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AbstractWe explore some foundational issues in the development of a theory of intensional semantics. Aprogramming language may be given a variety of semantics, di�ering in the level of abstraction; onegenerally chooses the semantics at an abstraction level appropriate for reasoning about a particularkind of program property. Extensional semantics are typically appropriate for proving propertiessuch as partial correctness, but an intensional semantics at a lower abstraction level is requiredin order to reason about computation strategy and thereby support reasoning about intensionalaspects of behavior such as order of evaluation and e�ciency. It is obviously desirable to be able toestablish sensible relationships between two semantics for the same language, and we seek a generalcategory-theoretic framework that permits this.Beginning with an \extensional" category, whose morphisms we can think of as functions of somekind, we model a notion of computation as a comonad with certain extra structure and we regard theKleisli category of the comonad as an intensional category. An intensional morphism, or algorithm,can be thought of as a function from computations to values. This view accords with a lazyoperational interpretation of programs. Under certain rather general assumptions the underlyingcategory can be recovered from the Kleisli category by taking a quotient, derived from a congruencerelation that we call extensional equivalence. We then focus on the case where the underlyingcategory is cartesian closed. Under further assumptions the Kleisli category satis�es a weak formof cartesian closure: application morphisms exist, currying and uncurrying of morphisms makesense, and the diagram for exponentiation commutes up to extensional equivalence. When theunderlying category is an ordered category we identify conditions under which the exponentiationdiagram commutes up to an inequality. We illustrate these ideas and results by introducing somenotions of computation on domains and by discussing the properties of the corresponding categoriesof algorithms on domains.



1 IntroductionMost existing denotational semantic treatments of programming languages are extensional, in thatthey abstract away from computational details and ascribe essentially extensional meanings toprograms. For instance, in the standard denotational treatment of imperative while-programs themeaning of a program is taken to be a partial function from states to states; and in the standarddenotational model of the simply typed �-calculus, the meaning of a term of function type is takento be a continuous function. Extensional models are appropriate if one wants to reason only aboutextensional properties of programs, such as partial correctness of while-programs. However, suchmodels give no insight into questions concerning essentially intensional aspects of program behavior,such as e�ciency or complexity. For instance, in a typical extensional model all sorting programsdenote the same function, regardless of their computation strategy, and therefore regardless oftheir worst- or average-case behavior. It is desirable to have a semantic model in which sensiblecomparisons can be made between programs with the same extensional behavior, on the basis oftheir computation strategy.We emphasize that we regard intensionality as a relative term; given a programming languagewe might wish to provide an extensional semantics and also an intensional semantics that containsmore computational information and is thus at a lower level of abstraction. We would like to beable to extract extensional meanings from intensional meanings, and to show that the intensionalsemantics \�ts properly" on top of the extensional semantics. Suppose that we have an extensionalsemantics provided in a category whose objects represent sets of data values and whose morphismsare functions of some kind; and that we have an intensional semantics in a category with thesame objects but with morphisms that we regard as algorithms, which correspond to functionsequipped with a computation strategy. It seems reasonable that we should be able to de�ne anequivalence relation on algorithms (in the same hom-set) that identi�es all pairs of algorithms withthe same \extensional part"; that composition of algorithms should respect this equivalence; andthat quotienting the algorithms from A to B by this equivalence relation should yield precisely theextensional morphisms.In this paper we set out a basis for a category-theoretic approach to intensional semantics,motivated by the following intuition. If the extensional meaning of a program may be modelled assome kind of function from data values to data values, then we can obtain an intensional semanticsby introducing a notion of computation and de�ning an intensional meaning to be a function fromcomputations to values. This accords with an intuitive operational semantics for programs in whichthe execution of a program proceeds lazily in a coroutine-like manner [10]: the program respondsto requests for output (say, from a user) by performing input computation until it has su�cientinformation to supply an output value. We formalize what we mean by a notion of computation inabstract terms as follows. Suppose that extensional meanings are given in some category C. Then,for each object A, we specify an object TA of computations over A and we specify how to lift amorphism f from A to B into a morphism Tf from TA to TB; we require that T be a functor onC. We specify, for each object A, a morphism �A : TA ! A from computations to values and amorphism �A : TA! T 2A that maps a computation over A to a computation over TA. Intuitively,� maps a computation to the value it computes, and � shows how a computation may itself becomputed. We require that (T; �; �) be a comonad over C. Then we regard the Kleisli category ofthis comonad as an intensional category; it has the same objects as C, and an intensional morphismfrom A to B is just a morphism in C from TA to B.We say that a comonad is computational if there is a natural way to convert a data value intoa degenerate computation returning that value. This enables us to extract from an algorithm a1



function from values to values, and we obtain an extensional equivalence relation on algorithms byidentifying all pairs of algorithms that determine the same function. We show that if the comonadis computational then the Kleisli category collapses onto C under extensional equivalence.We then show that, assuming certain further conditions concerning products, the Kleisli cate-gory satis�es an intensional analogue of the cartesian closedness property. This generalizes fromthe known result that if the underlying category is cartesian closed and the (functor part of the)comonad preserves products then the Kleisli category is also cartesian closed. When the underly-ing category C is an ordered category, we identify conditions under which the Kleisli constructionpreserves certain lax forms of cartesian closedness.Throughout the paper we motivate our de�nitions and results by means of notions of com-putation on domains. We focus primarily on three forms of computation at di�ering levels ofabstraction. At the end of the paper we discuss briey some further examples that indicate thebroader applicability of our ideas.We assume familiarity with elementary category theory and domain theory. We refer the readerto [11] and [1] for categorical background and to [8] for the relevant domain theory.2 Computations, Comonads and AlgorithmsLet C be a category that we regard as providing an extensional framework. We wish to encap-sulate in abstract terms what a notion of computation over C is, and to build an \intensional"category whose morphisms can be thought of as extensional morphisms equipped with additionalcomputational information. We model a notion of computation over C as a comonad over C, thefunctor part of which maps an object A to an object TA representing computations over A. Thetwo other components of the comonad describe how to extract a value from a computation, andhow a computation is built up from its sub-computations. We then take an intensional morphismfrom A to B to be an extensional morphism from TA to B, essentially a morphism from inputcomputations over A to output values in B. This leads us to use for our intensional category theKleisli category CT [11], which has the same objects as C and in which the morphisms from A toB are exactly the C-morphisms from TA to B. Typically C is a category in which morphisms arefunctions of some kind, and we will refer to intensional morphisms in CT as algorithms to emphasizetheir computational content. In case we need to compare Kleisli categories for di�erent comon-ads over the same underlying category we will use the term T -algorithm, indicating the comonadexplicitly.2.1 Comonads and the Kleisli categoryDe�nition 2.1 A comonad over a category C is a triple (T; �; �) where T : C ! C is a functor,� : T :! IC is a natural transformation from T to the identity functor, and � : T :! T 2 is a naturaltransformation from T to T 2, such that the following associativity and identity conditions hold, forevery object A:T (�A) � �A = �TA � �A�TA � �A = T (�A) � �A = idTA :Figures 1 and 2 express these requirements in diagrammatic form. �De�nition 2.2 Given a comonad (T; �; �) over C, the Kleisli category CT is de�ned by:2



TA TBA B TA TBT 2A T 2B-Tf -f?�A ?�B -Tf -T 2f?�A ?�BFigure 1: Naturality of � and � in a comonad: these diagrams commute, for all A, B, f : A!C B.
TATA TAT 2A� �TA -T�A6�A@@@@@@@@@I idTA ����������idTA TA T 2AT 2A T 3A-�A -T�A?�A ?�TAFigure 2: Identity and associativity laws of a comonad: these diagrams commute, for all A.� The objects of CT are the objects of C.� The morphisms from A to B in CT are the morphisms from TA to B in C.� The identity morphism bidA on A in CT is �A : TA!C A.� The composition in CT of a : A!CT B and a0 : B !CT C, denoted a0 �� a, is the compositionin C of �A : TA!C T 2A, Ta : T 2A!C TB and a0 : TB !C C, i.e.,a0 �� a = a0 � Ta � �A:The associativity and identity laws of the comonad ensure that CT is a category [11]. �This use of morphisms from TA to B to model algorithms from A to B �ts well with an intuitiveoperational semantics based on the coroutine mechanism [10]. A program responds to requests foroutput by performing some computation on its input (typically, to evaluate some portion of theinput) until it has enough information to determine what output value to produce. Execution islazy, in that computation is demand-driven. The operational behavior of algorithm compositioncan be described as follows. Let a : A !CT B and a0 : B !CT C. Then a0 �� a responds to arequest for output (in C) by performing an input computation t over A, transforming this into acomputation t0 over B by applying a to the pre�xes of t, and supplying t0 as argument to a0. Forfurther details concerning operational semantics we refer to [5].3



3 Notions of computation on domainsOur main examples will be based on a category of domains and continuous functions. To avoidrepetition and to be precise, let us remark that by a domain we mean a directed-complete, bounded-complete, algebraic partial order with a least element. That is, a domain (D;v) is a set D equippedwith a partial order v satisfying the following conditions:� D has a least element, denoted ?D .� Every non-empty directed subset X � D has a least upper bound FX.� Every non-empty bounded (or consistent) subset X � D has a least upper bound FX.� Every element of D is the least upper bound of its (directed set of) �nite approximations.A set X is directed i� for all x; y 2 X there is a z 2 X such that x v z and y v z. A set X isbounded i� there is a z 2 D such that x v z for all x 2 X. An element e 2 D is �nite i�, for alldirected subsets X � D, if e v FX then e v x for some x 2 X.We remark that none of our example comonads really requires that the underlying domain bealgebraic, and nor does the presence of a least element play any prominent rôle (except, of course,in justifying the existence of least �xed points). We could just as well work in the category ofdirected-complete, bounded complete partial orders and continuous functions. Nevertheless, theproperty of algebraicity is very natural in the computational setting and all of our example functorson domains preserve algebraicity. At the end of the paper we will discuss further examples basedon di�erent categories and di�erent types of domain.3.1 Increasing pathsThe �rst notion of computation that we introduce models in abstract terms a sequence of timesteps in which some incremental evaluation is being performed. For example, a program with twoinputs may need to evaluate one or more of its input arguments and it may attempt to performevaluations in parallel or in sequence; moreover, it may only require partial information about itsarguments, as is typically the case, say, when an argument is a function and the program needsto apply that argument to an already known parameter. One natural way to formalize this formof computation is as an increasing sequence of values drawn from a domain, whose partial orderreects the amount of information inherent in a value.We de�ne the comonad T1 of \increasing paths" as follows1.� For a given domain (D;v), let T1D be the set of �nite or in�nite increasing sequences overD, ordered componentwise. For convenience we represent a �nite sequence as an eventuallyconstant in�nite sequence. Thus, the elements of T1D have form hdni1n=0, where for eachn � 0, dn v dn+1; and we de�ne hdni1n=0 vT1D hd0ni1n=0 i� for all n � 0, dn vD d0n.� For a continuous function f : D ! D0, let T1f : T1D ! T1D0 be the function that applies fcomponentwise. That is, (T1f)hdni1n=0 = hfdni1n=0.� For t 2 T1D let �Dt be the least upper bound of t. That is, �hdni1n=0 = F1n=0 dn.1This comonad, adapted for Scott domains, was �rst introduced in [4].4



h?;?ih>;?i h?;>ih>;>i@@�� ��@@Figure 3: The domain Two� Two.� For t 2 T1D let �Dt be the sequence of (�nite) pre�xes of t. That is, if t = hdni1n=0, then foreach n � 0, (�t)n = d0 . . . dnd!n .Intuitively, a computation may be viewed as a (time-indexed) sequence of increments in the amountof information known about a data value, and the value \computed" by such a computation is itsleast upper bound; each computation is itself built up progressively from its pre�xes. Equivalently,we can regard a computation over D as a continuous function from the domain VNat of \verti-cal" natural numbers (together with limit point !) to D. Our ordering on computations thencorresponds exactly to the pointwise ordering on such functions.The least element of T1D is the sequence ?!. The �nite elements of T1D are just the eventuallyconstant sequences all of whose elements are �nite in D. It is easy to verify that T1 maps domains todomains and is indeed a functor. The comonad laws hold: naturality of � corresponds to continuityof f ; naturality of � states that the operation of applying a function componentwise to a sequence\commutes" with taking pre�xes; every computation is the least upper bound of its pre�xes; andevery pre�x of a pre�x of t is also a pre�x of t.For illustration, let Two be the domain f?;>g. The domain Two � Two is shown in Figure 3,and Figure 4 shows the six continuous functions from Two�Two to Two, ordered pointwise. We givethese functions mnemonic names: ? and > are constant functions; l is strict in its left argument;r is strict in its right argument; b is strict in both arguments; poll returns > if either of its twoarguments is >, so that poll is not strict in either argument. Each function is depicted by a Hassediagram corresponding to Figure 3, in which the nodes are shaded to indicate their image underthe function being described: � corresponds to ?, � to >.Figure 5 shows part of T1(Two�Two). Figure 6 shows some of the T1-algorithms from Two�Twoto Two, ordered pointwise. The notation for describing algorithms is based on Figure 5, againwith � representing ? and � representing >. In each case the intended algorithm is the leastcontinuous function on paths consistent with this description. The nomenclature is intended toindicate (as yet only informally) the function computed by each algorithm and what computationstrategy the algorithm uses. For instance, the algorithms pb, lb, rb and db all compute the functionb; pb computes both arguments in parallel immediately, lb computes left-�rst and then right, rbcomputes right-�rst and then left, and db computes both arguments in either order. Since thediagram includes only one algorithm for poll, for ?, and for >, in these cases we use the same namefor the algorithm as for the function.Since T1(Two� Two) includes paths with repeated steps, we can also make distinctions betweenalgorithms which di�er not in the order in which they evaluate their arguments, but in the amountof time they are prepared to wait for each successive increment to be achieved. For instance, forthe function b there are algorithms pbn, lbn, rbn and dbn for each n � 0, characterized as the least5
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Figure 4: Continuous functions from Two� Two to Two, ordered pointwise.
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Figure 5: Some paths in T1(Two� Two):6
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Figure 6: Some T1-algorithms from Two� Two to Two, ordered pointwise.7



functions on paths such thatpbn(h?;?in h>;>i!) = >lbn(h?;?in h>;?i h>;?in h>;>i!) = >rbn(h?;?in h?;>i h?;>in h>:>i!) = >dbn(h?;?in h>;?i h>;?in h>;>i!) = >dbn(h?;?in h?;>i h?;>in h>;>i!) = >:Informally, pbn is the algorithm which needs to evaluate both arguments and returns > providedeach evaluation succeeds (with result >) in at most n time steps. Similarly, lbn evaluates botharguments and returns > provided evaluation of the left argument succeeds in at most n time stepsand evaluation of the right argument succeeds in at most 2n+ 1 time steps.The following relationships hold, for all n � 0:pbn v lbn v pb2n+1pbn v rbn v pb2n+1dbn = lbn t rbn:Moreover, pbn v pbn+1, lbn v lbn+1, rn v rn+1, and dbn v dbn+1 for all n � 0. Each of thesesequences of algorithms has the same least upper bound, characterized as the algorithm b� thatmaps every path with lub h>;>i to >. Of course, in Figure 6, pb is just pb0, and so on.3.2 Strictly increasing pathsIn the comonad T1 a computation has a built-in measure of the number of time steps it takes betweensuccessive proper increments. We obtain a more abstract notion of computation by retaining onlythe increments themselves, so that we may still make distinctions on the basis of the order ofevaluation of arguments. To do this we model a computation as a \strictly increasing path". Wede�ne the strictly increasing path comonad T2 as follows.� Let T2D be the set of �nite or in�nite strictly increasing sequences over D. Again, forconvenience, we represent a �nite sequence as an eventually constant in�nite sequence. Thatis, the elements of T2D are either of form hdni1n=0, with dn @D dn+1 for all n � 0; or of formd0 . . .dN�1d!N , where N � 0 and dn @D dn+1 for 0 � n < N . Let vT2D be the least partialorder on T2D such thatd0 . . . dN�1d!N vT2D d0 . . .dN�1t if t 2 T2D & dN vD t0:This ordering is based on the pre�x ordering on sequences, but adjusted to take appropri-ate account of the underlying order on data values. The order vT2D is actually the stableordering [2] on T2D, when we regard the elements of T2D as (strictly increasing, possiblyeventually constant) stable functions from VNat to D. Note that every continuous functionfrom VNat to D is also stable.� For a continuous function f : D ! D0 we de�ne T2f to be the function which applies fcomponentwise and suppresses any repetitions (except for constant su�xes). That is, T2f isthe least continuous function such that for all d 2 D, for all d0; d1 2 D such that d0 @ d1, andfor all t 2 T2D,T2f(d!) = (fd)!T2f(d0d1t) = (fd0)(T2f(d1t)) if fd0 6= fd1= T2f(d1t) if fd0 = fd1:8



h?;?i!h>;?i! h?;>i!h>;?i h>;>i! h?;>i h>;>i!h>;>i!bb ""eeee%%%%Figure 7: Part of T2(Two� Two).� For all t 2 T2D, let �Dt be the lub of t. That is, �hdni1n=0 = F1n=0 dn.� For all t 2 T2D, let �Dt be the sequence of pre�xes of t. Again, if t = hdni1n=0 then for eachn � 0, (�t)n = d0 . . .dnd!n. Note that if t is strictly increasing, so is �t.The least element of T2D is the sequence ?! . The lub of a directed (or consistent) set of strictlyincreasing paths is again a strictly increasing path2. The �nite elements of T2D are the eventuallyconstant sequences of form hd0 . . .dN�1id!N , where N � 0 and dN is a �nite element of D. Ev-ery element of T2D is the lub of its �nite approximations. Thus, T2 maps domains to domains.Functoriality is easily checked.Although the order is not pointwise, it is still true that every t 2 T2D is the lub of its pre�xes.The comonad laws hold for (T2; �; �).Figure 7 shows some of the paths in T2(Two� Two). Figure 8 shows some of the T2-algorithmsfrom Two� Two to Two, ordered pointwise, using a notation based on Figure 7. Again the nomen-clature is chosen to indicate the function computed and the computation strategy. Each of theT1-algorithms of Figure 6 has a corresponding T2-algorithm, for which we use the same name; butbecause of the di�erent ordering on paths, there are three additional T2-algorithms. Note also thatsince T2D does not include paths with repeated elements, only pb0 and pb1 of the family of pbnalgorithms de�ned above have corresponding T2-algorithms.3.3 Timed dataA simple notion of computation over domains is obtained by regarding a computation as a pairconsisting of a data value and a natural number, intuitively representing the amount of time orthe cost associated with the calculation of the value. With this intuitition it seems reasonable toregard one computation hd; ni as approximating another hd0; n0i i� d v d0 and n0 � n; that is, abetter computation produces a more precise data value in less time. This suggests the use of thefollowing comonad:� T3D = D � VNatop, ordered componentwise.� For f : D ! D0, (T3f) hd; ni = hfd; ni.� � hd; ni = d.2However, this would not be the case if we ordered T2D componentwise, since T2D is not directed-complete underthe componentwise ordering. 9
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Figure 8: Some T2-algorithms from Two� Two to Two, ordered pointwise.10



� � hd; ni = hhd;ni ; ni.Here VNatop is the domain consisting of the natural numbers together with !, ordered by thereverse of the usual ordering, so that ! is the least element. The least element of T3D is h?D; !i.We may de�ne for each continuous function f : D ! D0 and each n 2 VNat an algorithm fnfrom D to D0:fn hd; ki = fd if k � n= ? otherwise:Clearly, whenever f v g we also get fn v gn. Moreover, because of our ordering on T3D, weget fn v fn+1 for each n � 0; and f! is simply � hd; ni :fd. The lub of the fn is the functionf� = � hd; ni :(n = ! ! ?; fd); which is below f!. Using this nomenclature, we show some of theT3-algorithms from Two� Two to Two in Figure 9.It is also possible to de�ne a comonad based on the functor TD = D � VNat, using the usualordering on the integer component.4 Relating algorithms and functions4.1 Computational comonadsWe will say that a comonad is computational if for each object A, every data value in A canbe regarded as a \degenerate" computation in TA, and degenerate computations possess certainsimple properties. This permits us to extract from an algorithm a function from values to values,by looking at the algorithm's e�ect when applied to degenerate computations. Two algorithms arecalled extensionally equivalent i� they determine the same function.More precisely, we require the existence of a natural transformation  : IC :! T satisfying someaxioms which capture formally what we mean by degeneracy. We then show that this permits usto de�ne an \extensional equivalence" relation on each hom-set in CT . Extensional equivalence ispreserved by composition, so that we actually have a congruence on CT . The underlying categoryC may then be recovered from CT by taking a quotient.De�nition 4.1 A computational comonad over a category C is a quadruple (T; �; �; ) where (T; �; �)is a comonad over C and  : IC :! T is a natural transformation such that, for every object A,� �A � A = idA� �A � A = TA � A.Naturality guarantees that, for every morphism f : A!C B,� Tf � A = B � f .Figure 10 shows these properties in diagrammatic form. �As an immediate corollary of these properties, �A is epi and A is mono, for every object A.Proposition 4.2 If (T; �; �; ) is a computational comonad, then there is a pair of functors (alg; fun)between C and CT with the following de�nitions and properties:� alg : C ! CT is the identity on objects, and alg(f) = f � �A, for every f : A!C B.11
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Figure 9: Some T3-algorithms from Two� Two to Two, ordered pointwise.12



TAA A-idAAAAAAAAAAUA �����������A TA T 2AA TA-TA?A ?�A-A A BTA TB-f?A ?B-TfFigure 10: Properties of a computational comonad: these diagrams commute, for all A, B, and allmorphisms f : A!C B.� fun : CT ! C is the identity on objects, and fun(a) = a � A, for all a : A!CT B.� fun induces an equivalence relation =e on CT , given by a1 =e a2 () fun(a1) = fun(a2):This relation is a congruence; that is, for all a1; a2 : A!CT B and a01; a02 : B !CT C,a1 =e a2 & a01 =e a02 ) a01 �� a1 =e a02 �� a2:� The quotient category of CT by =e is isomorphic to C.� fun � alg = IC. That is, for all f : A!C B, fun(alg f) = f .� alg � fun =e ICT , in that for all a : A!CT B, alg(fun a) =e a.Proof: Functoriality of alg and fun are straightforward. For instance:fun(a0 �� a) = (a0 �� a) � = (a0 � Ta � �) � = a0 � Ta �  �  since � �  =  � = a0 �  � a �  by naturality of = fun(a0) � fun(a):A similar calculation shows that =e is a congruence.The quotient of CT by =e has the same objects as CT (and therefore the same objects as C),and the morphisms in the quotient category from A to B are the =e-equivalence classes ofmorphisms from A to B in CT . Let us write [a] for the equivalence class of a. Clearly, themap f 7! [alg(f)] is an isomorphism of hom-sets, showing that CT ==e is isomorphic to C.The facts that fun�alg = IC and alg�fun =e ICT are elementary consequences of the de�nitions.We say that fun(a) is the extensional morphism computed by a. Since fun(algf) = f , everyextensional morphism f is computed by some (not necessarily unique) intensional morphism.These results show that every computational comonad can be used to produce an intensionalcategory that yields back the underlying extensional category when we take the extensional quo-tient. Next we show that fun and alg are natural transformations. Let Set be the category of setsand functions. 13



C(A;B) C(A0;B 0)C(TA;B) C(TA0; B0)?fun ?fun-C(Tf; g)-C(f; g) C(A;B) C(A0;B 0)C(TA;B) C(TA0;B 0)6alg 6alg-C(Tf; g)-C(f; g)Figure 11: Naturality of fun and alg for a computational comonad: these diagrams commute, forall f : A0 !C A and g : B !C B 0.De�nition 4.3 The two-variable hom-functor C(T (�);�) from Cop� C to Set takes a pair (A;B)of objects to C(TA;B) and takes a pair of morphisms (f; g) with f : A0 !C A and g : B !C B0 toC(Tf; g) : C(TA;B)! C(TA0;B 0), where for all a : TA!C B,C(Tf; g)(a) = g � a � Tf:Similarly, the two-variable hom-functor C(�;�) takes (A;B) to C(A;B) and (f; g) to C(f; g),where for all h : A!C B,C(f; g)(h) = g � h � f: �Proposition 4.4 Let (T; �; �; ) be a computational comonad over a category C. Then fun and alg,as de�ned in Proposition 4.2, are natural transformations:fun : C(T(�);�) :! C(�;�)alg : C(�;�) :! C(T (�);�):That is, for all f : A0 !C A and g : B !C B 0, the following identities hold:fun � C(Tf; g) = C(f; g) � funC(Tf; g) � alg = alg � C(f; g):Figure 11 expresses these properties in diagram form.Proof: Straightforward, using naturality of  and �.We now show that the three example comonads introduced earlier can be extended to becomeexamples of computational comonads. 14



4.2 Examples.1. For the increasing paths comonad T1, let D : D! T1D be de�ned by Dd = d!, for all d 2 D.Clearly D is continuous, and  is a natural transformation. Moreover, the computationalcomonad laws hold, since the lub of d! is d, and all pre�xes of d! are equal to d!.The functor fun maps each algorithm from Two� Two to Two into a function from Two� Twoto Two. In particular, fun(pb) = fun(lb) = fun(rb) = fun(db) = b. Similarly, fun(pbn) = b forall n � 0, and fun(b�) = b. In fact, b� = alg(b).Figure 12 illustrates the result of taking the extensional quotient of Figure 6. Boxes encloseequivalence classes of algorithms, arcs between boxes represent the quotient ordering, andwithin each box we retain the pointwise order to ease comparison with Figure 6. As expected,the quotient �gure is isomorphic to Figure 4 when we identify each equivalence class with thefunction computed.2. For the strictly increasing paths comonad, we may again let D : D ! T2D be Dd =d!. Again this is a continuous function, and  is a natural transformation. Again thecomputational comonad laws hold. Figure 13 shows the quotient of Figure 8 by extensionalequivalence. Note that fun(d?) = fun(l?) = fun(r?) = fun(?) = ?.Again the quotient diagram is isomorphic to Figure 4.3. For the timed data comonad, we obtain a suitable  by deciding what cost to associate witha degenerate computation. For each k 2 VNat we may take kd = hd; ki and obtain a naturaltransformation satisfying the requirements of a computational comonad. De�ne funk to bethe functor whose action on algorithms is given by funk(a) = a � k, and let =ek be theequivalence relation induced by k. For example, we have, for each k � 0:funk(bn) = b if k � n= ? if k > n:Clearly, bn =ek bn+1 i� k 6= n+ 1.Again the Kleisli category quotients onto the underlying category under the congruence in-duced by k. Figure 14 shows the quotient of Figure 9 under the equivalence induced byn+1.5 Products and Exponentiation5.1 ProductsNow suppose that the underlying category C has products, and for each pair of objects A1 and A2there is a distinguished product, which we denote A1�A2, with �i (i = 1; 2) being the projections.It is easy to show that distinguished product objects in C are also product objects in CT , withprojections in CT given by:b�i : A1 �A2 !CT Aib�i = �Ai � T �i= �i ��A1�A2 :Pairing of morphisms in CT is the pairing of morphisms in C, and the combination hT �1; T �2iplays a special rôle in light of the following properties.15
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Figure 12: Quotient of Figure 6 by extensional equivalence.16
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Figure 13: Quotient of Figure 8 by extensional equivalence.17
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Proposition 5.1 If C has products then � : T (���) :! T (�)� T (�) de�ned by:�A;B : T (A�B)! TA� TB�A;B = hT �1; T �2iis a natural transformation such that, for all objects A and B,(�A � �B) � �A;B = �A�B(�A � �B) � �A;B = �TA;TB � T�A;B � �A�B�A;B � A�B = A � B:Proof: Naturality of � follows from the universal property of products and the functoriality of T .The remaining properties are easy consequences of naturality of �, �, and . Note the identity� � T hf; gi = hTf; Tgi. In particular, � � T� = 
T 2 �1; T 2 �2�.5.2 ExponentiationNow suppose that the underlying category C is cartesian closed. That is, we assume that C has adistinguished terminal object and distinguished binary products, and that for every pair of objectsB and C there is a distinguished exponentiation object B ! C satisfying the usual requirements:for all B and C there is a morphism appB;C : (B ! C) � B !C C such that, for all A and allmorphisms f : A � B !C C there is a unique morphism curry(f) : A !C (B ! C) such thatappB;C �(curry(f)� idB) = f .Equivalently, a category is cartesian closed if it has �nite products and there is a pair of naturalisomorphismscurry : C(�� B;C) :! C(�; B ! C)uncurry : C(�;B ! C) :! C(��B;C):Here C(� � B;C) and C(�;B ! C) are contravariant hom-functors from Cop to the categorySet , with the standard de�nitions [1]. This is the same as requiring that curry(uncurry h) = hand uncurry(curry g) = g, together with the following naturality conditions: for all f : A !C A0,g : A0 �B !C C, and h : A0 !C (B ! C),curry(g � (f � id)) = (curry g) � funcurry(h) � (f � id) = uncurry(h � f):It follows easily from these conditions that one can choose app = uncurry(id) as a suitableapplication morphism.We want to give some general conditions under which analogous properties can be obtained forthe Kleisli category CT . Assuming that C is cartesian closed, the obvious candidate in CT for theexponential object of B and C is TB ! C. Moreover, we know that there is a natural isomorphismbetween CT (A;TB ! C) and C(TA�TB;C). Since CT (A�B;C) is just C(T(A�B); C), it is clearthat we must make some assumptions about the relationship between T (A� B) and TA� TB.If T(A�B) and TA�TB are naturally isomorphic it is easy to show that CT is cartesian closedwhenever C is. This is apparently a \Folk Theorem". The comonad T1 has this property, and wegave in [4] a proof using this property that the Kleisli category of T1 is cartesian closed.However, there are reasonable examples in which T does not preserve products, including T2and T3 as described earlier. Instead, we will make a weaker assumption: that the comonad can beequipped with natural ways to move back and forth between T (A�B) and TA�TB that interactsensibly with the comonad operations �, �, and . This can be conveniently summarized by meansof two natural transformations split and merge satisfying certain combinational laws.19



De�nition 5.2 Let (T; �; �; ) be a computational comonad. A computational pairing is a pair ofnatural transformationssplit : T (�� �) :! T(�)� T (�)merge : T (�)� T (�) :! T (�� �)such that, for all objects A and B, the following properties hold:(�A � �B) � splitA;B = �A�B�A�B �mergeA;B = �A � �BsplitA;B �A�B = A � BmergeA;B �(A � B) = A�B(�A � �B) � splitA;B = splitTA;TB �T splitA;B ��A�BmergeTA;TB �(�A � �B) = T splitA;B ��A�B �mergeA;B :Naturality of split and merge requires that for all f : A!C A0 and g : B !C B 0,splitA0 ;B0 �T (f � g) = (Tf � Tg) � splitA;BmergeA0 ;B0 �(Tf � Tg) = T (f � g) �mergeA;B :We summarize these properties in diagram form in Figure 15. �The properties listed above formalize the sense in which we require the splitting and mergingoperations to interact sensibly with �, �, and . In particular, the following properties followimmediately.Corollary 5.3 Let (T; �; �; ) be a computational comonad and let split and merge form a compu-tational pairing. Then for all A and B,(�A � �B) � splitA;B �mergeA;B = (�A � �B)splitA;B �mergeA;B �(A � B) = (A � B)�A�B �mergeA;B � splitA;B = �A�BmergeA;B � splitA;B �A�B = A�B :We have already seen that � = hT �1; T �2i quali�es as a suitable split operation (Proposi-tion 5.1). Despite this fact, split (and merge) are not generally uniquely determined by the com-putational pairing laws and we wish to permit the use of comonads with \non-standard" choicesof split. Moreover, naturality of split and merge does not by itself imply the computational pairinglaws.5.3 Examples1. Return again to the increasing path comonad T1. The natural transformation � = hT1 �1; T1 �2iis given by: �(u) = h�n: �1(un); �n: �2(un)i : This is actually an isomorphism, with inversegiven by merge(hs; ti) = �n: hsn; tni : Intuitively, each of these two operations works \in par-allel" on the two components.Both � and merge are natural transformations, and they satisfy the computational pairinglaws, which state that:� Merging and splitting commute with componentwise application of functions.20



TA� TBT (A� B) T (A0 � B0)TA0 � TB 0?splitA;B ?splitA0 ;B0-T (f � g)-Tf � Tg T(A� B)TA� TB TA0 � TB 0T (A0 � B 0)?mergeA;B ?mergeA0 ;B0-T (f � g)-Tf � Tg
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-�A � �B
-�A � �B-�A�B -T splitA;B ?mergeTA;TB?splitTA;TBFigure 15: Properties of a computational pairing: these diagrams commute for all A, A0, B, B 0and all f : A!C A0, g : B !C B0. 21



� Merging and splitting respect lubs of sequences.� Merging and splitting respect pre�xes.� Merging two degenerate computations produces a degenerate computation, and splittinga degenerate computation produces a pair of degenerate computations.2. There are other intuitively sensible ways to split and merge in the increasing paths comonadT1. We can de�ne a form of (left-�rst) interleaving by:lmerge(hs; ti) = �n:Dsdn=2e; tbn=2cE :For example, this gives:lmerge(s0s1s!2 ; t0t1t!2 ) = hs0; t0i hs1; t0i hs1; t1i hs2; t1i hs2; t2i! :To go with lmerge, we de�ne a split that operates only on alternate steps of a computation:split2(u) = h�n: �1(u2n); �n: �2(u2n)i :We then obtain the identity split2 � lmerge = id.It is easy to verify that lmerge and split2 are natural transformations, and that the compu-tational pairing properties hold, making use of the equalities bmin(i;2j)=2c = min(bi=2c; j)and dmin(i; 2j)=2e = min(di=2e; j).There is clearly also a right-�rst version of interleaving rmerge and this also interacts sensiblywith split2 as given above.3. For the strictly increasing paths comonad, each of the split-merge combinations above adaptsin the obvious way, modi�ed so as to ensure that the result of splitting a strictly increasingsequence of pairs is a pair of strictly increasing sequences. Thus, for example,�(h?;?i h>;?i h>;>i!) = h?>! ;?>!imerge(?>!;?>!) = h?;?i h>;>i! :In fact T2(A�B) and T2A� T2B are not generally isomorphic, because a strictly increasingsequence of pairs does not necessarily increase strictly in both components at each stage.Nevertheless, � and merge are still natural transformations satisfying the requirements listedabove for a computational pairing, and we have the identity � �merge = id.The (appropriately adjusted) lmerge and split2 operations also form a computational pairing,and split2 � lmerge = id; similar properties hold for rmerge and split2.5.4 Pairing, currying and uncurrying on algorithmsUsing the split operation of a computational pairing provides a way to combine a pair of algorithmsinto an algorithm on pairs. If split is taken to be �, this is the standard way to form the productof two morphisms in the Kleisli category. We can also use split to de�ne intensional analogues tothe contravariant hom-functors C(��B;C) and C(�;B ! C).22



De�nition 5.4 Let C be a category with �nite products, let (T; �; �; ) be a computational comonad,and let split be a natural transformation from T (� � �) to T � �T�. For f : A !CT A0 andg : B !CT B0 we de�ne (f �̂ g) : (A�A0)!CT (B �B 0) by f �̂ g = (f � g) � split. �Proposition 5.5 Let C be a category with �nite products, let (T; �; �; ) be a computational comonadand let split and merge form a computational pairing. Then there is a functor �̂ from CT � CTto CT that maps a pair of objects (A;B) to A � B and maps a pair of morphisms (a; b) to(a �̂ b) = (a� b) � split.Proof: To show that �̂ maps identity morphisms to identity morphisms:(bidA �̂ bidB) = (�A � �B) � split = �A�B = bidA�B :To show that �̂ preserves composition, let a : A!CT A0, b : B !CT B 0, a0 : A0 !CT A00, andb0 : B0 !CT B 00. Then:(a0 �̂ b0) �� (a �̂ b) = ((a0 � b0) � split) �� ((a� b) � split)= (a0 � b0) � split �T(a� b) � T split ��= (a0 � b0) � (Ta� Tb) � split �T split ��= (a0 � b0) � (Ta� Tb) � (� � �) � split= ((a0 � Ta � �)� (b0 � Tb � �)) � split= ((a0 �� a)� (b0 �� b)) � split= (a0 �� a) �̂ (b0 �� b):De�nition 5.6 Let C be a cartesian closed category, let (T; �; �; ) be a computational comonad,and let split and merge form a computational pairing. The contravariant functor CT (��̂B;C) fromCT op to Set is de�ned as follows.� On objects the functor maps A to CT (A�B;C).� On morphisms the functor maps f : A !CT A0 to the function �g:g �� (f �̂ bidB) fromCT (A0 �B;C) to CT (A� B;C).Similarly, the contravariant functor CT (�; TB ! C) from CT op to Set, is de�ned by:� On objects the functor maps A to CT (A;TB ! C).� On morphisms the functor maps f : A!CT A0 to the function �h:h��f from CT (A0; TB ! C)to CT (A;TB ! C). �Proposition 5.7 Let (T; �; �; ) be a computational comonad and let split and merge be a compu-tational pairing. Given a : T (A� B)!C C and b : TA!C (TB ! C), de�nedcurry(a) : TA!C (TB ! C) duncurry(b) : T(A� B)!C Cdcurry(a) = curry(a �merge) duncurry(b) = uncurry(b) � split :Then: 23



� dcurry and duncurry are natural transformations:dcurry : CT (� �̂B;C) :! CT (�; TB ! C)duncurry : CT (�; TB ! C) :! CT (� �̂B;C):� For all a : A� B !CT C, duncurry( dcurry(a)) =e a.� For all f : A� B !C C, duncurry( dcurry(alg f)) = alg f .Proof:� The naturality of dcurry amounts to the requirement that dcurry(g �� (f �̂ bidB)) = ( dcurry g) �� f ,for all f : A!CT A0 and g : A0�B !CT C. This follows from naturality of currying in C andthe properties of computational pairing:dcurry(g �� (f �̂ bid)) = dcurry(g � T (f � �) � T split ��)= curry(g � T (f � �) � T split �� �merge)= curry(g � T (f � �) �merge �(� � �))= curry(g �merge�(Tf � T�) � (� � �))= curry(g �merge�((Tf � �)� (T� � �)))= curry(g �merge�((Tf � �)� id))= curry(g �merge) � (Tf � �)= dcurry(g) � Tf � �= dcurry(g) �� f:� Similarly, to show naturality of duncurry we need duncurry(h) �� (f �̂ bid) = duncurry(h �� f), for allf : A!CT A0 and h : A0 !CT (TB ! C). Again the proof is straightforward:duncurry(h) �� (f �̂ bid) = uncurry(h) � split �T (f � �) � T split ��= uncurry(h) � (Tf � T�) � split �T split ��= uncurry(h) � (Tf � T�) � (� � �) � split= uncurry(h) � ((Tf � �)� (T� � �)) � split= uncurry(h) � ((Tf � �)� id) � split= uncurry(h � Tf � �) � split= uncurry(h �� f) � split= duncurry(h �� f):� Let a : A� B !CT C. Thenduncurry( dcurry(a)) �  = uncurry(curry(a �merge)) � split �= (a �merge) � split �= a � (merge� split �)= a � ;showing that duncurry( dcurrya) =e a. 24



� Let f : A� B !C C. Thenduncurry( dcurry(alg f)) = uncurry(curry(alg(f) �merge)) � split= alg(f) �merge� split= f � � �merge� split by Corollary 5.3= f � �= alg f:We have shown that an intensional pairing produces a weak form of exponentiation structure:we obtain notions of currying and uncurrying on algorithms that are natural transformations butsatisfy a weaker condition than isomorphism. We may rephrase these properties in terms of theexistence of a notion of \application" in the intensional category as follows.Proposition 5.8 Let C be a cartesian closed category, (T; �; �; ) be a computational comonad andlet split and merge be a computational pairing. For all B and C there is an \application morphism"dappB;C : [TB ! C]�B !CT Csuch that, for all a : A �B !CT CdappB;C ��( dcurry(a) �̂ bidB) =e a:Proof: De�ne dappB;C = duncurry(bidTB!C) = duncurry(�TB!C): As a corollary of the naturality ofduncurry (Proposition 5.7), we get:dapp ��(b �̂ bid) = duncurry(bid) �� (b �̂ bid)= duncurry(bid �� b)= duncurry(b):Thus, in particular, dapp ��( dcurry(a) �̂ bid) = duncurry( dcurry(a)) =e a.Note that although dcurry(a) is not the unique morphism h such that dapp ��(h �̂ id) =e a, allsuch morphisms satisfy the condition that duncurry(h) =e a.Thus, we have a weak form of cartesian closedness: instead of the usual diagram for expo-nentiation we replace = by =e and we relax the uniqueness condition. This is summarized inFigure 16.Next we consider what happens if we make further assumptions on the relationship betweensplit and merge.Proposition 5.9 Let C be a cartesian closed category and (T; �; �; ) be a computational comonadwith a computational pairing split and merge.� If merge� split = id then duncurry � dcurry = id.� If split �merge = id then dcurry � duncurry = id.As a corollary we get the following version of the \Folk Theorem":25



A�B(TB ! C)�B C?dcurry(a) �̂ bid ����������dapp -a=eFigure 16: When T has computational pairing this diagram in CT commutes up to extensionalequivalence, for all a : A� B !CT C.Corollary 5.10 If C is cartesian closed and (T; �; �; ) is a computational comonad with a compu-tational pairing such that merge� split = id and split �merge = id then the category CT is cartesianclosed.Note the important fact that our de�nitions are parameterized by the choice of split and merge.Once these are chosen, dapp, dcurry and duncurry are determined uniquely. The Kleisli category itselfis independent of split and merge; what happens, however, is that each choice of these two naturaltransformations induces a (weak form of) exponentiation structure on this category. The Kleislicategory may possess many di�erent notions of merging and splitting, and therefore many di�erentways to curry, uncurry and apply algorithms. This means that one may use the Kleisli category togive an interpretation to a functional programming language containing several syntactically andsemantically distinct forms of application. This would be desirable, for instance, if the languageincluded both a strict and a non-strict form of application.5.5 Examples1. The Kleisli category based on the increasing path comonad T1 is cartesian closed, with ex-ponentiation structure built from the standard split-merge combination, which form an iso-morphism.Using the computational pairing lmerge and split2, we obtain intensional forms of currying,uncurrying, and application which we will call dcurryl, duncurryl and dappl. This provides aweak form of exponentiation: dcurryl and duncurryl are natural transformations, and for alla : A�B !CT1 C we getdappl ��( dcurryl(a) �̂ bid) =e a:Since split2 � lmerge = id, we have dcurryl( duncurryl h) = h but duncurryl( dcurryl g) =e g: Forexample,duncurryl( dcurrylpb) = duncurryl( dcurryllb) = pb;and duncurryl( dcurryl rb) is the least algorithm mapping the path h?;>i h?;>i h>;>i! to >.This algorithm of course computes the function b.Similar properties hold for the computation pairing rmerge and split2, with the derived oper-ations dcurryr, duncurryr and dappr. 26



2. The strictly increasing paths comonad T2, with computational pairing � and merge, againhas operations dcurry, duncurry and dapp that provide weak forms of exponentiation. As weremarked earlier, � and merge are not isomorphisms. Instead, � � merge = id and for allu 2 T2(A�B) the computation merge(�(u)) is pointwise above u. Hence, dcurry( duncurry h) = hand duncurry( dcurry g) =e g. As an example, we have:duncurry( dcurry lb) = duncurry( dcurry rb) = duncurry( dcurry pb) = pb:The lmerge and split2 computational pairing also gives rise to a weak form of exponentiation,as does the rmerge and split2 computational pairing.6 Ordered categoriesSo far, although our principal examples were based on a cartesian closed category of domains, wehave not fully exploited the order structure. This permitted us to state and prove results thathold in a more general category-theoretic setting. Next we suppose that the underlying categoryis an ordered category: each hom-set is equipped with a complete partial order, and compositionis continuous. A functor T of ordered categories is required to respect the ordering, in that forall f; g : A !C B if f � g then Tf � Tg. Moreover, T must also be continuous (in its action onmorphisms). All of our examples so far satisfy these conditions.Suppose (T; �; �; ) is a computational comonad over an ordered category C. Then clearly CTis again an ordered category. All of the results of the previous sections go through in the orderedsetting. In particular, the functors fun and alg introduced earlier respect the ordering; and theproof of Proposition 4.2 can be adapted to show that the extensional quotient of the ordering onCT (A;B) is just the order on C(A;B).We can also obtain some slightly stronger results by taking advantage of the ordering. We omitmost of the proofs, which may be easily obtained from the results above, using monotonicity andcontinuity of composition.Proposition 6.1 Let C be an ordered ccc and let (T; �; �; ) be a computational comonad over Cwith a computational pairing.� If split �merge � id then dcurry � duncurry � id.� If split �merge � id then dcurry � duncurry � id.� If merge� split � id then duncurry � dcurry � id.� If merge� split � id then duncurry � dcurry � id.Next we introduce a simple generalization of the notion of cartesian closed ordered category,obtained by relaxing the requirement that currying and uncurrying form an isomorphism. Insteadwe allow currying and uncurrying to form an adjunction in each homset, so that we have an exampleof a local adjunction (see for example [9]) with additional properties. The relevance of \lax" notionsof adjunction such as these in computational settings (albeit with di�erent motivations) has beenpointed out in di�erent contexts by other authors, for instance in [14].27



De�nition 6.2 An ordered category C is cartesian up-closed if and only if it has �nite products andfor all pairs of objects B and C there is an object B ! C and a pair of lax natural transformationscurry, uncurry between C(��B;C) and C(�;B ! C) satisfying:curry(uncurry h) � huncurry(curry g) � gcurry(g � (f � id)) � curry(g) � funcurry(h) � (f � id) � uncurry(h � f):Similarly, we say that C is cartesian down-closed i� it has �nite products and there is a pair oflax natural transformations curry, uncurry satisfying:curry(uncurry h) � huncurry(curry g) � gcurry(g � (f � id)) � curry(g) � funcurry(h) � (f � id) � uncurry(h � f): �De�nition 6.3 Let C be an ordered category with �nite products.� An up-exponential for objects B and C is an object B ! C of C together with a morphismappB;C : (B ! C)� B !C C such that for every f : A �B !C C there is a least morphismcurry(f) : A!C (B ! C) such thatapp �(curry(f)� id) � f:� A down-exponential for objects B and C is an object B ! C of C together with a morphismappB;C : (B ! C)�B !C C such that for every f : A�B !C C there is a greatest morphismcurry(f) : A!C (B ! C) such thatapp �(curry(f)� id) � f: �The following result may be shown by adapting the usual proof that the two alternative de�ni-tions of cartesian closed categories are equivalent.Proposition 6.4 An ordered category C is cartesian up-closed i� it has �nite products and up-exponentials.An ordered category is cartesian down-closed i� it has �nite products and down-exponentials.Note that if the same object B ! C and morphism appB;C quali�es simultaneously as anup- and a down-exponential then it forms the usual notion of exponentiation and the category iscartesian closed in the usual sense.Proposition 6.5 Let C be a cartesian up-closed category, let (T; �; �; ) be a computational comonad,and let split and merge be a computational pairing such thatsplit �merge � idmerge � split � id(� � �) � split � split �T split ��merge �(� � �) � T split �� �merge :Then CT is cartesian up-closed. 28



Proof:� Let a : A� B !CT C and b : A!CT (TB ! C). Then:duncurry( dcurry a) = uncurry(curry(a �merge)) � split � a �merge� split � adcurry( duncurry b) = curry(uncurry(b) � split �merge) � curry(uncurry b) � b:� To show that dcurry is a lax natural transformation, let f : A!CT A0 and g : A0 � B !CT C.Then: dcurry(g �� (f �̂ bid)) = dcurry(g � T (f � �) � T split ��)= curry(g � T (f � �) � T split �� �merge)� curry(g � T (f � �) �merge �(� � �))= curry(g �merge�(Tf � T�) � (� � �))= curry(g �merge�((Tf � �)� (T� � �)))= curry(g �merge�((Tf � �)� id))� curry(g �merge) � (Tf � �)= dcurry(g) � Tf � �= dcurry(g) �� f:� To show that duncurry is a lax natural transformation, suppose that f : A !CT A0 andh : A0 !CT (TB ! C). Thenduncurry(h) �� (f �̂ bid) = uncurry(h) � split �T (f � �) � T split ��� uncurry(h) � (Tf � T�) � split �T split ��= uncurry(h) � (Tf � T�) � (� � �) � split= uncurry(h) � ((Tf � �)� (T� � �)) � split= uncurry(h) � ((Tf � �)� id) � split� uncurry(h � Tf � �) � split= uncurry(h �� f) � split= duncurry(h �� f):A similar result holds for a cartesian down-closed category with a computational pairing satisfyingreversed inequalities.7 ExamplesWe now return to the third comonad introduced earlier, after which we will introduce briey somerelated of notions of computation on di�erent categories of domains and functions.7.1 Timed dataIn the timed data comonad T3, the standard split operation is:split hha; bi ; ni = hha; ni ; hb; nii : 29



Given our interpretation of hd; ni as a computation yielding d at cost n, an obvious choice fora merge operation is:merge(ha;mi ; hb;ni) = hha; bi ;max(m;n)i :Both of these operations are natural transformations, and we obtain the following properties:split �merge v idmerge � split = id(� � �) � split = split �T3 split ��merge �(� � �) w T3 split �� �merge :The underlying category is cartesian closed, hence also cartesian up-closed. It follows fromProposition 6.5 that the Kleisli category of T3 is cartesian up-closed.7.2 Strict algorithmsThe category of domains and strict continuous functions is not cartesian closed, although thecategory does have products. For each pair of domains D and D0, the set of strict continuousfunctions D !s D0, ordered pointwise, is again a domain. The usual uncurrying operation onfunctions preserves strictness, but the usual currying does not. Instead, we may de�ne a variantform of currying by:currys : (A�B !s C)! (A!s (B !s C))currys(f) = �x:�y:(x = ? _ y = ? ! ?; f(x; y)):When f is strict, currys(f) is the best strict function approximating curry(f) pointwise. Forinstance, let lor, ror and sor be the left-strict, right-strict, and doubly-strict or-functions. Thenuncurry(currys lor) = uncurry(currys ror) = uncurry(currys sor) = sor :It is easy to check that currys is a natural transformation (and so is uncurry).The following relationships hold, for all f : A� B !s C and all g : A!s (B !s C):currys(uncurry g) = guncurry(currys f) v f:Hence, the category of domains and strict continuous functions is cartesian down-closed.Let T1D be the set of increasing paths over D (not just the strict continuous maps from VNatto D), ordered pointwise. The maps �, � and  are all strict, as are all of the split and mergeoperations above. We may therefore use the Kleisli construction to build a model of strict parallelalgorithms. To illustrate this model, note that all of the algorithms of Figure 6 also belong in thiscategory, with the exception of >, which is non-strict.Since the underlying category is cartesian down-closed, each of the computational pairingsdiscussed earlier for T1 gives rise to a down-exponentiation structure, so that the category ofdomains and strict algorithms is again cartesian down-closed.We may also adapt the T2 and T3 comonads to this category.30



7.3 Computation on e�ectively given domainsThe category of e�ectively given domains and computable functions is cartesian closed. A domain ise�ectively given i� its �nite elements are recursively enumerable (hence, countable), it is decidablewhether two �nite elements are consistent, and (an index for) the lub of two consistent �niteelements is decidable (as a function of their indices). An element of D is computable i� the set of(indices of) its �nite approximations is recursively enumerable.The functor T1 can be adapted to this category, by de�ning T1D for an e�ectively given domainD to be the computable increasing paths over D (equivalently, the computable continuous functionsfrom VNat to D, ordered pointwise). All of the auxiliary operations (�, �, , and so on) are com-putable. Hence we obtain a category of e�ectively given domains and computable algorithms, andthis category quotients onto the underlying category of e�ectively given domains and computablefunctions. This algorithms category is again cartesian closed.The functor T3 maps e�ectively given domains to e�ectively given domains, and again theauxiliary operations are computable. We therefore obtain a category of e�ectively given domainsand T3-algorithms that quotients onto the underlying category and is cartesian up-closed.The functor T2 preserves algebraicity but not !-algebraicity, since T2D may have uncountablymany �nite elements. The T2 comonad therefore does not adapt to the category of e�ectively givendomains and computable functions.7.4 Computation on pre-domainsWe use the term pre-domain for a \bottomless" domain: a directed-complete, bounded complete,algebraic partial order with no requirement that there be a least element. The category of pre-domains and continuous functions is cartesian closed.Let T4D be the set of non-empty �nite or in�nite increasing sequences over D, ordered bythe pre�x ordering. Clearly this forms a pre-domain, and the �nite elements are just the �nitesequences. T4D is generally a pre-domain rather than a domain, even if D has a least element,because the pre�x ordering does not relate sequences with di�erent �rst elements. We make T intoa functor by specifying that (as usual) T4f applies f componentwise.Again we let � be the lub operation and let �t be the sequence of (non-empty) pre�xes of t.Then (T4; �; �) forms a comonad.We may regard a computation of length 1 as degenerate, and this corresponds to de�ning thefunction  from D to T4D by d = hdi. Although this function  is not continuous, so thatwe cannot claim that T4 is a computational comonad, we still obtain a congruence relation onalgorithms by de�ninga =e a0 () 8d 2 D:ahdi = a0hdi:Note that for all f; g : A! B we have(f � �) =e (g � �)) f = g:It is then easy to modify the proof of Proposition 4.2 to show that the Kleisli category of thiscomonad quotients onto the underlying category under =e.We may de�ne splitting and merging operations as follows. The standard way to split is:split(hx0; y0i . . . hxk ; yki) = hx0 . . .xk; y0 . . . ykisplit(hxn; yni1n=0) = hhxni1n=0; hyni1n=0i : 31



Let merge be the least continuous function satisfying:merge(x0 . . .xk; y0 . . . ym) = hx0; y0i . . . hxn; yni (n = min(m;k))merge(x0 . . .xk; hyii1i=0) = hx0; y0i . . . hxk; ykimerge(hxii1i=0; y0 . . . ym) = hx0; y0i . . . hxm; ymimerge(hxni1n=0 ; hyni1n=0) = hxn; yni1n=0 :Clearly, merge� split = id and split �merge v id. These two operations are obviously naturaland satisfy the computational pairing properties, except that ��merge v ���. The Kleisli categoryis cartesian down-closed.8 ConclusionsWe have described a category-theoretic approach to intensional semantics, based on the idea thata notion of computation or intensional behavior may be modelled by means of a computationalcomonad, and that the Kleisli category thus obtained can be viewed as an intensional model. Themorphisms in this category map computations to values, and from such a morphism one mayrecover a map from values to values. One may de�ne an equivalence relation that identi�es allalgorithms that compute the same function, and this equivalence relation can be used to collapsethe Kleisli category onto the underlying category.We have identi�ed a set of conditions under which the Kleisli category possesses exponentiationsor weaker types of exponentiation, based on the existence of natural ways to pair computations.We described a series of examples to illustrate the applicability of our de�nitions and results. Indoing so, we have placed our recent work [4] in a wider context.Our work arose out of an attempt, begun in [3], to generalize an earlier intensional model ofBerry and Curien [6]. They de�ned a category of deterministic concrete data structures and se-quential algorithms, showed that this category is cartesian closed, and that it collapses onto thecategory of deterministic concrete data structures and sequential functions under an obvious notionof extensional equivalence. The sequential functions category is not cartesian closed, and their con-struction of sequential algorithms was not based on a comonad. The operational semantics implicitin their work was again coroutine-like and lazy, but with the restriction that computation shouldproceed sequentially, with at most one argument being evaluated at a time. In our generalizationof their model we relax the sequentiality restriction so as to permit parallel computation.The query model of parallel algorithms between deterministic concrete data structures, describedin [3], contains algorithms for non-sequential functions such as parallel-or. However, the model'sconstruction was rather complex and we were unable to formulate a suitable notion of compositionfor algorithms. Instead, in [4] we presented a much more streamlined form of algorithm betweenScott domains and for the �rst time we cast our construction in terms of a comonad. Of thecomonads introduced in this paper, T1 corresponds to the comonad used in [4]; T2 is closer in spiritto the query model of [3], but we are able here to go considerably further.Moggi has developed an abstract view of programming languages in which a notion of com-putation is modelled as a monad [12, 13]. Examples of notions of computation as monads in-clude: computation with side-e�ects, computation with exceptions, partial computations, andnon-deterministic computations. In this view, the meaning of a program is taken as a functionfrom values to computations, and an intuitive operational semantics is that a program from A toB takes an input of type A and returns an output computation. This point of view is consistentwith an input-driven lazy operational semantics. In contrast, our \opposite" point of view based32



on comonads (which are, after all, monads on the opposite category) is consistent with a demand-driven lazy operational semantics. Moggi states in [12] that his view of programs corresponds tocall-by-value parameter passing, and he says that there is an alternative view of \programs asfunctions from computations to computations" corresponding to call-by-name. Our work showsthat there is also a third alternative: programs as functions from computations to values. Commonto these approaches is the realization that values should be distinguished from computations (andthe use of an endofunctor T ). Apart from that, the motivations and the operational intuitionsbehind the monad approach and the comonad approach are di�erent, and we feel that the twoapproaches should be regarded as orthogonal or complementary. The extra structure and algebraiclaws embodied in a monad seem appropriate in Moggi's context. Equally, the extra structure andalgebraic laws embodied in a comonad seem appropriate in our context. We plan to explore to whatextent (and to what e�ect) the two approaches can be combined. For instance, given a comonad Tand a monad P over the same category C one might obtain (assuming that T and P satisfy certainproperties) a category of (T;P )-algorithms, in which a morphism from A to B is a morphism in Cfrom TA to PB.We plan to investigate notions of computation in further domain-theoretic settings. We arealready working on categories of algorithms on (generalized) concrete data structures [5]. It wouldbe interesting to see if the Berry-Curien sequential algorithms category could be embedded in theKleisli category of a suitable comonad over a sequential functions category. We intend to investigatenotions of computation on the category of dI-domains and stable functions [2], and on the categoryof qualitative domains and linear functions [7].AcknowledgementsThe diagrams in this paper were drawn using macros designed by John Reynolds.
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