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Abstract

We introduce a novel approach to the classical problem of in-situ, stable merging,
where “in-situ” means the use of no more than O(log? n) bits of extra memory for lists
of size n. Shufflemerge reduces the merging problem to the problem of realising the
“perfect shuffle” permutation, that is, the exact interleaving of two, equal length lists.
The algorithm is recursive, using a logarithmic number of variables, and so does not
use absolutely minimum storage, i.e., a fixed number of variables.

A simple method of realising the perfect shuffle uses one extra bit per element, and
so is not in-situ. We show that the perfect shuffle can be attained using absolutely
minimum storage and in linear time, at the expense of doubling the number of moves,
relative to the simple method.

We note that there is a worst case for Shufflemerge requiring time Q(nlogn), where
n is the sum of the lengths of the input lists. We also present an analysis of a variant
of Shufflemerge which uses a generalised shuffle and which has a provable average case
time complexity of O(nloglogm), where m is the length of the shortest input list. It
is unlikely that the generalised shuffle can be achieved in-situ.

Linear time, in-situ, stable merging has previously been demonstrated. We present
experimental evidence indicating that Shufflemerge, although almost certainly not
asymptotically linear, might be of value in practice.

The relative simplicity of the basic method, particularly with respect to stability,
also recommends it.

*This work was supported by the Natural Sciences and Engineering Research Council of Canada



1 Introduction

We describe a novel merging algorithm with certain properties of theoretical interest and
possibly of practical value. The merging problem is to produce one sorted list from an
input of two sorted lists. The properties of interest are execution time, memory usage and
“stability”.

An “in-situ” merge, sort or other permutation, rearranges the subject elements within
the space that they occupy, in contrast to the standard merge algorithm which duplicates the
input space. We use the precise but tight definition of “in-situ” [Knu73] (Chapter 5, Section
5, Exercise 3) which allows the use of no more than O(log® n) bits over and above that space
occupied by the elements themselves, where n is the number of elements. This definition
permits recursion, so long as the stack depth is restricted to O(logn), but does not allow the
use of extra space proportional to n. It also implies that the lists be represented by arrays, or
parts of arrays. The extra space used by the pointers in a linked list representation would be
at least (pointer size x n), and each pointer would require at least log n bits. Originally, what
we are here referring to as “in-situ”, was called “minimum storage”, e.g., in the citation just
given [Knu73|. An even tighter restriction, sometimes referred to as “absolutely minimum
storage”, permits only O(logn) bits, i.e., a constant number of variables.

Stability is the property of a merge or sort which guarantees that the order of equal ele-
ments in the input is preserved in the output. A finer distinction is sometimes made between
“weak” and “strong” stability. The former permits a pair of equal elements from different
lists to be arranged in either order. The latter requires that priority be guaranteed for ele-
ments from one designated list. Stability is essential when one wants to sort successively on
more than one key.

The standard merge algorithm is simple, stable, and uses only linear time but it duplicates
the input space. An in-situ merge is desirable in circumstances such as merging or sorting
large external files, where the saving in space can permit the entire process to complete faster
since larger files can be merged at each step. Further, in-situ, stable, linear time merging
immediately yields in-situ, stable sorting in (asymptotically) optimal time, by way of a sort
by repeated merging.

The problem of constructing an algorithm with all three desirable properties has a long
history. It was first posed in [Knu73]. At that time, a linear time, in-situ but unstable merge
was known, [Kro69]. It was based on the idea of dividing up the lists into about y/n blocks
of size about y/n. Almost all subsequent developments, [Hor78] is one exception, have been
based on this principle. Early solutions, [Par77, Hor78], are generally considered to be both
complex and, although linear time, to have impractically large constants of proportionality,
i.e., greater than logn for “practical” n. Further, [Hor78] modifies keys.



A fairly straightforward algorithm using O(y/n) extra space can be based on the /n
block method by using two extra /n buffers for the elements plus space for /n pointers.
This method is described in [TB95] and is likely faster than any other known method using
less than linear extra space.

A practical solution should be both programmable within reasonable time and with
ordinary skill, and should have a time penalty, relative to the standard algorithm, that is
not so great as to make the space saving irrelevant. The first, in-situ, linear time solution,
that is arguably practical is given in [HL88|, where an unstable method is described, and
in [HL92], where a stabilising technique is added. This method uses absolutely minimum
storage. In this paper we report some experimental results obtained using both our method
and this one, which, for convenience, we call the “HL-merge”.

More recent work [Sym95], besides satisfying the three basic requirements, achieves an
optimal O(mlog(p/m -+ 1)) number of comparisons (where m and p are the input list lengths
and m < p). The authors say that the stabilising techniques used in the paper are “powerful
enough to make stable all the existing linear in-place unstable algorithms we are aware of”.
However, in that paper no estimates for the constants of proportionality are given and no
experimental results are presented.

Probably the most recent results in this area are reported in [Pas99]. In that thesis a
variety of absolutely minimum storage, stable/unstable, merging and sorting algorithms are
presented and analysed. For unstable merging 3(n+m)+o(n) moves and m(t+1)+n/2"4+0(m)
comparisons are used, where m < n are the input list lengths and ¢ = [log(n/m)|. For stable
merging 5n + 12m + o(m) moves and the same number of comparisons are used. Many of
these results have been, or are about to be, published, for example see [KP94], [KPT96] and
[GKP].

The interesting and useful features of the new algorithm are:

e The method is novel and further development may be possible. It reduces the problem
of merging to the problem of realising the permutation known as the “perfect shuffle”.

e The best upper bound on average time complexity that we can prove analytically is
O(nloglogn) and this is not for the basic algorithm but for a variant of the basic
algorithm which can not use the in-situ shuffle method, but must use the one extra
bit per element. There is an ©(nlogn) worst case. However, we present empirical
evidence indicating that our method might be of practical value.

e Stability falls out very naturally and simply in our method, and imposes no time
penalty (in terms of element comparisons and movements). In [HL92], [Sym95] and
in [Pas99] stability is achieved at the expense of extra program complexity and a
significant time penalty.



e The method is distinctly simpler, and hence easier to program, than any of those so
far cited.

We reduce merging to perfect shuffling, which we refer to as just “shuffling” for conve-
nience. The perfect shuffle is defined for two equal length lists, say L and R. The effect is to
intersperse the elements of one list amongst the other, in a perfectly even manner, and such
that the first element of R, which we can imagine to be the “right” input list, becomes the
first element of the result. For example, if L = a,b,¢,d and R = 1, 2, 3,4, then the result of
Shuffle(L, R) is the list: 1,a,2,b,3,¢,4,d.

The time and space complexity of Shufflemerge is clearly dependent on the time and
space complexity of the shuffling algorithm. We describe a simple shuffling algorithm which
uses linear time, but which requires one extra bit per list element. Thus that method is not
in-situ, though, in practice, one bit per element may often be immaterial .

We go on to show that the extra bits can be dispensed with, at the expense of ap-
proximately doubling the number of moves required. Thus the perfect shuffle itself, can be
realised in absolutely minimal space and in linear time, which we do not know to have been
previously demonstrated.

2 The Algorithm

The algorithm reduces the problem of merging to the problem of realising the “perfect shuffle”
permutation and its inverse. A novel feature of the method is that a large number, in some
cases all, of the list elements are moved before any comparisons are made. All movement of
elements is effected by way of the “perfect shuffle” permutation, or its inverse. Shuffling was
defined at the end of the introduction. How shuffling can be realized is discussed in Section
7. We refer to the shuffling procedure as “Shuffle” and to its inverse as “Unshuffle”.

It follows immediately from the definition that, if I and R are ordered, then the list
resulting from Shuffle is 2-ordered, i.e., for all 4, the i*" element is less than or equal to the
(i + 2)™ element, if the latter exists. Likewise, the effect of Unshuffle on a 2-ordered list is
to produce two, ordered lists.

A 2-ordered list resulting from a Shuffle of ordered lists is not necessarily itself ordered.
Picturing the constituent, ordered lists as being in increasing order from left to right, we use
the term d-string (d for disordered) to denote a maximal, even length, 2-ordered list segment
in which the leftmost element is greater than the rightmost. The maximality is defined
algorithmically. A leftwards d-string is maximal with respect to a leftwards scan from its
rightmost element, i.e., starting from the i** element the algorithm scans the (i — 1), the



(i — 3)™ etc. until an element less than or equal to the i is found. If that element is the
4™, then the d-string extends from the (j + 2) to the i*. If the (i — 1) is less than or
equal to the i, then there is no leftwards d-string starting at the i’* element. Likewise, a
rightwards d-string is maximal with respect to a rightwards scan from its leftmost element.

First we give an informal description of the algorithm. Let the left and right lists, input
to a merge be called L and R. They are not necessarily of equal lengths, whereas the shuffling
operation is defined only on equal length lists. Assume that |L| < |R|. If not, use the mirror
image of this description.

e Cut off a “tail” from the right end of R, such that the remainder is the same length as
L. Apply Shuffle to the interior elements of the list comprising the concatenation of
L and this remainder. Because the goal is to produce a 2-ordered string and because
of the way we have defined Shuffle, there is no need to move the end elements.

e Scan the shuffled segment from right to left, delineating leftwards d-strings, as just
defined.

e Unshuffle the d-strings, which are by definition of even length.

e Recursively merge adjacent segments resulting from the unshuffling of adjacent d-
strings. Include a merge of the rightmost unshuffled segment, if any, with the “tail” of
R, which was cut off in step 1.

Figure 1 illustrates the method. In this example, |L| < |R|. The figure shows one
application of the shuffle/scan/unshuffle process. A few particular points should be noted.

e We obtain a 2-ordered string by shuffling just the interior elements of the list formed
by the concatenation of the two lists to be shuffled. It is not necessary to include the
end elements.

e In this example the scan proceeds from right to left. In the opposite direction, different
d-strings would be obtained.

e Unshuffling the leftmost d-string yields the list 6, 7 as the right list and unshuffling
the adjacent d-string yields 4, 5, 8 as the left list. But we do not need to include 8 in
the recursive merge. We already know that the 8 element is greater than the 7 element
because the scan ensured that the d-string starting at 8 is maximal to the left.

Figure 2 is a Pascal realisation of the algorithm. We omit the code for the case in which
the right list is shorter than the left list. That code is just the mirror image of that given.
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Figure 1: The Operation of Shufflemerge



procedure Shufflemerge (firstl, lastl, last2 : integer);
{ Merges that segment of an array A from A[firstl] through A[lastl] with
the adjacent segment A[lastl+1] through A[last2]. We assume that both

segments are ordered. }

var high, mid, low : integer;

begin
{Check that both lists are non-emptyl}
if (lastl - firstl >= 0) and (last2 - lastl >= 1) then
if (lastl - firstl) < (last2 - lastl - 1) then
begin
{Left list is shorter than right list}
mid := 2 x lastl - firstl + 1; 1low := mid - 1; high := last2 + 1;
Shuffle (firstl + 1, mid - 1);
while mid > firstl do
begin
{Scan, right to left, for next d-string}
while (low >= firstl) and (A[low] > A[mid]) do low := low - 2;
if low < mid - 1 then {a d-string exists}
begin {Unshuffle d-string}
Unshuffle (low + 2, mid);
{Merge adjacent parts of unshuffled, adjacent d-strings}
Shufflemerge ((mid + low + 3) div 2, mid, high - 1);
high := (mid + low + 1) div 2; mid := low + 1
end
else {A[mid] is in correct position}
begin mid := mid - 1; low := low - 1; high := mid end
end
end
else {Left list is longer than, or same length as, right list.
Mirror image of previous code }
end;

Figure 2: The Merge Program



The way this procedure works can be understood with the help of Figure 3, which illus-
trates the relationships between the various indices used in the Pascal procedure. Correctness
can be verified by showing that the following proposition is a loop invariant for the outer
while loop, and by applying induction on the length of the lists. We note that the argument
is valid whether or not equal elements exist. We use [z,y] to denote that segment of the
array between and including A[z] and Aly]. If y < x, [z, y] denotes the empty segment. The
first item in the proposition guarantees that [firstl,last2] is ordered at exit from the loop,
since then maid < firstl.

Proposition 2.1

e [mid,last2] is ordered and
e no element in [high,last2] is less than any element in [firstl, high — 1] and

o [firstl, mid] is 2-ordered

Termination is guaranteed by noting that mid is necessarily decreased at each loop iter-
ation and that the recursive calls are on lists necessarily smaller than the input.

3  Stability

The algorithm as it stands is not “strongly” stable. However, since it never transposes or
even compares elements from the same list, it is “weakly” stable. To achieve strong stability
it is necessary and sufficient to know, whenever a comparison occurs between equal elements,
which element was originally from the left list and which from the right.

It is very easy in Shufflemerge to keep track of which lists the current elements being
compared (Allow] and A[mid]) came from. Suppose we maintain a Boolean flag, call it
low-left, which will be true iff A[low] came originally from the left list.

As the shuffled, 2-ordered segment is scanned by the inner while loop low-left should be
unchanged, because mid is constant and low is decremented by 2. As the outer while loop
is iterated, whether or not low-left should be complemented depends on whether the then
block or the else block was executed in the body of the loop. If the then block was executed
low-left should not be changed because low is not changed inside the then block. However,
in the else block, low is decremented by one, and so low-left should be complemented.

Of course the value of low-left must be passed down to lower levels of recursion. When a
recursive call is made, the left list input was from a right list at the current level of recursion,
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and wvice versa. Hence low-left should be complemented. This is all that is necessary to
achieve stability.

Note also that, although the flag now needs to be checked at every element comparison, no
more element comparisons are required. The flag check is used to choose between a “greater
than” operator, if low-left is true, or a “greater than or equal to” otherwise. Alternatively,
one could use a “state programming” approach in which the program would flip between
code for the “greater than” state and the “greater than or equal to” state, thus further
reducing flag tests.

By contrast, adding stability to the \/n block methods has proved challenging. For ex-
ample, the relatively simple block merge in [HL88] is unstable, a stable version was described
later in [HL92|. Stability is there obtained at a noticeable cost in both program complexity
and time, the authors estimating that the number of moves required is more than doubled
relative to the unstable version. The same observation applies to the results obtained in
[Pas99] and quoted in the introduction.

4 Space Complexity

We note that for the algorithm as presented can, run-time stack depth is limited only by
the length of the input. Consider the case where the left list contains one element which is
greater than anything in the right list. The algorithm will progress by repeatedly comparing
the single left list element with elements from the right list. The single left list element will
progress in unit steps through the right list until it reaches the right hand end. But this is
done by a sequence of recursive calls of length equal to the length of the right list. In this
instance extra space used on the run time stack is list length x space required for procedure
variables, which contravenes the in-situ definition.

We recall that, unmodified, Quicksort has a similar worst case. To ensure that stack
depth is limited to O(logn) one must explicitly test segment lengths and stack the longer of
the two partitions produced by the partition procedure. Otherwise, the same problem can
arise.

Likewise, a simple modification can ensure that Shuflemerge never requires a stack depth
exceeding O(logn). Consider the code in Figure 2. Note that there is exactly one recursive
call to Shufflemerge, in the middle of the loop which scans for d-strings. Note also that for
all these recursive calls, except possibly the first, the input lists are both parts of unshuffled
d-strings. The length of an input derived from a d-string can not exceed half the length of
the shortest original input list, by definition of a d-string. So a sequence of recursive calls on
these inputs can not generate worse than a logarithmic stack depth. This is not necessarily
true for the first recursive call, which may involve the “tail” cut off before the shuffle. That
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is the only possibility that can lead to a recursion depth worse than logarithmic.

Consequently, we can avoid that bad possibility by not invoking the procedure recursively
on the tail. This can be done by combining iteration and recursion. We replace the if
statements at the head of the code by:

while (both lists are not empty) do

The rest of the code remains unchanged ezcept that must we ensure that no recursive call is
made involving the tail. Rather, at the end of the loop, we reset the indices defining the lists
so as to define the tail and the list to be merged into it. Of course, if either is empty, the
iteration terminates. The result is that the merge into the tail, if necessary, is accomplished
by iteration rather than by recursion.

We can see that this modification does not change the time complexity of the algorithm
by noting that we are not changing the actions of the algorithm, just the order in which they
are done.

Because recursion depth is limited to O(logn) and the procedure uses a fixed number
of variables, each requiring O(logn) bits, the procedure uses O(log” n) bits, plus whatever
is used by the Shuffle/Unshuffle procedures. In Section 7 we show that shuffling can be
achieved either by the use of an extra bit/element, or in absolutely minimum space at the
expense of more moves.

5 Time Complexity

An analysis of the time complexity of Shufflemerge, as defined in Figure 2, is not trivial.
We show that the worst case time complexity of the algorithm is bounded by O(nlogn)
and that a family of instances with this behaviour exists. We are unable to analyse the
average behaviour of the basic algorithm but we do establish an average case time complexity
of O(nloglogn) on a modified version of the basic algorithm. A better bound might be
obtainable by a more sophisticated analysis. We recall that Quicksort has an Q(n?) worst
case performance, but is excellent in the average case and in practice.

5.1 An Upper Bound on the Worst Case

We establish an O(nlogn) upper bound on the worst case time complexity, where n is the
sum of the input list lengths. We work with the unmodified algorithm, as defined in Figure
2.

11
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Figure 4: Setting up the Recurrence Relation for the Worst Case
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Consider Figure 4. Without loss of generality, let the length, m, of the left list be less
than the length, p, of the right list. The first line in the diagram represents the input lists.
The second line represents the situation after the left list is shuffled with the leftmost m
elements of the right list. Suppose the rightmost d-string in the second line is of length 2d,
the third line represents the situation after the unshuffling of that d-string.

Now consider the bottom line. This represents two separate merges on lists comprising
undisturbed segments from the original lists. In the left merge we have the first m — d
elements from the original left list and the leftmost m elements from the original right list.
In the right merge we have the rightmost d elements from the original left list and the
rightmost p — m elements from the original right list. Consider the effect of the first step
of the left merge, namely a shuffle on the 2m — 2d leftmost elements. Note that we arrive
again at line 3.

The difference in the work done in going from line 1 to line 3 and going from line 4 to
line 3 is proportional to the length of the d-string. We see this by noting that from line 1
to line 2 we shuffle 2m elements, using say bm time for some constant b. From line 2 to line
3 we scan and unshuffle a d-string, using say cd time, for some constant ¢. To go from line
4 to line 3 we shuffle 2m — 2d elements, using time b(m — d). So the difference is (b + ¢)d
From line 3 onwards, the process would continue in the same manner, no matter the different
starting points. This observation justifies the following recurrence relation, where T'(m, p) is
an upper bound on the time required to merge a total of m + p elements.

T(m,p) < cid+T(m—d,m)+T(d,p—m) (1)

for some constant ¢;. Assume that the time complexity of the algorithm is O(nlogn), where
n = m + p, for smaller n, so that, for some ¢, and all sufficiently large n:

T(n) < canlogn

Substituting in Equation 1 yields:
T(m,p) < crd+ ca(2m — d) log(2m — d) + ca(p — m + d) log(p — m + d) (2)

Consider positive numbers a and b such that a < b. By writing b = ka for some k > 1 we
can show that:

aloga +blogh < (a+b)log(a+b) — a (3)

Take a to be the smaller of (2m —d) and (p —m+d), and b to be the larger. Then Equation
2 can be written:

T(m,p) < crd+ cealoga + coblogb (4)

13



Using Equation 3 yields:
T(m,p) < c1d — caa + co(m + p) log(m + p) (5)

Each of (2m — d) and (p — m + d), is at least d, since m > d and p > m. Hence if we choose
¢y > ¢1, then we ensure that T'(n) < cynlogn, and the hypothesis is confirmed.

5.2 Worst Case Instances

We define an infinite family of instances that require time Q(nlogn), were n = m + p.
Suppose the right list is exactly twice the length of the left list, i.e., p = 2m, and let m be a
power of two.

The first invocation of shuffle will be on the left list and the leftmost m elements of the
right list. Suppose that the lengths of the d-strings resulting from the shuffle are, from right
to left: m,m/2,m/4,---. Then, after unshuffling, the recursive calls will be on lists for
which, again, the left list is always one half the length of the right list. Further, since no
other information is known about the relationships between elements in opposing lists, we
may assume that the same thing happens at all lower levels of recursion.

The following recurrence relation is therefore justified:

log, m
T(m,2m) >cm+ Y T(27'2)
=1

for some constant c.

The solution is T'(m,2m) > bmlog, m for some constant b and for sufficiently large
m. This can be justified by noting that the substitution of the alleged solution into the
summation yields: b((k — 2)2F + 2), when m = 2. Hence the right hand side of the above
equation is at least bmlogm = bk2*¥ so long as we choose b so that ¢ — 2b > 0. Hence the
algorithm has time complexity €(nlogn) on the family of instances considered.

We conclude then that no instance requires more than O(nlogn) and that instances
causing this behaviour do exist.

5.3 Average Case

By average we mean the arithmetic mean over all instances of the problem. There are (m;“p

possible ways of arranging a merge input characterised by the lengths, m and p, of the
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input lists. We establish that the average case time complexity of a modified version of the
algorithm is O((m + p) loglogm). This result does not preclude the possibility that a better
upper bound may be obtainable by a more sophisticated analysis.

We do not know how to analyse the average behaviour of the basic algorithm so far
described. One reason is that the behaviour is dependent on the ratio of the input list
lengths. Although we present, in the next section, some experimental evidence showing that
the average behaviour is relatively good on lists of approximately equal length, we have just
seen that the behaviour on lists of lengths m and 2m can be expected to be poor, because
the most likely distribution is exactly the one with worst case behaviour. In order to get
some analytical insight into the algorithm’s behaviour we propose a variation of the basic
algorithm which can be analysed. We are not necessarily recommending this method as
having practical value.

Let an (m,p)-merge denote a merge instance where m < p. Instead of using of the
standard shuffle, we use what we will call a “generalised” shuffle. This latter, no matter the
ratio m/p, will distribute the elements of the shorter list evenly among the elements of the
longer list. Let us accomplish this by specifying that element 7 in the left m-list is placed at
position [i(p +m)/m| and that the elements from the right p-list are placed in input order
in the gaps. Thus the elements of the shorter list can be viewed as dividing up the longer
list into segments of length either |(p/m)]| or [(p/m)]. We discuss further the feasibility of
such a procedure in Section 7. For the purposes of this section, let us assume that such a
process exists and requires linear time. Likewise, we assume that a “generalised unshuffle”
exists.

A modified scan process need only scan in one direction. If the first element in the scan
is from the shorter input, then blocks from the longer input are scanned until an element
greater than the first is found. This may be in the middle of a block. If the first element in
the scan is from the longer input, then elements from the shorter input are scanned until an
element greater than the first is found, as in the basic algorithm.

A “generalised” d-string will now consist of individual elements from the shorter list
interspersed among blocks from the longer. The first or last block may be partial. The m-
length of a generalised d-string will be taken to be the number of elements from the shorter
input list in the d-string, or, equivalently, the number of blocks of elements from the longer
input list.

Recursion will terminate in this modified merge when the length of one list is reduced to
one. At that point, a simple procedure such as repeated exchanges can be used to bring the
single element to its correct position in the longer list.

We first put an upper bound on the expected length of generalised d-strings resulting
from the application of the generalised shuffle. We use the fact that there is a bijection
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Figure 6: Correspondence between Lattice Paths and Merges

between instances of merging two lists of length m and p and monotonic paths between the
point (0,0) and the point (m,p) in the m by p lattice. Figure 6 shows the path in the 4 by 5

lattice corresponding to one instance of merging lists of length 4 and 5. Each of the (mn“:”)

possible paths corresponds to one of the (m;:p) possible outcomes of the merge.

Suppose that an (m, p)-merge instance, where m < p, is represented by an m x p lattice
where m is the vertical dimension. Let the diagonal of the lattice have the obvious geomet-
rical interpretation and let the height of a point on a lattice path be the vertical distance of
the point from the diagonal. By almost all paths having some property, we mean that the
fraction of paths having the property tends to one as the list lengths tend to infinity. We
want to put an upper bound on the maximum height of any point on a lattice path which
holds for almost all paths.

Lemma 5.1 The probability that a path deviates, for at least one of its points, from the
diagonal by a vertical distance greater than m®>¢, for any e > 0, tends to zero as m and p
tend to infinity in such a way that m/p remains constant.

Proof
We use a result due to Smirnov [Smi39],which is quoted in many texts on statistics. It

gives the asymptotic distribution of D,,,. where, if d is the absolute deviation of the path
from the diagonal, D,,, = d/m. By asymptotic is meant: as m and p tend to infinity in
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such a way that m/p remains constant. The Smirnov formula for the probability P is:

lim P ( TP Doy < z> = L(2)

m,p— o0 m _|_ p

where
L(z)=1- 22(—1)1'1 exp(—2i*2?) (6)

If Dy <m®**/m then 2 > me, /B, But p/(m +p) >1/2,50 2 > m¢/+/2. Hence

L(z)>1—2< ! 1 + ! +>

exp(m?)  exp(4m?) | exp(9m?)

Thus L(z) — 1 as m — oc. 0

Lemma 5.2 For almost all instances of generalised shuffles, the m-length of the longest
generalised d-string resulting from the shuffle is O(m°>€) for any e > 0.

Proof

Consider the effect of applying the basic shuffle to lists of equal length. Suppose,
without loss of generality, that the result of the shuffle is a sequence of contiguous d-
strings dy, ds, - - -, dy, of lengths 21y, 215, 213, - - - , 21, respectively. The contiguity implies that
the corresponding lattice path does not touch the diagonal between the end points. The
scan/unshuffle phases will unshuffle the d-strings and invoke merges as follows: an (I, 1s)-
merge, an (ly, [3)-merge, - -+, an (l;_1,;)-merge. The notation is illustrated in Figure 7. The
height of the lattice path corresponding to a particular merge at a path point corresponding
to the p element in the merged list is the absolute value of the number of left input elements
minus the number of right input elements up and including the p** element.

Consider in particular those pﬁ-h elements in the merged input where:
J
P =2 li+1i
i=1

for any 0 < j < t—1. That is, consider those portions of the merged list up to and including
the rightmost element resulting from any of the ¢ — 1 recursive merges just listed. The height
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Figure 7: Notation used in Lemma 5.2

of these points is /1, because an equal number of elements from the left and right inputs is
contributed by all d-strings except d; . If d; is the longest d-string in the sequence, then
there is a point of height [;.

The m-length of a generalised d-string has been defined to be the number of elements in
that d-string derived from the shorter input list. The height of a point in an (m, p) lattice
path has been defined to be the vertical distance of that point from the diagonal. To expand
the argument to cover the generalised case, it is sufficient to note that the two components
of a generalised d-string are no longer of equal length. If the part belonging to the m-list is
of length [;, the part belonging to the p-list is of length [;p/m. But, since the slope of the
diagonal is now m/p instead of one, the summation Y7_ (1 4 p/m)l;, still yields points on
the diagonal. Hence the height of the corresponding p; points is still /;.

Inserting the upper bound on the height of almost all paths given in Lemma 5.1 produces
the desired result. O

We are going to prove Theorem 5.1 below by induction and it will be necessary to apply
the inductive hypothesis to the sub-instances of the problem input to the recursive calls.
In analysing average case behaviour it is customary to assume that all initial instances are
equally likely. This does not necessarily imply that all sub-instances are also equally likely.
The next lemma classifies sub-instances in a way such that each type is equally likely.

Let I denote the set of all (m, p)-merge instances, for some m, p, where m < p. Let R be
the multi-set (we need to be able to count the number of appearances of each element) of all
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merge instances defined by the recursive calls generated by all instances ¢ € I. Let elements
in R be characterised by the lengths @ and b of the input lists and by 7 and k, the positions
in the original input lists of the first elements in the a-list (the one with a elements) and in
the b-list, (the one with b elements) respectively. Thus any element in R can be characterised
as an (a, b, j, k)-merge instance.
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Lemma 5.3 If any particular (a, b, j, k)-merge instance exists in R then all (a, b, j, k)-merge
instances exist in R and each particular instance occurs the same number of times.

Proof

For any particular set of values a, b, j, k, let I' C I be the set of (m,p)-merge instances
that generate a recursive (a,b,j, k)-merge instance. Now consider subsets of I’ such that
all instances in the subset yield identical merged outcomes, except for the outcome of the
(a, b, j, k)-merge instance. We observe that all possible (a, b, j, k)-merge instances must exist
exactly once in each of these subsets of I', else some (m, p)-merge instance is absent from 1.
Consequently, if an (a, b, j, k)-merge instances exists in R, then all possible instances exist
and each appears the same number of times. O

Theorem 5.1 The average time complezity of the generalised Shufflemerge over all (m,p)-
instances is O((m + p) loglogm).

Proof

We interpret the O notation as: T,,(m,p) < b(m + p) loglogm for some constant b and
all sufficiently large m, and proceed by induction on m. Suppose the statement is true for
all instances of length < m.

Consider the set I of all (m, p)-instances, for some m, p, m < p. Let N denote the number
of distinct instances, so that N = (mn“:”). Let R be the set of all recursive calls generated by

all instances 7 € I. The time Tj taken at the top level to shuffle/scan/unshuffle is linear in
the number of elements, i.e. Ty < ¢N(m + p), for some constant c.

Let us consider the set R to be partitioned into sub-sets, Ry through R,, |, one per
possible value of m;, the length of the shorter list input to a recursive call. We remember
that if m = 1 no recursive call is generated and that m; must be less than m.

Consider the application of the algorithm to all the instances in . We note that each
R; can be divided into subsets of instances with identical values for the length of the longer
list. These subsets can be further divided into sub-subsets with identical j and & values, as
defined in the preamble to Lemma 5.3. By Lemma 5.3 we are entitled to apply the inductive
hypothesis across each of these sub-subsets of R;. Let Tk be the time required to complete
computation on all instances in R. Let m, and p, denote the list lengths input to a recursive
instance r € R, and let [, denote m, + p,. Then, by the inductive hypothesis:

reR;

m—1
T < Z (blog log m; Z lr)
i=2
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For any €,0 < € < 0.5 we divide the sum into those R; for which m; < m°5%¢ and the rest.
Hence:

m0-5+e m—1
Tr < bloglog m®®te Z Z [, + bloglogm Z Z [,
i=2 reR; i=m0-3te reR;

Let k be the number of instances in R that fall within the left summation divided by |R|,
so that 0 < k < 1. We note that the sum of the lengths of the recursive instances generated
by a single instance in [ is < m + p. Consequently:

m—1

Y I, <(m+p)N

i=2 reR;
we have:
Tr < ENb(m + p)loglog m®**¢ 4 (1 — k) Nb(m + p) loglog m
Consequently, the total time is:
To +Tg < c(m +p)N + ENb(m + p) loglog m™**¢ 4+ (1 — k) Nb(m + p) loglog m

We note that for p > 1, log, log, nl/P = log, log,n — 1. So let the logarithms be taken to
base 1/(0.5 + €). Then:

To+Tr < N(m+p)(c+ k(bloglogm — b) + (1 — k)bloglogm)

The definition of k£ implies that k is the probability that an instance in R has m-length
< m®%5*¢, From the proofs of Lemmas 5.1 and 5.2, & = L(z) in Equation 6, Lemma 5.1.
Since, 1 — k tends to zero faster than loglog(m) increases, there exist a b and an mg such
that, for all m > my: ¢ —kb+ (1 — k)bloglogm < 0. Hence, for these values of b and m, the
average total time is

Tw = (To +Tg)/N < b(m + p) loglogm

confirming the inductive hypothesis. O
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6 Experimental Results

We performed experiments to obtain some measure of the actual performance of both Shuffle-
merge and HL-merge. We used that version of Shuffle which uses the one extra bit/element.
As noted in Section 7, saving the extra bit is possible, at the expense of doubling the number
of moves. We also experimented with using these two algorithms as the basis for sorting
by repeated merging. In the latter case, we also ran a standard Quicksort implementation
which permits some measure of the cost of requiring stability in an in-situ sort.

We chose to use numbers of element comparisons and element moves as the time com-
plexity measures. We did not record CPU times, since these are data, machine and program
dependent. Many other factors, such as sequences of memory references that cover wide
spans of memory, can influence execution time. So we claim only that these results are an
initial indication of the possible practical value of Shufflemerge.

In all these experiments we used lists of integers, randomly selected by our system’s
random number generator. Since the generator is designed to cycle through 23! integers
without repetition, duplicate elements did not occur. Lists of up to one million elements
were processed. For the merging tests, the initial lists were of equal length. Each point in
the graphs below records the average of four independent experiments.

The reader should also note that whereas in [HL88] and [HL92] it is element “exchanges”
that are counted, we count an exchange as 3 moves. Further, for HL-merge, we only counted
work done during the “main” phase of the algorithm, ignoring that done during the “prepro-
cessing”. The reason for that was that we used a simpler but slower set up process than that
described in [HL88|. The faster, but somewhat intricate, preprocessing described in [HL88]
requires time O(y/n) which is asymptotically negligible. In comparing the two merges one
must also note that we only ran the unstable HL-merge. The stable version would have been
noticeably slower to execute and more complex to program. We consider estimates, taken
from [HL92], of the work done by the stable version of HL-merge at the end of this section.

We provide four figures which summarise our results. Figure 8 compares the number
of comparisons used by the two merge algorithms as a function of input size. The y-axis is
(number of comparisons / number of elements). Figure 9 compares the number of moves used.
The y-axis is (number of moves/ number of elements). Figure 10 compares the number of
comparisons used when the merges are used in a standard sort by repeated merging process.
The same information obtained from a standard implementation of Quicksort is included.
The y-axis is (number of comparisons / nlog, n). Figure 11 compares the number of moves
used when the merges are used in a standard sort by repeated merging process. Quicksort
is also included. The y-axis is (number of moves) / (nlog,n).

Figure 8 and Figure 9 show Shufflemerge using relatively fewer moves for n up to about
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10" and somewhat more comparisons over the range of the experiments. The results for
HL-merge are consistent with the expected linear time performance, namely 6n moves and
1.5n comparisons. Those constants are derived as follows. The main phase of HL-merge
proceeds by first ordering /n blocks, each of size \/n, on the first element in the block and
then merging pairs of blocks via the so called buffer block. During the block sorting process,
a selection sort would expect to use about n/2 comparisons in total, and about 3y/n moves
per block, i.e., 3n moves in total, During block merging each element must be compared and
moved by way of an exchange, yielding about n comparisons and 3n moves.

The results for Shufflemerge show a slowly increasing “constant” of proportionality. Since
each level of recursion can perform a shuffle/unshuffle on all elements, and includes a scan
across all elements, between 2n and 3n moves and n/2 comparisons are expected per recursion
level.

We used the two merges to achieve sort by repeated merge procedures and compared
their performances with that of a standard Quicksort. For the latter we used the method
which brings two pointers from the ends of the list in towards each other. The pivot was
chosen from the mid-point of the list. We note that Quicksort’s behaviour is consistent
with O(nlogn) time complexity, whereas the behaviour of Shufflemerge clearly is not. The
behaviour of Shufflemerge and the unstable HL-merge are very similar up to the maximum
size (a million elements) of the experiments. The increasing number of moves used by HIL-
merge sort, relative to expected O(nlogn) behaviour, is perhaps explained by the earlier
graphs showing that it does better on shorter lists, even though its behaviour is undoubtedly
linear asymptotically.

The merge sorts are using up to five times as many moves as Quicksort, but are, perhaps
surprisingly, using fewer comparisons, in the range of the experiments. This gives some
idea of the cost of obtaining a stable, in-situ sort by using these plausibly practical merges,
although, to get the cost of using a stable version of HL-merge, one must consider the extra
cost discussed at the end of this section.

In evaluating these results one should remember that they are representative of special
instances of the problem, namely equal length lists (such as one would expect in external
sorting applications) of elements approximately uniformly distributed over a range larger
than the list size. They should only be taken as approximate indicators of the relative
performance one might expect from carefully tuned realisations of the algorithms.

Finally we remind the reader that we experimented with the unstable version of HL-
merge, and with the extra bit per element version of Shufflemerge. The simple analysis just
given leads us to expect about 1.5n comparisons and 6n moves for the main phase of the

unstable HL-merge. The experimental results accord nicely with expectations. In [HL92] an
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estimate is given of the number of comparisons and exchanges used by the stable version of
HL-merge. Converting each of the authors’ exchanges to 3 moves we obtain not more than
2n comparisons and about 13.5n moves. Using the in-situ version of the Shuffle procedure

would again about double the number of moves used by Shufflemerge.

7 Shuffling

Certain permutations can be achieved in-situ and in linear time without difficulty. Examples
are the reversal or cyclic shift of a list, represented by an array. Permutations are made up
of cycles and it is easy to move all the elements of one cycle, using just one extra location,
by a “cycle leader” algorithm. A cycle leader algorithm proceeds by repeatedly making a
space in the list, computing the index of the element that belongs in that space and moving
that element, so creating a new space. See for example [FMP95]. The movement of elements
during a six element shuffle is illustrated in Figure 12. In the case of the perfect shuffle it is
not obvious how to compute the beginning of a new cycle when a given cycle returns to the
starting point.
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temp First cycle temp Second cycle

Figure 12: Realising the Perfect Shuffle

We show that, even so, the perfect shuffle can be achieved in-situ and in linear time.
First we observe that an obvious method achieves the perfect shuffle in linear time, at the
expense of one bit per element which is used to mark each element as moved/not moved.
When we need to start a new cycle, we can simply scan for an unmoved element. Of course
the use of these extra bits contravenes the definition of in-situ.

In Figure 7 we give the code for computing the next index in a cycle sequence. Note that
the computation of indices involves only addition, subtraction and multiplication or division
by 2. In the case of unshuffle, note that the mod operator is just a conditional subtraction.
This minimises the possibility of arithmetic overflow and avoids slower operations.

Next we show that the extra bits can be dispensed with, thus attaining an absolutely
minimal use of storage, at the expense of approximately doubling the number of moves. We
note that the general problem of shuffling n elements can be reduced to the special case of
shuffling 2 — 2 = p elements. This is done by letting k£ be the largest integer such that
p < n and exchanging the rightmost (n — p)/2 elements of the left list with the leftmost p/2
elements from the right list. If we can solve the leader generation problem for the special
case of n = 28 — 2, then the general problem can be solved by recursive application of the
procedure to the unshuffled, rightmost n — p elements. The exchange itself is easily done
by a cyclic shift using between m and 3m/2 moves to shift m elements. The sum of these
moves over the recursion is between n and 3n/2.

Finally we note that the shuffle (or unshuffle) is essentially defined by the iterated as-
signment: i < 2 ximod (n+ 1). If n+ 1 = 2F — 1 the right hand side is equivalent to a
left cyclic shift of the binary representation of i. Consider the equivalence classes generated
by the cyclic shift operation, i.e., each class is the set of binary strings such that, for any
pair, one can be obtained from the other by a sequence of cyclic shifts. In other contexts,
these equivalence classes are called “necklaces”. Each necklace corresponds to one of our
permutation cycles. A simple algorithm for generating a representative element from each
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{Let first and last be the indices of the first and last
elements in the segment to be shuffled. Let space be the index
of the current location to be filled. Then belongs, the index
of the location containing the element that should be moved to
the space is computed as follows.}

{to shuffle:}

if odd(space - first + 1)

then belongs := num div 2 + (space - first) div 2 + first
else belongs := (space - first + 1) div 2 + first - 1;

{to unshuffle:}
belongs := 2 * (space - first + 1) mod (num + 1) + first - 1;

Figure 13: The Computation of Shuffle/Unshuffle Locations

necklace is given in [FM78] and [FK86]. These elements are of course exactly what we need
as cycle leaders.

The algorithm generates a sequence of bit strings of length k, 0% being the first and 1*
the last in the sequence, where the notation (any string)* denotes the repetition of the string
k times. Let the bits be numbered 1 through k, from left to right. The successor, succ(a),
of a string o = ayas - - - a; is formed by applying the following definition.

For a < 1%, suce (o) = (ayaz---a; 11)'ay - - - a;, where i is the largest integer 1 < i < k
such that a; =0 and t,j are such that ti + 7 =k and j < 1.

succ(a) is a cycle leader iff the i in the definition is a divisor of k. Figure 14 shows the
sequence of bit strings of length 6 generated by this algorithm. The elements marked by
an asterisk (1, 3, 5, 7, 9, 11, 13, 15, 21, 23, 27, 31) are the cycle leaders needed to shuffle
26 — 2 = 62 elements.

In [RSW92] it is shown that the algorithm generates these representative elements in
constant amortized time. Here “time” counts each bit operation and we count the division
test for cycle leadership as one operation. Hence, the total time is proportional to the number
of cycles. Both the cycle leader algorithm and the necklace generator use only a constant
number of variables and thus together constitute an absolutely minimum space shuffling
algorithm.

Finally we observe that the “generalised” shuffle used in Section 5.3 is attainable by
elaborating on the basic method just described. We now require that every element i in the
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000000 000110 001101* 011011*
000001* 000111* 001110 011101
000010 001001~ 001111~ 011110
000011* 001010 010101* 011111*
000100 001011~ 010110 111111
000101* 001100 010111

Figure 14: Generating Necklaces of Length 6

left m-list is placed at position [i(p+m)/m]| and that the elements from the right p-list are
placed in input order in the gaps, i.e., that m individual elements be shuffled with m blocks.
This can be done by the elementary method using the extra bits as moved /not moved flags,
but at the expense of noticeably more elaborate arithmetic to compute the element positions.

We note that the more sophisticated method does not generalise. The cycles in the new
permutation bear no obvious relationship to those in the basic shuffle. We remember that
the generalised shuffle was only proposed as an aid in analysing the algorithm. We do not
suggest that it be considered as a practical possibility.

8 Balanced Inputs

We point out an interesting property of Shufflemerge which indicates that the average case
analysis just given may be too pessimistic and also that there may be variations on this
algorithmic theme with even better properties.

We have described the correspondence between lattice paths and merge instances. Con-
sider those points in the lattice path at which either the point is not on the diagonal and
the path changes direction or the point is on the diagonal. Let us call these two types of
point critical points. We define a lattice path, in a square lattice, to be balanced if points in
the sequence of critical points are alternately on and off the diagonal. A merge instance is
balanced iff the input lists are of equal length and its corresponding lattice path is balanced.
Figure 15 shows an example of a balanced lattice path.
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Figure 15: Balanced Input

Lemma 8.1 Shufflemerge merges any balanced input in linear time.

Proof

Consider the simplest balanced merge instance, i.e., equal length lists such that all el-
ements in one list are less than all elements in the other. One shuffle/scan/unshuffle is
sufficient for each of the two possibilities, left list greater than right or wvice versa. Since
shuffling, scanning and unshuffling are all accomplished in linear time, the entire process is
linear time.

Now note that any balanced input consists of a sequence of one or more of these simple
instances. One shuffle/scan/unshuffle is sufficient to order the entire list. The algorithm, as
it stands, may invoke one recursive merge on adjacent segments resulting from the previous
unshuffle, but, since these merges are on the simplest balanced instances, the algorithm
terminates at this point. O

The upper bound on average case complexity used the O(y/n) upper bound on the average
height of lattice paths corresponding to the inputs. This is valid, but pessimistic. If the input
is balanced, the height is irrelevant. Rather, the amount of recursion is determined by the
deviation from balance. It is possible that an analysis based on some measure of unbalance
could justify a better upper bound on the average time complexity.

The lattice path model also suggests that some kind of “preprocessing”, perhaps using
minor rearrangements to bring the input closer to balance, might improve performance.
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We note that this can be done by exchanging and cyclic shifting segments. We have also
considered the possibility of “shifting the diagonal” so that the input is closer to balance
about the new diagonal.

9 Conclusions

We believe we have described an algorithm which is both interesting, because it tackles a
classic problem with a novel technique, attractive in its simplicity, and which might be of
practical value. We suggest that further developments based on this new method may be
possible.

We have given an average case time analysis which, although it does not apply to the
basic algorithm, nevertheless aids our understanding. Obtaining a better bound, or proving
that O(nloglogn) is the best that can be done, is an interesting open problem. Likewise,
whether or not a better bound than O(nlogn) exists for the average case for the basic
algorithm remains to be established.

We have shown that the perfect shuffle is attainable in linear time and using absolutely
minimum storage.

We have pointed out an interesting property of Shufflemerge, namely that so called
“balanced” inputs are merged in linear time, without recursion if so desired, using n/2
comparisons and about 2n moves. A possibly fruitful variation on our approach could perhaps
be to try to balance unbalanced inputs by some kind of preprocessing. It remains possible
that this or some other variation on the theme could remove the bad worst case or improve
the average case performance.

Finally we note that certain hypercube like parallel processing architectures can achieve
a perfect shuffle in one step. We therefore suggest that it may be worth considering the
translation of this method onto such a machine.
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