Iazeolla, P.JCourtois, and A. Hordijk, editors, Mathematical Computer Performance and Reliabil-ity. North Holland, 1984. (p 72)[102] K. Matthes. Zur Theorie der Bedienungsprozesse. In 3rd Prague Conf. on InformationTheory, Statistical Decision Functions and Random Processes, pages 513{528, 1962.(p 91)[103] V. Nicola. Lumping in Markov Reward Processes. Research Report RC 14719, IBM,1989. IBM Thomas Watson Research Centre, P.O. Box 704, Yorktown Heights, NY10598. (p 127)[104] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a ProcessAlgebra-based Approach to Performance Modelling. In G. Haring and G. Kotsis,editors, Proceedings of the Seventh International Conference on Modelling Techniquesand Tools for Computer Performance Evaluation, volume 794 of LNCS, pages 353{368.Springer-Verlag, 1994. (p 138)[105] The MathWorks Inc. The Matlab manual, 1994. (p 140)[106] H. Hermanns and M.L. Rettelbach. Syntax, Semantics, Equivalences and Axioms forMTIPP. In U. Herzog and M. Rettelbach, editors, Proc. of 2nd Process Algebra andPerformance Modelling Workshop, 1994. (p 141)[107] M. Rettelbach. Probabilistic Branching in Markovian Process Algebras. The ComputerJournal, 38(6), 1995. Special Issue: Proc. of 3rd Process Algebra and PerformanceModelling Workshop. (pp 141, 142)[108] H. Hermanns, M. Rettelbach, and T. Wei�. Formal Characterisation of ImmediateActions in SPA with Nondeterministic Branching. The Computer Journal, 38(6), 1995.Special Issue: Proc. of 3rd Workshop on Process Algebras and Performance Modelling.(pp 141, 142)[109] H. Hermanns and V. Mertsiotakis. A Stochastic Process Algebra Based ModellingTool. In Proc. of the 11th UK Performance Engineering Workshop for Computer andTelecommunication Systems. Springer, 1995. (p 141)[110] P. Buchholz. On a Markovian Process Algebra. Technical Report 500/194, InformatikIV, Universit�at Dortmund, April 1994. (pp 141, 143)[111] P. Buchholz. Compositional Analysis of a Markovian Process Algebra. In U. Herzogand M. Rettelbach, editors, Proc. of 2nd Process Algebra and Performance ModellingWorkshop, 1994. (pp 141, 143)[112] M. Bernardo, R. Gorrieri, and L. Donatiello. MPA: A Stochastic Process Algebra.Technical Report UBLCS-94-10, Laboratory of Computer Science, University of Bo-logna, May 1994. (p 141)[113] M. Bernardo, L. Donatiello, and R. Gorrieri. Modelling and Analyzing ConcurrentSystems with MPA. In U. Herzog and M. Rettelbach, editors, Proc. of 2nd ProcessAlgebra and Performance Modelling Workshop, 1994. (p 141)[114] C. Priami. Stochastic �-Calculus. The Computer Journal, 38(6), 1995. Special Issue:Proc. of 3rd Process Algebra and Performance Modelling Workshop. (p 141)

BIBLIOGRAPHY 153[115] E. Brinksma, J-P. Katoen, R. Langerak, and D. Latella. Performance Analysis andTrue Concurrency Semantics. In U. Herzog and M. Rettelbach, editors, Proc. of 2ndProcess Algebra and Performance Modelling Workshop, 1994. (p 141)[116] E. Brinskma, J-P. Katoen, R. Langerak, and D. Latella. A Stochastic Causality-BasedProcess Algebra. The Computer Journal, 38(6), 1995. Special Issue: Proc. of 3rdProcess Algebra and Performance Modelling Workshop. (p 141)[117] M. Bernardo, R. Gorrieri, and L. Donatiello. Operational GSPN Semantics of MPA.Technical Report UBLCS-94-12, Laboratory of Computer Science, University of Bo-logna, May 1994. (p 141)[118] M. Ribaudo. On the Relationship between Stochastic Petri Nets and Stochastic ProcessAlgebras. PhD thesis, Dipartimento di Informatica, Universit�a di Torino, May 1995.(p 141)[119] M. Ribaudo. Stochastic Petri Net Semantics for Stochastic Process Algebras. In Proc.6th International Workshop on Petri Nets and Performance Models, pages 148,157,Durham, NC, 1995. (p 141)[120] M. Bernardo, L. Donatiello, and R. Gorrieri. Giving a Net Semantics to MarkovianProcess Algebras. In Proc. 6th International Workshop on Petri Nets and PerformanceModels, pages 169,178, Durham, NC, 1995. (p 141)[121] M. Bernardo, N. Busi, and R. Gorrieri. A Distributed Semantics for EMPA Based onStochastic Contextual Nets. The Computer Journal, 38(6), 1995. Special Issue: Proc.of 3rd Process Algebra and Performance Modelling Workshop. (p 141)[122] M. Ribaudo. On the Aggregation Techniques in Stochastic Petri Nets and StochasticProcess Algebras. The Computer Journal, 38(6), 1995. Special Issue: Proc. of 3rdProcess Algebra and Performance Modelling Workshop. (p 141)[123] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic Well-FormedColoured Nets and Symmetric Modelling Applications. IEEE Transactions on Com-puters, 42(11):1343{1359, November 1993. (p 141)[124] S. Gilmore, J. Hillston, R. Holton, and M. Rettelbach. Speci�cations in StochasticProcess Algebra for a Robot Control Problem. International Journal of ProductionResearch, December 1995. (p 141)[125] D.R.W. Holton. A PEPA Speci�cation of and Industrial Production Cell. The Com-puter Journal, 38(6), 1995. Special Issue: Proc. of 3rd Process Algebra and Perform-ance Modelling Workshop. (pp 141, 142)[126] D.R.W. Holton and J.P.N. Glover. An SPA Performance Model of a Production Cell.Submitted to the Second World Automation Congress, Montpellier, France, December1995. (p 141)[127] D.R.W. Holton. A Rigorous Approach to Robot Programming. PhD thesis, The Queen'sUniversity of Belfast, 1991. (p 142)[128] N. G�otz. Stochastische Proze�algebren { Integration von funktionalem Entwurf undLeistungsbewertung Verteilter Systeme. PhD thesis, Universit�at Erlangen{N�urnberg,Martensstra�e 3, 91058 Erlangen, April 1994. (p 142)

154 BIBLIOGRAPHY[129] H. Hermanns, V. Mersiotakis, and M. Rettelbach. Performance analysis of distrib-uted systems using TIPP|a case study. In J. Hillston and R. Pooley, editors, Proc.of 10th UK Computer and Telecommunications Performance Engineering Workshop,1994. (p 142)[130] J. Hillston, H. Hermanns, U. Herzog, V. Mertsiotakis, and M. Rettelbach. IntegratingQualitative and Quantitative Modelling with Stochastic Process Algebras. Technicalreport, IMMD VII, Universit�at Erlangen-N�urnberg, May 1994. (p 142)[131] S. Donatelli, H. Hermanns, J. Hillston, and M. Ribaudo. GSPN and SPA Comparedin Practice: Modelling a Distributed Mail System. In F. Baccelli, A. Jean-Marie, andI. Mitrani, editors, Quantitative Methods in Parallel Systems, pages 38{51. Springer,1995. (p 142)[132] U. Herzog and V. Mertsiotakis. Stochastic Process Algebras Applied to Failure Mod-elling. In U. Herzog and M. Rettelbach, editors, Proc. of 2nd Process Algebra andPerformance Modelling Workshop, 1994. (p 142)[133] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras as aTool for Performance and Dependability Modelling. In Proc. of IEEE InternationalComputer Performance and Dependability Symposium, pages 102{111, Erlangen, April1995. IEEE Computer Society Press. (p 142)[134] J. Hillston, H. Hermanns, U. Herzog, V. Mersiotakis, and M. Rettelbach. Stochasticprocess algebras: Integrating qualitative and quantitative modelling. In Proc. ofFORTE'94, 1994. position statement. (p 142)[135] D.R.W. Holton. De�ning New Combinators for PEPA. Technical report, Departmentof Computing, The University of Bradford, 1995. (p 142)[136] S. Donatelli, J. Hillston, and M. Ribaudo. A Comparison of Performance EvaluationProcess Algebra and Generalized Stochastic Petri Nets. In Proc. of the 6th Petri Netsand Performance Models Workshop, pages 158{168, October 1995. (p 142)[137] M. Ribaudo. Understanding Stochastic Process Algebras via their Stochastic Petri NetSemantics. In U. Herzog and M. Rettelbach, editors, Proc. of 2nd Process Algebra andPerformance Modelling Workshop, 1994. (p 143)[138] J. Hillston. The Nature of Synchronisation. In U. Herzog and M. Rettelbach, editors,Proc. of 2nd Process Algebra and Performance Modelling Workshop, 1994. (p 143)[139] M. Sereno. Towards a Product Form Solution of Stochastic Process Algebras. TheComputer Journal, 38(6), 1995. Special Issue: Proc. of 3rd Process Algebra andPerformance Modelling Workshop. (p 143)[140] P. Harrison and J. Hillston. Exploiting Quasi-reversible Structures in Markovian Pro-cess Algebra Models. The Computer Journal, 38(6), 1995. Special Issue: Proc. of 3rdProcess Algebra and Performance Modelling Workshop. (p 143)[141] F. Kelly. Reversibility and Stochastic Processes. Wiley, 1979. (p 143)[142] J. Hillston and V. Mertsiotakis. A Simple Time Scale Decomposition Technique forStochastic Process Algebras. The Computer Journal, 38(6), 1995. Special Issue: Proc.of 3rd Process Algebra and Performance Modelling Workshop. (p 143)

BIBLIOGRAPHY 155[143] A. Blakemore and S. Tripathi. Automated Time Scale Decomposition of SPNs. In Proc.of 5th Int. Workshop on Petri Nets and Performance Models (PNPM '93), Toulouse,1993. (p 143)[144] M.L. Rettelbach and M. Siegle. Compositional Minimal Semantics for the StochasticProcess Algebra TIPP. In U. Herzog and M. Rettelbach, editors, Proc. of 2nd ProcessAlgebra and Performance Modelling Workshop, 1994. (p 143)[145] I. Mitrani, A. Ost, and M. Rettelbach. Quantitative Methods in Parallel Systems,chapter TIPP and the Spectral Expansion Method. Springer, 1995. (p 144)[146] I. Mitrani and D. Mitra. A Spectral Expansion Method for Random Walks on Semi-In�nite Strips. In Proc. of the IMACS Symposium on Iterative Methods in LinearAlgebra. Springer, 1991. (p 144)

Index>, unspeci�ed activity rate, 19, 26� , unknown action type, 19ACP, 9, 11Real Time, 10action type, 19activity (PEPA), 18activity rate, 19aggregated process, 71, 108, 126aggregation, 2, 12, 43, 71, 71{73, 108, 126exact, 3, 109, 138strong equivalence, 126{135, 138Ajmone Marsan, 8, 52, 53apparent rate, 27, 34, 98, 104, 113, 123,128shared activity, 28unde�ned, 27, 102atomic component, 23, 130{132augmented Markov process, 80, 109, 126Birtwistle, 15bisimulation, 2, 9, 66, 68in TCCS, 67performance equivalence, 15probabilistic, 2, 68, 113up to �, 67weak, 67Boucherie, 140Brinksma, 141Buchholz, 42, 71, 73, 140, 141Bunday, 52CCS, 5, 9, 13, 18, 23, 66, 67, 76, 98, 137CCS+, 14Chiola, 70choice (+), 21Ciardo, 139compact form, 81, 84, 85, 86, 88{93, 95complete action type set, 31componentconstant A def= P , 22expression E, 22lumped, 130, 130, 131, 133

PEPA, 18variable X, 22component isomorphism, 76conditional steady state probability, 72, 127cooperation (BCL), 21cooperation set, 21CSP, 9Timed, 13CUPID, 11, 13current action types (set), 27current activities (multiset), 28cyclic PEPA component, see irreducible,PEPA componentderivation graph, 32derivation graph, 31, 32, 37, 75, 81, 85,114, 126, 128generating GSMP, 90generating Markov process, 32, 80lumped, 127, 129, 131, 133generating Markov process, 127derivative, 31, 37, 76, 80, 84, 90, 98, 99,106derivative set, 31, 80, 93, 105, 110, 115,124, 129, 131, 133, 138�nite, 35lumped, 126, 129, 131derivative tree (CCS), 9, 13disaggregation, 128, 129, 132EMPA, 141equilibrium, see steady stateequivalencemodel-to-model, 66, 68{70, 73, 81, 107state-to-state, 66, 68, 71{73, 107, 108,124, 127, 128, 138system-to-model, 66, 68, 69exit rate, 34, 80, 106conditional, 34, 123EXL, 13experimental frame, 69, 88, 94, 137generalised semi-Markov process, see GSMP156

INDEX 157generalised stochastic Petri net, see GSPNgenerator matrix, Q, 12, 34, 37, 39, 70,71, 73, 140Gilmore, 138global balance equation, 35, 37, 39, 91Gorrieri, 15, 141GSMP, 14, 82, 90, 89{93active element, 90lifetime, 90GSPN, 8, 18, 32, 41, 43, 49, 53, 70, 71, 73Hamacher, 53Harrison, 143Henderson, 92, 143Herzog, 13hidden component, 90hidden component, 84, 85, 92, 93hidden derivative, see hidden componenthiding (=), 22Holton, 141, 142implicit resource, 20, 21{24, 36, 80, 82, 83,88, 91incomplete model, 26individual activities, 21initial component, 31, 32, 36, 89insensitivity, 2, 90, 91, 92balance equation, 91, 91irreducibleMarkov process, 35, 36, 37PEPA component, 36, 36, 37, 83, 86isomorphism =, 2, 73, 76, 75{81, 104, 121,123, 132, 137Jou, 10, 68Kamal, 53Kendall notation, 6modi�ed, 52Khorran, 52labelled multi-transition system, 29, 31, 73,97, 98, 113labelled transition system, 2, 9, 29, 65, 66,68probabilistic, 10, 67generative, 68reactive, 68Larsen, 68, 73, 113, 138levels,within component, 22LOTOS, 11

Lucic, 92lumpability, 3, 72, 72, 74, 127, 128lumpable partition, 72, 73, 108, 109, 124,126, 128, 138degenerate, 108exact, 72strict, 73trivial, 108with reward, 127, 128, 132lumpably equivalent (Markov processes), 107{109, 125, 126lumped activity set, 127complete, 127Maple, 37, 140Markov process, 32Mathematica, 37Matlab, 140Matthes, 91memorylessexponential distribution, 24, 33, 77Mertsiotakis, 143Meyer, 8, 70, 73Molloy, 8Morris, 54Movaghar, 8MPA, 141, 144MSMQ, 1, 45, 50{64, 94, 110, 132MTIPP, see TIPPMulti-Server Multi-Queue Systems, seeMSMQnear complete decomposabilityMarkov processes, 71matrices, 71SPN, 143TIPP, 143near-independence, 71Palais, 54passive activities, 21, 26PCCS, 10, 68PEPA Workbench, 138, 140performability, 8, 38Plateau, 42, 140Plotkin, 9polling system, 45{50Pooley, 11, 15positive-recurrent states, 35, 37preemptive restart, 23, 24, 77

158 INDEXpreemptive resume, 24, 77, 92pre�x (:), 20Priami, 141product form, 7, 42, 43PEPA, 140, 143SPN, 8, 42, 140pure process algebra, 9, 18, 66, 138qualitative modelling, 9, 11, 43, 139, 142quantitative modelling, 9, 11, 139, 142quasi-reversibility, 143queueing network, 6{8, 40{43, 48, 54, 69{71race condition, 18, 23, 26, 92, 97Raith, 54reachabilitygraph, 7, 32set, 7recurrent states, 35reducible sequence, 83, 84, 86, 88{95relaxed bu�ering, 47, 49, 54resource component, 83, 83, 84, 86, 90restricted bu�ering, 47, 55Rettelbach, 142reward structure, 38, 40, 43, 50, 55, 70, 81,88, 91, 93, 94, 110, 112, 127, 132Ribaudo, 141, 143Rocetti, 15SAN, 8, 38, 42, 43, 70, 73Sanders, 70, 73SCCS, 9Sereno, 143shared activities, 21silent precedent, 84, 92silent resource component, 83, 84, 86, 90,92Skou, 68, 73, 113, 138Smolka, 10, 68sojourn time, 32, 33, 97spectral expansion, 144SPN, 8, 41, 70, 139product form, see product form, SPNstate space explosion, 6, 42, 49, 71, 139steady state, 14, 32, 35, 37, 43, 49, 53, 70,72, 80, 89{91steady state probability distribution �, 34,37, 126stochastic �-calculus, 141

stochastic activity network, see SANstochastic Petri net, see SPNstrong bisimilarityfor model simpli�cation, 110{112up to �, 99strong bisimilarity �, 2, 73, 98, 97{112,122, 137strong bisimulation, 98strong equivalence, 114for aggregation, see aggregation, strongequivalenceup to �=, 115strong equivalence �=, 2, 73, 115, 113{135,138strong equivalence aggregationbasic, 127compositional, 128SWN, 42, 141Takagi, 45, 62Taylor, 143TCCS, 10, 15, 67time homogeneous, 28, 35time scale decomposition, 143TIPP, 1, 13, 141, 143Tofts, 10top-level component, 23, 110{112, 130, 132transient states, 35transition probability, 35, 90conditional, 90transition rate, 2, 32, 34, 70, 80, 89, 106,107, 110, 125, 130conditional, 34, 113in aggregated process, 71, 72, 108, 125total, 74, 125, 129total conditional, 114, 127Trivedi, 139visible (�; r)-derivative, 84Wang, 54weak component isomorphism, 84weak isomorphism�, 2, 73, 81, 85, 96, 137WSCCS, 10, 15Yang, 54Yuk, 54Zeigler, 69, 70Zic, 13

