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A di�erent reasoning paradigm, which has been stud-ied for an even longer period, is direct inference. Di-rect inference is concerned with reasoning to conclu-sions about particular individuals from general statisti-cal knowledge. For example, from a knowledge base con-sisting of the statistical information \90% of birds y"and the fact \Tweety is a bird", theories of direct infer-ence would allow us to conclude that our degree of beliefin \Tweety ies" should be 0.9. Di�erent systems for di-rect inference that have been suggested include [Bacchus,1990; Bacchus et al., 1992; Kyburg, 1974; Levi, 1980;Pollock, 1990; Reichenbach, 1949; Salmon, 1971].Direct inference and default reasoning share a numberof important characteristics. First, neither is a logicallysound inference system. Neither statistical knowledgenor defaults about the class of all birds permit us to de-duce anything for certain about a particular bird such asTweety: Both \Tweety ies" and \Tweety does not y"are logically consistent with \90% of birds y" or \birdstypically y". Second, both direct inference and defaultreasoning are nonmonotonic. If we learn that penguinsdo not y, and that Tweety is a penguin, direct inferencewould generate a di�erent degree of belief in Tweety y-ing. Similarly, default reasoning systems would retractthe conclusion that Tweety ies. And third, variousproperties, such as ignoring irrelevant information andpreferring more speci�c information, are considered tobe desirable in both default reasoning and direct infer-ence.So how deep is the connection between direct infer-ence and AI default reasoning? Some applications ofdefaults seem to have little to do with statistics [Mc-Carthy, 1986]. But equally often, defaults have somebasis in statistics. For example, the default \Birds typ-ically y" appears to have as one of its justi�cationsthe statistical fact that most birds y. Thus, it seemsreasonable to adapt techniques from direct inference toreason with defaults of this type. Our theme in thispaper is that this plausible connection between directinference and default reasoning can be made precise. Inparticular, we show in Section 3 that a new method fordirect inference, �rst introduced in [Bacchus et al., 1992;Grove et al., 1992b], can provide many of the featuresconsidered desirable in default reasoning. Among otherthings, it provides a preference for more speci�c defaultsas well as the ability to ignore irrelevant information.



This is particularly important as there is a tensionbetween these two requirements. Most theories of de-fault reasoning fail to capture both of them simulta-neously (see, for example, [Ge�ner and Pearl, 1990;Lehmann and Magidor, 1992; Pearl, 1990; Reiter, 1980]).What is even more important is that for us these prop-erties follow directly from an independently motivatedsemantics; they are not the result of adopting an ad hoctheory of irrelevance.In our method, we presume that there is a knowledgebase that consists of information about the world, inthe form of �rst-order statements (such as \All penguinsare birds") and statistical information. The statisticalinformation might be quantitative, e.g., \90% of birdsy", or it might be in the form of qualitative defaultinformation. We interpret a default statement such as\Birds typically y" as the statistical assertion \Almostall birds y", which is given a precise semantic interpre-tation within our formalism. This interpretation of de-faults has a number of bene�ts. The �rst is simply thatwe understand what our knowledge base means. Manydefault theories will tell us how to reason with \Birdstypically y". But, as pointed out by [Neufeld, 1989],there is far less work telling us when we should adoptthis default in the �rst place. Speci�cally, what is thereabout the world that makes this a good default? Forus, the true proportion of ying birds o�ers a guide tohow reasonable our approximation \Almost all birds y"really is. In addition, the semantics imposes natural con-straints on the defaults. For example, in our formalismthe default \Birds typically y" is inconsistent with boththe default \Birds typically do not y" and the logicalassertion \No bird ies".A major advantage of our approach is that it allowsfor rich knowledge bases, with arbitrary �rst-order in-formation and statistical information. Thus, it can sup-port both quantitative and qualitative reasoning. In Sec-tion 4, we demonstrate the advantages of being able toperform both types of reasoning in a uni�ed framework,by considering both the Lottery Paradox and the NixonDiamond example.We are certainly not the �rst to apply a probabilis-tic semantics to nonmonotonic logic (see [Pearl, 1989]for an overview). However, while all the other prob-abilistic approaches we are aware of use the statisti-cal interpretation as a motivation for using probabil-ities, none make explicit use of statistical assertions.Nevertheless, there are close technical connections be-tween our approach and �-semantics [Adams, 1975;Ge�ner and Pearl, 1990]. In particular, we show inSection 5 that the approach of Goldszmidt, Morris,and Pearl [1990], which extends �-semantics by apply-ing ideas of maximum entropy, can be embedded in ourframework. Besides providing further justi�cation forthe use of maximum entropy in [Goldszmidt et al., 1990],this embedding allows us to use the algorithms they havedeveloped to calculate degrees of belief for formulas in afragment of our full language.

2 The FormalismWe assume that the knowledge base consists of sentenceswritten in a formal language that allows us to expressboth statistical information and �rst-order information.We use the probability logic presented in [Grove et al.,1992b], which is a variant of logics developed in [Bacchus,1990; Halpern, 1990].This logic augments �rst-order logic by allowing pro-portion expressions of the form k (x)kx. This term de-notes the proportion of domain elements satisfying  .We actually allow an arbitrary set of variables in the sub-script. Thus, for example, jjSon(x; y)jjx describes, for a�xed y, the proportion of domain elements that are sonsof y; jjSon(x; y)jjy describes, for a �xed x, the proportionof domain elements whose son is x; and jjSon(x; y)jjfx;ygdescribes the proportion of pairs of domain elements thatare in the son relation. We also allow conditional pro-portion expressions of the form jj (x)j�(x)jjx, which de-notes the proportion of domain elements satisfying  from among those elements satisfying �.1 A rationalnumber is also a proportion expression, and the set ofproportion expressions is closed under addition, subtrac-tion, and multiplication.One important di�erence between our syntax and thatof [Bacchus, 1990] is the use of approximate equalityto compare proportion expressions. It is not hard tosee that exact comparisons are sometimes inappropri-ate. Consider a statement such as \90% of birds y". Ifthis statement appears in a database, it is almost cer-tainly there as a summary of a large pool of data. Itis clear that we do not mean that exactly 90% of allbirds y. Among other things, this would imply thatthe number of birds is a multiple of ten, an implica-tion that is surely not intended. We therefore use theapproach described in [Grove et al., 1992b; Koller andHalpern, 1992], and compare proportion expressions us-ing (instead of = and �) one of an in�nite family of con-nectives �i and �i, for i = 1; 2; 3 : : : (\i-approximatelyequal" or \i-approximately less than or equal").2 For ex-ample, we can express the statement \90% of birds y"by the proportion formula jjFly(x)jBird(x)jjx �1 0:9. Theintuition behind the semantics of approximate equal-ity is that each comparison should be interpreted us-ing some small tolerance factor to account for measure-ment error, sample variations, and so on. The appro-priate tolerance will di�er for various pieces of infor-mation, so our logic allows di�erent subscripts on the\approximately equals" connectives. A formula such asjjFly(x)jBird(x)jjx �1 1 ^ jjFly(x)jBat(x)jjx �2 1 saysthat both jjFly(x)jBird(x)jjx and jjFly(x)jBat(x)jjx areapproximately 1, but the notion of \approximately" maybe di�erent in each case.We now briey sketch the semantics of novel featuresof the logic. We evaluate the truth of a formula withrespect to a triple (M;~� ; V ), where M is a �nite �rst-order structure, ~� = h�1; �2; : : :i, �i > 0, is a tolerance1We discuss the issue of conditioning on an event withprobability zero in the full paper.2In [Bacchus et al., 1992] the use of approximate equalitywas suppressed in order to highlight other issues.



vector , used to give semantics to the connectives �i and�i, and V is a valuation, which interprets the free vari-ables as elements of the domain in structure M . For eachproportion expression �, we can de�ne a rational num-ber [�]M;V which is the interpretation of � in structureM under valuation V . For example, [jjSon(x; y)jjx]M;Vis the fraction of domain elements x which are sons ofV (y). Proportion expressions are dealt with using ~� :(M;~� ; V ) j= � �i �0 if j[�]M;V � [�0]M;V j � �i. We writej= ' if (M;~� ; V ) j= ' for all (M;~� ; V ).We want the agent to use the information in the knowl-edge base to assign degrees of belief to various assertions.Following [Halpern, 1990], we give semantics to degreesof belief in terms of a set of �nite �rst-order models orpossible worlds, together with a probability distributionover this set. The degree of belief in a sentence ' is justthe probability of the set of worlds where ' is true.3 Inparticular, given a knowledge base KB and domain sizeN , we consider all the worlds of size N consistent withKB. Furthermore, since we assume that KB is \all theagent knows", we view each of these possible worlds asequally likely; after all, the knowledge base does not giveus any reason to prefer one world over any other. This isessentially an application of the principle of indi�erencedue to Laplace [1820]. This method, which we call therandom-worlds method , was investigated in some detailby Johnson [1932] and Carnap [1950, 1952].Formally, given a vocabulary �, a domain size N , anda tolerance vector ~� , we de�nePrwN;~� ('jKB) = #worlds~�N (' ^ KB)#worlds~�N (KB) ;where #worlds~�N ( ) is the number of �rst-order struc-tures M over the domain f1; : : : ; Ng such that (M;~� ) j= .Typically, we know neither N nor ~� exactly. All weknow is that N is \large" and that ~� is \small". Thus,we would like to take our degree of belief in ' given KBto be lim~�!~0 limN!1 PrwN;~� ('jKB). However, there isno guarantee that this limit exists. A necessary condi-tion for the limit to exist is that the knowledge base KBbe eventually consistent: that is, for all su�ciently small~� and su�ciently large N , #worlds~�N (KB) > 0. Essen-tially, eventual consistency says that not only is the KBconsistent, but that there is nothing in the KB that limitsthe domain size (for example, a formula saying 7 domainelements"). For the remainder of the paper, we assumethat all knowledge bases are eventually consistent. Evenif KB is eventually consistent, the limit may not exist.In many cases, the nonexistence of a limit can be intu-itively justi�ed, and is sometimes related to the issue ofmultiple extensions. (See Section 4 and [Grove et al.,1992b].) However, there are cases where the limit doesnot exist for what seem to be the \wrong" reasons. Forexample, if PrwN;~� ('jKB) oscillates between � + �i and�� �i for some i as N gets large, then the limit will notexist, although it \should" be �, since the oscillationsabout � go to 0 as ~� gets small. We avoid such problems3Note that we de�ne degrees of belief only when ' andKB are sentences, i.e., closed formulas.

by considering the lim sup and lim inf, rather than thelimit.4De�nition 2.1 : If lim~�!~0 lim infN!1 PrwN;~� ('jKB)and lim~�!~0 lim supN!1 PrwN;~� ('jKB) both exist andare equal, then the degree of belief in ' given KB, writtenPrw1('jKB), is de�ned as the common limit; otherwisePrw1('jKB) does not exist.3 Default reasoningAs we mentioned above, we interpret default sentencessuch as \Birds typically y" as statistical statementsmeaning \Almost all birds y". Our formalism givesus a straightforward way to represent such a default, bywriting jjFly(x)jBird(x)jjx �i 1.5 Note, however, that ifthe agent has more exact information about the propor-tion of ying birds, then this information can also beexpressed and used during reasoning (see Section 4).We now review (and slightly extend) results from [Bac-chus et al., 1992] showing that this type of translationdoes in fact capture several important features of defaultreasoning. We stress that all the results in this sectionhold for our language in its full generality: the formu-las can contain arbitrary non-unary predicates, and havenested quanti�ers and proportion statements.Proposition 3.1 : The set D(KB) = f' :Prw1('jKB) = 1g contains KB and is closed under validimplication (i.e., if j= � )  and � 2 D(KB), then 2 D(KB)).Hence, our system satis�es the minimal requirementfor default reasoning, that it subsume standard deduc-tive reasoning.The next proposition shows that our approach goes be-yond deductive inference to capture simple default infer-ences. In the following propositions, let ~x = fx1; : : : ; xkgand ~c = fc1; : : : ; ckg be sets of distinct variables and dis-tinct constants, respectively.Proposition 3.2: Let '(~x);  (~x) be formulas, where noconstant in ~c appears in '(~x) or  (~x). ThenPrw1('(~c)j  (~c) ^ jj'(~x)j (~x)jj~x �i �) = �:For example, Prw1(Fly(Tweety)j jjFly(x)jBird(x)jjx �i 1^Bird(Tweety)) = 1. That is, we can make the stan-dard inference about Tweety. Note that the propositionalso holds when we have quantitative information, i.e.,it holds for arbitrary �.Going beyond simple default reasoning, one sought-after property we obtain is a preference for more speci�cdefaults.4For any set S � IR, the in�mum of S, inf S, is thegreatest lower bound of S. The lim inf of a sequenceis the limit of the in�mums; that is, lim infN!1 aN =limN!1 inffaigi>N . The lim inf exists for any sequencebounded from below, even if the limit does not. The lim supis de�ned analogously, where sup S denotes the least upperbound of S. If limN!1 aN does exist, then limN!1 aN =liminfN!1 aN = limsupN!1 aN .5We remark that, here and below, the actual choice of sub-script for � is unimportant. Typically, however, we capturedi�erent defaults by using di�erent subscripts. Intuitively,the di�erent subscripts correspond to di�erent measurementsor defaults of di�erent strengths.



Proposition 3.3 : Suppose KB has the form  1(~c)^ (jj'(~x)j 1(~x)jj~x �i �) ^ (jj'(~x)j 2(~x)jj~x �j �) ^8~x( 1(~x) )  2(~x)); where no constant in ~c appears in',  1, or  2. Then Prw1('(~c)jKB) = �.For example, if KB� isPenguin(Opus) ^ jjFly(x)jPenguin(x)jjx �i 0 ^jjFly(x)jBird(x)jjx �j 1 ^ 8x(Penguin(x)) Bird(x))then Prw1(Fly(Opus)jKB�) = 0. That is, we concludethat Opus the penguin does not y, even though he isalso a bird and birds generally do y.Another important property of our approach lies inits ability to treat as irrelevant some information thatthere is no reason to believe is relevant. This is partic-ularly interesting given the fact it is notoriously hard toachieve speci�city and a correct treatment of irrelevantinformation in the same framework (see the discussionand references in Section 5). There are a number of situ-ations in which information will be treated as irrelevantby our approach, but here we restrict our attention toone special case:Proposition 3.4 : Suppose KB has the form  (~c) ^(k'(~x)j (~x)k~x �i �) ^ KB0, where no constant in ~c ap-pears in  (~x) or '(~x), and neither  nor KB0 mentionany symbol in '. Then Prw1('(~c)jKB) = �.For example,Prw1 Fly(Tweety) ����� Bird(Tweety) ^jjFly(x)jBird(x)jjx �i 1 ^Yellow(Tweety) ! = 1 :That is, Tweety the yellow bird continues to y. There isno information in KB about any correlation between theproperties \yellow" and \y"; hence Tweety's yellow-ness is treated as being irrelevant to his ying ability.Proposition 3.4 also shows that relevance is relative toa particular assertion '. A property that is relevant toone assertion will not necessarily be relevant to another.For example, if we know that birds typically have beaks,we can conclude that Opus, a penguin, also has a beak,even though penguins typically do not y (while birdstypically do). More precisely, for the knowledge baseKB� above (relating to penguins, birds, and ying), wehave:Prw1�Beaked(Opus) ���� KB� ^ Bird(Opus) ^jjBeaked(x)jBird(x)jjx �i 1 � = 1 :That is, Penguins is an exceptional subclass of birdswith respect to ying but not with respect to havingbeaks. Proposition 3.4 also allows the agent to ignorethose parts of KB that do not concern Tweety at all.4 Qualitative versus QuantitativeSystems of direct inference frequently cannot use quali-tative information such as \birds typically y", whereasstandard default logics generally cannot use quantita-tive information such as \90% of birds y." Neverthe-less, we often have both kinds of information available.One signi�cant advantage of our approach is that it canuse any combination of qualitative and quantitative in-formation, supporting an entire spectrum of reasoning.

Furthermore, in those cases where qualitative defaultsare insu�cient, our approach can often pinpoint the ex-tra information required to reach a de�nite conclusion.To demonstrate, we examine two examples that are well-known to be problematic for pure default reasoning: theLottery Paradox [Kyburg, 1961] and the Nixon Diamond[Reiter and Criscuolo, 1981].In the Lottery Paradox, the assumption is that a largenumber of people buy tickets to a lottery in which thereis only one winner. The standard assumption is thatfor any particular person c we would like to concludeby default that c does not win the lottery. This, how-ever, seems to contradict the fact that someone must winit. In order to describe the problem in our framework,we assume for simplicity that the domain consists onlyof lottery ticket holders. Our knowledge base KB willconsist of the single statement 9!xWinner(x) (i.e., thereis a unique winner). If we know the size of the lot-tery, say N , our degree of belief that the individualdenoted by a particular constant c wins the lottery isPrwN;~� (Winner(c)jKB) = 1N . Our degree of belief thatsomeone wins will obviously be 1. These answers areclearly the \right" ones given our information. If, how-ever, we do not know the exact number of ticket holders,but have only the qualitative information that this num-ber is \large", then our degree of belief that c wins thelottery is Prw1(Winner(c)jKB) = 0, although, as before,Prw1(9xWinner(x)jKB) = 1. Thus, we conclude by de-fault that c does not win the lottery for any constant c,although we still believe with full con�dence that some-one does win.A major di�culty with using defaults is that they donot always provide su�cient information to reach a con-clusion. A classical example is the problem of conictingdefaults, as demonstrated by the well-known Nixon Di-amond. Suppose we have the following information:kPaci�st(x)jQuaker(x)kx �1 1 ^kPaci�st(x)jRepublican(x)kx �2 0 ^Quaker(Nixon) ^ Republican(Nixon) :To simplify matters, we further assume that there isa unique individual who is both a Quaker and a Re-publican. We capture this by taking KB1 to consistof the above conjunction together with the formula9!x (Quaker(x) ^ Republican(x)). Let ' be the formulaPaci�st(Nixon).What should be our degree of belief in Paci�st(Nixon);that is, what is Prw1('jKB1)? It turns out that this lim-iting probability does not exist. This is because the limitis non-robust|its value depends on the way in which ~�goes to 0: if �1 � �2, so that the \almost all" in the�rst conjunct is much closer to \all" than the \almostnone" in the second conjunct is closer to \none", thenthe limit is 1. Intuitively, in this case the informationin the �rst conjunct is more precise and hence should betaken more seriously than the information in the secondconjunct. Symmetrically, if �1 � �2, then the limit is 0.On the other hand, if �1 = �2, then the limit is 1=2.The nonexistence of this limit is not simply a technicalartifact of our approach. Rather, the fact that the limitfails to exist provides important information about the



underlying incompleteness of our knowledge. It showsthat in the presence of conicting defaults, we often needmore information about the precise nature of \almostall" and \almost none" to resolve the conict; our ap-proach pinpoints the type of information that would suf-�ce to reach a decision. Note that our formalism doesgive us an explicit way to state that the defaults haveequal strength, if we wish; namely, we can use �1 to cap-ture both default statements, rather than using �1 and�2. In this case, we get the answer 1=2, as expected.However, it is not always appropriate to conclude thatthe defaults have equal strength. We can easily extendour formalism to allow the user to prioritize defaults,by de�ning the relative size of the components �i of thetolerance vector.If we have more quantitative information, then we canuse it. For example, we may have information regardingthe precise proportion of Quakers (resp., Republicans)who are paci�sts. For example, assume that KB2 iskPaci�st(x)jQuaker(x)kx �1 � ^kPaci�st(x)jRepublican(x)kx �2 � ^Quaker(Nixon) ^ Republican(Nixon) ^9!x (Quaker(x) ^ Republican(x)) ;where f�; �g 6= f0; 1g. In this case the limit does exist;we get Prw1('jKB2) = ����+���� , where �� = 1 � � and�� = 1� �.Readers familiar with Dempster's rule of combination[Shafer, 1976] will note that this formula is precisely theresult of combining the two probability functions thatgive probability � and �, respectively, to Nixon beinga Paci�st. If we view the fact that Nixon is a Quakeras giving evidence of degree � in favor of Nixon beinga paci�st, and the fact that Nixon is a Republican asgiving evidence of degree � in favor of Nixon being apaci�st, then our technique can be viewed as combiningthese two pieces of evidence. In the full paper, we showthat our approach also captures more general instancesof Dempster's rule of combination, and discuss why theappearance of the rule here is not coincidental.Returning to the formula, notice that if � = 1 and� > 0, then the limiting probability is 1, while if � = 0and � < 1, then the limiting probability is 0. Thatis, as expected, an \extreme" value will dominate. If� = �, then the limiting probability is �2�2+��2 . Thus, if80% of Quakers are paci�sts and 80% of Republicans arepaci�sts, the value of the limit would be around 0:94.This has a reasonable explanation: if we have two in-dependent bodies of evidence, both supporting ' quitestrongly, when we combine them we should get evenmore support for '.5 Maximum entropyIn this section, we show how the approach of [Goldszmidtet al., 1990] can be embedded in our framework. We be-gin by outlining �-semantics [Ge�ner and Pearl, 1990],on which the framework of [Goldszmidt et al., 1990] isbased. Consider a language consisting of propositionalformulas (over some �nite set of propositional variablesp1; : : : ; pk) and default rules of the form B ! C (read

\B's are typically C's"), where B and C are proposi-tional formulas. Let 
 be the set of 2k propositionalworlds, corresponding to the possible truth assignmentsto these variables. Given a probability distribution �on 
, we de�ne �(B) to be the probability of the set ofworlds where B is true. We say that a distribution ��-satis�es a default rule B ! C if �(CjB) � 1� �.A parameterized probability distribution (PPD) is acollection f��g�>0 of probability distributions over 
,parameterized by �. A PPD f��g�>0 �-satis�es a set Rof default rules if for every �, �� �-satis�es every ruler 2 R. A set R of default rules �-entails B ! C if forevery PPD that �-satis�es R, lim�!0 ��(CjB) = 1.As shown in [Ge�ner and Pearl, 1990], �-entailmentpossesses a number of reasonable properties typicallyassociated with default reasoning, including a prefer-ence for more speci�c information. However, thereare a number of desirable properties that it does nothave. Among other things, irrelevant information is notignored. Pearl's notion of 1-entailment [Pearl, 1990]strengthens �-entailment by allowing it to ignore irrel-evant information in certain cases. However, it suf-fers from the problem that subclasses that are excep-tional in one aspect are deemed exceptional in all as-pects. In particular, using 1-entailment, we cannotconclude that Opus the penguin has a beak. Since �-entailment is equivalent to Lehmann and Magidor's pref-erential entailment [Lehmann and Magidor, 1992], and1-entailment is equivalent to their rational closure, theseapproaches to default reasoning all su�er from di�cul-ties when trying to combine speci�city with irrelevance.We showed above that our approach does not su�er fromthis problem.In order to obtain additional desirable properties, �-semantics is extended in [Goldszmidt et al., 1990] by anapplication of the maximum entropy principle [Jaynes,1957]. Instead of considering all possible PPD's, asabove, only the PPD f���;Rg�>0 of maximum entropy isconsidered (see [Goldszmidt et al., 1990] for precise def-initions and technical details). A rule B ! C is an ME-plausible consequence ofR if lim�!0 ���;R(CjB) = 1. Thenotion of ME-plausible consequence is analyzed in detailin [Goldszmidt et al., 1990], where it is shown to inheritall the nice properties of �-entailment (such as the pref-erence for more speci�c information), while successfullyignoring irrelevant information. Equally importantly, al-gorithms are provided for computing the ME-plausibleconsequences of a set of rules in certain cases.Although no explicit use is made of maximum entropyin our framework, there is a close connection betweenthe random-worlds approach and maximum entropy pro-vided that the language consists only of unary predicatesand constants, as shown in [Grove et al., 1992b]. Theseresults can be extended to show that the approach of[Goldszmidt et al., 1990] can be embedded in our frame-work in a straightforward manner. We simply convertall default rules r of the form B ! C into formulasof the form �r =def k C(x)j B(x)kx �1 1, where  B isthe formula obtained by replacing each occurrence of thepropositional variable pi in B with Pi(x). Note that theformulas that arise under this conversion all use the same



approximately equals relation �1, since the approach of[Goldszmidt et al., 1990] uses the same � for all defaultrules. Moreover, they all involve only unary predicates.Under this translation, we can prove the following theo-rem, using techniques similar to [Grove et al., 1992b].Theorem 5.1: Let c be a constant symbol. Using thetranslation described above, for any set R of defeasiblerules, B ! C is an ME-plausible consequence of R i�Prw1( C(c)jVr2R �r ^  B(c)) = 1.Thus, all the computational techniques and results de-scribed in [Goldszmidt et al., 1990] carry over to thisspecial case of our approach.It is very encouraging that the results of [Goldszmidtet al., 1990] can be arrived at in two quite di�erent ways.Our result formalizes a connection between entropy andindi�erence, well known in other contexts like statisticalthermodynamics, in the context of an agent reasoningby default. It shows that if one feels that it is reason-able for an agent to be indi�erent between possibilitiesleft open by its knowledge, then one has an independentreason for accepting the theory of irrelevance generatedby maximum entropy.It should also be noted that our approach, which doesnot appeal to entropy maximization directly, has the ad-vantage of being much more general. Most importantly,it can deal sensibly with languages that have predicatesof arbitrary arity. It is unlikely that an approach thatuses entropy directly could be extended to deal such lan-guages. Once we have even a single binary predicate inthe language, all connection between our approach andmaximum entropy disappears. As discussed in [Groveet al., 1992b], we cannot even �nd a suitable probabil-ity space to take entropy over. Results of [Grove et al.,1992a] showing that, with a binary predicate in the lan-guage, degrees of belief are in general uncomputable sup-port the conjecture that there is none to be found.6 Discussion and conclusionsWe have shown that a logic that allows statistical and�rst-order assertions, together with a principled ap-proach for obtaining degrees of belief from a knowl-edge base expressed in this logic, can give a general ap-proach for capturing many aspects of default reasoning.Our framework has the added advantage of being ableto deal with both default (qualititative) and statistical(quantitative) information. Our results demonstrate theclose connection between default reasoning and directinference.We close by briey discussing two criticisms that havebeen made of entropy-based reasoning systems: languageand syntax dependence, and the treatment of causality[Pearl, 1988]. While the random-worlds method is notentropy-based, the relationship we observed in Section 5suggests that similar problems may arise.With regard to causality, [Goldszmidt et al., 1990;Pearl, 1988] and [Hunter, 1989] have observed thatknowledge about causal relationships greatly a�ects ourintuitions concerning the \right" answers to variousproblems, and that the naive maximum entropy ap-proaches do not take this causal information into consid-

eration. We would argue that this only shows that thisinformation is not properly captured by the straightfor-ward encoding of defaults, and that we may thereforehave to include information about causality when ex-pressing defaults in the knowledge base. [Hunter, 1989]presents one possibility for encoding causal informationwithin the maximum entropy approach. In [Bacchus etal., 1994], we present a more general approach within therandom-worlds framework, and show that it deals withmany of the problematic aspects of causal reasoning.The language problem is more subtle. Maximum-entropy methods can draw di�erent conclusions fromknowledge bases that seem to reect the same informa-tion about the world. This is a serious issue, becausethe choice of the \right" representation of our informa-tion is not always clear. In general, we believe that theform in which our information is written down encodesknowledge|it reveals our biases and expectations. It isperfectly reasonable that our bias should a�ect inductivereasoning. In certain cases, our bias is su�ciently clearthat the choice of representation becomes obvious. Inphysics, for example, the choice of language is sometimesbased on the criterion of time-invariance. Moreover, inphysics and in many other applications of maximum en-tropy, there is an objective \reality check"|we can com-pare the answers given by the formalism to reality, andthus independently verify the reasonableness of our rep-resentation. In many AI applications, however, theremight not be an obvious representation, nor an appro-priate reality check. In these cases, we will have to for-mulate criteria for choosing the right formal knowledgebase, given a natural-language speci�cation of our knowl-edge. This is an important research problem, which weintend to investigate. The fact that our approach candeal with causality leads us to hope that it will be ableto deal with the language problem as well in a satisfac-tory way.AcknowledgementsWe would like to thank Moshe Vardi for helpful com-ments.References[Adams, 1975] E. Adams. The Logic of Conditionals. D.Reidel, Dordrecht, Netherlands, 1975.[Bacchus et al., 1992] F. Bacchus, A. J. Grove, J. Y.Halpern, and D. Koller. From statistics to belief. InProc. National Conference on Arti�cial Intelligence(AAAI '92), pages 602{608, 1992.[Bacchus et al., 1994] F. Bacchus, A. J. Grove, J. Y.Halpern, and D. Koller. Forming beliefs about achanging world. To appear in Proc. 12th NationalConference on Arti�cial Intelligence (AAAI ' 94),1994.[Bacchus, 1990] F. Bacchus. Representing and Reason-ing with Probabilistic Knowledge. MIT Press, Cam-bridge, MA, 1990.[Carnap, 1950] R. Carnap. Logical Foundations of Prob-ability. University of Chicago Press, Chicago, 1950.
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