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AbstractWe introduce a novel approach to the classical problem of in-situ, stable merging,where \in-situ" means the use of no more than O(log2 n) bits of extra memory for listsof size n. Shu�emerge reduces the merging problem to the problem of realising the\perfect shu�e" permutation, that is, the exact interleaving of two, equal length lists.The algorithm is recursive, using a logarithmic number of variables, and so does notuse absolutely minimum storage, i.e., a �xed number of variables.A simple method of realising the perfect shu�e uses one extra bit per element, andso is not in-situ. We show that the perfect shu�e can be attained using absolutelyminimum storage and in linear time, at the expense of doubling the number of moves,relative to the simple method.We note that there is a worst case for Shu�emerge requiring time 
(n logn), wheren is the sum of the lengths of the input lists. We also present an analysis of a variantof Shu�emerge which uses a generalised shu�e and which has a provable average casetime complexity of O(n log logm), where m is the length of the shortest input list. Itis unlikely that the generalised shu�e can be achieved in-situ.Linear time, in-situ, stable merging has previously been demonstrated. We presentexperimental evidence indicating that Shu�emerge, although almost certainly notasymptotically linear, might be of value in practice.The relative simplicity of the basic method, particularly with respect to stability,also recommends it.�This work was supported by the Natural Sciences and Engineering Research Council of Canada

1



1 IntroductionWe describe a novel merging algorithm with certain properties of theoretical interest andpossibly of practical value. The merging problem is to produce one sorted list from aninput of two sorted lists. The properties of interest are execution time, memory usage and\stability".An \in-situ" merge, sort or other permutation, rearranges the subject elements withinthe space that they occupy, in contrast to the standard merge algorithm which duplicates theinput space. We use the precise but tight de�nition of \in-situ" [Knu73] (Chapter 5, Section5, Exercise 3) which allows the use of no more than O(log2 n) bits over and above that spaceoccupied by the elements themselves, where n is the number of elements. This de�nitionpermits recursion, so long as the stack depth is restricted to O(logn), but does not allow theuse of extra space proportional to n. It also implies that the lists be represented by arrays, orparts of arrays. The extra space used by the pointers in a linked list representation would beat least (pointer size � n), and each pointer would require at least logn bits. Originally, whatwe are here referring to as \in-situ", was called \minimum storage", e.g., in the citation justgiven [Knu73]. An even tighter restriction, sometimes referred to as \absolutely minimumstorage", permits only O(logn) bits, i.e., a constant number of variables.Stability is the property of a merge or sort which guarantees that the order of equal ele-ments in the input is preserved in the output. A �ner distinction is sometimes made between\weak" and \strong" stability. The former permits a pair of equal elements from di�erentlists to be arranged in either order. The latter requires that priority be guaranteed for ele-ments from one designated list. Stability is essential when one wants to sort successively onmore than one key.The standard merge algorithm is simple, stable, and uses only linear time but it duplicatesthe input space. An in-situ merge is desirable in circumstances such as merging or sortinglarge external �les, where the saving in space can permit the entire process to complete fastersince larger �les can be merged at each step. Further, in-situ, stable, linear time mergingimmediately yields in-situ, stable sorting in (asymptotically) optimal time, by way of a sortby repeated merging.The problem of constructing an algorithm with all three desirable properties has a longhistory. It was �rst posed in [Knu73]. At that time, a linear time, in-situ but unstable mergewas known, [Kro69]. It was based on the idea of dividing up the lists into about pn blocksof size about pn. Almost all subsequent developments, [Hor78] is one exception, have beenbased on this principle. Early solutions, [Par77, Hor78], are generally considered to be bothcomplex and, although linear time, to have impractically large constants of proportionality,i.e., greater than logn for \practical" n. Further, [Hor78] modi�es keys.2



A fairly straightforward algorithm using O(pn) extra space can be based on the pnblock method by using two extra pn bu�ers for the elements plus space for pn pointers.This method is described in [TB95] and is likely faster than any other known method usingless than linear extra space.A practical solution should be both programmable within reasonable time and withordinary skill, and should have a time penalty, relative to the standard algorithm, that isnot so great as to make the space saving irrelevant. The �rst, in-situ, linear time solution,that is arguably practical is given in [HL88], where an unstable method is described, andin [HL92], where a stabilising technique is added. This method uses absolutely minimumstorage. In this paper we report some experimental results obtained using both our methodand this one, which, for convenience, we call the \HL-merge".More recent work [Sym95], besides satisfying the three basic requirements, achieves anoptimal O(m log(p=m+1)) number of comparisons (where m and p are the input list lengthsand m � p). The authors say that the stabilising techniques used in the paper are \powerfulenough to make stable all the existing linear in-place unstable algorithms we are aware of".However, in that paper no estimates for the constants of proportionality are given and noexperimental results are presented.Probably the most recent results in this area are reported in [Pas99]. In that thesis avariety of absolutely minimum storage, stable/unstable, merging and sorting algorithms arepresented and analysed. For unstable merging 3(n+m)+o(n) moves andm(t+1)+n=2t+o(m)comparisons are used, where m � n are the input list lengths and t = blog(n=m)c. For stablemerging 5n + 12m + o(m) moves and the same number of comparisons are used. Many ofthese results have been, or are about to be, published, for example see [KP94], [KPT96] and[GKP].The interesting and useful features of the new algorithm are:� The method is novel and further development may be possible. It reduces the problemof merging to the problem of realising the permutation known as the \perfect shu�e".� The best upper bound on average time complexity that we can prove analytically isO(n log logn) and this is not for the basic algorithm but for a variant of the basicalgorithm which can not use the in-situ shu�e method, but must use the one extrabit per element. There is an �(n logn) worst case. However, we present empiricalevidence indicating that our method might be of practical value.� Stability falls out very naturally and simply in our method, and imposes no timepenalty (in terms of element comparisons and movements). In [HL92], [Sym95] andin [Pas99] stability is achieved at the expense of extra program complexity and asigni�cant time penalty. 3



� The method is distinctly simpler, and hence easier to program, than any of those sofar cited.We reduce merging to perfect shu�ing, which we refer to as just \shu�ing" for conve-nience. The perfect shu�e is de�ned for two equal length lists, say L and R. The e�ect is tointersperse the elements of one list amongst the other, in a perfectly even manner, and suchthat the �rst element of R, which we can imagine to be the \right" input list, becomes the�rst element of the result. For example, if L = a; b; c; d and R = 1; 2; 3; 4, then the result ofShu�e(L;R) is the list: 1; a; 2; b; 3; c; 4; d.The time and space complexity of Shu�emerge is clearly dependent on the time andspace complexity of the shu�ing algorithm. We describe a simple shu�ing algorithm whichuses linear time, but which requires one extra bit per list element. Thus that method is notin-situ, though, in practice, one bit per element may often be immaterial .We go on to show that the extra bits can be dispensed with, at the expense of ap-proximately doubling the number of moves required. Thus the perfect shu�e itself, can berealised in absolutely minimal space and in linear time, which we do not know to have beenpreviously demonstrated.2 The AlgorithmThe algorithm reduces the problem of merging to the problem of realising the \perfect shu�e"permutation and its inverse. A novel feature of the method is that a large number, in somecases all, of the list elements are moved before any comparisons are made. All movement ofelements is e�ected by way of the \perfect shu�e" permutation, or its inverse. Shu�ing wasde�ned at the end of the introduction. How shu�ing can be realized is discussed in Section7. We refer to the shu�ing procedure as \Shu�e" and to its inverse as \Unshu�e".It follows immediately from the de�nition that, if L and R are ordered, then the listresulting from Shu�e is 2-ordered, i.e., for all i, the ith element is less than or equal to the(i + 2)th element, if the latter exists. Likewise, the e�ect of Unshu�e on a 2-ordered list isto produce two, ordered lists.A 2-ordered list resulting from a Shu�e of ordered lists is not necessarily itself ordered.Picturing the constituent, ordered lists as being in increasing order from left to right, we usethe term d-string (d for disordered) to denote a maximal, even length, 2-ordered list segmentin which the leftmost element is greater than the rightmost. The maximality is de�nedalgorithmically. A leftwards d-string is maximal with respect to a leftwards scan from itsrightmost element, i.e., starting from the ith element the algorithm scans the (i � 1)th, the4



(i � 3)th etc. until an element less than or equal to the ith is found. If that element is thejth, then the d-string extends from the (j + 2)th to the ith. If the (i � 1)th is less than orequal to the ith, then there is no leftwards d-string starting at the ith element. Likewise, arightwards d-string is maximal with respect to a rightwards scan from its leftmost element.First we give an informal description of the algorithm. Let the left and right lists, inputto a merge be called L and R. They are not necessarily of equal lengths, whereas the shu�ingoperation is de�ned only on equal length lists. Assume that jLj � jRj. If not, use the mirrorimage of this description.� Cut o� a \tail" from the right end of R, such that the remainder is the same length asL. Apply Shu�e to the interior elements of the list comprising the concatenation ofL and this remainder. Because the goal is to produce a 2-ordered string and becauseof the way we have de�ned Shu�e, there is no need to move the end elements.� Scan the shu�ed segment from right to left, delineating leftwards d-strings, as justde�ned.� Unshu�e the d-strings, which are by de�nition of even length.� Recursively merge adjacent segments resulting from the unshu�ing of adjacent d-strings. Include a merge of the rightmost unshu�ed segment, if any, with the \tail" ofR, which was cut o� in step 1.Figure 1 illustrates the method. In this example, jLj < jRj. The �gure shows oneapplication of the shu�e/scan/unshu�e process. A few particular points should be noted.� We obtain a 2-ordered string by shu�ing just the interior elements of the list formedby the concatenation of the two lists to be shu�ed. It is not necessary to include theend elements.� In this example the scan proceeds from right to left. In the opposite direction, di�erentd-strings would be obtained.� Unshu�ing the leftmost d-string yields the list 6, 7 as the right list and unshu�ingthe adjacent d-string yields 4, 5, 8 as the left list. But we do not need to include 8 inthe recursive merge. We already know that the 8 element is greater than the 7 elementbecause the scan ensured that the d-string starting at 8 is maximal to the left.Figure 2 is a Pascal realisation of the algorithm. We omit the code for the case in whichthe right list is shorter than the left list. That code is just the mirror image of that given.5
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procedure Shufflemerge (first1, last1, last2 : integer);{ Merges that segment of an array A from A[first1] through A[last1] withthe adjacent segment A[last1+1] through A[last2]. We assume that bothsegments are ordered. }var high, mid, low : integer;begin {Check that both lists are non-empty}if (last1 - first1 >= 0) and (last2 - last1 >= 1) thenif (last1 - first1) < (last2 - last1 - 1) thenbegin{Left list is shorter than right list}mid := 2 * last1 - first1 + 1; low := mid - 1; high := last2 + 1;Shuffle (first1 + 1, mid - 1);while mid > first1 dobegin{Scan, right to left, for next d-string}while (low >= first1) and (A[low] > A[mid]) do low := low - 2;if low < mid - 1 then {a d-string exists}begin {Unshuffle d-string}Unshuffle (low + 2, mid);{Merge adjacent parts of unshuffled, adjacent d-strings}Shufflemerge ((mid + low + 3) div 2, mid, high - 1);high := (mid + low + 1) div 2; mid := low + 1endelse {A[mid] is in correct position}begin mid := mid - 1; low := low - 1; high := mid endendendelse {Left list is longer than, or same length as, right list.Mirror image of previous code }end; Figure 2: The Merge Program7



The way this procedure works can be understood with the help of Figure 3, which illus-trates the relationships between the various indices used in the Pascal procedure. Correctnesscan be veri�ed by showing that the following proposition is a loop invariant for the outerwhile loop, and by applying induction on the length of the lists. We note that the argumentis valid whether or not equal elements exist. We use [x; y] to denote that segment of thearray between and including A[x] and A[y]. If y < x, [x; y] denotes the empty segment. The�rst item in the proposition guarantees that [first1; last2] is ordered at exit from the loop,since then mid � first1.Proposition 2.1� [mid; last2] is ordered and� no element in [high; last2] is less than any element in [first1; high� 1] and� [first1; mid] is 2-orderedTermination is guaranteed by noting that mid is necessarily decreased at each loop iter-ation and that the recursive calls are on lists necessarily smaller than the input.3 StabilityThe algorithm as it stands is not \strongly" stable. However, since it never transposes oreven compares elements from the same list, it is \weakly" stable. To achieve strong stabilityit is necessary and su�cient to know, whenever a comparison occurs between equal elements,which element was originally from the left list and which from the right.It is very easy in Shu�emerge to keep track of which lists the current elements beingcompared (A[low] and A[mid]) came from. Suppose we maintain a Boolean ag, call itlow-left, which will be true i� A[low] came originally from the left list.As the shu�ed, 2-ordered segment is scanned by the inner while loop low-left should beunchanged, because mid is constant and low is decremented by 2. As the outer while loopis iterated, whether or not low-left should be complemented depends on whether the thenblock or the else block was executed in the body of the loop. If the then block was executedlow-left should not be changed because low is not changed inside the then block. However,in the else block, low is decremented by one, and so low-left should be complemented.Of course the value of low-left must be passed down to lower levels of recursion. When arecursive call is made, the left list input was from a right list at the current level of recursion,8
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and vice versa. Hence low-left should be complemented. This is all that is necessary toachieve stability.Note also that, although the ag now needs to be checked at every element comparison, nomore element comparisons are required. The ag check is used to choose between a \greaterthan" operator, if low-left is true, or a \greater than or equal to" otherwise. Alternatively,one could use a \state programming" approach in which the program would ip betweencode for the \greater than" state and the \greater than or equal to" state, thus furtherreducing ag tests.By contrast, adding stability to the pn block methods has proved challenging. For ex-ample, the relatively simple block merge in [HL88] is unstable, a stable version was describedlater in [HL92]. Stability is there obtained at a noticeable cost in both program complexityand time, the authors estimating that the number of moves required is more than doubledrelative to the unstable version. The same observation applies to the results obtained in[Pas99] and quoted in the introduction.4 Space ComplexityWe note that for the algorithm as presented can, run-time stack depth is limited only bythe length of the input. Consider the case where the left list contains one element which isgreater than anything in the right list. The algorithm will progress by repeatedly comparingthe single left list element with elements from the right list. The single left list element willprogress in unit steps through the right list until it reaches the right hand end. But this isdone by a sequence of recursive calls of length equal to the length of the right list. In thisinstance extra space used on the run time stack is list length � space required for procedurevariables, which contravenes the in-situ de�nition.We recall that, unmodi�ed, Quicksort has a similar worst case. To ensure that stackdepth is limited to O(logn) one must explicitly test segment lengths and stack the longer ofthe two partitions produced by the partition procedure. Otherwise, the same problem canarise.Likewise, a simple modi�cation can ensure that Shu�emerge never requires a stack depthexceeding O(logn). Consider the code in Figure 2. Note that there is exactly one recursivecall to Shu�emerge, in the middle of the loop which scans for d-strings. Note also that forall these recursive calls, except possibly the �rst, the input lists are both parts of unshu�edd-strings. The length of an input derived from a d-string can not exceed half the length ofthe shortest original input list, by de�nition of a d-string. So a sequence of recursive calls onthese inputs can not generate worse than a logarithmic stack depth. This is not necessarilytrue for the �rst recursive call, which may involve the \tail" cut o� before the shu�e. That10



is the only possibility that can lead to a recursion depth worse than logarithmic.Consequently, we can avoid that bad possibility by not invoking the procedure recursivelyon the tail. This can be done by combining iteration and recursion. We replace the ifstatements at the head of the code by:while (both lists are not empty) doThe rest of the code remains unchanged except that must we ensure that no recursive call ismade involving the tail. Rather, at the end of the loop, we reset the indices de�ning the listsso as to de�ne the tail and the list to be merged into it. Of course, if either is empty, theiteration terminates. The result is that the merge into the tail, if necessary, is accomplishedby iteration rather than by recursion.We can see that this modi�cation does not change the time complexity of the algorithmby noting that we are not changing the actions of the algorithm, just the order in which theyare done.Because recursion depth is limited to O(logn) and the procedure uses a �xed numberof variables, each requiring O(logn) bits, the procedure uses O(log2 n) bits, plus whateveris used by the Shu�e/Unshu�e procedures. In Section 7 we show that shu�ing can beachieved either by the use of an extra bit/element, or in absolutely minimum space at theexpense of more moves.5 Time ComplexityAn analysis of the time complexity of Shu�emerge, as de�ned in Figure 2, is not trivial.We show that the worst case time complexity of the algorithm is bounded by O(n logn)and that a family of instances with this behaviour exists. We are unable to analyse theaverage behaviour of the basic algorithm but we do establish an average case time complexityof O(n log logn) on a modi�ed version of the basic algorithm. A better bound might beobtainable by a more sophisticated analysis. We recall that Quicksort has an 
(n2) worstcase performance, but is excellent in the average case and in practice.5.1 An Upper Bound on the Worst CaseWe establish an O(n logn) upper bound on the worst case time complexity, where n is thesum of the input list lengths. We work with the unmodi�ed algorithm, as de�ned in Figure2. 11
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Consider Figure 4. Without loss of generality, let the length, m, of the left list be lessthan the length, p, of the right list. The �rst line in the diagram represents the input lists.The second line represents the situation after the left list is shu�ed with the leftmost melements of the right list. Suppose the rightmost d-string in the second line is of length 2d,the third line represents the situation after the unshu�ing of that d-string.Now consider the bottom line. This represents two separate merges on lists comprisingundisturbed segments from the original lists. In the left merge we have the �rst m � delements from the original left list and the leftmost m elements from the original right list.In the right merge we have the rightmost d elements from the original left list and therightmost p � m elements from the original right list. Consider the e�ect of the �rst stepof the left merge, namely a shu�e on the 2m � 2d leftmost elements. Note that we arriveagain at line 3.The di�erence in the work done in going from line 1 to line 3 and going from line 4 toline 3 is proportional to the length of the d-string. We see this by noting that from line 1to line 2 we shu�e 2m elements, using say bm time for some constant b. From line 2 to line3 we scan and unshu�e a d-string, using say cd time, for some constant c. To go from line4 to line 3 we shu�e 2m � 2d elements, using time b(m � d). So the di�erence is (b + c)dFrom line 3 onwards, the process would continue in the same manner, no matter the di�erentstarting points. This observation justi�es the following recurrence relation, where T (m; p) isan upper bound on the time required to merge a total of m+ p elements.T (m; p) � c1d+ T (m� d;m) + T (d; p�m) (1)for some constant c1. Assume that the time complexity of the algorithm is O(n logn), wheren = m + p, for smaller n, so that, for some c2 and all su�ciently large n:T (n) � c2n lognSubstituting in Equation 1 yields:T (m; p) � c1d+ c2(2m� d) log(2m� d) + c2(p�m+ d) log(p�m+ d) (2)Consider positive numbers a and b such that a � b. By writing b = ka for some k � 1 wecan show that:a log a + b log b < (a+ b) log(a + b)� a (3)Take a to be the smaller of (2m�d) and (p�m+d), and b to be the larger. Then Equation2 can be written:T (m; p) � c1d+ c2a log a + c2b log b (4)13



Using Equation 3 yields:T (m; p) � c1d� c2a+ c2(m + p) log(m + p) (5)Each of (2m� d) and (p�m+ d), is at least d, since m � d and p � m. Hence if we choosec2 � c1, then we ensure that T (n) � c2n logn, and the hypothesis is con�rmed.5.2 Worst Case InstancesWe de�ne an in�nite family of instances that require time 
(n logn), were n = m + p.Suppose the right list is exactly twice the length of the left list, i.e., p = 2m, and let m be apower of two.The �rst invocation of shu�e will be on the left list and the leftmost m elements of theright list. Suppose that the lengths of the d-strings resulting from the shu�e are, from rightto left: m;m=2; m=4; � � � . Then, after unshu�ing, the recursive calls will be on lists forwhich, again, the left list is always one half the length of the right list. Further, since noother information is known about the relationships between elements in opposing lists, wemay assume that the same thing happens at all lower levels of recursion.The following recurrence relation is therefore justi�ed:T (m; 2m) � cm + log2mXi=1 T (2i�1; 2i)for some constant c.The solution is T (m; 2m) � bm log2m for some constant b and for su�ciently largem. This can be justi�ed by noting that the substitution of the alleged solution into thesummation yields: b((k � 2)2k + 2), when m = 2k. Hence the right hand side of the aboveequation is at least bm logm = bk2k so long as we choose b so that c � 2b > 0. Hence thealgorithm has time complexity 
(n logn) on the family of instances considered.We conclude then that no instance requires more than O(n logn) and that instancescausing this behaviour do exist.5.3 Average CaseBy average we mean the arithmetic mean over all instances of the problem. There are �m+pm �possible ways of arranging a merge input characterised by the lengths, m and p, of the14
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input lists. We establish that the average case time complexity of a modi�ed version of thealgorithm is O((m+ p) log logm). This result does not preclude the possibility that a betterupper bound may be obtainable by a more sophisticated analysis.We do not know how to analyse the average behaviour of the basic algorithm so fardescribed. One reason is that the behaviour is dependent on the ratio of the input listlengths. Although we present, in the next section, some experimental evidence showing thatthe average behaviour is relatively good on lists of approximately equal length, we have justseen that the behaviour on lists of lengths m and 2m can be expected to be poor, becausethe most likely distribution is exactly the one with worst case behaviour. In order to getsome analytical insight into the algorithm's behaviour we propose a variation of the basicalgorithm which can be analysed. We are not necessarily recommending this method ashaving practical value.Let an (m; p)-merge denote a merge instance where m � p. Instead of using of thestandard shu�e, we use what we will call a \generalised" shu�e. This latter, no matter theratio m=p, will distribute the elements of the shorter list evenly among the elements of thelonger list. Let us accomplish this by specifying that element i in the left m-list is placed atposition di(p+m)=me and that the elements from the right p-list are placed in input orderin the gaps. Thus the elements of the shorter list can be viewed as dividing up the longerlist into segments of length either b(p=m)c or d(p=m)e. We discuss further the feasibility ofsuch a procedure in Section 7. For the purposes of this section, let us assume that such aprocess exists and requires linear time. Likewise, we assume that a \generalised unshu�e"exists.A modi�ed scan process need only scan in one direction. If the �rst element in the scanis from the shorter input, then blocks from the longer input are scanned until an elementgreater than the �rst is found. This may be in the middle of a block. If the �rst element inthe scan is from the longer input, then elements from the shorter input are scanned until anelement greater than the �rst is found, as in the basic algorithm.A \generalised" d-string will now consist of individual elements from the shorter listinterspersed among blocks from the longer. The �rst or last block may be partial. The m-length of a generalised d-string will be taken to be the number of elements from the shorterinput list in the d-string, or, equivalently, the number of blocks of elements from the longerinput list.Recursion will terminate in this modi�ed merge when the length of one list is reduced toone. At that point, a simple procedure such as repeated exchanges can be used to bring thesingle element to its correct position in the longer list.We �rst put an upper bound on the expected length of generalised d-strings resultingfrom the application of the generalised shu�e. We use the fact that there is a bijection16
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17



such a way that m=p remains constant. The Smirnov formula for the probability P is:limm;p!1P  s mpm+ pDm;p � z! = L(z)whereL(z) = 1� 2 1Xi=1(�1)i�1 exp(�2i2z2) (6)If Dm;p � m0:5+�=m then z � m�q pm+p . But p=(m + p) > 1=2, so z > m�=p2. HenceL(z) > 1� 2 1exp(m2�) � 1exp(4m2�) + 1exp(9m2�) + � � �!Thus L(z)! 1 as m!1. 2Lemma 5.2 For almost all instances of generalised shu�es, the m-length of the longestgeneralised d-string resulting from the shu�e is O(m0:5+�) for any � > 0.ProofConsider the e�ect of applying the basic shu�e to lists of equal length. Suppose,without loss of generality, that the result of the shu�e is a sequence of contiguous d-strings d1; d2; � � � ; dt, of lengths 2l1; 2l2; 2l3; � � � ; 2lt respectively. The contiguity implies thatthe corresponding lattice path does not touch the diagonal between the end points. Thescan/unshu�e phases will unshu�e the d-strings and invoke merges as follows: an (l1; l2)-merge, an (l2; l3)-merge, � � � , an (lt�1; lt)-merge. The notation is illustrated in Figure 7. Theheight of the lattice path corresponding to a particular merge at a path point correspondingto the pth element in the merged list is the absolute value of the number of left input elementsminus the number of right input elements up and including the pth element.Consider in particular those pthj elements in the merged input where:pj = 2 jXi=1 li + lj+1for any 0 � j � t�1. That is, consider those portions of the merged list up to and includingthe rightmost element resulting from any of the t�1 recursive merges just listed. The height18
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merge instances de�ned by the recursive calls generated by all instances i 2 I. Let elementsin R be characterised by the lengths a and b of the input lists and by j and k, the positionsin the original input lists of the �rst elements in the a-list (the one with a elements) and inthe b-list, (the one with b elements) respectively. Thus any element in R can be characterisedas an (a; b; j; k)-merge instance.

20



Lemma 5.3 If any particular (a; b; j; k)-merge instance exists in R then all (a; b; j; k)-mergeinstances exist in R and each particular instance occurs the same number of times.ProofFor any particular set of values a; b; j; k, let I 0 � I be the set of (m; p)-merge instancesthat generate a recursive (a; b; j; k)-merge instance. Now consider subsets of I 0 such thatall instances in the subset yield identical merged outcomes, except for the outcome of the(a; b; j; k)-merge instance. We observe that all possible (a; b; j; k)-merge instances must existexactly once in each of these subsets of I 0, else some (m; p)-merge instance is absent from I.Consequently, if an (a; b; j; k)-merge instances exists in R, then all possible instances existand each appears the same number of times. 2Theorem 5.1 The average time complexity of the generalised Shu�emerge over all (m; p)-instances is O((m+ p) log logm).ProofWe interpret the O notation as: Tav(m; p) � b(m + p) log logm for some constant b andall su�ciently large m, and proceed by induction on m. Suppose the statement is true forall instances of length < m.Consider the set I of all (m; p)-instances, for somem; p, m � p. Let N denote the numberof distinct instances, so that N = �m+pm �. Let R be the set of all recursive calls generated byall instances i 2 I. The time T0 taken at the top level to shu�e/scan/unshu�e is linear inthe number of elements, i.e. T0 � cN(m + p), for some constant c.Let us consider the set R to be partitioned into sub-sets, R2 through Rm�1, one perpossible value of mi, the length of the shorter list input to a recursive call. We rememberthat if m = 1 no recursive call is generated and that mi must be less than m.Consider the application of the algorithm to all the instances in R. We note that eachRi can be divided into subsets of instances with identical values for the length of the longerlist. These subsets can be further divided into sub-subsets with identical j and k values, asde�ned in the preamble to Lemma 5.3. By Lemma 5.3 we are entitled to apply the inductivehypothesis across each of these sub-subsets of Ri. Let TR be the time required to completecomputation on all instances in R. Let mr and pr denote the list lengths input to a recursiveinstance r 2 R, and let lr denote mr + pr. Then, by the inductive hypothesis:TR � m�1Xi=2 0@b log logmi Xr2Ri lr1A 21



For any �; 0 < � < 0:5 we divide the sum into those Ri for which mi � m0:5+� and the rest.Hence:TR � b log logm0:5+� m0:5+�Xi=2 Xr2Ri lr + b log logm m�1Xi=m0:5+� Xr2Ri lrLet k be the number of instances in R that fall within the left summation divided by jRj,so that 0 � k � 1. We note that the sum of the lengths of the recursive instances generatedby a single instance in I is � m+ p. Consequently:m�1Xi=2 Xr2Ri lr � (m+ p)Nwe have:TR � kNb(m + p) log logm0:5+� + (1� k)Nb(m + p) log logmConsequently, the total time is:T0 + TR � c(m + p)N + kNb(m + p) log logm0:5+� + (1� k)Nb(m + p) log logmWe note that for p > 1, logp logp n1=p = logp logp n � 1. So let the logarithms be taken tobase 1=(0:5 + �). Then:T0 + TR � N(m + p)(c+ k(b log logm� b) + (1� k)b log logm)The de�nition of k implies that k is the probability that an instance in R has m-length� m0:5+�. From the proofs of Lemmas 5.1 and 5.2, k = L(z) in Equation 6, Lemma 5.1.Since, 1 � k tends to zero faster than log log(m) increases, there exist a b and an m0 suchthat, for all m � m0: c� kb+(1� k)b log logm < 0. Hence, for these values of b and m, theaverage total time isTav = (T0 + TR)=N � b(m + p) log logmcon�rming the inductive hypothesis. 222



6 Experimental ResultsWe performed experiments to obtain some measure of the actual performance of both Shu�e-merge and HL-merge. We used that version of Shu�e which uses the one extra bit/element.As noted in Section 7, saving the extra bit is possible, at the expense of doubling the numberof moves. We also experimented with using these two algorithms as the basis for sortingby repeated merging. In the latter case, we also ran a standard Quicksort implementationwhich permits some measure of the cost of requiring stability in an in-situ sort.We chose to use numbers of element comparisons and element moves as the time com-plexity measures. We did not record CPU times, since these are data, machine and programdependent. Many other factors, such as sequences of memory references that cover widespans of memory, can inuence execution time. So we claim only that these results are aninitial indication of the possible practical value of Shu�emerge.In all these experiments we used lists of integers, randomly selected by our system'srandom number generator. Since the generator is designed to cycle through 231 integerswithout repetition, duplicate elements did not occur. Lists of up to one million elementswere processed. For the merging tests, the initial lists were of equal length. Each point inthe graphs below records the average of four independent experiments.The reader should also note that whereas in [HL88] and [HL92] it is element \exchanges"that are counted, we count an exchange as 3 moves. Further, for HL-merge, we only countedwork done during the \main" phase of the algorithm, ignoring that done during the \prepro-cessing". The reason for that was that we used a simpler but slower set up process than thatdescribed in [HL88]. The faster, but somewhat intricate, preprocessing described in [HL88]requires time O(pn) which is asymptotically negligible. In comparing the two merges onemust also note that we only ran the unstable HL-merge. The stable version would have beennoticeably slower to execute and more complex to program. We consider estimates, takenfrom [HL92], of the work done by the stable version of HL-merge at the end of this section.We provide four �gures which summarise our results. Figure 8 compares the numberof comparisons used by the two merge algorithms as a function of input size. The y-axis is(number of comparisons / number of elements). Figure 9 compares the number of moves used.The y-axis is (number of moves/ number of elements). Figure 10 compares the number ofcomparisons used when the merges are used in a standard sort by repeated merging process.The same information obtained from a standard implementation of Quicksort is included.The y-axis is (number of comparisons / n log2 n). Figure 11 compares the number of movesused when the merges are used in a standard sort by repeated merging process. Quicksortis also included. The y-axis is (number of moves) / (n log2 n).Figure 8 and Figure 9 show Shu�emerge using relatively fewer moves for n up to about23



1014 and somewhat more comparisons over the range of the experiments. The results forHL-merge are consistent with the expected linear time performance, namely 6n moves and1.5n comparisons. Those constants are derived as follows. The main phase of HL-mergeproceeds by �rst ordering pn blocks, each of size pn, on the �rst element in the block andthen merging pairs of blocks via the so called bu�er block. During the block sorting process,a selection sort would expect to use about n=2 comparisons in total, and about 3pn movesper block, i.e., 3n moves in total, During block merging each element must be compared andmoved by way of an exchange, yielding about n comparisons and 3n moves.The results for Shu�emerge show a slowly increasing \constant" of proportionality. Sinceeach level of recursion can perform a shu�e/unshu�e on all elements, and includes a scanacross all elements, between 2n and 3nmoves and n=2 comparisons are expected per recursionlevel.We used the two merges to achieve sort by repeated merge procedures and comparedtheir performances with that of a standard Quicksort. For the latter we used the methodwhich brings two pointers from the ends of the list in towards each other. The pivot waschosen from the mid-point of the list. We note that Quicksort's behaviour is consistentwith O(n logn) time complexity, whereas the behaviour of Shu�emerge clearly is not. Thebehaviour of Shu�emerge and the unstable HL-merge are very similar up to the maximumsize (a million elements) of the experiments. The increasing number of moves used by HL-merge sort, relative to expected O(n logn) behaviour, is perhaps explained by the earliergraphs showing that it does better on shorter lists, even though its behaviour is undoubtedlylinear asymptotically.The merge sorts are using up to �ve times as many moves as Quicksort, but are, perhapssurprisingly, using fewer comparisons, in the range of the experiments. This gives someidea of the cost of obtaining a stable, in-situ sort by using these plausibly practical merges,although, to get the cost of using a stable version of HL-merge, one must consider the extracost discussed at the end of this section.In evaluating these results one should remember that they are representative of specialinstances of the problem, namely equal length lists (such as one would expect in externalsorting applications) of elements approximately uniformly distributed over a range largerthan the list size. They should only be taken as approximate indicators of the relativeperformance one might expect from carefully tuned realisations of the algorithms.Finally we remind the reader that we experimented with the unstable version of HL-merge, and with the extra bit per element version of Shu�emerge. The simple analysis justgiven leads us to expect about 1:5n comparisons and 6n moves for the main phase of theunstable HL-merge. The experimental results accord nicely with expectations. In [HL92] an24
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Second cycleFirst cycleFigure 12: Realising the Perfect Shu�eWe show that, even so, the perfect shu�e can be achieved in-situ and in linear time.First we observe that an obvious method achieves the perfect shu�e in linear time, at theexpense of one bit per element which is used to mark each element as moved/not moved.When we need to start a new cycle, we can simply scan for an unmoved element. Of coursethe use of these extra bits contravenes the de�nition of in-situ.In Figure 7 we give the code for computing the next index in a cycle sequence. Note thatthe computation of indices involves only addition, subtraction and multiplication or divisionby 2. In the case of unshu�e, note that the mod operator is just a conditional subtraction.This minimises the possibility of arithmetic overow and avoids slower operations.Next we show that the extra bits can be dispensed with, thus attaining an absolutelyminimal use of storage, at the expense of approximately doubling the number of moves. Wenote that the general problem of shu�ing n elements can be reduced to the special case ofshu�ing 2k � 2 = p elements. This is done by letting k be the largest integer such thatp � n and exchanging the rightmost (n� p)=2 elements of the left list with the leftmost p=2elements from the right list. If we can solve the leader generation problem for the specialcase of n = 2k � 2, then the general problem can be solved by recursive application of theprocedure to the unshu�ed, rightmost n � p elements. The exchange itself is easily doneby a cyclic shift using between m and 3m=2 moves to shift m elements. The sum of thesemoves over the recursion is between n and 3n=2.Finally we note that the shu�e (or unshu�e) is essentially de�ned by the iterated as-signment: i  2 � i mod (n + 1). If n + 1 = 2k � 1 the right hand side is equivalent to aleft cyclic shift of the binary representation of i. Consider the equivalence classes generatedby the cyclic shift operation, i.e., each class is the set of binary strings such that, for anypair, one can be obtained from the other by a sequence of cyclic shifts. In other contexts,these equivalence classes are called \necklaces". Each necklace corresponds to one of ourpermutation cycles. A simple algorithm for generating a representative element from each29



{Let first and last be the indices of the first and lastelements in the segment to be shuffled. Let space be the indexof the current location to be filled. Then belongs, the indexof the location containing the element that should be moved tothe space is computed as follows.}{to shuffle:}if odd(space - first + 1)then belongs := num div 2 + (space - first) div 2 + firstelse belongs := (space - first + 1) div 2 + first - 1;{to unshuffle:}belongs := 2 * (space - first + 1) mod (num + 1) + first - 1;Figure 13: The Computation of Shu�e/Unshu�e Locationsnecklace is given in [FM78] and [FK86]. These elements are of course exactly what we needas cycle leaders.The algorithm generates a sequence of bit strings of length k, 0k being the �rst and 1kthe last in the sequence, where the notation (any string)k denotes the repetition of the stringk times. Let the bits be numbered 1 through k, from left to right. The successor, succ(�),of a string � = a1a2 � � �ak is formed by applying the following de�nition.For � < 1k, succ (�) = (a1a2 � � �ai�11)ta1 � � �aj, where i is the largest integer 1 � i � ksuch that ai = 0 and t; j are such that ti+ j = k and j < i.succ(�) is a cycle leader i� the i in the de�nition is a divisor of k. Figure 14 shows thesequence of bit strings of length 6 generated by this algorithm. The elements marked byan asterisk (1, 3, 5, 7, 9, 11, 13, 15, 21, 23, 27, 31) are the cycle leaders needed to shu�e26 � 2 = 62 elements.In [RSW92] it is shown that the algorithm generates these representative elements inconstant amortized time. Here \time" counts each bit operation and we count the divisiontest for cycle leadership as one operation. Hence, the total time is proportional to the numberof cycles. Both the cycle leader algorithm and the necklace generator use only a constantnumber of variables and thus together constitute an absolutely minimum space shu�ingalgorithm.Finally we observe that the \generalised" shu�e used in Section 5.3 is attainable byelaborating on the basic method just described. We now require that every element i in the30
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Figure 14: Generating Necklaces of Length 6left m-list is placed at position di(p+m)=me and that the elements from the right p-list areplaced in input order in the gaps, i.e., that m individual elements be shu�ed with m blocks.This can be done by the elementary method using the extra bits as moved/not moved ags,but at the expense of noticeably more elaborate arithmetic to compute the element positions.We note that the more sophisticated method does not generalise. The cycles in the newpermutation bear no obvious relationship to those in the basic shu�e. We remember thatthe generalised shu�e was only proposed as an aid in analysing the algorithm. We do notsuggest that it be considered as a practical possibility.8 Balanced InputsWe point out an interesting property of Shu�emerge which indicates that the average caseanalysis just given may be too pessimistic and also that there may be variations on thisalgorithmic theme with even better properties.We have described the correspondence between lattice paths and merge instances. Con-sider those points in the lattice path at which either the point is not on the diagonal andthe path changes direction or the point is on the diagonal. Let us call these two types ofpoint critical points. We de�ne a lattice path, in a square lattice, to be balanced if points inthe sequence of critical points are alternately on and o� the diagonal. A merge instance isbalanced i� the input lists are of equal length and its corresponding lattice path is balanced.Figure 15 shows an example of a balanced lattice path.
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Figure 15: Balanced InputLemma 8.1 Shu�emerge merges any balanced input in linear time.ProofConsider the simplest balanced merge instance, i.e., equal length lists such that all el-ements in one list are less than all elements in the other. One shu�e/scan/unshu�e issu�cient for each of the two possibilities, left list greater than right or vice versa. Sinceshu�ing, scanning and unshu�ing are all accomplished in linear time, the entire process islinear time.Now note that any balanced input consists of a sequence of one or more of these simpleinstances. One shu�e/scan/unshu�e is su�cient to order the entire list. The algorithm, asit stands, may invoke one recursive merge on adjacent segments resulting from the previousunshu�e, but, since these merges are on the simplest balanced instances, the algorithmterminates at this point. 2The upper bound on average case complexity used the O(pn) upper bound on the averageheight of lattice paths corresponding to the inputs. This is valid, but pessimistic. If the inputis balanced, the height is irrelevant. Rather, the amount of recursion is determined by thedeviation from balance. It is possible that an analysis based on some measure of unbalancecould justify a better upper bound on the average time complexity.The lattice path model also suggests that some kind of \preprocessing", perhaps usingminor rearrangements to bring the input closer to balance, might improve performance.32



We note that this can be done by exchanging and cyclic shifting segments. We have alsoconsidered the possibility of \shifting the diagonal" so that the input is closer to balanceabout the new diagonal.9 ConclusionsWe believe we have described an algorithm which is both interesting, because it tackles aclassic problem with a novel technique, attractive in its simplicity, and which might be ofpractical value. We suggest that further developments based on this new method may bepossible.We have given an average case time analysis which, although it does not apply to thebasic algorithm, nevertheless aids our understanding. Obtaining a better bound, or provingthat O(n log logn) is the best that can be done, is an interesting open problem. Likewise,whether or not a better bound than O(n logn) exists for the average case for the basicalgorithm remains to be established.We have shown that the perfect shu�e is attainable in linear time and using absolutelyminimum storage.We have pointed out an interesting property of Shu�emerge, namely that so called\balanced" inputs are merged in linear time, without recursion if so desired, using n=2comparisons and about 2n moves. A possibly fruitful variation on our approach could perhapsbe to try to balance unbalanced inputs by some kind of preprocessing. It remains possiblethat this or some other variation on the theme could remove the bad worst case or improvethe average case performance.Finally we note that certain hypercube like parallel processing architectures can achievea perfect shu�e in one step. We therefore suggest that it may be worth considering thetranslation of this method onto such a machine.AcknowledgmentWe are indebted to Ian Munro for the suggestion that we try reducing the general in-situ shu�ing problem to the special case and to the referees for very thorough readings andvaluable suggestions and corrections.
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