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1 IntroductionOver the past thirteen years there has been considerable research on e�cient model checkingalgorithms for branching-time temporal logics like CTL (See [5] for a survey). Veri�cationtools based on these algorithms have discovered non-trivial design errors in sequential circuitsand protocols [10] and are now beginning to be used in industry. There has been relativelylittle research, however, on e�cient model checking algorithms for linear-temporal logic(LTL), and practical veri�cation tools are virtually non-existant. In fact, the question ofwhether it is possible to develop such tools has been argued for many years. Sistla and Clarke[17] showed in 1982 that the model checking problem for LTL was, in general, PSPACEcomplete. Later, Pnueli and Lichtenstein [14] gave an LTL model checking algorithm thatwas exponential in the size of the formula, but linear in the size of the model. Basedon this result, they argued that the high complexity of LTL model checking might still beacceptable for short formulas. Vardi and Wolper [18] obtained a di�erent algorithm based on!-automata with roughly the same complexity. Unfortunately, the LTL algorithms appearedsigni�cantly more di�cult to implement. Because of this, very few LTL model checkers wereactually constructed. To the best of our knowledge, no experiments were made to determinehow the CTL and LTL model checking algorithms actually compared in practice.In this paper we show how LTL model checking can be reduced to CTL model checkingwith fairness constraints. We also describe how to construct a symbolic LTL model checkerthat appears to be quite e�cient in practice. In particular, we show how the SMV modelchecking system developed by McMillan as part of his Ph.D. thesis [16] can be extended topermit LTL speci�cations. We have developed a translator T that takes an LTL formula fand constructs an SMV program T (f) to build the tableau for f . The tableau constructionthat we use is similar to the one described in [4]. To check that f holds for some SMVprogram M , we combine the text of T = T (:f) with the text of M to obtain a new SMVprogram P = P(T;M ). We add CTL fairness constraints to P in order to make sure thateventualities of the form aUb are actually ful�lled (i.e. to eliminate those paths along whichaU b and a hold continuously, but b never holds). By checking an appropriate CTL formulaon P we can �nd the set Vf of all of those states s such that f holds along every path thatbegins at s. The projection of Vf to the state variables of M gives the set of states wherethe formula f holds.Note that our approach makes it unnecessary to modify SMV (or even understand howSMV is actually implemented). We have evaluated the approach on several standard SMVprograms (including Martin's distributed mutual exclusion circuit [15] and the synchronousarbiter described in McMillan's thesis [16]). In order to make sure that the experiments wereunbiased, we deliberately chose speci�cations which could be expressed in both CTL andLTL. The results that we obtained were quite surprising. For the examples we considered,the LTL model checker required at most twice as much time and space as the CTL modelchecker. Although additional examples still need to be tried, it appears that e�cient LTLmodel checking is possible when the speci�cations are not excessively complicated. In thefull paper we will describe how the same basic approach can be used to extend SMV fortesting inclusion between various types of !-automata.1



2 Binary Decision DiagramsOrdered binary decision diagrams (OBDDs) are a canonical form representation for booleanformulas [3]. They are often substantially more compact than traditional normal forms suchas conjunctive normal form or disjunctive normal form, and they can be manipulated verye�ciently. An OBDD is similar to a binary decision tree, but has the following properties.� Its structure is a directed acyclic graph rather than a tree.� A total order is placed on the occurrence of variables as the graph is traversed fromroot to leaf.� No two subgraphs in the graph represents the same function.Bryant showed that given a variable ordering, the OBDD representation for a boolean for-mula is unique.We can implement various important logical operations using OBDDs. The functionthat restricts some argument xi of the boolean function f to a constant value b, denoted byf jxi b, can be performed in time which is linear in the size of the original binary decisiondiagram [3]. The restriction algorithm allows us to compute the OBDD for the formula9xf as f jx 0 +f jx 1. All 16 two-argument logical operations can also be implementede�ciently on boolean functions that are represented as OBDDs. The complexity of theseoperations is linear in the size of the argument OBDDs [3]. Furthermore equivalence checkingof two boolean functions can be done in constant time, by using a hash table properly[2].OBDDs are extremely useful for obtaining concise representations of relations over �nitedomains [4, 16]. If R is n-ary relation over f0; 1g then R can be represented by the OBDDfor its characteristic functionfR(x1; . . . ; xn) = 1 i� R(x1; . . . ; xn):Otherwise, let R be an n-ary relation over the �nite domain D. Using an appropriate binaryencoding of D, we can represent R by an OBDD.3 Computation Tree LogicsWe begin by describing the temporal logic CTL� [8, 9, 12], which can express both linear-time and branching-time properties. In this logic, a path quanti�er, either A (\for allcomputation paths") or E (\for some computation paths") can pre�x an assertion composedof arbitrary combinations of the usual linear-time operators G (\always"), F (\sometimes"),X (\nexttime"), andU (\until"). Both Linear Temporal Logic (LTL) and Computation TreeLogic (CTL) are included in CTL� .There are two types of formulas in CTL� : state formulas (which are true in a speci�cstate) and path formulas (which are true along a speci�c path). Let AP be the set of atomicproposition names. The syntax of state formulas is given by the following rules:� If p 2 AP , then p is a state formula. 2



� If f and g are state formulas, then :f and f _ g are state formulas.� If f is a path formula, then E(f) is a state formula.Two additional rules are needed to specify the syntax of path formulas:� If f is a state formula, then f is also a path formula.� If f and g are path formulas, then :f , f _ g, X f , and f U g are path formulas.CTL� is the set of state formulas generated by the above rules.We de�ne the semantics of CTL� with respect to a Kripke structure M = hS;R;Li,where S is the set of states; R � S � S is the transition relation, which must be total (i.e.,for all states s 2 S there exists a state s0 2 S such that (s; s0) 2 R); and L : S ! P(AP ) isa function that labels each state with a set of atomic propositions true in that state. In thispaper, we assume that all Kripke structures are �nite.A path in M is an in�nite sequence of states, � = s0; s1; . . . such that for every i � 0,(si; si+1) 2 R. We use �i to denote the su�x of � starting at si. If f is a state formula,the notation M;s j= f means that f holds at state s in the Kripke structure M . Similarly,if f is a path formula, M;� j= f means that f holds along path � in Kripke structure M .When the Kripke structure M is clear from context, we will usually omit it. The relation j=is de�ned inductively as follows (assuming that f1 and f2 are state formulas and g1 and g2are path formulas):1. s j= p , p 2 L(s).2. s j= :f1 , s 6j= f1.3. s j= f1 _ f2 , s j= f1 or s j= f2.4. s j= E(g1) , there exists a path � starting with s such that � j= g1.5. � j= f1 , s is the �rst state of � and s j= f1.6. � j= :g1 , � 6j= g1.7. � j= g1 _ g2 , � j= g1 or � j= g2.8. � j= X g1 , �1 j= g1.9. � j= g1 U g2 , there exists a k � 0 such that �k j= g2 and for all0 � j < k, �j j= g1.The following abbreviations are used in writing CTL� formulas:� f ^ g � :(:f _ :g) � F f � trueU f� A(f ) � :E(:f ) � G f � :F:fCTL [1, 8] is a restricted subset of CTL� that permits only branching-time operators|each of the linear-time operators G, F, X, and U must be immediately preceded by a pathquanti�er. More precisely, CTL is the subset of CTL� that is obtained if the following tworules are used to specify the syntax of path formulas.� If f and g are state formulas, then X f and f U g are path formulas.� If f is a path formula, then so is :f . 3



Linear temporal logic (LTL), on the other hand, will consist of formulas that have theformA f where f is a path formula in which the only state subformulas permitted are atomicpropositions. More precisely, a path formula is either:� an atomic proposition p 2 AP .� If f and g are path formulas, then :f , f _ g, X f , and f U g are path formulas.There are eight basic CTL operators: AX, EX, AG, EG, AF, EF, AU and EU. Eachof the eight operators can be expressed in terms of three operators EX, EG, and EU.4 CTL Model CheckingCTL Model checking is the problem of �nding the set of states in a state transition graphwhere a given CTL formula is true. One approach for solving this problem is a symbolicmodel checking using an OBDD to represent the transition relation of the graph. Assumethat the transition relation is given as a boolean formula R(�v; �v0) in terms of current statevariables �v = (v1; . . . ; vn) and next state variables �v0 = (v01; . . . ; v0n). The algorithm takesa CTL formula f , and the OBDD that represents R(�v; �v0). For each subformula g, thealgorithm computes the states that satisfy g in a bottom-up manner. This step is performedby OBDD operations. The algorithm returns an OBDD that represents exactly those statesof the system that satisfy the formula f .Fairness constraints were introduced for checking the correctness of CTL formulas alongfair computation paths. A fairness constraint can be an arbitrary set of states, usuallydescribed by a formula of the logic. A path is said to be fair with respect to a set of fairnessconstraints if each constraint holds in�nitely often along the path. The path quanti�ersin CTL formulas are then restricted to fair paths. The CTL model checking under givenfairness constraints can also be performed using OBDD operations. As will be shown in thenext section, LTL model checking can be reduced to CTL model checking under fairnessconstraints.5 LTL Model CheckingIn this section we consider the model checking problem for linear temporal logic. Let A fbe a linear temporal logic formula. Thus, f is a restricted path formula in which the onlystate subformulas are atomic propositions. We wish to determine all of those states s 2 Ssuch that M;s j= A f . By de�nition M;s j= A f i� M;s j= :E:f . Consequently, it issu�cient to be able to check the truth of formulas of the form E f where f is a restrictedpath formula. If the Kripke structure is represented explicitly as a state transition graph,this problem is known to be PSPACE-complete [17] in general.Lichtenstein and Pnueli [14] developed an algorithm for the problem that was linear in thesize of the modelM and exponential in the length of the formula f . Although their algorithmwas linear in the size of the model, it was still impractical for large examples because of thestate explosion problem. As in the case of CTL model checking, representing the transition4



relation as an OBDD enables the procedure to be applied to much larger examples. Theexponential complexity of their algorithm in terms of formula length is caused by a tableauconstruction which may require exponential space in the size of the formula.Burch et. al developed a model checking algorithm for constructing the tableau implicitly[4]. The implicit tableau construction leads to an additional reduction in space and time.We begin with an informal description of the model checking algorithm. Given a formulaE f and a Kripke structure M , we construct a special Kripke structure T called the tableaufor the path formula f . This structure includes every path that satis�es f . By composing TwithM , we �nd the set of paths that appear in both T and M . A state inM will satisfy E fif and only if it is the start of a path in the composition that satis�es f . The CTL modelchecking procedure described in Section 4 is used to �nd these states.We now describe the construction of the tableau T in detail. Let APf be the set of atomicpropositions in f . The tableau associated with f is a structure T = (ST ; RT ; LT ) with APfas its set of atomic propositions. Each state in the tableau is a set of elementary formulasobtained from f . The set of elementary subformulas of f is denoted by el(f) and is de�nedrecursively as follows:� el(p) = fpg if p 2 AP .� el(:g) = el(g).� el(g _ h) = el(g) [ el(h).� el(X g) = fX gg [ el(g).� el(g U h) = fX(g U h)g [ el(g) [ el(h).Thus, the set of states ST of the tableau is P(el(f )). The labeling function LT is de�ned sothat each state is labeled by the set of atomic propositions contained in the state.In order to construct the transition relation RT , we need an additional function sat thatassociates with each subformula g of f a set of states in ST . Intuitively, sat(g) will be theset of states that satisfy g.� sat(g) = f� j g 2 �g where g 2 el(f).� sat(:g) = f� j � 62 sat(g)g.� sat(g _ h) = sat(g) [ sat(h).� sat(gU h) = sat(h) [ (sat(g) \ sat(X(g U h))).We want the transition relation to have the property that each elementary formula ina state is true in that state. Clearly, if Xg is in some state �, then all the successors of �should satisfy g. Furthermore, since we are dealing with LTL formulas, if Xg is not in �,then � should satisfy :Xg. Hence, no successor of � should satisfy g. The obvious de�nitionfor RT is RT (�; �0) = ^Xg2el(f) � 2 sat(X g), �0 2 sat(g):5
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7 8Figure 1: Tableau for aU bFigure 1 gives the tableau for the formula g = a U b. To reduce the number of edges, weconnect two states � and �0 with a bidirectional arrow if there is an edge from � to �0 andalso from �0 to �. Each subset of el(g) is a state of T . sat(Xg) = f1; 2; 3; 5g since eachof these states contains the formula Xg. sat(g) = f1; 2; 3; 4; 6g since each of these stateseither contains b or contains a and Xg. There is a transition from each state in sat(Xg) toeach state in sat(g) and from each state in the complement of sat(Xg) to each state in thecomplement of sat(g).Unfortunately, the de�nition of RT does not guarantee that eventuality properties areful�lled. We can see this behavior in Figure 1. Although state 3 belongs to sat(g), the paththat loops forever in state 3 does not satisfy the formula g since b never holds on that path.Consequently, an additional condition is necessary in order to identify those paths alongwhich f holds. A path � that starts from a state � 2 sat(f) will satisfy f if and only if� For every subformula g U h of f and for every state � on �, if � 2 sat(g U h) theneither � 2 sat(h) or there is a later state � on � such that � 2 sat(h).In order to state the key property of the tableau construction, we must introduce somenew notation. Let � = s0; s1; . . . be a path in a Kripke structure M , then label(�) =L(s0); L(s1); . . .. Let l = l0; l1; . . . be a sequence of subsets of some set � and let �0 � �.The restriction of l to �0, denoted by l j�0 , is the sequence l00; l01; . . . where l0i = li \ �0 forevery i � 0. The following theorem makes precise the intuitive claim that T includes everypath which satis�es f .Theorem 1 Let T be the tableau for the path formula f . Then, for every Kripke structureM and every path �0 of M , if M;�0 j= f then there is a path � in T that starts in a state insat(f), such that label(�0) jAPf= label(�).We prove this theorem in the Appendix. 6
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abFigure 2: Kripke Structure MNext, we want to compute the product P = (S;R;L) of the tableau T = (ST ; RT ; LT )and the Kripke structure M = (SM ; RM ;LM ).� S = f(�; �0) j � 2 ST ; �0 2 SM and LM(�0) \ APf = LT (�)g.� R((�; �0); (�; � 0)) i� RT (�; � ) and RM(�0; � 0).� L((�; �0)) = LT (�).P contains exactly the sequences �00 for which there are paths � in T and �0 in M such thatlabel(�00) = label(�) = label(�0) jAPf . We extend the function sat to be de�ned over the setof states of the product P by (�; �0) 2 sat(g) if and only if � 2 sat(g).We next apply CTL model checking and �nd the set of all states V in P , V � sat(f),that satisfy EG true with the fairness constraintsfsat(:(gU h) _ h) j g U h occurs in fg: (1)Each of the states in V is in sat(f). Moreover, it is the start of an in�nite path that satis�esall of the fairness constraints. These paths have the property that no subformula g U hholds almost always on the path while h remains false. The correctness of our constructionis summarized by the following theorem.Theorem 2 M;�0 j= E f if and only if there is a state � in T such that (�; �0) 2 sat(f) andP; (�; �0) j= EGTrue under fairness constraints fsat(:(gU h) _ h) j g U h occurs in fg.The proof of this theorem is also given in the Appendix.To illustrate this construction, we check the formula g = aUb on the Kripke structureMin Figure 2. The tableau T for this formula is given in Figure 1. If we compute the product Pas described above, we obtain the Kripke structure shown in Figure 3. We use the CTL modelchecking algorithm to �nd the set V of states in sat(g) that satisfy the formula EG truewith the fairness constraint sat(:(aU b) _ b). It is easy to see that the fairness constraintcorresponds to the following set of states f(2; 40); (5; 30); (7; 10); (6; 20); (1; 20)g. Thus, everystate in Figure 3 satis�es EG true. However, only (2; 40), (3; 10), (1; 20) are (6; 20) are insat(g), so the states 10, 20, and 40 of M satisfy E g = E[aU b].We now describe how the above procedure can be implemented using OBDDs. Weassume that the transition relation for M is represented by an OBDD as in the previous7
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a  bFigure 3: The product P of the structure M and the tableau Tsection. In order to represent the transition relation for T in terms of OBDDs, we associatewith each elementary formula g a state variable vg. We describe the transition relation RTas a boolean formula in terms of two copies �v and �v0 of the state variables. The booleanformula is converted to an OBDD to obtain a concise representation of the tableau. Whenthe composition P is constructed, it is convenient to separate out the state variables thatappear in APf . The symbol �p will be used to denote a boolean vector that assigns truthvalues to these state variables. Thus, each state in ST will be represented by a pair (�p; �r),where �r is a boolean vector that assigns values to the state variables that appear in thetableau but not in APf . A state in SM will be denoted by a pair (�p; �q) where �q is a booleanvector that assigns values to the state variables of M which are not mentioned in f . Thus,the transition relation RP for the product of the two Kripke structures will be given byRP (�p; �q; �r; �p0; �q0; �r0) = RT (�p; �r; �p0; �r0) ^ RM(�p; �q; �p0; �q0):We use the symbolic model checking algorithm that handles fairness constraints to �nd theset of states V that satisfy EG true with the fairness constraints given in (1). The states inV are represented by boolean vectors of the form (�p; �q; �r). Thus, a state (�p; �q) in M satis�esE f if and only if there exists �r such that (�p; �q; �r) 2 V and (�p; �r) 2 sat(f).6 LTLModel Checking Using the SMVModel CheckerAs stated in Section 5, LTL model checking can be reduced to CTL model checking underfairness constraints. If the tableau and the fairness constraints for a given LTL formula arerepresented implicitly as boolean formulas, we can perform symbolic LTL model checkingusing an existing symbolic model checker for CTL. We have developed a translator thatenables the SMV model checker to handle LTL formulas. For a given LTL formula, thetranslator generates an SMV program for the corresponding tableau and fairness constraints.We can perform symbolic LTL model checking using the resulting SMV program. In thissection, we describe how the translator works.We begin with a brief description of the SMV model checker. SMV is a tool for checkingthat �nite-state systems satisfy speci�cations given in CTL. It uses the OBDD-based sym-bolic model checking algorithm in Section 4. The language component of SMV is used todescribe complex �nite-state systems. Figure 4 shows an SMV program for the Kripke struc-ture in Figure 2 and an speci�cation A(aU b). This example illustrates the basic features8



1 MODULE main -- simple program2 VAR3 a: boolean;4 b: boolean;5 TRANS ( a & !b) -> next(!(a & !b))6 TRANS ( a & b) -> next(a & !b)7 TRANS (!a & b) -> next(!a & b)8 TRANS (!a & !b) -> next(!a & b)9 SPEC A[a U b]Figure 4: Simple SMV program
-- Kripke structureMODULE ......MODULE ......MODULE main......-- LTL formulaSPEC A fFigure 5: An SMV programof SMV that are needed to explain the translation procedure. The syntax and semantics ofthe complete language are given in McMillan's thesis [16].SMV users can decompose the description of a complex �nite-state system into modules.Module de�nitions begin with the keyword MODULE. The module main is the top-level module.(The example in Figure 4 contains a single module; however, our translator can handleprograms with multiple modules.) Variables are declared using the keyword VAR. In theexample, a and b are boolean variables (line 3{4). The TRANS statements are used to de�netransitions of the model (lines 5{8). In the TRANS statements, next(g) is obtained fromg by replacing each state variable v in g by the corresponding next state variable v0. Forexample, next(a & !b) means a0 ^:b0 where a0 are b0 are the next state variables for a andb, respectively. Thus, each TRANS statement determines a propositional formula that relatesthe original state variables and the next state variables. The transition relation for an SMVprogram is obtained by taking the conjunction of these formulas. CTL formulas are declaredas speci�cations using the keyword SPEC (line 9).Next, we describe the translation algorithm. Suppose that we have an SMV program withan LTL formula A f , instead of a CTL formula, as its speci�cation. As stated in Section 5, itis su�cient to handle a formula E:f . The translator replaces A f with an SMV descriptionof the tableau and the fairness constraints for :f . The translation of the SMV programin Figure 5 is shown in Figure 6. The translation follows the general procedure outlined inSection 5:1. Associate a state variable with each elementary formula of :f .9



2. Represent the transition relation of the tableau for :f as a boolean formula in termsof the state variables.3. Represent fairness constraints as boolean formulas in terms of the state variables.4. Generate a CTL speci�cation.In the �rst step, the formula f is negated and expanded to a formula in which the onlyoperators are _, :, X, U. The parse tree of :f is traversed to �nd its elementary formulas.If a node associated with formula X g (or g U h) is visited, then then the correspondingelementary formula X g (or X(g U h)) is stored in the list el list. The translator declaresa new variable ELX g for each formula X g in the list el list. Since atomic propositions arealready declared in the original SMV program, they are not declared again.In order to generate descriptions for the transition relation and the fairness constraints,we have to construct the characteristic function Sh of sat(h) for each subformula or elemen-tary formula h in :f . The translator builds these functions using a DEFINE statement1. Thetranslator traverses the parse tree of :f , and generates the appropriate SMV statements ateach node.Sh:= p; if p is an atomic proposition.Sh:= ELh; if h is elementary formula X g in el list.Sh:= !Sg; if h = :g.Sh:= Sg1 | Sg2; if h = g1 _ g2.Sh:= Sg2 | (Sg1 & SX(g1Ug2)); if h = g1 U g2.The transition relation can be described in terms of the characteristic functions as follows:^Xg2el(f)SX g(�v), Sg(�v0)The expression Sg(�v0) is represented in SMV by next(Sg). The translator constructs aformula SX g = next (Sg) for each X g in el list. These formulas are combined in a TRANSstatement to give the transition relation for the tableau.TRANS( SX g1 = next (Sg1) ) &( SX g2 = next (Sg2) ) &...( SX gN = next (SgN) )Likewise, the translator traverses the parse tree and generates an SMV FAIRNESS con-straint for each node associated with a formula of form g U h:1This statement associates a symbol with an SMV expression. When the symbol appears in the program,it is replaced with the expression. 10



FAIRNESS !SgUh | ShFinally, the translator generates an SMV SPEC statement. From Theorem 2, it is clearthat the formula E:f can be checked using the the speci�cation S:f ^ EGTrue. Thus,in order to check the LTL formula A f = :E:f , the translator constructs an SMV SPECstatement for :(S:f ^EGTrue).We illustrate the translation procedure by applying it to the simple example in Figure 4.The result of this procedure is shown in Figure 7. The statements in lines 1 through 8 comefrom the original SMV program, while the statements in lines 9 through 19 are generated bythe tableau construction for aU b. The translation procedure �rst determines that a, b andX(aU b) are elementary formulas and causes the state variable EL_X_a_U_b to be declaredfor X(aUb) in line 10. Next, the DEFINE statement in lines 12 through 16 is constructed forthe characteristic functions of sat(a), sat(b), sat(X(aU b)), sat(aU b) and sat(:aU b). TheTrans statement in line 17 causes the transition relation for the tableau to be constructed,and line 18 contains the fairness constraint for aU b. Finally, the speci�cation to be checkedis given by the `SPEC` statement in line 19.7 Experimental ResultsThis section describes the experimental results that we obtained for symbolic LTL modelchecking. In order to compare the performance of LTL model checking with CTL modelchecking, we used two sequential circuit designs whose speci�cations can be described inboth LTL and CTL,The �rst example is a distributed mutual exclusion(DME) circuit designed by AlainMartin[15]. The DME circuit is a speed-independent token ring, which consists of identicalarbiter cells. A user of the DME circuit obtains exclusive access to the resource via requestand acknowledge signals. We assume aribitrary delay for all gates in the circuit. Each gate ismodeled as a �nite-state machine that non-deterministically decides either to recompute itsoutput or remain unchanged. We verify the correctness of the following two speci�cations:1. (Safety) No two users are acknowledged simultaneously.2. (Liveness) All requests are eventually acknowledged.The safety speci�cation is given by the formulaAG ^1�i<j�n:(acki ^ ackj);where acki means that user i is acknowledged. This formula is both an LTL formula and aCTL formula. In the experiments for this speci�cation, in�nite delays are allowed at eachgate. In other words, the output value of each gate can remain unchanged forever.Next, we verify that requests are eventually acknowledged. We only check this speci-�cation with respect to a single user (user 1). In this case the LTL speci�cation has theform: AG(req1 ! F ack1)11



-- Kripke structureMODULE ...MODULE ...MODULE main...-- Tableau for fVAR -- new variablesELX g1 : boolean;ELX g2 : boolean;...ELX gN : boolean;DEFINE -- characteristicfunctionSh1:= � � �;Sh2:= � � �;...ShM:= � � �;TRANS -- transition relation( SXg1 = next (Sg1) ) &( SXg2 = next (Sg2) ) &...( SXgN = next (SgN) )-- fairness constraintsFAIRNESS !Sg01Uh01 | Sh01FAIRNESS !Sg02Uh02 | Sh02...FAIRNESS !Sg03Uh03 | Sh03-- new specificationSPEC !(S:f & EG true)Figure 6: Translator output for SMV program12



1 MODULE main -- simple program2 VAR3 a: boolean;4 b: boolean;5 TRANS ( a & !b) -> next(!(a & !b))6 TRANS ( a & b) -> next(a & !b)7 TRANS (!a & b) -> next(!a & b)8 TRANS (!a & !b) -> next(!a & b)9 VAR10 EL_X_a_U_b : boolean;11 DEFINE12 S_a := a;13 S_b := b;14 S_X_a_U_b := EL_X_a_U_b;15 S_a_U_b := S_b | (S_a & S_X_a_U_b);16 S_NOT_a_U_b := !S_a_U_b;17 TRANS S_X_a_U_b = next(S_a_U_b)18 FAIRNESS !S_a_U_b | b19 SPEC !(S_NOT_a_U_b & EG true)Figure 7: Translator output for simple SMV programThis formula is equivalent to the CTL formula:AG(req1 ! AF ack1)If in�nite delays are allowed at each gate, these formulas are not true. In order to over-come this problem we use a fairness constraint which ensures that the output of the gate isreevaluated in�nitely often.SMV provides several options to perform model checking. We veri�ed the circuit usingthe following approach.� A single OBDD is constructed for the transition relation of the circuit.� The reachable states of the circuit are determined, and evaluation of the CTL operatorsis restricted to these states. 13



#cell #nodes #time(sec) trans. #reachable statesCTL LTL CTL LTL CTL LTL CTL LTL3 11326 11362 17.9 20.5 2778 2781 6579 131584 13458 15357 47.5 49.4 4757 4760 75172 1503445 22321 22348 100.5 104.4 6760 6763 802425 1.60485e+066 25869 27318 182.3 193.6 8763 8766 8.2166e+06 1.64332e+077 28413 33310 326.4 329.3 10766 10769 8.1784e+07 1.63568e+088 44322 44369 509.2 526.3 12769 12772 7.97393e+08 1.59479e+099 49702 49755 794.0 794.8 14772 14775 7.65302e+09 1.53060e+1010 55082 55141 1125.2 1362.7 16775 16778 7.30144e+10 1.46029e+11Table 1: Safety speci�cation for the DME circuit#cell #nodes #time(sec) trans. #reachable statesCTL LTL CTL LTL CTL LTL CTL LTL3 12721 33940 426.1 1260.5 2778 3004 6579 263164 26541 72029 2553.2 6096.7 4757 4983 75172 3006885 47346 120299 9623.1 21950.1 6760 6986 802425 3.2097e+066 92080 183043 36995.3 66502.5 8763 8989 8.2166e+06 3.28664e+077 163867 263380 97807.1 191990.0 10766 10992 8.1784e+07 3.27136e+08Table 2: Liveness speci�cation for the DME circuit� At each step in the forward search, the transition relation is restricted to the set ofreachable states. The Restrict function of Coudert, Madre and Berthet [11] is usedfor this purpose.Table 1 summarizes the experimental results for the safety speci�cation, and Table 2summarizes the results for the liveness speci�cation. The columns show the number of thecells (#cell), the maximum number of OBDD nodes used at any given time (#nodes), therun time on SPARC station 10 (time), the size of the transition relation in OBDD nodes(trans.) and the number of the reachable states (#reachable states). In the experimentfor the safety speci�cation, we observe that the number of reachable states for LTL modelchecking is twice as large as for CTL model checking. The increase in allocated OBDD nodesand run time is less than 10%. In the experiments for the liveness speci�cation, the numberof the reachable states is four times larger for LTL model checking, while the increase inspace and time is 1.5{3 times larger.The second example is a synchronous bus arbiter which is described in McMillan's the-sis [16]. This circuit is composed of a daisy chain of identical arbiter cells. The requesterwith the highest priority receives an acknowledgement from the arbiter under normal oper-ation, while a round-robin scheme is applied when the bus tra�c becomes very heavy. Eachcell is modeled by a deterministic machine, so the whole arbiter circuit is also a deterministic14



#cell #nodes #time(sec) trans. #reachable statesCTL LTL CTL LTL CTL LTL CTL LTL3 384 734 0.08 0.1 80 122 384 7684 654 1279 0.1 0.1 112 218 2048 40965 987 1913 0.11 0.15 144 318 10240 204806 1383 2628 0.13 0.18 176 418 49152 983047 1842 3424 0.16 0.21 208 518 229376 4587528 2364 4301 0.16 0.26 240 618 1.04858e+06 2.09715e+069 2949 5259 0.16 0.33 272 718 4.71859e+06 9.43718e+0610 3597 6298 0.21 0.33 304 818 2.09715e+07 4.19430e+0711 4308 7418 0.21 0.41 336 918 9.22747e+07 1.84549e+0812 5082 8619 0.31 0.45 368 1018 4.02653e+08 8.05306e+08Table 3: Safety speci�cation for the synchronous arbitermachine. The speci�cations in this case are essentially the same as in the case of the DMEcircuit discussed previously:1. (Safety) No two users are acknowledged simultaneously.2. (Liveness) All requests are eventually acknowledged.In fact, exactly the same LTL and CTL speci�cations can be used.In the experiments using SMV, we used the options to construct single transition rela-tions, and to compute reachable states before model checking. Table 3 shows the exper-imental results for the safety speci�cation and Table 4 shows the results for the livenessspeci�cation. For the safety speci�cation we observe that the number of reachable statesfor LTL model checking checking is twice as large as for CTL model checking. The numberof the allocated OBDD nodes and run time both increase by a factor of 1.5. In the secondexperiment, the number of the reachable states is four times larger for LTL model checking.The amount of space and time that is required is 1.5{2 times larger.8 Directions for Future ResearchCertainly the most important thing that remains to be done is to try additional examples.Based on the two examples that we have considered in detail so far, it appears that e�cientLTL model checking is possible when the formula that is being checked is not excessivelycomplicated. This does not mean that LTL will take the place of CTL in model checkingapplications. Many other problems, like testing inclusion and equivalence between varioustypes omega-automata [7], can also be reduced to CTL model checking. LTL, on the otherhand, does not appear to have this 
exibility. Moreover, in many of the applications ofmodel checking to veri�cation, it is important to be able to assert the existance of a paththat satis�es some property. For example, absence of deadlock might be expressed by the15



#cell #nodes #time(sec) trans. #reachable statesCTL LTL CTL LTL CTL LTL CTL LTL3 996 2159 0.10 0.26 80 134 384 15364 1531 3137 0.20 0.36 112 196 2048 81925 2155 4254 0.38 0.43 144 258 10240 409606 2867 5483 0.43 0.48 176 320 49152 1966087 3667 6820 0.48 0.61 208 382 229376 9175048 4555 8266 0.53 0.81 240 444 1.04858e+06 4.1943e+069 5531 9821 0.71 1.01 272 506 4.71859e+06 1.88744e+0710 6595 10000 0.83 1.23 304 568 2.09715e+07 8.38861e+0711 7747 10001 1.00 1.46 336 630 9.22747e+07 3.69099e+0812 8987 10052 1.16 1.71 368 692 4.02653e+08 1.61061e+09Table 4: Liveness speci�cation for the synchronous arbiterCTL formula AGEF start (Regardless of what state the program enters, there exists acomputation leading back to the start state). Neither this formula nor its negation can beexpressed in LTL [6], so LTL model checking techniques cannot be used to decide whetherthe formula is true or not. Idealy, it should be possible to reason about linear-time andbranching-time properties in the same logic (say, CTL� ). We believe this goal can potentiallybe realized by extending the techniques discusssed in this paper. Emerson and Lei [13] haveshown how to reduce CTL� model checking to LTL model checking. If the transformationoutlined in this paper can be extended to incorporate their reduction, then it should bepossible to develop a model checker that can handle both types of properties.AppendixWe prove Theorem 1 and Theorem 2 of Section 5.Theorem 1 Let T be the tableau for the path formula f . Then, for every Kripke structureM and every path �0 of M , if M;�0 j= f then there is a path � in T that starts in a state insat(f), such that label(�0) jAPf= label(�).In order to prove this theorem, we need the following two lemmas. In the remainder ofthis section, �0 = s00s01 . . . represents a path in M . We denote the su�x of �0 starting fromthe state s0i as �0i i.e., �0i = s0is0i+1 . . .. For the path �0i, we de�ne si = f j 2 el(f ) andM;�0i j=  g. Note that si is a state in T .Lemma 3 For all g 2 sub(f) [ el(f), M;�0i j= g if and only if si 2 sat(g).Proof. The proof proceeds by induction on the structure of the formula.1. Case g 2 el(f ). By the de�nition of si, it is easy to see that M;�0i j= g if and only ifg 2 si. By the de�nition of sat, g 2 si if and only if si 2 sat(g).16



2. Case g = :g1 and g = g1 _ g2. By the induction hypothesis and the de�nition of sat,it is easy to prove these cases.3. Case g = g1 U g2. By the de�nition of U, M;�0i j= g1 U g2 if and only if M;�0i j=g2 or (M;�0i j= g1 and M;�0i j= X(g1 U g2)). By the induction hypothesis and thede�nition of si, M;�0i j= g2 or (M;�0i j= g1 and M;�0i j= X(g1 U g2)) if and onlyif si 2 sat(g2) _ (si 2 sat(g1) ^ si 2 sat(X(g1 U g2))). By the de�nition of sat,si 2 sat(g2) _ (si 2 sat(g1) ^ si 2 sat(X(g1 U g2))) if and only if si 2 sat(g1U g2). 2Lemma 4 Given �0 = s00s01 � � � and si as above, then � = s0s1 . . . is a path in T .Proof. Clearly, for all i, si 2 ST . By Lemma 3 and the de�nition of X, it is easy to seethe following relation: si 2 sat(X g) if and only if M;�0i j= X g if and only if M;�0i+1 j= gif and only if si+1 2 sat(g). By the de�nition of RT , if si 2 sat(X g) , si+1 2 sat(g), then(si; si+1) 2 RT . Therefore � = s0s1 . . . is a path in T . 2Proof of Theorem 1. Suppose that, for a path �0 inM , �0 j= f . By Lemma 4, we can �nd apath � = s0s1 . . . in T . By Lemma 3, s0 2 sat(f). By the de�nition of si, L(s0i) jAPf= LT (si),and thus label(�0) jAPf= label(�). This leads to Theorem 1. 2Theorem 2 M;�0 j= E f if and only if there is a state � in T such that (�; �0) 2 sat(f) andP; (�; �0) j= EGTrue under the fairness constraints given in (1).In order to prove this theorem, we need the following three lemmas.Lemma 5 Given � = s0s1 . . . where si is de�ned as above, then � j= GTrue under the thefairness constraints given in (1).Proof. In order to show that � j= GTrue under the fairness constraints, we need to provethat, for every subformula g U h of f , there are in�nitely many states si on � such thatsi 2 sat(:(g U h) _ h). Suppose not, then there exists i0 such that, for all i � i0, si 62sat(:(gUh)_h). Thus si 2 sat(gUh) and si 62 sat(h). By Lemma 3, for all i � i0; �0i j= gUhand �0i 6j= h. Since �0i j= gU h means �0j j= h for some j � i, this leads to a contradiction. 2It is easy to see the next lemma.Lemma 6 �00 = (s0; s00)(s1; s01) � � � is a path in P with LP ((si; s0i)) = LT (si) for all i � 0if and only if there exist a path � = s0s1 � � � in T , and a path �0 = s00s01 � � � in M withLT (si) = LM (si) jAPf for all i � 0.Lemma 7 Asuume that, for all k � j, sk 2 sat(g1), �k j= g1 and sk 2 sat(g2), �k j= g2.If �j 6j= g1U g2 and sj 2 sat(g1U g2), then, for all k � j, �k 6j= g1U g2 and sk 2 sat(g1U g2).Proof. First we prove that, if sj 2 sat(g1Ug2) and �j 6j= g1Ug2, then sj+1 2 sat(g1Ug2) and�j+1 6j= g1U g2. From the de�nition of sat, sat(g1U g2) implies sj 2 sat(g2) or (sj 2 sat(g1)and sj 2 sat(X(g1 U g2))). From the assumptions and the de�nition of RT , it follows that:�j j= g2 or (�j j= g1 and sj+1 2 sat(g1U g2)): (2)17



Since �j 6j= g1 U g2 implies �j 6j= g2, (2) leads to the following:�j j= g1 and sj+1 2 sat(g1U g2): (3)Since �j j= g1 from (3) and �j 6j= g1Ug2 from the assumption, we can also get �j+1 6j= g1Ug2.Similarly we can get, for all k = j +2; j +3; j +4 . . ., sk 2 sat(g1U g2) and �k 6j= g1U g2. 2Lemma 8 Let � j= GTrue under the fairness constraints, then T; � j= f if and only ifs0 2 sat(f).Proof. By induction on the structure of the formula, we prove, for each g 2 sub(f) [ el(f),8j : T;�j j= g if and only if sj 2 sat(g).1. Case g = p 2 AP . By the de�nition of sj and the de�nition of sat, it is easy to seethe following relation: �j j= p if and only if p 2 LT (sj) if and only if p 2 sj if and onlyif sj 2 sat(p).2. Case g = :g1 and g = g1 _ g2. By the induction hyposthesis and the de�tion of : and_, it is easy to prove these cases.3. Case g = X g1. By the de�nition of RT and the induction hypothesis, we can see thefollowing relation: sj 2 sat(X g1) if and only if sj+1 2 sat(g) if and only if �j+1 j= g ifand only if �j j= X g.4. Case g = g1 U g2. ()) Assume that �j j= g1 U g2, then for some l � j, �l j= g2 andfor all j � i < l, �i j= g1. By the induction hypothesis, sl 2 sat(g2) and thereforesl 2 sat(g1 U g2). By the de�nition of RT , it follows that sl�1 2 sat(X(g1 U g2)).But �l�1 j= g1, so, by induction sl�1 2 sat(g1) and therefore sl�1 2 sat(g1 U g2). Byinduction on (l � j) we eventually get sj 2 sat(g1 U g2).(() Suppose that sj 2 sat(g1 U g2) and �j 6j= g1 U g2. By Lemma 7, for all k � j,sk 2 sat(g1 U g2) and �k 6j= g1 U g2. This implies that �k 6j= g2, and thus sk 62 sat(g2)from the induction hypothesis. Consequently sk 2 sat(g1 U g2) and sk 62 sat(g2)for all k � j. This leads to a contradiction, because � j= G True guarantees thatthere are in�nitely many states sk such that sk 2 sat(:(g1 U g2) _ g2). Therefore ifsj 2 sat(g1U g2), then �j j= g1 U g2. 2Proof of Theorem 2. ()) SinceM;s00 j= E f , then 9�0 j= f . By Theorem 1 and Lemma 5,we can prove, for � in T , � j= GTrue and label(�) = label(�0) jAPf . By Lemma 6, there is apath �00 in P such that label(�00) = label(�). Since label(�) = label(�0) jAPf and �0 j= f , wecan see � j= f . Also since � j= GTrue, by Lemma 8 s0 2 sat(f). Thus (s0; s00) 2 sat(f).Since label(�) = label(�00) and � j= G True, it is clear that �00 j= G True. ThereforeP; (s0; s00) j= EGTrue.(() Since (s0; s00) 2 sat(f) and P; (s0; s00) j= EG True, then 9�00 j= GTrue. ByLemma 6, there exist paths � 2 T and �0 2M such that label(�00) = label(�) = label(�0) jAPf .Since �00 j= G True and label(�) = label(�00), we can see � j= GTrue. Since (s0; s00) 2sat(f), s0 2 sat(f). From Lemma 8, � j= f . Since label(�) = label(�0) jAPf , �0 j= f .Therefore M;s00 j= E f . 2 18
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