A Status Report on the OO7 OODBMS Benchmarking Effort*

Michael J. Carey David J. Dewitt Chander Kant Jeffrey F. Naughton
Computer Sciences Department
University of Wisconsin-Madison

Abstract

The OO7 Benchmark was first published in 1993,
and has since found a home in the marketing litera-
ture of various object-oriented database management
system (OODBMS) vendors. The OO7 Benchmark
(as published) was the initial result of an ongoing
OODBMS performance evaluation effort at the Uni-
versity of Wisconsin. This paper provides an update
on the status of the effort on two fronts: single-user
and multi-user. On the single-user front, we review
and critique the design of the initial OO7 Benchmark.
We discuss some of its faults, the reasons for those
faults, and things that might be done to correct them.
On the multi-user front, we describe our current work
on the development of a multi-user benchmark for
OODBMSs. This effort includes changes and exten-
sions to the OOT database and the design of a family
of interesting multi-user workloads.

1 Introduction

The OOT benchmarking effort is an on-going research
project that aims to evaluate the performance of
OODBMSs. The first result of this effort, which
built upon the foundation laid by earlier OODBMS
benchmarking efforts [CS92, RKC87, And90, DD8S],
was the single-user OOT benchmark [CDN93]. This

benchmark differed from its predecessors in that it

*This work was funded by Digital Equipment Corporation.
This paper initially appeared in the proceedings of OOPSLA
94,

attempted to provide a truly comprehensive test of
single-user OODBMS performance. Among the per-
formance characteristics tested by the OO7 Bench-
mark are the speed of a given OODBMS on a wide va-
riety of different pointer traversals (e.g., over cached
data and disk-resident data, including both sparse
and dense traversals), updates (including updates of
both indexed and unindexed data, repeated updates,
sparse updates, updates of cached data, and object
creation and deletion), and simple object queries (in-
cluding both exact-match and range queries and both
pointer-based and value-based joins).

To date, we have completed “phase one” of the
007 effort, in which we defined the single-user bench-
mark and used it to profile the performance of a num-
ber of commercial OODBMSs. A full report on this
phase, giving a detailed benchmark description and
measured performance results for four systems on a
common client-server hardware base, is available via
anonymous ftp from ftp.cs.wisc.edu in the OO7
directory. The ftp directory also contains the source
code for the benchmark for five systems.! The dif-
ference between the number of available implementa-
tions and the number of systems for which we have
published our measurements is a reflection of the fact
that the OO7 Benchmark is not without controversy.
The approach used to specify the benchmark, and to
limit liberties that might otherwise be taken when
implementing it, has been a point of some contention
and concern for several vendors who would have liked
to participate (but under a different set of ground
rules).

Despite the information provided by OO7 and
other OODBMS benchmarking efforts, there is vir-
tually no published information available about the
“real” performance of commercial OODBMSs. This
is because real applications usually involve multi-
ple users, making the multi-user performance of

LTAlso available on the World Wide Web at URL
ftp:/ /ftp.cs.wisc.edu/OO7.

OODBMSs critical to understand. Unfortunately, the
performance studies to date provide little or no in-
sight into what can be expected for multi-user per-
formance. This leaves a critical gap in the available
knowledge for consumers of OODBMS technology.
The OO7 effort at Wisconsin is currently working
to address this gap by developing a comprehensive
multi-user OODBMS benchmark. We have changed
and extended the design of the OOT database to bet-
ter accommodate multi-user workloads, and we have
developed a parameterized OODBMS workload that
produces an interesting family of multi-user work-
loads. We are in the process of trying out our bench-
mark on several OODBMSs, and we are also actively
seeking input from OODBMS vendors and users re-
garding our design.

The remainder of this paper begins with a brief re-
view of the design of the single-user OO7 Benchmark.
(Readers familiar with the OO7 Benchmark can skip
this section of the paper.) The review is then followed
by a retrospective critique of the benchmark and the
way in which i1t was administered; this section of the
paper is largely non-technical, presenting some im-
pressions and lessons from our single-user benchmark-
ing experience. We then turn our attention to our
current work on multi-user OODBMS benchmark-
ing, discussing proposed changes in the OOT7 database
and the associated multi-user workload family that
we propose to use in evaluating OODBMS perfor-
mance. A major goal of this portion of the paper is to
convey the status of our effort in order to publically
solicit feedback from vendors and users of commer-
cial OODBMS technology regarding what we’re doing
right, what we’re doing wrong, and what we might be
missing in our current multi-user benchmark design.

2 Single-User OO7 Benchmark

As mentioned in the introduction, the original OO7
Benchmark [CDN93] was designed to test OODBMSs
on a wide variety of traversal, update, and query tasks
in order to thoroughly explore their single-user per-
formance characteristics. As a result, its database
structure and operations are non-trivial. The OO7
Benchmark is intended to be suggestive of many dif-
ferent CAD/CAM/CASE applications, although in
its details it does not model any specific application.
It is important to realize that the goal of the bench-
mark 1s to focus on important aspects of system per-
formance, not to model a specific application. Ac-
cordingly, in the following when we draw analogies
to applications, we do so to provide intuition into
the benchmark rather than to justify or motivate the

Parameter Small Medium
NumAtomicPerComp 20 200
NumConnPerAtomic 3/6/9 3/6/9
DocumentSize (bytes) 2000 20000
Manual Size (bytes) 100K M
NumCompPerModule 500 500
NumAssmPerAssm 3 3
NumAssmLevels 7

NumCompPerAssm 3

NumPrivateModules 1 (per client) | 1 (per client)

Table 1: OO7 Benchmark database parameters.

benchmark.

2.1 OO7 Database Description

There are two “official” sizes of the OO7 Benchmark
database: small and medium. Table 1 summarizes
the parameters of the OOT7 Benchmark database;
their meanings will become clear in a moment when
we walk through the database design. In our five
implementations of the benchmark, all of these pa-
rameters are controlled by a configuration file that is
read by the database generation code. As indicated
in the table, the benchmark was designed even ini-
tially to scale in proportion to the number of clients
by having one private “module” per client in both the
small and medium databases (modules are described
below).

Our goal in setting the parameters for the “small”
and “medium” cases in the way that we did was to
arrange it so that for the small database, on high-
locality workloads, each client’s working set will fit in
its cache, while for the medium database, the working
set will not fit in the client cache; also, for the small
database, the entire database can fit in the server
cache, whereas the medium database will not fit in
the server cache. We are generalizing here, of course,
as exactly what will and won’t fit depends upon (1)
the characteristics (e.g., the pointer representation)
of the specific OODBMS being tested and (2) the
sizes of the client and server caches.

Before describing the OO7 Benchmark database
further, we note that the full source code for our im-
plementations in all the systems we tested is available
by anonymous ftp from ftp.cs.wisc.edu.

2.1.1 The Design Library

A key component of the OO7 Benchmark database
is a set of composite parts. Each composite part cor-

responds to a design primitive such as a register cell
in a VLSI CAD application, or perhaps a procedure
in a CASE application; the set of all composite parts
forms what we refer to as the “design library” within
the OOT database. In the design library, the num-
ber of composite parts associated with each module
is controlled by the parameter NumCompPerModule,
which is set to 500. Each composite part has a num-
ber of attributes, including the integer attributes id
and buildDate, and a small character array type.
Associated with each composite part is a document
object, which models a small amount of documenta-
tion associated with the composite part.

In addition to its scalar attributes and its as-
sociation with a document object, each composite
part has an associated graph of atomic parts. In-
tuitively, the atomic parts within a composite part
are the units out of which the composite part is
constructed. In the small benchmark, each compos-
ite part’s graph contains 20 atomic parts, while in
the medium benchmark, each composite part’s graph
contains 200 atomic parts. (This number is controlled
by the parameter NumAtomicPerComp.) For exam-
ple, if a composite part corresponds to a procedure in
a CASE application, each of the atomic parts in its as-
sociated graph might correspond to a variable, state-
ment, or expression in the procedure. One atomic
part in each composite part’s graph is designated as
the “root part.”

Each atomic part has the integer attributes id,
buildDate, x, y, and docId, and the small character
array type. The buildDate values in atomic parts
are randomly chosen in the range MinAtomicDate to
MaxAtomicDate, which is currently 1000 to 1999. In
addition to these attributes, each atomic part is con-
nected via a bi-directional association to several other
atomic parts, as controlled by the parameter Num-
ConnPerAtomic; this parameter 1s first set to 3, then
to 6, and then to 9 in the single-user benchmark. Our
initial plan was to connect the atomic parts within
each composite part in a random fashion. However,
random connections do not ensure complete connec-
tivity (i.e., reachability of all of a composite part’s
atomic parts from its root part). To ensure complete
connectivity, one connection is initially added to each
atomic part to connect the parts in a ring; the remain-
ing connections are then added at random.

The connections between atomic parts are imple-
mented by interposing a connection object between
each pair of connected atomic parts. Here the intu-
ition is that the connections themselves contain data;
the connection object is the repository for that data.
A connection object contains the integer field length
and the short character array type.

Figure 1 depicts a composite part, its associated
document object, and its associated graph of atomic
parts. One way to view this is that the union of all
atomic parts corresponds to the object graph in the
OO1 benchmark [CS92]; however, in OO7 this ob-
ject graph is broken up into semantic units of locality
by the composite parts. Thus, the composite parts in
OQT7 provide an opportunity to test how effective var-
ious OODBMS products are at supporting complex
objects.

2.1.2 Assembling Complex Designs

The design library, which contains the composite
parts and their associated atomic parts (including the
connection objects) and documents, accounts for the
bulk of the OOT7 database. However, a set of compos-
ite parts by itself is not sufficiently structured to sup-
port all of the operations that we wished to include in
the benchmark. Accordingly, we added the notion of
an “assembly hierarchy” to the database. Intuitively,
the assembly objects correspond to higher-level de-
sign constructs in the application being modeled in
the database. For example, in a VLSI CAD appli-
cation, an assembly might correspond to the design
for a register file or an ALU. Each assembly is either
made up of composite parts (in which case it is a base
assembly) or it is made up of other assembly objects
(in which case it is a complexr assembly).

The first (bottom) level of the assembly hierarchy
consists of base assembly objects. Base assembly ob-
jects have the integer attributes id and buildDate,
and the short character array type. Each base assem-
bly has a bi-directional association with three com-
posite parts. (The number of composite parts per
base assembly is controlled by the parameter Num-
CompPerAssm.) In the single-user OO7 Benchmark,
each base assembly had associations with two kinds
of composite parts, private and shared, although only
the private associations were used; the shared associ-
ations were designed into the database for use in the
multi-user benchmark design that we were anticipat-
ing for our follow-on work.

Higher levels in the assembly hierarchy are made
up of complex assemblies. Each complex assembly has
the usual integer attributes, id and buildDate, and
the short character array type; additionally, it has
a bi-directional association with three subassemblies
(controlled by the parameter NumAssmPerAssm),
which can either be base assemblies (if the complex
assembly is at level two in the assembly hierarchy)
or other complex assemblies (if the complex assembly
is higher in the hierarchy). There are seven levels in
the assembly hierarchy (controlled by the parameter

docld = 345
title = "widget #27 docs"

text = "wdget #27 doesn't really do
very nuch but we put one in the
spec so here it is"

- » documentation

Id = 248590
type = "typeNumber3"

buildDate = 3587341

Figure 1: A Composite Part and its associated Document object.

NumAssmLevels).

Each assembly hierarchy is called a module. Mod-
ules are intended to model the largest subunits of the
database application, and are used extensively in the
multi-user workloads; they are not used explicitly in
the small or medium single-user OOT databases, each
of which consists of just a single module, but were
included for their usefulness in our planned multi-
user follow-on work. Modules have several scalar at-
tributes — the integers id and buildDate, and the
short character array type. Each module also has an
associated Manual object, which is a larger version of
a document. Manuals are included for use in testing
the handling of very large (but simple) objects.

Figure 2 depicts the full structure of the single-
user OO7 Benchmark database. Note that the pic-
ture is somewhat misleading in terms of both shape
and scale; the actual assembly fanout used is 3, and
there are only (37 —1)/2 = 1093 assemblies per mod-
ule in the small and medium databases, compared to
10,000 atomic parts per module in the small database
and 100,000 atomic parts per module in the medium
database. Also, as mentioned earlier, the composite
parts associated with a given module are private to
the module in the sense that they are only referenced
by base assemblies of that particular module.

2.2 Single-User OO7 Operations

The operations of the single-user OO7 Benchmark
can be roughly grouped into three categories: read-
only traversals, updates, and queries. Each category,

in turn, contains a number of different operations in
order to achieve broad OODBMS performance cover-
age.

2.2.1 Read-Only Traversal Operations

The first category, read-only traversals, consists of
four distinct traversal operations. The first two are
based on traversing the assembly hierarchy. The
traversals start from the top (i.e., at the module level)
and proceed in a depth-first manner; as base assem-
blies are reached, each referenced composite part is
accessed. The first traversal is a dense traversal that
accesses the entire atomic parts graph of each encoun-
tered composite part (via a depth-first search). The
second traversal 1s a sparse traversal, which accesses
only the root part of each composite part, leaving the
remainder of the atomic parts graph untouched. The
third and fourth traversals focus on the manual ob-
ject associated with a module. The third traversal
scans the entire text of the manual, while the fourth
traversal touches only the first and last characters of
the manual’s text (to test random accesses to very
large objects).

Each of the traversal operations is implemented us-
ing methods of the object classes involved, as each
one is supposed to represent an operation that was
anticipated (unlike the operations in the query cate-
gory) at application design time. For each traversal,
both a cold time (based on starting with an empty
cache) and an average hot time (based on reaccessing
exactly the same data repeatedly) are reported. In
addition, for each hot time, two cases are reported

Modulei

id

type

builddate

manual

design_root

Manual text

complex
assemblies

Design Library of Composite Parts

Figure 2: Structure of a module.

— with the traversals being performed either within
one transaction or as many transactions — to expose
caching performance both within and across transac-
tion boundaries.

2.2.2 Update Operations

The second category, updates, includes two update
traversals. Both of these execute the first (dense)
assembly hierarchy traversal operation but perform
The first update traver-
sal changes the value of two unindexed attributes

updates along the way.

of either one, all (once), or all (repeated a total of
four times) of the atomic parts that it encounters.
The second update traversal is similar, but instead
changes the value of one indexed attribute of the
atomic parts. The update category also includes an
insert operation, which inserts five new composite
parts into a module, and a corresponding delete op-
eration, which deletes the same five composite parts
in order to restore the module to its original logical
state. Together, the collection of update operations
in the benchmark tests the efficiency of a number of
update-related implementation issues, especially the
recovery mechanism (usually based on writing log
records or shadows) and the index manager.

2.2.3 Object Queries

The final category, queries, 1s a set of seven object
queries that range from simple to moderately com-
plex (at least given the state of OODBMS query lan-
guages and implementations as of the initial OO7
benchmarking exercise). Included are an exact-match
query that looks up one atomic part, two range
queries that look up 1% and 10% of the atomic parts,
respectively, and a sequential scan query that accesses
every atomic part in the type extent for atomic parts.
The three more complex queries in the query cat-
egory are essentially “join” queries. The first two
are pointer joins, i.e., they are navigational in na-
ture. One is a three-level path query that goes from
a document title to the base assemblies that use the
document’s corresponding composite part; the other
1s a two-way pointer join of two connected type ex-
tents (composite parts and base assemblies). The
last join query is an ad hoc (value-based) join be-
tween two other type extents (between documents
and atomic parts, based on matching the documents’
ids and the document id field that atomic parts have).
Each of the OO7 object queries are written as declar-
atively as possible using whatever facilities the tested
OODBMS has for expressing, or otherwise imple-
menting, queries.

3 Single-User Lessons

As mentioned in the introduction, we implemented
and ran the single-user OO7 Benchmark on five dif-
ferent OODBMSs (four commercial systems plus our
own research prototype). We were eventually permit-
ted to report results for four of the five systems. This
experience taught us quite a bit about the systems
tested as well as the overall state of the commercial
OODBMS industry. The various technical lessons
that we learned are reported in [CDN93]. Here we
look back on some of the other, less technical issues
and lessons (including a few design flaws) that re-
sulted from the initial OO7 work.

3.1 Specification Woes

One issue that concerned us from the very beginning
of our work was how to ensure that the OO7 bench-
mark implementations for two different OODBMSs
are really providing a fair, “apples to apples” com-
parison of the systems. Essentially, this question
boils down to “what really is the benchmark?” (in
terms of the degrees of freedom in its implemen-
tation). Perhaps less intuitively, we found that in
OODBMS benchmarking this also boils down to the
question “what really is the system?” Every system
tested had a rather different set of features as well as
a different set of potentially useful performance knobs
(each requiring a different level of wizardry and a dif-
ferent degree of knowledge regarding specific details
of the OO7 database and operations).

An easy out would have been to simply specify the
benchmark operations at a high level (e.g., in English)
and let each vendor implement them in the best way
that they could using algorithms of their choosing
and every performance feature available in their sys-
tem. However, we specifically wanted to avoid this, as
it would have defeated our purpose. That approach
would have turned the OOT7 effort into a program-
ming contest for wizards rather than a comparison
of OODBMS engines as they would likely be used by
intelligent, but not exceptional, application program-
mers. Instead, we chose a different approach — all
official OO7 numbers to date have been obtained by
us, running code that we either implemented person-
ally or else audited very carefully, and each system
was tested on identical hardware at the University of
Wisconsin. Was this really necessary? Unfortunately,
yes.

As just one example of why we conducted the
benchmark this way, most OODBMSs (all commer-
cial systems that we tested, in fact) provide a set
facility. This provides a convenient way to represent

the fact that a given object, A, has a one-to-many
association with a set of other objects, B, C, and D.
Using the set facility, you can store in object A a set of
references to the objects B, C, and D. The manuals
of the various systems, as well as the provided ex-
ample programs, do indeed implement one-to-many
associations in this way. However, each OODBMS
essentially provides the full power of C++, making
it possible to bypass the system-provided set facility.
Instead, one could use C4++4 to code a special asso-
ciation class tailored for the OO7 benchmark. This
hand-coded association class might be much faster
than the standard system-provided class. Should do-
ing so be an acceptable approach?

Our answer was that system-provided classes for
things like sets must be used wherever they are ap-
propriate in the benchmark — otherwise users who
employ system-provided facilities would be unable
to duplicate the benchmark results. Moreover, one
would hope that these system-provided facilities, de-
scribed in the manuals as the “recommended” ap-
proach for modeling relationships, would be reason-
ably well implemented. However, in some cases we
were criticized with the comment that “sets are not
part of the engine, so why are you benchmarking
them?” Similarly, we were criticized in some cases
for not using the fine-tuning features offered by a sys-
tem when doing so meant hard-wiring details of the
OO0O7 database parameters (e.g., exact sizes of all ob-
jects, exact cardinalities of all sets, and so on) into the
benchmark code. Again, we resisted vendors’ urgings
to do this, as we felt that typical OODBMS appli-
cation programmers would not be able to use such
features nearly as well as an expert programmer who
was implementing the OO7 Benchmark with full, a
priori knowledge of all of the database parameters.
Our focus was on obtaining OODBMS performance
information that would be useful to typical program-
mers.

When we ran the original tests there was no clear
way to resolve this issue. We started by specify-
ing the benchmark in English, and we simply made
public our own implementations for five systems to
clarify the intent of the English. Obviously, this
needs to be tightened up. Luckily, now there is
hope. The ODMG committee, whose membership
includes all major OODBMS vendors, recently pro-
posed a standard data model for OODBMS applica-
tions [Cat94] and embeddings for this model in C++
and Smalltalk. A clean way to specify the benchmark
in the future will be to provide an implementation
of the benchmark using this standard, thus ensuring
that all systems running the benchmark will run ex-
actly the same code. A particularly interesting (but

time consuming) exercise would be to run the bench-
mark both this way and using all of each vendor’s
bells and whistles (or at least those made available
through optional extensions of the ODMG standard)
to see what each system’s “dynamic range” might be.

3.2 More Specification Woes

A related problem with the specification and imple-
mentation of the initial OO7 Benchmark — or per-
haps just an extreme example of the issues discussed
above — arose with respect to the queries in the
benchmark. When we began the OOT project, the
target OODBMSs varied wildly in their support for
declarative query processing. Some systems had no
declarative query language. Among those systems
that did support a declarative query language, the
query languages had widely differing expressive pow-
ers. For this reason, we implemented each of the OO7
queries in the system-provided query language if pos-
sible; otherwise we hand-coded a “reasonable” eval-
uation algorithm for the query in C++, using the
same algorithm across all “query-impaired” systems
to avoid the programming contest problem. We have
been justifiably criticized that this approach could
penalize a system for providing a query processor.

Due to this problem, the query processing as-
pect of the OO7 Benchmark is an aspect of the
benchmark that needs significant improvement. Once
again, as the OODBMS industry matures, however,
there 1s hope for avoiding this situation. Specifically,
the ODMG committee has also proposed a standard
query language, called OQL, that ODMG-compliant
OODBMSs will be required to support. In light
of this proposal, we will revisit the query portion
of the benchmark. For the next major iteration of
the single-user benchmark, we intend to express the
queries using the OQL query language standard. If
a given system does not support OQL or an equiv-
alently powerful declarative language, it will not be
permitted to participate in the query portion of the
benchmark.

3.3 Auditing the Auditors

One legitimate concern with benchmarking is: who
will audit the benchmark implementation and re-
sults? As mentioned above, our initial solution was
to do most of the implementation work and all of the
benchmark-running work ourselves, very carefully au-
diting (and toning down when necessary) those im-
plementations that were vendor-provided. Moreover,
in the past, we (the UW OO7 team) have set the
rules for the benchmark and have interpreted them

and resolved all disputes. We do not enjoy playing
all of these roles; ideally, some standards group like
the TPC should audit benchmarks. Perhaps in the
future OO7 (or some derivative benchmark) will be
adopted by ODMG or a related standards group who
will put a mechanism in place to clarify the rules and
audit the implementations and results. We think this
is a natural progression for a benchmark — being pro-
posed in its initial form by a small team of people, and
then being revised, formalized, and administered by
a standards body that both vendors and customers
can trust. This progression (which produced TPC-
A through TPC-C [Gra93]) seems more efficient than
the alternative of letting a large committee of vendors
define a benchmark from scratch (a la the approach
taken in TPC-D [TPC94]), as it is difficult for a large
committee with diverse goals and mutual fears to de-
fine something as complex as a database benchmark.

3.4 Freedom of Information

Specification and auditing issues aside, one overrid-
ing problem that a would-be benchmarker must face
is that many OODBMSs (like almost all relational
DBMSs) have clauses in their software licenses that
prohibit the release of performance results without
explicit permission from the OODBMS vendor. That
1s, for some systems, it is actually a violation of
the system’s license agreement, and therefore a very
real potential source of a law suit, to purchase an
OODBMS, run a benchmark, and publish the results.
Moreover, as we discovered, this is not just idle jar-
gon in the license agreement. If you do go ahead and
benchmark such a system, you will almost surely be
hearing from the vendor’s lawyers.

While it is apparently perfectly legal for software
licenses to be written in this manner, one has to won-
der why some vendors feel the need for such clauses —
and what the impact i1s on the information systems in-
dustry. If other industries followed the DBMS indus-
try’s lead, Road & Track could not publish its new car
road tests, and Consumer Reports could not evaluate
dishwashers and stereos. Closer to the computer in-
dustry, it would be prohibited to publish benchmark
ratings for new microprocessors. Clearly, this clause
has a very strong stifling effect on would-be bench-
markers. It certainly made our job much harder; at
each step of the way we had to negotiate with some of
the companies involved to keep them from firing up
their lawyers and dropping out of the benchmark. (At
times it also kept our FAX machine humming with
legal correspondence, leading us to duck and shout
“incoming!” each time the FAX phone rang in our
secretary’s office.)

Dealing with this issue was very painful, both for us
and for our technical colleagues who work for the var-
ious OODBMS vendors. Having said that, we should
also note that in general our contacts in the com-
panies involved were helpful and supportive in what
was an extremely high-stress situation for everyone
involved.

3.5 Interpreting the Results

Given that one has managed to overcome (or ignore
for the moment) the sticky issues above, producing
a set of numbers, one is then faced with yet another
issue: What do the benchmark results mean? This is
viewed by some as being a major problem with the
007 Benchmark, and many have urged us to make
the OO7 Benchmark results easier to use by providing
a mechanism to condense the test results into a single
number for the purpose of ranking systems.

We agree that the benchmark report currently in-
cludes far too many numbers; we will talk in a mo-
ment about our plans to condense the OO7 Bench-
mark to a more manageable size. However, we do
not anticipate ever reducing the benchmark to a sin-
gle number. This is not due to bashfulness or fear
of hurting people’s feelings; rather, it is a result of
(1) our decision to favor a comprehensive benchmark
rather than a concise one but narrow one, and (2) our
belief that for a knowledgeable customer, a multiple
number benchmark is far more useful than any single
number benchmark could be. That is, to use the OO7
results, we recommend that you determine the main
performance demands of your application and then
look at the OODBMSs’ performance on the portion
of OOT that most closely matches those demands.

To illustrate some of the difficulties with a single
number condensation of the OO7 results, here are
three ways that have been suggested (e.g., in trade
journal articles covering OO7 or marketing literature
from OODBMS companies) for producing a single
OOT7 number.

1. Number of first places on benchmark tests.

In the benchmark report we present 105 timing
results (tests) from each system.? To produce
this one-number performance metric, one simply
counts the number of times that each system had
the fastest time on one of the 105 tests.

By this measure, the results as of this writing
are:

2This is not quite as outrageous as it might seem, as the
0OO7 technical report includes a number of graphs. The total of
105 numbers comes from counting every point on every graph.

Rank | System Score
1 E/Exodus 61
2 Versant 22
3 Ontos 19
4 Objectivity 3

2. Weighted ranking of places.

To produce this alternative one-number OO7
performance metric, one gives each system one
point for a first place finish on a test, two points
for a second place finish, three points for third
place, and four points for fourth place. These
numbers are then added up for each system, so
a lower overall number is better.

By this measure, the results are:

Rank | System Score
1 E/Exodus 173
2 Ontos 264
3 Versant 283
4 Objectivity 330

3. Geometric mean.

Yet another possible approach, which weights
each number as being equally important (and
therefore presumes that all key performance ar-
eas have been equally well covered), is to use the
geometric mean of the results as the one-number
metric — taking the 105th root of the product
of the 105 individual test results. This is the ap-
proach taken by the TPC in their new TPC-D
benchmark.

By this measure the results are:

Rank | System Score
1 E/Exodus | 14.19
2 Objectivity | 33.88
3 Versant 33.94

(We couldn’t place Ontos in this ranking because
as of this writing we do not have numbers for the
medium-9 OO7 database results for Ontos.)

While we don’t ever want a single-number bench-
mark, OO7 certainly errs on the side of generat-
ing too many numbers. This is because benchmark-
ing is a learning process, and only through itera-
tive refinement can one end up with a minimal yet
somehow sufficient set of benchmark operations. We
plan to fix this problem in OO7 by further reduc-
ing the set of tests involved in running the bench-
mark. This will be done by requiring one or a few
numbers for each of a few interesting categories of
workloads, e.g., hot traversals (how fast can an ap-
plication program traverse in-memory data?), cold

sparse and dense traversals (how fast can an applica-
tion program traverse data not yet in memory?), one
or two update traversals, a smaller set of queries, etc.
Some of the current OOT parameter variations (e.g.,
the 3/6/9 variation for the atomic parts graph, and
the some/all/repeated update variation) have come
to show little or no new information as systems have
matured and their early performance bugs have dis-
appeared. These variations can now be eliminated.

3.6 Application Coverage

One final issue that is becoming more and more wor-
thy of discussion is the question of what sort of appli-
cation(s) an OODBMS benchmark like OO7 should
be loosely based on. When we began this work, the
answer was quite clear, and as a result the current
single-user OO7 Benchmark has a strong CAD/CAM
flavor. This reflects the fact that CAD-type appli-
cations were the initial target application for most
OODBMSs. However, this is now changing: we are
seeing OODB systems applied in diverse application
areas ranging from CAD to telecommunications to fi-
nance, with some estimates putting the CAD portion
of the OODBMS market in the 30-40% range and
dropping. Clearly, emerging OODBMS application
domains may have workload characteristics that are
not well covered by OO7. We are actively seeking
feedback about such applications to help us in future
revisions of the benchmark, especially with respect
to their multi-user characteristics. Such information
would be very helpful for our current multi-user OO7
Benchmark effort, to which we now turn our atten-
tion.

4 Towards a Multi-User OO7

As an initial step towards filling the information gap
that the introduction mentioned in the area of multi-
user OODBMS performance characteristics, we are
currently developing a multi-user OO7 OODBMS
benchmark. There are five systems currently in-
volved in this effort: E/Exodus [CDF*86, RCS93],
02 [Deu9l], Objectivity [Obj92], Ontos [Ont92], and
Versant [Ver92].

Our experience so far is that designing a multi-
user benchmark is a much more difficult problem
than designing a single-user benchmark. This is par-
tially due to the fact that the number of dimen-
sions along which the workload can vary is greater
in the multi-user case, and partially because multi-
user workloads inherently involve complex interac-
tions of multiple concurrent activities. Also, if there

is no agreement about what constitutes the canoni-
cal single-user OODBMS workload, there is even less
agreement in the multi-user arena. For this reason
we regard coming up with a monolithic workload
that generates a single-number system evaluation (a
la TPC-A or TPC-B) as nothing short of hopeless.
Our response to date has been to develop a fully pa-
rameterized workload that is made up of primitives
that can be combined to generate a range of work-
loads with a wide variety of different characteristics.
In this sense the multi-user OO7 Benchmark, in its
current form, is really a customizable benchmark gen-
erator that we hope will be useful to sophisticated
consumers of OODBMSs.

In the remainder of this paper we give a brief
description of our ongoing work on the multi-user
database and its workloads. Our hope is that read-
ing and hearing about this work will lead some of
the more informed members of the OODBMS com-
munity, like vendors and serious application develop-
ers, to provide us with feedback based on this de-
scription. Such feedback would enable us to improve
our design, helping us to produce a more relevant
and therefore more useful benchmarking tool for the
OODBMS community to share.

4.1 The Multi-User OO7 Database

The multi-user OO7 database is a scalable extension
of the single-user OOT database described in Section
2.1. As mentioned there, scalability for multi-user
benchmarking was a goal even in the initial OO7
database design. However, the process of designing
the current multi-user OO7 database led us to make
some minor changes to the initial single-user OO7
Benchmark database, and to extend it slightly, as we
did not correctly anticipate certain sharing and data
contention issues that quickly became clear when we
began running some initial multi-user experiments.
In the initial OO7 Benchmark database, as dis-
cussed in Section 2.1, each base assembly in a given
module had associations with two kinds of compos-
ite parts — private and shared. Both were references
into the design library, with private composite part
references referring only to the composite parts that
were privately associated with the given module; the
shared composite part references were randomly as-
signed to point anywhere within the entire design li-
brary (i.e., to private parts of any module). The un-
fortunate aspect of this design was that there were no
truly private composite parts; e.g., 1t provided no way
to have a client transaction read from its private com-
posite parts and update shared composite parts with-
out interfering with the private reads of other clients.

We have therefore abandoned this design, removing
the shared composite part associations from the defi-
nition of the benchmark’s base assembly object type.
Instead, for the multi-user benchmark we have added
one additional module, the “shared” module, to the
database. One last change, alluded to earlier, is that
we also eliminated the 3/6/9 connection count varia-
tion scheme from the single-user benchmark; for the
multi-user OO7 database, the number of outgoing
connections per atomic part is simply fixed at three.

For the multi-user OO7 Benchmark, an important
issue that we faced was how to scale the database
with the workload. As clients are added, should
the database remain the same, potentially leading to
more and more contention? Or should the database
grow with each additional client, the idea being that
each additional client represents a designer who will
be working on an additional piece of a CAD design?
We chose the latter approach, which implies trying to
keep contention more or less constant as the number
of clients scales up. This, in turn, requires carefully
scaling the database in terms of both its private and
shared modules.

To scale the benchmark database in proportion to
the number of clients, we have one private module
(as described in Section 2.1) in the database for each
client in both the small and medium databases. In
addition, we grow the shared module in proportion to
the number of clients. Roughly speaking, the shared
module, which has the same depth as the private
modules in the benchmark database, can be thought
of as a “mega-module” consisting of as many sub-
modules as there are clients in the database. Each
submodule of the shared module therefore has one
less level than than a private module, with the sub-
modules being hooked together via the root complex
assembly of the shared module. The shared mod-
ule brings to the design library its own additional set
of composite objects; each submodule of the shared
module adds NumSharCompPerClient (currently set
to 200) composite objects to the design library, and
these are the composite objects that are referenced
by the base assemblies of that submodule.

4.2 The Multiuser OO7 Workload

As mentioned at the beginning of this section, our ap-
proach to multi-user workload generation has been to
define a parameterized workload that can be used to
create workloads with a variety of different character-
istics. By doing so, we are able to thoroughly explore
the space of multi-user OODBMS performance. The
multi-user OO7 workload consists of a set of clients,
each running a series of (parameterized) traversal

beginTransaction;
for RepeatCount do

if this is a shared transaction
start at the root of the assembly
hierarchy of the shared module;
else
start at the root of the assembly
hierarchy of module k;

Follow a single random path down the
hierarchy to a base assembly;

From the base assembly, perform some
operation on a composite part;

Sleep(SleepTime) ;

end;
endTransaction;

Figure 3: Generic multi-user OO7 transaction.

transactions that are themselves made up of primi-
tive operations. Different clients can be told to run
traversal transactions with different parameters, thus
allowing a wide range of different workloads to be
generated (e.g., with varying degrees of inter-client
data sharing).

4.2.1 Traversal Transactions

Each client in the multi-user OO7 Benchmark has
a distinct client number. Pseudo-code for a generic
multi-user OO7 traversal transaction for client &
is shown in Figure 3. The transaction repeatedly
chooses a single path through the assembly hierar-
chy, performing some operation on a single composite
part that it reaches via the chosen path. In particu-
lar, if the parameter RepeatCount is set to one, the
transaction will visit only one composite part.

Each time through the loop, there are two possibil-
ities for what each assembly hierarchy traversal can
do when it visits a composite part:

1. Do a read-only depth-first search traversal of the
atomic part subgraph associated with that com-
posite part.

2. Do a read-write traversal. Specifically, do a
depth-first search of the associated atomic part
subgraph that swaps the X and Y coordinates of

each atomic part as it is visited.

We call these operations on composite parts ba-
sic operations. Since each of these (read-only or
read-write) operations can be done beginning with
a traversal of either the client’s private module or the
(globally) shared module, there are a total of four
possible basic operations. Given this description of
the basic operations, we can now describe the param-
eters of the traversal transactions used to generate
the OO7 multi-user workload. We consider each pa-
rameter below.

o Percentage of Each Basic Operation.

The percentages of each of the four basic opera-
tions is best described by a vector. For example,
(100, 0, 0, 0) specifies a workload in which each
transaction contains 100% read-only operations
on its private module. Similarly, (80, 10, 10, 0)
specifies a workload in which each transaction
contains 80% read-only operations on its private
module, 10% read-only operations on the shared
module, and 10% update operations on its pri-
vate module. In more detail, these percentages
are interpreted to be probabilities for each op-
eration: each time through the loop, when the
transaction reaches a composite part, it “flips” a
biased coin (i.e., generates a random number) to
decide which kind of basic operation to perform
on it. On the average, then, if the RepeatCount
parameter of Figure 3 1s set to 100, a transaction
drawn from the (80, 10, 10, 0) vector will contain
about 80 private read-only operations, 10 shared
read-only operations, and 10 private update op-
erations.

e Repeat Count.

By varying the RepeatCount parameter, which
determines how many basic operations a trans-
action contains, it is possible to generate trans-
actions of arbitrary length — ranging from short,
traditional TP-ish transactions to longer, CAD-
like transactions.

e Sleep Time.

The SleepTime parameter controls the “inten-
sity” of the transactions. If this parameter is set
to zero, the transaction is never idle (unless it is
waiting for the OODBMS running the transac-
tion); this is perhaps suggestive of a CAD pro-
gram such as a design rule checker. By specifying
a longer sleep time, one can model a transaction
of an interactive session that involves think times
between the database operations.

The runtime arguments to a given benchmarking
run specify all three of these parameters — the per-

centage vector for basic operations, RepeatCount,
and SleepTime — in the form of command line ar-
guments.

4.2.2 Multiuser Workload Generation

The parameters just described (operation percentage
vector, operation repeat count, and sleep time) make
it possible to generate a wide variety of multi-user
transaction workloads. In addition, a final very im-
portant parameter of the multi-user OO7 Benchmark
is the number of clients, as mentioned in the preced-
ing multi-user benchmark database description. By
varying the number of client workstations, and by
varying the parameter set given to each client, many
different workloads can be experimented with.

Of particular interest are the various data sharing
patterns that can be generated from the framework
that the OO7 multi-user benchmark parameters pro-
vide. One class of workload that can be generated are
symmetric workloads, where all clients behave simi-
larly with respect to accessing their “private” data
and the system-wide shared data. Such workloads
can be generated by running every client with the
same set of input parameters. Potentially interest-
ing examples include the private read-only workload
mentioned above, or the largely private (80, 10, 10,
0) read-mainly workload. Similarly, if an operation
vector of (0, 0, 100, 0) is given to each client, a pri-
vate read-write workload can be generated. In addi-
tion, the transaction length parameter allows the dif-
ferent sharing patterns to be applied to either short
transactions or long transactions, and the sleep time
parameter allows both compute-intensive and pause-
intensive transactions to be explored.

In addition to symmetric workloads, it 1s also pos-
sible to use the OOT7 multi-user benchmark param-
eters to generate interesting asymmetric workloads.
One such workload might be a producer/consumer
workload, where one client generates information that
others read (such as stock price quotations). By run-
ning a “producer” client with an operation vector of
(0,0,0,100), one could have it be a provider of shared
information. The rest of the clients, the “consumers”,
could be run with operation vectors of (0, 100, 0, 0)
so that each reads the shared information provided by
the producer’s updates. A somewhat less contentious
version of the consumers could be generated by run-
ning them instead with an operation vector like (50,
50, 0, 0), causing them to spend only half of their
time reading from the shared module (with the other
half being spent on private reads).

4.2.3 Other Operations Under Consideration

In addition to the family of multi-user workloads that
can be generated using the parameterized transac-
tions described up to this point, we are currently
considering (and experimenting with) several addi-
tional workload variations. These additional varia-
tions are essentially a first attempt to make the OO7
Benchmark somewhat more broad than just being a
CAD-like benchmark. We briefly mention some of
our additional (in progress!) ideas along those lines
here.

Finer Granularity Traversals

Each time one of the aforementioned traversal trans-
actions visits a composite part, 1t traverses the entire
atomic part subgraph that is associated with the com-
posite part. Each such subgraph traversal touches 80
objects in the small database (20 atomic parts plus
60 connection objects) and 800 objects in the medium
database (200 atomic parts plus 600 connection ob-
jects.) While this seems fine for CAD-like transac-
tions, having transactions access such a large num-
ber of objects is too heavy-weight for modeling some
varieties of transactions. To address this problem, in
addition to the traversals described previously, we in-
tend to add another type of transaction — very sim-
ilar in structure to the original multi-user traversal
transaction — that stops its traversal and performs
its basic operations at the base assembly level. Our
intent is to use this workload to characterize appli-
cations that have finer-grained interactions between
client transactions.

Set Update Operations

One of the few items of feedback that we have received
regarding multi-user workloads is that concurrent set
update (e.g., insert and delete) operations are impor-
tant for some types of OODBMS applications. To
explore performance issues raised by multi-user set
updates, we have added an associated set object to
every module (both shared and private). This new set
will contain primitive objects that are distinct from
the other objects in the benchmark database. We are
currently exploring these issues by testing the follow-
ing operations:

1. Generate.

Every client generates some number of new ob-
jects and inserts them into the set of its pri-
vate module. While there is no explicit con-
tention among the clients, depending upon how
the system is implemented, clients are likely to

contend for both logical and physical resources
(e.g., OIDs and database disk bandwidth) at the

Server.

2. Migrate.

Every client migrates the objects in its private
set into the set of the shared module. Here,
clients are contending for this shared set due to
concurrent insert operations.

3. Migrate back.

Every client iterates through the shared set,
moving the objects that it put there back to its
own private set. (This operation has caused ter-
rible data contention in our initial experiments,
so it may need to be modified.)

4. Destroy.

Every client destroys the objects in its private
set and deletes them from the set.

Your Favorite Operation Goes Here!

As we have mentioned already, we are very interested
in hearing from OODBMS vendors and customers re-
garding the nature of their multi-user workloads. If
we are successful at soliciting such information, per-
haps in the form of critical comments on the prelimi-
nary multi-user OO7 Benchmark design that we have
described, we will likely extend (and/or modify) our
design further in the future.

5 Conclusion

This paper has reported on the current status of the
007 OODBMS benchmarking effort at the Univer-
sity of Wisconsin. The first half of the paper was de-
voted to a review and retrospective evaluation of the
single-user OO7 Benchmark. We discussed a number
of issues that arose concerning the design and admin-
istration of the benchmark, explaining what we did,
why we did it, and what we might do differently the
next time around. We then described our in-progress
work on multi-user OODBMS benchmarking, detail-
ing a set of proposed changes to the OO7 database
and an associated multi-user workload family for eval-
uating OODBMS performance. A major goal of the
latter part of the paper is to publically solicit feed-
back from vendors and users of commercial OODBMS
technology regarding, in their opinions, what we’re
doing right and what we might be missing in our
proposed multi-user benchmark. We are now in the
process of running a variety of multi-user workloads

against the multi-user OO7 database; our parameter-
ized workload approach has already paid off, allowing
us to explore the OODBMS performance space on five
systems without a continual modify/compile/debug
cycle between every data point.

We are hoping that, through extensive experimen-
tation and feedback from the OODBMS community,
we will be able to develop a set of workloads that
strikes a reasonable balance between simplicity and
completeness. However, all of the benchmark imple-
mentations will be configurable by varying the run-
time parameters of the benchmark. Moreover, as our
work progresses, we intend to make our benchmark
implementations freely available so that others can
independently and efficiently conduct their own tests
on workloads that interest them. We expect this
to be quite useful, as the results from the different
data points we have explored so far in the multi-user
workload space indicate that the benchmark will in-
deed find significant variations in the multi-user per-
formance characteristics of the systems being tested.
(We intend to publish a full set of results once we are
satisfied that we have a solid multi-user benchmark
design.)

References

[And90] T. Anderson et al. The HyperModel
Benchmark. In Proceedings of the EDBT

Conference, Venice, Italy, March 1990.

[Cat94] R. Cattell. The Object Database Standard:
ODMG-93 (Release 1.1). Morgan Kauf-

mann, San Mateo, CA, 1994.

[CDF*86] Michael J. Carey, David J. Dewitt,
Daniel Frank, Goetz Graefe, M. Muralikr-
ishna, Joel E. Richardson, and Eugene J.
Shekita. The architecture of the EXODUS
Extensible DBMS. In Proceedings of the
Twelfth International Conference on Very
Large Data Bases, pages 5265, 1986.

[CDN93] Michael J. Carey, David J. DeWitt, and
Jeffrey F. Naughton. The OOT bench-
mark. In Proceedings of the 1993 ACM-
SIGMOD Conference on the Management

of Data, Washington D.C., May 1993.

[CS92) R. Cattell and J. Skeen. Object opera-
tions benchmark. ACM Transactions on
Database Systems, 17(1), March 1992.

[DD88] J. Duhl and C. Damon. A perfor-

mance comparison of object and relational

[Deudl]

[Gra93]

[0bj92]

[Ont92]
[RCS93)]

[RKCS87]

[TPC4]

[Ver92]

databases using the sun benchmark. In
Proceedings of the ACM OOPSLA Con-
ference, San Diego, California, September

1988.

O. Deux et al. The Os system. Communi-
cations of the ACM, 34(10), October 1991.

Jim Gray. The Benchmark Handbook.
Morgan Kaufmann, San Mateo, CA, 1993.

Objectivity, Inc. Objectivity reference

manual. 1992.
Ontos, Inc. Ontos reference manual. 1992.

Joel E. Richardson, Michael J. Carey, and
Daniel T. Schuh. The design of the E pro-
gramming language. ACM Transactions
on Programming Languages and Systems,

15(3), July 1993.
W. Rubenstein, M. Kubicar, and R. Cat-

tell. Benchmarking simple database oper-
ations. In Proceedings of the ACM SIG-
MOD Conference, San Francisco, Califor-
nia, May 1987.

TPC. TPC Benchmark?™ D (Decision
Support). Working draft 6.5, Transaction
Processing Performance Council, Febru-
ary 1994.

Versant, Inc. Versant reference manual.

1992.

