
A Status Report on the OO7 OODBMS Benchmarking E�ort�Michael J. Carey David J. Dewitt Chander Kant Je�rey F. NaughtonComputer Sciences DepartmentUniversity of Wisconsin-MadisonAbstractThe OO7 Benchmark was �rst published in 1993,and has since found a home in the marketing litera-ture of various object-oriented database managementsystem (OODBMS) vendors. The OO7 Benchmark(as published) was the initial result of an ongoingOODBMS performance evaluation e�ort at the Uni-versity of Wisconsin. This paper provides an updateon the status of the e�ort on two fronts: single-userand multi-user. On the single-user front, we reviewand critique the design of the initial OO7 Benchmark.We discuss some of its faults, the reasons for thosefaults, and things that might be done to correct them.On the multi-user front, we describe our current workon the development of a multi-user benchmark forOODBMSs. This e�ort includes changes and exten-sions to the OO7 database and the design of a familyof interesting multi-user workloads.1 IntroductionThe OO7 benchmarking e�ort is an on-going researchproject that aims to evaluate the performance ofOODBMSs. The �rst result of this e�ort, whichbuilt upon the foundation laid by earlier OODBMSbenchmarking e�orts [CS92, RKC87, And90, DD88],was the single-user OO7 benchmark [CDN93]. Thisbenchmark di�ered from its predecessors in that it�This work was funded by Digital Equipment Corporation.This paper initially appeared in the proceedings of OOPSLA'94.0

attempted to provide a truly comprehensive test ofsingle-user OODBMS performance. Among the per-formance characteristics tested by the OO7 Bench-mark are the speed of a given OODBMS on a wide va-riety of di�erent pointer traversals (e.g., over cacheddata and disk-resident data, including both sparseand dense traversals), updates (including updates ofboth indexed and unindexed data, repeated updates,sparse updates, updates of cached data, and objectcreation and deletion), and simple object queries (in-cluding both exact-match and range queries and bothpointer-based and value-based joins).To date, we have completed \phase one" of theOO7 e�ort, in which we de�ned the single-user bench-mark and used it to pro�le the performance of a num-ber of commercial OODBMSs. A full report on thisphase, giving a detailed benchmark description andmeasured performance results for four systems on acommon client-server hardware base, is available viaanonymous ftp from ftp.cs.wisc.edu in the OO7directory. The ftp directory also contains the sourcecode for the benchmark for �ve systems.1 The dif-ference between the number of available implementa-tions and the number of systems for which we havepublished our measurements is a reection of the factthat the OO7 Benchmark is not without controversy.The approach used to specify the benchmark, and tolimit liberties that might otherwise be taken whenimplementing it, has been a point of some contentionand concern for several vendors who would have likedto participate (but under a di�erent set of groundrules).Despite the information provided by OO7 andother OODBMS benchmarking e�orts, there is vir-tually no published information available about the\real" performance of commercial OODBMSs. Thisis because real applications usually involve multi-ple users, making the multi-user performance of1Also available on the World Wide Web at URLftp://ftp.cs.wisc.edu/OO7.

OODBMSs critical to understand. Unfortunately, theperformance studies to date provide little or no in-sight into what can be expected for multi-user per-formance. This leaves a critical gap in the availableknowledge for consumers of OODBMS technology.The OO7 e�ort at Wisconsin is currently workingto address this gap by developing a comprehensivemulti-user OODBMS benchmark. We have changedand extended the design of the OO7 database to bet-ter accommodate multi-user workloads, and we havedeveloped a parameterized OODBMS workload thatproduces an interesting family of multi-user work-loads. We are in the process of trying out our bench-mark on several OODBMSs, and we are also activelyseeking input from OODBMS vendors and users re-garding our design.The remainder of this paper begins with a brief re-view of the design of the single-user OO7 Benchmark.(Readers familiar with the OO7 Benchmark can skipthis section of the paper.) The review is then followedby a retrospective critique of the benchmark and theway in which it was administered; this section of thepaper is largely non-technical, presenting some im-pressions and lessons from our single-user benchmark-ing experience. We then turn our attention to ourcurrent work on multi-user OODBMS benchmark-ing, discussing proposed changes in the OO7 databaseand the associated multi-user workload family thatwe propose to use in evaluating OODBMS perfor-mance. A major goal of this portion of the paper is toconvey the status of our e�ort in order to publicallysolicit feedback from vendors and users of commer-cial OODBMS technology regarding what we're doingright, what we're doing wrong, and what we might bemissing in our current multi-user benchmark design.2 Single-User OO7 BenchmarkAs mentioned in the introduction, the original OO7Benchmark [CDN93] was designed to test OODBMSson a wide variety of traversal, update, and query tasksin order to thoroughly explore their single-user per-formance characteristics. As a result, its databasestructure and operations are non-trivial. The OO7Benchmark is intended to be suggestive of many dif-ferent CAD/CAM/CASE applications, although inits details it does not model any speci�c application.It is important to realize that the goal of the bench-mark is to focus on important aspects of system per-formance, not to model a speci�c application. Ac-cordingly, in the following when we draw analogiesto applications, we do so to provide intuition intothe benchmark rather than to justify or motivate the

Parameter Small MediumNumAtomicPerComp 20 200NumConnPerAtomic 3/6/9 3/6/9DocumentSize (bytes) 2000 20000Manual Size (bytes) 100K 1MNumCompPerModule 500 500NumAssmPerAssm 3 3NumAssmLevels 7 7NumCompPerAssm 3 3NumPrivateModules 1 (per client) 1 (per client)Table 1: OO7 Benchmark database parameters.benchmark.2.1 OO7 Database DescriptionThere are two \o�cial" sizes of the OO7 Benchmarkdatabase: small and medium. Table 1 summarizesthe parameters of the OO7 Benchmark database;their meanings will become clear in a moment whenwe walk through the database design. In our �veimplementations of the benchmark, all of these pa-rameters are controlled by a con�guration �le that isread by the database generation code. As indicatedin the table, the benchmark was designed even ini-tially to scale in proportion to the number of clientsby having one private \module" per client in both thesmall and medium databases (modules are describedbelow).Our goal in setting the parameters for the \small"and \medium" cases in the way that we did was toarrange it so that for the small database, on high-locality workloads, each client's working set will �t inits cache, while for the medium database, the workingset will not �t in the client cache; also, for the smalldatabase, the entire database can �t in the servercache, whereas the medium database will not �t inthe server cache. We are generalizing here, of course,as exactly what will and won't �t depends upon (1)the characteristics (e.g., the pointer representation)of the speci�c OODBMS being tested and (2) thesizes of the client and server caches.Before describing the OO7 Benchmark databasefurther, we note that the full source code for our im-plementations in all the systems we tested is availableby anonymous ftp from ftp.cs.wisc.edu.2.1.1 The Design LibraryA key component of the OO7 Benchmark databaseis a set of composite parts. Each composite part cor-

responds to a design primitive such as a register cellin a VLSI CAD application, or perhaps a procedurein a CASE application; the set of all composite partsforms what we refer to as the \design library" withinthe OO7 database. In the design library, the num-ber of composite parts associated with each moduleis controlled by the parameter NumCompPerModule,which is set to 500. Each composite part has a num-ber of attributes, including the integer attributes idand buildDate, and a small character array type.Associated with each composite part is a documentobject, which models a small amount of documenta-tion associated with the composite part.In addition to its scalar attributes and its as-sociation with a document object, each compositepart has an associated graph of atomic parts. In-tuitively, the atomic parts within a composite partare the units out of which the composite part isconstructed. In the small benchmark, each compos-ite part's graph contains 20 atomic parts, while inthe medium benchmark, each composite part's graphcontains 200 atomic parts. (This number is controlledby the parameter NumAtomicPerComp.) For exam-ple, if a composite part corresponds to a procedure ina CASE application, each of the atomic parts in its as-sociated graph might correspond to a variable, state-ment, or expression in the procedure. One atomicpart in each composite part's graph is designated asthe \root part."Each atomic part has the integer attributes id,buildDate, x, y, and docId, and the small characterarray type. The buildDate values in atomic partsare randomly chosen in the range MinAtomicDate toMaxAtomicDate, which is currently 1000 to 1999. Inaddition to these attributes, each atomic part is con-nected via a bi-directional association to several otheratomic parts, as controlled by the parameter Num-ConnPerAtomic; this parameter is �rst set to 3, thento 6, and then to 9 in the single-user benchmark. Ourinitial plan was to connect the atomic parts withineach composite part in a random fashion. However,random connections do not ensure complete connec-tivity (i.e., reachability of all of a composite part'satomic parts from its root part). To ensure completeconnectivity, one connection is initially added to eachatomic part to connect the parts in a ring; the remain-ing connections are then added at random.The connections between atomic parts are imple-mented by interposing a connection object betweeneach pair of connected atomic parts. Here the intu-ition is that the connections themselves contain data;the connection object is the repository for that data.A connection object contains the integer �eld lengthand the short character array type.

Figure 1 depicts a composite part, its associateddocument object, and its associated graph of atomicparts. One way to view this is that the union of allatomic parts corresponds to the object graph in theOO1 benchmark [CS92]; however, in OO7 this ob-ject graph is broken up into semantic units of localityby the composite parts. Thus, the composite parts inOO7 provide an opportunity to test how e�ective var-ious OODBMS products are at supporting complexobjects.2.1.2 Assembling Complex DesignsThe design library, which contains the compositeparts and their associated atomic parts (including theconnection objects) and documents, accounts for thebulk of the OO7 database. However, a set of compos-ite parts by itself is not su�ciently structured to sup-port all of the operations that we wished to include inthe benchmark. Accordingly, we added the notion ofan \assembly hierarchy" to the database. Intuitively,the assembly objects correspond to higher-level de-sign constructs in the application being modeled inthe database. For example, in a VLSI CAD appli-cation, an assembly might correspond to the designfor a register �le or an ALU. Each assembly is eithermade up of composite parts (in which case it is a baseassembly) or it is made up of other assembly objects(in which case it is a complex assembly).The �rst (bottom) level of the assembly hierarchyconsists of base assembly objects. Base assembly ob-jects have the integer attributes id and buildDate,and the short character array type. Each base assem-bly has a bi-directional association with three com-posite parts. (The number of composite parts perbase assembly is controlled by the parameter Num-CompPerAssm.) In the single-user OO7 Benchmark,each base assembly had associations with two kindsof composite parts, private and shared, although onlythe private associations were used; the shared associ-ations were designed into the database for use in themulti-user benchmark design that we were anticipat-ing for our follow-on work.Higher levels in the assembly hierarchy are madeup of complex assemblies. Each complex assembly hasthe usual integer attributes, id and buildDate, andthe short character array type; additionally, it hasa bi-directional association with three subassemblies(controlled by the parameter NumAssmPerAssm),which can either be base assemblies (if the complexassembly is at level two in the assembly hierarchy)or other complex assemblies (if the complex assemblyis higher in the hierarchy). There are seven levels inthe assembly hierarchy (controlled by the parameter

Id = 248590

type = "typeNumber3"

buildDate = 3587341
title = "widget #27 docs"

text = "widget #27 doesn’t really do
 very much but we put one in the
 spec so here it is"

docId = 345

documentation

Figure 1: A Composite Part and its associated Document object.NumAssmLevels).Each assembly hierarchy is called a module. Mod-ules are intended to model the largest subunits of thedatabase application, and are used extensively in themulti-user workloads; they are not used explicitly inthe small or medium single-user OO7 databases, eachof which consists of just a single module, but wereincluded for their usefulness in our planned multi-user follow-on work. Modules have several scalar at-tributes | the integers id and buildDate, and theshort character array type. Each module also has anassociated Manual object, which is a larger version ofa document. Manuals are included for use in testingthe handling of very large (but simple) objects.Figure 2 depicts the full structure of the single-user OO7 Benchmark database. Note that the pic-ture is somewhat misleading in terms of both shapeand scale; the actual assembly fanout used is 3, andthere are only (37� 1)=2 = 1093 assemblies per mod-ule in the small and medium databases, compared to10,000 atomic parts per module in the small databaseand 100,000 atomic parts per module in the mediumdatabase. Also, as mentioned earlier, the compositeparts associated with a given module are private tothe module in the sense that they are only referencedby base assemblies of that particular module.2.2 Single-User OO7 OperationsThe operations of the single-user OO7 Benchmarkcan be roughly grouped into three categories: read-only traversals, updates, and queries. Each category,

in turn, contains a number of di�erent operations inorder to achieve broad OODBMS performance cover-age.2.2.1 Read-Only Traversal OperationsThe �rst category, read-only traversals, consists offour distinct traversal operations. The �rst two arebased on traversing the assembly hierarchy. Thetraversals start from the top (i.e., at the module level)and proceed in a depth-�rst manner; as base assem-blies are reached, each referenced composite part isaccessed. The �rst traversal is a dense traversal thataccesses the entire atomic parts graph of each encoun-tered composite part (via a depth-�rst search). Thesecond traversal is a sparse traversal, which accessesonly the root part of each composite part, leaving theremainder of the atomic parts graph untouched. Thethird and fourth traversals focus on the manual ob-ject associated with a module. The third traversalscans the entire text of the manual, while the fourthtraversal touches only the �rst and last characters ofthe manual's text (to test random accesses to verylarge objects).Each of the traversal operations is implemented us-ing methods of the object classes involved, as eachone is supposed to represent an operation that wasanticipated (unlike the operations in the query cate-gory) at application design time. For each traversal,both a cold time (based on starting with an emptycache) and an average hot time (based on reaccessingexactly the same data repeatedly) are reported. Inaddition, for each hot time, two cases are reported

Design Library of Composite Parts

1 2 3 4 N

base
assemblies

complex
assemblies

Manual text

id

type

builddate

manual

design_root

Module i

Figure 2: Structure of a module.| with the traversals being performed either withinone transaction or as many transactions | to exposecaching performance both within and across transac-tion boundaries.2.2.2 Update OperationsThe second category, updates, includes two updatetraversals. Both of these execute the �rst (dense)assembly hierarchy traversal operation but performupdates along the way. The �rst update traver-sal changes the value of two unindexed attributesof either one, all (once), or all (repeated a total offour times) of the atomic parts that it encounters.The second update traversal is similar, but insteadchanges the value of one indexed attribute of theatomic parts. The update category also includes aninsert operation, which inserts �ve new compositeparts into a module, and a corresponding delete op-eration, which deletes the same �ve composite partsin order to restore the module to its original logicalstate. Together, the collection of update operationsin the benchmark tests the e�ciency of a number ofupdate-related implementation issues, especially therecovery mechanism (usually based on writing logrecords or shadows) and the index manager.

2.2.3 Object QueriesThe �nal category, queries, is a set of seven objectqueries that range from simple to moderately com-plex (at least given the state of OODBMS query lan-guages and implementations as of the initial OO7benchmarking exercise). Included are an exact-matchquery that looks up one atomic part, two rangequeries that look up 1% and 10% of the atomic parts,respectively, and a sequential scan query that accessesevery atomic part in the type extent for atomic parts.The three more complex queries in the query cat-egory are essentially \join" queries. The �rst twoare pointer joins, i.e., they are navigational in na-ture. One is a three-level path query that goes froma document title to the base assemblies that use thedocument's corresponding composite part; the otheris a two-way pointer join of two connected type ex-tents (composite parts and base assemblies). Thelast join query is an ad hoc (value-based) join be-tween two other type extents (between documentsand atomic parts, based on matching the documents'ids and the document id �eld that atomic parts have).Each of the OO7 object queries are written as declar-atively as possible using whatever facilities the testedOODBMS has for expressing, or otherwise imple-menting, queries.

3 Single-User LessonsAs mentioned in the introduction, we implementedand ran the single-user OO7 Benchmark on �ve dif-ferent OODBMSs (four commercial systems plus ourown research prototype). We were eventually permit-ted to report results for four of the �ve systems. Thisexperience taught us quite a bit about the systemstested as well as the overall state of the commercialOODBMS industry. The various technical lessonsthat we learned are reported in [CDN93]. Here welook back on some of the other, less technical issuesand lessons (including a few design aws) that re-sulted from the initial OO7 work.3.1 Speci�cation WoesOne issue that concerned us from the very beginningof our work was how to ensure that the OO7 bench-mark implementations for two di�erent OODBMSsare really providing a fair, \apples to apples" com-parison of the systems. Essentially, this questionboils down to \what really is the benchmark?" (interms of the degrees of freedom in its implemen-tation). Perhaps less intuitively, we found that inOODBMS benchmarking this also boils down to thequestion \what really is the system?" Every systemtested had a rather di�erent set of features as well asa di�erent set of potentially useful performance knobs(each requiring a di�erent level of wizardry and a dif-ferent degree of knowledge regarding speci�c detailsof the OO7 database and operations).An easy out would have been to simply specify thebenchmark operations at a high level (e.g., in English)and let each vendor implement them in the best waythat they could using algorithms of their choosingand every performance feature available in their sys-tem. However, we speci�cally wanted to avoid this, asit would have defeated our purpose. That approachwould have turned the OO7 e�ort into a program-ming contest for wizards rather than a comparisonof OODBMS engines as they would likely be used byintelligent, but not exceptional, application program-mers. Instead, we chose a di�erent approach | allo�cial OO7 numbers to date have been obtained byus, running code that we either implemented person-ally or else audited very carefully, and each systemwas tested on identical hardware at the University ofWisconsin. Was this really necessary? Unfortunately,yes.As just one example of why we conducted thebenchmark this way, most OODBMSs (all commer-cial systems that we tested, in fact) provide a setfacility. This provides a convenient way to represent

the fact that a given object, A, has a one-to-manyassociation with a set of other objects, B, C, and D.Using the set facility, you can store in object A a set ofreferences to the objects B, C, and D. The manualsof the various systems, as well as the provided ex-ample programs, do indeed implement one-to-manyassociations in this way. However, each OODBMSessentially provides the full power of C++, makingit possible to bypass the system-provided set facility.Instead, one could use C++ to code a special asso-ciation class tailored for the OO7 benchmark. Thishand-coded association class might be much fasterthan the standard system-provided class. Should do-ing so be an acceptable approach?Our answer was that system-provided classes forthings like sets must be used wherever they are ap-propriate in the benchmark | otherwise users whoemploy system-provided facilities would be unableto duplicate the benchmark results. Moreover, onewould hope that these system-provided facilities, de-scribed in the manuals as the \recommended" ap-proach for modeling relationships, would be reason-ably well implemented. However, in some cases wewere criticized with the comment that \sets are notpart of the engine, so why are you benchmarkingthem?" Similarly, we were criticized in some casesfor not using the �ne-tuning features o�ered by a sys-tem when doing so meant hard-wiring details of theOO7 database parameters (e.g., exact sizes of all ob-jects, exact cardinalities of all sets, and so on) into thebenchmark code. Again, we resisted vendors' urgingsto do this, as we felt that typical OODBMS appli-cation programmers would not be able to use suchfeatures nearly as well as an expert programmer whowas implementing the OO7 Benchmark with full, apriori knowledge of all of the database parameters.Our focus was on obtaining OODBMS performanceinformation that would be useful to typical program-mers.When we ran the original tests there was no clearway to resolve this issue. We started by specify-ing the benchmark in English, and we simply madepublic our own implementations for �ve systems toclarify the intent of the English. Obviously, thisneeds to be tightened up. Luckily, now there ishope. The ODMG committee, whose membershipincludes all major OODBMS vendors, recently pro-posed a standard data model for OODBMS applica-tions [Cat94] and embeddings for this model in C++and Smalltalk. A clean way to specify the benchmarkin the future will be to provide an implementationof the benchmark using this standard, thus ensuringthat all systems running the benchmark will run ex-actly the same code. A particularly interesting (but

time consuming) exercise would be to run the bench-mark both this way and using all of each vendor'sbells and whistles (or at least those made availablethrough optional extensions of the ODMG standard)to see what each system's \dynamic range" might be.3.2 More Speci�cation WoesA related problem with the speci�cation and imple-mentation of the initial OO7 Benchmark | or per-haps just an extreme example of the issues discussedabove | arose with respect to the queries in thebenchmark. When we began the OO7 project, thetarget OODBMSs varied wildly in their support fordeclarative query processing. Some systems had nodeclarative query language. Among those systemsthat did support a declarative query language, thequery languages had widely di�ering expressive pow-ers. For this reason, we implemented each of the OO7queries in the system-provided query language if pos-sible; otherwise we hand-coded a \reasonable" eval-uation algorithm for the query in C++, using thesame algorithm across all \query-impaired" systemsto avoid the programming contest problem. We havebeen justi�ably criticized that this approach couldpenalize a system for providing a query processor.Due to this problem, the query processing as-pect of the OO7 Benchmark is an aspect of thebenchmark that needs signi�cant improvement. Onceagain, as the OODBMS industry matures, however,there is hope for avoiding this situation. Speci�cally,the ODMG committee has also proposed a standardquery language, called OQL, that ODMG-compliantOODBMSs will be required to support. In lightof this proposal, we will revisit the query portionof the benchmark. For the next major iteration ofthe single-user benchmark, we intend to express thequeries using the OQL query language standard. Ifa given system does not support OQL or an equiv-alently powerful declarative language, it will not bepermitted to participate in the query portion of thebenchmark.3.3 Auditing the AuditorsOne legitimate concern with benchmarking is: whowill audit the benchmark implementation and re-sults? As mentioned above, our initial solution wasto do most of the implementation work and all of thebenchmark-running work ourselves, very carefully au-diting (and toning down when necessary) those im-plementations that were vendor-provided. Moreover,in the past, we (the UW OO7 team) have set therules for the benchmark and have interpreted them

and resolved all disputes. We do not enjoy playingall of these roles; ideally, some standards group likethe TPC should audit benchmarks. Perhaps in thefuture OO7 (or some derivative benchmark) will beadopted by ODMG or a related standards group whowill put a mechanism in place to clarify the rules andaudit the implementations and results. We think thisis a natural progression for a benchmark| being pro-posed in its initial form by a small team of people, andthen being revised, formalized, and administered bya standards body that both vendors and customerscan trust. This progression (which produced TPC-A through TPC-C [Gra93]) seems more e�cient thanthe alternative of letting a large committee of vendorsde�ne a benchmark from scratch (a la the approachtaken in TPC-D [TPC94]), as it is di�cult for a largecommittee with diverse goals and mutual fears to de-�ne something as complex as a database benchmark.3.4 Freedom of InformationSpeci�cation and auditing issues aside, one overrid-ing problem that a would-be benchmarker must faceis that many OODBMSs (like almost all relationalDBMSs) have clauses in their software licenses thatprohibit the release of performance results withoutexplicit permission from the OODBMS vendor. Thatis, for some systems, it is actually a violation ofthe system's license agreement, and therefore a veryreal potential source of a law suit, to purchase anOODBMS, run a benchmark, and publish the results.Moreover, as we discovered, this is not just idle jar-gon in the license agreement. If you do go ahead andbenchmark such a system, you will almost surely behearing from the vendor's lawyers.While it is apparently perfectly legal for softwarelicenses to be written in this manner, one has to won-der why some vendors feel the need for such clauses |and what the impact is on the information systems in-dustry. If other industries followed the DBMS indus-try's lead, Road & Track could not publish its new carroad tests, and Consumer Reports could not evaluatedishwashers and stereos. Closer to the computer in-dustry, it would be prohibited to publish benchmarkratings for new microprocessors. Clearly, this clausehas a very strong stiing e�ect on would-be bench-markers. It certainly made our job much harder; ateach step of the way we had to negotiate with some ofthe companies involved to keep them from �ring uptheir lawyers and dropping out of the benchmark. (Attimes it also kept our FAX machine humming withlegal correspondence, leading us to duck and shout\incoming!" each time the FAX phone rang in oursecretary's o�ce.)

Dealing with this issue was very painful, both for usand for our technical colleagues who work for the var-ious OODBMS vendors. Having said that, we shouldalso note that in general our contacts in the com-panies involved were helpful and supportive in whatwas an extremely high-stress situation for everyoneinvolved.3.5 Interpreting the ResultsGiven that one has managed to overcome (or ignorefor the moment) the sticky issues above, producinga set of numbers, one is then faced with yet anotherissue: What do the benchmark results mean? This isviewed by some as being a major problem with theOO7 Benchmark, and many have urged us to makethe OO7 Benchmark results easier to use by providinga mechanism to condense the test results into a singlenumber for the purpose of ranking systems.We agree that the benchmark report currently in-cludes far too many numbers; we will talk in a mo-ment about our plans to condense the OO7 Bench-mark to a more manageable size. However, we donot anticipate ever reducing the benchmark to a sin-gle number. This is not due to bashfulness or fearof hurting people's feelings; rather, it is a result of(1) our decision to favor a comprehensive benchmarkrather than a concise one but narrow one, and (2) ourbelief that for a knowledgeable customer, a multiplenumber benchmark is far more useful than any singlenumber benchmark could be. That is, to use the OO7results, we recommend that you determine the mainperformance demands of your application and thenlook at the OODBMSs' performance on the portionof OO7 that most closely matches those demands.To illustrate some of the di�culties with a singlenumber condensation of the OO7 results, here arethree ways that have been suggested (e.g., in tradejournal articles covering OO7 or marketing literaturefrom OODBMS companies) for producing a singleOO7 number.1. Number of �rst places on benchmark tests.In the benchmark report we present 105 timingresults (tests) from each system.2 To producethis one-number performance metric, one simplycounts the number of times that each system hadthe fastest time on one of the 105 tests.By this measure, the results as of this writingare:2This is not quite as outrageous as it might seem, as theOO7 technical report includes a number of graphs. The total of105 numbers comes from counting every point on every graph.

Rank System Score1 E/Exodus 612 Versant 223 Ontos 194 Objectivity 32. Weighted ranking of places.To produce this alternative one-number OO7performance metric, one gives each system onepoint for a �rst place �nish on a test, two pointsfor a second place �nish, three points for thirdplace, and four points for fourth place. Thesenumbers are then added up for each system, soa lower overall number is better.By this measure, the results are:Rank System Score1 E/Exodus 1732 Ontos 2643 Versant 2834 Objectivity 3303. Geometric mean.Yet another possible approach, which weightseach number as being equally important (andtherefore presumes that all key performance ar-eas have been equally well covered), is to use thegeometric mean of the results as the one-numbermetric | taking the 105th root of the productof the 105 individual test results. This is the ap-proach taken by the TPC in their new TPC-Dbenchmark.By this measure the results are:Rank System Score1 E/Exodus 14.192 Objectivity 33.883 Versant 33.94(We couldn't place Ontos in this ranking becauseas of this writing we do not have numbers for themedium-9 OO7 database results for Ontos.)While we don't ever want a single-number bench-mark, OO7 certainly errs on the side of generat-ing too many numbers. This is because benchmark-ing is a learning process, and only through itera-tive re�nement can one end up with a minimal yetsomehow su�cient set of benchmark operations. Weplan to �x this problem in OO7 by further reduc-ing the set of tests involved in running the bench-mark. This will be done by requiring one or a fewnumbers for each of a few interesting categories ofworkloads, e.g., hot traversals (how fast can an ap-plication program traverse in-memory data?), cold

sparse and dense traversals (how fast can an applica-tion program traverse data not yet in memory?), oneor two update traversals, a smaller set of queries, etc.Some of the current OO7 parameter variations (e.g.,the 3/6/9 variation for the atomic parts graph, andthe some/all/repeated update variation) have cometo show little or no new information as systems havematured and their early performance bugs have dis-appeared. These variations can now be eliminated.3.6 Application CoverageOne �nal issue that is becoming more and more wor-thy of discussion is the question of what sort of appli-cation(s) an OODBMS benchmark like OO7 shouldbe loosely based on. When we began this work, theanswer was quite clear, and as a result the currentsingle-user OO7 Benchmark has a strong CAD/CAMavor. This reects the fact that CAD-type appli-cations were the initial target application for mostOODBMSs. However, this is now changing: we areseeing OODB systems applied in diverse applicationareas ranging from CAD to telecommunications to �-nance, with some estimates putting the CAD portionof the OODBMS market in the 30-40% range anddropping. Clearly, emerging OODBMS applicationdomains may have workload characteristics that arenot well covered by OO7. We are actively seekingfeedback about such applications to help us in futurerevisions of the benchmark, especially with respectto their multi-user characteristics. Such informationwould be very helpful for our current multi-user OO7Benchmark e�ort, to which we now turn our atten-tion.4 Towards a Multi-User OO7As an initial step towards �lling the information gapthat the introduction mentioned in the area of multi-user OODBMS performance characteristics, we arecurrently developing a multi-user OO7 OODBMSbenchmark. There are �ve systems currently in-volved in this e�ort: E/Exodus [CDF+86, RCS93],O2 [Deu91], Objectivity [Obj92], Ontos [Ont92], andVersant [Ver92].Our experience so far is that designing a multi-user benchmark is a much more di�cult problemthan designing a single-user benchmark. This is par-tially due to the fact that the number of dimen-sions along which the workload can vary is greaterin the multi-user case, and partially because multi-user workloads inherently involve complex interac-tions of multiple concurrent activities. Also, if there

is no agreement about what constitutes the canoni-cal single-user OODBMS workload, there is even lessagreement in the multi-user arena. For this reasonwe regard coming up with a monolithic workloadthat generates a single-number system evaluation (ala TPC-A or TPC-B) as nothing short of hopeless.Our response to date has been to develop a fully pa-rameterized workload that is made up of primitivesthat can be combined to generate a range of work-loads with a wide variety of di�erent characteristics.In this sense the multi-user OO7 Benchmark, in itscurrent form, is really a customizable benchmark gen-erator that we hope will be useful to sophisticatedconsumers of OODBMSs.In the remainder of this paper we give a briefdescription of our ongoing work on the multi-userdatabase and its workloads. Our hope is that read-ing and hearing about this work will lead some ofthe more informed members of the OODBMS com-munity, like vendors and serious application develop-ers, to provide us with feedback based on this de-scription. Such feedback would enable us to improveour design, helping us to produce a more relevantand therefore more useful benchmarking tool for theOODBMS community to share.4.1 The Multi-User OO7 DatabaseThe multi-user OO7 database is a scalable extensionof the single-user OO7 database described in Section2.1. As mentioned there, scalability for multi-userbenchmarking was a goal even in the initial OO7database design. However, the process of designingthe current multi-user OO7 database led us to makesome minor changes to the initial single-user OO7Benchmark database, and to extend it slightly, as wedid not correctly anticipate certain sharing and datacontention issues that quickly became clear when webegan running some initial multi-user experiments.In the initial OO7 Benchmark database, as dis-cussed in Section 2.1, each base assembly in a givenmodule had associations with two kinds of compos-ite parts | private and shared. Both were referencesinto the design library, with private composite partreferences referring only to the composite parts thatwere privately associated with the given module; theshared composite part references were randomly as-signed to point anywhere within the entire design li-brary (i.e., to private parts of any module). The un-fortunate aspect of this design was that there were notruly private composite parts; e.g., it provided no wayto have a client transaction read from its private com-posite parts and update shared composite parts with-out interfering with the private reads of other clients.

We have therefore abandoned this design, removingthe shared composite part associations from the de�-nition of the benchmark's base assembly object type.Instead, for the multi-user benchmark we have addedone additional module, the \shared" module, to thedatabase. One last change, alluded to earlier, is thatwe also eliminated the 3/6/9 connection count varia-tion scheme from the single-user benchmark; for themulti-user OO7 database, the number of outgoingconnections per atomic part is simply �xed at three.For the multi-user OO7 Benchmark, an importantissue that we faced was how to scale the databasewith the workload. As clients are added, shouldthe database remain the same, potentially leading tomore and more contention? Or should the databasegrow with each additional client, the idea being thateach additional client represents a designer who willbe working on an additional piece of a CAD design?We chose the latter approach, which implies trying tokeep contention more or less constant as the numberof clients scales up. This, in turn, requires carefullyscaling the database in terms of both its private andshared modules.To scale the benchmark database in proportion tothe number of clients, we have one private module(as described in Section 2.1) in the database for eachclient in both the small and medium databases. Inaddition, we grow the shared module in proportion tothe number of clients. Roughly speaking, the sharedmodule, which has the same depth as the privatemodules in the benchmark database, can be thoughtof as a \mega-module" consisting of as many sub-modules as there are clients in the database. Eachsubmodule of the shared module therefore has oneless level than than a private module, with the sub-modules being hooked together via the root complexassembly of the shared module. The shared mod-ule brings to the design library its own additional setof composite objects; each submodule of the sharedmodule adds NumSharCompPerClient (currently setto 200) composite objects to the design library, andthese are the composite objects that are referencedby the base assemblies of that submodule.4.2 The Multiuser OO7 WorkloadAs mentioned at the beginning of this section, our ap-proach to multi-user workload generation has been tode�ne a parameterized workload that can be used tocreate workloads with a variety of di�erent character-istics. By doing so, we are able to thoroughly explorethe space of multi-user OODBMS performance. Themulti-user OO7 workload consists of a set of clients,each running a series of (parameterized) traversal

beginTransaction;for RepeatCount doif this is a shared transactionstart at the root of the assemblyhierarchy of the shared module;elsestart at the root of the assemblyhierarchy of module k;Follow a single random path down thehierarchy to a base assembly;From the base assembly, perform someoperation on a composite part;Sleep(SleepTime);end;endTransaction;Figure 3: Generic multi-user OO7 transaction.transactions that are themselves made up of primi-tive operations. Di�erent clients can be told to runtraversal transactions with di�erent parameters, thusallowing a wide range of di�erent workloads to begenerated (e.g., with varying degrees of inter-clientdata sharing).4.2.1 Traversal TransactionsEach client in the multi-user OO7 Benchmark hasa distinct client number. Pseudo-code for a genericmulti-user OO7 traversal transaction for client kis shown in Figure 3. The transaction repeatedlychooses a single path through the assembly hierar-chy, performing some operation on a single compositepart that it reaches via the chosen path. In particu-lar, if the parameter RepeatCount is set to one, thetransaction will visit only one composite part.Each time through the loop, there are two possibil-ities for what each assembly hierarchy traversal cando when it visits a composite part:1. Do a read-only depth-�rst search traversal of theatomic part subgraph associated with that com-posite part.2. Do a read-write traversal. Speci�cally, do adepth-�rst search of the associated atomic partsubgraph that swaps the X and Y coordinates ofeach atomic part as it is visited.

We call these operations on composite parts ba-sic operations. Since each of these (read-only orread-write) operations can be done beginning witha traversal of either the client's private module or the(globally) shared module, there are a total of fourpossible basic operations. Given this description ofthe basic operations, we can now describe the param-eters of the traversal transactions used to generatethe OO7 multi-user workload. We consider each pa-rameter below.� Percentage of Each Basic Operation.The percentages of each of the four basic opera-tions is best described by a vector. For example,(100, 0, 0, 0) speci�es a workload in which eachtransaction contains 100% read-only operationson its private module. Similarly, (80, 10, 10, 0)speci�es a workload in which each transactioncontains 80% read-only operations on its privatemodule, 10% read-only operations on the sharedmodule, and 10% update operations on its pri-vate module. In more detail, these percentagesare interpreted to be probabilities for each op-eration: each time through the loop, when thetransaction reaches a composite part, it \ips" abiased coin (i.e., generates a random number) todecide which kind of basic operation to performon it. On the average, then, if the RepeatCountparameter of Figure 3 is set to 100, a transactiondrawn from the (80, 10, 10, 0) vector will containabout 80 private read-only operations, 10 sharedread-only operations, and 10 private update op-erations.� Repeat Count.By varying the RepeatCount parameter, whichdetermines how many basic operations a trans-action contains, it is possible to generate trans-actions of arbitrary length | ranging from short,traditional TP-ish transactions to longer, CAD-like transactions.� Sleep Time.The SleepTime parameter controls the \inten-sity" of the transactions. If this parameter is setto zero, the transaction is never idle (unless it iswaiting for the OODBMS running the transac-tion); this is perhaps suggestive of a CAD pro-gram such as a design rule checker. By specifyinga longer sleep time, one can model a transactionof an interactive session that involves think timesbetween the database operations.The runtime arguments to a given benchmarkingrun specify all three of these parameters | the per-

centage vector for basic operations, RepeatCount,and SleepTime | in the form of command line ar-guments.4.2.2 Multiuser Workload GenerationThe parameters just described (operation percentagevector, operation repeat count, and sleep time) makeit possible to generate a wide variety of multi-usertransaction workloads. In addition, a �nal very im-portant parameter of the multi-user OO7 Benchmarkis the number of clients, as mentioned in the preced-ing multi-user benchmark database description. Byvarying the number of client workstations, and byvarying the parameter set given to each client, manydi�erent workloads can be experimented with.Of particular interest are the various data sharingpatterns that can be generated from the frameworkthat the OO7 multi-user benchmark parameters pro-vide. One class of workload that can be generated aresymmetric workloads, where all clients behave simi-larly with respect to accessing their \private" dataand the system-wide shared data. Such workloadscan be generated by running every client with thesame set of input parameters. Potentially interest-ing examples include the private read-only workloadmentioned above, or the largely private (80, 10, 10,0) read-mainly workload. Similarly, if an operationvector of (0, 0, 100, 0) is given to each client, a pri-vate read-write workload can be generated. In addi-tion, the transaction length parameter allows the dif-ferent sharing patterns to be applied to either shorttransactions or long transactions, and the sleep timeparameter allows both compute-intensive and pause-intensive transactions to be explored.In addition to symmetric workloads, it is also pos-sible to use the OO7 multi-user benchmark param-eters to generate interesting asymmetric workloads.One such workload might be a producer/consumerworkload, where one client generates information thatothers read (such as stock price quotations). By run-ning a \producer" client with an operation vector of(0,0,0,100), one could have it be a provider of sharedinformation. The rest of the clients, the \consumers",could be run with operation vectors of (0, 100, 0, 0)so that each reads the shared information provided bythe producer's updates. A somewhat less contentiousversion of the consumers could be generated by run-ning them instead with an operation vector like (50,50, 0, 0), causing them to spend only half of theirtime reading from the shared module (with the otherhalf being spent on private reads).

4.2.3 Other Operations Under ConsiderationIn addition to the family of multi-user workloads thatcan be generated using the parameterized transac-tions described up to this point, we are currentlyconsidering (and experimenting with) several addi-tional workload variations. These additional varia-tions are essentially a �rst attempt to make the OO7Benchmark somewhat more broad than just being aCAD-like benchmark. We briey mention some ofour additional (in progress!) ideas along those lineshere.Finer Granularity TraversalsEach time one of the aforementioned traversal trans-actions visits a composite part, it traverses the entireatomic part subgraph that is associated with the com-posite part. Each such subgraph traversal touches 80objects in the small database (20 atomic parts plus60 connection objects) and 800 objects in the mediumdatabase (200 atomic parts plus 600 connection ob-jects.) While this seems �ne for CAD-like transac-tions, having transactions access such a large num-ber of objects is too heavy-weight for modeling somevarieties of transactions. To address this problem, inaddition to the traversals described previously, we in-tend to add another type of transaction | very sim-ilar in structure to the original multi-user traversaltransaction | that stops its traversal and performsits basic operations at the base assembly level. Ourintent is to use this workload to characterize appli-cations that have �ner-grained interactions betweenclient transactions.Set Update OperationsOne of the few items of feedback that we have receivedregarding multi-user workloads is that concurrent setupdate (e.g., insert and delete) operations are impor-tant for some types of OODBMS applications. Toexplore performance issues raised by multi-user setupdates, we have added an associated set object toevery module (both shared and private). This new setwill contain primitive objects that are distinct fromthe other objects in the benchmark database. We arecurrently exploring these issues by testing the follow-ing operations:1. Generate.Every client generates some number of new ob-jects and inserts them into the set of its pri-vate module. While there is no explicit con-tention among the clients, depending upon howthe system is implemented, clients are likely to

contend for both logical and physical resources(e.g., OIDs and database disk bandwidth) at theserver.2. Migrate.Every client migrates the objects in its privateset into the set of the shared module. Here,clients are contending for this shared set due toconcurrent insert operations.3. Migrate back.Every client iterates through the shared set,moving the objects that it put there back to itsown private set. (This operation has caused ter-rible data contention in our initial experiments,so it may need to be modi�ed.)4. Destroy.Every client destroys the objects in its privateset and deletes them from the set.Your Favorite Operation Goes Here!As we have mentioned already, we are very interestedin hearing from OODBMS vendors and customers re-garding the nature of their multi-user workloads. Ifwe are successful at soliciting such information, per-haps in the form of critical comments on the prelimi-nary multi-user OO7 Benchmark design that we havedescribed, we will likely extend (and/or modify) ourdesign further in the future.5 ConclusionThis paper has reported on the current status of theOO7 OODBMS benchmarking e�ort at the Univer-sity of Wisconsin. The �rst half of the paper was de-voted to a review and retrospective evaluation of thesingle-user OO7 Benchmark. We discussed a numberof issues that arose concerning the design and admin-istration of the benchmark, explaining what we did,why we did it, and what we might do di�erently thenext time around. We then described our in-progresswork on multi-user OODBMS benchmarking, detail-ing a set of proposed changes to the OO7 databaseand an associated multi-user workload family for eval-uating OODBMS performance. A major goal of thelatter part of the paper is to publically solicit feed-back from vendors and users of commercialOODBMStechnology regarding, in their opinions, what we'redoing right and what we might be missing in ourproposed multi-user benchmark. We are now in theprocess of running a variety of multi-user workloads

against the multi-user OO7 database; our parameter-ized workload approach has already paid o�, allowingus to explore the OODBMS performance space on �vesystems without a continual modify/compile/debugcycle between every data point.We are hoping that, through extensive experimen-tation and feedback from the OODBMS community,we will be able to develop a set of workloads thatstrikes a reasonable balance between simplicity andcompleteness. However, all of the benchmark imple-mentations will be con�gurable by varying the run-time parameters of the benchmark. Moreover, as ourwork progresses, we intend to make our benchmarkimplementations freely available so that others canindependently and e�ciently conduct their own testson workloads that interest them. We expect thisto be quite useful, as the results from the di�erentdata points we have explored so far in the multi-userworkload space indicate that the benchmark will in-deed �nd signi�cant variations in the multi-user per-formance characteristics of the systems being tested.(We intend to publish a full set of results once we aresatis�ed that we have a solid multi-user benchmarkdesign.)References[And90] T. Anderson et al. The HyperModelBenchmark. In Proceedings of the EDBTConference, Venice, Italy, March 1990.[Cat94] R. Cattell. The Object Database Standard:ODMG-93 (Release 1.1). Morgan Kauf-mann, San Mateo, CA, 1994.[CDF+86] Michael J. Carey, David J. Dewitt,Daniel Frank, Goetz Graefe, M. Muralikr-ishna, Joel E. Richardson, and Eugene J.Shekita. The architecture of the EXODUSExtensible DBMS. In Proceedings of theTwelfth International Conference on VeryLarge Data Bases, pages 52{65, 1986.[CDN93] Michael J. Carey, David J. DeWitt, andJe�rey F. Naughton. The OO7 bench-mark. In Proceedings of the 1993 ACM-SIGMOD Conference on the Managementof Data, Washington D.C., May 1993.[CS92] R. Cattell and J. Skeen. Object opera-tions benchmark. ACM Transactions onDatabase Systems, 17(1), March 1992.[DD88] J. Duhl and C. Damon. A perfor-mance comparison of object and relational

databases using the sun benchmark. InProceedings of the ACM OOPSLA Con-ference, San Diego, California, September1988.[Deu91] O. Deux et al. The O2 system. Communi-cations of the ACM, 34(10), October 1991.[Gra93] Jim Gray. The Benchmark Handbook.Morgan Kaufmann, San Mateo, CA, 1993.[Obj92] Objectivity, Inc. Objectivity referencemanual. 1992.[Ont92] Ontos, Inc. Ontos reference manual. 1992.[RCS93] Joel E. Richardson, Michael J. Carey, andDaniel T. Schuh. The design of the E pro-gramming language. ACM Transactionson Programming Languages and Systems,15(3), July 1993.[RKC87] W. Rubenstein, M. Kubicar, and R. Cat-tell. Benchmarking simple database oper-ations. In Proceedings of the ACM SIG-MOD Conference, San Francisco, Califor-nia, May 1987.[TPC94] TPC. TPC BenchmarkTM D (DecisionSupport). Working draft 6.5, TransactionProcessing Performance Council, Febru-ary 1994.[Ver92] Versant, Inc. Versant reference manual.1992.

